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We present the asymptotic transitions from microscopic to macroscopic physics,
their computational challenges and the asymptotic-preserving (AP) strategies to
compute multiscale physical problems efficiently. Specifically, we will first study the
asymptotic transition from quantum to classical mechanics, from classical mechanics
to kinetic theory, and then from kinetic theory to hydrodynamics. We then review
some representative AP schemes that mimic these asymptotic transitions at the
discrete level, and hence can be used crossing scales and, in particular, capture the
macroscopic behaviourwithout resolving themicroscopic physical scale numerically.
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Figure 1.1. Multiscale diagram.

1. Introduction
Ignoring relativistic effects, quantum mechanics is considered to be enough for
us to understand the physical properties of matter. Since solving the Schrödinger
equation analytically is impossible, we rely upon computer simulations to solve the
equation. However, there are essential computational bottlenecks in simulation at
the quantum level. First is the curse of dimensionality. For common molecules
such as carbon dioxide CO2, which consists of 3 nuclei and 22 electrons, the
full time-dependent Schrödinger equation is defined in 75 space dimensions! The
benzene molecule consists of 12 nuclei and 42 electrons, so we need to solve
the Schrödinger equation in 162 dimensions. Another challenge is that quantum
mechanics is valid at spatial scales of Angstroms, i.e. 10−10 m, and time scales of
femtoseconds, i.e. 10−15 s. To simulate such a small-scale system on any physical
scales of interest, e.g.micrometres to millimetres or microseconds to milliseconds,
is computationally formidable for today’s computers.

Physical models at larger scales, such as classical mechanics, statistical mech-
anics and hydrodynamics, are computationally much less expensive compared to
a quantum simulation, but they are valid in certain time and spatial scales; see
Figure 1.1. When we deal with problems that go across different scales, either
due to the nature of the problems or computational needs, multiscale computation
becomes a viable tool when we cannot afford to resolve the smallest scales.
Understanding transitions from one scale to another is a central topic in math-

ematical physics and partial differential equations. This is related to Hilbert’s sixth
problem (Corry 2004). These asymptotic transitions are not only of great mathem-
atical interest: they also guide the design of multiscale computational methods, as
will be reflected in this survey.
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If the asymptotic or macroscopic equations are uniformly valid in the entire
domain of interest, it is much more efficient just to solve the problem at the macro-
scopic level, which is computationally more economical. However, there are many
problems where the macroscopic models break down in part of the domain, or we
lack information or data on the macro models, so microscopic models are needed,
at least locally. Therefore a multiscale and multiphysics approach becomes neces-
sary, for example by hybridizing the microscopic and the macroscopic models in a
domain-decomposition or heterogeneous multiscale framework; see e.g. Bourgat,
Le Tallec, Perthame and Qiu (1994), Klar, Neunzert and Struckmeier (2000) and
Degond, Jin and Mieussens (2005) for multiscale kinetic problems, and E and
Engquist (2003), Abdulle, E, Engquist and Vanden-Eijnden (2012) and Kevrekidis,
Gear andHummer (2004) for broader areas of multiscale modelling and simulation.
Central to the design of multiscale computational methods is to identify the

critical physical scales in the system and the connections between microscopic
and macroscopic models. The Schrödinger equation is valid at the Angstrom scale,
which is exceedingly small compared to the scale of interest. TheNewton equations
in classical mechanics often involve a number of particles that is simply too large.
Kinetic equations often contain small mean-free paths or times, or the Knudsen
number, the average distance or time between two collisions of particles. When
the characteristic scales become small, tremendous computational challenges arise
since we need to resolve these small scales numerically, which can be prohibitively
expensive. A main difficulty in most multiscale and multiphysics methods is that
we have to couplemodels at different scales via an interface or buffer zonewhere we
have to match two different models. While it is often easy to generate macroscopic
data frommicroscopic data via ensemble averages or taking moments, for example,
it is difficult to convert macroscopic data to microscopic data, since most of the
time this conversion is not unique. The coupling locations may also be difficult to
determine in a dynamic problem.
On the other hand, asymptotic expansions on these small parameters for a micro-

scopic model usually give rise to the macroscopic equations. We hope such a
transition can not only guide the design of effective and efficient multiscale com-
putational methods but also help to analyse them.
This paper surveys one multiscale framework: the asymptotic-preserving (AP)

schemes. This approach has its origin in capturing steady-state solutions for neutron
transport in the diffusive regime (Larsen, Morel and Miller Jr 1987, Larsen and
Morel 1989). Since the 1990s, AP schemes have been developed for a wide range
of time-dependent kinetic and hyperbolic equations, and far beyond. The basic
idea is to develop numerical methods that preserve the asymptotic limits from
the microscopic to the macroscopic models, in the discrete setting. Comparing
with multiphysics domain decomposition methods, AP schemes solve one set of
equations – the microscopic ones – and thus avoid the coupling of different models.
An AP scheme switches from a microscopic solver to the macroscopic solver
automatically. Specifically, if we resolve the small physical scales numerically,
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(b)

Figure 1.2. Illustration of (a) AP schemes, (b) uniform convergence of AP schemes.

then the scheme is a micro solver. Otherwise it effectively becomes a macro solver,
when the physically small scales are not numerically resolved.

The idea of AP can be illustrated by Figure 1.2(a). Assume we start with a
microscopic model Fε , which depends on the scaling parameter ε. As ε → 0, the
model asymptotically approaches the macroscopic modelF0, which is independent
of ε. Denote the numerical discretization of Fε by Fε

δ , where δ is the numerical
parameter (such as mesh size and/or time step). The asymptotic limit of Fε

δ , as
ε → 0 (with δ fixed), if it exists, is denoted by F0

δ . Scheme Fε
δ is called AP if F0

δ

is a good (consistent and stable) approximation of F0,
Error estimates on an AP scheme can be obtained by the following argument

(Golse, Jin and Levermore 1999). Typically,

‖Fε − F0‖ = O(ε), (1.1)

under some suitable problem-dependent norm. AssumeFε
δ is an rth-order approx-

imation to Fε for fixed ε. Due to the presence of the small parameter ε, a classical
numerical analysis typically gives the following error estimate:

E1 = ‖Fε
δ − Fε ‖ = O(δr/εs), 1 ≤ s ≤ r . (1.2)

The error is large when δr � εs, namely when the small physical scales are not
numerically resolved (if we use coarse meshes or large time steps relative to ε). An
AP scheme usually requires

‖Fε
δ − F0

δ ‖ = O(ε) uniformly in δ, (1.3)

and
‖F0

δ − F0‖ = O(δr ). (1.4)

Clearly, if we add up the errors in (1.1), (1.3) and (1.4), by the triangle inequality,
the following error estimate can be obtained:

E2 = ‖Fε
δ − Fε ‖ ≤ ‖Fε

δ − F0
δ ‖ + ‖F0

δ − F0‖ + ‖F0 − Fε ‖ = O(ε + δr ). (1.5)
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Figure 1.3. Scaling limits from microscopic to macroscopic models.

This error is small for ε � 1. Clearly both estimates on E1 (1.2) and E2 (1.5)
are mathematically valid and can hold simultaneously. By comparing the two
estimates,

‖Fε
δ − Fε ‖ = min(E1, E2),

which has an upper bound around ε = O(δr/(s+1)), as shown by Figure 1.2(b). This
gives

‖Fε
δ − Fε ‖ = O(δr/(s+1)) uniformly in ε. (1.6)

This argument shows that an AP scheme is convergent uniformly in ε. Indeed, if we
resolve ε by δ (with δ = o(εs/r )), we get a good approximation to the microscopic
model Fε , as shown by (1.2). If ε is not resolved by δ, then we obtain a good
approximation to the macroscopic modelF0. This transition is done automatically
by the code.
There have been a few earlier reviews of AP schemes, e.g. for multiscale kinetic

equations (Jin 2010, Degond and Deluzet 2017, Hu, Jin and Li 2017) and for semi-
classical computation of the Schrödinger equation (Jin, Markowich and Sparber
2011, Lasser and Lubich 2020). This survey, however, is unique in that it covers
the topics in essentially all important physical regimes in a more comprehensive
way, from quantum to classical mechanics, from classical mechanics to kinetic
theory, and then from kinetic theory to hydrodynamics. It also includes the most
recent advances in this topic, including new directions.
Since the design of AP schemes relies upon a good understanding of the asymp-

totic transitions from themicroscopic to themacroscopicmodels, in the next section
we first review such transitions for some of themost fundamental physical equations
and scalings shown in Figure 1.1. They are summarized in Figure 1.3.
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2. Asymptotic transitions from microscopic to macroscopic physics
2.1. From quantum mechanics to classical mechanics

Consider the dimensionless Schrödinger equation from quantum mechanics:

iε∂tuε = −
ε2

2
∆uε + V(x)uε, uε(0, x) = uεin(x). (2.1)

Here uε = uε(t, x) ∈ C is a complex-valued quantum mechanical wave function,
(t, x) ∈ R × Rd, with d ∈ N denoting the spatial dimension. In addition, ε >
0 denotes the small semiclassical parameter (the scaled Planck’s constant h̄),
describing the microscopic/macroscopic scale ratio. In quantum mechanics for N
particles, V(x) is the Coulomb potential, but here it is left as a general function
of x.
The physical observables are real-valued quadratic quantities of uε . They include

the position density
ρε(t, x) := |uε(t, x)|2, (2.2)

the current density

jε(t, x) := ε Im
(
uε(t, x)∇uε(t, x)

)
, (2.3)

and the energy density

eε(t, x) :=
1
2
|ε∇uε(t, x)|2 + V(x)ρε(t, x). (2.4)

Simple analysis shows that these observables are governed by the following dy-
namics:

∂t ρ
ε + ∇ · jε = 0,

∂t jε + ∇ ·
[

jε ⊗ jε

ρε

]
+ ρ∇V =

ε2

2
ρε∇

(
1
√
ρe
∆
√
ρε
)
,

∂t eε + ∇ ·
(

jε

ρε
(eε + ρεV − V ρε)

)
=
ε2

4
∇ ·

[
jε∆ρε

ρε
−
∇ · jε∇ρε

ρε

]
.

(2.5)

From here we can easily deduce the conservation in time of total mass and
energy:

∂t

∫
R
ρε dx = 0, ∂t

∫
R

eε dx = 0. (2.6)

The two main computational challenges to the Schrödinger equation are as
follows.

(i) Small ε. Here uε oscillates with frequency 1/ε in both space and time, so we
need to numerically resolve these oscillations both spatially and temporarily.

(ii) Large d. For a system consisting of N particles, d = 3N . Typically N is
large. For example, for the carbon dioxide molecule d = 75; for the benzene
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molecule N = 162. This incurs the curse of dimensionality. Totally different
techniques need to be used for such high-dimensional problems and we shall
not elaborate on these issues in this paper.

In this survey we focus on the first challenge, namely how one numerically deals
with the small ε problem efficiently. To this end, we first review the so-called
‘semiclassical’ approximation.

2.1.1. The WKB analysis
Consider the initial data of the following form (the so-called WKB initial data):

uε(0, x) = A0(x) eiS0(x)/ε . (2.7)

The WKB analysis assumes that the solution remains of the same form at a later
time:

uε(t, x) = A(t, x) eiS(t,x)/ε . (2.8)

Here A is the amplitude and S is the phase. Applying this ansatz, which is also
called the Madelung transform, to the Schrödinger equation (2.1), and separating
the real part from the imaginary part, we obtain

A∂tS =
ε2

2
∆A −

1
2

A|∇S |2 − AV,

∂t A = −∇A · ∇S −
1
2

A∆S.
(2.9)

Ignoring the O(ε2)-terms, we get

∂t |A|2 + ∇(|A|2∇S) = 0,

∂tS +
1
2
|∇S |2 + V = 0.

(2.10)

The first equation above is called the transport equation while the second is the
eikonal equation. The eikonal equation is a Hamilton–Jacobi equation that admits
solutions S with discontinuous derivatives. This can be easily seen once we take a
gradient on the equation to get (by letting u = ∇S)

∂tu + u · ∇u + ∇V = 0. (2.11)

This is the inviscid Burgers’ equation (with forcing term −∇V), which admits
discontinuous solutions (shocks) to u even if the initial data of u is smooth. Con-
sequently the gradient of S becomes discontinuous, a point usually referred to as
the caustic.
By defining ρ = |A|2, system (2.10) can be written as

∂t ρ + ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu ⊗ u) + ρV = 0.

(2.12)
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This is the pressureless gas system. Clearly the system is decoupled. One can solve
the second equation (which is actually (2.11)) for u and then obtain ρ from the
first equation. When u becomes discontinuous, ρ becomes a Dirac delta function,
usually called a delta shock (Tan, Zhang, Chang and Zheng 1994). Thus, at a
caustic, the amplitude A blows up (becomes infinity).

Beyond the caustic, one notion of mathematical solution to the Hamilton–Jacobi
equation is the viscosity solution, introduced by Crandall and Lions (1983). This
notion, however, cannot be used here since system (2.12) is in fact the ε → 0 limit of
system (2.5), which is a zero dispersion limit. The zero dispersion limit is drastically
different from the zero dissipation limit, as studied for the Korteweg–de Vries
(KdV) equation (Lax and Levermore 1983). For the semiclassical limit of the
defocusing non-linear Schrödinger equation, see Jin, Levermore and McLaughlin
(1999)). Thus the WKB analysis is only valid up to the time when the first caustic
forms. Beyond caustics, the solution becomes multi-valued (Sparber, Markowich
and Mauser 2003).
In contrast, the Wigner transform technique, which we study next, yields the

Liouville equation in phase space, in the semiclassical limit ε → 0, whose solution
does not exhibit caustics, hence is valid globally in time.

2.1.2. Classical limit via the Wigner transform
The Wigner transform of uε is defined as (Wigner 1932)

wε[uε](x, ξ) :=
1

(2π)d

∫
Rd

uε
(

x +
ε

2
η

)
uε

(
x −

ε

2
η

)
eiξ ·η dη, (2.13)

which is the Fourier transform of the density matrix.
It is easy to see that the Wigner transform wε is real-valued but in general not

necessarily positive. The moments of wε give the quantum mechanical physical
observables. For example, the particle density (2.2) can be computed via

ρε(t, x) =
∫
Rd

wε(t, x, ξ) dξ,

the current density (2.3) can be obtained by

jε(t, x) =
∫
Rd
ξwε(t, x, ξ) dξ,

while the energy density (2.4) is just

eε(t, x) =
∫
Rd

(
1
2
|ξ |2 + V(x)

)
wε(t, x, ξ) dξ.

Applying theWigner transformation to the Schrödinger equation (2.1), we obtain
the Wigner equation (also called the quantum Liouville equation)

∂tw
ε + ξ · ∇xw

ε − Θε[V]wε = 0, wε(0, x, ξ) = wεin(x, ξ), (2.14)
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where Θε[V] is given by

Θ
ε[V] f (x, ξ) :=

i
(2π)d

∬
Rd×Rd

δVε(x, y) f (x, ξ ′) eiη(ξ−ξ′) dη dξ ′, (2.15)

with

δVε :=
1
ε

(
V
(

x −
ε

2
y

)
− V

(
x +

ε

2
y

))
.

When ε → 0,

δVε ε→0
−→ y · ∇xV,

then (2.14) formally becomes the classical Liouville equation in phase space:

∂tw + ξ · ∇ξw − ∇xV(x) · ∇ξw = 0. (2.16)

This is the classical limit of the Schrödinger equation as ε → 0, valid globally in
time, even beyond the caustic (Lions and Paul 1993, Gérard, Markowich, Mauser
and Poupaud 1997), in contrast to the WKB analysis. Note that the Liouville
equation (2.16) is linear, which unfolds the singularity, and the linear superposition
and time reversibility of the Schrödinger equation are also preserved.
The (bi)characteristic equations for (2.16) are given by

Ûx = ξ, Ûξ = −∇xV(x),

which is exactly Newton’s equation. This system can be written as a Hamiltonian
system: {

Ûx = ∇ξH(x, ξ),
Ûξ = −∇xH(x, ξ),

(2.17)

with the Hamiltonian H (in classical mechanics) given by

H(x, ξ) =
1
2
|ξ |2 + V(x). (2.18)

For x, ξ ∈ RdN , and V the potential for N-particles, (2.17) is the particle system
to be studied in the next subsection.

2.2. From classical mechanics to kinetic equations

2.2.1. From hard sphere particles to the Boltzmann equation
Consider N hard spherical particles,

Ûxi = vi,

Ûvi = 0,

where (xi, vi) ∈ Rd ×Rd (1 ≤ i ≤ N) denote the position and velocity of particle i.
Assume each particle has the same diameter σ; then they satisfy the exclusion
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condition
|xi(t) − xj(t)| > σ. (2.19)

Assume particles i and j collide elastically when |xi − xj | = σ; then the post-
collisional velocities, denoted by v′i and v′j respectively, are given by

v′i = vi − [(vi − vj) · ω]ω, v′j = vj + [(vi − vj) · ω]ω, (2.20)

where ω = (xj − xi)/|xj − xi |.
Define

ZN = (z1, . . . , zN ) = (x1, v1, . . . , xN, vN ). (2.21)

Let WN (t, ZN ) be the probability distribution of the particle system. Then it solves
the N-body Liouville equation

∂tWN (t) = LNWN (t), LN = −

N∑
i=1

(vi · ∇xi ), (2.22)

which is defined on the domain

DN = {ZN ∈ R
2dN : |xi − xj | > σ for i , j}.

At the boundary, where |xi − xj | = σ, we have WN (t, Z ′N ) = WN (t, ZN ).
Assume all particles are identical and indistinguishable, namely

WN (z1, . . . , zN ) = WN (zσ1, . . . , zσN )

for any {σ1, . . . , σN }, a random permutation of set {1, . . . , N}. Furthermore,
assume the so-called molecular chaos condition:

WN (z1, · · · zN ) = WN
1 (x1, v1) · · ·WN

N (xn, vN ).

Under the above assumptions, the Grad–Boltzmann limit of classical particles can
be derived by letting σ → 0 and N →∞ under the assumption

Nσ2 → constant,

in which the one-particle distribution WN
1 (x1, v1) formally approaches the Boltz-

mann equation for hard spheres (Bouchut, Golse and Pulvirenti 2000):

∂t f + v · ∇x f =
∫
|(v − v∗) · ω|{ f (v′) f (v′∗) − ( f (v) f (v∗)} dω dv∗, (2.23)

where v and v∗ are pre-collisional velocities with corresponding post-collisional
velocities v′ and v′∗ determined by (2.20) (with vi = v, vj = v∗).

The proof of the Grad–Boltzmann limit is extremely challenging. So far the
only rigorous results are available for a very short duration of time – a fraction of
a mean-free time; see Lanford (1975) and Gallagher, Saint-Raymond and Texier
(2013).
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2.2.2. Mean-field limit of particle systems
The Newton-type equations also arise in microscopic modelling of a vast number
of important phenomena in physical, social and biological sciences (Vicsek et al.
1995, Cucker and Smale 2007, Motsch and Tadmor 2014, Albi et al. 2019). These
problems can all be modelled by interacting particle systems of first order,

dX i = b(X i) dt + αN

∑
j:j,i

K1(X i − X j) dt + η dW i, i = 1, 2, . . . , N, (2.24)

or second order,

dX i = V i dt,

dV i =

[
b(X i) + αN

∑
j:j,i

K(X i − X j) − γV i

]
dt + η dW i .

(2.25)

Here (X i,V i) ∈ Rd×Rd, loosely speaking, represent the position and velocity of the
ith particle, and b(·) is the external field. The stochastic processes {W i}N

i=1 are i.i.d.
Wiener processes, or the standardBrownianmotions. The functionK(·) : Rd → Rd
is the interaction kernel. For the molecules in the heat bath, η and γ satisfy the
so-called ‘fluctuation–dissipation relation’

η =
√

2γ/β, (2.26)

where β is the inverse of the temperature (we assume all the quantities are scaled
and hence dimensionless so that the Boltzmann constant is absent). The first-order
system (2.24) can be viewed as the over-damped limit of the second-order system
(2.25), i.e. rescaling t to γt and letting γ → ∞ (Stanley 1971, Georges, Kotliar,
Krauth and Rozenberg 1996, Lelièvre and Stoltz 2016).
The mean-field limit is usually taken by choosing

αN =
1

N − 1
. (2.27)

Define the empirical distribution

µ(N ) :=
1
N

N∑
i=1

δ(x − X i) ⊗ δ(v − V i). (2.28)

For the second-order system (2.25), as N → ∞, µ(N ) converges almost surely in
the weak topology to the solutions of the (mean-field) Fokker–Planck equation

∂t f = −∇x · (v f ) − ∇v · ((b(x) + K ∗x f − γv) f ) +
1
2
η2
∆v f . (2.29)

The mean-field limit corresponding to the first-order system (2.24) is (McKean
1967, Golse 2003, Jabin and Wang 2017)

∂t f = −∇ · ((b(x) + K1 ∗ f ) f ) +
1
2
η2
∆ f . (2.30)
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These mean-field limits can also be derived from taking the limit N →∞ of the
N-body distribution with molecular chaos assumptions, as in the derivation of the
Boltzmann equation from the N-body Newton’s equations described above.

2.3. From kinetic equations to hydrodynamics

2.3.1. Hydrodynamic limit of the Boltzmann equation
The Boltzmann equation describes the probability density function f (t, x, v) of
particles that undergo transport and binary collisions (Cercignani 1988),

∂t f + v · ∇x f =
1
ε
Q( f ), x, v ∈ Rn, (2.31)

where the collision term Q( f ) is a non-linear integral operator:

Q( f )(v) =
1
ε

∫
Rd

∫
Sd−1

B(v − v∗, ω) [ f (v′) f (v′∗) − f (v) f (v∗)] dω dv∗. (2.32)

Here (v, v∗) and (v′, v′∗) are the velocity pairs before and after an elastic collision,
which conserve the momentum and energy. They are related by

v′ = v − [(v − v∗) · ω]ω, v′∗ = v∗ + [(v − v∗) · ω]ω,

with the parameter ω ∈ Sd−1, the unit sphere in Rd. Here B(v − v∗, ω) is the (non-
negative) collision kernel depending only on |v−v∗ | and the cosine of the deviation
angle (σ · (v − v∗))/|v − v∗ |, and ε is the Knudsen number, the dimensionless
mean-free path.
The hydrodynamic quantities ρ, u and T , the density, macroscopic velocity and

temperature respectively, are defined as the moments of f , that is,

ρ =

∫
Rd

f dv =
∫
Rd

M dv, u =
1
ρ

∫
Rd

v f dv =
∫
Rd

vM dv, (2.33)

T =
1

dρ

∫
Rd
|v − u|2 f dv =

1
dρ

∫
Rd
|v − u|2M dv, (2.34)

where the local Maxwellian

M =
ρ

(2πT)d/2
exp

(
−
|u − v |2

2T

)
. (2.35)

The collision operator Q( f ) conserves mass, momentum and energy:∫
Rd

Q( f )φ(v) dv = 0, φ(v) = (1, v, |v |2/2)T , (2.36)

with the momentum m = ρu and the total energy E = 1
2 ρu2 + ρT .

One of the most important properties ofQ is Boltzmann’s celebratedH-theorem:

∂t

∫
Rd

f log f dv =
∫
Rd

Q( f ) ln f dv ≤ 0.

The functional f log f is the entropy of the system. Boltzmann’sH-theorem implies
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that any equilibrium distribution function, i.e. any function which is a maximum
of the entropy, has the form of a local Maxwellian distribution:∫

Rd
Q( f ) ln f dv = 0⇐⇒ Q( f ) = 0⇐⇒ f =M. (2.37)

When ε → 0, Q→ 0, (2.37) implies f =M. Consequently the moments of f
solve the compressible Euler equations:

∂t ρ + ∇x · (ρu) = 0,
∂t (ρu) + ∇x · (ρu ⊗ u + pI) = 0,
∂tE + ∇x · ((E + p)u) = 0.

(2.38)

Via the Chapman–Enskog expansion, we can derive the Navier–Stokes (NS) equa-
tions by retaining O(ε)-terms (Bouchut et al. 2000):

∂t ρ + ∇x · (ρu) = 0,
∂t (ρu) + ∇x · (ρu ⊗ u + pI) = ε∇x · (µσ(u)),
∂tE + ∇x · ((E + p)u) = ε∇x · (µσ(u)u + κ∇xT),

(2.39)

where

σ(u) = ∇xu + ∇xuT −
2
d
∇x · uI,

I is the identity matrix, and µ and κ are the viscosity and heat conductivity,
determined via the linearized Boltzmann collision operator, and usually depend
on T .

2.3.2. Diffusion limit of transport equation
In many applications, such as neutron transport and radiative transfer, the collision
operator is linear. The interesting scaling is often the diffusive scaling, where the
scattering rate is large. A typical such equation takes the form

ε ∂t f + v · ∇x f =
1
ε

∫
b(v,w){M(v) f (w) − M(w) f (v)} dw, x, v ∈ Rd, (2.40)

with the normalized Maxwellian M defined by

M(v) =
1

(2π)d/2
exp(−|v |2/2).

The (anisotropic) scattering kernel b is rotationally invariant, satisfying

b(v,w) = b(w, v) > 0.

Define the collision frequency λ as

λ(v) =
∫

b(v,w)M(w) dw.
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As ε → 0, f → ρ(x, t)M(v), where ρ(t, x) =
∫

f (v) dv satisfies the diffusion
equation (Bardos, Santos and Sentis 1984, Markowich, Ringhofer and Schmeiser
1990)

∂t ρ = ∇x · (D∇xρ), (2.41)

with the diffusion coefficient matrix

D =
∫

M(v)
λ(v)

v ⊗ v dv. (2.42)

3. Numerical passages from quantum to classical mechanics
The highly oscillatory nature of the solution, in both space and time, to the
Schrödinger equation (2.1) poses a huge challenge in numerical computations,
especially in high dimensions, since we need to resolve numerically, in both space
and time, the small wave length of O(ε), which is computationally daunting. If we
do not use a sufficiently small time step or mesh size, even if the numerical scheme
is stable, we may get completely incorrect solutions (Markowich, Pietra and Pohl
1999, Bao, Jin and Markowich 2002). To understand the numerical behaviour in
the semiclassical regime, in addition to standard consistency and stability – which
implies convergence by Lax’s equivalence theorem – we need a new semiclassical
analysis to understand the correct behaviour of the numerical solutions.
Here we are interested in two questions.
• What kind of scheme best suits the highly oscillatory problems?
• How should we analyse the numerical performance when ε is small?

For the first question, when the solution is smooth but highly oscillatory, spectral or
pseudo-spectral methods give the best performance in terms of numerical accuracy
and resolution. It is worth pointing out that taking care of spatial discretization
alone is not enough to achieve the best performance for the Schrödinger equation
(2.1). It takes a good combination of both spatial and temporal discretizations to
achieve the most favourable mesh strategies (the largest possible ratio between the
mesh size and time steps over ε). In this regard, time-splitting spectral methods,
as studied in Bao et al. (2002), offer the best mesh strategy, while finite difference
schemes require very fine numerical resolution of the oscillations (Markowich et al.
1999).

3.1. Time-splitting spectral methods for the semiclassical Schrödinger equations

For the sake of notational clarity, we shall discuss the method in only one space
dimension (d = 1). Generalizations to d > 1 are straightforward for tensor product
grids and the same conclusions hold.
Consider the one-dimensional version of equation (2.1),

iε∂tuε = −
ε2

2
∂xxuε + V(x)uε, uε(0, x) = uεin(x), (3.1)
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for x ∈ [0, 1], with periodic boundary conditions

uε(t, 0) = uε(t, 1), ∂xuε(t, 0) = ∂xuε(t, 1) for all t ∈ R.

We choose the spatial mesh size ∆x = 1/M for some large positive integer M , and
time step ∆t > 0. The spatio-temporal grid-points are then given by

xj := j∆x, j = 1, . . . , M, tn := n∆t, n ∈ N.

Let uε,nj be the numerical approximation of uε(xj, tn), for j = 1, . . . , M .
The Schrödinger equation (3.1) is solved by the following time-splitting method.

Step 1. From time t = tn to time t = tn+1, first solve the free Schrödinger equation

iε∂tuε +
ε2

2
∂xxuε = 0. (3.2)

Step 2. Also on t ∈ [tn, tn+1], solve the ordinary differential equation

iε∂tuε − V(x)uε = 0, (3.3)

with the solution uε,∗ obtained from Step 1 as initial data.
Note that (3.3) can be solved exactly:

u(tn+1, x) = u(tn, x) e− iV (x)∆t/ε .

In Step 1, equation (3.2) will be discretized by a (pseudo-) spectral method in space
and consequently integrated in time exactly in the Fourier space. More precisely,

uε,∗j =
1
M

M/2−1∑
`=−M/2

e iε∆tγ2
`/2 ûε,n

`
e iγ` (x j−a),

where γ` = 2πl and ûε,n
`

is the Fourier coefficients of uε,n, that is,

ûε,n
`
=

M∑
j=1

uε,nj e−iγ` x j , ` = −
M
2
, . . . ,

M
2
− 1.

Note that in both steps the time integration is exact. The only time discretization
error of this method is the splitting error, which is first-order in k, for any fixed
ε > 0. We will refer to this method as TSSP.
The second order in time (for fixed ε > 0) can be obtained via the Strang splitting

method. Extensions to higher-order (in time) splitting schemes can also be done;
see e.g. Bao and Shen (2005). See also its extension to the case of vector potentials
(Jin and Zhou 2013).

3.2. Numerical analysis in the semiclassical regime

Classical numerical analysis, based on consistency and stability, does not provide
accurate assessment of the numerical performance when ε � 1. Wigner analysis,
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on the other hand, gives more insight into the behaviour of numerical solutions, for
physical observables, in the semiclassical regime.
Assume that the potentialV(x) is periodic in domain [0, 1], smooth, and satisfies dm

dxm
V

L∞[a,b]

≤ Cm (3.4)

for some constant Cm > 0, and furthermore ∂m1+m2

∂tm1∂xm2
uε


C([0,T ];L2[a,b])

≤
Cm1+m2

εm1+m2
(3.5)

for all m,m1, m2 ∈ N ∪ {0}, namely the solution oscillates in space and time with
wavelength ε. The following estimate was given in Bao et al. (2002).

Theorem 3.1. Let V(x) satisfy assumption (3.4) and let uε(t, x) be a solution of
(3.1) satisfying (3.5). Let uε,nint denote the interpolation of the discrete approxima-
tion obtained via TSSP. Then, for tn ∈ [0,T],uε(tn) − uε,nint


L2(0,1) ≤ Gm

T
∆t

(
∆x
ε

)m

+
CT∆t
ε

, (3.6)

where C > 0 is independent of ε and m and Gm > 0 is independent of ε, ∆x, ∆t.

Clearly, (3.6) implies that to get an accurate uε we need the following mesh
strategy:

∆t = o(ε), ∆x = o(ε).

Hence the oscillations need to be resolved both spatially and temporally.

3.3. Accurate computation of physical observables

Bao et al. (2002) observed that if we are only interested in obtaining accurate phys-
ical observables, the time step can be greatly relaxed. This cannot be understood
from the above classical numerical analysis; rather, the Wigner picture of quantum
dynamics will offer the clue.
Letuε(t, x) be the solution of (3.1) and letwε(t, x, ξ) be the correspondingWigner

transform. It is easy to see that the splitting scheme (3.2)–(3.3) corresponds to the
following time-splitting scheme for the Wigner equation (2.14).

Step 1. For t ∈ [tn, tn+1], first solve the linear transport equation

∂tw
ε + ξ ∂xw

ε = 0. (3.7)

Step 2. On the same time interval, solve the scattering term

∂tw
ε − Θε[V]wε = 0, (3.8)

with initial data obtained from Step 1.
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Since the time integration is exact in each step of the splitting, we can take
the ε → 0 limit in each step without any discretization error, and thus obtain the
following limiting scheme.
Step 1. For t ∈ [tn, tn+1], solve

∂tw + ξ ∂xw
0 = 0. (3.9)

Step 2. Using the outcome of Step 1 as initial data, solve, on the same time interval,

∂tw − ∂xV ∂ξw
0 = 0. (3.10)

This is exactly the time-splitting scheme for the limiting Liouville equation
(2.16)! Since in the limiting process ∆t was held fixed, hence independent of ε,
thus when ∆t = O(1), and as ε → 0, schemes (3.7) and (3.8) collapse to schemes
(3.9) and (3.10), so the scheme is AP in time! Hence we can take ∆t = O(1),
combined with the spectral mesh size ∆x = o(ε) to get accurate wε , and as a
consequence, all physical observables!

Remark 3.2. While the aboveWigner analysis is formal, a rigorous uniform-in-ε
error estimate was obtained recently. Golse, Jin and Paul (2021), for both first- and
second-order splittings, gave uniform-in-ε error estimates, with explicit constants,
at least for the von Neumann equation – the density operator representation of the
Schrödinger equation which is valid even for mixed states. The errors are measured
by a pseudo-metric introduced in Golse and Paul (2017), which is an analogue of
the Wasserstein distance of exponent 2 between a quantum density operator and
a classical density in phase space. The regularity requirement for V is V ∈ C1,1.
Sharper uniform error estimates for physical observables were also obtained for
the Strang splitting (Lasser and Lubich 2020), based on Egorov’s theorem, with
additional regularity requirements on V .

Example 3.3. We take one example from Bao et al. (2002). The Schrödinger
equation (3.1) is solved with initial condition u0(x) = n0(x) exp(− iS0(x)/ε), where

n0(x) = (e−25(x−0.5)2
)2, S0(x) = −

1
5

ln(e5(x−0.5) + e−5(x−0.5)), (3.11)

and V(x) = 10. Due to the compressive initial velocity (d/dx)S0(x), caustics will
form. The weak limits n0(x, t), J0(x, t) of nε(x, t), Jε(x, t), respectively, as ε → 0
can be computed by evaluating the zeroth- and first-order velocity moments of the
solution to the Liouville equation (2.16). As a reference we plot them at t = 0.54
(after the caustics formed) in Figure 3.1. We compare the solutions between
CNSP (Crank–Nicolson in time and pseudo-spectral method in space) and TSSP2
(Strang’s splitting in time and pseudo-spectral method in space). The mesh size
∆x is taken in the same order as ε = 10−3. One can see that for CNSP, even for
∆t = 0.0001, the numerical solution cannot capture the correct weak limit. TSSP2
can capture the physical observations correctly with ∆t much larger than ε.
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Figure 3.1. Example 3.3: numerical solutions at t = 0.54, for (a,b) CNSP with
k = 0.0001, (c,d) TSSP2, (a,c) position density, (b,d) current density. Here
ε = 10−3, V(x) = 10, h = 1/512.

So far no numerical schemes are known to allow ∆x = o(1) for the Schrödinger
equation (2.1). The best one can do is to allow ∆x = o(

√
ε), by using the Gaussian

beam or Gaussian wave packet methods; see Heller (2006), Hill (1990), Jin, Wu
and Yang (2008), Leung and Qian (2009) and Russo and Smereka (2013). For
more recent results about Gaussian-type approximations see Jin et al. (2011) and
Lasser and Lubich (2020).

3.4. Ehrenfest dynamics

The ab initiomethods have played indispensable roles in simulating large systems of
quantum molecular dynamics. There the forces acting on the nuclei are computed
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from electronic structures, a procedure known as the ‘on-the-fly’ calculation in the
chemistry literature; for detailed reviews, see e.g. Tully (1998) andMarx and Hutter
(2009). The Ehrenfest dynamics is one popularly used method of this type. There
we separate the quantum system into two subsystems: a fast varying quantum
mechanical part for electrons and a slowly varying part for the nuclei. Due to
the large mass difference between electrons and nuclei, the nucleonic system can
be passed to the (semi-) classical limit, so the computational cost is significantly
reduced.
Take x ∈ Rd as the electronic coordinate, y ∈ Rn as the nucleonic coordinate,

with d, n ∈ N, and let 〈·, ·〉L2
x
and 〈·, ·〉L2

y
, respectively, denote the usual inner

product in L2(Rdx ) and L2(Rny), that is,

〈 f , g〉L2
z
≡

∫
Rm

f (z)g(z) dz.

The total Hamiltonian of the system acting on L2(Rd+n) is assumed to be of the
form

H = −
ε2

2
∆x −

δ2

2
∆y + V(x, y), (3.12)

where V(x, y) ∈ R is some real potential.
Consider the following mixed quantum-classical system (corresponding to the

limit δ→ 0) (Bisseling et al. 1987, Makri and Miller 1987, Jin, Sparber and Zhou
2017b):iε∂tψε = −

ε2

2
∆xψ

ε + Υε(x, t)ψε, ψε(0, x) = ψεin(x),

∂t µ
ε + η · ∇yµ

ε + Fε(y, t) · ∇ηµε = 0, µε(0, x, η) = µin(y, η).
(3.13)

Here µε(·, ·, t) denotes the phase space probability density for the slowly varying
nuclei at time t, Fε = −∇yVε

E is the force obtained from the Ehrenfest potential

Vε
E (y, t) =

∫
Rd

V(x, y)|ψε(x, t)|2 dx,

and

Υ
ε(x, t) =

∬
R2n

V(x, y)µε(y, η, t) dy dη. (3.14)

This systemwill be called the Schrödinger–Liouville–Ehrenfest (SLE) system. Note
that the dependence of µε on ε is purely from the forcing through the Ehrenfest
potential Vε

E appearing in the Liouville equation. In the case of a single particle
distribution concentrated on the classical trajectories (y(t), η(t)), that is,

µ(t, y, η) = δ(y − y(t), η − η(t)),

(3.13) gives (Tully 1998, Drukker 1999, Schütte and Bornemann 1999, Szepessy
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2011) 
iε∂tψε = −

ε2

2
∆xψ

ε + V(x, y(t))ψε, ψε(0, x) = ψin(x),

Ûy(t) = η(t), y(0) = y0,

Ûη(t) = −∇yVε
E (y(t)), η(0) = η0.

(3.15)

The iterated semiclassical limit (δ → 0, then ε → 0) and the full classical limit
(δ = ε → 0) were rigorously justified in Jin et al. (2017b).

Again, the main numerical difficulty for ε � 1 here is that we need to resolve
oscillations of frequency of orderO(1/ε) in both time and space, as they are present
in the solution ψε . This requires us to use time steps of order ∆t = o(ε) as well
as a spatial grid with ∆x = o(ε) to resolve the wave functions. As analysed in the
preceding subsection, we may ask whether one can design a numerical method that
allows the capturing of physical observables even for time steps much larger than
O(ε). For non-linear Schrödinger equations, in general, this is no longer true, as
was demonstrated numerically by Bao, Jin andMarkowich (2003). The SLE system
(3.13) is a non-linearly coupled system, and we therefore expect the same type of
problem at first glance. Nevertheless, Fang, Jin and Sparber (2018) introduced an
efficient numerical method for the SLE system that allows large (compared with
ε) computational mesh sizes in both y and η and a large time step for both the
Schrödinger and the Liouville equations, but still captures the physical observables
correctly. While large meshes in y and η do not seem so surprising, since they
are coordinates of the nuclei, the possibility of large time steps for solving the
Schrödinger equation for electrons is far from obvious, due to the non-linear nature
of the SLE system.

3.4.1. A time-splitting scheme for the SLE system
Consider the case d = n = 1, and the domain (x, y) ∈ [0, 1]2, with uniform mesh
sizes ∆y,∆η applied to the classical part of the SLE (3.13). Set

J =
1
∆y
, K =

1
∆η
, M =

1
∆x

, yj = j∆y, ηk = k∆η, xj = j∆x.

The time-splitting scheme, introduced in Fang et al. (2018), can then be described
as follows. From time t = tn = n∆t to t = tn+1 = (n + 1)∆t, the SLE system is
solved in two steps. First solveiε∂tψε = −

ε2

2
∆xψ

ε,

∂t µ
ε = −η · ∇yµ

ε − Fε(y, t) · ∇ηµε,
(3.16)

from t = tn to an intermediate time t∗ = tn + ∆t. Then solve{
ih∂tψh = Υh(x, t)ψh,

∂t µ
h = 0,

(3.17)
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with initial data computed from Step 1, to obtain the solution at time t = tn+1.
In (3.16), the Schrödinger equation will be discretized in space by a spectral

method using the fast Fourier transform, and integrated in Fourier space in time
exactly. The Liouville equation can be solved either by a spectral method or by a
finite difference (e.g. upwind) scheme in space, and then marching the correspond-
ing ODE system forward in time. An advantage of this splitting method is that in
the second step, Υh(x, t) defined in (3.14) is independent of time, since obviously
µh is independent of time. Hence the time integration in (3.17) can also be solved
exactly as

ψε,n+1
j = exp

(
−

i
ε
Υ
ε(xj, t∗)∆t

)
ψε,∗j .

As an example, consider an upwind spatial discretization of µ. In the first step,
solve 

iε∂tψε = −
ε2

2
∂xxψ

ε,

d
dt
µεjk = −ηk(Dyµ

ε)jk − Fε
j (Dηµ

ε)jk,
(3.18)

where both Dyµ
ε and Dηµ

ε represent the upwind discretization of the spatial
derivatives. To solve the Liouville equation, apply the forward Euler scheme for
the time discretization. Specifically,

ψε,∗j =
1
M

M/2−1∑
`=−M/2

e−iεω2
`/2ψ̂ε,n

`
eiω` x j , j = 0, . . . , M − 1,

µε,∗
jk
− µε,n

jk

∆t
= −ηk(Dyµ

ε,n)jk − Fε,n
j (Dηµ

ε,n)jk,

(3.19)

where w` = 2π`.
The second step is then given by

iε∂tψε = Υεd(x, t)ψε,
d
dt
µεjk = 0,

(3.20)

where Υε
d

(x, t) is the quadrature approximation of Υε(x, t). Thus we explicitly get

ψε,n+1
j = exp(−iΥε,∗

d
(xj)∆t/ε)ψε,∗j , µε,n+1

jk
= µε,∗

jk
, (3.21)

where

Υ
ε,∗
d

(x) =
J−1∑
j=0

K−1∑
k=0

V(x, yj)µε,∗jk ∆y∆η =
J−1∑
j=0

K−1∑
k=0

V(x, yj)µε,n+1
jk
∆y∆η,

which is the trapezoidal rule for µV with compact support.
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3.4.2. The spatial meshing strategy
We first show that one can take the limit ε → 0, for fixed ∆y and ∆η. Consider a
semidiscretized version of the SLE system (3.13) in one spatial dimension d = n =
1, where the Liouville equation is discretized by the upwind scheme:iε∂tψε = −

ε2

2
∂xxψ

ε + Υεd(x, t)ψε, ψε(0, x) = ψεin(x),

∂t µ
ε + ηDyµ

ε + Fε(y, t)Dηµ
ε = 0, µε(0, y, η) = µεin(y, η).

(3.22)

The following theorem is given in Fang et al. (2018).

Theorem 3.4. Under some suitable conditions for V and initial data, for any
T > 0, the solution of semi-discretized SLE system (3.22) satisfies, up to extraction
of subsequences,

wε[ψε]
ε→0+
−→ ν, µεjk

ε→0+
−→ µ0

jk,

in the w-∗ topology, where j = 0, . . . , J − 1 and k = 0, . . . ,K − 1. In addition, ν
and µjk solve the semi-discretized Liouville system

∂tν + ξ∂xν − ∂xΥ
0
d(x, t)∂ξν = 0,

d
dt
µ0
jk + ηkDyµ

0
jk + F0

j Dηµ
0
jk = 0.

The above result shows that the scheme is AP in y, η with respect to ε, namely
one can use ∆y,∆η ∼ O(1). This is the first such result for highly oscillatory
problems in spatial variables, and more interestingly, the problem under study is
non-linear!

Remark 3.5. Numerical experiments show that the same type of behaviour is true
not only for mixed spectral-finite difference schemes but also for purely spectral
schemes; see Fang et al. (2018). The proof, however, only works for the former
case since it requires positivity of the energy. For spectral methods the theory is
still lacking.

3.4.3. Time discretization
The time discretization of the splitting scheme can also be shown to be AP. Note
that the semiclassical limit of SLE (3.13), as ε → 0, is (Jin et al. 2017b)

∂t µ + η · ∇yµ + F0(y, t) · ∇ηµ = 0, (3.23)
∂tν + ξ · ∇xν − ∇xΥ

0(x, t) · ∇ξν = 0. (3.24)

As ε → 0, the splitting schemes (3.18) and (3.20), respectively, approach
∂tν + ξ∂xν = 0,
d
dt
µjk + ηk(Dyµ)jk + F0

j (Dηµ)jk = 0,
(3.25)
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and 
∂tν − ∂xΥ

0
d(x, t)∂ξν = 0,

d
dt
µjk = 0.

(3.26)

This is the time-splitting scheme for (3.23)–(3.24), where ν is the limit of the
Wigner transform of ψε on the x variable. This shows that ∆t ∼ O(1) can be
chosen independent of the small parameter ε. In turn, this yields the convergence
of the scheme towards the corresponding scheme of the limiting equation, as stated
in (3.25) and (3.26), uniformly in ∆t. Hence it is AP in t.
In summary, the scheme (3.18)–(3.20) is AP in t, y, η with respect to ε. We only

need ∆x = O(ε).

3.4.4. Numerical experiments
We now present some numerical experiments from Fang et al. (2018). The inter-
action potential is given by

V(x, y) =
(x + y)2

2
.

The one-dimensional SLE system is solved on the interval x ∈ [−π, π] and y, η ∈
[−2π, 2π] with periodic boundary conditions.

Example 3.6. The initial conditions for the SLE system (3.13) are

ψin(x) = exp(−25(x + 0.2)2) exp
(
−i ln(2 cosh(5(x + 0.2)))

5ε

)
and

µin(y, η) =


CN exp
(
−

1
1 − y2

)
exp

(
−

1
1 − η2

)
for |y | < 1, |η | < 1,

0 otherwise.

Here CN > 0 is the normalization factor such that
∬
R2 µindy dη=1. The time-

splittingmethodwith a spectral-upwind scheme is used (i.e.with an upwind scheme
for the Liouville equation). For ε = 1/256, 1/1024, 1/4096, T = 0.5, choose
∆x = 2πε/16, ∆y = ∆η = 4π/128. For each choice of ε, the SLE system is solved
first with ∆t independent of h and second with ∆t = o(ε); specifically, we compare
the two cases where ∆t = 0.01 and ∆t = ε/10, for numerical values of µ (denoted
by µ1 and µ2 respectively). As shown in Table 3.1, the error is insensitive in ε,
showing a uniform-in-ε convergence in ∆t,∆η and ∆y.

Example 3.7. In this example we choose the same initial data for µin as in Ex-
ample 3.6, but

ψin(x) = exp(−5(x + 0.1)2) exp
(

i sin x
h

)
.
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Table 3.1. Example 3.6: relative `2-difference ‖µ1 − µ2‖`2/‖µ2‖`2 for various ε.

ε 1/256 1/1024 1/4096

‖µ1 − µ2‖`2

‖µ2‖`2
1.65 × 10−3 1.69 × 10−3 1.70 × 10−3

10
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-3

10
-2
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10
-3
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-2

10
-1
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0

ψ

|ψ|
2

µ

Er
ro
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Figure 3.2. Example 3.7: `2-errors of the wave function ψε , position density |ψε |2
and µ for various ε. Fix ∆t = 0.01. For h = 1/64, 1/128, 1/256, 1/512, 1/1024,
1/2048, choose∆x = 2πε/16. The reference solution is computed with∆t = ε/10.

Now fix ∆t = 0.01, a stopping time T = 0.4, and ∆y = ∆η = 4π/128, while
∆x = 2πε/16, for ε = 1/64, 1/128, 1/256, 1/512, 1/1024, 1/2048. The reference
solution is computed with ∆t = h/10. From the `2-error plotted in Figure 3.2, one
can see that although the error in the wave function increases as ε decreases, the
error for the position density |ψε |2, as well as for the macroscopic quantity µ, does
not change noticeably. This shows that ε-independent ∆t,∆y and ∆η can be taken
to accurately obtain physical observables, but not the wave function ψε itself.

4. Numerical passages from classical mechanics to kinetic equations
4.1. The random batch methods

Consider the second-order interacting particle systems described by

dri = vi dt,

dvi =
[
b(ri) + αN

∑
j:j,i

K(ri − rj) − γvi
]

dt + σ dWi,
(4.1)
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and the first-order system described by

dri = b(ri) dt + αN

∑
j:j,i

K1(ri − rj) dt + σ dWi, i = 1, 2, . . . , N . (4.2)

The main difficulty for the numerical simulations of particle system (4.1) or (4.2) is
that for larger N , the computational cost per time step is O(N2). The fast multipole
method (FMM) (Rokhlin 1985) reduces the complexity to O(N) if the interaction
decays sufficiently rapidly. However, the implementation of the FMM is quite
delicate. A simple random algorithm, called the random batch method (RBM), has
been proposed in Jin, Li and Liu (2020a) to reduce the computation cost per time
step from O(N2) to O(N). The key idea of the RBM is to use a randomly chosen
‘mini-batch’ in the summation term in (4.2) and (4.1). Such an idea has its origin
in the stochastic gradient descent (SGD) method. The idea was also used for the
computation of the mean-field flocking model (Albi and Pareschi 2013, Carrillo,
Pareschi and Zanella 2019).
Let T > 0 be the simulation time, and we choose a time step ∆t > 0. Pick a

batch size 2 ≤ p � N that divides N . Consider the discrete time grids tk := k∆t,
k ∈ N. For each sub-interval [tk−1, tk), the method has two substeps: (1) at tk−1,
randomly group the N particles into n := N/p subgroups (batches); (2) particles
only interact with those in the same batch. This is given in Algorithm 1.

Algorithm 1 (RBM for (4.1))
1: for m in 1: [T/∆t] do
2: Divide {1, 2, . . . , N = pn} into n batches Cq, 1 ≤ q ≤ n randomly.
3: for each batch Cq do
4: Update ri, vi (i ∈ Cq) by solving the following for t ∈ [tm−1, tm):

dri = vi dt,

dvi =
[
b(ri) +

αN (N − 1)
p − 1

∑
j∈Cq, j,i

K(ri − rj) − γvi
]

dt + σ dWi .
(4.3)

5: end for
6: end for

The RBM uses the random permutation, and each particle belongs to one and
only one batch. An alternative approach, which allows replacement, is Algorithm 2.

Unlike Algorithm 1, in Algorithm 2, for one iteration of k, some particles may
not be updated while some may be drawn more than once.
The random division into n batches of equal size can be implemented using

random permutation, which can be realized in O(N) operations by Durstenfeld’s
modern revision of Fisher–Yates shuffle algorithm (Durstenfeld 1964) (in MAT-
LAB, one can use ‘randperm(N)’). The ODE solver per particle per time step in

https://doi.org/10.1017/S0962492922000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000010


440 S. Jin

Algorithm 2 (RBM-r)
1: for m in 1: [T/∆t] do
2: for k from 1 to N/p do
3: Pick a set Ck of size p randomly with replacement.
4: Update ri (i ∈ Ck) by solving the following SDE for time ∆t:

dxi = ui dt,

dui =
[
b(xi) +

αN (N − 1)
p − 1

∑
j∈Ck, j,i

K(xi − xj) − γui

]
dt + σ dWi .

xi(0) = ri, ui(0) = vi,

(4.4)

i.e. solve (4.4) with initial values xi(0) = ri, ui(0) = vi, and set ri ←
xi(∆t), vi ← ui(∆t).

5: end for
6: end for

(4.3) or (4.4) requires merely O(p) operations, thus for all particles, each time step
costs only O(pN). Since p � N the overall cost per time step is significantly
reduced from O(N2) to basically O(N).
For the RBM to really gain significant efficiency, we need ∆t to be independent

of N . We state an error estimate on the RBM for the second-order systems (4.1) in
the mean-field regime (i.e. αN = 1/(N − 1)) from Jin, Li and Sun (2020b), which
was built upon the argument for the first-order system in Jin et al. (2020a).
Let (r̃i, ṽi) denote the solutions to the random batch process (4.3) with the

Brownian motion used being W̃i. Consider the synchronization coupling

ri(0) = r̃i(0) ∼ µ0, Wi = W̃i . (4.5)

Let E denote the expected value, namely integration on Ω with respect to the
probability measure P, and consider the L2(·)-norm of a random variable

‖ζ ‖ =

√
E|ζ |2. (4.6)

For finite time intervals, the error of the RBM is given by the following theorem.

Theorem 4.1. Let b(·) be Lipschitz-continuous, and assume that |∇2b| has poly-
nomial growth, and the interaction kernel K is Lipschitz-continuous. Then

sup
t∈[0,T ]

√
E|r̃i(t) − ri(t)|2 + E|ṽi(t) − vi(t)|2 ≤ C(T)

√
∆t

p − 1
+ (∆t)2, (4.7)

where C(T) is independent of N .

The RBM has also been proposed for interacting particle systems used as a
sampling method for the invariant measure of (4.1) (Li et al. 2020a, Li, Xu and
Zhao 2020b, Jin and Li 2020). In these applications, the long-time behaviour, and
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in particular the convergence to the invariant measure, is of interest. For such an
analysis some additional contraction assumptions are needed.

Assumption 1. Assume b = −∇V for some V ∈ C2(Rd) that is bounded from
below (i.e. infx V(x) > −∞), and there exist λM ≥ λm > 0 such that the eigenvalues
of H := ∇2V satisfy

λm ≤ λi(x) ≤ λM for all 1 ≤ i ≤ d, x ∈ Rd.

The interaction kernel K is bounded and Lipschitz-continuous. Moreover, the
friction γ and the Lipschitz constant L of K(·) satisfy

γ >
√
λM + 2L, λm > 2L. (4.8)

Then the following uniform strong convergence estimate holds (Jin et al. 2020b).

Theorem 4.2. Under Assumption 1 and the coupling (4.5), the solutions to (4.1)
and (4.3) satisfy

sup
t≥0

√
E|r̃i(t) − ri(t)|2 + E|ṽi(t) − vi(t)|2 ≤ C

√
∆t

p − 1
+ (∆t)2, (4.9)

where the constant C does not depend on p and N .

The RBM error and (4.9) are independent of N , in the mean-field regime, so the
RBM is AP in particle number N in this regime.

4.1.1. An illustration: Dyson Brownian motion
The following example is from Jin et al. (2020a). Consider a typical example in
random matrix theory, where we are interested in solving the following system of
SDEs (1 ≤ j ≤ N), called the Dyson Brownian motion:

dλj(t) = −βλj(t) dt +
1
N

∑
k:k,j

1
λj − λk

dt +
1
√

N
dWj, (4.10)

where the {Wj} are independent standard Brownian motions. The system can be
used to find the eigenvalues of a Hermitian-valued Ornstein–Uhlenbeck process.
The Brownian motion effect is small when N is large. The limiting equation for
N →∞ is given by

∂t ρ(x, t) + ∂x(ρ(u − βx)) = 0, u(x, t) = π(Hρ)(x, t), (4.11)

where ρ is the density for λ as N → ∞, H(·) is the Hilbert transform on R, and
π = 3.14 . . . is the circumference ratio.
For β = 1, it can be shown that the corresponding limiting equation (4.11) has

an invariant measure, given by the semicircle law:

ρ(x) =
1
π

√
2 − x2. (4.12)
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Figure 4.1. RBM solution (circles) of the Dyson Brownian motion. The empirical
densities at various times are plotted. The red curve is the density distribution
predicted by the analytic solution (4.13). The black curve is the equilibrium
semicircle law (4.12).

To test the behaviour of the RBM numerically, note an analytic solution to the
limiting equation (4.11):

ρ(x, t) =
√

2σ(t) − x2

σ(t)π
, σ(t) = 1 + e−2t . (4.13)

For each iteration, the force is singular and a splitting strategy is adopted. Specific-
ally, define

X i j := X i − X j . (4.14)

The RBM is implemented as follows:

Y i
m =

1
2

(X i
m−1 + X j

m−1) + sgn(X i j
m−1)

√
|X i j

m−1 |
2 + 4∆t,

Y j
m =

1
2

(X i
m−1 + X j

m−1) − sgn(X i j
m−1)

√
|X i j

m−1 |
2 + 4∆t

and

X i
m = Y i

m − ∆tY i
m +

√
∆t
N

zi, X j
m = Y j(tm) − ∆tY j

m +

√
∆t
N

z j .

Here zi, z j ∼ N (0, 1).
Figure 4.1 shows that the RBM captures the evolution of distribution and the

equilibrium semicircle law (4.12), as desired. RBM-r also has similar behaviour.

4.1.2. The mean-field limit of the RBM
To further understand the behaviour of the RBM, when N is large, it will be
interesting to investigate its mean-field limit. To this end, consider the RBM for
the first-order system (4.2) with αN = 1/(N − 1).

Intuitively, when N � 1, the probability that two chosen particles are correlated
is very small. Hence, in the N →∞ limit, two chosen particles will be independent
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with probability 1. Due to the exchangeability, the marginal distributions of the
particles will be identical. Based on this observation, Jin and Li (2022a) derived
and proved the mean-field limit given in Algorithm 3.

Algorithm 3 (mean-field dynamics of the RBM for the first-order system (4.2))
1: µ̃(·, t0) = µ0.
2: for k ≥ 0 do
3: Let ρ(p)(. . . , 0) = µ̃(·, tk)⊗p be a probability measure on (Rd)p � Rpd.
4: Evolve the measure ρ(p) to find ρ(p)(. . . ,∆t) via the following Fokker–

Planck equation:

∂t ρ
(p) = −

p∑
i=1
∇xi ·

([
b(xi)+

1
p − 1

p∑
j=1, j,i

K1(xi−xj)
]
ρ(p)

)
+

1
2
σ2

p∑
i=1
∆xi ρ

(p).

(4.15)
5: Set

µ̃(·, tk+1) :=
∫

(Rd )⊗(p−1)
ρ(p)(·, dy2, . . . , dyp,∆t). (4.16)

6: end for

The dynamics inAlgorithm 3 naturally gives a non-linear operatorG∞ : P(Rd)→
P(Rd) as

µ̃(·, tk+1) =: G∞(µ̃(·, tk)). (4.17)

Corresponding to this is the following SDE system for t ∈ [tk, tk+1):

dmxi = b(mxi) dt +
1

p − 1

p∑
j=1, j,i

K1(mxi − mxj) dt + σ dmWi, i = 1, . . . , p,

(4.18)
with {mxi(tk)} drawn i.i.d. from µ̃(·, tk).
Hence, in the mean-field limit of the RBM, we start with a configuration in

molecular chaos, then the p particles evolve by interacting with each other. We
take the first marginal of this new p-particle distribution, and at the starting point
of the next time interval, we impose the molecular chaos condition so that the
particles are independent again.
Furthermore, Jin and Li (2022a) proved that this mean-field limit isO(∆t) distant

(in theWasserstein-1 sense) from themean-field limit of the original particle system
(2.30), thus completing the AP diagram in Figure 1.2.

4.2. Molecular dynamics

One of themost important interacting particle systems ismolecular dynamics (MD),
which simulates the dynamics or equilibrium properties of a large system of atoms
and molecules using Newton’s second law. It has a wide range of applications, such
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as chemical physics, soft materials and biophysics (Ciccotti, Frenkel andMcDonald
1987, Frenkel and Smit 2001). Here we review an interesting application of the
RBM to MD simulation, called random batch Ewald (Jin, Li, Xu and Zhao 2021a),
which achieves O(N) complexity with high parallel efficiency (Liang et al. 2022).
The equations of motion governing N ‘molecules’ with masses mi are given by

dri = vi dt,

mi dvi =
[
−

∑
j:j,i
∇φ(ri − rj)

]
dt + σi dWi .

(4.19)

Here the Wi are noise or other external forcing terms, and φ(·) is the Coulomb
potential

φ(x) =
qiqj

r
,

where qi is the charge for the ith particle and r = |x |. Another popular potential
often used is the Lennard-Jones potential (Frenkel and Smit 2001):

φ(x) = 4
(

1
r12 −

1
r6

)
. (4.20)

Between ions, both types of potential exist, and between charge-neutral molecules,
the Lennard-Jones potential might be the main force.

4.2.1. RBM with kernel splitting
Due to the singularity at x = 0 of the Lennard-Jones potential (4.20), a direct
application of the RBM could give poor results. One effective strategy is to
decompose the K into two parts (Martin, Chen and Siepmann 1998, Hetenyi,
Bernacki and Berne 2002),

K(x) = K1(x) + K2(x). (4.21)

Here K1 has a short range that decays quickly, so it can be ignored for |x | ≥ r0, for
some r0 chosen to be comparable to the mean distance of the particles. K2(x) is a
bounded smooth function. We then apply the RBM to the K2 part only (Li et al.
2020b).

4.2.2. Random batch Ewald: importance sampling
The Coulomb interaction is a long-range interaction, which decays slowly as 1/r
and in the meantime contains a singularity at r = 0. The bottleneck in MD
simulation lies in the expensive simulation of the Coulomb interaction, which
has computational complexity O(N2). Some popular methods include particle–
particle particle–mesh Ewald (PPPM) (Luty, Davis, Tironi and Van Gunsteren
1994, Deserno and Holm 1998), and multipole-type methods such as treecode
(Barnes and Hut 1986, Duan and Krasny 2000) and fast multipole methods (FMM)
(Greengard and Rokhlin 1987, Ying, Biros and Zorin 2004). These methods can
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reduce the complexity per time step from O(N2) to O(N log N) or even O(N),
and have achieved great success in practice. However, some issues still remain
to be resolved; for example, the prefactor in the linear scaling can be large, or
the implementation can be non-trivial, or the scalability for parallel computing is
not high.
The RBE method is based on the Ewald splitting for the Coulomb kernel with a

random ‘mini-batch’ technique applied in the Fourier series for the long-range part.
Solids or fluids with large volume are usually modelled in a box with length L,

with periodic conditions. Consider N particles with net charge qi (1 ≤ i ≤ N)
under the electroneutrality condition

N∑
i=1

qi = 0. (4.22)

The forces are computed using Fi = −∇riU, where U is the Coulomb potential
energy, with periodic boundary condition, given by

U =
1
2

∑
n

′

N∑
i, j=1

qiqj
1

|ri j + nL |
, (4.23)

where n ∈ Z3.
∑′ is defined such that n = 0 is not included when i = j.

The classical Ewald summation decomposes 1/r into long-range smooth parts
and short-range singular parts:

1
r
=

erf(
√
αr)

r
+

erfc(
√
αr)

r
, (4.24)

where

erf(x) :=
2
√
π

∫ x

0
exp(−u2) du

is the error function and erfc = 1 − erf. Correspondingly, U = U1 +U2 with

U1 =
1
2

∑
n

′
∑
i, j

qiqj

erf(
√
α |ri j + nL |)
|ri j + nL |

,

U2 =
1
2

∑
n

′
∑
i, j

qiqj

erfc(
√
α |ri j + nL |)
|ri j + nL |

,

(4.25)

where U2 corresponds to the short-range forces, which is inexpensive, while U1 is
the long-range part that will be put into the Fourier space

U1 =
2π
V

∑
k,0

1
k2 |ρ(k)|2 e−k

2/4α −

√
α

π

N∑
i=1

q2
i , (4.26)
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where ρ(k) :=
∑N

i=1 qi eik ·ri . Then

Fi,1 = −∇riU1 = −
∑
k,0

4πqik
V k2 e−k

2/(4α) Im(e−ik ·ri ρ(k)), (4.27)

where ri j = rj−ri, is bounded for small k. The key idea of RBE is to do importance
sampling according to the discrete Gaussian distribution e−k2/(4α). Denote

S :=
∑
k,0

e−k
2/(4α) = H3 − 1, (4.28)

where

H :=
∑
m∈Z

e−π
2m2/(αL2) =

√
αL2

π

∞∑
m=−∞

e−αm
2L2
≈

√
αL2

π
(1 + 2 e−αL

2
), (4.29)

since often αL2 � 1. Hence S is the sum for all three-dimensional vectors k except
0. Then we can regard the sum as an expectation over the probability distribution

Pk := S−1 e−k
2/(4α), (4.30)

which, with k , 0, is a discrete Gaussian distribution that can be sampled efficiently
offline. Once the time evolution starts, we just need to randomly draw a few (O(p))
samples for each time step from this pre-sampled Gaussian sequence.

Ultimately, the force Fi,1 in (4.27) will be calculated by the following mini-batch
random variable:

Fi,1 ≈ F∗i,1 := −
p∑̀
=1

S
p

4πk`qi
V k2

`

Im(e−ik` ·ri ρ(k`)). (4.31)

The PPPM method uses the fast Fourier transform, while RBE uses random
mini-batch to speed up the computation in the Fourier space. The complexity of
RBE for the real space part is O(N). By choosing the same batch of frequencies
for all forces (4.31) (i.e. using the same k` , 1 ≤ ` ≤ p for all F∗

i,1, 1 ≤ i ≤ N) in
the same time step, the complexity per iteration for the frequency part is reduced
to O(pN). Therefore the RBE method has linear complexity per time step if we
choose p = O(1).
Another advantage of RBE is that there are few particle interactions at each

iteration. This significantly reduces the amount of message passing when many
CPUs are used for parallel computing, so we achieve remarkable scalability (Liang
et al. 2022).

To illustrate the performance of the RBE method, consider an electrolyte with
monovalent binary ions (first example in Jin et al. 2021a). In the reduced units
(Frenkel and Smit 2001, section 3.2), the dielectric constant is taken as ε = 1/4π
so that the potential of a charge is φ(r) = q/r and the temperature is T = β−1 = 1.
Under the Debye–Hückel (DH) theory (linearized Poisson–Boltzmann equation),
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Figure 4.2. Comparison of the Ewald sum, PPPM and RBE methods.

the charge potential outside one ion is given by

−ε∆φ =

{
0 r < a,
qρ∞,+ e−βqφ − qρ∞,− eβqφ ≈ βq2ρrφ r > a,

where ρ∞,+ = ρ∞,− = N/(2V) are the densities of the positive and negative ions
at infinity, both being ρr/2. The parameter a is the effective diameter of the ions,
which is related to the setting of the Lennard-Jones potential. In the simulations,
a = 0.2 and the setting of Lennard-Jones potential can be found in Jin et al. (2021a).
This approximation gives the net charge density ρ = −ε∆φ for r � a,

ln(rρ(r)) ≈ −1.941r − 1.144.

Figure 4.2 shows the CPU time consumed for different particle numbers inside the
box with the same side length L = 10. Both the PPPM and RBE methods scale
linearly with the particle numbers. However, even for batch size p = 100, the RBE
method consumes much less time. Clearly the RBE method has the same level of
accuracy compared with the PPPM method for the densities considered.
Next, Figure 4.3 shows the parallel efficiency of the PPPM and RBE methods

from Liang et al. (2022) for the all-atom simulation of pure water systems. As can
be seen, due to the reduction of communications for the particles, the RBE method
gains better parallel efficiency. This parallel efficiency is more obvious when the
number of particles is larger. In Liang et al. (2022), the simulation results of pure
water systems also indicate that RBE-type methods are not only able to sample
from the equilibrium distribution but can also compute the dynamical properties
of pure water systems accurately.
For a comprehensive review of the RBM and its extensions and applications, see

the recent review by Jin and Li (2022b).
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Figure 4.3. Parallel efficiency of the PPPM and RBE methods for all-atom simula-
tion of pure water systems: (a) 3 × 105 atoms, (b) 3 × 107 atoms.

5. Numerical passages from kinetic equations to hydrodynamic
equations

The multiscale problems that involve both kinetic and hydrodynamic scales occur
in many physical settings. For example, in a nuclear reactor, neutrons may conduct
a significant amount of scattering in the diffusive regime. In the space shuttle re-
entry problem, the mean-free path could vary from O(1) m to O(10−8) m when the
vehicle passes from the free-streaming regime to the rarefied gas regime (described
by the Boltzmann equation) and then to the transition regimes and eventually to the
hydrodynamic regime (described by the Euler or Navier–Stokes equations) (Rivell
2006). It is also known that in hypersonic flows (Mach number larger than 1.4),
the shock profile of the Navier–Stokes equations does not give an accurate shock
width, so we need to use the Boltzmann equation in the shock region (Foch 1973,
Agarwal, Yun and Balakrishnan 1999). In plasma physics, the Debye length might
be small, and we need to deal with quasi-neutral regimes (Fornberg 1996, Degond
and Deluzet 2017). In all these kinetic problems we need to deal with multiple
time and space scales.

Kinetic theory is the area inwhich the concept ofAPwas first introduced, and also
most successfully and extensively used. Earlier efforts in this direction concentrated
on time-independent transport equations that have diffusive behaviour (Larsen et al.
1987, Larsen and Morel 1989). However, for multiscale kinetic equations the main
challenges lie in time discretizations, due to the stiffness, non-locality and non-
linearity of the collision operators.
The term ‘asymptotic-preserving’ was first coined in Jin (1999). An AP scheme

typically possesses the following key features for multiscale kinetic equations.
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• Implicit time discretization that can be either explicitly or easily implemented:
for example, it at least avoids complicated non-linear algebraic system solvers
such as Newton’s iteration.
• When the Knudsen number ε → 0, the scheme for the kinetic equations auto-
matically becomes a good scheme for the limiting hydrodynamic equations.

AP schemes are also related to the development of kinetic schemes for com-
pressible Euler equations, which was based on discretizing a linear kinetic equation
thanks to its linear convection, followed by a projection to the local Maxwellian
(Deshpande 1986, Perthame 1990, Prendergast and Xu 1993). It is also relevant
to the lattice Boltzmann approximation to incompressible Navier–Stokes equations
(Chen, Chen and Matthaeus 1992, Chen and Doolen 1998, Qian, d’Humières and
Lallemand 1992, He and Luo 1997). Relaxation schemes for non-linear hyperbolic
systems also share a similar spirit (Jin and Xin 1995). Below we review a few
representative AP schemes.

5.1. The BGK penalization method

We are mainly interested in dealing with the numerical difficulties when the Knud-
sen number ε � 1. The first challenge is numerical stiffness, which puts severe
constraints on ∆t. In order to allow ∆t � ε, we need some implicit treatment for
the non-local, non-linear collision operator, which is numerically non-trivial.
The penalization method, introduced by Filbet and Jin (2010), was the first AP

scheme for the non-linear Boltzmann equation that overcomes the stiffness issue of
the collision operator. The idea is to penalizeQ( f ) by the BGK operator β(M− f ):

∂t f + v · ∇x f =
Q( f ) − β(M − f )

ε︸                  ︷︷                  ︸
less stiff, explicit

+
β(M − f )

ε︸       ︷︷       ︸
stiff, explicit

, (5.1)

where β is some constant suitably chosen to approximate the Fréchet derivative of
Q( f ) aroundM, such that terms in the first brace become less stiff or non-stiff and
can be treated explicitly. The other part is a BGK operator, which can be inverted
explicitly (Coron and Perthame 1991), thanks to the conservation properties of the
collision terms on the right-hand side of (5.1).
A first-order IMEX (implicit–explicit) discretization of (5.1) can be written as

f n+1 − f n

∆t
+ v · ∇x f n =

Q( f n) − β(Mn − f n)
ε

+
β(Mn+1 − f n+1)

ε
. (5.2)

Taking the moments
∫
Rd
· φ(v) dv, with φ(v) defined in (2.36) on both sides of (5.2),

and using the properties (2.36), we get

〈 f 〉n+1 − 〈 f 〉n

∆t
+ ∇x · 〈v f 〉n = 0, (5.3)
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where 〈·〉 =
∫
φ(v) · dv means the moments. From (5.3) we can solve for the

moments ρ, u and T at t = tn+1, so Mn+1 is obtained. Then f n+1 can be obtained
from (5.2) explicitly. Note that the entire process is explicit!

In practice, β can be roughly estimated as

β = sup
v
|Q−( f )|,

where Q− is the loss part of the collision operator defined such that Q( f ) =
Q+( f ) − fQ−( f ). β can also be made time- and space-dependent for better
numerical accuracy (Yan and Jin 2013).

To capture the compressible Euler limit, a necessary condition is that, as ε → 0,

f n =Mn, for any n, with ∆t,∆x fixed.

Filbet and Jin (2010) showed formally that

for ε � 1, if f n =Mn +O(ε), then f n+1 =Mn+1 +O(ε).

Numerical experiments in Filbet and Jin (2010) show that, regardless of the initial
condition f 0, there exists an integer N > 0 such that

f n =Mn +O(ε) for any n ≥ N . (5.4)

Substituting (5.4) into (5.2) and taking the moments, we have

〈 f 〉n+1 − 〈 f 〉n

∆t
+ ∇x ·

∫
Rd

vφ(v)Mn dv = O(ε) for any n ≥ N ,

which is a consistent discretization to the limiting Euler system (2.38). This means
the scheme is AP after an initial transient time.

Remark 5.1. One possible way to remove the initial layer problem and hence
achieve AP in one time step was suggested in Yan and Jin (2013), where the idea
is to perform the penalization in two successive steps:

f ∗ − f n

∆t
+ v · ∇x f n =

Q( f n) − β(Mn − f n)
ε

+
β(M∗ − f ∗)

2ε
,

f n+1 − f ∗

∆t
=
β(Mn+1 − f n+1)

2ε
.

The idea of using a linear or simpler operator to penalize the non-linear or
complicated operator turns out to be a generic approach. For specific problems,
we need to seek an appropriate penalization operator. For example, consider the
non-linear Fokker–Planck–Landau equation, whose collision operator is given by

Q( f )(v) = ∇v ·
∫
Rd

A(v − v∗)
[

f (v∗)∇v f (v) − f (v)∇v∗ f (v∗)
]

dv∗, (5.5)

where A is a semi-positive definite matrix. This equation is relevant to the study
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of Coulomb interactions. The diffusive nature of the collision operator introduces
more stiffness. An explicit scheme would require ∆t = O(ε(∆v)2), where ∆v is
the mesh size in v, which is even more restrictive than the Boltzmann collision
operator. Jin and Yan (2011) proposed the following Fokker–Planck operator as a
penalization:

PFP( f ) = ∇v ·
(
M∇v

(
f
M

))
.

Similar approaches, with variant penalties, have been proposed for the quantum
Boltzmann equation (Filbet, Hu and Jin 2012), the quantumFokker–Planck–Landau
equation (Hu, Jin and Yan 2012) and the multi-species Boltzmann equation (Jin
and Li 2013).
Another AP scheme for the Boltzmann equation, developed later in Liu, Xu,

Sun and Cai (2016), relies on the integral representation of the BGK model. The
final form of the scheme also ends up with a linear combination of the Boltzmann
collision operator and the BGK operator, with a slightly different combination of
coefficients.

5.2. Exponential integration

Another class of asymptotic-preserving methods is the exponential integration
method. This method is based on a reformulation of the equation into an expo-
nential form, with the Maxwellian embedded. This makes it easier to capture the
asymptotic limit and other physical properties such as positivity.
For the space-homogeneous Boltzmann equation,

∂t f =
1
ε
Q( f ), (5.6)

Dimarco and Pareschi (2011) introduced the following reformulation:

∂t
[
( f −M) eβt/ε

]
= ∂t f eβt/ε +

β( f −M)
ε

eβt/ε =
Q − β(M − f )

ε
eβt/ε . (5.7)

Here β is an auxiliary parameter and, as in the penalization method, β(M − f )
is used to approximate the Fréchet derivative of Q; β is chosen to be the smallest
value that preserves the positivity of f .
Equation (5.7) is fully equivalent to the original problem (5.6). However, it

updates the difference between f and M, and the exponential term exp(−βt/ε)
removes the stiffness and numerically forces the convergence between f and M,
an essential mechanism for the AP property. It can be easily extended to all explicit
Runge–Kutta methods, which are not only of high order but also satisfy the AP
property automatically.
The need to convect M makes it difficult to extend the scheme to the non-

homogeneous case. Li and Pareschi (2014) use an evolving Maxwellian function
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within each time step. They reformulate the Boltzmann equation as

∂t [( f −M) exp (βt/ε)] =
(P − βM

ε
− v · ∇x f − ∂tM

)
exp(βt/ε), (5.8)

while the moment equations are obtained after taking the moments of the original
Boltzmann equation (2.31):

∂t 〈 f 〉 + ∇x · 〈φv f 〉 = 0. (5.9)

To compute ∂tM, note that

∂tM = ∂ρM∂t ρ + ∇uM · ∂tu + ∂TM∂tT, (5.10)

where ∂ρM, ∇uM can be expressed analytically and ∂TM are all explicit. The
time derivatives of the other three macroscopic quantities ρ, u,T can be obtained
from (5.9).
With this formulation, we can just use the Runge–Kutta time discretization.
This method preserves positivity, high-order accuracy and strong AP properties.

5.3. Micro–macro decomposition

The ‘micro–macro’ decomposition decomposes the density distribution function
into the local Maxwellian, plus the deviation

f =M + εg, with
∫

φ[ f −M] dv = 0. (5.11)

One early approach of using such a decomposition to design an AP scheme for the
radiative heat transfer equations was used by Klar and Schmeiser (2001), and it
was also used by Liu and Yu (2004) to analyse the shock propagation of the Euler
equations in passing the fluid limit of the Boltzmann equation. Its application to
the non-linear Boltzmann equation started with the work of Bennoune, Lemou and
Mieussens (2008).
Define the linearized collision operator aroundM as

LMg = Q[M, g] +Q[g,M].
With some calculation, we get

∂tg + (I − ΠM)(v · ∇xg) −Q[g, g] = 1
ε
[LMg − (I − ΠM)(v · ∇xM)],

∂t

∫
φM dv +

∫
φv · ∇xM dv + ε∇x · 〈vφg〉 = 0.

(5.12)
HereΠM is the projection operator that maps an arbitraryM-weighted L2-function
into the null space of LM, namely, for any ψ ∈ L2(M dv),

ΠM(ψ) ∈ NullLM = Span{M, vM, |v |2M}. (5.13)
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For the Boltzmann equation, the projection operator can be written explicitly as

ΠM(ψ) =
1
ρ

[
〈ψ〉 +

(v − u) · 〈(v − u)ψ〉
T

+

(
|v − u|2

2T
−

d
2

)
2
d

〈(
|v − u|2

2T
−

d
2

)
ψ

〉]
M, (5.14)

where 〈·〉 is the integration over v.
In the original Boltzmann equation, the stiff termQ[ f , f ] is quadratic in f , hence

difficult to invert. The two stiff terms here are both linear, so their implicit dis-
cretization can be inverted more easily. Bennoune et al. (2008) took the following
discretization:

gn+1 − gn

∆t
+ (I − ΠMn )(v · ∇xgn) −Q[gn, gn] = 1

ε

[
LMngn+1

− (I − ΠMn )(v · ∇xMn)
]
,∫

φMn+1 dv + ∆tε
∫

φv · ∇xg
n+1 dv =

∫
φMn dv − ∆t

∫
φv · ∇xMn dv.

(5.15)
The only term that needs to be inverted is I − (∆t/ε)LM in the first equation. It is
a linear operator, and the negative spectrum of L guarantees the invertibility. The
quadratic operator Q[ f , f ] is no longer stiff and is thus treated explicitly.

The following AP property was proved in Bennoune et al. (2008).

Theorem 5.2. The scheme is AP, specifically as follows.
(i) The time discretization (5.15) of the Boltzmann equation (5.12) gives, in the

limit ε → 0, a scheme consistent with the compressible Euler system (2.38).
(ii) For small ε, scheme (5.15) is asymptotically equivalent, up to O(ε2), to an

explicit time discretization of the Navier–Stokes equations (2.39).

Gamba, Jin and Liu (2019) used the BGK penalization method in the micro–
macro decomposition framework to further avoid the inversion of the linearized
collision operator L.

5.4. Linear transport equations

5.4.1. AP schemes based on parity equations
We now consider the linear transport equation in the diffusive regime (2.40). Let

L( f ) =
∫

b(v,w){M(v) f (w) − M(w) f (v)} dw.

Split (2.40) into two equations, one for v and one for −v:

ε ∂t f (v) + v · ∇x f (v) =
1
ε
L( f )(v),

ε ∂t f (−v) − v · ∇x f (−v) =
1
ε
L( f )(−v).

(5.16)
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Define the even and odd parities as

r(t, x, v) =
1
2
[ f (t, x, v) + f (t, x,−v)],

j(t, x, v) =
1

2ε
[ f (t, x, v) − f (t, x,−v)].

(5.17)

Adding and subtracting the two equations in (5.16) leads to

∂tr + v · ∇x j =
1
ε2L(r), (5.18)

∂t j +
1
ε2 v · ∇xr = −

1
ε2 λ j, (5.19)

where we used the property that∫
b(v,w) j(w) dw = 0

since j(w) is an odd function in w.

Remark 5.3. If b(v,w) = b(|v |, |w |), then it is possible to use the even and
odd parities only for the positive components of v and w, hence reducing the
computational domain, as is the case for neutron transport equations (Lewis and
Miller 1984).

Since now the convection term is also stiff, the idea of Jin, Pareschi and Toscani
(2000) was to rewrite (5.18) and (5.19) in the following form:

∂tr + v · ∇x j =
1
ε2L(r), (5.20)

∂t j + v · ∇xr = −
1
ε2 [λ j + (1 − ε2ψ)v · ∇xr], (5.21)

where ψ = ψ(ε) is a free parameter satisfying 0 ≤ ψ ≤ 1/ε2. Hence the character-
istic speeds on the right-hand side are now independent of ε. The simplest choice
of ψ is

ψ(ε) = min
{

1,
1
ε2

}
.

(A related approach in Klar (1998) moves all the stiff terms in (5.19) to the right-
hand side.)
One can easily derive the diffusion equation from (5.20) and (5.21). As ε → 0,

they give

L(r) = 0, (5.22)
λ j = −v · ∇xr . (5.23)

Solving (5.22) gives
r = ρ(x, t)M(v), (5.24)
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where
ρ(x, t) = 〈 f (x, ·, t)〉 = 〈r(x, ·, t)〉.

With (5.24), equation (5.23) gives

j =
M(v)
λ(v)
[−v · ∇xρ]. (5.25)

Applying (5.24) and (5.25) in (5.20), and integrating over v, we get the diffusion
equation (2.41) with (2.42). Thus (5.20) and (5.21) set the foundation for AP
schemes. We can split the stiff relaxation step

∂tr =
1
ε2L(r), (5.26)

∂t j =
1
ε2 [−λ j − (1 − ε2φ)(v · ∇xr)], (5.27)

from the non-stiff transport step

∂tr + v · ∇x j = 0,
∂t j + v · ∇xr = 0.

(5.28)

Equations (5.28) can be solved using an explicit scheme, whereas for step (5.26)–
(5.27) we use an implicit scheme.
The key is how to solve the collision step (5.26) implicitly in an efficient way.

In the case of neutron transport, where L(r) = ρ − r , the implicit term can be
integrated explicitly (Jin et al. 2000). Otherwise we can use the penalty method of
Filbet and Jin (2010); see Deng (2012).
As far as spatial discretization is concerned, we can use any upwind-type scheme

for convection terms in (5.28), while on the right-hand side of (5.27), Jin et al.
(2000) suggested using centre difference for the gradient of r . When ε → 0,
these spatial discretizations become consistent and stable discretizations of (2.41)
and are thus AP spatially. However, the limiting discrete diffusion equation is not
compact. In one dimension it is a five-point rather than a three-point discretization
of the diffusion equation. This problem can be fixed by using a staggered grid for
r and j, as pointed out in Jin and Pareschi (2001) and then extended to two space
dimensions in Küpper, Frank and Jin (2016).
OneAP scheme developed in Sun, Jiang andXu (2015) allows us to get a compact

three-point scheme in the limit.

5.4.2. AP schemes based on micro–macro decomposition
The micro–macro decomposition approach, proposed by Lemou and Mieussens
(2008), begins with the decomposition

f = ρM + εg. (5.29)

Clearly 〈g〉 = 0. Applying (5.29) in (2.40) gives

εM∂t ρ + ε
2∂tg + v · M∇xρ + εv · ∇xg = Lg. (5.30)
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Integrating this equation with respect to v gives the following continuity equation:

∂t ρ + ∇x · 〈vg〉 = 0. (5.31)

Define operator Π : Π(·)(v) := M 〈·〉, and I the identity operator. Applying the
orthogonal projection I − Π to (5.30) gives the equation for g:

ε2∂tg + ε(I − Π)(v · ∇xg) + v · M∇xρ = Lg. (5.32)

Equations (5.31) and (5.32) constitute the micro–macro formulation of (2.40).
We first consider the time discretization. The following was used in Lemou and

Mieussens (2008):

gn+1 − gn

∆t
+

1
ε

(I − Π)(v · ∇xgn) =
1
ε2Lg

n+1 −
1
ε2 v · M∇xρ

n. (5.33)

In the continuity equation (5.31) there is no stiff term, but to recover the correct
diffusion limit, the flux of g is taken at tn+1, which gives

ρn+1 − ρn

∆t
+ ∇x · 〈vg

n+1〉 = 0. (5.34)

As ε → 0, (5.33) gives
Lgn+1 = v · M∇xρn,

which implies

gn+1(v) = L−1(vM) · ∇xρn =
M(v)
λ(v)

[∫
b(v,w)gn+1(w) dw − v · ∇xρn

]
.

Applying this to (5.34), and using the rotational invariance ofσ, yield the following
time-explicit discretization of the diffusion equation (2.41):

ρn+1 − ρn

∆t
+ ∇x · 〈D∇ρn〉 = 0.

Thus this time discretization is AP.
Now consider the case of one space dimension. A staggered grid can be used.

Define xi+1/2 = (i+1/2)∆x. Now the macroscopic density ρwill be defined at grid
point xi, while g is defined at xi+1/2. Using upwind discretization for the space
derivative, we arrive at

ρn+1
i − ρni
∆t

+

〈
v
gn+1
i+1/2 − g

n+1
i−1/2

∆x

〉
= 0, (5.35)

gn+1
i+1/2 − g

n
i+1/2

∆x
+

1
ε∆x

(I − Π)
(
v+
(
gni+1/2 − g

n
i−1/2

)
+ v−

(
gni+3/2 − g

n
i+1/2

))
=

1
ε2Lg

n+1
i+1/2 −

1
ε2 vM

ρn
i+1 − ρ

n
i

∆x
, (5.36)

where v± = (v ± |v |)/2.
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As ε → 0, (5.36) gives

gn+1
i+1/2 = L−1(vM)

ρn
i+1 − ρ

n
i

∆x
,

which when applied to (5.35) gives the following scheme:

ρn+1 − ρn

∆t
+ D

ρn
i+1 − 2ρni + ρ

n
i−1

(∆x)2 = 0.

This is the classical three-point explicit discretization of the diffusion equation
(2.41) and (2.42).
The uniform stability condition (∆t ≤ C(∆x)2, uniformly in ε) of this method

was proved in Liu and Mieussens (2010).
Among all the above approaches, in the limit ε → 0, the time discretization

is explicit for the limiting diffusion equation. This imposes a numerical stability
condition such as ∆t = O((∆x)2). Consider the case of L = r − ρ, hence λ = 1,
in the parity formulation (5.18) and (5.19). Boscarino, Pareschi and Russo (2013)
proposed reformulating the system into

∂tr = −v∂x

(
j +

ν(ε)v∂xr
σ

)
︸                       ︷︷                       ︸

explicit

−
σ

ε2 (r − ρ) + ν(ε)v2 ∂xxr
σ︸                         ︷︷                         ︸

implicit

, (5.37)

∂t j = −
1
ε2

(
j +

v∂xr
σ

)
︸             ︷︷             ︸

implicit

, (5.38)

where µ(ε) ∈ [0, 1] is a free parameter such that µ(0) = 1; µ = 1 guarantees
the largest stability region. When ε → 0, we get an implicit discretization of the
diffusion equation, enabling a stability condition such as ∆t = O(∆x).

5.5. Stochastic AP schemes for linear transport equation with uncertainties

Kinetic models usually have uncertainties that can arise in collision kernels, scat-
tering coefficients, initial or boundary data, geometry, source or forcing terms (Bird
1994, Berman, Haverkort and Woerdman 1986, Koura and Matsumoto 1991). Un-
derstanding the impact of these uncertainties, and quantifying and even controlling
them, in the sense of uncertainty quantification (UQ), is crucial to the simulations of
the complex kinetic systems in order to verify, validate and improve these models,
and to conduct risk management.
The uncertainty is usually modelled by a random vector z ∈ Rn in a properly

defined probability space (Σ,A, P), whose event space is Σ and equipped with σ-
algebra A and probability measure P. We also assume the components of z are
mutually independent random variables with known probability ω(z) : Iz −→ R+,
obtained already through some dimension reduction technique, e.g. Karhunen–
Loève (KL) expansion (Loève 1977).
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5.5.1. The linear transport equation with isotropic scattering
Consider the linear transport equation in one-dimensional slab geometry with
random input:

εδt f + vδx f =
σ

ε
L f , t > 0, x ∈ [0, 1], v ∈ [−1, 1], z ∈ Iz, (5.39)

L f (t, x, v, z) =
1
2

∫ 1

−1
f (t, x, v′, z) dv′ − f (t, x, v, z), (5.40)

with the initial condition

f (0, x, v, z) = f 0(x, v, z). (5.41)

This equation arises in neutron transport, radiative transfer, etc., and describes
particle transport (e.g. neutrons) in a background medium (e.g. nuclei). Here
v = Ω · ex = cos θ, where θ is the angle between the moving direction and the
x-axis. Assume

σ(x, z) ≥ σmin > 0. (5.42)

Let

〈φ〉 =
1
2

∫ 1

−1
φ(v) dv (5.43)

denote the average of a velocity-dependent function φ.
Let ρ = 〈 f 〉. For each fixed z, as ε → 0, ρ solves the following diffusion

equation:

∂t ρ = ∂x

(
1
3
σ(x, z)−1∂xρ

)
. (5.44)

In order to understand the property of numerical methods for uncertain kinetic
equations, it is important to study the regularity and long-time behaviour in the
random space of the linear transport equation (5.39)–(5.41). Consider the Hilbert
space of the random variable,

H(Iz ; ω dz) =
{

f : Iz → R+,
∫
Iz

f 2(z)ω(z) dz < +∞
}
, (5.45)

equipped with the inner product and norm defined as

〈 f , g〉ω =
∫
Iz

f gω(z) dz, ‖ f ‖2ω = 〈 f , f 〉ω . (5.46)

Define the kth-order differential operator with respect to z as

Dk f (t, x, v, z) := ∂kz f (t, x, v, z), (5.47)

and the Sobolev norm in z as

‖ f (t, x, v, ·)‖2
Hk :=

∑
α≤k

‖Dα f (t, x, v, ·)‖2ω . (5.48)
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Finally, introduce norms in space and velocity as follows:

‖ f (t, ·, ·, ·)‖2Γ :=
∫
Q

‖ f (t, x, v, ·)‖2ω dx dv, t ≥ 0, (5.49)

whereQ = [0, 1]×[−1, 1] denotes the domain in phase space. The following results
were established in Jin, Liu and Ma (2017a).

Theorem 5.4 (uniform regularity). If, for some integer m ≥ 0,

‖Dkσ(z)‖L∞ ≤ Cσ, ‖Dk f0‖Γ ≤ C0, k = 0, . . . ,m, (5.50)

then the solution f to the linear transport equation (5.39)–(5.41), with periodic
boundary condition in x, satisfies

‖Dk f (t, ·, ·, ·)‖Γ ≤ C, k = 0, . . . ,m, for all t > 0, (5.51)

where Cσ , C0 and C are constants independent of ε.

The above theorem shows that, under some smoothness assumption on σ, the
regularity of the initial data is preserved in time and the Sobolev norm of the
solution is bounded uniformly in ε.

5.5.2. Stochastic Galerkin approximation
An interesting and important scenario is when the uncertainty and small scaling are
both present in the equation. Among various UQ methods (Xiu 2010, Gunzburger,
Webster and Zhang 2014), we consider the stochastic Galerkin (SG) method, which
is suitable for our AP analysis thanks to its Galerkin formulation.
Let {φi(z), i = 0, 1, . . . , } denote the complete orthogonal polynomial basis in

the Hilbert space H(Iz ;ω(z) dz) corresponding to the weight ω(z), where φi(z) is
a polynomial of degree i and satisfies the orthonormality condition:

〈φi, φ j〉ω =

∫
φi(z)φ j(z)ω(z) dz = δi j .

Here φ0(z) = 1, and δi j is the Kronecker delta function. Since the solution f (t, ·, ·, ·)
is defined in L2([0, 1]× [−1, 1]× Iz ; dµ), we have the generalized polynomial chaos
expansion (Xiu and Karniadakis 2002)

f (t, x, v, z) =
∞∑
i=0

fi(t, x, v) φi(z), f̂ = ( fi)∞i=0 :=
(

f̄ , f̂1
)
.

The mean and variance of f can be obtained from the expansion coefficients as

f̄ = E( f ) =
∫
Iz

fω(z) dz = f0, var( f ) = | f̂1 |2.

Denote the SG solution by

f K =
K∑
i=0

fi φi, f̂ K = ( fi)Ki=0 :=
(

f̄ , f̂ K1
)
, (5.52)
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from which we can extract the mean and variance of f K from the expansion
coefficients as

E( f K ) = f̄ , var( f K ) = | f̂ K1 |
2.

Furthermore, define

σi j = 〈φi, σφ j〉ω, Σ = (σi j)M+1,M+1,

σa
ij = 〈φi, σ

aφ j〉ω, Σ
a = (σa

ij)M+1,M+1,
(5.53)

for 0 ≤ i, j ≤ M . Let I be the (K+1)× (K+1) identity matrix. Σ, Σa are symmetric
positive definite matrices satisfying

Σ ≥ σminI .

If we apply the polynomial chaos ansatz (5.52) to the transport equation (5.39)
and conduct the Galerkin projection, we obtain

ε∂t f̂ + v∂x f̂ = −
1
ε

(I − [·])Σ f̂ . (5.54)

Note that the SGmethodmakes the random transport equations into deterministic
systems (5.54) that are vector analogues of the original scalar deterministic transport
equations. Therefore we can naturally utilize the deterministic AP machinery to
solve the SG system to achieve the desiredAP goals, and henceminimize ‘intrusion’
to the legacy deterministic codes. To this end, Jin, Xiu and Zhu (2015) introduced
the notion of stochastic asymptotic-preserving (sAP). A scheme is sAP if an SG
method for the random kinetic equation becomes an SG approximation for the
limiting macroscopic, random (hydrodynamic or diffusion) equation as ε → 0,
with K , mesh size and time step all held fixed. Such schemes guarantee that for
ε → 0, all numerical parameters, including K , can be chosen only for accuracy
requirements, but independent of ε.
We now use the micro–macro decomposition

f̂ (t, x, v, z) = ρ̂(t, x, z) + εĝ(t, x, v, z), (5.55)

where ρ̂ = [ f̂ ] and [ĝ] = 0, in (5.54) to get

∂t ρ̂ + ∂x 〈vĝ〉 = −Σ
a ρ̂ + Ŝ, (5.56a)

∂t ĝ +
1
ε

(I − 〈.〉)(v∂x ĝ) = −
1
ε2Σĝ − Σ

aĝ −
1
ε2 v∂x ρ̂, (5.56b)

with initial data

ρ̂(0, x, z) = ρ̂0(x, z), ĝ(0, x, v, z) = ĝ0(x, v, z).

As ε → 0, system (5.56) formally approaches the diffusion limit

∂t ρ̂ = ∂x

(
1
3
Σ
−1∂x ρ̂

)
. (5.57)
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This is the SG approximation to the random diffusion equation (5.44). Thus the
SG approximation is sAP in the sense of Jin et al. (2015).

The following result was proved in Jin et al. (2017a).

Theorem 5.5. If, for some integer m ≥ 0,

‖σ(z)‖Hk ≤ Cσ, ‖Dk f0‖Γ ≤ C0, ‖Dk(∂x f0)‖Γ ≤ Cx, k = 0, . . . ,m, (5.58)

then for t ≤ T , the error of the SG method is

‖ f − f K ‖Γ ≤
C(T)
Kk

, (5.59)

where C(T) is a constant independent of ε.

Theorem 5.5 gives a uniform-in-ε spectral convergence rate, so we can choose
K independent of ε, a very strong sAP property. Such a result is also obtained with
the anisotropic scattering case, for the linear semiconductor Boltzmann equation
(Jin and Liu 2017).

5.5.3. A full discretization
Here we adopt the micro–macro decomposition fully discrete scheme for the SG
system (5.56).
Corresponding to (5.35) and (5.36), we have

ρ̂n+1
i − ρ̂ni
∆t

+

〈
v
ĝn+1
i+1/2 − ĝ

n+1
i−1/2

∆x

〉
= 0, (5.60a)

ĝn+1
i+1/2 − ĝ

n
i+1/2

∆t
+

1
ε∆x

(I − 〈Π〉)
(
v+(ĝni+1/2 − ĝ

n
i−1/2) + v−(ĝni+3/2 − ĝ

n
i+1/2)

)
= −

1
ε2Σi ĝ

n+1
i+1/2 −

1
ε2 v

ρ̂n
i+1 − ρ̂

n
i

∆x
. (5.60b)

Its formal limit, when ε → 0, is given by

ρ̂n+1
i − ρ̂ni
∂t

−
1
3
Σ
−1 ρ̂

n
i+1 − 2ρ̂ni + ρ̂

n
i−1

∆x2 = 0. (5.61)

This is the fully discrete SG scheme for (5.57). Thus the fully discrete scheme is
sAP.
One important property for an AP scheme is to have a stability condition inde-

pendent of ε, so we can take ∆t � O(ε). The next theorem from Jin et al. (2017a)
confirms this.

Theorem 5.6. If ∆t satisfies the CFL condition

∆t ≤
σmin

3
(∆x)2 +

2ε
3
∆x, (5.62)
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then the solution obtained by scheme (5.60) satisfies the energy estimate
N−1∑
i=0

(
(ρ̂n+)2 +

ε2

2

∫ 1

−1
(ĝni+1/2)2 dv

)
≤

N−1∑
i=0

(
(ρ̂0

i )2 +
ε2

2

∫ 1

−1
(ĝ0

i+ 1
2
)2 dv

)
for every n, and hence the scheme (5.60) is stable.

Since the right-hand side of (5.62) has a lower bound, which is essentially a
stability condition of the discrete diffusion equation (5.61)), when ε → 0, the
scheme is asymptotically stable and ∆t remains finite even if ε → 0.
Next we consider a numerical example from Jin et al. (2017a). Consider a

random coefficient with one-dimensional random parameter:

σ(z) = 2 + z, z is uniformly distributed in (−1, 1).

The limiting random diffusion equation is

∂t ρ =
1

3σ(z)
∂xxρ, (5.63)

with initial condition and boundary conditions

ρ(t, 0, z) = 1, ρ(t, 1, z) = 0, ρ(0, x, z) = 0.

The analytical solution for (5.63) with the given initial and boundary conditions is

ρ(t, x, z) = 1 − erf
(

x√
4

3σ(z) t

)
. (5.64)

When ε is small, this can be used as the reference solution. For large ε or if we
cannot get an analytic solution, we will use the collocation method (see Gunzburger
et al. 2014) with the same time and spatial discretization to themicro–macro system
(5.60) as a comparison in the following examples. In addition, the standard 30-
point Gauss–Legendre quadrature set is used for the velocity space to compute ρ.

To examine the accuracy, two error norms are used, namely the differences in
the mean solutions and in the corresponding standard deviation, with `2-norm in x:

emean(t) = ‖E[uh] − E[u]‖`2,

estd(t) = ‖σ[uh] − σ[u]‖`2,

whereuh andu, respectively, are the numerical solutions and the reference solutions.
In Figure 5.1 we plot the errors in mean and standard deviation of the SG

solutions at t = 0.01 with different K . Three sets of results are included: solutions
with ∆x = 0.04, ∆x = 0.02 and ∆x = 0.01, with ∆t = 0.0002/3 always used. One
can see that the errors become smaller with a finer mesh, and the solutions decay
rapidly in K and then saturate where spatial discretization error dominates.
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Figure 5.1. Solutions to (5.63)–(5.64) from Jin et al. (2017a): errors of the mean
(solid line) and standard deviation (dashed line) of ρwith respect to the polynomial
chaos order K at ε = 10−8, for ∆x = 0.04 (squares), ∆x = 0.02 (circles), ∆x = 0.01
(stars).

In Figure 5.2 we examine the difference between the solution t = 0.01 obtained
by SG with K = 4, ∆x = 0.01, ∆t = ∆x2/12 and the limiting analytical solution
(5.64). One can observe that the differences become smaller as ε is smaller in a
quadratic fashion, before the numerical errors become dominant. Therefore the
method works for all ranges of ε.
A discontinuous Galerkin method sAP scheme for the same problem was de-

veloped by Chen, Liu and Mu (2017), who also proved uniform stability and a
rigorous sAP property.

5.6. Stochastic Galerkin methods for general non-linear kinetic equations with
uncertainties

Consider a general non-linear kinetic equation with multi-dimensional uncertain-
ties:

εα∂t f + v · ∇x f − ∇xφ · ∇v f =
1
ε
Q( f ), t > 0, x ∈ Ω, v ∈ Rd, z ∈ Rn,

f (0, x, v) = f 0(x, v).
(5.65)

Here α = 0 and 1, respectively, correspond to the Euler (acoustic) and incompress-
ible Navier–Stokes scalings (Bardos, Golse and Levermore 1991).
We again use the generalized polynomial chaos approximation

f (t, x, v, z) ≈
K∑
|k |=0

fk(t, x, v)Φk(z) := f K (t, x, v, z), (5.66)
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Figure 5.2. Solutions to (5.63)–(5.64) from Jin et al. (2017a): differences in the
mean (solid line) and standard deviation (dashed line) of ρ with respect to ε2,
between the limiting analytical solution (5.64) and the SG solution with K = 4, for
∆x = 0.04 (squares), ∆x = 0.02 (circles), ∆x = 0.01 (stars).

where k = (k1, . . . , kn) is a multi-index with |k | = k1 + · · · + kn. The {Φk(z)} are
orthonormal polynomials from PnK , the set of all n-variate polynomials of degree
up to M , and satisfy

〈Φk,Φj〉ω =

∫
Iz

Φk(z)Φj(z)ω(z) dz = δk j, 0 ≤ |k |, | j | ≤ K .

Here δk j is the Kronecker delta function.
Now we insert (5.66) into (5.65). Upon a standard Galerkin projection, we

obtain, for each 0 ≤ k ≤ M ,
εα∂t fk + v · ∇x fk −

K∑
| j |=0
∇xφk j · ∇v fj =

1
ε
Qk( f K ),

fk(0, x, v) = f 0
k (x, v),

(5.67)

with

Qk( f K ) :=
∫
Iz

Q( f K )(t, x, v, z)Φk(z)ω(z) dz,

φk j :=
∫
Iz

φ(t, x, z)Φk(z)Φj(z)ω(z) dz,

f 0
k :=

∫
Iz

f 0(x, v, z)Φk(z)ω(z) dz.
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We also assume that the potential φ(t, x, z) is given a priori for simplicity; the
case when it is coupled to a Poisson equation can be treated similarly (Zhu and Jin
2017).

5.6.1. Hypocoercivity estimate of the SG system
The hypocoercivity theory (Villani 2009) can be used to study the properties of
the SG methods. For general linear transport with uncertainty, see Li and Wang
(2017). For non-linear problems we need to consider the perturbative form (Jin
and Zhu 2018, Liu and Jin 2018)

fk =M + ε Mhk, (5.68)

where hk is the coefficient of the following generalized polynomial chaos expansion:

h(t, x, v, z) ≈
M∑
|k |=0

hk(t, x, v)Φk(z) := hK (t, x, v, z). (5.69)

Inserting ansatz (5.68) and (5.69) into (5.67) and conducting a standard Galerkin
projection, we obtain the SG system for hk (consider the case of φ = 0) (Hu and
Jin 2016): 

∂thk +
1
εα

v · ∇xhk =
1

ε1+αLk(hK ) +
1
εα

Fk(hK, hK ),

hk(0, x, v) = h0
k(x, v), x ∈ Ω ⊂ Td, v ∈ Rd,

(5.70)

for each 1 ≤ |k | ≤ K , with initial data given by

h0
k :=

∫
Iz

h0(x, v, z)ψk(z) π(z) dz.

For the Boltzmann equation, the collision parts are given by

Lk(hK ) = L+k (hK )

=

K∑
|i |=1

∫
Rd×Sd−1

S̃ki φ(|v − v∗ |) (hi(v′)M(v′∗)

+ hi(v′∗)M(v′)) M(v∗) dv∗ dσ

− M(v)
K∑
|i |=1

∫
Rd×Sd−1

S̃ki φ(|v − v∗ |) hi(v∗)M(v∗) dv∗ dσ −
K∑
|i |=1

νkihi,

Fk(hK, hK )(t, x, v) =
K∑

|i |, | j |=1

∫
Rd×Sd−1

Ski j φ(|v − v∗ |) M(v∗)

× (hi(v′)hj(v′∗) − hi(v)hj(v∗)) dv∗ dσ,
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with

S̃ki :=
∫
Iz

b(cos θ, z)ψk(z)ψi(z) π(z) dz,

ν̃ki :=
∫
Rd×Sd−1

S̃ki φ(|v − v∗ |)M(v∗) dv∗ dσ,

Ski j :=
∫
Iz

b(cos θ, z)ψk(z)ψi(z)ψj(z) π(z) dz.

For technical reasons we assume z ∈ Iz is one-dimensional and Iz has finite sup-
port |z | ≤ Cz (which is the case, for example, for the uniform and Beta distribution).
Define

‖h‖2H s
x,v
=

∑
| j |+ |l | ≤s

‖∂
j
l

h‖2
L2
x,v
, ‖h‖2H s

z
=

∫
Iz

‖h‖2H s
x,v
π(z) dz.

Liu and Jin (2018) and Daus, Jin and Liu (2019) give the following results, under
some suitable assumption on b.

Theorem 5.7. Assume the collision kernel B is given by

B(|v − v∗ |), cos θ, z) = φ(|v − v∗ |)b(cos θ, z),

where φ(ξ) = Cφξγ with γ ∈ [0, 1], Cφ > 0 for all η ∈ [−1, 1]. Further, we assume

|∂ηb(η, z)| ≤ Cb, |∂kz b(η, z)| ≤ C∗b

for all 0 ≤ k ≤ r , where b is linear in z, given in the form

b(cos θ, z) = b0(cos θ) + b1(cos θ)z. (5.71)

Assume some upper and positive lower boundedness on b and its derivatives. In
addition, assume (Jin and Shu 2017)

‖ψk ‖L∞ ≤ Ckp for all k, (5.72)

with a parameter p > 0. Let q > p + 2, and define the energy EK by

EK (t) = EK
s,q(t) =

K∑
k=1
‖kqhk ‖2H s

x,v
, (5.73)

with the initial data satisfying EK (0) ≤ η. Then, for all s ≥ s0, 0 ≤ εd ≤ 1, such
that for 0 ≤ ε ≤ εd, if hK is an SG solution (5.70) in Hs

x,v, the following hold.

(i) Under the incompressible Navier–Stokes scaling (α = 1),

EK (t) ≤ η e−τt .

(ii) Under the acoustic scaling (α = 0),

EK (t) ≤ η e−ετt,
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where η, τ are all positive constants that only depend on s and q, independent
of K and z.

From here, we also conclude that ‖hK ‖H s
x,vL

∞
z
decays exponentially in time, with

the same rate as EK (t), namely

‖hK ‖H s
x,vL

∞
z
≤ η e−τt (5.74)

in the incompressible Navier–Stokes scaling, and

‖hK ‖H s
x,vL

∞
z
≤ η e−ε τt

in the acoustic scaling.
Liu and Jin (2018) also give the following error estimates on the SG method.

Theorem 5.8. Suppose the assumptions on the collision kernel and basis func-
tions in Theorem 5.7 are satisfied, and the initial data are the same as those in
Theorem 5.7. Then the following hold.

(i) Under the incompressible Navier–Stokes scaling,

‖h − hK ‖H s
z
≤ Ce

e−λt

Kr
, (5.75)

(ii) Under the acoustic scaling,

‖h − hK ‖H s
z
≤ Ce

e−ελt

Kr
, (5.76)

with the constants Ce, λ > 0 independent of K and ε.

The above results show that the regularity of the SG solutions is the same as the
initial data. Furthermore, the numerical fluctuation hK converges to h with spectral
accuracy, and the numerical error will decay exponentially in time in the random
space.

5.7. Asymptotic-preserving neural network approximation

Kinetic equations have the curse of dimensionality since this solves equations in
phase space. While this survey mainly concentrates on dealing with multiscale
issues, it will be interesting to also deal with the issue of high dimensionality
together with multiple scales. To this end, deep neural networks (DNNs) offer
a possible direction, since there have been examples in which DNNs offer some
advantages for high-dimensional PDEs (E and Yu 2018, Raissi, Perdikaris and
Karniadakis 2019, Lu et al. 2021a, Li et al. 2021).
Unlike classical numerical schemes, a neural network uses a non-polynomial

approximation to approximate the training data via optimization of an empirical
loss/risk. For multiscale kinetic equations it is essential to construct a neural
network that is AP (referred to as an APNN) (Li and Yang 2021).

https://doi.org/10.1017/S0962492922000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000010


468 S. Jin

We first introduce conventional notations for deep neural networks (DNNs). An
L-layer feed-forward neural network is defined recursively as

f [0]θ (x) = x,

f [l]θ (x) = σ ◦ (W [l−1] f [l−1]
θ (x) + b[l−1]), 1 ≤ l ≤ L − 1,

fθ(x) = f [L]θ (x) = W [L−1] f [L−1]
θ (x) + b[L−1],

(5.77)

where W [l] ∈ Rml+1×ml , bl ∈ Rml+1 , m0 = din = d is the input dimension, mL = d0
is the output dimension, σ is a scalar function and ‘◦’ means entry-wise operation.
We denote the set of parameters by θ. The layers are denoted by a list, i.e.
[m0, . . . ,mL].
Consider the linear transport equation with initial and boundary conditions over

a bounded domain T ×D ×Ω:
ε∂t f + v · ∇x f =

1
ε
L f , (t, x, v) ∈ T ×D ×Ω,

B f = FB, (t, x, v) ∈ T × ∂D ×Ω,
I f = f0, (t, x, v) ∈ {t = 0} ×D ×Ω,

(5.78)

where FB, f0 are given functions, ∂D is the boundary of D, and B and I, respect-
ively, are initial and boundary operators. Here L = σ(ρ − f ).

5.7.1. The failure of PINNs to resolve small scales
PINNs (physics-informed neural networks) are standard neural networks to solve
PDEs. There the density function f (t, x, v) is approximated by a neural network

NNθ(t, x, v) ≈ f (t, x, v). (5.79)

The inputs of a DNN are (t, x, v), i.e. m0 = 3, 5 for one and two dimensions,
respectively. The output is a scalar which represents the value of f at (t, x, v).
Since f is always non-negative, we put an exponential function at the last output
layer of the DNN:

f NNθ (t, x, v) := exp(− f̃ NNθ (t, x, v)) ≈ f (t, x, v) (5.80)

to represent the numerical solution of f . Then the mean square of the residual of
the original transport equation (5.78) is used as the target loss function, together
with boundary and initial conditions as penalty terms:

Rε
PINN =

1
|T ×D ×Ω|

∫
T

∫
D

∫
Ω

|ε2∂t f NNθ + εv · ∇x f NNθ − L f NNθ |
2 dv dx dt

+
λ1

|T × ∂D ×Ω|

∫
T

∫
∂D

∫
Ω

|B f NNθ − FB |
2 dv dx dt

+
λ2

|D ×Ω|

∫
D

∫
Ω

|I f NNθ − f0 |2 dv dx, (5.81)
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Positive

σ(x) = tanh(x)
σ′(x) = exp(−x)

IC and BC

Loss
Minimize

Constraint preserving

Figure 5.3. Schematic of APNNs for solving the linear transport equation with
initial and boundary conditions.

where λ1 and λ2 are the penalty weights to be tuned. Then a standard stochastic
gradient descent (SGD) method or Adam optimizer is used to find the global
minimum of this loss.
Now let us check whether this PINN method is AP. We only need to focus on the

first term of (5.81):

Rε
PINN, residual :=

1
|T ×D ×Ω|

∫
T

∫
D

∫
Ω

|ε2∂t f NNθ +εv ·∇x f NNθ −L f NNθ |
2 dv dx dt .

(5.82)
Taking ε → 0, formally this will lead to

RPINN, residual :=
1

|T ×D ×Ω|

∫
T

∫
D

∫
Ω

| − L f NNθ |
2 dv dx dt, (5.83)

which can be viewed as the PINN loss of the equilibrium equation

L f = 0. (5.84)

This shows that when ε is very small, to leading order we are solving equation
L f = 0, which gives f = ρ. This does not give the desired diffusion equation
(2.41). This explains why the PINN will fail when ε is small.
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TheAPNN, introduced in Jin, Ma andWu (2021b), puts themicro–macro system
(5.31) or (5.32) into the loss, instead of the original equation (5.78).
First the DNN needs to parametrize two functions ρ(x, v) and g(t, x, v). So here

two networks are used. First,

ρNNθ (t, x) := exp(−ρ̃NNθ (t, x)) ≈ ρ(t, x). (5.85)

Notice here that ρ is non-negative. Second,

gNNθ (t, x, v) := g̃NNθ (t, x, v) − 〈g̃NNθ 〉(t, x) ≈ g(t, x, v). (5.86)

Here ρ̃ and g̃ are both fully connected neural networks. Notice that by choosing
gNNθ (t, x, v) as in (5.86) it will automatically satisfy the constraint

〈g〉 = 0, (5.87)

because
〈gNNθ 〉 = 〈g̃

NN
θ 〉 − 〈g̃

NN
θ 〉 = 0 for all t, x. (5.88)

Then the APNN loss is defined as

Rε
APNN =

1
|T ×D |

∫
T

∫
D
|∂t ρ

NN
θ + ∇x · 〈vg

NN
θ 〉|

2 dx dt

+
1

|T ×D ×Ω|

∫
T

∫
D

∫
Ω

|ε2∂tg
NN
θ + ε(I − Π)(v · ∇xgNNθ )

+ v · ∇xρ
NN
θ − LgNNθ |2 dv dx dt

+
λ1

T × ∂D ×Ω|

∫
T

∫
∂D

∫
Ω

|B(ρNNθ + εg
NN
θ ) − FB |

2 dv dx dt

+
λ2

|D ×Ω|

∫
D

∫
Ω

|I(ρNNθ + εg
NN
θ ) − f0 |2 dv dx. (5.89)

A schematic plot of the method is given in Figure 5.3.
To show the AP property of this loss formally, we only need to focus on the first

two terms of (5.89):

Rε
APNN, residual =

1
|T ×D |

∫
T

∫
D
|∂t ρ

NN
θ + ∇x · 〈vg

NN
θ 〉 −Q |2 dx dt

+
1

|T ×D ×Ω|

∫
T

∫
D

∫
Ω

|ε2∂tg
NN
θ + ε(I − Π)(v · ∇xgNNθ )

+ v · ∇xρ
NN
θ − LgNNθ − (I − Π)εQ |2 dv dx dt . (5.90)

Taking ε → 0, formally this will lead to

RAPNN, residual =
1

|T ×D |

∫
T

∫
D
|∂t ρ

NN
θ + ∇x · 〈vg

NN
θ 〉 −Q |2 dx dt

+
1

|T ×D ×Ω|

∫
T

∫
D

∫
Ω

|v · ∇xρ
NN
θ − LgNNθ |2 dv dx dt, (5.91)
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0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 Ref(t = 0.1)
APNNs(t = 0.1)
PINNs(t = 0.1)
Ref(t = 0.05)
APNNs(t = 0.05)
PINNs(t = 0.05)

Figure 5.4. Example 5.9: ε = 10−8. Plots of density ρ at t = 0.05, 0.1 by PINN,
APNN and reference solutions. The neural networks are [2, 128, 128, 128, 128, 1]
for ρ and [3, 256, 256, 256, 256, 1] for g, f . The batch size is 1000 in the domain,
400 × 2 with penalty λ1 = 10 for the boundary condition and 1000 with penalty
λ2 = 10 for the initial condition; the number of quadrature points is 30. The relative
`2-errors of PINNs and APNNs are 9.40 × 10−1 and 2.76 × 10−3 respectively.

which is the mean-square loss of equations{
∂t ρ + ∇x · 〈vg〉 = Q,
v · ∇xρ = Lg. (5.92)

The second equation above yields g = L−1(v · ∇xρ), which, when plugging into
the first equation and integrating over v, gives the diffusion equation (2.41). Hence
this proposed method is an APNN method.

Example 5.9. We present a numerical example from Jin et al. (2021b). Let
σ = 1. Consider the initial data

f0(x, v) =
ρ(x)
√

2π
e−v

2/2, (5.93)

where
ρ(x) = 1 + cos(4πx), (5.94)

and the isotropic in-flow boundary conditions

FL(v) = 1, FR(−v) = 0, for v > 0. (5.95)

The results are shown in Figure 5.4. Clearly the PINN fails to conserve the mass,
and for small ε does not give accurate results, while the APNN gives quite accurate
results even when ε is very small.
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Remark 5.10. Not all AP schemes yield an APNNmethod when put into the loss.
For example, Jin et al. (2021b) showed that the parity formulation (5.18)–(5.19)
does not give an APNN network.
A similar loss function also based on micro–macro decomposition, but with a

constraint (5.87) as a penalty, was proposed in Lu, Wang and Xu (2021b) for the
stationary problem.

6. Other related multiscale problems
6.1. Non-linear hyperbolic systems with stiff source terms

Numerical methods for non-linear hyperbolic systems with stiff relaxation terms
were among the earliest AP schemes for time-dependent problems. A prototype
equation is given by 

∂tu + ∂xg(u, v) = 0,

∂tv + ∂xh(u, v) =
1
ε

R(u, v),
(6.1)

where the term R is dissipative, ∂vR ≤ 0, and possesses a unique local equilibrium,
R(u, v) = 0, which implies v = f (u). Then, when ε → 0, we have the macroscopic
limit

∂tu + ∂xg(u, f (u)) = 0.

This is an analogy of the Euler limit of the Boltzmann equation. If we use the
Chapman–Enskog expansion to the O(ε)-term, then (6.1) can be approximated by
a parabolic equation

∂tu + ∂xg(u, f (u)) = ε∂x[h(u)∂xu]. (6.2)

Here we need h(u) > 0, which requires the characteristic speeds of the original
systems (6.1) to intertwine with that of the limiting equation (6.1). This condition is
called the subcharacteristic condition (Chen, Levermore and Liu 1994). Equation
(6.2) is an analogy of the Navier–Stokes approximation to the Boltzmann equation.
The numerical study of systems of the type (6.1) began in the works by Jin and

Levermore (1996), Jin (1995) and Caflisch, Jin and Russo (1997), where the AP
principle was used to design numerical schemes to handle the stiff relaxation term.
High-order IMEX-type schemes were developed by Pareschi and Russo (2005) and
Dumbser, Enaux and Toro (2008). Combining AP and the positivity-preserving
property was done in Hu and Shu (2019). The relation between AP and a well-
balanced scheme is revealed in Gosse and Toscani (2002). For AP schemes for gas
dynamics with external force and frictions, see Bouchut, Ounaissa and Perthame
(2007) and Chalons et al. (2010). A rigorous uniform accuracy proof of AP
schemes for linear problems was recently made in Hu and Shu (2021).
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6.2. Quasi-neutral limit in plasma

In many plasma applications one can disregard charge separations, and then the
quasi-neutral approximation can be used. However, near the plasma boundary,
electrostatic sheathes may appear, and then we need to consider more complex
models (Degond and Deluzet 2017).
Consider the one-species rescaled Euler–Poisson (EP) equations for charged

particles:

∂tn + ∇ · q = 0, (6.3)

∂tq + ∇ ·
(

q ⊗ q
n

)
+ ∇p(n) = n∇φ, (6.4)

ε2
∆φ = n − 1, (6.5)

where n = n(x, t) is the particle number density, q = q(x, t) = nu is the momentum
(u is the average velocity), p(n) = nγ is the pressure law with γ ≥ 1, and φ = φ(x, t)
is the electric potential. Here negatively charged electrons with scaled charge equal
to −1 are considered, with a uniform ion background density equal to 1. The
dimensionless parameter ε = λD/L is the scaled Debye length, i.e. the ratio of
the actual Debye length λD to the macroscopic length scale L. In the quasineutral
regime, ε � 1. Letting ε → 0 in (6.5), we have n = 1, and the following limiting
equations arise (Brenier 2000):

∇ · q = 0, (6.6)
∂tq + ∇ · (q ⊗ q) = ∇φ. (6.7)

These are the incompressible Euler equations.
A typical stable time discretization of the Euler–Poisson system requires ∆t ≤ ε,

which is quite restrictive.
The main difficulty here is that when ε → 0, the Poisson equation (6.5) becomes

degenerate, hence a naive discretization would lead to poor numerical performance
for small ε. A key idea introduced by Crispel, Degond and Vignal (2005) is to
reformulate the system to a new one that remains uniformly elliptic. Taking ∂t on
(6.3), ∇· on (6.4) and ∂tt on (6.5) gives

∂ttn + ∇ · ∂tq = 0, (6.8)

∇ · ∂tq + ∇2 :
(

q ⊗ q
n
+ p(n)I

)
= ∇ · (n∇φ), (6.9)

ε2
∆∂ttφ = ∂ttn. (6.10)

Eliminating ∇ · ∂tq by combining (6.8) and (6.9) and using (6.10), we get

−∇ · [(n + ε2∂tt )∇φ] + ∇2 :
[
q ⊗ q

n
+ p(n)I

]
= 0. (6.11)

Although this system is equivalent to the original Euler–Poisson system, equation
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(6.11) is now uniformly elliptic in ε, so discretizing it suitably in timewill guarantee
the asymptotic stability with respect to ε.

This framework is quite general, and has been generalized to the two-fluid model
(Crispel, Degond and Vignal 2007), the particle-in-cell method for the Vlasov–
Poisson system (Degond et al. 2010b), the Euler–Maxwell system (Degond, Deluzet
and Savelief 2012a) and the Vlasov–Maxwell system (Degond, Deluzet and Doyen
2017), among other plasma models. See the comprehensive review by Degond and
Deluzet (2017).

6.3. High-field limits

In kinetic equations there is often a strong external field, such as the electric or
magnetic field, that balances the collision term, leading to the so-called high-field
limit (Cercignani, Gamba and Levermore 1997).

6.3.1. High electric field
Consider for example the interaction between the electrons and a surrounding
bath through Coulomb force in electrostatic plasma, where the electron density
distribution f (t, x, v) is governed by the Vlasov–Poisson–Fokker–Planck system:

∂t f + v · ∇x f −
1
ε
∇xφ · ∇v f =

1
ε
∇v · (v f + ∇v f ), (6.12)

−∆φ = ρ − h, (6.13)

where ε = (le/Λ)2 is the ratio between the mean-free path and the Debye length.
Let ε → 0 in (6.12). We obtain the high-field limit (Nieto, Poupaud and Soler
2001, Goudon, Nieto, Poupaud and Soler 2005):

∂t ρ − ∇x · (ρ∇xφ) = 0, (6.14)
−∆φ = ρ − h(x). (6.15)

We can combine the force term with the Fokker–Planck term as

∂t f + v · ∇x f =
1
ε
∇v · [M∇v(M f )], (6.16)

where M = e−|v+∇xφ |2/2. This form is convenient for designing AP schemes (Jin
and Wang 2011, Crouseilles and Lemou 2011), based on which we can easily
use other well-developed AP frameworks. For more general collision operators,
e.g. the semiconductor Boltzmann collision operator, this trick does not apply and
we need other ideas, e.g. BGK penalization (Jin and Wang 2013). A variational
approach was recently proposed in Carrillo, Wang, Xu and Yan (2021), using the
Wasserstein gradient structure, to get positivity and AP easily.

6.3.2. High magnetic field
Magnetized plasmas are encountered in a wide variety of astrophysical situations
but also in magnetic fusion devices such as tokamaks, where a large external
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magnetic field needs to be applied in order to keep the particles on the desired
tracks. The Vlasov equation for such problems takes the following form:

ε∂t f + v · ∇x f +
(

E(t, x) +
1
ε
v ∧ Bext(t, x)

)
· ∇v f = 0.

Here, for simplicity, we set all physical constants to one and consider that ε > 0
is a small parameter related to the ratio between the reciprocal Larmor frequency
and the advection time scale. We consider a constant magnetic field acting in the
vertical z-direction, so it yields the two-dimensional Vlasov–Poisson system with
an external strong force:

ε∂t f + v · ∇x f +
(

E(t, x) −
b v⊥

ε

)
· ∇v f = 0,

E = −∇xφ, −∆xφ = ρε, ρ =

∫
R2

f dv,

where we use the notation v⊥ = (−vy, vx).
Most of the numerical schemes for the Vlasov–Poisson system are based on

particle methods, which consist in approximating the distribution function by a
finite number of macro-particles. The trajectories of these particles are determined
from the characteristic curves corresponding to the Vlasov equation

ε
dXε

dt
= Vε,

ε
dVε

dt
= −

bVε⊥

ε
+ Eε(t, Xε),

(6.17)

where we use the conservation of f along the characteristic curves

f (t, Xε(t),Vε(t)) = f (t0, X0,V0).

In the limit ε → 0, we expect oscillations occurring on typical time scales O(1/ε2)
to coexist with a slow dynamics evolving on a time scale O(1). We now sketch how
to identify a closed system describing the slow evolution to leading order. To begin
with, note that from the second line of system (6.17) it follows that Vε oscillates at
order 1/ε2 and thus remains bounded and converges weakly to zero.1 As we detail
below, one may also combine both lines of the system to obtain

d
dt

(
Xε − ε

Vε⊥

b

)
= −

1
b

E⊥(t, Xε).

This shows that Xε evolves slowly but, as such, does not provide a closed asymptotic
evolution in the limit ε → 0 and the corresponding asymptotic model is an equation

1 Althoughwe do not want to be too precise here, let us mention that in the present discussionweakly
and strongly refer to the weak-* and strong topologies of L∞, and that the weak convergences that
we encounter actually correspond to strong convergence in W−1,∞.
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for the density ρ: {
∂t ρ − b E⊥ · ∇xρ = 0,
E = −∇xφ, −∆xφ = ρ.

When b is not constant, we also need to know what happens to expressions that
are quadratic in Vε , and this does not follow readily from the weak convergence of
Vε (Filbet and Rodrigues 2017).

One of the oldest of these strategies (Frénod, Salvarani and Sonnendrücker 2009)
was directly inspired by theoretical results on two-scale convergence, and relies on
the fact that at the limit ε → 0 the τ-dependence (τ = t/ε) may be explicitly filtered
out. Its main drawback is probably that it computes only the leading-order term in
the limit ε → 0. In particular, it is only available when ε is very small.

This may be fixed by keeping, alongside the stiff term to which a two-scale
treatment is applied, a non-stiff part that is smaller in the limit ε → 0 but becomes
important when ε is not small. Such a decomposition may be obtained by using a
micro–macro approach as in Crouseilles, Frénod, Hirstoaga and Mouton (2013a)
and some references therein. This allows us to switch from one regime to another
without any treatment of the transition between them, but results in relatively heavy
schemes.
Another approach with similar advantages, developed in Crouseilles, Lemou and

Méhats (2013b) and Frénod, Hirstoaga, Lutz and Sonnendrücker (2015), consists
in explicitly doubling time variables and seeking higher-dimensional partial dif-
ferential equations and boundary conditions in variables (t, τ, x, v) that contain the
original system at the ε-diagonal (t, τ) = (t, t/ε). While the correspondingmethods
are extremely good at capturing oscillations, their design requires a deep a priori
understanding of the detailed structure of oscillations. Further, a class of semi-
implicit schemes has been proposed (Filbet and Rodrigues 2016, 2017, Hairer,
Lubich and Wang 2020, Ricketson and Chacón 2020) to capture accurately the
non-stiff part of the evolution while allowing for coarse discretization parameters.
It allows us to capture the asymptotic limit of the two-dimensional Vlasov–Poisson
systemwith a uniformmagnetic field (Filbet and Rodrigues 2016, Filbet, Rodrigues
and Zakerzadeh 2021). In many respects these schemes are remarkably natural and
simple, and can be adapted to toroidal geometry as in Filbet and Rodrigues (2020).

6.4. Highly anisotropic diffusion

In magnetized plasma simulations, the magnetic field confines the particles around
the field lines, which leads to highly anisotropic problems. The model problem is
given by

−∇ · (A∇u) = f on Ω,
n · A∇u = 0 on ΓN ,

u = g on ΓD ,
(6.18)
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where Ω ⊂ R2 or Ω ⊂ R3 is a bounded domain with boundary ∂Ω = ΓD ∪ ΓN and
outward normal n. The direction of the anisotropy is given by a unit vector field b
and the anisotropic diffusion matrix is then given by

A =
1
ε

A | |b ⊗ b + (I − b ⊗ b)A⊥(I − b ⊗ b), (6.19)

where A | | > 0 is a scalar and A⊥ is a symmetric positive definite matrix field, both
of order one. The problem becomes highly anisotropic when ε � 1. Let (ξ, η) be
the aligned coordinate system; the formal limit of ε → 0 leads to

−∂ξ (A | |∂ξu) = f on Ω,
∂ξu = 0 on ΓN ,

u = g on ΓD .

Any function that remains constant along the b field solves the above limit equation,
which indicates that the limit model is not well-posed. Due to the existence of
infinitely many solutions when ε → 0, standard numerical discretizations suffer
from large condition numbers when ε is small and usually lose convergence when
ε � h (h is the mesh size).
To avoid the aforementioned problem, the common approach is to use magnetic

field aligned coordinates, which may run into problems when there are magnetic re-
connections or highly fluctuating field directions. The other approach is to design
methodswhose condition numbers do not scalewith the anisotropy strength, and the
convergence orders are uniformwith respect to ε. Themain idea is to construct new
systems that remainwell-posedwhen ε → 0. In a series of papers (Degond, Deluzet
and Negulescu 2010a, Degond, Lozinski, Narski and Negulescu 2012c, Degond
et al. 2012b, Narski and Ottaviani 2014), Degond, Narski, Negulescu and co-
workers have proposed various reformulations and discretization strategies based
on macro–micro decomposition. Another idea is based on field line integration.
By substituting (6.19) into (6.18), we get

−∂ξ

(
1
ε

A | |∂ξu
)
− ∇ · ((I − b ⊗ b)A⊥(I − b ⊗ b)∇u) = f on Ω,

1
ε

A | |∂ξu + n · (I − b ⊗ b)A⊥(I − b ⊗ b)∇u = 0 on ΓN ,

u = g on ΓD ,

(6.20)

Taking the integration of the first equation in (6.20) along a field line and using the
second equation of the Neumann boundary condition, we can get∫ L

0
(∇ · ((I − b ⊗ b)A⊥(I − b ⊗ b)∇u) + f )dξ

= (n · (I − b ⊗ b)A⊥(I − b ⊗ b)∇u)
��L
0 , (6.21)
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where 0 and L are the two end-points of a field line. Equation (6.21) is independent
of ε and provides information on how to determine the limit solution. A similar idea
can be extended to more complex models such as the closed field line (Wang, Ying
and Tang 2018, Narski and Ottaviani 2014) and high-order differential operators
arising in plasma physics (Yang, Deluzet and Narski 2019).

6.5. Low Mach number limit of compressible flows

Recently there has been increasing research activity in developing Mach number
uniform fluid solvers. Consider the case of isentropic Navier–Stokes equations:

∂t ρ + ∇x · (ρu) = 0, (6.22)

∂t (ρu) + ∇x · (ρu ⊗ u) +
1
ε2∇xp =

1
Re
∆u. (6.23)

Here ρ is the density, u the velocity and p = ργ the pressure, ε being the Mach
number and Re the Reynolds number. When ε � 1, we seek the asymptotic
expansion ρ = ρ(0) + ε2ρ(2) + · · · and p = p(0) + ε2p(2) + · · · , which then yields
(Klainerman and Majda 1981)

∇ · u(0) = 0, (6.24)

∂tu(0) + (u(0) · ∇)u(0) +
1
ρ(0)∇p(2) =

1
Re
∆u(0). (6.25)

The characteristic speeds of system (6.22) are of O(1/ε), corresponding to fast
acoustic waves. One would think the low Mach number problem is mainly a
numerically stiff problem and hence a small time step of O(ε) is needed if an
explicit method is used. In fact the constraints are more severe. For shock-
capturing methods, the numerical viscosity – a necessary ingredient to suppress
artificial oscillations – is inversely proportional to the speed of sound, and hence
∆x = O(ε) is needed to reduce numerical dissipation (Guillard and Viozat 1999,
Dellacherie 2010). We then need ∆t = O(ε∆x) for numerical stability in an explicit
scheme.

In developing a numerical scheme that is efficient for all Mach numbers, ideally
we hope to use mesh size and time step independent of ε, namely the scheme
is AP. This is usually achieved by splitting the flux into a rapidly moving part
(corresponding to the acoustic waves) and a slowly moving part. An earlier attempt
in this direction is a splitting by Klein (1995), which was further improved by
Noelle et al. (2014). Here we mention an approach introduced in Haack, Jin and
Liu (2012) (see a related approach in Degond and Tang 2011 and Cordier, Degond
and Kumbaro 2012), which takes the following splitting:

∂t ρ + α∇ · (ρu) + (1 − α)∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇
(

p(ρ) − a(t)ρ
ε2

)
+

a(t)
ε2 ∇ρ =

1
Re
∆u,

(6.26)
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where α and a(t) are artificial parameters. By choosing a(t) well approximating
p′(ρ), the third term in the second equation is non-stiff and will thus be treated
explicitly. An implicit treatment of the ∇ρ term is necessary, but thanks to its
linearity this can be done easily, since only Poisson solvers are needed. The scheme
is shock-capturing in the high Mach number regime, and reduces to a projection
method – a popular method for incompressible Navier–Stokes equations (Temam
1969, Chorin 1968) when ε → 0, so the AP property for ε → 0 is justified.

This direction is still rapidly evolving. One can find other techniques such as a
Lagrange projection scheme (Chalons, Girardin andKokh 2016, Zakerzadeh 2017),
a modification of the Roe solver (Miczek, Röpke and Edelmann 2015, Barsukow
et al. 2017) with applications to astrophysics problems, careful choice of numerical
viscosity (Dimarco, Loubère and Vignal 2017) and error estimates on AP schemes
for low Mach number flows (Feireisl et al. 2018).
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