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Part I.

Porous Media Flows





Chapter

1 Introduction

In this part, we consider the conservation laws with discontinuous fluxes described in eq. (1.1). Here,
𝑢∶ ℝ × [0, ∞) → ℝ is the unknown scalar quantity, 𝑓(𝑘, 𝑥) ∶ ℝ2 → ℝ is the flux function. The function
𝑘∶ ℝ → ℝ is a spatially varying co-efficient which can exhibit discontinuity in the spatial domain 𝑥.
𝑢0 ∶ ℝ → ℝ is the initial datum for the problem at time 𝑡 = 0.

𝜕𝑢
𝜕𝑡

+
𝜕𝑓(𝑘(𝑥), 𝑢)

𝜕𝑥
= 0, 𝑥 ∈ ℝ and 𝑡 > 0 (1.1a)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ (1.1b)

Conservation laws with discontinuous fluxes as described in (1.1) are of great interest in several areas of
physics and engineering. In particular, they arise in modeling traffic flow on highways with changing road
conditions [LW55], polymer flooding in oil recovery [She17], two-phase flow through heterogeneous porous
media [GR92; GR93; RT91] and sedimentation processes [Bür+03; Die96].

Even in the absence of flux discontinuities, solutions of (1.1) develop discontinuities in finite time and
for this reason, weak solutions are sought. Weak solutions to (1.1) are not unique, hence, we use additional
entropy conditions. For a smooth 𝑥 ↦ 𝑓(𝑘(𝑥), 𝑢), the uniqueness follows from the classical Kruzkov entropy
conditions.

In the presence of spatial flux discontinuities, Kruzkov entropy conditions are not enough. This difficulty
is usually resolved by requiring that the Kruzkov entropy conditions hold away from the spatial flux discon-
tinuities and imposing additional jump conditions along the spatial interfaces [AKR11; GR91; KR95] or by
adapting the Kruzkov entropy conditions in a suitable way [AP05; BJ97; PT18; Ruf24; Tow20].

In the last two decades, there has been a large interest in the numerical approximation of entropy solutions
of (1.1) under various assumptions on the flux function 𝑓 and the co-efficient 𝑘. We refer to [Tow00] for
a partial list of references regarding finite volume methods and the front tracking methods respectively.
Specifically, in the adapted entropy framework, we want to highlight the results of [BR20; GJT20; Tow20]
and [BJ97; PT18; Ruf24] regarding finite volume methods and front tracking methods.

The classical paradigm for designing efficient numerical schemes assumes that data for (1.1) are known
exactly. In particular, the assumptions is that the values of 𝑢0, the flux 𝑓 and the spatial dependency co-
efficient 𝑘 are known exactly. However, in many situations of interest, there is an inherent uncertainty
in the data due to uncertainty in experimental data. For example, in the case of two-phase flow through
heterogeneous porous medium, the position of the interface between two rock types is typically not known
exactly. Often, these parameters are only known up to certain statistical quantities like the mean, the variance
and the higher moments.

The primary objective of the work done in this part of the thesis was to develop a fast and robust numerical

3



1. Introduction

algorithm for quantifying the uncertainty in the solutions of (1.1) due to random data. First, we need to find
a useful setting in which the solution to the underlying deterministic problem satisfies the requirements for
an uncertainty quantification framework to exist. In particular, we need to ensure that the solution exists, is
unique, and is stable with respect to the modeling parameters. We also need to ensure that that there exists
numerical method used to solve the deterministic problem has a provable convergence rate.

Subsequently, we need to develop a mathematical framework for quantifying the uncertainty in the
for quantifying the uncertainty in the solutions. Finally, we need to develop the numerical algorithm for
approximating the mean of the random entropy solution, prove that it is convergent and quantify the
computational cost of the algorithm.

The setting that we have chosen for the deterministic problem is the conservation law (1.1) where the
flux function 𝑓∶ ℝ2 → ℝ is assumed to be a smooth function, 𝑓(𝑘, 𝑢) ∈ 𝒞2(ℝ2; ℝ) with the additional
condition that 𝒟𝑢𝑓 > 𝛼 > 0 for all 𝑢. The co-efficient 𝑘∶ ℝ → ℝ is assumed to be a piecewise constant
function with finitely many discontinuities in the spatial domain and the initial datum 𝑢0(𝑥) ∈ (L∞ ∩
BV)(ℝ).

We want to emphasize that, to our knowledge, the framework of adapted entropy solutions and more
specifically the setting of (1.1) is currently the only setting for conservation laws with discontinuous flux where
we simultaneously have existence[Tow20], uniqueness[AP05], stability [Ruf24] and provable convergence
rates for the numerical methods [BR20].

The rest of the part is organized as follows. In chapter 2, we lay out the setting for the deterministic
problem (1.1) and prove that all monotone finite volume methods with the upwind property which obey the
discrete Rankine-Hugoniot condition across the discontinuities of 𝑘 converge at a rate of

√
Δ𝑥 to the unique

entropy solution of the conservation law (1.1).
In chapter 3, we develop the mathematical framework for quantifying the uncertainty in the solutions

of conservation laws with discontinuous flux with random discontinuous spatial dependency. And, then
we develop a multilevel combination of Monte Carlo (MC) sampling and a pathwise Finite Volume Method
(FVM) method to approximate the mean of the random entropy solution. We prove the convergence rates for
the Monte Carlo finite volume method (MC FVM) and multi-level Monte Carlo finite volume method (MLMC
FVM) methods and optimize the MLMC FVM method.

4



Chapter

2
Error Estimates for Monotone Schemes for
Discontinuous Flux

In this chapter, we sketch the arguments of [BR20] (linked here) and prove that all monotone finite volume
methods for scalar conservation laws with discontinuous flux, which have the upwind property and obey the
discrete Rankine-Hugoniot condition across the discontinuities, converge at a rate of

√
Δ𝑥 to the unique

entropy solution of the conservation law.

In Section 2.1, we lay out the setting in which we want to solve the problem. Then, we describe the numerical
scheme that we use to solve the problem in Section 2.2. In Section 2.3, we use the Rankine-Hugoniot
condition at the discontinuities to show that solving the problem is equivalent to solving a decomposition of
the problem into finitely many initial-boundary value problems.

In Section 2.4, Section 2.5 and Section 2.6, we prove convergence rates for each of the three kinds of
initial-boundary value problems that we find in the decomposition. Here, the novel aspect of our proof is
the strong bound on temporal total variation of the finite volume approximation. The strong bound allows
us to estimate the boundary terms at the discontinuities that appear when applying the classical Kuznetsov
theory to the problem. Finally, we use the translation invariance of the problem to combine the results for all
the initial-boundary value problems to prove the main result in Section 2.7. We validate the main result by
conducting numerical experiments in Section 2.8.

2.1. The Problem Statement

We consider the conservation law (2.1)

𝜕𝑢
𝜕𝑡

+
𝜕𝑓(𝑘(𝑥), 𝑢)

𝜕𝑥
= 0, 𝑥 ∈ ℝ and 𝑡 > 0 (2.1a)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ (2.1b)

where the flux function 𝑓∶ ℝ2 → ℝ is smooth, that is , 𝑓(𝑘, 𝑢) ∈ 𝒞2(ℝ2; ℝ) with the additional condition
that it is strictly monotone 𝒟𝑢𝑓 > 𝛼 > 0 for all 𝑢. The co-efficient 𝑘∶ ℝ → ℝ is a piecewise constant
function with finitely many discontinuities in the spatial domain. The initial datum is integrable, bounded
and of finite total variation, that is, 𝑢0(𝑥) ∈ (L∞ ∩ BV)(ℝ).

We assume that there are 𝑁 discontinuities of 𝑘 denoted by 𝜉0 < 𝜉1 < ⋯ < 𝜉𝑁 − 1. The interval between
two adjacent discontinuities is denoted by 𝐷𝑖 = (𝜉𝑖, 𝜉𝑖+1). We fix 𝜉0 = −∞ and 𝜉𝑁−1 = ∞. 𝑘𝑖 is the
constant value of 𝑘 on the interval 𝐷𝑖. Due to the piecewise constant nature of 𝑘, we can define the set of
functions 𝑓 (𝑖) as in (2.2). Furthermore, due to the strict monotonicity of 𝑓, we can define the inverse function
(𝑓 𝑖)−1 for all 𝑢 ∈ ℝ.

𝑓 (𝑖)(𝑢) = 𝑓(𝑘𝑖, 𝑢) for 𝑢 ∈ ℝ and 𝑖 = 0, 1, … , 𝑁 (2.2)

5



2. Error Estimates for Monotone Schemes for Discontinuous Flux

We define the function 𝐻𝑖(𝑢) over the domain 𝐷𝑖 as in (2.3). The function 𝐻𝑖(𝑢) is motivated from what an
adapted entropy function would be for a conservation law where the discontinuities are at the boundary of
the domain 𝐷𝑖.

𝐻𝑖(𝑢, 𝑐𝑖) =
𝑇

∫
0

∫
𝐷𝑖

[ |𝑢 − 𝑐𝑖| 𝜑𝑡 + sgn (𝑢 − 𝑐𝑖) (𝑓 𝑖 (𝑢) − 𝑓 𝑖 (𝑐𝑖)) 𝜑𝑥] d𝑥d𝑡

− ∫
𝐷𝑖

|𝑢(𝑥, 𝑇 ) − 𝑐𝑖| 𝜑(𝑥, 𝑇 )d𝑥 + ∫
𝐷𝑖

|𝑢0(𝑥) − 𝑐𝑖| 𝜑(𝑥, 𝑖)d𝑥

−
𝑇

∫
0

sgn(𝑢 (𝜉−
𝑖+1, 𝑡) − 𝑐𝑖) [𝑓 𝑖 (𝑢 (𝜉−

𝑖+1, 𝑡)) − 𝑓 𝑖 (𝑐𝑖)] 𝜑 (𝜉𝑖+1, 𝑡) d𝑡

+
𝑇

∫
0

sgn(𝑢 (𝜉+
𝑖 , 𝑡) − 𝑐𝑖) [𝑓 𝑖 (𝑢 (𝜉+

𝑖 , 𝑡)) − 𝑓 𝑖 (𝑐𝑖)] 𝜑 (𝜉𝑖, 𝑡) d𝑡

(2.3)

Definition 2.1 (Entropy Solution).We say that 𝑢 ∈ 𝐶0([0, ∞); L∞(ℝ)) is an entropy solution of (2.1), if for
all 𝑐 ∈ ℝ and for all non-negative 𝜑 ∈ 𝐶∞(ℝ × [0, 𝑇 ]), the entropy solution satisfies (2.4).

𝑁

∑
𝑖=0

𝐻𝑖(𝑢, 𝑐𝑖) ≥ 0 (2.4)

𝑐0 = 𝑐 𝑐𝑖+1 = (𝑓 (𝑖+1))−1 (𝑓 𝑖(𝑐𝑖)) for 𝑖 = 0, 1, … , 𝑁 − 1 (2.5)

Theorem 2.1 (Existence and Uniqueness of Entropy Solution).Due to [BJ97] and [AP05], there exists a unique
entropy solution 𝑢 ∈ 𝒞([0, ∞); L1(ℝ)) of (2.1) in the framework of adapted entropies.

Theorem2.2 (Rankine-Hugoniot Condition).Due to [AKR11, Remark 2.3], we can show that there exists strong
traces 𝑢(𝜉±

𝑖 ) of the entropy solution 𝑢 at the discontinuities 𝜉𝑖 and that they satisfy the Rankine-Hugoniot
condition across 𝜉𝑖 which gives us (2.6). We will later use the this result in Section 2.3 to decompose the
problem into finitely many initial-boundary value problems.

𝑓 𝑖−1 (𝑢(𝜉−
𝑖 , 𝑡)) = 𝑓 𝑖 (𝑢(𝜉+

𝑖 , 𝑡)) 𝑖 = 0, 1, … , 𝑁 (2.6)

2.2. The Numerical Scheme

We discretize the domain ℝ × [0, 𝑇 ] using the spatial and temporal grid discretization parameters Δ𝑥 and
Δ𝑡 respectively. The resulting grid cells then are 𝐶𝑗 = [𝑥𝑗−1/2, 𝑥𝑗+1/2] and 𝐶𝑛 = [𝑡𝑛−1, 𝑡𝑛) respectively for
points 𝑥𝑗+ 1

2
such that 𝑥𝑗+ 1

2
− 𝑥𝑗− 1

2
= Δ𝑥 for all 𝑗 ∈ ℤ and 𝑡𝑛 − 𝑡𝑛−1 = Δ𝑡 for 𝑛 = 0, 1, … , 𝑀 + 1. The

final time of simulation 𝑇 is then given by 𝑇 = (𝑀 + 1)Δ𝑡. Further, we denote the spatio-temporal domain
𝐶𝑗 × 𝐶𝑛 by 𝐶𝑛

𝑗 .

Without loss of generality, we can assume that the grid is uniform on the whole real line. Furthermore,
we can assume that grid is aligned in such a way that the discontinuities of 𝑘 lie on the cell interfaces. That is
𝜉𝑖 = 𝑃𝑖− 1

2
for some integers 𝑃𝑖, 𝑖 = 1, 2, … , 𝑁.

We will consider two point numerical fluxes 𝐹(𝑢, 𝑣) that have the upwind property such that if 𝐷𝑢𝑓 ≥ 0,
then 𝐹(𝑢, 𝑣) = 𝑓(𝑢). The upwind flux, the Godunov flux and the Engquist-Osher flux are some of the
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example of such fluxes. We are now ready to define our numerical scheme.

Definition 2.2 (Numerical Scheme).Given a discretization as mentioned above, we define the numerical
scheme as in (2.7) for all 𝑛 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 − 𝜆 [𝑓 (𝑖) (𝑢𝑛
𝑗 ) − 𝑓 (𝑖) (𝑢𝑛

𝑗−1)] 𝑃𝑖 < 𝑗 < 𝑃𝑖+1 (2.7a)

𝑢0
𝑗 = 1

Δ𝑥
∫

𝐶𝑗

𝑢0(𝑥)d𝑥 𝑗 ∈ ℤ (2.7b)

𝑢𝑛+1
𝑃𝑖

= (𝑓 (𝑖))−1 (𝑓 (𝑖−1) (𝑢𝑛+1
𝑃𝑖−1)) (2.7c)

where 𝜆 = Δ𝑡
Δ𝑥

. We assume that the time step satisfies the CFL condition

max
𝑖
max

𝑢
((𝑓 (𝑖))′ (𝑢)) 𝜆 ≤ 1 (2.8)

Note that the (2.7c) represents a discrete version of the Rankine-Hugoniot condition in (2.6). Here, we use
the ghost cells 𝐶𝑃𝑖

, 𝑖 = 1, 2, … , 𝑁 to explicitly impose the Rankine-Hugoniot condition. While this makes
the numerical scheme (2.7) non-conservative, the convergence result in the paper, coupled with the fact that
the limit is conservative, shows that the contribution of the non-conservative part of the scheme vanishes in
the limit.

2.3. Decomposition into Simpler Problems

As mentioned earlier, one of the main ideas of the proof is to decompose the problem into finitely many
initial-boundary value problems. In particular, the entropy solution 𝑢 of (2.1) can be decomposed as

𝑢 =
𝑁

∑
𝑖=1

𝑢(𝑖) where 𝑢(𝑖) ≝ 𝑢𝟙𝐷𝑖×[0,𝑇 ] (2.9)

such that 𝑢(0) solves the initial-value problem

𝜕𝑢(0)

𝜕𝑡
+

𝜕𝑓 (0) (𝑢(0))
𝜕𝑥

= 0 (𝑥, 𝑡) ∈ 𝐷0 × (0, 𝑇 ) (2.10a)

𝑢(0)(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ 𝐷0 (2.10b)

and 𝑢(𝑖) solves the initial-boundary value problem

𝜕𝑢(𝑖)

𝜕𝑡
+

𝜕𝑓 (𝑖) (𝑢(𝑖))
𝜕𝑥

= 0 (𝑥, 𝑡) ∈ 𝐷𝑖 × (0, 𝑇 ) (2.11a)

𝑢(𝑖)(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ 𝐷𝑖 (2.11b)

𝑢(𝑖)(𝜉+
𝑖 , 𝑡) = (𝑓 (𝑖))−1 (𝑓 (𝑖−1) (𝑢(𝑖−1) (𝜉−

𝑖 , 𝑡))) 𝑡 ∈ (0, 𝑇 ) (2.11c)

Conversely, we can show that if 𝑢(0) and 𝑢(𝑖), 𝑖 = 1, 2, … , 𝑁 are the entropy solutions of (2.10) and (2.11)
respectively, then 𝑢 as defined in (2.9) is the entropy solution of (2.1). Furthermore, the numerical scheme
defined in Section 2.2 when restricted to the subdomain 𝐷𝑖 is will converge to the entropy solution 𝑢(𝑖) on
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2. Error Estimates for Monotone Schemes for Discontinuous Flux

𝐷𝑖. The discrete Rankine-Hugoniot condition will then allows us to break down the problem of finding the
convergence rate on the whole real line to finding convergence rates on each of the subdomains 𝐷𝑖.

If we look at the subdomains 𝐷𝑖, we see that there are three types of subdomains: 𝐷0, 𝐷𝑁 and 𝐷𝑖 for
1 ≤ 𝑖 ≤ 𝑁 − 1. Without loss of generality, we can assume 𝐷0 = ℝ− with discontinuity at 𝜉 = 0, 𝐷𝑁 = ℝ+

with the discontinuity at 𝑥𝑖 = 0, and 𝐷𝑖 = [0, 𝐿] with discontinuity at 𝑥𝑖 = 0. This is because we can always
translate and scale the problem to fit this setting. In the next sections, we prove the convergence rate of the
numerical scheme (2.7) on each of the subdomains ℝ−, ℝ+ and [0, 𝐿].

2.4. Case 1: Convergence on ℝ−

For the case of ℝ−, we consider the initial value problem Equation (2.12). Here, the function flux function
𝑓 ∈ 𝐶2 and is strictly monotone, that is 𝑓 ′(𝑢) > 𝛼 > 0 for all 𝑢 ∈ ℝ.

𝜕𝑢
𝜕𝑡

+
𝜕𝑓(𝑢)

𝜕𝑥
= 0 (𝑥, 𝑡) ∈ ℝ− × (0, 𝑇 ) (2.12a)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ ℝ− (2.12b)

The numerical scheme that we use to approximate the solution of (2.12) is given by

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 − 𝜆 [𝑔 (𝑢𝑛
𝑗 ) − 𝑔 (𝑢𝑛

𝑗−1)] 𝑗 < 0, 𝑛 ≥ 0 (2.13a)

𝑢0
𝑗 = 1

Δ𝑥
∫

𝐶𝑗

𝑢0(𝑥)d𝑥 𝑗 < 0 (2.13b)

Definition2.3 (Entropy Solutions onℝ−).We say that 𝑢 ∈ 𝒞([0, 𝑇 ]; 𝐿1(ℝ−))∩𝐿∞((0, 𝑇 ), ℝ−) is an entropy
solution of (2.12) if for all 𝑐 ∈ ℝ, 𝑢 satisfies (2.14) for all non-negative 𝜑 ∈ 𝒞∞(ℝ− × [0, 𝑇 )).

𝑇

∫
0

∫
ℝ−

[|𝑢 − 𝑐|
𝜕𝜑
𝜕𝑡

+ |𝑓(𝑢) − 𝑓(𝑐)|
𝜕𝜑
𝜕𝑥

] d𝑥d𝑡 − ∫
ℝ−

|𝑢(𝑥, 𝑇 ) − 𝑐| 𝜑(𝑥, 𝑇 )d𝑥

+ ∫
ℝ−

|𝑢0(𝑥) − 𝑐| 𝜑(𝑥, 0)d𝑥 −
𝑇

∫
0

∣𝑔 (𝑢 (0−, 𝑡)) − 𝑔 (𝑐)∣ 𝜙(0, 𝑡)d𝑡 ≥ 0

(2.14)

Based on the definition of entropy solutions, and following classical Crandall-Majda arguments in [CM80,
Proposition 4.1], we can show that the numerical scheme satisfies a discrete entropy equality (2.15a) away
from the spatial boundaries.

𝐷𝑡
+𝜂𝑛

𝑗 + 𝐷−𝑞𝑛
𝑗 ≤ 0 𝑛 ≥ 1, 𝑗 < 0 (2.15a)

𝜂𝑛
𝑗 = ∣𝑢𝑛

𝑗 − 𝑐∣ 𝑞𝑛
𝑗 = ∣𝑓(𝑢𝑛

𝑗 ) − 𝑓(𝑐)∣ (2.15b)

𝐷𝑡
+𝑎𝑛

𝑗 =
𝑎𝑛+1

𝑗 − 𝑎𝑛
𝑗

Δ𝑡
𝐷−𝑎𝑛

𝑗 =
𝑎𝑛

𝑗 − 𝑎𝑛−1
𝑗

Δ𝑡
(2.15c)

Then, we can prove a Kuznetsov-type lemma Theorem 2.3 for the solution 𝑢
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Theorem 2.3 (Kuznetsov-type Lemma). Let 𝑢 be the entropy solution of (2.12). Then, for any function
𝑣∶ [0, 𝑇 ] → (𝐿1 ∩ BV)(ℝ−) such that the one-sided limits 𝑣(𝑡±) exist in 𝐿1, we have (2.16) for some
constant 𝐶 independent of 𝜖 and 𝜖0.

‖𝑢(⋅, 𝑇 ) − 𝑣(⋅, 𝑇 )‖𝐿1(ℝ−)

≤ −
𝑇

∫
0

∫
ℝ−

𝑇

∫
0

[𝑞 (𝑢 (0−, 𝑡) , 𝑣(𝑦, 𝑠)) + 𝑞 (𝑣 (0−, 𝑡) , 𝑢(𝑦, 𝑠))] 𝜑(0, 𝑡, 𝑦, 𝑠)d𝑡d𝑦d𝑠

+ ‖𝑢0 − 𝑣(⋅, 0)‖𝐿1(ℝ−) − Λ𝜖,𝜖0
(𝑣, 𝑢)

+ 𝐶 [𝜖 + 𝜖0 + 𝜈𝑇(𝑣, 𝜖0) + 𝜈0(𝑣, 𝜖0) + 𝜇 (𝑣(⋅, 𝑇 ), 𝜖) + 𝜇 (𝑣(⋅, 0), 𝜖)]

(2.16)

𝜑(𝑥, 𝑡, 𝑦, 𝑠) = 𝜔𝜖(𝑥 − 𝑦)𝜔𝜖0
(𝑡 − 𝑠) (2.17a)

Λ𝜖,𝜖0
(𝑣, 𝑢) =

𝑇

∫
0

∫
ℝ−

𝐿(𝑢, 𝑣(𝑦, 𝑠), 𝜑(⋅, ⋅, 𝑦, 𝑠))d𝑦d𝑠 (2.17b)

𝜈𝑡(𝑤, 𝜖0) = sup
|𝜎|≤𝜖0

‖𝑤(⋅, 𝑡 + 𝜎) − 𝑤(⋅, 𝑡)‖𝐿1(ℝ−) (2.17c)

𝜇(𝑤(⋅, 𝑡), 𝜖) = sup
|𝑧|≤𝜖

‖𝑤(⋅ + 𝑧, 𝑡) − 𝑤(⋅, 𝑡)‖𝐿1(ℝ−) (2.17d)

The term Λ𝜖,𝜖0
(𝑣, 𝑢) in (2.16) can be estimated by the inequality (2.18) where 𝐶 is a constant which is

independent of Δ𝑥, Δ𝑡, 𝜖, and 𝜖0.

Λ𝜖,𝜖0
(𝑣, 𝑢) ≤ 𝐶 (Δ𝑥 + Δ𝑥

𝜖
+ Δ𝑡

𝜖0
) (2.18)

Combining the results, we can state our convergence result

Theorem 2.4 (Convergence Rate on ℝ−). Let 𝑢 be the entropy solution of (2.12) and 𝑢Δ𝑡 be the solution of
the numerical scheme given by (2.13) where 𝜆 is a constant. Then the error estimate for the numerical
approximation is given by (2.19) where 𝐶 is a constant independent of Δ𝑥.

‖𝑢(⋅, 𝑇 ) − 𝑢Δ𝑡(⋅, 𝑇 )‖𝐿1(ℝ−) ≤ 𝐶 (Δ𝑥)
1
2 (2.19)

2.5. Case 2: Convergence on ℝ+

For the case of convergence on ℝ+, we consider the following initial-boundary value problem

𝜕𝑢
𝜕𝑡

+
𝜕𝑔(𝑢)

𝜕𝑥
= 0 (𝑥, 𝑡) ∈ ℝ+ × (0, 𝑇 ) (2.20)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ ℝ+ (2.21)

𝑢(0, 𝑡) = 𝑓−1 (𝑔 (𝑢 (0+, 𝑡))) 𝑡 ∈ (0, 𝑇 ) (2.22)
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2. Error Estimates for Monotone Schemes for Discontinuous Flux

and the numerical scheme

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 − 𝜆 [𝑓 (𝑢𝑛
𝑗 ) − 𝑓 (𝑢𝑛

𝑗−1)] 𝑗 ≥ 1, 𝑛 ≥ 0 (2.23a)

𝑢0
𝑗 = 1

Δ𝑥
∫

𝐶𝑗

𝑢0(𝑥)d𝑥 𝑗 ≥ 0 (2.23b)

𝑢𝑛
0 = 𝑓−1 (𝑔 (𝑢𝑛

−1)) 𝑛 ≥ 1 (2.23c)

where the boundary data is given in terms of 𝑢(0, −, 𝑡) and 𝑢𝑛
−1 respectively. Not that again we have a

discrete entropy inequality of the form

𝐷𝑡
+𝜂𝑛

𝑗 + 𝐷−𝑞𝑛
𝑗 ≤ 0 𝑗 ≥ 1, 𝑛 ≥ 1 (2.24)

Definition 2.4 (Entropy Solution on ℝ+).We say 𝑢 ∈ 𝒞 ([0, 𝑇 ]; 𝐿1(ℝ+)) ∩ 𝐿∞(ℝ+ × (0, 𝑇 )) is an entropy
solution of (2.20) if for all 𝑐 ∈ ℝ, 𝑢 satisfies (2.25) for all 𝜑 ∈ 𝒞∞ ([0, ∞) × [0, 𝑇 ]).

𝑇

∫
0

∫
ℝ−

[|𝑢 − 𝑐|
𝜕𝜑
𝜕𝑡

+ |𝑓(𝑢) − 𝑓(𝑐)|
𝜕𝜑
𝜕𝑥

] d𝑥d𝑡 − ∫
ℝ−

|𝑢(𝑥, 𝑇 ) − 𝑐| 𝜑(𝑥, 𝑇 )d𝑥

+ ∫
ℝ−

|𝑢0(𝑥) − 𝑐| 𝜑(𝑥, 0)d𝑥 −
𝑇

∫
0

∣𝑔 (𝑢 (0+, 𝑡)) − 𝑔 (𝑐)∣ 𝜙(0, 𝑡)d𝑡 ≥ 0

(2.25a)

𝑓 (𝑢 (0+, 𝑡)) = 𝑔 (𝑢 (0−, 𝑡)) for almost every 𝑡 ∈ (0, 𝑇 ) (2.25b)

Before we can prove the convergence rates, we need two auxiliary lemmas that are the consequences of
the monotonicity of the flux.

Lemma 2.1 (Temporal Variation Bound). If the numerical scheme (2.23) satisfies the CFL condition (2.8), then
the temporal variation of the numerical solution is bounded, specifically, for every 𝑗 ∈ ℤ, we have

𝑀

∑
𝑛=0

∣𝑢𝑛+1
𝑗 − 𝑢𝑛

𝑗 ∣ ≤ 𝐶TV(𝑢0) (2.26)

where TV(𝑢0) refers to the total variation of 𝑢0 on the whole real line.

Lemma 2.2 (Lipschitz Continuity).Given an entropy solution 𝑢 of (2.20), 𝑓(𝑢) is Lipschitz continuous in
space, in the sense that

𝑇

∫
0

|𝑓 (𝑢(𝑥, 𝑡)) − 𝑓 (𝑢(𝑦, 𝑡))| d𝑡 ≤ 𝐶 |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ ℝ+ (2.27)

Theorem 2.5 (Kuznetsov-type Lemma). Let 𝑢 be the entropy solution of (2.12). Then, for any function
𝑣∶ [0, 𝑇 ] → (𝐿1 ∩ BV)(ℝ+) such that the one-sided limits 𝑣(𝑡±) exist in 𝐿1, we have (2.16) for some
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constant 𝐶 independent of 𝜖 and 𝜖0.

‖𝑢(⋅, 𝑇 ) − 𝑣(⋅, 𝑇 )‖𝐿1(ℝ+)

≤ +
𝑇

∫
0

∫
ℝ+

𝑇

∫
0

[𝑞 (𝑢 (0+, 𝑡) , 𝑣(𝑦, 𝑠)) + 𝑞 (𝑣 (0+, 𝑡) , 𝑢(𝑦, 𝑠))] 𝜑(0, 𝑡, 𝑦, 𝑠)d𝑡d𝑦d𝑠

+ ‖𝑢0 − 𝑣(⋅, 0)‖𝐿1(ℝ+) − Λ𝜖,𝜖0
(𝑣, 𝑢)

+ 𝐶 [𝜖 + 𝜖0 + 𝜈𝑇(𝑣, 𝜖0) + 𝜈0(𝑣, 𝜖0) + 𝜇 (𝑣(⋅, 𝑇 ), 𝜖) + 𝜇 (𝑣(⋅, 0), 𝜖)]

(2.28)

𝜑(𝑥, 𝑡, 𝑦, 𝑠) = 𝜔𝜖(𝑥 − 𝑦)𝜔𝜖0
(𝑡 − 𝑠) (2.29a)

Λ𝜖,𝜖0
(𝑣, 𝑢) =

𝑇

∫
0

∫
ℝ−

𝐿(𝑢, 𝑣(𝑦, 𝑠), 𝜑(⋅, ⋅, 𝑦, 𝑠))d𝑦d𝑠 (2.29b)

𝜈𝑡(𝑤, 𝜖0) = sup
|𝜎|≤𝜖0

‖𝑤(⋅, 𝑡 + 𝜎) − 𝑤(⋅, 𝑡)‖𝐿1(ℝ−) (2.29c)

𝜇(𝑤(⋅, 𝑡), 𝜖) = sup
|𝑧|≤𝜖

‖𝑤(⋅ + 𝑧, 𝑡) − 𝑤(⋅, 𝑡)‖𝐿1(ℝ−) (2.29d)

Lemma 2.3. Following the same method as for Section 2.4, we can prove the estimate (2.30) holds for some
constant 𝐶 independent of Δ𝑥, Δ𝑡, 𝜖 and 𝜖0.

−Λ𝜖,𝜖0
(𝑢Δ𝑡, 𝑢) ≤ 𝐶 (Δ𝑥 + Δ𝑥

𝜖
+ Δ𝑥

𝜖0
+ Δ𝑡

𝜖0
) (2.30)

Theorem 2.6 (Convergence Rate on ℝ+). Let 𝑢 be the entropy solution of (2.20) and 𝑢Δ𝑡 be the solution
of the numerical scheme given by (2.23) where 𝜆 is a constant. Then the error estimate for the numerical
approximation is given by (2.31) where 𝐶 is a constant independent of Δ𝑥.

‖𝑢(⋅, 𝑇 ) − 𝑢Δ𝑡(⋅, 𝑇 )‖𝐿1(ℝ+) ≤ 𝐶 (Δ𝑥)
1
2 (2.31)

2.6. Case 3: Convergence on [0, 𝐿]

Due to the monotonicity of the fluxes, by restricting the solution 𝑢 and the numerical approximation 𝑢Δ𝑡 to
the interval [0, 𝐿], we can apply the results of Section 2.5 to obtain the following to yield the convergence
rate on (0, 𝐿).

Theorem2.7 (Convergence Rate on (0, 𝐿)). Let 𝑢 be the entropy solution of (2.20) on the bounded interval
[0, 𝐿] and 𝑢Δ𝑡 be the solution of the numerical scheme given by (2.23) where 𝜆 is a constant. Then the error
estimate for the numerical approximation is given by (2.32) where 𝐶 is a constant independent of Δ𝑥.

‖𝑢(⋅, 𝑇 ) − 𝑢Δ𝑡(⋅, 𝑇 )‖𝐿1(0,𝐿) ≤ 𝐶 (Δ𝑥)
1
2 (2.32)

2.7. The Main Result

Combining all the results on the three difference cases of ℝ−, ℝ+ and [0, 𝐿], and using the invariances of
the conservation laws, we can prove the main result of the chapter.
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Theorem 2.8 (Convergence Rate on ℝ). Let 𝑢 be the entropy solution of (2.1) and 𝑢Δ𝑡 be the solution of
the numerical scheme given by (2.7) where 𝜆 is a constant. Then the error estimate for the numerical
approximation is given by (2.33) where 𝐶 is a constant independent of Δ𝑥.

‖𝑢(⋅, 𝑇 ) − 𝑢Δ𝑡(⋅, 𝑇 )‖𝐿1(ℝ) ≤ 𝐶 (Δ𝑥)
1
2 (2.33)

2.8. Numerical Experiments

To illustrate our results, we now present experiments considering the two flux case:

𝜕𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥

[𝐻(𝑥)𝑓(𝑢) + (1 − 𝐻(𝑥))𝑔(𝑢)] = 0 (𝑥, 𝑡) ∈ ℝ × (0, 𝑇 ) (2.34)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ ℝ (2.35)

2.8.1. Numerical Experiment 1

In our first numerical experiment, we choose 𝑔(𝑢) = 𝑢 and 𝑓(𝑢) = 𝑢2/2, such that we switch from the
transport equation to the Burgers equation across 𝑥 = 0. The initial datum we consider for the experiment
is

𝑢0(𝑥) =
⎧{
⎨{⎩

0.5 if 𝑥 < −1
2

2 if 𝑥 > −1
2

(2.36)

which is chosen such that the Rankine-Hugoniot condition at 𝑥 = 0 gives 𝑢(0−, 𝑡) = 𝑢(0+, 𝑡) before the
jump at 𝑥 = −0.5 interacts with the interface. Figure 2.1 shows the numerical solution calculated with the
scheme with open boundaries in blue and the initial datum in gray (dashed line) at various times (before,
during, and after interaction with the interface). We used 𝐷𝑒𝑙𝑡𝑎𝑥 = 2

𝑛
with 𝑛 = 64, end time 𝑇 = 0.9,

and 𝜆 = 0.5. We clearly recognize the characteristic features of the transport equation and the Burgers
equation here as the upward jump in the initial datum is transported to the right as a shock until it crosses
the interface at 𝑥 = 0 where the shock, as it enters the Burgers regime, subsequently becomes a rarefaction
wave.

−1 0 1

0.5

1

2

(a) 𝑡 = 0.3.

−1 0 1

0.5

1

2

(b) 𝑡 = 0.6.

−1 0 1

0.5

1

2

(c) 𝑡 = 0.9.

Figure 2.1.: Numerical solution of Experiment 1 with Δ𝑥 = 2
64

at various times.

12



2.8. Numerical Experiments

2.8.2. Numerical Experiment 2

In our second numerical experiment we choose 𝑔(𝑢) = 𝑢2

2
and 𝑓(𝑢) = 𝑢 such that we switch from the

Burgers equation to the transport equation across 𝑥 = 0. The initial datum is

𝑢0(𝑥) = 2 + exp(−100(𝑥 + 0.75)2).

Again, the offset of the initial datum is chosen in a way such that the Rankine--Hugoniot condition at 𝑥 = 0
gives 𝑢(0−, 𝑡) = 𝑢(0+, 𝑡) before the non-constant part of 𝑢0 interacts with the interface. Figure 2.2 shows
the numerical solution calculated with the scheme (2.7) with open boundaries in blue and the initial datum
in gray (dashed line) at various times (immediately before, during, and after interaction with the interface).
We used Δ𝑥 = 2

𝑛
with 𝑛 = 128, end time 𝑇 = 0.5, and 𝜆 = 0.2. We clearly recognize the shock formation

due to the Burgers regime to the left of the interface (see Figure 2.2 (a)). Note that -- although difficult to
see in Figure 2.2 (c) because of numerical diffusion -- the shock is preserved over the interface (only with a
different profile).

−1 0 1

2

3

(a) 𝑡 = 0.2.

−1 0 1

2

3

(b) 𝑡 = 0.3.

−1 0 1

2

3

(c) 𝑡 = 0.5.

Figure 2.2.: Numerical solution of Experiment 2 with Δ𝑥 = 2
128

at various times.

Table 2.1 shows the observed convergence rates of the solution at time 𝑇 = 0.9 for Experiment 1 and
at time 𝑇 = 0.5 for Experiment 2 for various values of Δ𝑥. As a reference solution, we used a numerical
solution on a very fine grid (𝑛 = 2048) in both cases. As expected from experience in the case of spatially
independent flux we observe convergence rates strictly between 1

2
and 1 (cf. e.g. [LeV02, clawpack software]).

𝑛 𝐿1 error 𝐿1 OOC

16 1.751 × 10−1 --

32 1.256 × 10−1 0.48

64 8.865 × 10−2 0.50

128 5.918 × 10−2 0.58

256 3.637 × 10−2 0.70

512 1.978 × 10−2 0.88

1024 8.145 × 10−3 1.28

𝑛 𝐿1 error 𝐿1 OOC

16 2.771 × 10−1 --

32 1.823 × 10−1 0.60

64 1.261 × 10−1 0.53

128 8.390 × 10−2 0.59

256 5.125 × 10−2 0.71

512 2.780 × 10−2 0.88

1024 1.132 × 10−2 1.30

Table 2.1.: Convergence rates of Experiment 1 and 2.
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2.9. Conclusion and Future Work

Scalar conservation laws with discontinuous flux frequently occur in physical applications and several
numerical schemes have been considered in the literature. In contrast to the case where the nonlinear flux
does not have a spatial dependency, however, convergence rate results for monotone finite volume schemes
have not been available until now.

In this paper, we have established a convergence rate for upwind-type finite volume methods for the case
where 𝑓 is strictly monotone in 𝑢 and the spatial dependency 𝑘 is piecewise constant with finitely many
discontinuities. The central idea of this paper is to split the problem into finitely many conservation laws
between two neighboring discontinuities of 𝑘 and get a convergence rate as a consequence of convergence
rates on bounded domains. Here, the novel feature of this paper is the strong bound on the temporal total
variation of the finite volume approximation which allows us to estimate the boundary terms in space at the
discontinuities of 𝑘 that appear when applying the classical Kuznetsov theory to (2.1)

As an outlook we name four possible directions of future research. One can extend the convergence rate
result of this paper to the cases where 𝑘 is not piecewise constant and 𝑓 is not monotone. Second, it might
be interesting to investigate convergence rates of monotone schemes in the Wasserstein distance. A third
direction of future research might be to see whether the results of this paper can be extended to monotone
schemes in conservation form. Lastly, convergence rates of the front tracking method for conservation laws
with discontinuous flux are highly desirable as well.
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Chapter

3
Multi-level Monte Carlo Methods for Discontinuous
Flux

In this chapter, we sketch the arguments of [Bad+21] (linked here)and propose and analyse a single- and
multi-level Monte Carlo method for random conservation laws with discontinuous fluxes. In Section 3.1, we
introduce the concept of random entropy solutions and prove the existence and uniqueness of the random
entropy solution. In Section 3.2, we introduce the Monte Carlo method for the random conservation law. In
Section 3.3, we introduce the multi-level Monte Carlo method for the random conservation law. In Section 3.4,
we estimate the work required to achieve a given accuracy. In Section 3.5, we optimise the sample numbers
required to achieve a given accuracy. In Section 3.6, we present numerical experiments to validate the theory.

3.1. Well-Posedness of the Random Problem

𝜕𝑢(𝜔; 𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑓 (𝜔; 𝑘(𝜔; 𝑥), 𝑢(𝜔; 𝑥, 𝑡))

𝜕𝑥
= 0 𝜔 ∈ Ω, 𝑥 ∈ ℝ, 𝑡 ∈ ℝ+ (3.1a)

𝑢(𝜔; 𝑥, 0) = 𝑢0(𝜔; 𝑥) 𝜔 ∈ Ω, 𝑥 ∈ ℝ (3.1b)

We consider the random version of the deterministic conservation laws (2.1) where the initial datum, the
flux function and the discontinuous spatial dependency are subject to randomness. The random quantities
of the initial datum, the flux function and the discontinuous spatial dependency are collectively referred to
as the randomdata for the random conservation law (3.1) and are defined by (3.1).

Definition 3.1 (Random Data).Given constants 𝐶TV, 𝐹𝑓 ∈ ℝ, 𝛼𝑖𝑛(0, ∞), 𝑁𝑘 ∈ ℤ and given a rectangle
𝑅1 × 𝑅2 ⊂ ℝ2, let 𝔻 be the Banach space

𝔻 = (BV ∩ 𝐿∞) (ℝ) × 𝐿∞(ℝ) × 𝒞2(𝑅; ℝ) (3.2)

endowed with the norm

‖(𝑢0, 𝑘, 𝑓)‖𝔻 = ‖𝑢0‖𝐿1(ℝ) + TV(𝑢0) + ‖𝑢0‖𝐿∞(ℝ) + ‖𝑘‖𝐿∞(ℝ) + ‖𝑓‖𝒞2(𝑅;ℝ) (3.3)

We say that a strongly measurable map (𝑢0, 𝑘, 𝑓) ↦ 𝑑, (𝑢0, 𝑘, 𝑓) ∶ (Ω, ℱ) → (𝔻, ℬ(𝔻)) is a random data
for the random conservation law (3.1) if for ℙ − 𝑎.𝑒.𝜔,

𝑢0(𝜔; 𝑥) ∈ 𝑅1 𝑘(𝜔; 𝑥) ∈ 𝑅2 for a.e. 𝑥 ∈ ℝ (3.4a)

𝑢0(𝜔), 𝑓(𝜔), 𝑘(𝜔) satisfy the assumptions in Section 2.1 (3.4b)
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TV(𝑢0(𝜔)) ≤ 𝐶TV < ∞ where 𝐶TV is a constant independent of 𝜔 (3.4c)

‖𝑓(𝜔; ⋅, ⋅)‖𝒞2(𝑅;ℝ) ≤ 𝐶𝑓 < ∞ 𝐶𝑓 is a constant independent of 𝜔 (3.4d)

𝑘(𝜔; ⋅) has at most 𝑁𝑘 discontinuities (3.4e)

𝐷𝑢𝑓(𝜔; 𝑘, 𝑢) ≥ 𝛼 > 0 and 𝑓(𝜔; 𝑘, 0) = 0 for all (𝑘, 𝑢) ∈ 𝑅 (3.4f)

Having defined the random data, we now define the random entropy solution of the random conservation
law (3.1).

Definition 3.2 (Random Entropy Solution).Given random data 𝑑∶ Ω → 𝔻, we say that a random variable
𝑢∶ Ω → 𝒞([0, 𝑇 ]; 𝐿1(ℝ)) is a random entropy solution of the random conservation law (3.1) if for all 𝑝 ∈ ℝ
and ℙ − 𝑎.𝑒𝜔 ∈ Ω, 𝑢(𝜔) satisfies (3.5) for all non-negative 𝜑 ∈ 𝐶∞

𝑐 (ℝ × [0, 𝑇 ]).

𝑇

∫
0

∫
ℝ

[∣𝑢(𝜔; 𝑥, 𝑡) − 𝑐𝑝(𝜔; 𝑥)∣
𝜕𝜑
𝜕𝑡

+ 𝒬 (𝜔; 𝑢(𝜔; 𝑥, 𝑡))] d𝑥d𝑡

− ∫
ℝ

∣𝑢(𝜔; 𝑥, 𝑇 ) − 𝑐𝑝(𝜔; 𝑥)∣ 𝜑(𝑥, 𝑇 )d𝑥 + ∫
ℝ

∣𝑢0(𝜔; 𝑥) − 𝑐𝑝(𝜔; 𝑥)∣ 𝜑(𝑥, 0)d𝑥 ≥ 0
(3.5)

Here, we have used the notation

𝒬(𝜔; 𝑢0, 𝑘, 𝑓) = sgn(𝑢 − 𝑐𝑝(𝜔; 𝑥)) [𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑢(𝜔; 𝑥, 𝑡)) − 𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑐𝑝(𝜔; 𝑥))] (3.6)

There are multiple notions of uniqueness for solutions in probability spaces. For this particular scenario,
we are interested in pathwise uniqueness of the random entropy solutions, which we define in Definition 3.3.

Definition 3.3 (Pathwise Uniqueness of Random Entropy Solutions). If 𝑑1 and 𝑑2 are two random data and
𝑢1 and 𝑢2 are the corresponding random entropy solutions to the random conservation law (3.1), then
pathwise-uniquness means that the implication (3.7) holds.

ℙ(𝑑1 = 𝑑2) = 1 ⟹ ℙ(𝑢1 = 𝑢2) = 1 (3.7)

Given the definitions, we can now prove the existence and pathwise-uniqueness of random entropy
solutions to the random conservation law (3.1). The existence proof is based on the fact composition of a
Lipschitz function with a strongly measurable function is strongly measurable. The pathwise-uniqueness
proof also uses the Lipschitz-continuity property of solution.

Theorem 3.1 (Existence and Pathwise Uniqueness of Random Entropy Solutions). Let 𝑑∶ Ω → 𝔻 be an instance
of random data. Then there exists a unique random entropy solution 𝑢∶ Ω → 𝒞([0, 𝑇 ]; 𝐿1(ℝ)) to the
random conservation law (3.1) which is pathwise unique.

Lemma 3.1 (Uniform Bound on 𝐿𝑟 Norms of Random Entropy Solutions). Let (𝑢0, 𝑘, 𝑓 be random data and
𝐷 ⊂ ℝ be a bounded interval. Let 𝑓𝑢𝑟𝑡ℎ𝑒𝑟𝑢0 ∈ 𝐿𝑟(Ω; 𝐿∞(𝐷)), for some 1 ≤ 𝑟 ≤ ∞. Then the random
entropy solution 𝑢 of (3.1) is in 𝐿𝑟(Ω; 𝐶([0, 𝑇 ]; 𝐿𝑟(𝐷))) for all 1 ≤ 𝑝 ≤ ∞ and satisfies the uniform bound
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(3.8) for all 0 ≤ 𝑡 ≤ 𝑇

‖𝑢‖𝐿𝑟(Ω;𝐿𝑝(𝐷) ≤ 𝐶 ‖𝑢0‖𝐿𝑟(Ω;𝐿∞(𝐷)) (3.8)

3.2. The Monte-Carlo Method

We now describe the Monte-Carlo method for approximating the expected value of the random entropy
solution of the random conservation law (3.1).

Definition 3.4 (The Monte-Carlo Finite Volume Method).Given 𝑀 ∈ ℕ, we generate 𝑀 independent and
identically distributed sample ̂𝑓 𝑖, 𝑘̂𝑖, 𝑢̂𝑖

0 for 𝑖 = 1, 2, … , 𝑀 of the random data 𝑓, 𝑘, 𝑢0. Let now ̂𝑢𝑖
Δ𝑥,

𝑖 = 1, 2, … , 𝑀 denote the numerical solutions generated the finite volume method Equation (2.7) at time 𝑡.
Then, the 𝑀-sample MC FVM approximation to 𝔼[𝑢(⋅, 𝑡)] is given by

𝐸𝑀 [𝑢Δ𝑥(⋅, 𝑡)] = 1
𝑀

𝑀

∑
𝑖=1

̂𝑢𝑖
Δ𝑥(⋅, 𝑡) (3.9)

By using a combination of triangle inequality and Holder's inequality, we can show that the Monte-Carlo
approximation (3.9) satisfies the error estimate (3.11).

Theorem 3.2 (MC FVM Error Estimate). Let (𝑢0, 𝑘, 𝑓) be random data and 𝑢 the corresponding random
entropy solution of (3.1). Assume that 𝑢0 satisfies the 𝑟-th moment condition

‖𝑢0‖𝐿𝑟(Ω;𝐿∞(𝐷)) < ∞ (3.10)

for some 1 ≤ 𝑟 ≤ ∞. Then, for each 1 ≤ 𝑝 ≤ ∞, 0 ≤ 𝑡 ≤ 𝑇 and for 𝑞 = min(2, 𝑟) > 1, the MC FVM
approximation satisfies the error estimate (3.11)

∥𝔼 [𝑢(⋅, 𝑡)] − 𝐸𝑀 [𝑢Δ𝑥(⋅, 𝑡)]∥
𝐿𝑝(Ω;𝐿𝑝(𝐷))

≤ 𝐶 [𝑀
1−𝑞

𝑞 ‖𝑢0‖𝐿𝑟(Ω;𝐿∞(𝐷)) + ‖𝑢0‖
1− 1

𝑝

𝐿𝑟(Ω;𝐿∞(𝐷)) Δ𝑥
1

2𝑝 ] (3.11)

In particular, the MC FVM approximation converges to the expected value 𝔼[𝑢(⋅, 𝑡)] in 𝐿𝑞(Ω; 𝐿𝑝(𝐷)) as
𝑀 → ∞ and Δ𝑥 → 0.

3.3. The Multi-Level Monte-Carlo Method

Instead of just considering Monte-Carlo samples of a single fixed resolution of the finite volume method, we
now detail the corresponding multi-level variant, the MLMC FVM method. The key ingredient of the MLMC
FVM method is the simultaneous MC sampling on different levels of resolution of the finite volume method
with level-dependent numbers 𝑀𝑙 of MC samples.

Definition 3.5 (The multi-level Monte Carlo (MLMC) Method).Given a sequence of meshes with mesh sizes
Δ𝑥𝑙, 𝑙 = 0, 1, … , 𝐿, we define an 𝐿-level MLMC FVM approximation to 𝔼[𝑢(⋅, 𝑡)] by (3.12).

𝐸𝐿 [𝑢(⋅, 𝑡)] =
𝐿

∑
𝑙=0

𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(⋅, 𝑡) − 𝑢Δ𝑥𝑙−1
(⋅, 𝑡)] (3.12)

𝐸𝑀𝑙
denotes the MC approximation (3.9) with 𝑀𝑙 samples on the mesh with size Δ𝑥𝑙.
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3. Multi-level Monte Carlo Methods for Discontinuous Flux

Using a similar, but slightly more involved, argument to the one in the proof of Theorem 3.2, we can show
that the MLMC FVM approximation (3.12) satisfies the error estimate (3.14).

Theorem 3.3 (MLMC FVM Error Estimates). Let 𝐿 > 0, (𝑢0, 𝑘, 𝑓) be random data and 𝑢 the corresponding
random entropy of (3.1). Assume that 𝑢0 satisfies the 𝑟-th moment condition

‖𝑢0‖𝐿𝑟(Ω;𝐿∞(𝐷)) < ∞ (3.13)

for some 1 ≤ 𝑟 ≤ ∞. Then for each 0 ≤ 𝑡 ≤ 𝑇, for any sequence (𝑀𝑙)𝐿
𝑙=0 of sample sizes at mesh level 𝑙, the

MLMC FVM approximation satisfies the error estimate (3.14) for 𝑞 = min(2, 𝑟) > 1

∥𝔼 [𝑢(⋅, 𝑡) − 𝐸𝐿 [𝑈(⋅, 𝑡)]]∥𝐿𝑞(Ω;𝐿𝑝(𝐷))

≤ 𝐶 [‖𝑢0‖
1− 1

𝑝̃

𝐿1(Ω;𝐿∞(𝐷)) Δ𝑥
1

2𝑝
𝐿 + ‖𝑢0‖𝐿𝑞(Ω;𝐿∞(𝐷)) 𝑀

1−𝑞
𝑞

0 + ‖𝑢0‖
1− 1

𝑝̃

𝐿𝑞(Ω;𝐿∞(𝐷))

𝐿

∑
𝑙=0

𝑀
1−𝑞

𝑞
𝑙 Δ𝑥

1
2𝑝
𝑙 ]

(3.14)

Here ̃𝑝 = max(𝑝, 𝑞). In particular, for fixed 𝐿, the MLMC FVM approximation 𝐸𝐿 [𝑢(⋅, 𝑡)] converges to
the expected value 𝔼[𝑢(⋅, 𝑡)] in 𝐿𝑞(Ω; 𝐿𝑝(𝐷)) as Δ𝑥𝐿 → 0 and 𝑀𝑙 → ∞.

3.4. Work Estimates

In order to analyze the efficiency of the MC and MLMC methods, we need to estimate the computational
work required to achieve a given error tolerance and how it scales with the mesh size, the number of samples
and the number of levels. Here, by computational work, we mean the number of floating-point operations
performed when executing the algorithm. Before proceeding with the work estimates for the MC and MLMC
methods, we need to establish the computational work required to solve the finite volume method for a
deterministic problem.

3.4.1. Work Estimate for the Deterministic Problem

For a finite volume method, we assume that the computational work required to solve the deterministic
problem is a constant 𝐶 for each grid cell. Assume that the grid cell has the size Δ𝑥. Then the total number
of grid cells and the total number of time steps scale as Δ𝑥−𝑑. Therefore, computational work required to
solve the finite volume method on a mesh with cells of size Δ𝑥 is then given by (3.15).

𝑊 FVM(Δ𝑥) = 𝐶Δ𝑥−2 (3.15)

For the sake of generality, we assume that the computational work instead scales as Δ𝑥−𝑤 for some 𝑤 > 0.
As we have seen in eq. (2.33), we have the 𝐿𝑝 convergence rate estimate given by (3.16) for 𝑠 = 1

2
.

‖𝑢 − 𝑢Δ𝑥‖𝐿𝑝(𝐷) ≤ 𝐶Δ𝑥
𝑠
𝑝 (3.16)

Combing the two results, we can estimate the error in terms of computational work by (3.17).

‖𝑢 − 𝑢Δ𝑥‖𝐿𝑝(𝐷) ≤ 𝐶 (𝑊 FVM)− 𝑠
𝑤𝑝 (3.17)
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In particular, for 𝑝 = 1, 𝑤 = 2, and 𝑠 = 1
2

, we have

‖𝑢 − 𝑢Δ𝑥‖𝐿1(𝐷) ≤ 𝐶 (𝑊 FVM)− 1
4 (3.18)

3.4.2. Work Estimate for the Monte Carlo Method

Since 𝑀 deterministic solutions are required to compute the MC approximation, the computational work
required to compute the MC approximation is given by (3.19).

𝑊 MC(𝑀) = 𝐶𝑀Δ𝑥−𝑤 (3.19)

In order to obtain an error estimate for the MC approximation, we equilibrate the terms 𝑀
1−𝑞

𝑞 and Δ𝑥
𝑠
𝑝

in (3.11) by choosing 𝑀 = 𝐶Δ𝑥
𝑠𝑞

𝑝(1−𝑞) . Inserting this into (3.19), we get the work estimate in terms of error
by (3.20).

‖𝔼 [𝑢(⋅, 𝑡)] − 𝐸𝑀 [𝑢Δ𝑥(⋅, 𝑡)]‖𝐿𝑞(Ω;𝐿𝑝(𝐷)) ≤ 𝐶 (𝑊 MC
𝑀 )

− 𝑠
𝑤𝑝+𝑠 𝑞

𝑞−1 (3.20)

In particular, for 𝑝 = 1, 𝑟 ≥ 2, 𝑤 = 2 and 𝑠 = 1
2

, we get the error estimate in (3.21).

‖𝔼 [𝑢(⋅, 𝑡)] − 𝐸𝑀 [𝑢Δ𝑥(⋅, 𝑡)]‖𝐿2(Ω;𝐿1(𝐷)) ≤ 𝐶 (𝑊 MC
𝑀 )− 1

6 (3.21)

3.5. Sample Number Optimization

Instead of computing a generic error estimate for the MLMC method, we can instead use the optimization
result from [Kol+13] and directly compute the optimal number of samples for the MLMC method, and
therefore the optimal computational work estimates.

Theorem 3.4 (Optimal Number of Samples for the MLMC Method [Kol+13]). Assume that the work of a MLMC
FVM method with 𝐿 discretization levels scales asymptotically as

𝑊 MLMC(𝐿) = 𝐶
𝐿

∑
𝑙=0

𝑀𝑙Δ𝑥−𝑤
𝑙 (3.22)

for some 𝑤 > 0 and that the approximation error scales as

ℰ𝐿 = 𝐶 [Δ𝑥
𝑠𝑞
𝑝

𝐿 + 𝑀1−𝑞
0 + ∑ 𝑙 = 0𝐿𝑀1−𝑞

𝑙 Δ𝑥
𝑠𝑞
𝑝̃

𝑙 ] (3.23)

where ̃𝑝 = max(𝑝, 𝑞). Then, given an error tolerance 𝜖 > 0, the optimal sample numbers 𝑀𝑙 minimizing
the computational work, given the error tolerance 𝜖, are given by (3.24).

𝑀0 ≃
⎡
⎢
⎢
⎣

1 + Δ𝑥
𝑠
𝑞
0

𝐿
∑
𝑙=1

2𝑙(𝑤 𝑞−1
𝑞 − 𝑠

𝑝 )

𝜖 − Δ𝑥
𝑠𝑞
𝑝

𝐿

⎤
⎥
⎥
⎦

1
𝑞−1

(3.24a)
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𝑀𝑙 ≃ 𝑀0Δ𝑥
𝑠
𝑝
0 2−𝑙( 𝑠

𝑞 + 𝑤
𝑞 ) (3.24b)

where ≃ indicates this is the number of samples up to a constant which is independent of 𝑙 and 𝐿. The
minimal amount of work then is

𝑊 MLMC
𝐿 ≃ Δ𝑥−𝑤

0 [1 + Δ𝑥
𝑠
𝑞
0

𝐿

∑
𝑙=1

2𝑙(𝑤 𝑞−1
𝑞 − 𝑠

𝑝 )]
⎡
⎢
⎢
⎣

1 + Δ𝑥
𝑠
𝑝
0

𝐿
∑
𝑙=1

2𝑙(𝑤 𝑞−1
𝑞 − 𝑠

𝑝 )

𝜖 − Δ𝑥
𝑠𝑞
𝑝

𝐿 2−𝐿 𝑞𝑠
𝑝

⎤
⎥
⎥
⎦

1
𝑞−1

(3.25)

Corollary 3.1. In addition to assumptions of theorem 3.4, if we assume that 𝑤𝑞−1
𝑞

− 𝑠
𝑝

> 0 and that 𝐿 and
Δ𝑥0 are large enough such that

Δ𝑥
𝑠
𝑝

𝑞
𝑞−1 −𝑤

𝐿 > Δ𝑥−𝑤
0 (3.26)

. Then for each 0 ≤ 𝑡 ≤ 𝑇 and for 𝑞 = min(2, 𝑟), the 𝐿𝑞(Ω; 𝐿𝑝(𝐷))-approximation error of the MLMC FVM
method scales with respect to the computational work

∥𝔼[𝑢(⋅, 𝑡)] − 𝐸𝐿 [𝑈(⋅, 𝑡)]∥𝐿𝑞(Ω;𝐿𝑝(𝐷)) ≤ 𝐶 (𝑊 MLMC
𝐿 )

− 𝑠

𝑤𝑝+𝑠 𝑝̃−𝑝
𝑝̃

𝑞
𝑞−1 (3.27)

3.6. Numerical Experiments

In this section, we present numerical experiments motivated by two-phase flow in a heterogeneous porous
medium. The time evolution of the oil saturation 𝑢 ∈ [0, 1] can be modeled by (2.1) where the flux is given by

𝑓(𝑘(𝑥), 𝑢) =
𝜆o(𝑢)

𝜆o(𝑢) + 𝜆w(𝑢)
(1 − 𝑘(𝑥)𝜆w(𝑢)), (3.28)

see [HR15, Ex. 8.2] Here, the functions 𝜆o and 𝜆w denote the phase mobilities/relative permeabilities of the
oil and the water phase, respectively. Typically, one uses the simple expressions

𝜆o(𝑢) = 𝑢2, 𝜆w(𝑢) = (1 − 𝑢)2

which we will also do in the subsequent experiments. The coefficient 𝑘 in (3.28) corresponds to the absolute
permeability of the medium. Since the medium is usually layered to some extent throughout the reservoir
and even continuously varying geology is typically mapped onto some grid, the coefficient 𝑘 is often modeled
as a piecewise constant function [GR93].

Since numerical experiments for conservation laws where the initial datum or the flux is uncertain have
been reported in other works (albeit without spatially discontinuous flux), we will here focus on numerical
experiments where the discontinuous coefficient 𝑘 is subject to randomness. We consider the initial datum

𝑢0(𝑥) =
⎧{
⎨{⎩

0.8, −0.9 < 𝑥 < −0.2,

0.4, otherwise
(3.29)

on the spatial domain 𝐷 = [−1, 1] with periodic boundary conditions. Figure 3.1 shows two examples of
fluxes of the form (3.28) and indicates the relevant domain determined by the initial datum (3.29). In all
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0 1

0

0.5

1

0.4 0.8

Figure 3.1.: Two possible fluxes of the form (3.28) for 𝑘(𝑥) = 0.7 (dashed line) and 𝑘(𝑥) = 2.3 (straight line)

experiments we use 𝜆 = Δ𝑡
Δ𝑥

= 0.2 in the finite volume approximation (2.7).

When choosing the number of samples for the MLMC estimator we use the formulae (3.24) with " = " re-
placing " ≃ " and rounding to the next biggest integer. Here we use 𝑝 = 1, 𝑟 = 𝑞 = 2, 𝑤 = 2, 𝑠 = 1

2
, and 𝜀 =

2Δ𝑥2𝑠
𝐿 For example, for 𝐿 = 7 and Δ𝑥0 = 2−4 we use (𝑀𝑙)𝐿

𝑙=0 = (95646, 20107, 8454, 3555, 1495, 629, 265, 112)
samples.

In order to compute an estimate of the approximation error

∥𝔼[𝑢(⋅, 𝑇 )] − 𝐸𝐿[𝑈(⋅, 𝑇 )]∥L2(Ω;L1(𝐷)) = (𝔼 [∥𝔼[𝑢(⋅, 𝑇 )] − 𝐸𝐿[𝑈(⋅, 𝑇 )]∥2
L1(𝐷)])

1
2

we use the root mean square estimator introduced in [MS12]: We denote by 𝑈ref(⋅, 𝑇 ) a reference solution
and by (𝑈𝑖(⋅, 𝑇 ))𝐾

𝑖=1 a sequence of independent approximate solutions 𝐸𝐿[𝑈(⋅, 𝑇 )] obtained by running
the MLMCFVM estimator with 𝐿 levels 𝐾 times. Then, we estimate the relative error by

ℛℳ𝒮 = ( 1
𝐾

𝐾

∑
𝑖=1

(ℛℳ𝒮𝑖)2)
1
2

where

ℛℳ𝒮𝑖 = 100 ×
‖𝑈ref(⋅, 𝑇 ) − 𝑈𝑖(⋅, 𝑇 )‖L1(𝐷)

‖𝑈ref(⋅, 𝑇 )‖L1(𝐷)
.

Here, as suggested in [MS12], we use 𝐾 = 30 which was shown to be sufficient for most problems. In order
to compute the reference approximation 𝑈ref(⋅, 𝑇 ) of 𝔼[𝑢(⋅, 𝑇 )] we take a large number of uniformly-spaced
points (𝜔𝑖)𝑁

𝑖=1 in Ω (which in our examples are a closed interval and a rectangle) and compute correspond-
ing finite volume approximations 𝑢Δ𝑥∗(𝜔𝑖; ⋅, 𝑇 ) for a very small discretization parameter Δ𝑥∗ and then
determine 𝑈ref(⋅, 𝑇 ) by applying the trapezoidal rule to approximate the integral ∫Ω 𝑢(𝜔; ⋅, 𝑇 ) dℙ(𝜔) using
the points (𝑢Δ𝑥∗(𝜔𝑖; ⋅, 𝑇 ))𝑁

𝑖=1.

In our experiments we also indicate the approximated standard deviation. To that end, we approximate
the variance by

𝑉𝐿 =
𝐿

∑
𝑙=0

𝐸𝑀𝑙
[(𝑢Δ𝑥𝑙

(⋅, 𝑇 ) − 𝑢Δ𝑥𝑙−1
(⋅, 𝑇 ) − 𝐸𝑀𝑙

[𝑢Δ𝑥𝑙
(⋅, 𝑇 ) − 𝑢Δ𝑥𝑙−1

(⋅, 𝑇 )])2] .
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−1 0 1

0.4

0.6

0.8

−0.3 0.3
(a) Two samples of the random entropy

solution (𝜉 = −0.3 (straight line), 𝜉 =
0.3 (dashed line), Δ𝑥 = 2−9).

−1 0 1

0.4

0.6

0.8

−0.3 0.3
(b) MLMCFVM approximation (Δ𝑥0 =

2−4, 𝐿 = 7).

Figure 3.2.: Two samples and a MLMCFVM approximation of the (mean of the) random entropy solution for
Experiment 1 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area between the mean
± standard deviation. For each sample the discontinuity of 𝑘 is located in the interval between
the dotted lines.

3.6.1. Uncertain position of rock layer interface

For our first numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =
⎧{
⎨{⎩

1, 𝑥 < 𝜉(𝜔),

2, 𝑥 > 𝜉(𝜔)

corresponding to an uncertain position of the interface between two rock types in the reservoir. Here, the
random variable 𝜉 is uniformly distributed in [−0.3, 0.3]. Figure 3.2a shows two samples of the approximate
random entropy solution (with 𝜉 = −0.3 and 𝜉 = 0.3 respectively) calculated using 210 grid points at time
𝑇 = 0.2 and Figure 3.2b shows an estimate of the expectation 𝔼[𝑢(⋅, 𝑇 )] computed by the MLMCFVM with
Δ𝑥0 = 2−4 and 𝐿 = 7.

Table 3.1 and Figure 3.3 show the estimated ℛℳ𝒮 error as a function of the number of levels. In particular,
Table 3.1a shows the observed order of convergence (OOC) with respect to Δ𝑥𝐿 while Table 3.1b shows the
observed order of convergence with respect to the computational work calculated based on a best linear
fit under the assumptions that ℛℳ𝒮 ∼ (Δ𝑥𝐿)𝑟1 and ℛℳ𝒮 ∼ (work)𝑟2. Here, we use the runtime as a
surrogate for the computational work. We observe that in Experiment 1 both rates are better than the rates
guaranteed by our convergence analysis.

To compute the reference solution in Experiment 1, we approximated the expectation with respect to
the uniform probability distribution on the interval [−0.3, 0.3] using the trapezoidal rule with 𝑁 = 200
equidistant points and choosing Δ𝑥∗ = 2−11 for the finite volume approximations.

3.6.2. Uncertain absolute permeabilities

For our second numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =
⎧{
⎨{⎩

1 + 𝜉1(𝜔), 𝑥 < 0,

2 + 𝜉2(𝜔), 𝑥 > 0
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𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC

1 2−5 4.04
2 2−6 2.47
3 2−7 1.44
4 2−8 0.81
5 2−9 0.41
6 2−10 0.17 0.90

(a) ℛℳ𝒮 error versus Δ𝑥𝐿.

𝐿 runtime ℛℳ𝒮 OOC

1 0.05 4.04
2 0.17 2.47
3 0.61 1.44
4 2.60 0.81
5 10.72 0.41
6 39.64 0.17 −0.46

(b) ℛℳ𝒮 error versus work.

Table 3.1.: ℛℳ𝒮 error in Experiment 1 as a function of the finest grid resolution Δ𝑥𝐿 and as a function of
the work (here measured by the runtime in 𝑠) for various values of 𝐿 and for Δ𝑥0 = 2−4.

2−10 2−8 2−6
2−3

2−2

2−1

20

21

22

Δ𝑥𝐿

ℛℳ𝒮 error vs. Δ𝑥𝐿
0.902𝑡 + 6.709

(a) ℛℳ𝒮 error versus Δ𝑥𝐿.

2−5 2−2 21 242−3

2−2

2−1

20

21

22

runtime (s)

ℛℳ𝒮 error vs. work
−0.461𝑡 + 0.133

(b) ℛℳ𝒮 error versus work.

Figure 3.3.: ℛℳ𝒮 error in Experiment 1 as a function of the finest grid resolution Δ𝑥𝐿 and as a function
of the work (here measured by the runtime in 𝑠) corresponding to the values in Table 3.1. The
dashed lines indicate the observed order of convergence based on a best linear fit.

corresponding to uncertain absolute permeabilities of two rock layers. Here, the random variables 𝜉1 and 𝜉2

are both uniformly distributed in [−0.3, 0.3].

−1 0 1

0.4

0.6

0.8

0
(a) Two samples of the random entropy

solution ((𝜉1, 𝜉2) = (0.3, −0.3)
(straight line), (𝜉1, 𝜉2) = (−0.3, 0.3)
(dashed line), Δ𝑥 = 2−9).

−1 0 1

0.4

0.6

0.8

0
(b) MLMCFVM approximation (Δ𝑥0 =

2−4, 𝐿 = 7).

Figure 3.4.: Two samples and a MLMCFVM approximation of the (mean of the) random entropy solution for
Experiment 2 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area between the mean
± standard deviation and the dotted line marks the (fixed) position of the discontinuity of 𝑘.
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𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC

1 2−5 3.80
2 2−6 2.25
3 2−7 1.34
4 2−8 0.75
5 2−9 0.37
6 2−10 0.15 0.91

(a) ℛℳ𝒮 versus Δ𝑥𝐿.

𝐿 runtime (𝑠) ℛℳ𝒮 OOC

1 0.05 3.80
2 0.19 2.25
3 0.63 1.34
4 2.70 0.75
5 10.12 0.37
6 38.14 0.15 −0.47

(b) ℛℳ𝒮 versus work.

Table 3.2.: ℛℳ𝒮 error in Experiment 2 as a function of the finest grid resolution Δ𝑥𝐿 and as a function of
the work (here measured by the runtime in 𝑠) for various values of 𝐿 and for Δ𝑥0 = 2−4.

2−10 2−8 2−6
2−3

2−2

2−1

20

21

22

Δ𝑥𝐿

ℛℳ𝒮 error vs. Δ𝑥𝐿
0.911𝑡 + 6.655

(a) ℛℳ𝒮 error versus Δ𝑥𝐿.

2−5 2−2 21 24
2−3

2−2

2−1

20

21

22

Δ𝑥𝐿

ℛℳ𝒮 error vs. work
−0.472𝑡 + 0.026

(b) ℛℳ𝒮 error versus work.

Figure 3.5.: ℛℳ𝒮 error in Experiment 2 as a function of the finest grid solution Δ𝑥𝐿 and as a function
of the work (here measured by the runtime in 𝑠) corresponding to the values in Table 3.2. The
dotted lines indicate the observed order of convergence based on a best linear fit.

Figure 3.4a shows two samples of the approximate random entropy solution (with (𝜉1, 𝜉2) = (0.3, −0.3)
and (𝜉1, 𝜉2) = (−0.3, 0.3) respectively) calculated using 210 grid points at time 𝑇 = 0.2 and Figure 3.4b
shows an estimate of the expectation 𝔼[𝑢(⋅, 𝑇 )] computed by the MLMCFVM with Δ𝑥0 = 2−4 and 𝐿 = 7.

Table 3.2 and Figure 3.5 again show the root mean square error estimate and the observed order of
convergence with respect to Δ𝑥𝐿 and with respect to the computational work. As before, we observe that
the observed convergence rates are better than the theoretical bounds.

In order to compute a reference solution for Experiment 2, we used a tensorized trapezoidal rule with
60 × 60 points in the stochastic domain [−0.3, 0.3]2 and Δ𝑥∗ = 2−11 for the finite volume approximations.

3.7. Conclusion

In this chapter, we have considered conservation laws with discontinuous flux where the model parameters,
i.e., the initial datum, the flux function, and the discontinuous spatial dependency coefficient, are uncertain.
Based on adapted entropy solutions for the deterministic case, we have introduced a notion of random
entropy solutions and have proved well-posedness.

To numerically approximate the mean of a random entropy solution, we have proposed Monte Carlo
methods coupled with a class of finite volume methods suited for conservation laws with discontinuous
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flux. Our convergence analysis includes convergence rate estimates for the Monte Carlo and multilevel
Monte Carlo finite volume method. Further, we have provided error versus work rates which show that
the multilevel Monte Carlo finite volume method is much faster than the (single-level) Monte Carlo finite
volume method.

We have presented numerical experiments motivated by two-phase flow in heterogeneous porous media,
e.g., oil reservoirs with different rock layers. The numerical experiments verify our theoretical results
concerning convergence rates of the multilevel Monte Carlo finite volume method.

As a possible direction of future research, we want to mention that -- from a practical standpoint -- it would
be desirable to design multilevel Monte Carlo finite volume methods based on finite volume methods that
require no processing of the flux discontinuities. Such numerical methods have been considered in [Tow20],
however, there are currently no convergence rate results available for these methods.
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Part II.

Arbitrary Lagrangian-Eulerian Methods





Chapter

4 Introduction

The ability to predict various physical phenomena to a reasonable degree of accuracy is one of the cornerstones
of modern sciences and engineering. Hyperbolic conservation laws model a large number of such physical
systems either exactly or approximately. Consequently, the study of hyperbolic conservation laws has been
instrumental in our ability to successfully construct such systems and is a highly research topic.

Hyperbolic conservation laws are partial differential equations of the form

𝜕𝐮(𝐱, 𝑡)
𝜕𝑡

+ ∇𝐱 • 𝓕(𝐱, 𝑡, 𝐮) = 0 𝐮 ∈ ℝ𝑛, (𝐱, 𝑡) ∈ ℝ𝑑 × ℝ+ (4.1)

where the flux Jacobian 𝐷𝐮𝓕 is such that for all 𝐮 ∈ ℝ𝑛 and all 𝛎 ∈ ℝ𝑑, the matrix ⟨𝐷𝐮𝓕, 𝛎⟩ has 𝑛 real
eigenvalues and 𝑛 linearly independent eigenvectors. If, in addition, these eigenvalues are distinct, then the
system is said to be strictly hyperbolic. The hyperbolic nature indicates to the finite speed of propagation of
information in the system.

Despite the considerable success of using hyperbolic conservation laws in modeling physical phenomena,
we note that the models are more often than not only an imperfect description of the underlying phenomena.
It is generally impossible to model accurately all aspects of physics in a single model, and hence, we often
limit ourselves to set of aspects that are enough to capture the phenomena of interest. Unsurprisingly
then, hyperbolic conservation laws are often only an approximation of the underlying physical phenomena
where some of the physics is neglected or simplified. For example, the Euler equations result from the
Navier-Stokes equations by neglecting the viscous terms, while the Navier-Stokes equations themselves are
an approximation of the Boltzmann equation by neglecting the molecular scale physics.

Therefore, it should not come as a surprise when such models exhibit unphysical solutions. In the case of
conservation laws, one of the ways this phenomenon is manifests itself is in infinitely many weak solutions
to the conservation laws. At such times, we must use additional information from physics to attempt to
single out the physically relevant solutions. For scalar conservation laws, we now have a complete theory
which uniquely identifies the physically relevant solutions using entropy conditions. However, this is not
always true, as is evinced by the discussion of wild solutions in the contemporary literature.

Designing numerical methods for these models introduces further complications in the process. Nu-
merical methods are an approximation to the often continuous model and not all approximations lead to
the physically relevant solution as singled out by the analysis. Designing methods which converge to the
physically relevant solutions is a priori non-trivial. In some cases like systems of hyperbolic conservation
laws, the design of such methods is still an open problem. In such cases, one can not list sufficient conditions
to establish the correctness of the numerical solutions. However, it is often possible to propose a set of
necessary conditions which are enough for the use cases generally found in most applications.

Most of the equations are non-linear partial differential equation (PDE) due to which it is often impossible
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Figure 4.1.: Problem Setup to Study Kelvin-Helmholtz Instabilities

Figure 4.2.: Kelvin-Helmholtz Instabilities in Fluid Flow

to obtain the solutions of these equations in closed form. Numerical methods then become an important tool
to study such equations. Numerical methods have developed into an especially important methods of study
of physical systems due to their reliability and relatively inexpensive nature. In contrast to the considerably
well-developed theory of linear partial differential equations, each non-linear equations presents its own set
of difficulties.

In the past few decades, mesh based methods like finite volume and discontinuous Galerkin finite element
methods have been exceedingly successful in the task of modelling compressible fluid flows. Due to the
upwind nature of the finite volume schemes, dissipation is implicitly built in the schemes. This allows the
schemes to be able to compute discontinuous solutions in a stable manner. Discontinuous Galerkin methods
can be considered to be higher order generalizations of the finite volume methods which also make use of
the upwinding technology but instead of cell averages, evolve a polynomial inside each cell.

In the most basic form of these methods, the mesh used for simulations is kept fixed over the course of
simulations. This can sometimes be an issue for unresolved solutions, where the truncation error from the
simulation can dominate the behavior of fluids. A striking example of such a situation is the growth of the
Kelvin-Helmholtz instabilities between two fluids of different densities. The problem setup consists three
scenarios each having an unresolved discontinuity (a slip-surface) between two fluids moving in opposite
directions, but in each scenario, there is a boost fig. 4.1.

Due to the principle of Galilean invariance, the fluid should behave identically irrespective of the value of
𝑉0. However, using AREPO code [Spr10] for example, one can see in fig. 4.2 that the instabilities disappear
in the moving frames. The disappearance of the instabilities is due to dampening of the unstable modes in
the fluid by the numerical dissipation of method.

The problem of numerical dissipation is not limited to the moving frames. The effect is observable even in
rest frames where the instabilities disappear at lower resolutions. So, even though the methods themselves
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are Galilean invariant, the corresponding truncation error is not Galilean invariant. Apart from suppression
of instabilities, the violation of Galilean invariance of truncation error is a major contributor to smearing
out of shocks and contact discontinuities, especially in higher-order methods. Even for smooth solutions,
the accuracy of the solution can be reduced due to the effects of truncation error.

One of the ways to deal with these challenges is to move the mesh along with the fluid, thereby reducing
the truncation error in the simulations. A natural choice is to move the mesh with the velocity of the fluid
and thereby exploit the Lagrangian formulation for fluid mechanics. The resulting method is called the
Lagrangian method and was first developed in 1950s and 60s [VR50; Wil63]. A general review of these
methods can be found in [Ben92].

In Lagrangian simulations, a given region is always approximated by the same number of mesh points.
This ensures that the accuracy of the simulation is in general maintained to the accuracy of the initial
approximation. Furthermore, compared to the fixed mesh methods, the number of points required to get a
similar accuracy in Lagrangian simulations is often surprisingly small. This makes Lagrangian methods
quite attractive for fluid simulations.

Unfortunately, the very features of the Lagrangian method which make it so effective are also the ones
which make it totally unsatisfactory for simulations involving large shear flows. The property of mesh points
to exactly follow the fluid flow causes the underlying mesh to become highly distorted, if not degenerate.
This results in the reduction of accuracy of approximation and consequently of the simulation, with the
simulation not being able to continue till completion in some cases.

In case of small deformations, one can add corrections to the mesh velocity in order to maintain the
quality of the mesh for a longer time and often till the completion of the simulation. At this stage however,
the mesh velocity is not equal the fluid velocity, and Lagrangian formulation is no longer an appropriate
setting for our computations. We must instead use the Arbitrary Lagrangian-Eulerian (ALE) formulation
where the vertices of the computational mesh may be moved in an arbitrary fashion. Methods using ALE
formulation were originally developed in [FL64; HAC74; Noh63; Tru66] in the context of finite difference
and finite volume methods. The method was subsequently adopted in the finite element context and early
applications can found in [BK78; DGH82; HLZ81; KBS79].

In theory, the mesh velocities in the ALE formulation can be any arbitrary value but in practice, it is
desirable to keep the mesh velocities as close to fluid velocity as possible. Methods which satisfy this property
are called almost-Lagrangian methods. The methods are practical in cases of small deformations of the
meshes, but for large deformations, it becomes impractical to maintain a good quality mesh with mesh
velocities close to fluid velocities and it becomes necessary to make changes to the mesh topology.

An approach to handle the problem of the mesh quality is to move the mesh for as long as possible with
the fluid velocity, and remesh when the mesh quality becomes unacceptable [BLL94; Has+07]. For each
remeshing, the simulation has to be stopped, a new mesh must be generated and the solution must be
transferred to the new mesh. This approach can be efficient if the number of remeshing required are very
low, since the simulation is fully ALE and free from interpolation errors.

The approach described above is sometimes also known as remap ALE methods or indirect ALE methods.
Remap ALE schemes have been used extensively in some problems and some of the recent work on the
topic can be found in [Ber+11; BRS13; Bre+13; KS12; Yan+13]. For large deformations, the number of required
remeshing increase and this can be both costly and result in poor accuracy due to the solution transfer step.

Another approach to get around this problem was presented in [Spr10], where the connectivity of the
moving mesh is dynamically regenerated via a moving unstructured but conforming Voronoi tessellation of
the domain. Building on the idea, a higher order ALE Discontinuous Galerkin (DG) method was designed
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4. Introduction

by [Gab+19]. In these methods, a new mesh is generated at every time step, a correspondence is generated
between the elements in the two time steps, and finally a ALE DG method is solved on the mesh, where the
space-time information is gleaned from the correspondence information.

In the above method, there is a possibility of non-regular (``crazy'') finite elements appearing in the mesh
which is taken care of using the techniques in [Gab+19]. Due to no inherent need to remap the solutions in
these methods, these methods are often referred to as direct ALE DG methods. Since there is no remapping
of solutions needed, the methods do not suffer from the interpolation error, however, it requires a mesh to
be generated at every time step and corresponding connection information to be determined which can be
costly.

There is a third approach which was first outlined in [Com+10; DF08], where one only performs a local
remeshing operations, such as vertex insertion, vertex collapse, connectivity changes and vertex displace-
ments, to preserve a good mesh quality throughout the simulation. The advantage of this method is that it
maintains an acceptable mesh quality without needing to stop, remesh and resume the simulation. Another
important aspect is that for all the cells which do not need to be modified, there is no interpolation error dur-
ing the local cell remeshing. This helps in maintaining a high accuracy of solutions through the simulation.
[Ala14; BA19] further showed that for ALE DG simulations with a elasticity-based mesh velocities, only mesh
velocity corrections and connectivity changes (face swapping) is enough to maintain a good quality mesh.

This is the idea we use in this part of the thesis for our ALE DG method. The objective was to design an
almost-Lagrangian ALE DG method which can be run efficiently on parallel architectures. To achieve this,
we propose an ALE DG method with the following properties:

1. Single step method with only one communication between the cells in a time step.

2. Local remeshing algorithms.

3. Local mesh velocity algorithms.
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Chapter

5 ALE-DG Methods for One Dimensional Euler Equations

In this chapter, we sketch the contents of the paper [BCK20] (linked here) and [BC18] (linked here) which
introduces the ALE-DG method for the one-dimensional Euler equations. As mentioned in chapter 4, there
are multiple problems that need to be solved in order to develop a robust and efficient multi-dimensional
ALE-DG method for compressible flows. In the spirit of tackling the problems in a gradual manner, we begin
with a single-dimensional problem. The details of the methods have already been published in [BCK20]. In
this chapter, we present an overview of the ideas, the methods and showcase a selection of numerical results.

5.1. The Mesh

Consider a partition of the domain 𝐷 = [𝑥min, 𝑥max] into disjoint cells with the 𝑗-th cell being denoted by
𝐶𝑗(𝑡) = [𝑥𝑗− 1

2
(𝑡), 𝑥𝑗+ 1

2
(𝑡)]. The time levels are denoted by 𝑡𝑛 with the time step Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛. Inside a

single time interval (𝑡𝑛, 𝑡𝑛+1), the boundaries of the cells move with a constant velocity denoted by (5.1).

𝑤𝑗+ 1
2

= 𝑤𝑛
𝑗+ 1

2

𝑡𝑛 < 𝑡 < 𝑡𝑛+1 (5.1)
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Figure 5.1.: Example of a space-time cell in the time interval (𝑡𝑛, 𝑡𝑛+1).

We can use (5.1) to define a cell in space-time as shown in Figure 5.1. The location of the cell boundaries,
the cell center and the cell length are given by (5.2).

𝑥𝑗+ 1
2
(𝑡) = 𝑥𝑛

𝑗+ 1
2

+ 𝑤𝑗+ 1
2
(𝑡 − 𝑡𝑛) 𝑡𝑛 < 𝑡 < 𝑡𝑛+1 (5.2a)

𝑥𝑗(𝑡) = 1
2

[𝑥𝑗− 1
2
(𝑡) + 𝑥𝑗+ 1

2
(𝑡)] ℎ𝑗(𝑡) = 𝑥𝑗+ 1

2
(𝑡) − 𝑥𝑗− 1

2
(𝑡) (5.2b)
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5. ALE-DG Methods for One Dimensional Euler Equations

The mesh velocity inside the cell is given by the linear interpolation of the mesh velocities at the vertex as
shown in (5.3).

𝑤𝑗(𝑡) =
𝑥𝑗+ 1

2
(𝑡) − 𝑥

ℎ𝑗(𝑡)
𝑤𝑗− 1

2
+

𝑥 − 𝑥𝑗− 1
2
(𝑡)

ℎ𝑗(𝑡)
𝑤𝑗+ 1

2
(5.3)

Sometimes, it is convenient to represent the geometry of the cell in terms of the reference coordinates
𝜉 ∈ [−1, 1] where 𝜉 is given by (5.4).

𝜏 = 𝑡 𝜉 = 2
𝑥 − 𝑥𝑗

ℎ𝑗
(5.4)

5.2. The ALE-DG Method

In the DG method, we approximate the solution of the Euler equations by piecewise polynomials which
are allowed to be discontinuous at the cell boundaries as shown in Figure 5.2. We evolve the modes of the
polynomial in the space-time cells of the ALE mesh. Finally, we use a standard TVB/TVD limiter to control
the oscillations of the solution.

j − 1

2
j + 1

2

Cj−1 Cj Cj−1

Figure 5.2.: Discontinuous Galerkin approximation of the solution.

For a given degree 𝑘 ≥ 0, the solution in the 𝑗-th cell is approximated by a polynomial of degree 𝑘 as
shown in (5.5) where {𝐮𝑗,𝑚 ∈ ℝ3, 0 ≤ 𝑚 ≤ 𝑘} are the are the degrees of freedom associated with the 𝑗-th
cell. The basis functions {𝜙𝑚} can be any set of polynomials that are orthogonal with respect to the cell
geometry. In this work, we use functions derived from the Legendre polynomials 𝑃𝑚, 𝑚 ∈ ℕ as shown in
(5.6).
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5.2. The ALE-DG Method

𝐮ℎ(𝑥, 𝑡) =
𝑘

∑
𝑚=0

𝑢𝑗,𝑚(𝑡)𝜙𝑚(𝑥, 𝑡) (5.5)

𝜙𝑚(𝑥, 𝑡) = ̂𝜙𝑚(𝜉) = √2𝑚 + 1𝑃𝑚(𝜉) (5.6)

We can now calculate the rate of change of the of the 𝑙-th moment of the solution, which gives us the
semi-discrete form of the ALE-DG scheme (5.7).

ℎ𝑛+1
𝑗 𝐮𝑛+1

𝑗,𝑙 = ℎ𝑛
𝑗 𝐮𝑛

𝑗,𝑙 +

𝑡𝑛+1

∫
𝑡𝑛

𝑥𝑗+ 1
2

∫
𝑥𝑗− 1

2

𝐠(𝐮ℎ, 𝑤) 𝜕
𝜕𝑥

𝜙𝑙(𝑥, 𝑡) d𝑥 d𝑡

+

𝑡𝑛+1

∫
𝑡𝑛

[ ̂𝐠𝑗− 1
2
(𝑡)𝜙𝑙 (𝑥𝑗− 1

2
(𝑡), 𝑡) − ̂𝐠𝑗+ 1

2
(𝑡)𝜙𝑙 (𝑥𝑗+ 1

2
(𝑡), 𝑡)] d𝑡

(5.7)

Here, 𝐠 is the ALE flux function defined by (5.8) and ̂𝐠𝑗− 1
2

and ̂𝐠𝑗+ 1
2

are the numerical fluxes at the cell
boundaries defined by (5.9).

𝐠(𝐮ℎ, 𝑤) = 𝐟(𝐮) − 𝑤𝐮 (5.8)

̂𝐠𝑗− 1
2
(𝑡) = 𝐠 (𝐮−

𝑗− 1
2

(𝑡), 𝐮+
𝑗+ 1

2

(𝑡), 𝑤𝑗− 1
2
) (5.9)

The above scheme, as it stands, is implicit in time. In order to make it explicit, we assume that we have
available with us a predicted solution 𝐔ℎ in the time-step. We can use this predicted solution to compute
the integrals on the right hand side of (5.7) and obtain the following explicit scheme (5.10). Here 𝜃𝑟 are the
time quadrature weights and 𝜂𝑞 are the spatial quadrature weights.

ℎ𝑛+1
𝑗 𝐮𝑛+1

𝑗,𝑙 = ℎ𝑛
𝑗 𝐮𝑛

𝑗,𝑙

+ Δ𝑡𝑛 ∑
𝑟

𝜃𝑟ℎ𝑗(𝜏𝑟) ∑
𝑞

𝜂𝑞𝐠(𝐔ℎ(𝑥𝑞, 𝜏𝑟), 𝑤(𝑥𝑞, 𝜏𝑟)) 𝜕
𝜕𝑥

𝜙𝑙(𝑥𝑞, 𝜏𝑟)

+ Δ𝑡𝑛 ∑
𝑟

𝜃𝑟 [ ̂𝐠𝑗− 1
2

(𝐔ℎ(𝜏𝑟)) 𝜙𝑙(𝑥𝑗− 1
2
(𝜏𝑟)) − ̂𝐠𝑗+ 1

2
(𝐔ℎ(𝜏𝑟)) 𝜙𝑙(𝑥𝑗+ 1

2
(𝜏𝑟))]

(5.10)

5.2.1. Mesh Velocity

In principle, we can choose any arbitrary mesh velocity for the ALE-DG scheme. However, in practice, we
need to choose a mesh velocity close local fluid velocity in order to preserve the Lagrangian nature of the
scheme. Since the solution is discontinuous, there is no unique fluid velocities at the mesh boundaries.
Therefore, we need to choose a mesh velocity that is a good approximation to the multiple local fluid velocities
at the boundary. In our work, we make two different choices of mesh velocities

1. Average Of Face Velocities (denoted by ADG)

𝑤𝑗− 1
2

= 1
2

(𝑣−
𝑗− 1

2

+ 𝑣+
𝑗+ 1

2

) (5.11)
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2. Velocity obtained by solving a linearized Riemann problem (denoted by RDG)

𝑤𝑗− 1
2

= 1
2

(𝑣−
𝑗− 1

2

+ 𝑣+
𝑗+ 1

2

) + 1
2

(𝐮+
𝑗+ 1

2

− 𝐮−
𝑗− 1

2

) (5.12)

5.3. ALE-Aware Numerical Flux

The ALE scheme requires a numerical flux ̂𝐠 which is usually based on some approximate Riemann solver.
The numerical flux is assumed to be consistent in the sense that it reduces to the exact flux in the case of a
smooth solution as in (5.13). Here, we list some of the ALE numerical fluxes that we use in our work.

̂𝐠(𝐮, 𝐮, 𝑤) = 𝐠(𝐮, 𝑤) ∀𝐮 ∈ ℝ3, 𝑤 ∈ ℝ (5.13)

Rusanov Flux

The Rusanov flux is a variant of the Lax-Friedrich flux and is given by

̂𝐠(𝐮𝑙, 𝐮𝑟, 𝑤) = 1
2

[𝐠(𝐮𝑙, 𝑤) + 𝐠(𝐮𝑟, 𝑤)] − 1
2

𝜆𝑙𝑟(𝐮𝑟 − 𝐮𝑙) (5.14)

where

𝜆(𝐮𝑙, 𝐮𝑟, 𝑤) = max {|𝑣𝑙 − 𝑤| + 𝑐𝑙, |𝑣𝑟 − 𝑤| + 𝑐𝑟} (5.15)

which is an estimate of the largest wave speed in the Riemann problem. Since the mesh velocity is close to the
fluid velocity, the value of λ is close to the local sound speed. Thus the numerical dissipation is independent
of the velocity scale.

Roe Flux

The Roe scheme [Roe81] is based on a local linearization of the conservation law and then exactly solving the
Riemann problem for the linear approximation. The flux can be written as

̂𝐠(𝐮𝑙, 𝐮𝑟, 𝑤) = 1
2

[𝐠(𝐮𝑙, 𝑤) + 𝐠(𝐮𝑟, 𝑤)] − 1
2

|𝐴𝑤| (𝐮𝑟 − 𝐮𝑙) (5.16)

where the Roe average matrix 𝐴𝑤 = 𝐴𝑤(𝐮𝑙, 𝐮𝑟) satisfies

𝐠(𝐮𝑟, 𝑤) − 𝐠(𝐮𝑙, 𝑤) = 𝐴𝑤(𝐮𝑟 − 𝐮𝑙) (5.17)

where we define |𝐴𝑤| = 𝑅 |Λ − 𝑤𝐼| 𝑅−1. This matrix is evaluated at the average state 𝐮(𝐪), where
𝐪 = 1

2
(𝐪𝑙 + 𝐪𝑟) where 𝐪 = √𝜌[1, 𝑣, 𝐻]𝑇 is the parameter vector introduced by Roe.

5.4. Analysis of the Scheme

ℎ𝑛+1
𝑗 𝐮𝑛+1

𝑗 = ℎ𝑛
𝑗 𝐮𝑛

𝑗 − Δ𝑡𝑛 [ ̂𝐠𝑗+ 1
2

− ̂𝐠𝑛
𝑗− 1

2

] (5.18)
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5.5. Mesh Adaptation

By considering the first-order version of the ALE-DG scheme, (5.18) with Rusanov flux (5.14) , we can show
that the scheme preserves the positivity property of the solution if the time-step is chosen as shown in (5.19)
for any 𝛽 ∈ [0, 1]. Furthermore, we can show that the scheme can preserve constant states for any mesh
motion.

Δ𝑡𝑛 ≤ min
𝑗

⎧{{
⎨{{⎩

(1 − 𝛽
2
) ℎ𝑛

𝑗

1
2

(𝜆𝑛
𝑗− 1

2

+ 𝜆𝑛
𝑗+ 1

2

)
,

𝛽ℎ𝑛
𝑗

∣𝑤𝑛
𝑗+ 1

2

− 𝑤𝑛
𝑗− 1

2

∣

⎫}}
⎬}}⎭

(5.19)

5.5. Mesh Adaptation

The size of the cells can change considerably during the time evolution process due to the near Lagrangian
movement of the cell boundaries. Near shocks, the cells will be compressed to smaller sizes which will reduce
the allowable time step since a CFL condition has to be satisfied. In some regions, e.g., inside expansion
fans, the cell size can increase considerably which may lead to loss of accuracy. In order to avoid too small or
too large cells from occurring in the grid, we implement cell merging and refinement into our scheme. If
a cell becomes smaller than some specified size ℎmin, then it is merged with one of its neighbouring cells
and the solution is transferred from the two cells to the new cell by performing an 𝐿2 projection. If a cell
size becomes larger than some specified size ℎmax, then this cell is refined into two cells by division and the
solution is again transferred by 𝐿2 projection. The use of 𝐿2 projection for solution transfer ensures the
conservation of mass, momentum and energy and preserves the accuracy in smooth regions. We also ensure
that the cell sizes do not change drastically between neighbouring cells. To keep a track of refinement of cells,
each cell is assigned an initial level equal to 0. The daughter cells created during refinement are assigned a
level incremented from the parent cell, while the coarsened cells are assigned a level decremented from the
parent cell.

The algorithm for refinement and coarsening is carried out in three sweeps over all the active cells. In the
first sweep, we mark the cells for refinement or coarsening based on their size and the level of neighboring
cells. Cells are marked for coarsening if the size is less than a pre-specified minimum size. They are marked
for refinement if either the size of the cell is larger than the maximum size or if the level of the cell is less
than the level of the neighboring cells. If none of the conditions are satisfied, the cells are marked for no
change. In the second sweep, a cell is marked for refinement if both the neighboring cells are marked for
refinement. A cell is also marked for refinement if the size of the cell is larger than twice the size of either of
the neighboring cells, and is also larger than twice the minimum size. The last condition is inserted in order
to prevent a cell being alternately marked for refinement and coarsening in consecutive adaptation cycles.
In the third and final sweep, we again mark cells for refinement if both the neighboring cells are marked for
refinement. Further, we ensure that a cell marked for refinement does not have a neighboring cell marked
for a coarsening, since this can lead to an inconsistent mesh.

5.6. Numerical Results

5.6.1. Order of Accuracy Test Case

We study the convergence rate of the schemes by applying them to a problem with a known smooth solution.
The initial condition is taken as
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𝑁
𝑘 = 1 𝑘 = 2

Error Rate Error Rate

100 2.053E-02 - 2.277E-03 -

200 4.312E-03 2.251 3.425E-04 2.732

400 1.031E-03 2.064 4.565E-05 2.907

800 2.550E-04 2.015 5.812E-06 2.973

1600 6.356E-05 2.004 7.315E-07 2.990

Table 5.1.: Order of accuracy study on moving mesh using Rusanov flux using Higher Order Limiter [ZS13]

𝑁
𝑘 = 1 𝑘 = 2 𝑘 = 3

Error Rate Error Rate Error Rate

100 4.370E-02 - 3.498E-03 - 3.883E-04 -

200 6.611E-03 2.725 4.766E-04 2.876 1.620E-05 4.583

400 1.332E-03 2.518 6.415E-05 2.885 9.376E-07 4.347

800 3.151E-04 2.372 8.246E-06 2.910 5.763E-08 4.239

1600 7.846E-05 2.280 1.031E-06 2.932 3.595E-09 4.180

Table 5.2.: Order of accuracy study on static mesh using Rusanov flux

𝜌(𝑥, 0) = 1 + exp(−10𝑥2) (5.20)

𝑢(𝑥, 0) = 1 (5.21)

𝑝(𝑥, 0) = 1 (5.22)

whose exact solution is 𝜌(𝑥, 𝑡) = 𝜌(𝑥 − 𝑡, 0), 𝑢(𝑥, 𝑡) = 1, 𝑝(𝑥, 𝑡) = 1. The initial domain is [−5, +5] and
the final time is 𝑡 = 1 units. The results are presented using Rusanov and HLLC numerical fluxes. The 𝐿2

norm of the error in density are shown in table (5.2), (5.3) for the static mesh and in table (5.4), (5.5) for the
moving mesh. In each case, we see that the error behaves as 𝑂(ℎ𝑘+1) which is the optimal rate we can expect
for smooth solutions. In table (5.1), we show that the ALE DG methods preserves its higher order in presence
of a limiter.

5.6.2. Smooth Test Case with Non-Constant Velocity

We also test the accuracy of our schemes on a isentropic problem with smooth solutions. The test case The
initial conditions are given by

𝜌(𝑥, 0) = 1 + 0.9999995 sin(𝜋𝑥) 𝑢(𝑥, 0) = 0 𝑝(𝑥, 0) = 𝜌𝛾(𝑥, 0) (5.23)

with 𝛾 = 3 and periodic boundary conditions. For this kind of special isentropic problem, the Euler equations
are equivalent to the two Burgers equations in terms of their two Riemann invariants which can then be
used to derive the analytical solution. The errors are then computed with respect to the given analytical
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5.6. Numerical Results

𝑁
𝑘 = 1 𝑘 = 2 𝑘 = 3

Error Rate Error Rate Error Rate

100 4.582E-02 3.952E-03 3.464E-04

200 9.611E-03 2.253 4.048E-04 3.287 2.058E-05 4.073

400 2.052E-03 2.240 4.640E-05 3.206 1.287E-06 4.036

800 4.803E-04 2.192 5.623E-06 3.152 8.061E-08 4.023

1600 1.184E-04 2.149 6.929E-07 3.119 5.050E-09 4.016

Table 5.3.: Order of accuracy study on static mesh using HLLC flux

𝑁
𝑘 = 1 𝑘 = 2 𝑘 = 3

Error Rate Error Rate Error Rate

100 2.331E-02 - 3.979E-03 - 8.633E-04 -

200 6.139E-03 1.9250 4.058E-04 3.294 1.185E-05 6.186

400 1.406E-03 2.0258 5.250E-05 3.122 7.079E-07 5.126

800 3.375E-04 2.0366 6.626E-06 3.077 4.340E-08 4.760

1600 8.278E-05 2.0344 8.304E-07 3.057 2.689E-09 4.573

Table 5.4.: Order of accuracy study on moving mesh using Rusanov flux

𝑁
𝑘 = 1 𝑘 = 2 𝑘 = 3

Error Rate Error Rate Error Rate

100 1.590E-02 1.626E-03 1.962E-04

200 4.042E-03 1.977 2.072E-04 2.972 1.269E-05 3.950

400 1.014E-03 1.985 2.605E-05 2.982 7.983E-07 3.971

800 2.538E-04 1.990 3.261E-06 2.988 4.997E-08 3.980

1600 6.349E-05 1.992 4.077E-07 2.991 3.124E-09 3.985

Table 5.5.: Order of accuracy study on moving mesh using HLLC flux

𝑁
𝑘 = 1 𝑘 = 2 𝑘 = 3

Error Rate Error Rate Error Rate

100 1.735E-02 - 1.798E-03 - 2.351E-04 -

200 4.179E-03 2.051 2.848E-04 2.676 1.416E-05 4.069

400 1.054E-03 2.035 4.301E-05 2.703 8.578E-07 4.041

800 2.615E-04 1.943 6.012E-06 2.838 5.476E-08 3.958

1600 7.279E-05 1.852 8.000E-07 2.909 3.505E-09 3.966

Table 5.6.: Order of accuracy study on moving mesh using HLLC flux with randomly perturbed mesh velocity
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Figure 5.3.: Example of randomized velocity distribution for smooth test case

𝑁
𝑘 = 1 𝑘 = 2

Error Rate Error Rate

100 8.535E-03 - 1.033E-03 -

200 1.958E-03 2.124 1.221E-04 3.08

400 4.721E-04 2.052 1.581E-05 2.95

800 1.238E-04 1.931 2.14E-06 2.89

1600 3.563E-05 1.796 2.63E-07 3.02

Table 5.7.: Order of accuracy study on fixed mesh using Roe flux with Non-Constant Velocity Smooth Test
Case

solution. In contrast to the previous test case, the velocity and pressure are not constant which makes this a
more challenging test case. We run the simulation with a WENO-type limiter from [Zhu+13] and positivity
limiter enabled. As we can see from Tables 5.7, 5.8, the rate of convergence is maintained for the moving
mesh method with the moving mesh methods exhibiting much lower errors.

5.6.3. Single contact wave

In this example, we choose a Riemann problem which gives rise to a single contact wave in the solution that
propagates with a constant speed. The initial condition is given by

(𝜌, 𝑣, 𝑝) =
⎧{
⎨{⎩

(2.0, 1.0, 1.0) if 𝑥 < 0.5

(1.0, 1.0, 1.0) if 𝑥 > 0.5

and the contact wave moves with a constant speed of 1.0. The solution on static and moving meshes are
shown in figure (5.4) at time 𝑡 = 0.5 using Roe flux. The moving mesh is able to exactly resolve the contact
wave while the static mesh scheme adds considerable numerical dissipation that smears the discontinuity
over many cells. The accurate resolution of contact waves is a key advantage of such moving mesh methods,
which are capable of giving very good resolution of the contact discontinuity even on coarse meshes.
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𝑁
𝑘 = 1 𝑘 = 2

Error Rate Error Rate

100 4.235E-03 - 2.238E-04 -

200 1.058E-03 2.001 3.255E-05 2.87

400 2.586E-04 2.035 4.301E-05 3.133

800 5.804E-05 2.155 5.762E-06 2.901

1600 1.271E-05 2.192 7.401E-07 2.96

Table 5.8.: Order of accuracy study on moving mesh using Roe flux with Non-Constant Velocity Smooth Test
Case
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Figure 5.4.: Single contact wave using Roe flux and 100 cells: (a) static mesh, (b) moving mesh
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Figure 5.5.: Sod problem using Roe flux, 100 cells and TVD limiter: (a) static mesh (b) moving mesh
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Figure 5.6.: Sod problem using Roe flux, 100 cells and TVD limiter: (a) static mesh (b) moving mesh

5.6.4. Sod problem

The initial condition for the Sod test case is given by [Sod78]

(𝜌, 𝑣, 𝑝) =
⎧{
⎨{⎩

(1.0, 0.0, 1.0) if 𝑥 < 0.5

(0.125, 0.0, 0.1) if 𝑥 > 0.5

and the solution is computed upto a final time of 𝑇 = 0.2 with the computational domain being [0, 1].
Since the fluid velocity is zero at the boundary, the computational domain does not change with time for
the chosen final time. The exact solution consists of a rarefaction fan, a contact wave and a shock wave. In
figure (5.5), we show the results obtained using Roe flux with 100 cells and TVD limiter on static and moving
mesh. The contact wave is considerably well resolved on the moving mesh as compared to the static mesh
due to reduced numerical dissipation on moving meshes.

To study the Galilean invariance or the dependence of the solution on the choice of coordinate frame, we
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Figure 5.7.: Sod problem using Roe flux, 100 cells and TVD limiter. ADG : Average Velocity, RDG : Linearized
Riemann Velocity

𝑉 0 10 100
static mesh 144 810 6807

moving mesh 176 176 176

Table 5.9.: Number of iterations required to reach time 𝑡 = 0.2 for Sod test for different boost velocity of the
coordinate frame

add a boost velocity of 𝑉 = 10 or 𝑉 = 100 to the coordinate frame, while implies the initial fluid velocity is
𝑣(𝑥, 0) = 𝑉 and the other quantities remain as before. Figure (5.8a) shows that the accuracy of the static
mesh results degrades with increase in velocity of the coordinate frame, particularly the contact discontinuity
is highly smeared. The results given in figure (5.8b) clearly show the independence of the results on the
moving mesh with respect to the coordinate frame velocity. The allowed time step from CFL condition
decreases with increase in coordinate frame speed for the static mesh case, while in case of moving mesh,
it remains invariant. This means that in case of static mesh, we have to perform more time steps to reach
the same final time as shown in table (5.9), which increases the computational time. Thus the moving mesh
scheme has the additional advantage of allowing a larger time step compared to the fixed mesh scheme.

Finally, we compute the solutions using quadratic and cubic polynomials and the results are shown in
figure (5.9). The solutions look similar to the case of linear polynomials and have the same sharp resolution
of discontinuities.

5.6.5. Lax problem

The initial condition is given by

(𝜌, 𝑣, 𝑝) =
⎧{
⎨{⎩

(0.445, 0.698, 3.528) if 𝑥 < 0

(0.5, 0.0, 0.571) if 𝑥 > 0
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Figure 5.8.: Effect of coordinate frame motion on Sod problem using Roe flux, 100 cells and TVD limiter: (a)
static mesh (b) moving mesh
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Figure 5.9.: Sod problem on moving mesh using Roe flux, 100 cells and TVD limiter: (a) Degree = 2 (b) Degree
= 3

44



5.6. Numerical Results

5 6 7 8 9 10
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

Exact
DG(1)

5 6 7 8 9 10
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

Exact
DG(1)

(a) (b)

Figure 5.10.: Lax problem using HLLC flux, 100 cells and TVD limiter: (a) static mesh (b) moving mesh

The computational domain is [−10, +10] and we compute the solution up to a final time of 𝑇 = 1.3. This
problem has a strong shock and a contact wave that is difficult to resolve accurately. The zoomed view of
density is shown at the final time in figure (5.10), and we observe the moving mesh results are more accurate
for the contact wave, which is the first discontinuity in the figure. The second discontinuity is a shock which
is equally well resolved in both cases. We can observe that the grid is automatically clustered in the region
between the contact and shock wave, but no explicit grid adaptation was used in this simulation.

5.6.6. Shu-Osher problem

The initial condition is given by [SO88]

(𝜌, 𝑣, 𝑝) =
⎧{
⎨{⎩

(3.857143, 2.629369, 10.333333) if 𝑥 < −4

(1 + 0.2 sin(5𝑥), 0.0, 1.0) if 𝑥 > −4

which involves a smooth sinusoidal density wave which interacts with a shock. The domain is [−5, +5] and
the solution is computed up to a final time of 𝑇 = 1.8. The solutions are shown in figure (5.12a)-(5.12b)
on static and moving meshes using 200 cells and TVD limiter. The moving mesh scheme is considerably
more accurate in resolving the sinusoidal wave structure that arises after interaction with the shock. In
figure (5.12c) we compute the solution on static mesh with TVB limiter and the parameter 𝑀 = 100. In this
case the solutions on static mesh are more accurate compared to the case of TVD limiter but still not as good
as the moving mesh results. The moving mesh result has more than 200 cells in the interval [−5, +5] at the
final time since cells enter the domain from the left side. Hence in figure (5.12d), we show the static mesh
results with 300 cells and using TVB limiter. The results are further improved for the static mesh case but
still not as accurate as the moving mesh case. The choice of parameters in the TVB limiter is very critical but
we do not have a rigorous algorithm to choose a good value for this. Hence it is still advantageous to use the
moving mesh scheme which gives improved solutions even with TVD limiter.

The above results show the ALE method is very accurate in terms of the cell averages. In figure (5.13), we
show a zoomed view of density and pressure, where we also plot the linear polynomial solution. The slope of
the solution is not accurately predicted with the Roe scheme and there are spurious contact discontinuities
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Figure 5.11.: Lax problem using HLLC flux, 100 cells and TVD limiter. ADG : Average Velocity, RDG : Lin-
earized Riemann Velocity
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Figure 5.12.: Shu-Osher problem using Roe flux: (a) static mesh, 200 cells, 𝑀 = 0 (b) moving mesh, 200
cells, 𝑀 = 0 (c) static mesh, 200 cells, 𝑀 = 100 (d) static mesh, 300 cells, 𝑀 = 100
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Figure 5.13.: Shu-Osher problem using Roe flux on moving mesh

as the pressure and velocity are nearly continuous. This behaviour is observed with all contact preserving
fluxes like Roe, HLLC and HLL-CPS but not with the Rusanov flux. Due to the almost Lagrangian character of
the scheme, the eigenvalue corresponding to the contact wave, 𝜆2 = 𝑣 − 𝑤, is nearly zero, which leads to loss
of dissipation in the corresponding characteristic field. If a spurious contact wave is generated during the
violent dynamics, then this wave will be preserved by the scheme leading to wrong solutions. We modify the
Roe scheme by preventing this eigenvalue from becoming too small or zero, which is similar to the approach
used for the entropy fix. The eigenvalue |𝜆2| used in the dissipative part of the Roe flux is determined from

|𝜆2| =
⎧{
⎨{⎩

|𝑣 − 𝑤| if |𝑣 − 𝑤| > 𝛿 = 𝛼𝑐
1
2
(𝛿 + |𝑣 − 𝑤|2/𝛿) otherwise

With this modification and using 𝛼 = 0.1, the solution on moving mesh is shown in figure (5.14) and we do
not observe the spurious contact discontinuities which arise with the standard Roe flux, while at the same
time, the solution accuracy compares favourably with the previous results that did not use the eigenvalue fix.

We next compute the solutions using quadratic polynomials. Figure (5.15) shows the results obtained with
the TVD limiter which shows the dramatically better accuracy that is achieved on moving mesh compared to
static mesh. In figure (5.16) we perform the same computation with a WENO limiter taken from [ZS13]. The
static mesh results are now improved over the case of TVD limiter but still not as good as the moving mesh
results in terms of capturing the extrema. In figure (5.17) we show a zoomed view of the results on moving
mesh with TVD and WENO limiter. We see that the TVD limiter is also able to capture all the features and is
almost comparable to the WENO limiter.
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Figure 5.14.: Shu-Osher problem using modified Roe flux on moving mesh
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Figure 5.15.: Shu-Osher problem using modified Roe flux, TVD limiter, quadratic polynomials and 150 cells.
(a) static mesh, (b) moving mesh
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Figure 5.16.: Shu-Osher problem using modified Roe flux, WENO limiter, quadratic polynomials and 150
cells. (a) static mesh, (b) moving mesh
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Figure 5.17.: Shu-Osher problem using modified Roe flux, moving mesh, quadratic polynomials and 150
cells. (a) TVD limiter, (b) WENO limiter
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Figure 5.18.: Titarev Problem with HLLC flux, 1000 cells and TVD limiter

5.6.7. Titarev-Toro problem

Titarev-Toro problem is an extension of the Shu-Osher problem [TT04] to test a severely oscillatory wave
interacting with a shock wave. It aims to test the ability of higher-order methods to capture the extremely
high frequency waves. The initial condition is given by

(𝜌, 𝑣, 𝑝) =
⎧{
⎨{⎩

(1.515695, 0.523346, 1.805), −5 < 𝑥 ≤ −4.5

(1 + 0.1 sin(20𝜋𝑥), 0, 1), −4.5 < 𝑥 ≤ 5
(5.24)

The computation is carried out on a mesh of 1000 cells with the final time 𝑇 = 5 and the density at this final
time is shown in Figures (5.18), (5.19). The fixed mesh is not able to resolve the high frequency oscillations
due to dissipation in the fluxes and the TVD limiter, but the ALE scheme gives an excellent resolution of
these high frequency oscillations. Note that the ALE scheme also uses the same TVD limiter but it is still able
to resolve the solution to a very degree of accuracy. This result again demonstrates the superior accuracy
that can be achieved by using a nearly Lagrangian ALE scheme in problems involving interaction of shocks
and smooth flow structures.

5.6.8. 123 problem

The initial condition is given by [Tor09]

(𝜌, 𝑣, 𝑝) =
⎧{
⎨{⎩

(1.0, −2.0, 0.4) 𝑥 < 0.5

(1.0, +2.0, 0.4) 𝑥 > 0.5
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Figure 5.19.: Titarev Problem with HLLC flux, 1000 cells and TVD limiter. (Zoomed Version)

The computational domain is [0, 1] and the final time is 𝑇 = 0.15. The density using 100 cells is shown in
figure (5.20) with static and moving meshes. The mesh motion does not significantly improve the solution
compared to the static mesh case since the solution is smooth. On the contrary, the mesh becomes rather
coarse in the expansion region, though the solution is still well resolved. However, severe expansion may
lead to very coarse meshes which may be undesirable. To prevent very coarse cells, we switch on the mesh
refinement algorithm as described before and use the upper bound on the mesh size as ℎmax = 0.05. The
resulting solution is shown in figure (5.21) where the number of cells has increased to 108 at the time shown.
The central expansion region is now resolved by more uniformly sized cells compared to the case of no grid
refinement.

5.6.9. Blast problem

The initial condition is given by

(𝜌, 𝑣, 𝑝) =

⎧{{
⎨{{⎩

(1.0, 0.0, 1000.0) 𝑥 < 0.1

(1.0, 0.0, 0.01) 0.1 < 𝑥 < 0.9

(1.0, 0.0, 100.0) 𝑥 > 0.9

with a domain of [0, 1] and the final time is 𝑇 = 0.038. A reflective boundary condition is used at 𝑥 = 0 and
𝑥 = 1. A mesh of 400 cells is used for this simulation and in case of moving mesh, we perform grid adaptation
with ℎ𝑚𝑖𝑛 = 0.001 since some cells become very small during the collision of the two shocks. The positivity
preserving limiter of [ZS10] is applied together with TVD limiter and HLLC flux. The static mesh results
shown in figure (5.23a) indicate too much numerical viscosity in the contact wave around 𝑥 = 0.6. This wave
is more accurately resolved in the moving mesh scheme as seen in figure (5.23b) which is an advantage due
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Figure 5.20.: 123 problem using HLLC flux and 100 cells: (a) static mesh, (b) moving mesh
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Figure 5.21.: 123 problem using HLLC flux and grid refinement: (a) static mesh, (b) moving mesh with mesh
adaptation (ℎmax = 0.05) leading to 108 cells at final time
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Figure 5.22.: 123 problem using HLLC flux, 100 cells and TVD limiter. ADG : Average Velocity, RDG : Lin-
earized Riemann Velocity

to the ALE scheme and is a very good indicator of the scheme accuracy as this is a very challenging feature
to compute accurately. We next compute the same problem using quadratic polynomials with all other
parameters being as before. The solutions are shown in figure (5.24) and indicate that the Lagrangian moving
mesh scheme is more accurate in resolving the contact discontinuity. The higher polynomial degree does
not show any major improvement in the solution compared to the linear case, which could be a consequence
of the strong shock interactions present in this problem, see figure (4.11-4.12) in [ZS13] and figure (3.7) in
[ZQ16] in comparison to current results.

5.6.10. Le Blanc shock tube test case

The Le Blanc shock tube test case is an extreme shock tube problem where the initial discontinuity separates
a region of high energy and density from one of low energy and density. This is a much more severe test
than the Sod problem and hence more challenging for numerical schemes. The computational domain is
0 ≤ 𝑥 ≤ 9 and is filled with an ideal gas with 𝛾 = 5/3. The gas is initially at rest and we perform the
simulation up to a time of 𝑇 = 6 units. The initial discontinuity is at 𝑥 = 3 and the initial condition is given
by

(𝜌, 𝑣, 𝑝) =
⎧{
⎨{⎩

(1.0, 0.0, 0.1) if 𝑥 < 3

(0.001, 0.0, 10−7) if 𝑥 > 3
(5.25)

Note that both the density and pressure have a very large jump in the initial condition. The solution that
develops from this initial condition consists of a rarefaction wave moving to the left and a contact discon-
tinuity and a strong shock moving to the right. In Figure (5.26), we show the comparison of the internal
energy profile at final time between a fixed mesh solution and moving mesh solutions with two different
mesh velocities as described before. Most methods tend to generate a very large spike in the internal energy
in the contact region, e.g., compare with Figure (11) in [Lou05], while the present ALE method here is able to
give a better profile. We plot the pressure profile in Figure (5.27) which shows that the ALE scheme is able to
better represent the region around the contact wave as compared to fixed mesh method.
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Figure 5.23.: Blast problem using HLLC flux and 400 cells. (a) static mesh, (b) moving mesh with adaptation
(ℎ𝑚𝑖𝑛 = 0.001) leading to 303 cells at final time.
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Figure 5.24.: Blast problem using HLLC flux, quadratic polynomials and 400 cells. (a) static mesh, (b) moving
mesh with adaptation (ℎ𝑚𝑖𝑛 = 0.001) leading to 293 cells at final time.
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Figure 5.25.: Blast problem using HLLC flux, 100 cells and TVD limiter. ADG : Average Velocity, RDG :
Linearized Riemann Velocity
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Figure 5.26.: Internal energy for Le Blanc Shock Tube with Rusanov flux, 1400 cells and TVD limiter, ADG :
Average Velocity, RDG : Linearized Riemann Velocity
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Figure 5.27.: Pressure for Le Blanc Shock Tube with Rusanov flux, 1400 cells and TVD limiter, ADG : Average
Velocity, RDG : Linearized Riemann Velocity

5.7. Conclusions

We have developed an explicit DG scheme on moving meshes using ALE framework and space-time expansion
of the solutions within each cell. The near Lagrangian nature of the mesh motion dramatically reduces the
numerical dissipation especially for contact waves. Even moving contact waves can be exactly computed
with a numerical flux that is exact for stationary contact waves. The scheme is shown to yield superior
results even in the presence of large boost velocity of the coordinate system indicating its Galilean invariance
property. The standard Roe flux does not suffer from entropy violation when applied in the current nearly
Lagrangian framework. However, in some problems with strong shocks, spurious contact waves can appear
and we propose to fix the dissipation in Roe-type schemes that eliminates this issue. The method yields
accurate solutions even in combination with standard TVD limiters, where fixed grid methods perform
poorly. The mesh motion provides automatic grid adaptation near shocks but may lead to very coarse cells
inside expansion waves. A grid adaptation strategy is developed to handle the problem of very small or very
large cells. The presence of the DG polynomials makes it easy to transfer the solution during grid adaptation
without loss of accuracy. The proposed methodology is general enough to be applicable to other systems of
conservation laws modelling fluid flows. The basic idea can be extended to multi-dimensions but additional
considerations are required to maintain good mesh quality under fluid deformations.
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Chapter

6 ALE-DG Methods in Two-Dimensions

In this chapter, we extend the scheme introduced in Chapter 5 to two-dimensional conservation laws. We
first describe a formulation of the conservation laws on a moving domains in Section 6.1. Then we introduce
the concepts of simulation domain, the mesh and the discrete setting for the solution in Section 6.2 and
Section 6.3 respectively. Next, we present a broad overview of the ALE DG algorithm in Section 6.4. Then
we elaborate the details of the components in further sections by presenting the evolution of mesh in a
single time-step in Section 6.5, the numerical scheme inside a single time-step in Section 6.6, and the mesh
adaptation algorithms in Section 6.7. Finally, we present the results of using the ALE DG method to solve
the two-dimensional Euler equations for isentropic vortex in Section 6.8. We describe our conclusions and
future work in Section 6.9.

6.1. The Formulation on Moving Domains

The classical formulation of the conservation laws is based on the assumption that the domain of interest
is fixed in time. The corresponding frame of reference is called the fixed or Eulerian frame of reference.
By contrast, in the moving mesh methods, the domain of interest is allowed to move in time. The classical
fixed-mesh formulation of the conservation laws is not directly applicable to such problems and one needs
to come up with a formulation that is valid on moving domains.

In coming up with such a formulation, one either needs to account for the motion of the domain in the
formulation of the conservation laws in the fixed frame or one can state the problem itself in the moving
frame of reference. A moving frame of reference where the frame moves exactly with the velocity of the fluid
is called the Lagrangian frame. The ALE frame of reference is a moving frame where the velocity of the frame
is arbitrary with respect to the velocity of quantities of interest. In practice, for fluid dynamics problems,
the ALE frame is often chosen to move with velocity close to fluid velocity (almost-Lagrangian).

In this section, we first state the conservation laws on fixed domains in the Eulerian frame, then we define
the ALE frame and state the Reynolds transport theorem. Finally, we derive the conservation laws on moving
domains in the ALE frame.

6.1.1. Conservation Laws on Fixed Domains

Consider an open bounded set Ω ⊂ ℝ𝑑 with a Lipschitz boundary which is constant in time. Let 𝛎 denote
the outward unit normal along Ω. Let 𝐮(𝐱, 𝑡), 𝐮∶ ℝ𝑑 × ℝ+ → ℝ𝑛, be a function describing the density of
various conserved quantities, let 𝓕(𝐱, 𝑡, 𝐮), 𝓕∶ ℝ𝑑 ×ℝ+ ×ℝ𝑛 → ℝ𝑑×𝑛, 𝓕 = (𝐅1, 𝐅2, … , 𝐅𝑑)𝖳, govern
the rate of change of 𝐮(𝐱, 𝑡) within Ω. One can then assume that the behavior of the quantity 𝐮 in Ω can be
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6. ALE-DG Methods in Two-Dimensions

described by the integral form of the conservation laws (6.1)

d
d𝑡

∫
Ω

𝐮(𝐱, 𝑡) d𝐱 + ∫
𝜕Ω

𝓕(𝐱, 𝑡, 𝐮) ⋅ 𝛎 d𝐬 = 0 (6.1)

We can apply the Gauss divergence theorem to the second integral term to get

d
d𝑡

∫
Ω

𝐮(𝐱, 𝑡) d𝐱 + ∫
Ω

∇𝐱 • 𝓕(𝐱, 𝑡, 𝐮) d𝐱 = 0 (6.2)

Next, by noting that the domain is independent of time, we take the time derivative under the first integral
and then substitute it with a partial derivative instead as in (6.3).

∫
Ω

𝜕
𝜕𝑥

𝐮(𝐱, 𝑡) d𝐱 + ∫
Ω

∇𝐱 • 𝓕(𝐱, 𝑡, 𝐮) d𝐱 = 0 (6.3)

Finally, since the choice of initial domain Ω was arbitrary, we can convert the integral form to a differential
form and we obtain the conservation law in a PDE form eq. (6.4).

𝜕
𝜕𝑡

𝐮(𝐱, 𝑡) + ∇ • 𝓕(𝐱, 𝑡, 𝐮) = 0 (6.4)

6.1.2. The ALE Frame and Reynolds Transport Theorem

We define the ALE frame by the coordinate system (𝛘, 𝑡) where the mapping between the ALE and the
Eulerian coordinates is given by mapping 𝚽 where 𝚽 is a homeomorphism and differentiable in 𝑡 almost
everywhere over the interval [𝑇0, 𝑇𝑓). The mapping describes the motion of the ALE frame with respect to
the Eulerian frame.

𝚽∶ Ω𝛘 × [𝑇0, 𝑇𝑓) → Ω𝐱 × [𝑇0, 𝑇𝑓) (6.5)

(𝛘, 𝑡) ↦ 𝚽(𝐱, 𝑡) = (𝐱, 𝑡) (6.6)

The velocity of the ALE frame is denoted by 𝐰(𝛘, 𝑡) and can be defined by (6.7).

𝐰(𝛘, 𝑡) = 𝜕𝐱
𝜕𝑡

∣
𝛘

(6.7)

The determinant of the time-independent mapping of the domain Ω𝐱,𝑡 to Ω𝛘,𝑡 is often useful in computing
the change of variables in the integrals. We denote the mapping by 𝓙 and it is given by (6.8).

𝓙(𝛘, 𝑡) = 𝜕𝐱
𝜕𝛘

(6.8)

The gradient for the mapping 𝚽 can be written as (6.9).

𝜕𝚽
𝜕(𝛘, 𝑡)

=
⎛⎜⎜⎜
⎝

𝓙(𝛘, 𝑡) 𝐰(𝛘, 𝑡)

𝟎𝖳 1

⎞⎟⎟⎟
⎠

(6.9)

The mapping 𝚽 is bijective and orientation-preserving if and only if the determinant of the Jacobian of the
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6.1. The Formulation on Moving Domains

mapping 𝚽 is strictly positive as in (6.10).

det𝓙(𝑡) > 0 ∀𝑡 ∈ [0, 𝑇 ) and 𝐱 ∈ Ω𝐱(𝑡) (6.10)

As we will see later, in the context of numerical methods, the maximum time-step size is directly proportion
to det𝓙(𝑡). Therefore, to ensure that the there is minimal time-step size, it is important to ensure that the
det𝓙(𝑡) also has a lower bound as shown in (6.11).

det𝓙(𝑡) ≥ 𝛼 > 0 ∀𝑡 ∈ [0, 𝑇 ) and 𝐱 ∈ Ω𝐱(𝑡) (6.11)

Let 𝐮 ∈ ℝ𝑛 be a physical quantity described by 𝐮(𝐱, 𝑡) and 𝐮(𝛘, 𝑡) in the Eulerian frame and ALE frame
respectively. Assume that the mapping 𝚽 is bijective and orientation-preserving. Then, the derivatives of
𝐮(𝐱, 𝑡) in the Eulerian frame and the ALE frame are related by (6.12).

𝜕𝐮(𝛘, 𝑡)
𝜕𝛘

= [∇𝐱𝐮(𝐱, 𝑡)] 𝜕𝐱
𝜕𝛘

𝜕𝐮(𝛘, 𝑡)
𝜕𝑡

= [∇𝐱𝐮(𝐱, 𝑡)]𝐰 +
𝜕𝐮(𝐱, 𝑡)

𝜕𝑡
(6.12)

Let Ω(𝑡) be a physical domain and let Ω𝐱(𝑡) be its description in Eulerian frame. Let 𝐮 ∈ ℝ𝑛 be a physical
quantity described by 𝐮(𝐱, 𝑡) in the Eulerian frame. Then, using the equations of change of variables, we
have the Reynolds transport theorem given by (6.13).

d
d𝑡

∫
Ω𝐱(𝑡)

𝐮(𝐱, 𝑡) d𝐱 = ∫
Ω𝐱(𝑡)

[ 𝜕
𝜕𝑡

𝐮(𝐱, 𝑡) + ∇𝐱 • [𝐮 ⊗ 𝐰]] d𝐱 (6.13)

Here, the term 𝐮 ⊗ 𝐰 is the outer product of 𝐮 and 𝐰 and satisfies (6.14).

∇𝐱 • [𝐮 ⊗ 𝐰] = (∇ • 𝐮) 𝐰 + 𝐮 • ∇𝐰 (6.14)

6.1.3. Conservation Laws on Moving Domains

We can now use the Reynolds transport theorem (6.13) to derive the conservation laws on moving domains.
We note that the right hand side of the Reynolds transport theorem is in the Eulerian frame. Therefore, we
can use the PDE form of the conservation laws (6.4) to rewrite the right hand side of the Reynolds transport
theorem in terms of the space derivatives as shown in (6.15).

d
d𝑡

∫
Ω𝐱(𝑡)

𝐮(𝐱, 𝑡) d𝐱 = ∫
Ω𝐱(𝑡)

[ − ∇𝐱 • 𝓕(𝐱, 𝑡, 𝐮) + ∇𝐱 • [𝐮 ⊗ 𝐰]] d𝐱 (6.15)

Moving all the terms to the left hand side, we obtain the integral form conservation laws on moving domains
as shown in (6.16).

d
d𝑡

∫
Ω𝐱(𝑡)

𝐮(𝐱, 𝑡) d𝐱 + ∫
Ω𝐱(𝑡)

∇𝐱 • [𝓕(𝐱, 𝑡, 𝐮) − [𝐮 ⊗ 𝐰]] d𝐱 = 0 (6.16)
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6. ALE-DG Methods in Two-Dimensions

6.2. The Mesh Description

Unlike in the case of fixed mesh methods, the mapping between the physical domain, the simulation domain
and the mesh can be quite complex in the case of moving mesh methods. In particular, the behavior of the
three can diverge significantly at the boundaries. In order to keep the treatment simple, in this thesis, we
assume that the boundaries of the physical domain, the simulation domain and the mesh coincide. With
this context, we now describe the spatial simplicial mesh and the spatio-temporal simplicial mesh that we
use in the ALE DG method.

6.2.1. Spatial Simplicial Mesh

In this section, we introduce the concept of a spatial simplicial mesh for a fixed time 𝑡. We first define the
concept of a simplex and a simplicial complex, and then define a simplicial mesh.

Figure 6.1.: A Simplex Mesh in Two Dimensions

Definition 6.1 (Simplexes, Faces, Edges and Vertexes). Let 𝑋 be a collection of 𝑑 + 1 affinely independent
points in ℝ𝑑. Then, a 𝑑-dimensional simplex 𝜉 is the convex hull of a set 𝑋 of 𝑑 + 1 affinely independent
points. In particular, 0-simplex is a point, 1-simplex is an edge, 2-simplex is a triangle, and 3-simplex is a
tetrahedron. Furthermore,

1. a simplex is an element of 𝜉 if it is a convex hull of a non-empty subset of 𝑋.

2. a vertex of 𝜉 is an element of 𝜉 of dimension 0.

3. an edge of 𝜉 is an element 𝜉 of dimension 1.

4. a face of 𝜉 is an element of 𝜉 of dimension 𝑑 − 1

We denote the 𝑖-th cell in the mesh by 𝐾𝑖 and the set of all cells in the mesh by 𝒦. Similarly, the 𝑖-th face
of the mesh is denoted by 𝐹𝑖 and the set of all faces in the mesh is denoted by ℱ. Finally, the 𝑖-th vertex of
the mesh is denoted by 𝑣𝑖 and the set of all vertexes in the mesh is denoted by 𝒱.
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Definition 6.2 (A Simplicial Complex). A set Ξ of finitely many simplexes 𝜉 is a simplicial complex if

• Ξ contains every element of every simplex in 𝜉.

• For any two simplex 𝜉1, 𝜉2 ∈ Ξ, 𝜉1 ∩ 𝜉2 is either empty or an element of both 𝜉1 and 𝜉2.

Definition 6.3 (Orientation of a Cell). Let 𝐾𝑖 be a cell in a simplicial complex which is the convex hull of the
subset 𝒱𝐾𝑖

of vertices 𝒱. Associate a permutation 𝜎 = (𝑣0, 𝑣1, … , 𝑣𝑑), 𝑣𝑖 ∈ 𝑉𝐾𝑖
of the vertices and call

the resultant oriented cell𝐾𝑖,𝜎. Then, one can define an orientation of the simplex 𝐾𝑖,𝜎 by the sign of the
determinant of the matrix 𝐴𝜎(𝐾𝑖,𝜎) defined as

𝐴(𝐾𝑖,𝜎) = [𝑣1 − 𝑣0 𝑣2 − 𝑣0 ⋯ 𝑣𝑑 − 𝑣0] (6.17)

The orientation of the cell 𝐾𝑖,𝜎 is denoted by sgn(𝐾𝑖,𝜎) and can be defined as

sgn(𝐾𝑖,𝜎) = sgn(det(𝐴𝜎(𝐾𝑖,𝜎))) (6.18)

By definition, the orientation can either be positive or negative for a non-degenerate cell.

Definition 6.4 (Simplicial Mesh). Let 𝒱 be a set of points in ℝ𝑑. A 𝑑-dimensional simplicial mesh of 𝒱 is a
simplicial complex Ξ such that

• 𝒱 is the set of vertices in Ξ

• The union of all the simplexes in Ξ is the convex hull of 𝒱

• Orientation of all oriented cells in 𝒦 ∈ Ξ is positive.

Since all cells have positive orientation, we can drop the orientation subscript and denote all oriented cells
𝐾𝑖,𝜎 by their unoriented notation 𝐾𝑖.

A significant aspect of computing meaningful error estimates is existence of classic inverse, trace and
interpolation inequalities on the family of meshes as we improve the resolution of the mesh. An error
estimates that approaches zero as the mesh is refined is a good indicator of the convergence of the numerical
scheme.

The existence of such inequalities is not available in general for an arbitrary simplicial mesh as specified
in Definition 6.4. Instead, one must constrain the mesh further using additional conditions on its geometry.
One such set of conditions that guarantees the existence of such inequalities is the regularity of a family of
simplicial meshes [Cia02]. In order to define the condition of regularity, we first need to define the diameter
and inradius of a mesh.

Definition 6.5 (Diameter and Inradius of a Mesh).Given a simplicial mesh Ξ, for any element 𝐾 ∈ Ξ, the
diameter of 𝐾, ℎ(𝐾) is the circumradius of the element 𝐾, while 𝜌(𝐾) denotes the inradius of 𝐾. The
diameter of the mesh is defined as the maximum of the diameters over its elements while the inradius is
defined as the minimum of all the inradii of the elements of the mesh.

ℎ(Ξ) = max
𝐾∈Ξ

ℎ(𝐾) 𝜌(Ξ) = min
𝐾∈Ξ

𝜌(𝐾) (6.19)
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6. ALE-DG Methods in Two-Dimensions

Definition 6.6 (Regular Simplicial Mesh).A family of simplicial meshes 𝚵ℎ is called regular if there are
constants 𝜎 > 0 and 𝜏 > 0 such that for each Ξ ∈ 𝚵ℎ

ℎ(Ξ)
𝜌(Ξ)

≤ 𝜎
𝜌(𝐾)

ℎ
≤ 𝜏 (6.20)

6.2.2. A Spatio-Temporal Simplicial Mesh

Having defined the spatial simplicial mesh, we now define a spatio-temporal simplicial mesh that evolves
with the simulation. As noted before, the goal is to have a mesh that moves with velocities very close to the
fluid velocities and the mesh velocity is constant inside a single time step. Furthermore, the mesh might
undergo topological changes between the time steps but doesn't change inside a single time step. Finally, we
want to describe the behavior of the mesh at the boundaries of the simulation domain.

Without any loss of generalization, we can assume that the simulation is performed in the time interval
[𝑇0, 𝑇𝑓] with 𝑁 time steps 𝑡0, 𝑡1, … , 𝑡𝑁. We denote the time interval of the 𝑛-th time step as 𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1],
𝑖 = 0, 1, … , 𝑁 − 1 with 𝑡𝑁 = 𝑇. There is a possible topological change in the mesh at a time step 𝑡𝑛, which
also requires adaptation of the finite element space and the discontinuous Galerkin approximation. For a
given time interval 𝐼𝑛, we denote the spatial domain at a time 𝑡 ∈ 𝐼𝑛 as Ω𝑛(𝑡), and the spatial simplicial
mesh at a time 𝑡 ∈ 𝐼𝑛 as Ξ𝑛(𝑡).

ATTENTION!.Note that the spatial domain Ω𝑛 and the spatial simplicial mesh Ξ𝑛 are defined on the time
interval 𝐼𝑛 and not at the time-steps 𝑡𝑛 as is typical in the literature. In the rest of the thesis, the subscript 𝑛
will denote the interval of the time-step 𝐼𝑛 and not the time step 𝑡𝑛 themselves.

Given the set of vertices 𝒱𝑛 of the spatial simplicial mesh Ξ𝑛, the velocity of the mesh is characterized by
the velocity of the vertices. We denote the velocity of the mesh at the vertex 𝑣𝑛,𝑖 ∈ 𝒱𝑛 as 𝐰𝑛,𝑖. We assume
that the velocity of the mesh in the interior of a cell 𝐾𝑘 is a barycentric interpolation of the velocities of
the vertices of the cell. Therefore, the velocity of an arbitrary point 𝐱 ∈ Ω𝑛(𝑡) is given by (6.21) where 𝐱 is
contained in cell 𝐾𝑘 ( 𝐱 ∈ 𝐾𝑘) and (𝛼𝑖)𝑑

𝑖=0 are the barycentric coordinates of 𝐱 with respect to the cell 𝐾𝑘.

𝐰𝑛(𝐱) =
𝑑

∑
𝑗=0

𝛼𝑗𝐰𝑛,𝑘𝑗
(6.21)

In Section 6.2.1, we assumed that the orientation of the cells in the simplicial mesh is always positive. In
the following theorem, we outline the conditions under which the orientation of the cells is preserved during
the evolution of the mesh inside an interval 𝐼𝑛.

Theorem 6.1 (Preservation of Cell Orientation).Consider a mesh Ξ𝑛 in the time interval 𝐼𝑛, such that the
orientation of all elements of the mesh is positive at time 𝑡𝑛, that is sgn(𝐾(𝑡𝑛)) > 0 for all 𝐾 ∈ Ξ𝑛. Then
mesh preserves its for all 𝑡 ∈ 𝐼𝑛, that is sgn(𝐾(𝑡)) > 0 for all 𝐾 ∈ Ξ𝑛 and all 𝑡 ∈ 𝐼𝑛, if for all 𝑡 ∈ 𝐼𝑛, we
have

∥𝐴−1
𝐾 (𝑡𝑛)𝐴𝐾(𝑡𝑛+1)∥ℒ(ℝ𝑑,ℝ𝑑) < 𝜖(𝑡) or ∥𝐴−1

𝐾 (𝑡𝑛+1)𝐴𝐾(𝑡𝑛)∥ℒ(ℝ𝑑,ℝ𝑑) < 𝜖(𝑡)−1 (6.22)

where

𝜖(𝑡) =
𝑡𝑛+1 − 𝑡
𝑡 − 𝑡𝑛

(6.23)
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6.3. The Discrete Setting for the ALE DG Method

6.3. The Discrete Setting for the ALE DG Method

As described in Section 6.2.2, the mesh is defined in a spatio-temporal sense in a given time interval.
Therefore, the finite cell space defined over the mesh also needs to be defined in a spatio-temporal sense. For
the ALE DG method, we use a spatio-temporal broken polynomial space to define a finite cell space over
the mesh. We first define a reference space-time cell, and a polynomial space over it. We then define the
spatio-temporal finite cell space over the mesh as a broken polynomial space corresponding to the polynomial
space over the reference space-time cell.

r2

𝐕2 = (0, 1)

r1 𝐕1 = (1, 0)r0𝐕0 = (0, 0)
F2

F0
F1

Figure 6.2.: The reference space-time cell in two-dimensions.

The reference cell is a space time prism with a triangular base given by (6.24) where 𝔎 is the triangle with
vertices (0, 0), (1, 0), and (0, 1) in the 𝑥-𝑦 plane. We note that for any given space-time cell 𝐾(𝑡) ∈ Ξ(𝑡),
the mapping 𝒯(𝐾, 𝐾) between the cell and the reference cell is an affine mapping.

𝐾(𝐱, 𝑡) = 𝔎{(0, 0), (1, 0), (0, 1)} × [0, 1] (6.24)

Given a reference space time cell 𝐾, let 𝒫𝑘(𝐾) denote the space of polynomials in 𝒦 of degree at most 𝑘.
We then define the finite element space over the mesh as a broken polynomial space corresponding to the
polynomial space over the reference space-time cell as shown in (6.25).

𝓥Ω(𝑡) = {𝑣 ∈ 𝐿2(Ω(𝑡)) ∶ 𝑣|𝐾(𝑡) ∈ 𝒫𝑘(𝐾(𝑡)), ∀𝐾(𝑡) ∈ Ξ(𝑡)} (6.25)

6.4. A Sketch of the ALE-DG Algorithm

Having defined the mesh and setting of the problem in the previous sections, we now describe the outline of
the ALE DG algorithm for simulation. Individual steps of the algorithms are described in more detail in the
following sections.

We would like to evolve the solution of the conservation laws (6.4) from time 𝑡 = 𝑇0 to 𝑡 = 𝑇𝑓. We assume
that we have the initial simulation domain Ω(0), a conforming mesh for the domain Ξ(0) and the initial
condition for the fluid velocity 𝐮(𝐱, 0) defined on the simulation domain. We further assume that the
strategy for imposing the boundary conditions for both the simulation domain and the physics is known for
any future time 𝑡 < 𝑇𝑓.
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6. ALE-DG Methods in Two-Dimensions

The simulation follows a time-marching algorithm over multiple time steps till the simulation time reaches
the final time. In each time step, there are three different steps:

1. We first compute the mesh velocity and the time step.
2. Once the mesh velocities have been computed, we can evolve the solution of the equation according to

the ALE DG scheme.
3. Concurrently, the mesh can also be evolved over the given time step, checked for quality and adaptations

are carried out if needed.
4. Finally, the solution is adapted to the new mesh.

We would like to note that the steps 2 and 3 of the above algorithm can be carried out concurrently. A
short form of the ALE DG algorithm for the simulation of the conservation laws (6.4) is given by Algorithm 1.

Algorithm 1The dgale Algorithm

1: procedure dgale(Ω(0), Ξ(0), 𝐮(0), 𝐿)
2: 𝑛 ← 0, 𝑡𝑛 ← 𝑇𝑓

3: Ξ𝑛(𝑇0) ← Ξ(𝑇0)
4: while 𝑡𝑛 < 𝑇𝑓 do
5: Compute the time step Δ𝑡𝑛 and mesh velocity 𝐰𝑛 for Ξ𝑛

6: Evolve the solution 𝐮𝑛(𝑡) on the time interval 𝐼𝑛

7: Evolve and adapt the mesh from Ξ𝑛(𝑡𝑛) to Ξ𝑛+1(𝑡𝑛)
8: Adapt the solution to the new mesh.
9: 𝑛 ← 𝑛 + 1

10: 𝑡𝑛 ← 𝑡𝑛−1 + Δ𝑡𝑛

11: end while
12: returnΞ𝑁 and 𝐮(𝑇𝑓)
13: end procedure

6.5. The Time Step and Mesh Velocity

In this section, we describe the algorithm to compute the mesh velocity and the time step for a given time
interval 𝐼𝑛. The mesh velocity also then characterizes the evolution of the mesh in the time interval.

In a moving mesh methods, there are two different constraints that can affect the computation of time
step at any given time in the simulation. The eventual time step used for the time interval is a minimum of
the two time-steps.

1. Geometric Time Step

The geometric constraint comes from the regularity condition which imposes conditions on the time
step that would ensure the regularity of the mesh. We call the maximum time step that allows for the
regularity to be constrained as the geometric time step.

2. Physical Time Step

The physical constraint comes from the CFL-like conditions to ensure the fidelity of the simulations.
As we have seen in Chapter 5, making the CFL-like conditions aware of the moving mesh allows one to
make the time-step computations larger than for the fixed mesh simulations. The time step computed
from such considerations is called the physical time step.
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As we can see here, the computation of the time steps depends on the mesh velocity. As we will show
further, the computation of the mesh velocity, in turn, depends on the time step themselves. To break this
cyclic dependency, we generate a conservative approximation for the fluid velocity at the vertex which we
use as the initial guess for our mesh velocity. We use that initial guess to compute the time step, and then we
finally use the resultant time step to compute the eventual mesh velocity. A conservative approximation is
the one that ensures that the computed time step is guaranteed to be less than a time step that would have
been computed taking the eventual mesh velocities in to account.

6.5.1. Approximation to Fluid Velocity at the Vertexes

The DG solution is discontinuous at at the interfaces of the cells, and therefore, at the vertices. Hence,
there is no unique fluid velocity available from our scheme at the vertices. Instead, we can only compute an
approximation for the fluid velocity. The mesh velocity must be close to the local fluid velocity in order to
have a Lagrangian character to the scheme.

Some researchers, especially in the context of Lagrangian methods, solve a Riemann problem at the cell
face to determine the face velocity. Since we use an ALE formulation, we do not require the exact fluid
velocity. Furthermore, following the exact trajectory of the fluid would also lead to curved trajectories for
the grid point, which would contradict one of our core assumptions of the velocity being constant in a single
time interval. In our work, we use the maximum of velocities over the neighboring cells.

𝐰𝑣 = 1
𝑁𝑣

𝑁𝑣

∑
𝑖=1

𝐰𝑁𝑣
(6.26)

6.5.1.1. Computation of Velocities at the Boundary

The above mentioned methods to compute mesh velocity algorithms are appropriate for the interior vertices.
On the boundary vertices, however, we need to ensure that the mesh velocities accurately reflect the fluid
motion without negatively affecting the mesh motion. In this work, we only deal with periodic boundary
conditions where

For periodic boundaries, the vertex on one boundary is a clone of the vertex on the periodic boundary.
This requires that the velocity computed for the paired vertices should be equal. In order to achieve that, we
generate the list of cells which are neighbors of either of the vertices and then use the average mesh velocity
formula. Let 𝑁𝐾𝑛𝑘

be the neighbors of the vertex 𝐾𝑘 and let 𝑁𝐾𝑛𝑙
be the neighbors of the vertex 𝐾𝑘𝑝

where 𝐾𝑘𝑝
is the paired vertex. Let 𝑁𝐾 = 𝑁𝐾𝑛𝑘

∪ 𝑁𝐾𝑛𝑙
, then we have

𝐰 = 1
|𝑁𝐾|

∑
𝐾∈𝑁𝐾

𝐰𝐾 (6.27)

6.5.2. Computing the Time Step

As already mentioned, computing the time step for the for the moving mesh methods has two constraints,
namely the geometric and the physical time step. The eventual time step is the minimum of the time steps
computed with the two constraints. In this section, we describe the algorithms for computing the two kinds
of time step.
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6. ALE-DG Methods in Two-Dimensions

6.5.2.1. The Geometric Time Step

The geometric time step is an upper bound on time step which ensures that the regularity of the mesh is
maintained. Additionally, for purpose of numerical accuracy, it is generally also desirable to ensure that the
size of the mesh cell doesn't change by more than 1

2
times its original size. Finally, we want to allow for large

translations of the cells.

All of these factors can be achieved by making sure that the maximum difference between the distance
traveled by the centroid and the distance traveled by any of the edges is less than 1/4-th of the smallest side
of the triangle. The velocity of the centroid if given by

𝐰𝑐 = 1
3

2

∑
𝑖=0

𝐰𝑖 (6.28)

Let 𝑠0 be the smallest side of the triangle, then we have the following condition on the geometric time step

Δ𝑡 ≤ min
𝑖=0,1,2

𝑠0

4 ‖𝐰𝑖 − 𝐰𝑐‖
(6.29)

6.5.2.2. The Physical Time Step

The physical time step is an upper bound on the time step that comes from the CFL-like conditions. For a
cell 𝐾, the CFL-like condition can be written down as

Δ𝑡 ≤ 𝑟
max
𝐱∈𝐾

‖𝐯(𝐱) − 𝐰(𝐱)‖ +max
𝐱∈𝐾

𝑐(𝐱)
(6.30)

where 𝑟 is the inradius of the triangle, 𝐯(𝐱) is the fluid velocity, and 𝑐 is the sound speed.

6.5.3. The Mesh Velocity

Having computed the time step, we can now again compute a mesh velocity that is suitable for ALE simula-
tions. We would want such a velocity to be as close to fluid velocity as possible. However, at the same time,
the variability in the velocity should be low enough to prevent mesh distortion as much as possible.

One of the basic techniques to deal with mesh distortion is smoothing of mesh velocities. The technique
prevents mesh quality from degrading severely in a single time step and hence, allowing mesh adaptation
techniques to repair the mesh before the mesh quality degrades unacceptably. In our work, we use a special
type of mesh velocity smoothing known as Laplacian smoothing

The objective of Laplacian smoothing is to minimize the distance between the position of a vertex and the
position of the centroid of the polygon formed by neighboring vertices.

Let {𝐰𝑛
𝑖 }𝑁

𝑖=1 be the velocity of the vertices of the mesh at time 𝑡𝑛 and 𝐱𝑛+1
𝑖 be the resultant position of

the vertex 𝑖 obtained from. Let 𝐗𝑛+1
𝑖 be the average position of the vertexes connected to the 𝑖-th vertex.

We would like the 𝐱𝑛+1
𝑖 to be close to 𝐗𝑛+1

𝑖 . Hence, we can choose the mesh velocity to be

𝐰𝑛
𝑖 = 𝛼𝐰𝑛

𝑖 + (1 − 𝛼)
𝐗𝑛+1

𝑖 − 𝐱𝑛+1
𝑖

Δ𝑡
𝛼 ∈ [0, 1] (6.31)

The 𝛼 factor moves 𝐱𝑛+1
𝑖 closer to 𝐗𝑛+1

𝑖 while the number of steps decrease the distance. We can apply a
few iterations of the above smoothing in order to get a better velocity.
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6.6. The ALE DG Scheme for a Single Time Step

In this section, we introduce the numerical scheme for a single time step 𝐼𝑛. The numerical scheme iterates
over every cell in the mesh and computes the solution at the end of the time step. We first introduce the
notation and terminology to be used in this section.

Notation and Terminology In order to keep the notation manageable, we also introduce some simplifica-
tions along the way. In this section, we restrict ourselves to a single time interval 𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1] and a single
cell 𝐾𝑘 ∈ Ξ𝑛. We then drop the relevant markers from the notation and assume that the variables are local
to the time interval 𝐼𝑛 and the cell 𝐾𝑘. In particular, we have the following simplifications in the notation.

• The time interval 𝐼𝑛 is denoted by 𝐼 and the cell 𝐾𝑘 is denoted by 𝐾.

• The solution in time interval 𝐼𝑛 is denoted by 𝐮(𝑡) instead of 𝐮𝑛(𝑡).

• The moments of the solution 𝐮 in the cell 𝐾 are denoted as 𝐮𝑚(𝑡) instead of 𝐮𝑘,𝑚(𝑡).

• The faces and vertices of the cell 𝐾 are denoted by 𝐹𝑖 and 𝑉𝑖 instead of 𝐹𝑘,𝑖 and 𝑉𝑘,𝑖.

• The mesh velocity is constant in the time interval 𝐼 and is denoted by as 𝐰(𝐱). The velocity at the
vertex 𝑉𝑖 is denoted by 𝐰𝑖.

• The basis function for the cell 𝐾 is denoted by 𝜙𝑚(𝐱, 𝑡) instead of 𝜙𝑘,𝑚(𝐱, 𝑡).

• The Jacobian of the transformation from the reference cell 𝐾̂ to the cell 𝐾 is denoted by 𝓙𝐾(𝑡) instead
of 𝓙𝐾𝑘

(𝑡).

6.6.1. The Semi-Discrete Scheme

We now present the semi-discrete scheme for the ALE DG method. The central idea of the ALE DG method
is to compute the evolution of the moments of the solution in each cell. The moments of the solution in the
cell 𝐾𝑘(𝑡) are defined as

∣𝓙𝐾(𝑡)∣ 𝐮𝑚(𝑡) = ∫
𝐾(𝑡)

𝐮(𝐱, 𝑡)𝜙𝑚(𝐱, 𝑡)d𝐱 = ∫
𝐾̂

𝐮(𝛘, 𝑡)𝜙𝑚(𝛘) |𝓙𝐾(𝑡)| d𝛘 (6.32)

We can compute the evolution of the moment by computing the derivative of moment with respect to
time and using the Reynolds transport theorem as well as the PDE equation to get

∣𝓙𝐾(𝑡)∣
d
d𝑡

𝐮𝑚(𝑡) = − ∫
𝐾(𝑡)

∇𝐱 • [𝓕(𝐱, 𝑡, 𝐮) − 𝐮 ⊗ 𝐰] 𝜙𝑚(𝐱, 𝑡)d𝐱 (6.33)

Applying integration by parts, and using the numerical flux to represent the solution at the boundaries,
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6. ALE-DG Methods in Two-Dimensions

we get

d
d𝑡

∣𝓙𝐾(𝑡)∣ 𝐮𝑚(𝑡) = ∫
𝐾(𝑡)

[𝓕(𝐱, 𝑡, 𝐮) − 𝐮 ⊗ 𝐰] • ∇𝐱𝜙𝑚(𝐱, 𝑡)d𝐱

− ∫
𝜕𝐾(𝑡)

𝓗(𝐱, 𝑡, 𝐮−, 𝐮+, 𝐰; 𝛎̂) • 𝛎̂𝜙𝑚(𝐬, 𝑡)d𝐬

(6.34)

We now integrate this over time to get

∣𝓙𝐾(𝑡𝑛+1)∣ 𝐮𝑚(𝑡𝑛+1) − ∣𝓙𝐾(𝑡𝑛)∣ 𝐮𝑚(𝑡𝑛) =

𝑡𝑛+1

∫
𝑡𝑛

∫
𝐾(𝑡)

[𝓕(𝐱, 𝑡, 𝐮) − 𝐮 ⊗ 𝐰] • ∇𝐱𝜙𝑚(𝐱, 𝑡)d𝐱

−

𝑡𝑛+1

∫
𝑡𝑛

∫
𝜕𝐾(𝑡)

𝓗(𝐱, 𝑡, 𝐮−, 𝐮+, 𝐰; 𝛎̂) • 𝛎̂𝜙𝑚(𝐬, 𝑡)d𝐬

This is now the semi-discrete form of the scheme. In order to obtain the fully discrete form, we replace
the integrals with quadrature to get

𝐮𝑚(𝑡𝑛+1) =
|𝓙𝐾𝑛|

|𝓙𝐾𝑛+1|
𝐮𝑚(𝑡𝑛)

+
𝑛𝑔

∑
𝑔=1

𝑛𝑐

∑
𝑐=1

|𝓙Δ𝑡|
|𝓙𝐾𝑛+1|

[𝑤𝑔𝑤𝑐𝓖(𝐱𝑔
𝑐, 𝑡𝑔, 𝐮𝑔

𝑐, 𝐰𝑐) ⋅ [∇𝛏𝑐
𝜙𝑚(𝛏𝑐) ⋅ 𝓙−1

𝐾𝑔]]

−
𝑛𝑔

∑
𝑔=1

∑
𝐹 𝑔

𝑛𝑓

∑
𝑓=1

|𝓙Δ𝑡| |𝓙𝐹 𝑔|
|𝓙𝐾𝑛+1|

[𝑤𝑔 𝑤𝑓 𝜙𝑚(𝛔)ℋ(𝐱𝑔, 𝑡𝑔, 𝐮−,𝑔
𝑓 , 𝐮+,𝑔

𝑓 ; 𝐰𝑓, 𝛎̂)]

We can either solve this equation implicitly or use the predictor approach in a manner similar to the
one-dimensional case.

6.7. Local Mesh Adaption Techniques

Smoothing of velocity can maintain the mesh quality, however, it can destroy the almost-Lagrangian nature
of the mesh motion. In order to maintain almost-Lagrangian, it is necessary to locally change the mesh
topology. One of the methods to do so is the edge swapping methods.
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Figure 6.3.: Face Swap

In an edge swap method, we change the connectivity of an edge in order to improve the quality of the
mesh. As can be seen in fig. 6.3, the mesh quality can improve in certain cases due to edge swaps. In order
to figure out the situations in which the edge swaps are favorable, we use various mesh quality indicators.
However, direct usage the mesh quality indicator for swapping can often be suboptimal. This is because,
often, a naive face swap algorithm is not commutative.
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Figure 6.4.: Local Remesh

Consider that we have a section Ω𝐾 of the mesh which is locally remeshed as shown in fig. 6.4. Let 𝐾0
𝑖 be

the list of triangles before remeshing and let 𝐾1
𝑖 be the list of triangles obtained after remeshing. An triangle

𝑅𝑖 ⊂ Ω𝐾 is an interpolation region if 𝑅𝑖 ⊆ 𝐾0
𝑗 and 𝑅𝑖 ⊆ 𝐾1

𝑘, for some 𝑗, 𝑘. Given a remeshing as shown
above, one can decompose the domain into disjoint interpolation regions {𝑅𝑖}𝑀

𝑖=1 such that 𝑅𝑖 ∩ 𝑅𝑗 = ∅
for 𝑖 ≠ 𝑗 and ∪𝑅𝑖 = Ω𝐾. In general, one can always obtain such a region using a constrained Delaunay
triangulation. However, for some special cases, like face swapping and face deletion, it is trivial to obtain
such a region as will be shown later. For the case shown in fig. 6.4, we show one such decomposition in
fig. 6.5.

69



6. ALE-DG Methods in Two-Dimensions
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Figure 6.5.: Interpolation Regions

Having obtained such a decomposition, the solution transfer can be done as follows. Let 𝐮 be the solution
over the domain Ω𝐾. 𝐮0

𝑖 be the solution in triangle 𝐾0
𝑖 for all 𝑖. We want to obtain the solution in triangle

𝐮1
𝑖 . We have

𝐮1
𝑖,𝑚 = ∫

𝐾1
𝑖

𝐮𝜙1
𝑖,𝑚d𝐱 (6.35)

Now, we know that 𝐾1
𝑖 = ∪𝑅𝑗 and in each of 𝑅𝑗, 𝐮 is a polynomial, and hence we can write

𝐮1
𝑖,𝑚 = ∑

𝑅𝑗

∫
𝑅𝑗

𝐮𝜙1
𝑖,𝑚d𝐱 (6.36)

The integrals can now be evaluated exactly using quadrature rules. The remeshing algorithm now needs to
provide only a description of how the regions are contained the triangles.

6.8. Experiments on Isentropic Vortex

The test case we consider involves an isentropic vortex that is advecting with constant velocity and is a
smooth solution for which error norms can be calculated. The test is carried out on a square domain
[−10, 10] × [−10, 10] with periodic boundary conditions. The initial conditions is an isentropic vortex

𝑇 = 1 −
(𝛾 − 1)𝛽2

8𝛾𝜋2 𝑒1−𝑟2
(6.37)

𝜌 = 𝑇
1

𝛾−1 (6.38)

𝑢 = 𝑢∞ − 𝛽
2𝜋

𝑦𝑒
1−𝑟2

2 (6.39)

𝑣 = 𝑣∞ − 𝛽
2𝜋

𝑦𝑒
1−𝑟2

2 (6.40)

𝑝 = 𝜌𝛾 (6.41)

with 𝑢∞ = 1, 𝑣∞ = 0, 𝛾 = 1.4, 𝛽 = 10. As the solution evolves in time, the mesh becomes quite deformed
because the vortex is continually shearing the mesh, which can lead to degenerate meshes, as shown in
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6.8. Experiments on Isentropic Vortex

figure 6.6. With the ALE DG method, we are able to maintain a good mesh quality even after the vortex has
rotated 20 times around its center as shown in figures 6.7. As the vortex is translating, we plot the solution
in a window centered at the vortex center. We can see that the method maintains its high order of accuracy
from the convergence rates of the error shown in table 6.1; using linear basis functions yields second order
convergence while quadratic basis functions lead to third order convergence. We can also see that the error
in the moving mesh method evolves considerably slower than the error in the fixed mesh mesh.

𝑁
Fixed Mesh Moving Mesh

Error Rate Error Rate

50x50 2.230e-03 1.225e-03

100x100 5.987E-04 1.945 3.122e-04 1.972

200x200 1.498E-04 1.998 8.628e-05 1.855

400x400 3.786E-05 1.984 1.894e-05 2.187

800x800 9.617E-06 1.977 5.451e-06 1.796

Table 6.1.: Isentropic Vortex in 2D: Order of accuracy study on two dimensional mesh

Figure 6.6.: Isentropic Vortex in 2-D: Skewed Mesh without Remeshing 𝑡 = 2.660534
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(a) (b)

(c) (d)

Figure 6.7.: Mesh and at various times (a) 𝑡 = 0 (b) 𝑡 = 25 (c) 𝑡 = 50 (d) 𝑡 = 100
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Figure 6.8.: Evolution of 𝐿2 error for Isentropic Vortex in 2D
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Figure 6.9.: Evolution of 𝐿2 error for Isentropic Vortex in 2D

6.8.1. Isentropic Vortex with Non-Uniform Mesh

Due to the self-adaption nature of the moving mesh method, it is possible to use a non-uniform mesh to
simulate a translating isentropic vortex. We start with a mesh which is fine near the vortex and coarse
elsewhere. The vortex itself moves over the course of the simulation and we show that the mesh tracks
the vortex. This allows us to concentrate the mesh in places with more features and thus reducing the
computational cost of the code.

In comparison with uniform meshes, the non-uniform mesh only requires 1000 cells in comparison to
uniform mesh's 10,000 cells to achieve a similar accuracy of error of 1.6𝑒 − 4. This represents a significant
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6. ALE-DG Methods in Two-Dimensions

reduction in computational costs.

Figure 6.10.: Isentropic Vortex with Non-Uniform Mesh, 𝑇 = 0

Figure 6.11.: Isentropic Vortex with Non-Uniform Mesh, 𝑇 = 100

6.8.2. Comparison of Computational Costs between Methods

The moving of the mesh and grid adaptation introduces some computational overhead. In case of smooth
solutions, due to the absence of sharp discontinuities, the quality of solution itself does not significantly
change. Therefore, it is useful to look at the improvement in error against the increased computational cost
for the moving mesh method. For that purpose, we have analysed the time spent by the scheme in different
sections of the code.
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We observe that the velocity smoothing algorithm is the most significant cost for the moving mesh
algorithm and reduces the effectiveness of moving mesh methods for smooth solutions. However, the
problem can be resolved by using non-uniform meshes as shown in Section 6.8.1.

6.9. Conclusions and Future Work

In this part of the thesis, we have developed an explicit single step Discontinuous Galerkin scheme on moving
mesh methods using ALE Framework and space-time expansion of the solutions within each cell. The near
Lagrangian nature of the mesh motion dramatically reduces the numerical dissipation especially for contact
waves. Even moving contact waves can be exactly computed with a numerical flux that is exact for stationary
contact waves in one dimensional simulations.. The scheme is shown to yield superior results even in the
presence of large boost velocity of the coordinate system indicating its Galilean invariance property. The
standard Roe flux does not suffer from entropy violation when applied in the current nearly Lagrangian
framework. The mesh motion provides automatic grid adaptation near shocks but may lead to very coarse
cells inside expansion waves. Furthermore, in two dimensions, the shear flow makes the mesh distorted
and sometimes even degenerate. We fix these problems by using a combination of mesh velocity correction
algorithms and local mesh adaptation algorithms. Due to the local nature of mesh adaptation algorithms
as well as the scheme, the method is embarrassingly parallel. The method itself does not depend on any
physical model, and we expect the method to work for most other physical models. Due to the nature of
algorithms, in the worst case scenario, the algorithms falls back to static mesh method, hence, it is at least
as accurate as a fixed mesh simulation. We can glean the following conclusions from the exploration

• Completely local and explicit higher order ALE DG Methods are feasible for fluid simulations and
provide much better results than fixed mesh methods.

• It is feasible to use only local remeshing methods to simulate fluid behavior in face of shocks and shear
flows. This is possible while maintaining higher order accuracy and good mesh quality.

• The method behaves extremely well even in situations involving non-uniform grids. This indicates
promising behavior for large simulations.

• The complete decoupling of mesh adaptation from solution evolution in the algorithm is promising,
in that, it separates the physics of the model from the behavior of mesh. This indicates that future
methods tackling different arbitrary physical models won't have to devise new methods for mesh
adaptation, and instead can build on it.

6.9.1. Future Work

There are quite a few avenues to extend for the moving mesh method presented in the thesis along with
some unanswered questions:

• One of the major avenues for exploration is to extend the method to other physical models. The main
challenge is to find the correct mesh velocity algorithms which can work with a variety of different
physical model as well as work with mixed physical models. There is no single answer to this problem,
however, we believe that a combination of better mesh velocity algorithms and mesh adaptation
algorithms, among other measures will be good enough to solve these problems.
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• Even though, there is no apparent coupling of the limiting step with the step of moving in the mesh in
this algorithm, the effect of one on another is quite apparent, and often manifest itself in the higher
modes of the solution. One of the factors which we believe would improve the situation is to have
more accurate predictors for the solution, which will reduce the need to limit the solution. There are
different ways in which this can be achieved, one can use more accurate solutions inside a cell instead
of a predictor to predict the solutions with some minimal input from neighboring cells. Another
possibility is to use machine learning algorithms to predict the solution inside the cell.

• A big area which has been left unexplored in the thesis is the area of mesh adaptation algorithms. In
effect, we have used extremely rudimentary mesh adaptation algorithms, and those have been quite
successful in the simulations. The advantage of using such rudimentary algorithms is that they are
extremely cheap to use. However, a big disadvantage of these algorithms is the lack of control when
meshes are highly distorted. In such scenarios, it makes sense to fall back to more powerful local
remeshing techniques like constrained Delaunay triangulations. These algorithms will ensure that the
simulation will never fail, and will maintain the accuracy at least as good as a fixed mesh algorithm.

• The local nature of the algorithm allows for a favorable GPGPU based implementation.
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Chapter

7 Introduction

𝜕𝑡𝐰 +
𝐷

∑
𝑘=1

𝜕𝑘𝐪𝑘(𝐰) = 𝐬 (7.1)

Various models of compressible fluid that appear in gas dynamics, biology, astrophysics, or plasma physics
for tokamaks can be unified as (7.1). Here, 𝐰∶ ℝ𝐷 × [0, 𝑇max] → ℝ𝑚 is the vector of conserved variable,
𝐪𝑘(𝐰)∶ ℝ𝑚 × ℝ𝑚 is the flux and 𝐬 ∶ ℝ𝐷 × ℝ × ℝ𝑚 → ℝ𝑚 is a source term. 𝐷 represents the physical
space dimension and 𝑚 the number of unknowns. In domains like MHD flows, low Mach Euler equations,
and shallow-water with sedimentation, the model presents several time scales associated to the propagation
of different waves. When the time scale of fast phenomena, which constrains the explicit CFL condition, is
very small compared to the time scale of the most relevant phenomena, it becomes necessary to switch to
implicit schemes. However classical implicit schemes are very costly in 2D or 3D because they require the
resolution of linear or non-linear systems at each time step. In addition, the matrices associated with the
hyperbolic systems are generally ill-conditioned.

In this work, we propose to follow another approach for avoiding the solution of complicated linear
systems. Instead of solving the full fluid model in (7.1) directly, we use the idea from [Cou+16], where we
replace the model with a simpler kinetic interpretation made of of a set of transport equations coupled
through a stiff relaxation terms[AN00; BGP00; Gra14]. The resultant kinetic system is then solved by a
splitting method where the transport and the relaxation stages are treated separately.

The one-dimensional version of the work was already presented in [Cou+16]. In this work, we present a
massively parallel implementation of the method in higher dimensions. We particularly focus our presenta-
tion of the massive parallelization of the method with the StarPU runtime system
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Chapter

8
Task-based Parallelization of an Implicit Kinetic
Scheme

In this chapter, we present a task-based parallelization of an implicit kinetic scheme presented in the paper
[Bad+18] (linked here). As mentioned in Chapter 7, the main focus of this work is to present a massively
parallel implementation of the kinetic scheme from [Cou+16] in higher dimensions. In this chapter, we
first show that there exists a general kinetic interpretation of any system of conservation laws. We then
detail an approximation based on discontinuous Galerkin method with an upwind numerical flux and
Gauss-Lobatto quadrature points. We then layout a scheme to parallelize the kinetic ethods effectively using
the task-parallelization techniques supported in the StarPU library. Finally, we present some experimental
results verifying the correctness of the scheme and showing the scaling efficiency of the implementation.

8.1. The Kinetic Interpretation

We consider the following kinetic equation

𝜕𝑡f+
𝐷

∑
𝑘=1

V𝑘𝜕𝑘f = 1
𝜏

(f𝑒𝑞(f) − f) + g. (8.1)

The unknown is a vectorial distribution function f(x, 𝑡) ∈ ℝ𝑛𝑣 depending on the space variable x =
(𝑥1 … 𝑥𝐷) ∈ ℝ𝐷 and time 𝑡 ∈ ℝ. g(x, 𝑡, f) is a vectorial source term, possibly depending on space, time
and f. The partial derivatives are noted

𝜕𝑡 = 𝜕
𝜕𝑡

, 𝜕𝑘 = 𝜕
𝜕𝑥𝑘 .

The relaxation time 𝜏 is a small positive constant. The constant matrices V𝑘, 1 ≤ 𝑘 ≤ 𝐷 are diagonal

V𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣𝑘
1

𝑣𝑘
2

⋱

𝑣𝑘
𝑛𝑣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In other words, (8.1) is a set of 𝑛𝑣 transport equations at constant velocities v𝑖 = (𝑣1
𝑖 , … , 𝑣𝐷

𝑖 ), cou-
pled through a stiff BGK relaxation, and with an optional additional source term. We denote by V ⋅ 𝜕 =
∑𝐷

𝑘=1 V
𝑘𝜕𝑘 the transport operator, and by Nf = (f𝑒𝑞(f) − f)/𝜏 the BGK relaxation term (also called the

``collision'' term).
Generally, this kinetic model represents an underlying hyperbolic system of conservation laws. The
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macroscopic conservative variablesw(x, 𝑡) ∈ ℝ𝑚 are obtained through a linear transformation

w = Pf, (8.2)

where P is a 𝑚 × 𝑛𝑣 matrix. Generally the number of conservative variables is smaller than the number of
kinetic data: 𝑚 < 𝑛𝑣. The equilibrium (or ``Maxwellian'') distribution f𝑒𝑞(f) is such that

Pf = Pf𝑒𝑞(f),

and
w = Pf1 = Pf2 ⇒ f𝑒𝑞(f1) = f𝑒𝑞(f2), (8.3)

which states that the equilibrium actually depends only on the macroscopic dataw. We could have used the
notation f𝑒𝑞 = f𝑒𝑞(w) = f𝑒𝑞(Pf), but we have decided to respect a well-established tradition.

When 𝜏 → 0, the kinetic equations provide an approximation of the system of conservation laws

𝜕𝑡w+
𝐷

∑
𝑘=1

𝜕𝑘q
𝑘(w) = s, (8.4)

where the flux is given by

q𝑘(w) = PV𝑘f𝑒𝑞(f).

The flux is indeed a function ofw only because of (8.3).

Similarly the source term is given by

s(x, 𝑡,w) = Pg(x, 𝑡, f𝑒𝑞) (8.5)

System (8.1) has to be supplemented with conditions at the boundary 𝜕Ω of the computational domain Ω.
We denote by n = (𝑛1 … 𝑛𝐷) the outward normal vector on 𝜕Ω. For simplicity, we shall only consider very
simple imposed and time-independent boundary conditions f𝑏. We note

V ⋅ n =
𝐷

∑
𝑘=1

V𝑘𝑛𝑘, V ⋅ n+ = max(V ⋅ n, 0), V ⋅ n− = min(V ⋅ n, 0).

A natural boundary condition, which is compatible with the transport operator V ⋅ 𝜕, is

V ⋅ n−f(x, 𝑡) = V ⋅ n−f𝑏(x), x ∈ 𝜕Ω. (8.6)

It states that for a given velocity v𝑖, the corresponding boundary data 𝑓𝑏
𝑖 is used only at the inflow part of the

boundary.

Let us point out that the programming optimization that we propose in this paper rely in an essential
way on the nature of the boundary condition (8.6). For other boundary conditions, such as periodic or wall
conditions, additional investigations are still needed.
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8.2. Numerical method

8.2.1. Discontinuous Galerkin approximation

For solving (8.1) we shall treat the transport operator V ⋅ 𝜕 and the collision operatorN efficiently, thanks
to a splitting approach. This allows to achieve a better parallelism. Let us start with the description of the
transport solver.

For a simple exposition, we only consider one single scalar transport equation for 𝑓(x, 𝑡) ∈ ℝ at constant
velocity v

𝜕𝑡𝑓 + v ⋅ ∇𝑓 = 0. (8.7)

The general vectorial case is easily deduced.
We consider a mesh ℳ of Ω made of open sets, called ``cells'', ℳ = {𝐿𝑖, 𝑖 = 1 … 𝑁𝑐}. In the most

general setting, the cells satisfy

1. 𝐿𝑖 ∩ 𝐿𝑗 = ∅, if 𝑖 ≠ 𝑗;

2. ∪𝑖𝐿𝑖 = Ω.

In each cell 𝐿 ∈ ℳ we consider a basis of functions (𝜑𝐿,𝑖(x))𝑖=0…𝑁𝑑−1 constructed from polynomials of
order 𝑑. We denote by ℎ the maximal diameter of the cells. With an abuse of notation we still denote by 𝑓
the approximation of 𝑓, defined by

𝑓(x, 𝑡) =
𝑁𝑑−1

∑
𝑗=0

𝑓𝐿,𝑗(𝑡)𝜑𝐿,𝑗(x), x ∈ 𝐿.

The DG formulation then reads: find the 𝑓𝐿,𝑗's such that for all cell 𝐿 and all test function 𝜑𝐿,𝑖

∫
𝐿

𝜕𝑡𝑓𝜑𝐿,𝑖 − ∫
𝐿

𝑓v ⋅ ∇𝜑𝐿,𝑖 + ∫
𝜕𝐿

(v ⋅ n+𝑓𝐿 + v ⋅ n−𝑓𝑅)𝜑𝐿,𝑖 = 0. (8.8)

In this formula (see Figure 8.20):

• 𝑅 denotes the neighboring cell to 𝐿 along its boundary 𝜕𝐿 ∩ 𝜕𝑅, or the exterior of Ω on 𝜕𝐿 ∩ 𝜕Ω.

• n = n𝐿𝑅 is the unit normal vector on 𝜕𝐿 oriented from 𝐿 to 𝑅.

• 𝑓𝑅 denotes the value of 𝑓 in the neighboring cell 𝑅 on 𝜕𝐿 ∩ 𝜕𝑅.

• If 𝐿 is a boundary cell, one may have to use the boundary values instead: 𝑓𝑅 = 𝑓𝑏 on 𝜕𝐿 ∩ 𝜕Ω.

• v ⋅ n+𝑓𝐿 + v ⋅ n−𝑓𝑅 is the standard upwind numerical flux encountered in many finite volume or DG
methods.

In our application, we consider hexahedral cells. We have a reference cell

𝐿̂ =] − 1, 1[𝐷

and a smooth transformation x = 𝜏𝐿( ̂x), ̂x ∈ 𝐿̂, that maps 𝐿̂ on 𝐿

𝜏𝐿(𝐿̂) = 𝐿.
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𝑛𝐿𝑅

𝜕𝐿 ∩ 𝜕𝑅

𝐿

𝑅

Figure 8.1.: Convention for the 𝐿 and 𝑅 cells orientation.

We assume that 𝜏𝐿 is invertible and we denote by 𝜏′
𝐿 its (invertible) Jacobian matrix. We also assume that 𝜏𝐿

is a direct transformation 
det 𝜏′

𝐿 > 0.

In our implementation 𝜏𝐿 is a quadratic map based on hexahedral curved ``H20'' finite elements with 20
nodes. The mesh of H20 finite elements is generated by gmsh [GR09].

On the reference cell, we consider the Gauss-Lobatto points ( ̂x𝑖)𝑖=0…𝑁𝑑−1, 𝑁𝑑 = (𝑑 + 1)𝐷 and associated
weights (𝜔𝑖)𝑖=0…𝑁𝑑−1. They are obtained by tensor products of the (𝑑 + 1) one-dimensional Gauss-Lobatto
(GL) points on ] − 1, 1[. The reference GL points and weights are then mapped to the physical GL points of
cell 𝐿 by

x𝐿,𝑖 = 𝜏𝐿( ̂x𝑖), 𝜔𝐿,𝑖 = 𝜔𝑖 det 𝜏′
𝐿(x̂𝑖) > 0. (8.9)

In addition, the six faces of the reference hexahedral cell are denoted by 𝐹𝜖, 𝜖 = 1 … 6 and the corresponding
outward normal vectors are denoted by ̂n𝜖. A big advantage of choosing the GL points is that the volume and
the faces share the same quadrature points. A special attention is necessary for defining the face quadrature
weights. If a GL point ̂x𝑖 ∈ 𝐹𝜖, we denote by 𝜇𝜖

𝑖 the corresponding quadrature weight on face 𝐹𝜖. We also
use the convention that 𝜇𝜖

𝑖 = 0 if ̂x𝑖 does not belong to face 𝐹𝜖. A given GL point ̂x𝑖 can belong to several
faces when it is on an edge or in a corner of 𝐿̂. Because of symmetry, we observe that if 𝜇𝜖

𝑖 ≠ 0, then the
weight 𝜇𝜖

𝑖 does not depend on 𝜖.

We then consider basis functions ̂𝜑𝑖 on the reference cell: they are the Lagrange polynomials associated
to the Gauss-Lobatto point and thus satisfy the interpolation property

𝜑̂𝑖( ̂x𝑗) = 𝛿𝑖𝑗.

The basis functions on cell 𝐿 are then defined according to the formula

𝜑𝐿,𝑖(x) = 𝜑̂𝑖(𝜏−1
𝐿 (x)).

In this way, they also satisfy the interpolation property

𝜑𝐿,𝑖(x𝐿,𝑗) = 𝛿𝑖𝑗. (8.10)

In this paper, we only consider conformal meshes: the GL points on cell 𝐿 are supposed to match the GL
points of cell 𝑅 on their common face. Dealing with non-matching cells is the object of a forthcoming work.

Let 𝐿 and 𝑅 be two neighboring cells. Let x𝐿,𝑗 be a GL point in cell 𝐿 that is also on the common face
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between 𝐿 and 𝑅. In the case of conformal meshes, it is possible to define the index 𝑗′ such that

x𝐿,𝑗 = x𝑅,𝑗′.

Applying a numerical integration to (8.8), using (8.9) and the interpolation property (8.10), we finally
obtain

𝜕𝑡𝑓𝐿,𝑖𝜔𝐿,𝑖 −
𝑁𝑑−1

∑
𝑗=0

v ⋅ ∇𝜑𝐿,𝑖(x𝐿,𝑗)𝑓𝐿,𝑗𝜔𝐿,𝑗+

6

∑
𝜖=1

𝜇𝜖
𝑖 (v ⋅ n𝜖(x𝐿,𝑖)+𝑓𝐿,𝑖 + v ⋅ n𝜖(x𝐿,𝑖)−𝑓𝑅,𝑖′) = 0. (8.11)

We have to detail how the gradients and normal vectors are computed in the above formula. LetA be a square
matrix. We recall that the cofactor matrix of A is defined by

co(A) = det(A) (A−1)𝑇 . (8.12)

The gradient of the basis function is computed from the gradients on the reference cell using (8.12)

∇𝜑𝐿,𝑖(x𝐿,𝑗) = 1
det 𝜏′

𝐿( ̂x𝑖)
co(𝜏′

𝐿( ̂x𝑗))∇̂𝜑̂𝑖( ̂x𝑗).

In the same way, the scaled normal vectors n𝜖 on the faces are computed by the formula

n𝜖(x𝐿,𝑖) = co(𝜏′
𝐿( ̂x𝑖)) ̂n𝜖.

We introduce the following notation for the cofactor matrix

c𝐿,𝑖 = co(𝜏′
𝐿( ̂x𝑖)).

The DG scheme then reads

𝜕𝑡𝑓𝐿,𝑖 − 1
𝜔𝐿,𝑖

𝑁𝑑−1

∑
𝑗=0

v ⋅ c𝐿,𝑗∇̂𝜑̂𝑖( ̂x𝑗)𝑓𝐿,𝑗𝜔𝑗+

1
𝜔𝐿,𝑖

6

∑
𝜖=1

𝜇𝜖
𝑖 (v ⋅ c𝐿,𝑖 ̂n𝜖

+𝑓𝐿,𝑖 + v ⋅ c𝐿,𝑖 ̂n𝜖
−𝑓𝑅,𝑖′) = 0. (8.13)

On boundary GL points, the value of 𝑓𝑅,𝑖′ is given by the boundary condition

𝑓𝑅,𝑖′ = 𝑓𝑏(x𝐿,𝑖), x𝐿,𝑖 = x𝑅,𝑖′.

For practical reasons, it is interesting to also consider 𝑓𝑅,𝑖′ as an artificial unknown in the fictitious cell. The
fictitious unknown is then a solution of the differential equation

𝜕𝑡𝑓𝑅,𝑖′ = 0. (8.14)

In the end, if we put all the unknowns in a large vector F(𝑡), (8.13), (8.14) read as a large system of coupled
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differential equations
𝜕𝑡F = LℎF. (8.15)

In the following, we call Lℎ the transport matrix. The transport matrix satisfies the following properties:

• LℎF = 0 if the components of F are all the same.

• Let F be such that the components corresponding to the boundary term vanish. Then F𝑇LℎF ≤ 0. This
dissipation property is a consequence of the choice of an upwind numerical flux.

• In many cases, and with a good numbering of the unknowns in F, Lℎ has a triangular structure. This
aspect is discussed in Subsection 8.3.1.

As stated above, we actually have to apply a transport solver for each constant velocity v𝑖.
Let 𝐿 be a cell of the mesh ℳ and x𝑖 a GL point in 𝐿. As in the scalar case, we denote by f𝐿,𝑖 the approxi-

mation of f in 𝐿 at GL point 𝑖. In the sequel, with an abuse of notation and according to the context, we may
continue to note F(𝑡) the big vector made of all the vectorial values f𝐿,𝑗 at all the GL points 𝑗 in all the (real or
fictitious) cells 𝐿.

We may also continue to denote by Lℎ the matrix made of the assembly of all the transport operators for
all velocities v𝑖. With a good numbering of the unknowns it is possible in many cases to suppose that Lℎ is
block-triangular. More precisely, because in the transport step the equations are uncoupled, we see that Lℎ

can be made block-diagonal, each diagonal block being itself block-triangular. See Section 8.3.1.

8.2.2. Palindromic time integration

We can also define an approximationNℎ of the collision operatorN. We define by F𝑒𝑞(F) the big vector made
of all the f𝑒𝑞(f𝐿,𝑖), 𝐿 ∈ ℳ, 𝑖 = 0 … 𝑁𝑑 − 1.

We set
NℎF = 1

𝜏
(F𝑒𝑞(F) − F). (8.16)

Similarly we note Gℎ the discrete approximation of the kinetic source term g.
The DG approximation of (8.1) finally reads

𝜕𝑡F = LℎF+ NℎF+ GℎF.

We use the following Crank-Nicolson second order time integrator for the transport equation:

exp(Δ𝑡Lℎ) ≃ 𝑇2(Δ𝑡) ∶= (I+ Δ𝑡
2
Lℎ)(I− Δ𝑡

2
Lℎ)−1. (8.17)

Similarly, for the collision integrator, we use

exp(Δ𝑡Nℎ) ≃ 𝐶2(Δ𝑡) ∶= (I+ Δ𝑡
2
Nℎ)(I− Δ𝑡

2
Nℎ)−1.

Because during the collision step, the conservative variablesw = Pf do not change, the collision integrator
is only apparently implicit. We have the explicit formula:

𝐶2(Δ𝑡)F =
(2𝜏 − Δ𝑡)F

2𝜏 + Δ𝑡
+

2Δ𝑡F𝑒𝑞(F)
2𝜏 + Δ𝑡

. (8.18)

The source operator is also approximated by a Crank-Nicolson integrator
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exp(Δ𝑡Gℎ) ≃ 𝑆2(Δ𝑡) ∶= (I+ Δ𝑡
2
Gℎ)(I− Δ𝑡

2
Gℎ)−1,

requiring to solve a nonlinear local equation whenever g depends on f.
If 𝜏 > 0, we observe that the operators 𝑇2 and 𝐶2 are time-symmetric: if we set 𝑂2 = 𝑇2 , 𝑂2 = 𝐶2, or

𝑂2 = 𝑆2, then 𝑂2 satisfies
𝑂2(−Δ𝑡) = 𝑂2(Δ𝑡)−1, 𝑂2(0) = 𝐼𝑑. (8.19)

This property implies that 𝑂2 is necessarily a second order approximation of the exact integrator [Hai+06;
MQ02] When 𝜏 = 0, we also remark that

𝐶2(Δ𝑡)F = 2F𝑒𝑞(F) − F ≠ F

and then 𝐶2 does not satisfy (8.19) anymore.
For 𝜏 > 0, the Strang formula permits us to construct a five steps second order time-symmetric approxi-

mation

𝑀𝑠
2 (Δ𝑡) = 𝑇2(Δ𝑡

2
)𝑆2(Δ𝑡

2
)𝐶2(Δ𝑡)𝑆2(Δ𝑡

2
)𝑇2(Δ𝑡

2
) = exp (Δ𝑡 (Lℎ + Nℎ + Sℎ)) + 𝑂(Δ𝑡3),

and a three step one

𝑀2(Δ𝑡) = 𝑇2(Δ𝑡
2

)𝐶2(Δ𝑡)𝑇2(Δ𝑡
2

) = exp (Δ𝑡 (Lℎ + Nℎ)) + 𝑂(Δ𝑡3),

in the source-less case.
However this formula is no more a second order approximation of (8.1) when 𝜏 → 0. Indeed, when 𝜏 = 0

𝑀2(0)F = 2F𝑒𝑞(F) − F.

As explained in [Cou+16] it is better to consider the following method, which remains second order accurate
even for infinitely fast relaxation:

𝑀𝑘𝑖𝑛
2 (Δ𝑡) = 𝑇2(Δ𝑡

4
)𝐶2(Δ𝑡

2
)𝑇2(Δ𝑡

2
)𝐶2(Δ𝑡

2
)𝑇2(Δ𝑡

4
).

By palindromic compositions of the second order method 𝑀𝑘𝑖𝑛
2 it is then very easy to achieve any even

order of accuracy (see [Cou+16]). However, in this paper, we concentrate on the parallel optimization of the
method and we shall only present numerical results at second order for the limit system 8.4. To that end
it is sufficient to use the method 𝑀2, as 𝑃𝑀2(0) properly converges towards identity on the macroscopic
variable space when 𝜏 → 0.

8.3. Optimization of the kinetic solver

In this section, we describe the optimizations that can be applied in the implementation of the previous
numerical method.

8.3.1. Triangular structure of the transport matrix

Because of the upwind structure of the numerical flux, it appears that the transport matrix is often block-
triangular. This is very interesting because this allows to apply implicit schemes to (8.15) without the costly
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inversion of linear systems [Mou+15]. We can provide the formal structure of Lℎ through the construction
of a directed graph 𝒢 with a set of vertices 𝒱 and a set of edges ℰ ⊂ 𝒱 × 𝒱. The vertices of the graph are
associated to the (real or fictitious) cells of ℳ. Consider now two cells 𝐿 and 𝑅 with a common face 𝐹𝐿𝑅.
We denote by n𝐿𝑅 the normal vector on 𝐹𝐿𝑅 oriented from 𝐿 to 𝑅. If there is at least one GL point x on 𝐹𝐿𝑅

such that
n𝐿𝑅(x) ⋅ v > 0,

then the edge from 𝐿 to 𝑅 belongs to the graph ( see Figure 8.2):

(a) Example of mesh (it is structured here but it is not
necessary)

0

1 3

2 4

5

10

6

7

8

9

(b) The corresponding dependency graph 𝒢

Figure 8.2.: Construction of the dependency graph. Left: example of mesh (it is structured here but it is
not necessary) with 9 interior cells. The velocity field 𝑣 is indicated by red arrows. We add two
fictitious cells: one for the upwind boundary condition (cell 9) and one for the outflow part of
𝜕Ω (cell 10). Right: the corresponding dependency graph 𝒢. By examining the dependency
graph, we observe that the values of F𝑛+1 in cell 0 have to be computed first, using the boundary
conditions. Then cells 1 and 3 can be computed in parallel, then cells 2, 4, and 6 can be computed
in parallel, then etc.

In (8.13) we can distinguish between several kinds of terms. We write

𝜕𝑡𝑓𝐿 + Γ𝐿←𝐿𝑓𝐿 + ∑
(𝑅,𝐿)∈ℰ

Γ𝐿←𝑅𝑓𝑅,
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with

Γ𝐿←𝐿𝑓𝐿 = − 1
𝜔𝐿,𝑖

𝑁𝑑−1

∑
𝑗=0

v ⋅ c𝐿,𝑗∇̂𝜑̂𝑖(x̂𝑗)𝑓𝐿,𝑗𝜔𝑗+

1
𝜔𝐿,𝑖

6

∑
𝜖=1

𝜇𝜖
𝑖v ⋅ c𝐿,𝑖 ̂n𝜖

+𝑓𝐿,𝑖,

and, if (𝑅, 𝐿) ∈ ℰ,

Γ𝐿←𝑅𝑓𝑅 = 1
𝜔𝐿,𝑖

𝜇𝜖
𝑖v ⋅ c𝐿,𝑖 ̂n𝜖

−𝑓𝑅,𝑖′.

We can use the following convention

(𝑅, 𝐿) ∉ ℰ ⇒ Γ𝐿←𝑅 = 0. (8.20)

Γ𝐿←𝐿 contains the terms that couple the values of 𝑓 inside the cell 𝐿. They correspond to diagonal blocks
of size (𝑑 + 1)𝐷 × (𝑑 + 1)𝐷 in the transport matrix Lℎ. Γ𝐿←𝑅 contains the terms that couple the values
inside cell 𝐿 with the values in the neighboring upwind cell 𝑅. If 𝑅 is a downwind cell relatively to 𝐿 then
𝜇𝜖

𝑖v ⋅ 𝐶𝐿,𝑖 ̂n𝜖
− = 0 and Γ𝐿←𝑅 = 0 is indeed compatible with the above convention (8.20).

Once the graph 𝒢 is constructed, we can analyze it with standard tools. If it contains no cycle, then it is
called a Directed Acyclic Graph (DAG). Any DAG admits a topological ordering of its nodes. A topological
ordering is a numbering of the cells 𝑖 ↦ 𝐿𝑖 such that if there is a path from 𝐿𝑖 to 𝐿𝑗 in 𝒢 then 𝑗 > 𝑖. In
practice, it is useful to remove the fictitious cells from the topological ordering. In our implementation they
are put at the end of the list.

Once the new ordering of the graph vertices is constructed, we can construct a numbering of the com-
ponents of F by first numbering the unknowns in 𝐿0 then the unknowns in 𝐿1, etc. More precisely, we
set

𝐹𝑘𝑁𝑑+𝑖 = 𝑓𝐿𝑘,𝑖.

Then, with this ordering, the matrix Lℎ is lower block-triangular with diagonal blocks of size (𝑑 + 1)𝐷 ×
(𝑑 + 1)𝐷. It means that we can apply implicit schemes to (8.15) without inverting large linear systems.

As stated above, we actually have to apply a transport solver for each constant velocity v𝑖. In the sequel,
with another abuse of notation and according to the context, we continue to note F the big vector made of all
the vectorial values f𝐿,𝑗 at all the GL points 𝑗 in all the (real or fictitious) cells 𝐿.

We may also continue to denote by Lℎ the matrix made of the assembly of all the transport operators
for all velocities v𝑖. With a good numbering of the unknown it is still possible to suppose that Lℎ is block-
triangular. More precisely, as in the transport step the equations are uncoupled, we see that Lℎ can be made
a block-diagonal matrix, each diagonal block being itself block-triangular.

8.3.2. Parallelization of the implicit solver

In this section, we explain how it is possible to parallelize the transport solver. Here again we consider
the single transport equation (8.7) and the associated differential equation (8.15). We apply a second order
Crank-Nicolson implicit scheme. We have explained in Section 8.2.2 how to increase the order of the scheme.
We compute an approximation F𝑛 of F(𝑛Δ𝑡). The implicit scheme reads

(I− Δ𝑡Lℎ)F𝑛+1 = (I+ Δ𝑡Lℎ)F𝑛. (8.21)
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As explained above, the matrices (I− Δ𝑡Lℎ) and (I+ Δ𝑡Lℎ) are lower triangular. It is thus possible to solve
the linear system explicitly cell after cell, assuming that the cells are numbered in a topological order.

It is possible to perform further optimization by harnessing the parallelism exhibited by the dependency
graph. Indeed, once the values of 𝑓 in the first cell are computed, it is generally possible to compute in
parallel the values of 𝑓 in neighboring downwind cells. For example, as can be seen on Figure 8.2, once the
values in cells 0, 1 and 2 are known, we can compute independently, and in parallel, the values in cells 2, 4
and 6.

We observe that at the beginning and at the end of the time step, the computations are ``less parallel''
than in the middle of the time step, where the parallelism is maximal.

Implementing this algorithm with OpenMP or using pthread is not very difficult. However, it requires to
compute the data dependencies between the computational tasks carefully, and to set adequate synchro-
nization points in order to get correct results. In addition, a rough implementation will probably not exhibit
optimized memory access. Therefore, we have decided to rely on a more sophisticated tool called StarPU1 for
submitting the parallel tasks to the available computational resources.

StarPU is a runtime system library developed at Inria Bordeaux [Aug+12]. It relies on the data-based
parallelism paradigm.

The user has first to split its whole problem into elementary computational tasks. The elementary tasks are
then implemented into codelets, which are simple C functions. The same task can be implemented differently
into several codelets. This allows the user to harness special acceleration devices, such as vectorial CPU cores,
GPUs or Intel KNL devices, for example. In the StarPU terminology these devices are called workers.

For each task, the user has also to describe precisely what are the input data, in read mode, and the
output data, in write or read-write mode. The user then submits the task in a sequential way to the StarPU
system. StarPU is able to construct at runtime a task graph from the data dependencies. The task graph
is analyzed and the tasks are scheduled automatically to the available workers (CPU cores, GPUs, etc.). If
possible, they are executed in parallel into concurrent threads. The data transfer tasks between the threads
are automatically generated and managed by StarPU, which greatly simplifies the programming.

When a StarPU program is executed, it is possible to choose among several schedulers. The simplest eager
scheduler adopts a very simple strategy, where the tasks are executed in the order of submission by the
free workers, without optimization. More sophisticated schedulers, such as the dmda scheduler, are able to
measure the efficiency of the different codelets and the data transfer times, in order to apply a more efficient
allocation of tasks.

Recently a new data access mode has been added to StarPU: the commute mode. In a task, a buffer of data
can now be accessed in commute mode, in addition to the write or read-write modes. A commute access
tells to StarPU that the execution of the corresponding task may be executed before or after other tasks
containing commutative access. This allows StarPU to perform additional optimizations.

There exists also a MPI version of StarPU. In the MPI version, the user has to decide an initial distribution
of data among the MPI nodes. Then the tasks are submitted as usual (using the function starpu_mpi_insert_-
task instead of starpu_insert_task). Required MPI communications are automatically generated by StarPU.
For the moment, this approach does not guarantee a good load balancing. It is the responsibility of the user
to migrate data from one MPI node to another for improving the load balancing, if necessary.

1http://starpu.gforge.inria.fr
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Figure 8.3.: Macrocell approach: an example of a mesh made of five macrocells. Each macrocell is then split
into several subcells. Only the subcells of the top macrocell are represented here (in green).

8.3.3. Macrocell approach

StarPU is quite efficient, but there is an unavoidable overhead due to the task submissions and to the on-the-
fly construction and analysis of the task graph. Therefore it is important to ensure that the computational
tasks are not too small, in which case the overhead is not amortized, or not too big, in which case some
workers are idle.

For achieving the right balance, we have decided not to apply directly the above task submission algorithm
to the cells but to groups of cells instead.

The implementation of the whole kinetic scheme has been made into the schnaps software. schnaps is a
C99 software dedicated to the numerical simulation of conservation laws.

In schnaps we construct first a macromesh of the computational domain. Then each macrocell of the
macromesh is split into subcells. See Figure 8.3. We also arrange the subcells into a regular sub-mesh of
the macrocells. In this way, it is possible to apply additional optimizations. For instance, the subcells 𝐿 of a
same macrocell ℒ can now share the same geometrical transformation 𝜏𝐿, which saves memory.

In schnaps we have also defined an interface structure in order to manage data communications between
the macrocells. An interface contains the faces that are common to two neighboring macrocells. We do not
proceed exactly as in Section 8.3.1 where the vertices of graph 𝒢 were associated to cells and the edges to
faces. Instead, we construct an upwind graph whose vertices are associated to macrocells, and edges to
interfaces. This graph is then sorted, and the macrocells are numbered in a topological order.

For solving one time step of one transport equation (8.21), we split the computations into several elementary
operations: for all macrocell ℒ taken in a topological order, we perform the following tasks:

1. Volume residual assembly: this task computes in the macrocell ℒ the part of the right hand side of
(8.21) that comes from the values of 𝑓 inside ℒ;

2. Interface residual assembly: this task computes, in the macrocell ℒ, the part of the right hand side of
(8.21) that comes from upwind interface values;
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3. Boundary residual assembly: this task computes, in the macrocell ℒ, the part of the right hand side of
(8.21) that comes from upwind boundaries values.

4. Volume solve: this task solves the local transport linear system in the macrocell.

5. Extraction: this task copies the boundary data of ℒ to the neighbor downwind interfaces.

Let us point out that in step 4 above, the macrocell local transport solver is reassembled and refactorized
at each time step: we have decided not to store a sparse linear system in the macrocell for each velocity v𝑖,
in order to save memory. The local sparse linear system is solved thanks to the KLU library [DP10]. This
library is able to detect efficiently sparse triangular matrix structures, which makes the resolution quite
efficient. In practice, the factorization and resolution time of the KLU solver is of the same order as the
residual assembly time.

In schnaps, we use the MPI version of StarPU. The macromesh is initially split into several subdomains
and the subdomains are distributed to the MPI nodes. Then the above tasks are launched asynchronously
with the starpu_mpi_insert_task function. MPI communications are managed automatically by StarPU.

It is clear that if we were solving a single transport equation our strategy would be very inefficient. Indeed,
the downwind subdomains would have to wait for the end of the computations of the upwind subdomains.
We are saved by the fact that we have to solve many transport equations in different directions. This helps
the MPI nodes to be equally occupied. Our approach is more efficient if we avoid a domain decomposition
with internal subdomains, because these subdomains have to wait the results coming from the boundaries.

In our approach it is also essential to launch the tasks in a completely asynchronous fashion. In this way, if
a MPI node is waiting for results of other subdomains for a given velocity v𝑖 it is not prevented from starting
the computation for another velocity v𝑗.

8.3.4. Collisions

In this section we explain how is computed the collision step (8.18). The computations are purely local to
each GL point, which makes the collision step embarrassingly parallel. However it is not so obvious to attain
high efficiency because of memory access. If the values of F are well arranged in memory in the transport
stage, it means that the values of f attached to a given velocity v𝑖 are close in memory, for a better data
locality. On the contrary, in the collision step at a given GL point, a better locality is achieved if the values of f
corresponding to different velocities are close in memory. Additional investigations and tests are needed in
order to evaluate the importance of data locality in our algorithm.

In our implementation, we have adopted the following strategy. We have first identified the following
task:

1. Reduction task for a velocity v𝑖: this task is associated with one macrocell ℒ. It computes the contri-
bution tow of the components of f that have been transported at velocity v𝑖 with formula (8.2). The
StarPU access to the buffer containingw is performed in read-write and commute modes. In this way
the contribution from each velocity can be added tow as soon as it is available.

2. Relaxation task for a velocity v𝑖: this task is associated to one macrocell ℒ. Once w is known, it
computes the components of f𝑒𝑞 corresponding to velocity v𝑖. Then it computes the relaxation step
(8.18) for the associated component of f.
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Figure 8.4.: D2Q9 and D3Q27 velocity grids.

In step 2 we can separate the computations for each velocity because the collision term (8.16) is diagonal. Some
Lattice Boltzmann Methods rely on non-diagonal relaxations. It can be useful for representing more general
viscous terms for instance. For non-diagonal relaxation we would have to change a little the algorithm.

We can now make a few comments about the storage cost of the method. In the end, we have to store
at each GL point x𝑖 and each cell 𝐿 the values of f𝐿,𝑖 and w𝐿,𝑖. We do not have to keep the values of the
previous time-step, f𝐿,𝑖 and w𝐿,𝑖 can be replaced by the new values as soon as they are available. In this
sense, our method is ``low-storage''. As explained in [Cou+16] it is also possible to increase the time order of
the method, without increasing the storage.

8.3.5. Scaling test

For all performance tests presented in this section, we used standard models from the family Lattice-
Boltzmann-Method (LBM) kinetic models devised for the simulation of Euler/Navier Stokes systems. We
will not give a detailed description of their properties from the modeling point of view: we simply take
them as good representative of the typical workload of kinetic relaxation schemes. The most relevant
feature impacting the performance of our algorithm is the discrete velocity set of the kinetic model, which
determines the task graph structure of the transport step when combined with a particular mesh topology.
In standard LBM models, velocity sets are usually built-up from a sequence of pairs of opposite velocities
with an additional zero velocity node. On Figure 8.4 we show the two representative velocity sets of the
2𝐷𝑄9 and 3𝐷𝑄27 LBM models.

8.3.5.1. Multithread performance (D2Q9, D3Q*)

We first tested the multithread performance of our implementation for the full (transport + relaxation)
scheme for the standard D2Q9 model. All tests were performed on a single node of the IRMA-ATLAS cluster,
with 24 available cores. We considered several square meshes build-up from 1 to 64 macrocells. The number of
geometric degrees of freedom per element has been kept constant with a value of 3375 points per macrocell,
so that the workload per macrocell did not change. For each mesh, we allowed StarPu to use from 1 to the
full 24 cores of the node and measured the total wall time. The results for this first batch of performance
measurements are given in Fig. 8.5. First we verify that for 1 unique macrocell, parallel performance saturates
when the number of cores roughly equals the number of velocities in the model. This is to be expected, as
no topological parallelism can be exploited in that case. Increasing the number of macro-element allows
to take advantage of topological parallelism. For that workload, parallel efficiency saturates at about 80,
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Figure 8.5.: Multithread scaling for the D2Q9 model and a collection of square meshes from 1 to 64 macro-
elements.

which is quite good. On Fig. 8.6, we considered on the same cubic mesh three different models differing
by the number of velocity values. Those cases exhibit a large amount of potential parallelism, due to the
large number of velocities combined with the macrocell decomposition. On an ideal machine, they could in
theory scale perfectly up to 24 cores. The observed saturation, still around 80 efficiency, is still quite good and
comes from the unavoidable concurrency in memory access between the various cores and the scheduling
overhead. It is important to note when considering those results that the bulk of the computational cost
occurs in the transport step of the algorithm: though the collision step forces synchronization between all
the fields corresponding to individual velocities for the computation of the macroscopic fields, its actual
cost is negligible in regard of the transport step.

8.3.5.2. MPI scaling: D3Q15 in a torus

Having verified the good multithread performance of our code on a single node, we now check whether
for larger problem sizes the workload can be distributed among several computing nodes. To that end,
accounting for the fact that we aim notably at performing simulations for Tokamak physics, we considered a
toroidal mesh subdivided into 720 macrocells. The workload distribution across nodes was made using a
standard domain decomposition approach: the mesh was partitioned statically into as many sub-domains
as computing nodes, ranging from 1to 4 for our experiment on the IRMA-ATLAS cluster. From an imple-
mentation point of view, the transition from a multithreaded code to a hybrid MPI/multithread one is made
fairly easy by StarPU. When declaring data to StarPU, one simply has to specify the MPI process owning
the data. At runtime, each MPI process hosts a local scheduler instance which acts only on data relevant to
the local execution graph. All MPI communications are handled transparently by the local scheduler when
inter-node data transfers are necessary. In table 8.1 we show the wall time for a hundred iterations of the
full scheme for the D3Q15 model. The number of available threads per node was set to 14, matching the
number of velocities actually participating in transport (there is one null velocity in the model). We observe
a super-linear scaling when the load is spread from 1to 4 node. This is not surprising for such an experiment
with fixed total problem size as both the memory load and size of the local task graph for each decrease when
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Figure 8.6.: Multithread scaling on a 4x4x4 macro-element mesh for models D3Q15, D3Q19 and D3Q27

Figure 8.7.: Toroidal macromesh (720 macrocells) - Mesh partitions used in the MPI scaling tests.

the number of sub-domains increases.

8.4. Numerical results

8.4.1. Euler with gravity

For this test case we consider the isothermal Euler equations in two dimensions with a constant gravity
source term

𝜕𝑡𝜌 + 𝜕𝑘(𝜌uk) = 0, (8.22)

𝜕𝑡(𝜌u𝑘) + 𝜕𝑗Π𝑘𝑗 = 𝜌g, (8.23)

with Π = ⎡
⎢
⎣

𝜌𝑐2 + 𝜌𝑢2
𝑥 𝜌𝑢𝑥𝑢𝑦

𝜌𝑢𝑥𝑢𝑦 𝜌𝑐2 + 𝑢2
𝑦

⎤
⎥
⎦

and g = −𝑔e𝑦.

Nthreads/Nmpi 1 2 3 4

14 6862 2772 1491 1014

Table 8.1.: Wall time (in seconds) for the D3Q15 model for 1 to 4 mpi processes with 14 threads per process.
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The conservative variables vector is thusw = [𝜌, 𝜌𝑢𝑥, 𝜌𝑢𝑦]𝑡 . The kinetic model is the standard 𝐷2𝑄9 one
with nine velocities

V = 𝜆diag [(0, 0), (1, 0), (0, 1), (−1, 0), (0, −1), (1, 1), (−1, 1), (−1, −1), (1, −1)] (8.24)

and the (3 × 9) projection matrix 𝑃 reads

𝑃 =
⎡
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1

0 𝜆 0 −𝜆 0 𝜆 −𝜆 −𝜆 𝜆

0 0 𝜆 0 −𝜆 𝜆 𝜆 −𝜆 −𝜆

⎤
⎥
⎥
⎥
⎦

, (8.25)

i.e 𝜌 = ∑𝑖 𝑓𝑖, 𝜌u = ∑𝑖 𝑓𝑖v𝑖.
The equilibrium distribution function is given by

𝑓𝑖 = 𝑤𝑖𝜌 (1 +
(u ⋅ v𝑖)

𝑐2 +
(u ⋅ v𝑖)2

2𝑐4 − u ⋅ u
2𝑐2 ) (8.26)

with 𝑐 = 𝜆/
√

3, and the weights 𝑤0 = 4
9

, 𝑤𝑖 = 1
9

for 𝑖 = 1, … , 4, 𝑤𝑖 = 1
36

for 𝑖 = 5, … , 8.
The stationary solution for a fluid at rest in the gravity field is

𝜌 = 𝜌0 exp(−𝑔𝑦/𝑐2), u = 0 (8.27)

For this test case, the numerical scheme is made up of three stages: a transport step (T), a source step
(S) where the source is applied on the equilibrium part of the distribution function, and the collision step
(C). Due to the absence of explicit time dependency and the linearity inw of the source, the local nonlinear
resolution of the source operator converges in one Picard iteration. All steps are implemented as weighted
implicit schemes, parametrized by a weight 𝜃 and a time stepΔ𝑡.

We compared several 1𝑠𝑡 and 2𝑛𝑑 order splitting schemes built up from either fully implicit (𝜃 = 1) first
order or Crank-Nicolson (𝜃 = 1

2
) steps:

• Lie first order splitting scheme 𝑀𝑠
1 = 𝑇1(Δ𝑡)𝑆1(Δ𝑡)𝐶1(Δ𝑡) with first order building blocks.

• Lie first order splitting scheme 𝑀𝑠
1,2 = 𝑇2(Δ𝑡)𝑆2(Δ𝑡)𝐶2(Δ𝑡) with second order building blocks, for

which the order loss comes from the splitting error.

• a palindromic second order Strang scheme 𝑀𝑠
2 = 𝑇2(Δ𝑡

2
)𝑆2(Δ𝑡

2
)𝐶2(Δ𝑡)𝑆2(Δ𝑡

2
)𝑇2(Δ𝑡

2
) .

• a collapsed version of the second order Strang scheme 𝑀𝑠
2 for which the last transport substep of each

global step and the first transport substep of the next one are fused in a single 𝑇2(Δ𝑡) substep except
obviously for the first and last time steps of the simulation.

We performed time order convergence tests on a 2𝐷 square mesh partitioned into 4 × 4 macrocells with
1024 points per macrocell. As shown by Fig. 8.8, we obtain the expected convergence orders for each of the
splitting schemes used.

8.4.2. 2D Flow around a cylinder using a penalization method

In this test case we considered the flow of a fluid in a rectangular duct with a cylindrical solid obstacle. The
simulation domain is the rectangle [−1, 1] × [−5, 5]
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Figure 8.8.: Time order convergence for the 2𝐷 Euler gravity test case with 𝐷2𝑄9 model. Convergence is
estimated using the relative 𝐿2 error 𝜖 on macroscopic variables with respect to the analytical
solution at 𝑡𝑚𝑎𝑥 ≈ 0.12. The reference values (Δ𝑡𝑟𝑒𝑓, 𝜖𝑟𝑒𝑓) of the logarithmic scale are Δ𝑡𝑟𝑒𝑓 =
0.024, 𝜖𝑟𝑒𝑓 = 0.0143.

The effect of the obstacle on the flow is modeled using a volumic source term of the form

s = 𝐾(x)(w− w𝑠), (8.28)

withw𝑠 = [1.0, 0, 0]𝑡 the target fluid state in the ``solid'' part of the domain and the relaxation frequency
𝐾(x) is given by

𝐾(x) = 𝐾𝑠 exp(−𝜅(x− x𝑐)2), (8.29)

with 𝐾𝑠 = 300, x𝑐 = [−4, 0]𝑡and 𝜅 = 40. The net effect is a very stiff relaxation towards a flow with zero
velocity and the reference density near the center x𝑐 of the frequency mask. The effective diameter of the
cylinder for this simulation is about 0.5. The initial state, which is also applied at the duct boundaries for the
whole simulation is 𝜌 = 1, 𝑢𝑥 = 0.03, 𝑢𝑦 = 0. Accounting for the fact that for this model the sound speed is
1/

√
3, the Mach number of the unperturbed flow is approximately 0, 017. The simulation was performed on

a macromesh with 16 × 16 macrocells stretched with a 1 ∶ 5 aspect ratio to match the domain dimension;
each macrocell contains 12 × 60 integration points. On figure 8.9 we show the vorticity norm at 𝑡 = 83,
when turbulence is well developed in the wake of the obstacle.

8.5. Conclusion

In this paper, we have presented an optimized implementation of the Palindromic Discontinuous Galerkin
Method for solving kinetic equations with stiff relaxation. The method presents the following interesting
features:

• It can be used for solving any hyperbolic system of conservation laws.

• It is asymptotic-preserving with respect to the stiff relaxation.
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Figure 8.9.: . Flow around cylindrical obstacle. Vorticity norm |∇ × 𝑢| at 𝑡 = 83, showing the turbulent field
behind the obstacle.

• It is implicit and thus is not limited by CFL conditions.

• Despite being formally implicit, it requires only explicit computations.

• It is easy to increase the time order with a composition method.

• It presents many opportunities for parallelization and optimization: in this paper we have presented
the parallelization of the method with the aid of the MPI version of the StarPU runtime system. In
this way we address both shared memory and distributed memory MIMD parallelism.

Our perspectives are now to apply the method for computing MHD instabilities in tokamaks. We will also
try to extend the method to more general boundary conditions.
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CONVERGENCE RATES OF MONOTONE SCHEMES FOR
CONSERVATION LAWS WITH DISCONTINUOUS FLUX∗

JAYESH BADWAIK† AND ADRIAN M. RUF‡

Abstract. We prove that a class of monotone finite volume schemes for scalar conservation laws
with discontinuous flux converge at a rate of

√
∆x in L1, whenever the flux is strictly monotone in

u and the spatial dependency of the flux is piecewise constant with finitely many discontinuities.
We also present numerical experiments to illustrate the main result. To the best of our knowledge,
this is the first proof of any type of convergence rate for numerical methods for conservation laws
with discontinuous, nonlinear flux. Our proof relies on convergence rates for conservation laws with
initial and boundary value data. Since those are not readily available in the literature we establish
convergence rates in that case en passant in the appendix.

Key words. hyperbolic conservation laws, discontinuous flux, numerical methods, convergence
rate
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1. Introduction. We prove a convergence rate for a class of monotone, upwind-
type finite volume schemes for scalar conservation laws with discontinuous flux of the
form

ut + f(k(x), u)x = 0, (x, t) ∈ R× (0, T ),

u(x, 0) = u0(x), x ∈ R.
(1.1)

Here, we assume that the flux f is strictly monotone in u and has a discontinuous
spatial dependency through the coefficient k which is piecewise constant with finitely
many discontinuities.

Main Theorem. Let f be strictly monotone in u in the sense that fu > 0, k
piecewise constant with finitely many discontinuities, and u0 ∈ (L1 ∩ BV)(R). Then
all monotone finite volume methods with the upwind property which obey the discrete
Rankine–Hugoniot condition across the discontinuities of k converge at a rate of

√
∆x

to the unique entropy solution of the conservation law (1.1).

The full theorem is stated in section 5. Our proof uses the Rankine–Hugoniot
condition at the discontinuities of k to break down the problem into finitely many
initial-boundary value problems for each of which we will prove a convergence rate
using the classical “doubling of variables” technique.

1.1. Background on conservation laws with discontinuous fluxes. Prob-
lem (1.1) is of great practical interest in several areas of physics and engineering. In
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particular, it arises in modeling traffic flow on highways with changing road conditions
(see [25]), in the modeling of two-phase flow in a porous medium (see [13, 32]), and
in modeling sedimentation processes (see [11, 7]).

The flux in (1.1) depends on the space variable through a coefficient k which may
be discontinuous. The dependence can, for example, be of the additive type, i.e.,
f(k(x), u) = f(u) − k(x) (see [14]), or of the multiplicative type, i.e., f(k(x), u) =
k(x)f(u) which is more common (see, e.g., [37]). However, for the sake of generality we
do not assume any particular algebraic structure of the flux f(k(x), u) here. The case
we consider in this paper where k is piecewise constant with finitely many discontinu-
ities corresponds to switching from one u-dependent flux function, f (i−1), to another,
f (i), across a discontinuity ξi of k. The case when k has just one discontinuity—the
so-called two flux case—given by

ut + (H(x)f(u) + (1−H(x))g(u))x = 0(1.2)

where H is the Heaviside function was studied in a series of papers by Adimurthi,
Mishra, and Gowda (see [27, 2, 1] and references therein). Most notably, in [2],
the authors showed existence of infinitely many L1-stable semigroups of solutions
to (1.2). We remark that, because of the assumption that k is piecewise constant,
the convergence rate of monotone schemes for (1.2) will be the building block for the
general case of (1.1).

Equations of type (1.1) have been dealt with extensively in the literature from
a purely academic point of view as well as with a specific application in mind. In
[12, 13], Gimse and Risebro calculated solutions for the Riemann problem assuming
convexity of the flux in u and used the solutions to show existence of a weak solution
for the general Cauchy problem with a front tracking algorithm. Other results based
on the front tracking algorithm were obtained in [20, 19, 6, 21, 7], and in [9] with
a time-dependent discontinuous coefficient. Out of the aforementioned results, we
want to highlight [6] from Baiti and Jenssen who proved existence and uniqueness of
entropy solutions in the case that the flux is strictly monotone in u which is the case
we consider in this paper as well.

The first results for finite volume schemes for (1.1) (assuming a multiplicative
spatial dependency) were obtained by Towers in [37, 38]. Specifically, in [37], the
author developed staggered versions of the Godunov and Engquist–Osher schemes
for the case where f is convex in u and k is strictly positive. In [38] similar results
were proved for the case of non-convex fluxes. In [16], Karlsen, Risebro, and Towers
studied (1.1) with an added degenerate parabolic term using an Engquist–Osher-type
scheme and in [17] the authors proved existence of the vanishing viscosity limit using
compensated compactness. In [18], Karlsen and Towers showed convergence of the
Lax–Friedrichs scheme for (1.1) (with a time-dependent discontinuous coefficient).
They were able to handle very general fluxes and sign-changing coefficients by using
compensated compactness.

A general framework for well-posedness of (1.2) was proposed by Andreianov,
Karlsen, and Risebro in [3].

Lastly, we want to point out that the monotonicity assumption, fu > 0, we use
in this paper implies that the equivalent system

ut + f(k, u)x = 0,

kt = 0

is hyperbolic and not resonant; see [37, 38, 19, 20, 21].
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1.2. Background on convergence rates. When dealing with numerical meth-
ods for (1.1), where an approximate solution u∆t depends on a grid discretization
parameter ∆x, having a provable bound of the type

‖u(T )− u∆t(T )‖L1(R) ≤ C∆xr

—specifying how fast the numerical scheme converges—is highly desirable. Specif-
ically, convergence rates can be used for a posteriori error based mesh adaptation
[39] and optimal design of multilevel Monte Carlo methods [5]. To this date the only
result concerning convergence rates of finite volume schemes for conservation laws
with discontinuous flux is due to Wen and Jin and pertains the most basic case of
the linear advection equation with piecewise constant wave speed that changes across
a single discontinuity [40]. So far, in the nonlinear case, convergence rates of finite
volume schemes for (1.1) are only available in the absence of a spatial dependency,
i.e., k being constant. The main difficulty in obtaining convergence rates when the
flux has a discontinuous spatial dependency is that in this case the classical “doubling
of variables” technique (see [22]) involves both terms with k(x) and terms with k(y).

In the case of a spatially independent flux the seminal paper by Kuznetsov [23]
shows that monotone schemes converge towards the entropy solution of (1.1) without
spatial dependency at a rate of O(

√
∆x) in L1. This rate was proved for initial data

in (L1 ∪ BV)(R), and in this generality the rate O(
√

∆x) is in fact optimal, as was
shown by Şabac in [34]. There are certain classes of initial data for which higher
orders of convergence for monotone schemes have been shown; e.g., Teng and Zhang
[36] showed a convergence rate of O(∆x) for the case of piecewise constant initial
data. See also [33] for a more comprehensive overview of convergence rate results
for (1.1) without spatial dependency.

An alternative approach to convergence rates in the case where the flux only
depends on u was initiated by Nessyahu, Tadmor, and Tassa [28, 29]. The authors
used the Wasserstein distance instead of the L1 norm and were able to show that
a large class of monotone schemes converge at a rate of O(∆x) in the Wasserstein
distance for Lip+-bounded, compactly supported initial data. This rate was recently
proved to be optimal by Ruf, Sande, and Solem [33].

Since the proof of our main theorem makes use of convergence rates for conser-
vation laws on bounded domains, it is worth mentioning that Ohlberger and Vovelle
claimed a convergence rate of O(∆x

1/3) for conservation laws with initial and bound-
ary data in one dimension [30, page 135]. In our specific case of a strictly monotone
flux, however, we are able to prove a better rate of O(

√
∆x).

1.3. Outline of the paper. We have organized the paper in the following way.
In section 2, we will define entropy solutions of (1.1) and show that—when restricted
to a subdomain between two neighboring discontinuities of k—they are entropy so-
lutions of a certain initial boundary value problem with spatially independent flux.
Here the respective boundary datum is given through the Rankine–Hugoniot condi-
tion across a discontinuity of k. In section 3, we describe our finite volume scheme
and show that we can establish a convergence rate of our numerical method for (1.1)
by proving a convergence rate for each of those initial-boundary value problems. In
section 4, we start by considering just one discontinuity of k, i.e., (1.2), and proving
a convergence rate on R− and R+ separately. Section 5 contains the statement and
proof of the main result where we use the translation invariance of conservation laws
and the results of the previous section in our main proof. Section 6 describes nu-
merical experiments that illustrate our convergence rate result as well as the class of
fluxes that is covered by our theory. In section 7, we summarize the findings of this
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610 JAYESH BADWAIK AND ADRIAN M. RUF

paper and provide an outlook. Lastly, in Appendix A, we show that—with minimal
changes—our results can be applied to general initial-boundary value problems where
the prescribed boundary datum is arbitrary.

2. Preliminaries. Throughout this paper, we will assume that the initial datum
u0 is integrable, bounded, and of finite total variation, i.e., u0 ∈ (L1 ∩ BV)(R), and
that f is strictly monotone in u, i.e., fu ≥ α > 0. Further, we will denote the
discontinuities of k as ξ1, . . . , ξN and the interval between two adjacent discontinuities
as Di = (ξi, ξi+1), i = 0, . . . , N . Here, we used the notation ξ0 = −∞ and ξN+1 =∞.
Then we can write

f(k(x), ·) =: f (i)(·) for x ∈ Di.

We will consider entropy solutions of (1.1) in the following sense.

Definition 2.1 (entropy solution). We say u ∈ C([0, T ]; L1(R))∩L∞((0, T )×R)
is an entropy solution of (1.1) if for all c ∈ R

N∑
i=0

(∫ T

0

∫
Di

(
|u− ci|ϕt + sign(u− ci)

(
f (i)(u)− f (i)(ci)

)
ϕx

)
dxdt

−
∫
Di

|u(x, T )− ci|ϕ(x, T ) dx+

∫
Di

|u0(x)− ci|ϕ(x, 0)) dx

−
∫ T

0

sign(u(ξi+1−, t)− ci)
(
f (i)(u(ξi+1−, t))− f (i)(ci)

)
ϕ(ξi+1, t) dt

+

∫ T

0

sign(u(ξi+, t)− ci)
(
f (i)(u(ξi+, t))− f (i)(ci)

)
ϕ(ξi, t) dt

)
≥ 0

for all nonnegative ϕ ∈ C∞(R× [0, T ]). Here, the ci are given by c0 := c and

ci+1 =
(
f (i+1)

)−1 (
f (i)(ci)

)
for i = 1, . . . , N.(2.1)

Remark 2.2. Note that, due to the monotonicity of the fluxes f (i), the inverse of
f (i) used in (2.1) and throughout this paper exists.

Remark 2.3. Note that existence and uniqueness of entropy solutions of (1.1)
are guaranteed by the theory developed by Baiti and Jenssen in [6] using adapted
entropies in the sense above (cf. also [4] where adapted entropies are used as well).
In particular, the traces in Definition 2.1 are well defined (cf. [3, Remark 2.3])

Remark 2.4. Like for conservation laws without (discontinuous) spatial depen-
dency of the flux, a Rankine–Hugoniot-type argument shows that weak solutions
of (1.1) necessarily satisfy the Rankine–Hugoniot condition across all discontinu-
ities ξi, i.e.,

f (i−1)(u(ξi−, t)) = f (i)(u(ξi+, t)).(2.2)

The following observation is at the heart of the proof of the main result. The en-
tropy solution u of (1.1) can be decomposed as u =

∑N
i=0 u

(i), where u(i) := u1Di×[0,T ]

such that u(0) solves

u
(0)
t + f (0)

(
u(0)

)
x

= 0, (x, t) ∈ D0 × (0, T ),

u(0)(x, 0) = u0(x), x ∈ D0

(2.3)
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX 611

and u(i) solves

u
(i)
t + f (i)

(
u(i)
)
x

= 0, (x, t) ∈ Di × (0, T ),

u(i)(x, 0) = u0(x), x ∈ Di,

u(i)(ξi+, t) =
(
f (i)
)−1 (

f (i−1)(u(i−1)(ξi−, t))
)
, t ∈ (0, T )

(2.4)

for i = 1, . . . , N (cf. Definitions 4.1 and 4.5 below). Note that the boundary condition
on the domain Di, i = 1, . . . , N , given by the last line of (2.4) reflects the Rankine–
Hugoniot condition (2.2).

Conversely, if u(0) is the entropy solution of (2.3) on D0 and u(i) is the entropy

solution of (2.4) on Di for i = 1, . . . , N , then the composite function u :=
∑N
i=0 u

(i)

is the entropy solution of (1.1) in the sense of Definition 2.1. This can be seen by
adding the entropy inequalities of u(i) and choosing the respective constant in each
entropy inequality in accordance with (2.1).

In the remainder of the paper, we will construct a numerical scheme which sat-
isfies the Rankine–Hugoniot condition (2.2) (or, equivalently, the last line of (2.4))
across the discontinuities of k on the discrete level. This scheme, when restricted to
the subdomain Di, will converge towards the entropy solution on Di. The discrete
Rankine–Hugoniot condition will then allow us to break down the problem of finding
a convergence rate on the whole real line to finding convergence rates on each of the
subdomains Di.

3. The numerical scheme. We discretize the domain R×[0, T ] using the spatial
and temporal grid discretization parameters ∆x and ∆t. The resulting grid cells then
are Cj = (xj−1/2, xj+1/2) and Cn = (tn, tn+1) for points xj+1/2 such that xj+1/2 −
xj−1/2 = ∆x, j ∈ Z, and tn = n∆t for n = 0, . . . ,M + 1. Note that T = (M + 1)∆t.
Further we write Cnj to denote the rectangle Cj × Cn.

In the following we will assume that the grid is aligned in such a way that all
discontinuities of k lie on cell interfaces, i.e., ξi = xPi−1/2 for some integers Pi, i =
1, . . . , N . In general this can easily be achieved by considering a globally nonuniform
grid that is uniform on each Di and then taking ∆x = maxi=0,...,N ∆xi where ∆xi is
the grid discretization parameter in Di. For simplicity, however, here we will assume
that the grid is uniform on the whole real line.

Further, we will consider two-point numerical fluxes F (u, v) that have the upwind
property such that if f ′ ≥ 0, then F (u, v) = f(v). Such fluxes include the upwind
flux, the Godunov flux, and the Engquist–Osher flux. Thus, the numerical scheme we
will analyze is the following:

un+1
j = unj − λ

(
f (i)(unj )− f (i)

(
unj−1

))
, n ≥ 0, Pi < j < Pi+1, 0 ≤ i ≤ N,

u0
j =

1

∆x

∫
Cj
u0(x) dx, j ∈ Z,

un+1
Pi

=
(
f (i)
)−1 (

f (i−1)
(
un+1
Pi−1

))
, n ≥ 0, 0 < i ≤ N,

(3.1)

where λ = ∆t/∆x. We assume that the grid discretization parameters satisfy the
CFL condition

max
i

max
u

(
f (i)
)′

(u)λ ≤ 1.(3.2)
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612 JAYESH BADWAIK AND ADRIAN M. RUF

Note that the last line of (3.1) represents a discrete version of the Rankine–
Hugoniot condition (2.2). Here, we use the ghost cells CPi , i = 1, . . . , N to explicitly
enforce the Rankine–Hugoniot condition on the discrete level. While this makes the
numerical scheme (3.1) nonconservative, the convergence result in this paper, cou-
pled with the fact that the limit is conservative, shows that the contribution of the
nonconservative part of the scheme vanishes in the limit.

To get a convergence rate of the numerical scheme (3.1) we decompose the entropy

solution u as u =
∑N
i=0 u

(i) where u(i), i = 0, . . . , N , are the respective entropy

solutions on Di and the numerical solution u∆t as
∑N
i=0 u

(i)
∆t where

u
(i)
∆t(x, t) =

{
unj if (x, t) ∈ Cnj ⊂ Di × Cn,
0 otherwise.

Then we have

‖u(T )− u∆t(T )‖L1(R) =
N∑
i=0

∥∥∥u(i)(T )− u(i)
∆t(T )

∥∥∥
L1(Di)

,

and the problem of finding a convergence rate for u∆t can be broken down to finding

convergence rates for u
(i)
∆t on each of the subdomains Di. In the following sections,

we will show that ∥∥∥u(i)(T )− u(i)
∆t(T )

∥∥∥
L1(Di)

≤ C
√

∆x.

Note that convergence of the numerical scheme (3.1) towards the entropy solution of
(1.1) follows from our convergence rate estimate. At this point we want to point out
that instead of assuming fu > 0 our proof can readily be adapted for the case fu < 0.

4. Convergence rates for fluxes with one discontinuity. We will first con-
sider the case where k has just two constant values separated by a discontinuity ξ1,
and for ease of notation we will assume that ξ1 = 0. Further, we will denote the flux
left of ξ1 as g and right of ξ1 as f . In order to get a convergence rate for problem (1.1)
we will derive convergence rates on D0 = R−, on D1 = R+, and on (0, L) for L > 0.

4.1. Convergence rate estimates on R−. As a first step we consider the
initial value problem

ut + g(u)x = 0, (x, t) ∈ R− × (0, T ),

u(x, 0) = u0(x), x ∈ R−
(4.1)

on R− with the flux g being strictly monotone and consider entropy solutions in the
following sense.

Definition 4.1 (entropy solution on R−). We say u ∈ C([0, T ]; L1(R−)) ∩
L∞((0, T )× R−) is an entropy solution of (4.1) if for all c ∈ R,∫ T

0

∫
R−

(|u− c|ϕt + |g(u)− g(c)|ϕx) dx dt−
∫
R−
|u(x, T )− c|ϕ(x, T ) dx

+

∫
R−
|u0(x)− c|ϕ(x, 0)) dx−

∫ T

0

|g(u(0−, t))− g(c)|ϕ(0, t) dt ≥ 0

for all nonnegative ϕ ∈ C∞((−∞, 0]× [0, T ]).

Note that here u(0−, t) denotes the limit of u(x, t) as x→ 0 from the left.
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX 613

As before, we will write Cj = (xj−1/2, xj+1/2), j ∈ Z, where now x−1/2 := 0. Our
numerical scheme then reads

un+1
j = unj − λ

(
g(unj )− g

(
unj−1

))
, j < 0, n ≥ 0,

u0
j =

1

∆x

∫
Cj
u0(x) dx, j < 0,

(4.2)

where λ = ∆t/∆x satisfies the CFL condition (3.2).
We note that the numerical scheme satisfies a discrete entropy inequality away

from the spatial boundary

Dt
+η

n
j +D−q

n
j ≤ 0, n ≥ 1, j < 0(4.3)

which can be seen by adopting the classical Crandall–Majda arguments in [10, Propo-
sition 4.1] for j < 0. Here, ηnj = η(unj , c) = |unj − c|, qnj = q(unj , c) = sign(unj − c)
(g(unj )− g(c)) = |g(unj )− g(c)|, and

Dt
+a

n =
an+1 − an

∆t
and D−aj =

aj − aj−1

∆x

denote standard difference operators.
In order to derive convergence rates we will develop a Kuznetsov-type lemma in

the following. For any function u ∈ C([0, T ]; L1(R−)) we define

L(u, c, ϕ) =

∫ T

0

∫
R−

(|u− c|ϕt + q(u, c)ϕx) dx dt−
∫
R−
|u(x, T )− c|ϕ(x, T ) dx

+

∫
R−
|u0(x)− c|ϕ(x, 0) dx−

∫ T

0

q(u(0−, t), c)ϕ(0, t) dt,

where q(u, c) = |g(u)− g(c)| is the Kružkov entropy flux. Note that if u is an entropy
solution of (4.1), then L(u, c, ϕ) ≥ 0 for all c ∈ R and test functions ϕ ≥ 0. We now
take c = v(y, s) and the test function

ϕ(x, t, y, s) = ωε(x− y)ωε0(t− s),

where ωε, ωε0 are standard symmetric mollifiers for ε, ε0 > 0. Note that ϕt = −ϕs,
ϕx = −ϕy, and

ϕ(x, t, y, s) = ϕ(y, t, x, s) = ϕ(y, s, x, t) = ϕ(x, s, y, t)(4.4)

as well as ∫
R
ωε(x− y) dy ≤ 1,∫ T

0

ωε0(t− s) ds ≤ 1,

∫
R
|ω′ε(x− y)|dy ≤ C

ε
,∫ T

0

|ω′ε0(t− s)|ds ≤ C

ε0

(4.5)

for all x ∈ R, t ∈ [0, T ]. Let now

Λε,ε0(u, v) =

∫ T

0

∫
R−

L(u, v(y, s), ϕ(·, ·, y, s)) dy ds.(4.6)

For functions w ∈ C([0, T ]; L1(R−)), we further define the moduli of continuity
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614 JAYESH BADWAIK AND ADRIAN M. RUF

νt(w, ε0) = sup
|σ|≤ε0

‖w(·, t+ σ)− w(·, t)‖L1(R−),

µ(w(·, t), ε) = sup
|z|≤ε

‖w(·+ z, t)− w(·, t)‖L1(R−).

Lemma 4.2 (Kuznetsov-type lemma). Let u be the entropy solution of (4.1).
Then, for any function v : [0, T ] → (L1 ∩ BV)(R−) such that the one-sided limits
v(t±) exist in L1, we have

‖u(·, T )− v(·, T )‖L1(R−)

+

∫ T

0

∫
R−

∫ T

0

(q(u(0−, t), v(y, s)) + q(v(0−, t), u(y, s)))ϕ(0, t, y, s) dtdy ds

≤ ‖u0 − v(·, 0)‖L1(R−) − Λε,ε0(v, u)

+ C

(
ε+ ε0 + νT (v, ε0) + ν0(v, ε0) + µ(v(·, T ), ε)) + µ(v(·, 0), ε))

)
for some constant C independent of ε and ε0.

Proof. Using that ϕt = −ϕs, ϕx = −ϕy and the symmetry relations (4.4) we get

Λε,ε0(u, v)

= −Λε,ε0(v, u)

−
∫ T

0

∫
R−

∫
R−

(|u(x, T )− v(y, s)|+ |v(x, T )− u(y, s)|)ϕ(x, T, y, s) dxdy ds︸ ︷︷ ︸
=:A

+

∫ T

0

∫
R−

∫
R−

(|u0(x, t)− v(y, s)|+ |v(x, 0)− u(y, s)|)ϕ(x, 0, y, s) dx dy ds︸ ︷︷ ︸
=:B

−
∫ T

0

∫
R−

∫ T

0

(q(u(0−, t), v(y, s)) + q(v(0−, t), u(y, s)))ϕ(0, t, y, s) dtdy ds︸ ︷︷ ︸
=:C

.

Since u is an entropy solution we find

0 ≤ Λε,ε0(u, v) = −Λε,ε0(v, u)−A + B−C

and thus

A + C ≤ −Λε,ε0(v, u) + B.

The terms A and B also appear in the case of an unbounded spatial domain and can
be estimated by

A ≥ ‖u(·, T )− v(·, T )‖L1(R−)

− 1

2
(νT (u, ε0) + µ(u(·, T ), ε) + νT (v, ε0) + µ(v(·, T ), ε))

and

B ≤‖u0 − v(·, 0)‖L1(R−) +
1

2
(ν0(u, ε0) + µ(u0, ε) + ν0(v, ε0) + µ(v(·, 0), ε)) ;

see [8] or [15] for details. Lastly, due to the Lipschitz continuity in time and the TVD
property (see [15, Theorem 2.15] and [15, Lemma A.1]) the entropy solution of (4.1)
satisfies
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX 615

ν0(u, ε0), νT (u, ε0) ≤ C TV(u0)ε0

and µ(u0, ε), µ(u(·, T ), ε) ≤ TV(u0)ε

which completes the proof.

In order to derive a convergence rate the next step is to estimate the term
Λε,ε0(u∆t, u).

Lemma 4.3. The estimate

−Λε,ε0(u∆t, u) ≤ C
(

∆x+
∆x

ε
+

∆t

ε0

)
holds for some constant C independent of ∆x,∆t, ε, and ε0.

Proof. The proof of Lemma 4.3 for conservation laws on the real line can be found,
e.g., in [15]. Here, we only need to replace any sum of the form

∑∞
j=−∞ by

∑−1
−∞ and

note that the boundary term in space cancels after integration by parts. See also the
proof of Lemma 4.9 in section 4.2 for details.

Theorem 4.4 (convergence rate on R−). Let u be the entropy solution of the
initial-boundary value problem (4.1) and u∆t the numerical approximation given by
(4.2) where we take λ constant. Then we have the following convergence rate estimate:

‖u(·, T )− u∆t(·, T )‖L1(R−) ≤ C
√

∆x

for some constant C independent of ∆x.

Proof. The numerical solution u∆t is Lipschitz continuous in time and TVD and
therefore satisfies

ν0(u∆t, ε0), νT (u∆t, ε0) ≤ C TV(u0)(ε0 + ∆t)

and µ(u∆t(·, 0), ε), µ(u∆t(·, T ), ε) ≤ TV(u0)ε.

Thus, taking into consideration Lemmas 4.2 and 4.3, we have

‖u(·, T )− u∆t(·, T )‖L1(R−)

+

∫ T

0

∫
R−

∫ T

0

(q(u(0−, t), u∆t(y, s)) + q(u∆t(0−, t), u(y, s)))ϕ(0, t, y, s) dtdy ds

≤ ‖u0 − u∆t(·, 0)‖L1(R−) + C

(
∆x+ ∆t+ ε+ ε0 +

∆x

ε
+

∆x

ε0
+

∆t

ε0

)
.

Because of our choice of discretizing the initial datum as u0
j = 1

∆x

∫
Cj u0(x) dx we

have ‖u∆t(·, 0)− u0‖L1(R−) ≤ C TV(u0)∆x. Now, in order to get a convergence rate,

we take λ = ∆t
∆x constant and minimize the right-hand side of the above estimate for

ε and ε0. This yields ε = ε0 =
√

∆x, and hence

‖u(·, T )− u∆t(·, T )‖L1(R−)

(4.7)

+

∫ T

0

∫
R−

∫ T

0

(q(u(0−, t), u∆t(y, s)) + q(u∆t(0−, t), u(y, s)))ϕ(0, t, y, s) dtdy ds

≤ C
√

∆x.

Using the monotonicity of g we find

q(u, v) = |g(u)− g(v)| ≥ 0,

and thus the integral term in (4.7) is nonnegative which concludes the proof.
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616 JAYESH BADWAIK AND ADRIAN M. RUF

4.2. Convergence rate estimates on R+. As a second step we now consider
the initial-boundary value problem

ut + f(u)x = 0, (x, t) ∈ R+ × (0, T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = f−1 (g(u(0−, t)) , t ∈ (0, T )

(4.8)

and the numerical scheme

un+1
j = unj − λ

(
f(unj )− f(unj−1)

)
, j ≥ 1, n ≥ 0,

u0
j =

1

∆x

∫
Cj
u0(x) dx, j ≥ 0,

un0 = f−1
(
g(un−1)

)
, n ≥ 1,

(4.9)

where the boundary data is given in terms of u(0,−, t) and un−1, respectively, and
those are known from the previous section. Note that again we have a discrete entropy
inequality of the form

Dt
+η

n
j +D−q

n
j ≤ 0, n ≥ 1, j ≥ 1.(4.10)

Definition 4.5 (entropy solution on R+). We say u ∈ C([0, T ]; L1(R+)) ∩
L∞(R+ × (0, T )) is an entropy solution of (4.8) if for all c ∈ R,

∫ T

0

∫
R+

(|u− c|ϕt + |f(u)− f(c)|ϕx) dxdt−
∫
R+

|u(x, T )− c|ϕ(x, T ) dx

+

∫
R+

|u0(x)− c|ϕ(x, 0)) dx+

∫ T

0

|f(u(0+, t))− f(c)|ϕ(0, t) dt ≥ 0

for all nonnegative ϕ ∈ C∞([0,∞)× [0, T ]) and

f(u(0+, t)) = g(u(0−, t))

holds for almost every t ∈ (0, T ).

Before we calculate convergence rates on R+ we need two auxiliary lemmas that
are consequences of the monotonicity of the flux.

Lemma 4.6 (bound on the temporal total variation). If the numerical scheme
(4.9) satisfies the CFL condition (3.2) the temporal variation of the numerical solution
is bounded; specifically, for every j ∈ Z we have

M∑
n=0

∣∣un+1
j − unj

∣∣ ≤ C TV(u0),

where TV(u0) refers to the total variation of u0 on the whole real line.
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX 617

Proof. Let first j ≥ 1. Using the CFL condition (3.2) and the monotonicity of
the flux, i.e., f ′ > 0, we find that

|unj − unj−1 − λ(f(unj )− f(unj−1))| = |unj − unj−1 − λf ′(u∗)(unj − unj−1)|
= (1− λf ′(u∗))|unj − unj−1|
= |unj − unj−1| − λf ′(u∗)|unj − unj−1|
= |unj − unj−1| − λ|f(unj )− f(unj−1)|

and hence

|un+1
j − un+1

j−1 | = |unj − unj−1 − λ(f(unj )− f(unj−1)) + λ(f(unj−1)− f(unj−2))|
≤ |unj − unj−1 − λ(f(unj )− f(unj−1))|+ λ|f(unj−1)− f(unj−2)|
= |unj − unj−1| − λ|f(unj )− f(unj−1)|+ λ|f(unj−1)− f(unj−2)|
= |unj − unj−1| − |un+1

j − unj |+ |un+1
j−1 − unj−1|,

where we have used the definition of the numerical scheme (4.9) in the last step.
Taking the sum over n = 0, . . . ,M − 1 yields

M−1∑
n=0

∣∣un+1
j − un+1

j−1

∣∣ ≤ M−1∑
n=0

|unj − unj−1| −
M−1∑
n=0

|un+1
j − unj |+

M−1∑
n=0

|un+1
j−1 − unj−1|,

where we can cancel equal terms to get

∣∣uMj − uMj−1

∣∣ ≤ ∣∣u0
j − u0

j−1

∣∣−M−1∑
n=0

∣∣un+1
j − unj

∣∣+
M−1∑
n=0

∣∣un+1
j−1 − unj−1

∣∣ .(4.11)

Because of the CFL condition (3.2) we have

∣∣uM+1
j − uMj

∣∣ = λ
∣∣f(uMj )− f(uMj−1)

∣∣ = λf ′(u∗)
∣∣uMj − uMj−1

∣∣ ≤ ∣∣uMj − uMj−1

∣∣
which together with (4.11) yields

∣∣uM+1
j − uMj

∣∣ ≤ |u0
j − u0

j−1| −
M−1∑
n=0

∣∣un+1
j − unj

∣∣+
M−1∑
n=0

∣∣un+1
j−1 − unj−1

∣∣
and thus

M∑
n=0

∣∣un+1
j − unj

∣∣ ≤ ∣∣u0
j − u0

j−1

∣∣+
M−1∑
n=0

∣∣un+1
j−1 − unj−1

∣∣ .(4.12)

By substituting f with g in the above calculations, the estimate (4.12) also holds for
j < 0. The estimate (4.12) now allows us to bound the temporal variation of the
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618 JAYESH BADWAIK AND ADRIAN M. RUF

numerical scheme by the total variation of the initial datum in the following way. If
j > M or j < 0 we can use the estimate (4.12) iteratively to get

M∑
n=0

∣∣un+1
j − unj

∣∣ ≤ j∑
i=j−M+1

∣∣u0
i − u0

i−1

∣∣+
∣∣u1
j−M − u0

j−M
∣∣ .

Using the definition of the scheme (4.9), we get∣∣u1
j−M − u0

j−M
∣∣ = λ

∣∣f(u0
j−M )− f(u0

j−M−1)
∣∣ ≤ Cλ ∣∣u0

j−M − u0
j−M−1

∣∣
such that we have

M∑
n=0

∣∣un+1
j − unj

∣∣ ≤ C j∑
i=j−M

∣∣u0
i − u0

i−1

∣∣ ≤ C TV(u0).

If on the other hand 0 ≤ j ≤M we get

M∑
n=0

∣∣un+1
j − unj

∣∣ ≤ j∑
i=1

∣∣u0
i − u0

i−1

∣∣+

M−j∑
n=0

∣∣un+1
0 − un0

∣∣ .
Using the definition of un0 in (4.9) and applying (4.12) iteratively again, we get

M−j∑
n=0

∣∣un+1
0 − un0

∣∣ =

M−j∑
n=0

∣∣f−1
(
g(un+1
−1 )

)
− f−1

(
g(un−1)

)∣∣
≤ C

α

M−j∑
n=0

|un+1
−1 − un−1|

≤ C
−1∑

i=−1−(M−j)

|u0
i − u0

i−1|

such that we have

M∑
n=0

∣∣un+1
j − unj

∣∣ ≤ C j∑
i=−1−(M−j)

|u0
i − u0

i−1| ≤ C TV(u0)

which concludes the proof.

Lemma 4.7. Let u be the entropy solution of (4.8), and assume f ′ > 0. Then
f(u) is Lipschitz continuous in space, in the sense that∫ T

0

|f(u(x, t))− f(u(y, t))|dt ≤ C|x− y| for all x, y ∈ R+.

Proof. Since u is bounded, we can assume that f ′ ≥ α > 0. Thus the flux is
invertible with Lipschitz continuous inverse. By setting w = f(u) and h = f−1 we
find that w satisfies

wx + h(w)t = 0, (t, x) ∈ (0, T )× R+.
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX 619

By the standard theory for conservation laws (with the roles of x and t reversed)
adapted to the bounded domain [0, T ] we see that w is Lipschitz continuous in x with
values in L1(0,T), i.e.,∫ T

0

|f(u(x, t))− f(u(y, t))|dt =

∫ T

0

|w(x, t)− w(y, t)|dt ≤ C|x− y|;

cf. [15, Theorem 2.15] or [31, Lemma 4]. Note that an application of [31, Lemma
4] requires, in particular, a temporal total variation bound of u(0+, t) which follows
from Lemma 4.6 on a discrete level and carries over in the limit.

We will now describe how to modify the steps in section 4.1 in order to get a
convergence rate on R+. We start by defining

L(u, c, ϕ) =

∫ T

0

∫
R+

(|u− c|ϕt + q(u, c)ϕx) dx dt−
∫
R+

|u(x, T )− c|ϕ(x, T ) dx

+

∫
R+

|u0(x)− c|ϕ(x, 0) dx+

∫ T

0

q(u(0+, t), c)ϕ(0, t) dt

and

Λε,ε0(u, v) =

∫ T

0

∫
R+

L(u, v(y, s), ϕ(·, ·, y, s)) dy ds,

where again ϕ = ωε(x− y)ωε0(t− s).
Lemma 4.8 (Kuznetsov-type lemma). Let u be the entropy solution of (4.8).

Then, for any function v : [0, T ] → (L1 ∩ BV)(R+) such that the one-sided limits
v(t±) exist in L1, we have

‖u(·, T )− v(·, T )‖L1(R+) ≤ ‖u0 − v(·, 0)‖L1(R+) − Λε,ε0(v, u)

+ C

(
ε+ ε0 + νT (v, ε0) + ν0(v, ε0) + µ(v(·, T ), ε)) + µ(v(·, 0), ε))

)
+

∫ T

0

∫
R+

∫ T

0

(q(u(0+, t), v(y, s)) + q(v(0+, t), u(y, s)))ϕ(0, t, y, s) dtdy ds

for some constant C independent of ε and ε0.

Note that this time the term involving q is on the right-hand side of the inequality.

Proof. The proof follows the same steps, mutatis mutandis, as the proof of the
Kuznetsov-type lemma 4.2 on R−.

Lemma 4.9. The estimate

−Λε,ε0(u∆t, u) ≤ C
(

∆x+
∆x

ε
+

∆x

ε0
+

∆t

ε0

)
holds for some constant C independent of ∆x,∆t, ε, and ε0.

Note that the right-hand side of the inequality contains the term ∆x
ε0

which was
not present in Lemma 4.3 but will not change the overall convergence rate.
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620 JAYESH BADWAIK AND ADRIAN M. RUF

Proof. Using summation by parts and the discrete entropy inequality (4.10),
Dt

+η
n
j +D−q

n
j ≤ 0 for j ≥ 1, we find

− L(u∆t, u, ϕ)

= −
M∑
n=0

∞∑
j=0

(
ηnj

∫∫
Cnj
ϕt dxdt+ qnj

∫∫
Cnj
ϕx dxdt

)

−
∞∑
j=0

η0
j

∫
Cj
ϕ0 dx+

∞∑
j=0

ηM+1
j

∫
Cj
ϕM+1 dx−

M∑
n=0

qn0

∫
Cn
ϕ−1/2 dt

=
M∑
n=0

∞∑
j=0

(
Dt

+η
n
j

∫∫
Cnj
ϕn+1 dx dt+D−q

n
j+1

∫∫
Cnj
ϕj+ 1

2
dx dt

)

≤
M∑
n=0

(
Dt

+η
n
0

∫∫
Cn0
ϕn+1 dxdt+

∞∑
j=0

D−q
n
j+1

∫∫
Cnj
ϕj+1/2 dxdt

−
∞∑
j=1

D−q
n
j

∫∫
Cnj
ϕn+1 dx dt

)

=
M∑
n=0

Dt
+η

n
0

∫∫
Cn0
ϕn+1 dxdt︸ ︷︷ ︸

=:Dn

+
M∑
n=0

∞∑
j=1

D−q
n
j

∫∫
Cnj

(ϕj−1/2 − ϕn+1) dxdt︸ ︷︷ ︸
=:En

j

,

where we have used the notation ϕn = ϕ(x, tn, y, s) and ϕj+1/2 = ϕ(xj+1/2, t, y, s).
Concerning the term Dn, using summation by parts again, we find

M∑
n=0

∫ T

0

∫
R+

Dn dy ds

=

∫ T

0

∫
R+

(
ηM+1

0

∫
C0
ϕM+1 dx− η0

0

∫
C0
ϕ0 dx−

M∑
n=0

ηn0

∫∫
Cn0
Dt

+ϕ
n dxdt

)
dy ds.

Here, using the boundedness of η′ and the properties of the mollifiers (4.5), the bound-
ary terms can be estimated as follows:∫ T

0

∫
R+

ηM+1
0︸ ︷︷ ︸

≤C‖u0‖∞

∫
C0
ϕM+1 dxdy ds ≤ C∆x

and similarly ∫ T

0

∫
R+

η0
0

∫
C0
ϕ0 dxdy ds ≤ C∆x.

For the remaining term, we can proceed in the following way:

M∑
n=0

∫ T

0

∫
R+

ηn0︸︷︷︸
≤C‖u0‖∞

∫∫
Cn0
Dt

+ϕ
n dxdtdy ds

≤ C
M∑
n=0

∫ T

0

∫
R+

1

∆t

∫∫
Cn0

∫
Cn
|ω′ε0(τ − s)|dτωε(x− y) dxdtdy ds
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX 621

≤ C
M∑
n=0

∆x∆t2

∆tε0

≤ C∆x

ε0
.

We split the term involving En
j as follows:

M∑
n=0

∞∑
j=1

En
j ≤

M∑
n=0

∞∑
j=1

|D−qnj |
∫∫
Cnj

∫ x

xj+1/2

|ϕx(z, t)|dz dxdt︸ ︷︷ ︸
=:Fn

j

+
M∑
n=0

∞∑
j=1

|D−qnj |
∫∫
Cnj

∫ tn+1

t

|ϕt(x, τ)|dτ dxdt︸ ︷︷ ︸
=:Gn

j

.

For the first term, using the properties of the mollifiers (4.5) and the Lipschitz conti-
nuity of f , we find∫ T

0

∫
R+

M∑
n=0

∞∑
j=1

Fn
j dy ds

=
M∑
n=0

∞∑
j=1

|D−qnj |
∫ T

0

∫
R+

∫∫
Cnj

∫ x

xj+1/2

|ω′ε(z − y)|dzωε0(t− s) dxdtdy ds

≤
M∑
n=0

∞∑
j=1

C

∆x
|unj − unj−1|

∆x2∆t

ε

≤ C TV(u0)
∆x

ε

and similarly ∫ T

0

∫
R+

M∑
n=0

∞∑
j=1

Gn
j dy ds ≤ C TV(u0)

∆t

ε0
.

Thus, we have

−Λε,ε0(u∆t, u) ≤ C
(

∆x+
∆x

ε
+

∆x

ε0
+

∆t

ε0

)
which concludes the proof.

Theorem 4.10 (convergence rate on R+). Let u be the entropy solution of
the initial-boundary value problem (4.8) and u∆t the numerical approximation given
by (4.9). Then we have the following convergence rate estimate:

‖u(·, T )− u∆t(·, T )‖L1(R+) ≤ C
√

∆x

for some constant C independent of ∆x.

Proof. The numerical solution u∆t is Lipschitz continuous in time and TVD (for
the TVD property of conservation laws on bounded domains see [31, Lemma 2]) and
therefore satisfies
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622 JAYESH BADWAIK AND ADRIAN M. RUF

ν0(u∆t, ε0), νT (u∆t, ε0) ≤ C TV(u0)(ε0 + ∆t)

and µ(u∆t(·, 0), ε), µ(u∆t(·, T ), ε) ≤ TV(u0)ε.

Thus, taking into consideration Lemmas 4.2 and 4.3, we have

‖u(·, T )− u∆t(·, T )‖L1(R+) ≤ ‖u0 − u∆t(·, 0)‖L1(R+)

+C

(
∆x+ ∆t+ ε+ ε0 +

∆x

ε
+

∆x

ε0
+

∆t

ε0

)
+ C,

where

C =

∫ T

0

∫
R+

∫ T

0

(
q(u(0+, t), u∆t(y, s)) + q(u∆t(0+, t), u(y, s))

)
ϕ(0, t, y, s) dtdy ds.

Because of our choice of discretizing the initial datum as u0
j = 1

∆x

∫
Cj u0(x) dx we

have ‖u∆t(·, 0)− u0‖L1(R+) ≤ C TV(u0)∆x, and thus it remains to estimate the term

C =

∫ T

0

∫
R+

∫ T

0

(
|f(u(0+, t))− f(u∆t(y, s))|︸ ︷︷ ︸

=:H

+ |f(u∆t(0+, t))− f(u(y, s))|︸ ︷︷ ︸
=:J

)
ϕ(0, t, y, s) dtdy ds.

Here, we split

H ≤ |f(u(0+, t))− f(u∆t(0+, s))|︸ ︷︷ ︸
H1

+ |f(u∆t(0+, s))− f(u∆t(y, s))|︸ ︷︷ ︸
H2

.

Using the Rankine–Hugoniot condition, the term H1 can be estimated as follows:

H1 = |f(u(0+, t))− f(u∆t(0+, s))|
= |g(u(0−, t))− g(u∆t(0−, s))|
≤ |g(u(0−, t))− g(u∆t(y, s))|+ |g(u∆t(y, s))− g(u∆t(0−, s))|.

Because H1 does not depend on y we can use the symmetry of ϕ with respect to y
and the estimate (4.7) to get∫ T

0

∫
R+

∫ T

0

H1ϕ(0, t, y, s) dtdy ds

=

∫ T

0

∫
R−

∫ T

0

H1ϕ(0, t, y, s) dtdy ds

≤
∫ T

0

∫
R−

∫ T

0

|g(u(0−, t))− g(u∆t(y, s))|ϕ(0, t, y, s) dtdy ds

+

∫ T

0

∫
R−

∫ T

0

|g(u∆t(y, s))− g(u∆t(0−, s))|ϕ(0, t, y, s) dtdy ds

≤ C
√

∆x+

∫ T

0

∫
R−

∫ T

0

|g(u∆t(y, s))− g(u∆t(0−, s))|ϕ(0, t, y, s) dtdy ds.
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Using the identity

|g(uni+1)− g(uni )| = 1

λ
|un+1
i+1 − uni+1|

and setting N = d ε
∆xe, we can employ Lemma 4.6 to estimate the integral term in

the foregoing estimate as follows:∫ T

0

∫
R−

∫ T

0

|g(u∆t(y, s))− g(u∆t(0−, s))|ϕ(0, t, y, s) dtdy ds

=
M∑
n=0

−1∑
j=−N

|g(unj )− g(un−1)|
∫ T

0

∫∫
Cnj
ωε0(t− s)ωε(y) dtdy ds

≤ C∆t∆x

ε

M∑
n=0

−1∑
j=−N

−2∑
i=j

|g(uni+1)− g(uni )|︸ ︷︷ ︸
= 1
λ |u

n+1
i+1 −uni+1|

≤ C∆t∆x

ε

−1∑
j=−N

−2∑
i=j

M∑
n=0

|un+1
i+1 − uni+1|

≤ C∆t∆x

ε

−1∑
j=−N

(−j)

≤ C∆t∆x

ε

N(N + 1)

2

≤ C∆t
( ε

∆x
+ 1
)

≤ C(ε+ ∆t).

The term involving H2 can be estimated analogously. Then it remains to treat the
integral involving J. We split J as follows:

J ≤ |f(u∆t(0+, t))− f(u(0+, s))|︸ ︷︷ ︸
J1

+ |f(u(0+, s))− f(u(y, s))|︸ ︷︷ ︸
J2

and note that the J1 is the same as H1. Lastly, with the help of Lemma 4.7 we find∫ T

0

∫
R+

∫ T

0

J2ϕ(0, t, y, s) dtdy ds

=

∫ T

0

∫
R+

∫ T

0

|f(u(0+, s))− f(u(y, s))|ϕ(0, t, y, s) dtdy ds

≤ 1

ε

∫ ε

0

∫ T

0

|f(u(0+, s))− f(u(y, s))|ds︸ ︷︷ ︸
≤C|y|

dy

≤ C

ε

∫ ε

0

|y|dy

≤ Cε.
Finally, we have

‖u(·, T )− u∆t(·, T )‖L1(R+) ≤ C
(

∆x+ ∆t+ ε+ ε0 +
∆x

ε
+

∆x

ε0
+

∆t

ε0

)
.
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In order to get a convergence rate, again we take λ = ∆t
∆x constant and minimize the

right-hand side of the above estimate for ε and ε0. This yields ε = ε0 =
√

∆x which
concludes the proof.

4.3. Convergence rate estimates on (0,L). By restricting the solution u and
the numerical approximation u∆t to a bounded interval (0, L), Theorem 4.10 and the
estimate (4.7) yield a convergence rate on (0, L). Note that this is only possible since
f is strictly monotone.

Corollary 4.11 (convergence rate on (0, L)). Let u be the entropy solution of
the initial-boundary value problem (4.8) on the bounded interval [0, L] and u∆t the
numerical approximation given by (4.9). Then we have the following convergence rate
estimate:

‖u(·, T )− u∆t(·, T )‖L1(0,L) ≤ C
√

∆x

for some constant C independent of ∆x.

Proof. Without repeating all calculations of sections 4.1 and 4.2 we will highlight
the adjustments to the respective proofs that need to be done. If we consider solutions
on (0, L) instead of R+ the definition of Λε,ε0(u, v) in 4.6 needs to be adjusted so that
Λε,ε0(u, v) contains the term

−
∫ T

0

∫ L

0

∫ T

0

q(u(L−, t), v(y, s))ϕ(L, t, y, s) dtdy ds,

and all instances of R+ need to be changed to (0, L). Following the proofs of
Theorems 4.4 and 4.10 in the same way finally yields

‖u(·, T )− u∆t(·, T )‖L1(0,L)

(4.13)

+

∫ T

0

∫ L

0

∫ T

0

(q(u(L, t), u∆t(y, s)) + q(u∆t(L, t), u(y, s)))ϕ(L, t, y, s) dtdy ds

≤ C
√

∆x.

Using the monotonicity of f we find

q(u, v) = |f(u)− f(v)| ≥ 0,

and thus the integral term in (4.13) is nonnegative which concludes the proof.

5. Statement and proof of the main theorem. Our main result now reads
as follows.

Theorem 5.1 (convergence rate for conservation laws with discontinuous flux).
Let u be the entropy solution of (1.1) and u∆t the numerical solution given by (3.1).
Then we have the following convergence rate:

‖u(·, T )− u∆t(·, T )‖L1(R) ≤ C
√

∆x

for some constant C independent of ∆x.

Proof. As before, we decompose the entropy solution u as u =
∑N
i=0 u

(i) where
u(i), i = 0, . . . , N , are the respective entropy solutions on Di, i.e., solutions of (2.3)

and (2.4), respectively. Further, we decompose the numerical solution u∆t as
∑N
i=0 u

(i)
∆t

where
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX 625

u
(i)
∆t(x, t) =

{
unj if (x, t) ∈ Cnj ⊂ Di × Cn,
0 otherwise

and unj is given by (3.1). Then we have

‖u(T )− u∆t(T )‖L1(R) =
N∑
i=0

∥∥∥u(i)(T )− u(i)
∆t(T )

∥∥∥
L1(Di)

.

Using Theorem 4.4 for D0, Theorem 4.10 for DN , and Corollary 4.11 for each Di,
i = 1, . . . , N − 1, shows that∥∥∥u(i)(T )− u(i)

∆t(T )
∥∥∥

L1(Di)
≤ C
√

∆x

for i = 0, . . . , N which concludes the proof.

Remark 5.2. Note that the rate of Theorem 5.1 is optimal in the sense that it
cannot be improved without further assumptions on the initial datum. This can easily
be shown in the same way as in the absence of spatial dependency since the specific
initial datum u0 constructed by Şabac in [34] can be chosen in a way such that u0 is
supported away from the last discontinuity.

6. Numerical experiments. To illustrate our results we now present two nu-
merical experiments. We consider the “two flux” case

ut + (H(x)f(u) + (1−H(x))g(u))x = 0, (x, t) ∈ R× (0, T ),

u(x, 0) = u0(x), x ∈ R,

where H is the Heaviside function. This corresponds to switching from one u-
dependent flux, g, to another, f .

Experiment 1. In our first numerical experiment we choose g(u) = u and f(u) =
u2
/2 such that we switch from the transport equation to the Burgers equation across

x = 0. The initial datum we consider for Experiment 1 is

u0(x) =

{
0.5 if x < −0.5,

2 if x > −0.5

which is chosen such that the Rankine–Hugoniot condition at x = 0 gives u(0−, t) =
u(0+, t) before the jump at x = −0.5 interacts with the interface. Figure 1 shows
the numerical solution calculated with the scheme (3.1) with open boundaries in blue

−1 0 1

0.5

1

2

(a) t = 0.3.

−1 0 1

0.5

1

2

(b) t = 0.6.

−1 0 1

0.5

1

2

(c) t = 0.9.

Fig. 1. Numerical solution of Experiment 1 with ∆x = 2/64 at various times.
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and the initial datum in gray (dashed line) at various times (before, during, and after
interaction with the interface). We used ∆x = 2/n with n = 64, end time T = 0.9, and
λ = 0.5. We clearly recognize the characteristic features of the transport equation
and the Burgers equation here as the upward jump in the initial datum is transported
to the right as a shock until it crosses the interface at x = 0 where the shock, as it
enters the Burgers regime, subsequently becomes a rarefaction wave.

Experiment 2. In our second numerical experiment we choose g(u) = u2
/2 and

f(u) = u such that we switch from the Burgers equation to the transport equation
across x = 0. The initial datum we consider is

u0(x) = 2 + exp(−100(x+ 0.75)2).

Again, the offset of the initial datum is chosen in a way such that the Rankine–
Hugoniot condition at x = 0 gives u(0−, t) = u(0+, t) before the nonconstant part of
u0 interacts with the interface. Figure 2 shows the numerical solution calculated with
the scheme (3.1) with open boundaries in blue and the initial datum in gray (dashed
line) at various times (immediately before, during, and after interaction with the
interface). We used ∆x = 2/n with n = 128, end time T = 0.5, and λ = 0.2. We clearly
recognize the shock formation due to the Burgers regime to the left of the interface (see
Figure 2(a)). Note that—although difficult to see in Figure 2(c) because of numerical
diffusion—the shock is preserved over the interface (only with a different profile).

Table 1 shows the observed convergence rates of the solution at time T = 0.9 for
Experiment 1 and at time T = 0.5 for Experiment 2 for various values of ∆x. As
a reference solution, we used a numerical solution on a very fine grid (n = 2048) in
both cases. As expected from experience in the case of spatially independent flux we
observe convergence rates strictly between 1/2 and 1 (cf., e.g., [24, clawpack software]).

−1 0 1

2

3

(a) t = 0.2.

−1 0 1

2

3

(b) t = 0.3.

−1 0 1

2

3

(c) t = 0.5.

Fig. 2. Numerical solution of Experiment 2 with ∆x = 2/128 at various times.

Table 1
L1 error and observed order of convergence for Experiments 1 and 2.

n L1 error L1 OOC

16 1.751× 10−1 –
32 1.256× 10−1 0.48
64 8.865× 10−2 0.50

128 5.918× 10−2 0.58
256 3.637× 10−2 0.70
512 1.978× 10−2 0.88

1024 8.145× 10−3 1.28

(a) Experiment 1.

n L1 error L1 OOC

16 2.771× 10−1 –
32 1.823× 10−1 0.60
64 1.261× 10−1 0.53

128 8.390× 10−2 0.59
256 5.125× 10−2 0.71
512 2.780× 10−2 0.88

1024 1.132× 10−2 1.30

(b) Experiment 2.
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7. Conclusion. Scalar conservation laws with discontinuous flux frequently oc-
cur in physical applications, and several numerical schemes have been considered in
the literature. In contrast to the case where the nonlinear flux does not have a spatial
dependency, however, convergence rate results for monotone finite volume schemes
have not been available until now.

In this paper, we have established a convergence rate for upwind-type finite vol-
ume methods for the case where f is strictly monotone in u and the spatial depen-
dency k is piecewise constant with finitely many discontinuities. The central idea of
this paper is to split the problem into finitely many conservation laws between two
neighboring discontinuities of k and thus get a convergence rate as a consequence
of convergence rates on bounded domains. Here, the novel feature of this paper is
the strong bound on the temporal total variation of the finite volume approximation
which allows us to estimate the boundary terms in space at the discontinuities of k
that appear when applying the classical Kuznetsov theory to problem (1.1).

As an outlook we name four possible directions of future research. A first direction
would be to extend the convergence rate result of this paper to the cases where k is
not piecewise constant and f is not monotone. Second, it might be interesting to
investigate convergence rates of monotone schemes in the Wasserstein distance. In
the case of spatially independent fluxes, convergence rates in the Wasserstein distance
are well-understood due to Nessyahu, Tadmor, and Tassa [28, 29]. A third direction
of future research might be to see whether the results of this paper can be extended
to monotone schemes in conservation form, i.e., where the definition of un+1

Pi
in (3.1)

is replaced by un+1
Pi

= unPi − λ(f (i)(unPi) − f (i−1)(unPi−1)). Lastly, convergence rates
of the front tracking method for conservation laws with discontinuous flux are highly
desirable as well. In the case of spatially independent fluxes, convergence rates of
the front tracking method are known in L1 due to Lucier [26] and in the Wasserstein
distances due to Solem [35].

Appendix A. Convergence rate estimates for general initial-boundary
value problems. With the techniques developed in this paper, we can also derive
a convergence rate for the initial-boundary value problem

ut + f(u)x = 0, (x, t) ∈ (0, L)× (0, T ),

u(x, 0) = u0(x), x ∈ (0, L),

u(0, t) = a(t), t ∈ (0, T )

(A.1)

and the numerical scheme

un+1
j = unj − λ

(
f(unj )− f(unj−1)

)
, j ≥ 1, n ≥ 0,

u0
j =

1

∆x

∫
Cj
u0(x) dx, j ≥ 0,

un0 =
1

∆t

∫
Cn
a(s) ds, n ≥ 1.

Here we need to assume that a ∈ (L1∩BV)(0, T ) which allows us to use the total vari-
ation of a directly instead of crossing the discontinuity in Lemma 4.6. The assertion
of Lemma 4.6 should then read

M∑
n=0

|un+1
j − unj | ≤ C(TV(u0) + TV(a))
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628 JAYESH BADWAIK AND ADRIAN M. RUF

which can be used at the same place Lemma 4.6 is used in Theorem 4.10. Hence,
Corollary 4.11 gives the convergence rate O(

√
∆x) for the general initial-boundary

value problem (A.1). Note that this is a higher rate than the O(∆x
1/3) rate mentioned

in [30].
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MULTILEVEL MONTE CARLO FINITE VOLUME METHODS FOR RANDOM
CONSERVATION LAWS WITH DISCONTINUOUS FLUX
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Abstract. We consider conservation laws with discontinuous flux where the initial datum, the flux
function, and the discontinuous spatial dependency coefficient are subject to randomness. We establish
a notion of random adapted entropy solutions to these equations and prove well-posedness provided
that the spatial dependency coefficient is piecewise constant with finitely many discontinuities. In
particular, the setting under consideration allows the flux to change across finitely many points in
space whose positions are uncertain. We propose a single- and multilevel Monte Carlo method based
on a finite volume approximation for each sample. Our analysis includes convergence rate estimates of
the resulting Monte Carlo and multilevel Monte Carlo finite volume methods as well as error versus work
rates showing that the multilevel variant outperforms the single-level method in terms of efficiency. We
present numerical experiments motivated by two-phase reservoir simulations for reservoirs with varying
geological properties.
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1. Introduction

This paper concerns uncertainty quantification for conservation laws with discontinuous flux of the form

𝑢𝑡 + 𝑓(𝑘(𝑥), 𝑢)𝑥 = 0, 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R.
(1.1)

Here, 𝑢 : R× [0,∞) → R is the unknown and 𝑓 ∈ 𝒞2(R2; R) is the flux function having a possibly discontinuous
spatial dependency through the coefficient 𝑘. In particular, we will assume that the initial datum 𝑢0 is in
(L∞ ∩ BV)(R), the flux 𝑓 is strictly increasing in 𝑢, and the coefficient 𝑘 is piecewise constant with finitely
many discontinuities. Going back to (1.1), this amounts to switching from one 𝑢-dependent flux to another
across finitely many points in space.
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Equations of type (1.1) arise in a number of areas of application including vehicle traffic flow in the presence
of abruptly varying road conditions (see [35]), polymer flooding in oil recovery (see [48]), two-phase flow through
heterogeneous porous media (see [22,23,44]), and sedimentation processes (see [9, 14]).

Even in the absence of flux discontinuities, and even if the initial datum is smooth, solutions of (1.1) develop
discontinuities in finite time and for this reason weak solutions are sought. Weak solutions to (1.1) are not
unique, so the weak formulation of the problem is augmented with an additional entropy condition. In the case
where 𝑥 ↦→ 𝑓(𝑘(𝑥), 𝑢) is smooth, uniqueness follows from the classical Kružkov entropy conditions [33]. In the
presence of spatial flux discontinuities, standard Kružkov entropy conditions no longer make sense. This difficulty
is usually resolved by requiring that Kružkov entropy conditions hold away from the spatial flux discontinuities
and imposing additional jump conditions along the spatial interfaces [1, 4, 5, 14, 21, 22, 26, 29, 30, 49, 50] or by
adapting the Kružkov entropy conditions in a suitable way [6–8,42,46,51]. In the present paper we will focus on
the second approach of so-called adapted entropy solutions for which we need to require that the flux function
𝑓 is strictly monotone in 𝑢.

In the last two decades, there has been a large interest in the numerical approximation of entropy solutions
of (1.1) under various assumptions on 𝑘 and 𝑓 . We refer to [3, 4, 9, 10, 12, 20–22, 25–28, 30, 31, 37, 49, 50, 55] for
a partial list of references regarding finite volume methods respectively the front tracking method. Specifically,
in the adapted entropy framework we want to highlight the results of [7, 8, 15–17, 42, 46, 51] regarding finite
volume methods and the front tracking method. We refer to [5,7,46] for an overview of the literature concerning
conservation laws with discontinuous flux.

The classical paradigm for designing efficient numerical schemes assumes that data for (1.1), i.e., the initial
datum 𝑢0, the flux 𝑓 , and the spatial dependency coefficient 𝑘, are known exactly.

However, in many situations of practical interest, there is an inherent uncertainty in the modeling and
measurement of physical parameters. For example, in two-phase flow through a heterogeneous porous medium
the position of the interface between two rock types is typically not known exactly. Often these parameters are
only known up to certain statistical quantities of interest like the mean, variance, or higher moments. In such
cases, a mathematical framework of (1.1) is required which allows for random data.

For standard conservation laws without spatial flux dependency, i.e., for

𝑢𝑡 + 𝑓(𝑢)𝑥 = 0, 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R,
(1.2)

such a framework was developed in a series of papers allowing for random initial datum [38], random (spatially
independent) flux [41], and even random source terms [39] and random diffusion [32].

The first aim of the current paper is to extend this mathematical framework to include scalar conservation
laws with discontinuous flux with random discontinuous spatial dependency. To that end, we define random
entropy solutions and provide an existence and uniqueness result, which generalizes the well-posedness results
for (1.2) to the case of uncertain initial datum, flux, and discontinuous spatial dependency. In particular, our
framework allows for uncertain positions of the flux discontinuities.

The second aim of this paper is to design fast and robust numerical algorithms for computing the mean of
random entropy solutions of conservation laws with discontinuous flux. Specifically, we propose and analyze
a multilevel combination of Monte Carlo (MC) sampling and a “pathwise” finite volume method (FVM) to
approximate the mean of random entropy solutions of conservation laws with discontinuous flux. The multilevel
Monte Carlo finite volume method (MLMCFVM) for (1.1) is non-intrusive (in the sense that it requires only
repeated applications of existing solvers for input data samples), easy to implement and to parallelize, and well
suited for random solutions with low spatial regularity. Solutions exhibiting spatial discontinuities are generic for
conservation laws and, in particular, for conservation laws with discontinuous flux. This reduced regularity poses
some challenges to the design of efficient so-called stochastic Galerkin methods for example which are based
on generalized polynomial chaos. These methods are well-developed for conservation laws – albeit without flux
discontinuities – (see [2,11,36,43,52,54] and references therein), but they are more intrusive, generally harder to
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implement and to parallelize. Thus, in the present paper, we focus on the design and mathematical analysis of
statistical MC-type methods. Our analysis includes the proof of convergence rates at which the MCFVM and the
MLMCFVM converge towards the mean of the random entropy solution of (1.1). The analysis is complicated by
the fact that adapted entropy solutions of (1.1) do not possess the same stability properties as entropy solutions
of (1.2). Moreover, we determine the number of MC samples needed to minimize the computational work for a
given error tolerance.

We want to emphasize that the framework of adapted entropy solutions and more specifically the setting of
the present paper is currently the only setting for which we simultaneously have existence [51], uniqueness [6],
stability with respect to the modeling parameters [46], and numerical methods with a provable convergence rate
[7, 46] – the essential components for an uncertainty quantification framework (cf. [41]).

The remainder of this paper is organized as follows. In Section 2 we introduce preliminary results regarding
the MC approximation of Banach space-valued random variables. Section 3 is devoted to a review of existence
and stability results regarding entropy solutions of (deterministic) conservation laws with discontinuous flux
of the form (1.1). In Section 4 we introduce random entropy solutions of (1.1) where the initial datum 𝑢0,
the flux 𝑓 , and the discontinuous coefficient 𝑘 are subject to randomness. In particular, we prove existence
and uniqueness of random entropy solutions. In Section 5, we first review a FVM which was introduced in [7]
for the deterministic problem, prove certain stability estimates, and then extend the FVM to MC as well as
MLMC versions for (1.1) with random parameters. In Section 6 we perform numerical experiments motivated by
two-phase reservoir simulations for reservoirs with varying geological properties to validate our error estimates.
Finally, we summarize the findings of this paper in Section 7.

2. Preliminaries on the Monte Carlo method

We first introduce some preliminary concepts which are needed in the exposition. To that end, we follow
[34,53], see also Section 2 of [32] and Section 5 of [13].

Given a probability space (Ω,ℱ , P), a Banach space 𝑉 , and a random variable 𝑋 : Ω → 𝑉 we are interested
in approximating the mean E[𝑋] of 𝑋 via Monte Carlo sampling. To this end, let (𝑋̂𝑖)𝑀

𝑖=1, 𝑖 = 1, . . . ,𝑀 , be 𝑀
independent, identically distributed samples of 𝑋. Then, the Monte Carlo estimator 𝐸𝑀 [𝑋] of E[𝑋] is defined
as the sample average

𝐸𝑀 [𝑋] :=
1
𝑀

𝑀∑︁
𝑖=1

𝑋̂𝑖.

We are interested in deriving a rate at which

‖E[𝑋]− 𝐸𝑀 [𝑋]‖L𝑞(Ω;𝑉 ) = E[‖E[𝑋]− 𝐸𝑀 [𝑋]‖𝑞
𝑉 ]

1
𝑞

converges as 𝑀 →∞ for some 1 ≤ 𝑞 < ∞ and some Banach space 𝑉 (typically a Lebesgue space). For general
Banach spaces 𝑉 such convergence rate estimates depend on the type of the Banach space.

Definition 2.1 (Banach space of type 𝑞 [34], p. 246). Assume that Ω permits a sequence of independent
Rademacher random variables 𝑍𝑖, 𝑖 ∈ N. We say that a Banach space 𝑉 is a Banach space of type 1 ≤ 𝑞 ≤ 2 if
there is a constant 𝜅 > 0 such that for all finite sequences (𝑥𝑖)𝑀

𝑖=1 ⊆ 𝑉

(︃
E

⃦⃦⃦⃦
⃦

𝑀∑︁
𝑖=1

𝑍𝑖𝑥𝑖

⃦⃦⃦⃦
⃦

𝑞

𝑉

)︃ 1
𝑞

≤ 𝜅

(︃
𝑀∑︁
𝑖=1

‖𝑥𝑖‖𝑞
𝑉

)︃ 1
𝑞

.

We will refer to 𝜅 as the type constant of 𝑉 .
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Every Banach space is a Banach space of type 1 and every Hilbert space a Banach space of type 2 ([34], Thm.
9.10). Moreover, L𝑝 spaces are Banach spaces of type 𝑞 = min(2, 𝑝) for 1 ≤ 𝑝 < ∞ ([34], p. 247). We will need
the following results regarding Lebesgue spaces of functions with values in a Banach space of type 𝑞.

Lemma 2.2 ([34], p. 247). Let 1 ≤ 𝑟 ≤ ∞, (Ω,ℱ , P) be a measure space, and 𝑉 be a Banach space of type 𝑞.
Then the space L𝑟(Ω, 𝑉 ) is a Banach space of type min(𝑟, 𝑞).

Proposition 2.3 ([34], Prop. 9.11). Let 𝑉 be a Banach space of type 𝑞 with type constant 𝜅. Then, for every
finite sequence (𝑋𝑖)𝑀

𝑖=1 of independent mean zero random variables in L𝑞(Ω, 𝑉 ), we have

E

[︃⃦⃦⃦⃦
⃦

𝑀∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦⃦
⃦

𝑞

𝑉

]︃
≤ (2𝜅)𝑞

𝑀∑︁
𝑖=1

E [‖𝑋𝑖‖𝑞
𝑉 ] .

Corollary 2.4 ([32], Cor. 2.5). Let 𝑉 be a Banach space of type 𝑞 with type constant 𝜅 and let 𝑋 ∈ L𝑞(Ω; 𝑉 )
be a zero mean random variable. Then for every finite sequence (𝑋𝑖)𝑀

𝑖=1 of independent, identically distributed
random variables with zero mean and with 𝑋𝑖

𝐷= 𝑋, we have

E [‖𝐸𝑀 [𝑋]‖𝑞
𝑉 ] = E

[︃⃦⃦⃦⃦
⃦ 1

𝑀

𝑀∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦⃦
⃦

𝑞

𝑉

]︃
≤ (2𝜅)𝑞𝑀1−𝑞E [‖𝑋‖𝑞

𝑉 ] .

We can use Corollary 2.4 to derive a convergence rate of the Monte Carlo estimator in L𝑞(Ω; L𝑝(R)) for
random variables in L𝑟(Ω; L𝑝(R)).

Theorem 2.5. Let 1 ≤ 𝑟, 𝑝 ≤ ∞ and 𝑋 ∈ L𝑟(Ω; L𝑝(R)), then for 𝑞 := min{2, 𝑝, 𝑟} we have the Monte Carlo
error estimate

‖E[𝑋]− 𝐸𝑀 [𝑋]‖L𝑞(Ω;L𝑝(R)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑋‖L𝑞(Ω;L𝑝(R)) .

In particular, if 𝑝, 𝑟 > 1 (and thus 𝑞 > 1) the Monte Carlo estimator 𝐸𝑀 [𝑋] converges towards E[𝑋] in
L𝑞(Ω; L𝑝(R)).

The proof of this theorem is an adaptation of Theorem 4.1 from [32].

Proof. We have

‖E[𝑋]− 𝐸𝑀 [𝑋]‖𝑞
L𝑞(Ω;L𝑝(R)) = E

⎡⎣⃦⃦⃦⃦⃦E[𝑋]− 1
𝑀

𝑀∑︁
𝑖=1

𝑋̂𝑖

⃦⃦⃦⃦
⃦

𝑞

L𝑝(R)

⎤⎦
= E

⎡⎣⃦⃦⃦⃦⃦ 1
𝑀

𝑀∑︁
𝑖=1

(︁
E[𝑋]− 𝑋̂𝑖

)︁⃦⃦⃦⃦⃦
𝑞

L𝑝(R)

⎤⎦ .

If we define 𝑌 = E[𝑋]−𝑋 and 𝑌𝑖 = E[𝑋]− 𝑋̂𝑖 we see that 𝑌 is in L𝑟(Ω; L𝑝(R)) with zero mean and 𝑌𝑖 are i.i.d.
random variables with zero mean satisfying 𝑌𝑖

𝐷= 𝑌 . Therefore, we can apply Corollary 2.4 since L𝑟(Ω; L𝑝(R))
is of type min(2, 𝑟, 𝑝) and L𝑝(R) is of type min(2, 𝑝) and thus in particular also of type min(2, 𝑟, 𝑝). Hence,

E

⎡⎣⃦⃦⃦⃦⃦ 1
𝑀

𝑀∑︁
𝑖=1

(︁
E[𝑋]− 𝑋̂𝑖

)︁⃦⃦⃦⃦⃦
𝑞

L𝑝(R)

⎤⎦ ≤ (2𝜅)𝑞𝑀1−𝑞E
[︁
‖E[𝑋]−𝑋‖𝑞

L𝑝(R)

]︁
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where 𝜅 is the type constant of L𝑝(R). It remains to show E
[︁
‖E[𝑋]−𝑋‖𝑞

L𝑝(R)

]︁
≤ 𝐶E

[︁
‖𝑋‖𝑞

L𝑝(R)

]︁
. This follows

from standard estimates and Jensen’s inequality in the following way:

E
[︁
‖E[𝑋]−𝑋‖𝑞

L𝑝(R)

]︁
≤ 𝐶E

[︁
‖E[𝑋]‖𝑞

L𝑝(R) + ‖𝑋‖𝑞
L𝑝(R)

]︁
≤ 𝐶

(︁(︁
E
[︁
‖𝑋‖L𝑝(R)

]︁)︁𝑞

+ E
[︁
‖𝑋‖𝑞

L𝑝(R)

]︁)︁
≤ 𝐶E

[︁
‖𝑋‖𝑞

L𝑝(R)

]︁
.

�

Note that Corollary 2.4 and Theorem 2.5 do not imply convergence if 𝑞 = 1, i.e., if 𝑟 or 𝑝 are equal to 1 in
the latter case.

3. Deterministic conservation laws with discontinuous flux

In this section, we present the main existence and stability results for deterministic conservation laws with
spatially discontinuous flux from [8,46,51].

We consider the Cauchy problem for conservation laws with discontinuous flux of the form

𝑢𝑡 + 𝑓(𝑘(𝑥), 𝑢)𝑥 = 0, 𝑥 ∈ R, 𝑡 > 0
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R.

(3.1)

Here, we require that 𝑓 , 𝑘, and 𝑢0 satisfy the following:

Assumption 3.1. We assume that the flux 𝑓 ∈ 𝒞2(R2; R) is strictly monotone in 𝑢 in the sense that 𝑓𝑢 ≥ 𝛼 > 0,
and that 𝑓(𝑘*, 0) = 0 for all 𝑘* ∈ R. Furthermore, we assume that 𝑘 is piecewise constant with finitely many
discontinuities and that the initial datum 𝑢0 is in (L∞ ∩ BV)(R).

In the deterministic setting, we consider entropy solutions in the following sense (cf. [6, 8]). For 𝑝 ∈ R we
define the function 𝑐𝑝 : R → R through the equation

𝑓(𝑘(𝑥), 𝑐𝑝(𝑥)) = 𝑝, for all 𝑥 ∈ R.

Since 𝑓𝑢 ≥ 𝛼 > 0 this equation has a unique solution for each 𝑥 ∈ R. Note that in the case of piecewise constant
𝑘 the function 𝑐𝑝 is piecewise constant as well.

Definition 3.2 (Entropy solution). We say 𝑢 ∈ 𝒞([0, 𝑇 ]; L1(R))∩L∞((0, 𝑇 )×R) is an entropy solution of (3.1)
if ∫︁ 𝑇

0

∫︁
R

(|𝑢− 𝑐𝑝(𝑥)|𝜙𝑡 + sgn(𝑢− 𝑐𝑝(𝑥))(𝑓(𝑘(𝑥), 𝑢)− 𝑓(𝑘(𝑥), 𝑐𝑝(𝑥)))𝜙𝑥) d𝑥 d𝑡

−
∫︁

R
|𝑢(𝑥, 𝑇 )− 𝑐𝑝(𝑥)|𝜙(𝑥, 𝑇 ) d𝑥 +

∫︁
R
|𝑢0(𝑥)− 𝑐𝑝(𝑥)|𝜙(𝑥, 0) d𝑥 ≥ 0

for all 𝑝 ∈ R and for all nonnegative 𝜙 ∈ 𝒞∞𝑐 (R× [0, 𝑇 ]).

Note that a Rankine–Hugoniot-type argument shows that across a discontinuity 𝜉 of 𝑘 the entropy solution
𝑢 satisfies the Rankine–Hugoniot condition

𝑓(𝑘(𝜉−), 𝑢(𝜉−, 𝑡)) = 𝑓(𝑘(𝜉+), 𝑢(𝜉+, 𝑡)) for almost every 𝑡 ∈ (0, 𝑇 ) (3.2)

where 𝑘(𝜉∓) and 𝑢(𝜉∓, ·) denote the left and right traces of 𝑘 respectively 𝑢 both of which exist due to Remark 2.3
of [5]. In our subsequent analysis we will rely on the following two results concerning existence and stability of
entropy solutions.
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Theorem 3.3 (Existence and uniqueness of entropy solutions [7,8,51]). Let 𝑓, 𝑘, and 𝑢0 satisfy Assumption 3.1.
Then there exists a unique entropy solution 𝑢 of (3.1) which satisfies

‖𝑢(·, 𝑡)‖L∞(R) ≤
𝐶𝑓

𝛼
‖𝑢0‖L∞(R) (3.3)

TV(𝑢(·, 𝑡)) ≤ 𝐶(TV(𝑘) + TV(𝑢0))
for all 0 ≤ 𝑡 ≤ 𝑇 and

TV[0,𝑇 ](𝑢(𝑥, ·)) ≤ 𝐶TV(𝑢0)

for all 𝑥 ∈ R. Here 𝐶𝑓 denotes the maximal Lipschitz constant of 𝑓 and 𝛼 is as in Assumption 3.1.

Proof. The existence and uniqueness statement follows from the theory developed by Baiti and Jenssen [8]. The
L∞ and TV bounds follow from Theorem 1.4 of [51] and Lemma 4.6 of [7]. �

Theorem 3.4 (Stability of entropy solutions [46]). Let 𝑓, 𝑘, and 𝑢0 satisfy Assumption 3.1 and 𝑢 be the cor-
responding entropy solution of (3.1). If 𝑣 is the entropy solution of (3.1) with flux 𝑔, coefficient 𝑙, and initial
datum 𝑣0 satisfying Assumption 3.1 then for all 0 ≤ 𝑡 ≤ 𝑇

‖𝑢(·, 𝑡)− 𝑣(·, 𝑡)‖L1(R) ≤ ‖𝑢0 − 𝑣0‖L1(R) + 𝐶
(︀
‖𝑘 − 𝑙‖L∞(R) + ‖𝑓𝑢 − 𝑔𝑢‖L∞(R2;R)

)︀
. (3.4)

In particular, entropy solutions of (3.1) satisfy

‖𝑢(·, 𝑡)‖L1(R) ≤ ‖𝑢0‖L1(R)

for all 0 ≤ 𝑡 ≤ 𝑇 .

Proof. The stability estimate can be found in Theorem 4.1 of [46]. The L1 bound follows from the stability
estimate (3.4) by taking 𝑔 = 𝑓 , 𝑙 = 𝑘, and 𝑣0 = 0. �

Remark 3.5. We want to mention that the stability result from Theorem 3.4 is not only integral in proving
existence and uniqueness of random entropy solutions, but can also be used to show well-posedness of Bayesian
inverse problems for conservation laws with discontinuous flux [40].

4. Random conservation laws with discontinuous flux

We now consider conservation laws with discontinuous flux where the flux 𝑓 , the coefficient 𝑘, and the initial
datum 𝑢0 in (3.1) are uncertain. To that end, we let (Ω,ℱ , P) be a probability space and denote by ℬ(𝑋) the
Borel 𝜎-algebra on a space 𝑋. We define appropriate random data (𝑢0, 𝑘, 𝑓) in the following sense.

Definition 4.1 (Random data). Given constants 𝐶TV, 𝐶𝑓 ∈ R, 𝛼 ∈ (0,∞), 𝑁𝑘 ∈ Z, 𝛿 > 0 and given a rectangle
𝑅 = 𝑅1 ×𝑅2 ⊂ R2 let D be the Banach space

D = (BV ∩ L∞)(R)× L∞(R)× 𝒞2(𝑅; R)

endowed with the norm

‖(𝑢0, 𝑘, 𝑓)‖D = ‖𝑢0‖L1(R) + TV(𝑢0) + ‖𝑢0‖L∞(R) + ‖𝑘‖L∞(R) + ‖𝑓‖𝒞2(𝑅;R) .

We say that a strongly measurable map (𝑢0, 𝑘, 𝑓) : (Ω,ℱ) → (D,ℬ(D)) is called random data for (3.1) if for
P-a.e. 𝜔

𝑢0(𝜔; 𝑥) ∈ 𝑅1, for a.e. 𝑥 ∈ R,

TV(𝑢0) ≤ 𝐶TV < ∞,
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𝑘(𝜔; 𝑥) ∈ 𝑅2, for a.e. 𝑥 ∈ R,

𝑘(𝜔; ·) is pcw. constant with at most 𝑁𝑘 discontinuities,
each pair of discontinuities of 𝑘 is at least 𝛿 apart,

𝑓𝑢(𝜔, 𝑘, 𝑢) ≥ 𝛼 > 0 and 𝑓(𝜔; 𝑘, 0) = 0, for all (𝑘, 𝑢) ∈ 𝑅,

‖𝑓(𝜔; ·, ·)‖𝒞2(𝑅;R) ≤ 𝐶𝑓 < ∞

such that for P-a.e. 𝜔 the data (𝑢0(𝜔), 𝑘(𝜔), 𝑓(𝜔)) satisfy Assumption 3.1.

We are interested in random entropy solutions of the random conservation law

𝜕𝑢(𝜔; 𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑢(𝜔; 𝑥, 𝑡))

𝜕𝑥
= 0, 𝜔 ∈ Ω, 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝜔; 𝑥, 0) = 𝑢0(𝜔; 𝑥), 𝜔 ∈ Ω, 𝑥 ∈ R.
(4.1)

Definition 4.2 (Random entropy solution). Given random data (𝑢0, 𝑘, 𝑓) : Ω → D, we say that a random
variable 𝑢 : Ω → 𝒞([0, 𝑇 ]; L1(R)) is a random entropy solution of (4.1) if 𝑢 is strongly measurable and for P-a.e.
𝜔 ∈ Ω the function 𝑢(𝜔) satisfies∫︁ 𝑇

0

∫︁
R

(|𝑢(𝜔; 𝑥, 𝑡)− 𝑐𝑝(𝜔; 𝑥)|𝜙𝑡 + 𝑞(𝜔; 𝑢(𝜔; 𝑥, 𝑡))) d𝑥 d𝑡

−
∫︁

R
|𝑢(𝜔; 𝑥, 𝑇 )− 𝑐𝑝(𝜔; 𝑥)|𝜙(𝑥, 𝑇 ) d𝑥 +

∫︁
R
|𝑢0(𝜔; 𝑥)− 𝑐𝑝(𝜔; 𝑥)|𝜙(𝑥, 0) d𝑥 ≥ 0 (4.2)

for all 𝑝 ∈ R and nonnegative 𝜙 ∈ 𝒞∞𝑐 (R× [0, 𝑇 ]). Here we have used the notation

𝑞(𝜔; 𝑢(𝜔; 𝑥, 𝑡)) = sgn(𝑢− 𝑐𝑝(𝜔; 𝑥))(𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑢)− 𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑐𝑝(𝜔; 𝑥))).

We have the following existence and uniqueness result for random entropy solutions of conservation laws with
discontinuous flux.

Theorem 4.3 (Existence and pathwise uniqueness of random entropy solutions). Let (𝑢0, 𝑘, 𝑓) be random data.
Then there exists a unique random entropy solution 𝑢 : Ω → 𝒞([0, 𝑇 ]; L1(R)) to (4.1) which is pathwise unique,
i.e., if the random data (𝑢0, 𝑘, 𝑓) and (𝑣0, 𝑙, 𝑔) are P-versions of each other and 𝑢 and 𝑣 are corresponding
random entropy solutions then 𝑢 and 𝑣 are P-versions of each other.

Proof. Let 𝑆 : D → 𝒞([0, 𝑇 ]; L1(R)) denote the solution operator from Theorem 3.3 that maps (deterministic)
(𝑢0, 𝑘, 𝑓) ∈ D to the unique (deterministic) entropy solution 𝑢̂ = 𝑆(𝑢0, 𝑘, 𝑓). Because of the stability estimate
(3.4) this solution map is Lipschitz continuous. Now, since the random data (𝑢0, 𝑘, 𝑓) : Ω → D is strongly
measurable the composition 𝑆 ∘ (𝑢0, 𝑘, 𝑓) : Ω → 𝒞([0, 𝑇 ]; L1(R)) is again strongly measurable (see [53], Cor.
1.13). Hence 𝑢 = 𝑆 ∘ (𝑢0, 𝑘, 𝑓) is a strongly measurable map satisfying (4.2) P-almost surely. Therefore, 𝑢 is a
random entropy solution to (4.1).

Regarding uniqueness of random entropy solutions, let (𝑢0, 𝑘, 𝑓) and (𝑣0, 𝑙, 𝑔) be P-versions of each other, i.e.,
‖(𝑢0(𝜔), 𝑘(𝜔), 𝑓(𝜔)) − (𝑣0(𝜔), 𝑙(𝜔), 𝑔(𝜔))‖D = 0 for P-a.e. 𝜔 ∈ Ω, and 𝑢 and 𝑣 corresponding random entropy
solutions. Then, the Lipschitz continuity of the solution operator 𝑆 gives

‖𝑢(𝜔)− 𝑣(𝜔)‖𝒞([0,𝑇 ];L1(R)) ≤ 𝐶‖(𝑢0(𝜔), 𝑘(𝜔), 𝑓(𝜔))− (𝑣0(𝜔), 𝑙(𝜔), 𝑔(𝜔))‖D = 0.

Thus, we have 𝑢(𝜔) = 𝑣(𝜔) in 𝒞([0, 𝑇 ]; L1(R)) for P-a.e. 𝜔 ∈ Ω which is pathwise uniqueness. �

Note that Theorem 4.3 generalizes the existence result of random entropy solutions of [41] for fluxes which
are strictly monotone in 𝑢 since the present setting allows for a discontinuous spatial dependency of the flux.
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Remark 4.4. All existence and continuous dependence results stated so far apply to the deterministic Cauchy
problem (3.1). By the usual arguments, verbatim the same results hold for entropy solutions on bounded intervals
𝐷 ⊂ R as well, provided periodic boundary conditions are enforced.

The following probabilistic bound will be important in the numerical approximation of random entropy
solutions on bounded domains.

Lemma 4.5. Let (𝑢0, 𝑘, 𝑓) be random data and 𝐷 ⊂ R a bounded interval. Let further 𝑢0 ∈ L𝑟(Ω; L∞(𝐷)), for
some 1 ≤ 𝑟 ≤ ∞. Then the random entropy solution 𝑢 of (4.1) is in L𝑟(Ω; 𝒞([0, 𝑇 ]; L𝑝(𝐷))) for all 1 ≤ 𝑝 ≤ ∞.
In particular,

‖𝑢(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))

for all 0 ≤ 𝑡 ≤ 𝑇 .

Proof. On bounded domains 𝐷 we have

‖𝑢(·, 𝑡)‖L𝑝(𝐷) ≤ |𝐷|
1
𝑝 ‖𝑢(·, 𝑡)‖L∞(𝐷)

and thus using the L∞-bound (3.3) we have for all 0 ≤ 𝑡 ≤ 𝑇

‖𝑢(·, 𝑡)‖𝑟
L𝑟(Ω;L𝑝(𝐷)) =

∫︁
Ω

‖𝑢(·, 𝑡)‖𝑟
L𝑝(𝐷) dP

≤ 𝐶

∫︁
Ω

‖𝑢(·, 𝑡)‖𝑟
L∞(𝐷) dP

≤ 𝐶

∫︁
Ω

‖𝑢0‖𝑟
L∞(𝐷) dP

= 𝐶 ‖𝑢0‖𝑟
L𝑟(Ω;L∞(𝐷))

which proves the claim. �

5. Numerical approximation of random entropy solutions

In this section, we want to approximate the expectation E[𝑢(·, 𝑡)] of a random entropy solution 𝑢 of the
random conservation law with discontinuous flux (4.1). On the one hand, we will use the Monte Carlo and
multilevel Monte Carlo method to approximate in the stochastic domain Ω. On the other hand, since in general
exact solutions to (4.1) are not at hand, we will approximate in the physical domain R × [0, 𝑇 ] by a finite
volume method. To this end, we use a modified version of monotone finite volume methods for conservation
laws introduced in [7] which appropriately addresses the presence of the discontinuous parameter 𝑘.

The resulting approximation error introduced by the Monte Carlo method depends on the number of samples
used, while the error introduced by the finite volume method depends on the resolution of the grid. In the
following subsections, we will review the finite volume method for the deterministic problem, detail how to
combine it with the Monte Carlo and multilevel Monte Carlo method and prove error estimates for the resulting
Monte Carlo and multilevel Monte Carlo finite volume method.

5.1. Finite volume methods for conservation laws with discontinuous flux

We will first consider the (deterministic) conservation law with discontinuous flux (3.1) and present a class
of finite volume methods introduced in [7].

For a given (deterministic) function 𝑘 with discontinuities 𝜉1 < 𝜉2 < . . . < 𝜉𝑁 such that 𝑘 satisfies the relevant
assumptions in Definition 4.1 we denote by 𝐷𝑖 = (𝜉𝑖, 𝜉𝑖+1), 𝑖 = 0, . . . , 𝑁 , the subdomains where 𝑘 is constant.
Here, we have used the notation 𝜉0 = −∞ and 𝜉𝑁+1 = +∞. In the following we will write

𝑓 (𝑖) = 𝑓(𝑘(𝑥), ·), for 𝑥 ∈ 𝐷𝑖, 𝑖 = 0, . . . , 𝑁.
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We discretize the domain R × [0, 𝑇 ] using the spatial and temporal grid discretization parameters ∆𝑥 and
∆𝑡. Here we assume that the spatial discretization parameter ∆𝑥 is already small with respect to the given
minimal distance 𝛿 between discontinuities of 𝑘, i.e., ∆𝑥 < 𝛿. In order to define the finite volume method we
need the spatial grid to be aligned in such a way that all discontinuities of 𝑘 lie on grid points. We acomplish
that in the following way: To the left of 𝜉1 and to the right of 𝜉𝑁 we use a mesh of width ∆𝑥 that is aligned
with 𝜉1 respectively 𝜉𝑁 . Inside each interval 𝐷𝑖 = (𝜉𝑖, 𝜉𝑖+1) a mesh of the form {𝜉𝑖 + 𝑗∆𝑥}𝐽

𝑗=1 might not align
with the point 𝜉𝑖+1. This happens precisely when 𝐽∆𝑥 < 𝜉𝑖+1 − 𝜉𝑖 < (𝐽 + 1)∆𝑥 in which case we set up the
finer mesh {𝜉𝑖 + 𝑗∆𝑥𝑖}𝐽+1

𝑗=1 where ∆𝑥𝑖 = 𝜉𝑖+1−𝜉𝑖

𝐽+1 . Note that by definition we have

1
2

∆𝑥 ≤ ∆𝑥𝑖 ≤ ∆𝑥. (5.1)

In this way we can set up a spatial grid that is globally non-uniform, but uniform on each subdomain 𝐷𝑖.
We want to point out the important fact that while the local grid sizes ∆𝑥𝑖 depend on the distance between
neighboring discontinuities of 𝑘 (which we will assume to be random later) the upper and lower bounds of ∆𝑥𝑖

given by (5.1) are independ of 𝑘.
The resulting grid cells we denote by 𝒞𝑗 = (𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
) for points 𝑥𝑗+ 1

2
, such that for 𝑗 ∈ Z we have

𝑥𝑗+ 1
2
− 𝑥𝑗− 1

2
= ∆𝑥𝑖 for some 𝑖 = 0, . . . , 𝑁 . Here we used the notation ∆𝑥0 = ∆𝑥𝑁 = ∆𝑥. The temporal grid

cells we denote by 𝒞𝑛 = [𝑡𝑛, 𝑡𝑛+1) where 𝑡𝑛 = 𝑛∆𝑡 for 𝑛 = 0, . . . ,𝑀 + 1. Since the grid is aligned with the
discontinuities of 𝑘 we have 𝜉𝑖 = 𝑥𝑃𝑖− 1

2
for some integers 𝑃𝑖, 𝑖 = 1, . . . , 𝑁 .

We consider two-point numerical fluxes 𝐹 (𝑢, 𝑣) that have the upwind property such that if 𝑓 ′ ≥ 0 (which is
the setting of the present paper), we have 𝐹 (𝑢, 𝑣) = 𝑓(𝑣). This includes the upwind flux, the Godunov flux, and
the Engquist–Osher flux. The finite volume method we consider is the following [7]:

𝑢0
𝑗 =

1
∆𝑥

∫︁
𝒞𝑗

𝑢0(𝑥) d𝑥, 𝑗 ∈ Z,

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 − 𝜆𝑖

(︁
𝑓 (𝑖)

(︀
𝑢𝑛

𝑗

)︀
− 𝑓 (𝑖)

(︀
𝑢𝑛

𝑗−1

)︀)︁
, 𝑛 ≥ 0, 𝑃𝑖 < 𝑗 < 𝑃𝑖+1, 0 ≤ 𝑖 ≤ 𝑁,

𝑢𝑛+1
𝑃𝑖

=
(︁
𝑓 (𝑖)
)︁−1 (︁

𝑓 (𝑖−1)
(︀
𝑢𝑛+1

𝑃𝑖−1

)︀)︁
, 𝑛 ≥ 0, 0 < 𝑖 ≤ 𝑁,

(5.2)

where 𝑃0 = −∞, 𝑃𝑁+1 = +∞, and 𝜆𝑖 = ∆𝑡/∆𝑥. We assume that the grid discretization parameters satisfy the
CFL condition

max
𝑖

max
𝑢

(︁
𝑓 (𝑖)
)︁′

(𝑢)
∆𝑡

∆𝑥
≤ 1

2
(5.3)

such that, in particular,

max
𝑖

max
𝑢

(︁
𝑓 (𝑖)
)︁′

(𝑢)𝜆𝑖 ≤ 1.

Note that the last line of (5.2) represents a discrete version of the Rankine–Hugoniot condition (3.2). Here, we
use the ghost cells 𝒞𝑃𝑖

, 𝑖 = 1, . . . , 𝑁 to explicitly enforce the Rankine–Hugoniot condition on the discrete level.
With the sequence of cell averages (𝑢𝑛

𝑗 )𝑗,𝑛 we associate the piecewise constant function 𝑢Δ𝑥(𝑥, 𝑡) given by

𝑢Δ𝑥(𝑥, 𝑡) = 𝑢𝑛
𝑗 , (𝑥, 𝑡) ∈ 𝒞𝑗 × 𝒞𝑛.

The following lemma shows that the finite volume method is stable in L∞ and L1.

Lemma 5.1 (Stability of the finite volume method). If the numerical scheme (5.2) satisfies the CFL condi-
tion (5.3) we have the following stability estimates:

‖𝑢Δ𝑥(·, 𝑡)‖L∞(R) ≤
𝐶𝑓

𝛼
‖𝑢0‖L∞(R) (5.4)
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and
‖𝑢Δ𝑥(·, 𝑡)‖L1(R) ≤ ‖𝑢0‖L1(R) + 𝐶TV(𝑢0)∆𝑥.

Proof. (1) We first prove the L∞-bound. To that end, we show by induction over 𝑖 = 0, . . . , 𝑁 that

𝑢𝑛
𝑗 ≤ max

𝑚=0,...,𝑖
sup

𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖)
)︁−1 (︁

𝑓 (𝑚)
(︀
𝑢0

𝑙

)︀)︁
(5.5)

for all 𝑗 = 𝑃𝑖, . . . , 𝑃𝑖+1 − 1 and 𝑛 = 0, . . . ,𝑀 + 1. For 𝑖 = 0, standard techniques for finite volume methods
for conservation laws show

𝑢𝑛
𝑗 ≤ max

{︀
𝑢𝑛−1

𝑗−1 , 𝑢𝑛−1
𝑗

}︀
≤ . . . ≤ sup

𝑙<𝑃1

𝑢0
𝑙 .

Assume now that (5.5) holds for some 𝑖 ∈ {0, . . . , 𝑁 − 1} and all 𝑗 = 𝑃𝑖, . . . , 𝑃𝑖+1 − 1 and 𝑛 = 0, . . . ,𝑀 + 1.
Then we have for 𝑗 = 𝑃𝑖+1

𝑢𝑛
𝑃𝑖+1

=
(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑖)

(︁
𝑢𝑛

𝑃𝑖+1−1

)︁)︁
≤ max

𝑚=0,...,𝑖
sup

𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑚)

(︀
𝑢0

𝑙

)︀)︁
.

On the other hand, for 𝑗 ∈ {𝑃𝑖+1 + 1, . . . , 𝑃𝑖+2 − 1} we have as before

𝑢𝑛
𝑗 ≤ max

{︀
𝑢𝑛−1

𝑗−1 , . . . , 𝑢1
𝑗−1, 𝑢

0
𝑗−1, 𝑢

0
𝑗

}︀
≤ . . . ≤ max

{︁
𝑢

𝑛−(𝑗−𝑃𝑖+1)
𝑃𝑖+1

, . . . , 𝑢1
𝑃𝑖+1

, 𝑢0
𝑃𝑖+1

, . . . , 𝑢0
𝑗

}︁
.

By combining both estimates, we obtain for 𝑗 ∈ {𝑃𝑖+1, . . . , 𝑃𝑖+2 − 1}

𝑢𝑛
𝑗 ≤ max

{︃
max

𝑙=𝑃𝑖+1,...,𝑃𝑖+2−1
𝑢0

𝑙 , max
𝑚=0,...,𝑖

sup
𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑚)

(︀
𝑢0

𝑙

)︀)︁}︃

= max
𝑚=0,...,𝑖+1

sup
𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑚)

(︀
𝑢0

𝑙

)︀)︁
which completes the induction. By taking absolute values in (5.5) we get for 𝑗 ∈ Z

|𝑢𝑛
𝑗 | ≤

1
𝛼

max
𝑖=0,...,𝑁

⃦⃦⃦
𝑓 (𝑖)
⃦⃦⃦

Lip
‖𝑢0‖L∞(R) .

Taking the supremum over 𝑗 yields the L∞-bound (5.4).
(2) In order to prove the L1-bound note that we have the discrete entropy inequalities

|𝑢𝑛+1
𝑗 − 𝑐| − |𝑢𝑛

𝑗 − 𝑐|+ 𝜆
(︁
𝑞
(𝑖),𝑛
𝑗 − 𝑞

(𝑖),𝑛
𝑗−1

)︁
≤ 0, 𝑖 = 0, . . . , 𝑁, 𝑗 = 𝑃𝑖 + 1, . . . , 𝑃𝑖+1 − 1

for all 𝑐 ∈ R (see [7]). Here, we have denoted 𝑞
(𝑖),𝑛
𝑗 = |𝑓 (𝑖)(𝑢𝑛

𝑗 ) − 𝑓 (𝑖)(𝑐)|. Taking 𝑐 = 0 and summing over
𝑗 ∈ Z ∖ {𝑃1, . . . , 𝑃𝑁} yields

∑︁
𝑗 ̸=𝑃𝑖

|𝑢𝑛+1
𝑗 | ≤

∑︁
𝑗 ̸=𝑃𝑖

|𝑢𝑛
𝑗 | − 𝜆

𝑁∑︁
𝑖=0

𝑃𝑖+1−1∑︁
𝑗=𝑃𝑖+1

(︁
𝑞
(𝑖),𝑛
𝑗 − 𝑞

(𝑖),𝑛
𝑗−1

)︁
=
∑︁
𝑗 ̸=𝑃𝑖

|𝑢𝑛
𝑗 |.

Therefore, we have

∑︁
𝑗∈Z

|𝑢𝑛+1
𝑗 | ≤

∑︁
𝑗∈Z

|𝑢𝑛
𝑗 |+

𝑁∑︁
𝑖=1

(︀⃒⃒
𝑢𝑛+1

𝑃𝑖
| − |𝑢𝑛

𝑃𝑖

⃒⃒)︀
≤
∑︁
𝑗∈Z

|𝑢𝑛
𝑗 |+

𝑁∑︁
𝑖=1

1
𝛼

⃦⃦⃦
𝑓 (𝑖−1)

⃦⃦⃦
Lip

⃒⃒
𝑢𝑛+1

𝑃𝑖−1 − 𝑢𝑛
𝑃𝑖−1

⃒⃒
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and hence ∑︁
𝑗∈Z

|𝑢𝑛+1
𝑗 | ≤

∑︁
𝑗∈Z

|𝑢0
𝑗 |+

𝑁∑︁
𝑖=0

1
𝛼

⃦⃦⃦
𝑓 (𝑖−1)

⃦⃦⃦
Lip

𝑛∑︁
𝑚=0

⃒⃒
𝑢𝑚+1

𝑃𝑖−1 − 𝑢𝑚
𝑃𝑖−1

⃒⃒
.

In Lemma 4.6 of [7], it was shown that for all 𝑖 = 0, . . . , 𝑁 we have

𝑛∑︁
𝑚=0

⃒⃒
𝑢𝑚+1

𝑃𝑖−1 − 𝑢𝑚
𝑃𝑖−1

⃒⃒
≤ 𝐶TV(𝑢0)

which together with the foregoing estimate finally yields

‖𝑢Δ𝑥(·, 𝑡)‖L1(R) ≤ ‖𝑢0‖L1(R) + 𝐶TV(𝑢0)∆𝑥.

�

In order to prove error estimates of the Monte Carlo and multilevel Monte Carlo finite volume method we
will need the following convergence rate estimate which was proved in [7].

Theorem 5.2 (Convergence rate of the finite volume method [7]). Let 𝑓, 𝑘, and 𝑢0 satisfy Assumption 3.1
and the discretization parameters satisfy the CFL condition (5.3). Then the finite volume approximation 𝑢Δ𝑥

given by the scheme (5.2) converges towards the unique entropy solution 𝑢 of (4.1) almost everywhere and in
L1(R× (0, 𝑇 )). In particular, we have the following convergence rate estimate

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L1(R) ≤ 𝐶∆𝑥
1
2 (5.6)

for all 0 ≤ 𝑡 ≤ 𝑇 .

Note that the convergence rate estimate (5.6) is optimal in the sense that the exponent 1
2 cannot be improved

without further assumptions on the initial datum [7] (see [47] for an overview of the literature regarding optimal
convergence rates of finite volume methods for conservation laws without spatial dependency).

Remark 5.3. We want to point out that the constant 𝐶 in (5.6) depends only on TV(𝑢0), ‖𝑢0‖L∞ , ‖𝑓‖∞, 𝛼
and the number of discontinuities of 𝑘. In particular, for random data given according to Definition 4.1 all those
quantities are uniformly bounded and thus for random entropy solutions the constant 𝐶 in (5.6) is integrable
in 𝜔.

Remark 5.4. Reasoning as for entropy solutions, the finite volume approximation satisfies

‖𝑢Δ𝑥(·, 𝑡)‖L𝑝(𝐷) ≤ |𝐷|
1
𝑝 ‖𝑢Δ𝑥(·, 𝑡)‖L∞(𝐷) ≤ 𝐶 ‖𝑢0‖L∞(𝐷)

for all 1 ≤ 𝑝 ≤ ∞. Like in Lemma 4.5, this translates into the following probabilistic bound:

‖𝑢Δ𝑥(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) (5.7)

for all 0 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑝 ≤ ∞.

For the rest of this paper, we will consider entropy solutions on a bounded interval 𝐷 ⊂ R with periodic
boundary conditions. With the usual arguments, all previous results concerning entropy solutions and their
finite volume approximations carry over to this setting verbatim. Note that restricting ourselves to a bounded
domain will enable us to prove error estimates of the Monte Carlo and multilevel Monte Carlo finite volume
method also in L2(Ω; L1(𝐷)) (cf. [45]).
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5.2. Monte Carlo finite volume method

We now consider the random conservation law with discontinuous flux (4.1) and introduce and analyze the
Monte Carlo finite volume method.

Given 𝑀 ∈ N, we generate 𝑀 independent and identically distributed samples (𝑓 𝑖, 𝑘𝑖, 𝑢̂𝑖
0)𝑀

𝑖=1 of given random
data (𝑢0, 𝑘, 𝑓). Let now 𝑢̂𝑖

Δ𝑥(·, 𝑡), 𝑖 = 1, . . . ,𝑀 , denote the numerical solutions generated by the finite volume
method (5.2) at time 𝑡 corresponding to the sample (𝑓 𝑖, 𝑘𝑖, 𝑢̂𝑖

0). Then, the 𝑀 -sample MCFVM approximation
to E[𝑢(·, 𝑡)] is defined as

𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)] =
1
𝑀

𝑀∑︁
𝑖=1

𝑢̂𝑖
Δ𝑥(·, 𝑡).

As mentioned earlier the approximation error of the MCFVM has a component coming from the statistical
sampling error and one from the deterministic discretization error. We will make this statement precise in the
following theorem.

Theorem 5.5 (MCFVM error estimate). Let (𝑢0, 𝑘, 𝑓) be random data and 𝑢 the corresponding random entropy
solution of (4.1). Assume that 𝑢0 satisfies the 𝑟-th moment condition

‖𝑢0‖L𝑟(Ω;L∞(𝐷)) < ∞

for some 1 < 𝑟 ≤ ∞. Assume further that we are given a FVM (5.2) such that the CFL condition (5.3) holds.
Then, for each 1 ≤ 𝑝 ≤ ∞ and 0 ≤ 𝑡 ≤ 𝑇 and for 𝑞 = min(2, 𝑟) > 1, the MCFVM approximation satisfies the
error estimate

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶

(︂
𝑀

1−𝑞
𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) + ‖𝑢0‖

1− 1
𝑝

L𝑟(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

)︂
. (5.8)

In particular, the MCFVM approximation converges towards E[𝑢(·, 𝑡)] in L𝑞(Ω; L𝑝(𝐷)) as 𝑀 →∞ and ∆𝑥 → 0.

Proof. We use the triangle inequality to get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

≤ ‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) + ‖𝐸𝑀 [𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) (5.9)

and estimate the resulting two terms separately. For the first term in (5.9), we distinguish the two cases 𝑝 ≥ 𝑞
and 𝑝 < 𝑞.

(1) We first consider the case 𝑝 ≥ 𝑞. According to Lemma 4.5 we have

‖𝑢(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))

and thus 𝑢(·, 𝑡) ∈ L𝑟(Ω; L𝑝(𝐷)). Therefore, we can apply Theorem 2.5 to get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢(·, 𝑡)‖L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) .

(2) In the case 𝑝 < 𝑞, we can apply Hölder’s inequality to estimate

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑞(𝐷)) .
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Again, we want to employ Theorem 2.5. To that end, we note that because of Lemma 4.5 and the fact that
𝑞 ≤ 𝑟 we have

‖𝑢(·, 𝑡)‖L𝑞(Ω;L𝑞(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑞(Ω;L∞(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))

and therefore 𝑢(·, 𝑡) ∈ L𝑞(Ω; L𝑞(𝐷)) and we can apply Theorem 2.5 to get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑞(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢(·, 𝑡)‖L𝑞(Ω;L𝑞(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) .

Hence, for all 1 ≤ 𝑝 ≤ ∞, we get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) .

On the other hand, for the second term in (5.9) we can use the triangle inequality and the linearity of the
expected value to obtain

‖𝐸𝑀 [𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤
1
𝑀

𝑀∑︁
𝑖=1

⃦⃦
𝑢̂𝑖(·, 𝑡)− 𝑢̂𝑖

Δ𝑥(·, 𝑡)
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

= ‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑞(Ω;L𝑝(𝐷)) .

Using the interpolation inequality between L1 and L∞, the L∞-bound for both 𝑢(·, 𝑡) and 𝑢Δ𝑥(·, 𝑡) (see (3.3)
respectively (5.4)), and the convergence rate estimate (5.6), we get

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑞(Ω;L𝑝(𝐷)) ≤ ‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖
1
𝑝

L𝑞(Ω;L1(𝐷)) ‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖1−
1
𝑝

L𝑞(Ω;L∞(𝐷))

≤ 𝐶 ‖𝑢0‖
1− 1

𝑝

L𝑟(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝 ,

which completes the proof. �

Note that the computations in the proof of the error estimate (5.8) are also valid if 𝑟 = 1 (and thus 𝑞 = 1).
However, in that case the right-hand side does not decrease as 𝑀 →∞.

5.3. Multilevel Monte Carlo finite volume method

Instead of just considering Monte Carlo samples of a single fixed resolution of the finite volume method,
we now detail the corresponding multilevel variant – the multilevel Monte Carlo finite volume method. The
idea of MLMC discretization of differential equations with random parameters was proposed by Giles in [18,19]
based upon earlier work by Heinrich on numerical quadrature [24]. The key ingredient of the MLMCFVM is
simultaneous MC sampling on different levels of resolution of the finite volume method with level-dependent
numbers 𝑀𝑙 of MC samples.

To that end, we generate a sequence of finite volume approximations 𝑈(·, 𝑡) := (𝑢𝑙(·, 𝑡))𝐿
𝑙=0 on grids with cell

sizes ∆𝑥𝑙 and time steps ∆𝑡𝑙 (subject to the CFL condition (5.3)) and set 𝑢Δ𝑥−1(·, 𝑡) = 0. Then, we have

E[𝑢Δ𝑥𝐿
(·, 𝑡)] = E

[︃
𝐿∑︁

𝑙=0

(𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡))

]︃
=

𝐿∑︁
𝑙=0

E[𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)].

We now approximate each term E[𝑢Δ𝑥𝑙
(·, 𝑡) − 𝑢Δ𝑥𝑙−1(·, 𝑡)] by a Monte Carlo estimator with 𝑀𝑙 samples. The

resulting MLMCFVM approximation to E[𝑢(·, 𝑡)] then is

𝐸𝐿[𝑈(·, 𝑡)] =
𝐿∑︁

𝑙=0

𝐸𝑀𝑙

[︀
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
]︀
. (5.10)
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In the following convergence analysis, we will assume for simplicity that ∆𝑥𝑙 = 2−𝑙∆𝑥0, 𝑙 = 0, . . . , 𝐿, for some
∆𝑥0 > 0.

As for the MCFVM, we want to obtain a rate at which 𝐸𝐿[𝑈(·, 𝑡)] converges towards E[𝑢(·, 𝑡)] in terms of
the number of MC samples 𝑀𝑙 and the spatial resolution ∆𝑥𝑙 on each level 𝑙 = 0, . . . , 𝐿.

Theorem 5.6 (MLMCFVM error estimate). Let 𝐿 > 0, (𝑢0, 𝑘, 𝑓) be random data, and 𝑢 the corresponding
random entropy solution of (4.1). Assume that 𝑢0 satisfies

‖𝑢0‖L𝑟(Ω;L∞(𝐷)) < ∞

for some 1 < 𝑟 ≤ ∞. Assume further that we are given a FVM (5.2) such that the CFL condition (5.3)
holds. Then, for each 0 ≤ 𝑡 ≤ 𝑇 , for any sequence (𝑀𝑙)𝐿

𝑙=0 of sample sizes at mesh level 𝑙 the MLMCFVM
approximation (5.10) satisfies the following error estimate for 𝑞 = min(2, 𝑟) > 1⃦⃦

E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(R))

≤ 𝐶

(︃
‖𝑢0‖

1− 1
̃︀𝑝

L1(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

𝐿 + ‖𝑢0‖L𝑞(Ω;L∞(𝐷)) 𝑀
1−𝑞

𝑞

0 + ‖𝑢0‖
1− 1

̃︀𝑝
L𝑞(Ω;L∞(𝐷))

𝐿∑︁
𝑙=0

𝑀
1−𝑞

𝑞

𝑙 ∆𝑥
1
2̃︀𝑝
𝑙

)︃
(5.11)

where ̃︀𝑝 = max(𝑝, 𝑞). In particular, for fixed 𝐿 the MLMCFVM approximation 𝐸𝐿[𝑈(·, 𝑡)] converges towards
E[𝑢(·, 𝑡)] in L𝑞(Ω; L𝑝(𝐷)) as 𝑀𝑙 →∞ and ∆𝑥0 → 0.

Proof. Using the triangle inequality and the linearity of the expectation, we get

‖E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

≤ ‖E[𝑢(·, 𝑡)]− E[𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) +

⃦⃦
E[𝑢Δ𝑥𝐿

(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

= ‖E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

+

⃦⃦⃦⃦
⃦

𝐿∑︁
𝑙=0

(︀
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
)︀⃦⃦⃦⃦⃦

L𝑞(Ω;L𝑝(𝐷))

≤ ‖E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

+
𝐿∑︁

𝑙=0

⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))
.

For the first term, note that the function E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)] is deterministic and thus we can use the conver-

gence rate estimate (5.6) to get

‖E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

≤ ‖𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)‖L1(Ω;L𝑝(𝐷))

≤ ‖𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)‖

1
𝑝

L1(Ω;L1(𝐷)) ‖𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)‖1−

1
𝑝

L1(Ω;L∞(𝐷))

≤ 𝐶 ‖𝑢0‖
1− 1

𝑝

L1(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

𝐿 .

We now estimate the summands in the second term. Similarly to the proof of Theorem 5.5 we distinguish the
two cases 𝑝 ≥ 𝑞 and 𝑝 < 𝑞.

(1) We first consider the case 𝑝 ≥ 𝑞. Because of the triangle inequality and (5.7) we have⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑟(Ω;L𝑝(𝐷))
≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))
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and thus 𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡) ∈ L𝑟(Ω; L𝑝(𝐷)). Therefore we can apply Theorem 2.5 to get⃦⃦

E[𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙

[𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]

⃦⃦
L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞

𝑙

⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L𝑝(𝐷))
.

(2) In the case 𝑝 < 𝑞, we can apply Hölder’s inequality to estimate⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶
⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑞(𝐷))
.

Following the same steps as in case (2) in the proof of Theorem 5.5 for 𝑢Δ𝑥𝑙
(·, 𝑡) − 𝑢Δ𝑥𝑙−1(·, 𝑡) instead of

𝑢(·, 𝑡) and using (5.7) instead of Lemma 4.5, we see that 𝑢Δ𝑥𝑙
(·, 𝑡) − 𝑢Δ𝑥𝑙−1(·, 𝑡) ∈ L𝑞(Ω; L𝑞(𝐷)). Thus, we

can apply Theorem 2.5 again and get⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑞(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞

𝑙

⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L𝑞(𝐷))
.

Combining both cases, we get⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞

𝑙

⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L̃︀𝑝(𝐷))

where ̃︀𝑝 = max(𝑝, 𝑞). Now, we can use the triangle inequality to get⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L̃︀𝑝(𝐷))
≤ ‖𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) +
⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦
L𝑞(Ω;L̃︀𝑝(𝐷))

.

For 𝑙 > 0, we can use the interpolation inequality between L1 and L∞, the L1 and L∞ bounds of the entropy
solution and finite volume approximations (see (3.3) respectively (5.4)), and the convergence rate estimate (5.6)
to get

‖𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) +

⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦
L𝑞(Ω;L̃︀𝑝(𝐷))

≤ ‖𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢(·, 𝑡)‖

1
̃︀𝑝
L𝑞(Ω;L1(𝐷)) ‖𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢(·, 𝑡)‖1−
1
̃︀𝑝

L𝑞(Ω;L∞(𝐷))

+
⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦ 1
̃︀𝑝
L𝑞(Ω;L1(𝐷))

⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦1− 1
̃︀𝑝

L𝑞(Ω;L∞(𝐷))

≤ 𝐶 ‖𝑢0‖
1− 1

̃︀𝑝
L𝑞(Ω;L∞(𝐷))

(︂
∆𝑥

1
2̃︀𝑝
𝑙 + ∆𝑥

1
2̃︀𝑝
𝑙−1

)︂
≤ 𝐶 ‖𝑢0‖

1− 1
̃︀𝑝

L𝑞(Ω;L∞(𝐷)) ∆𝑥
1
2̃︀𝑝
𝑙 .

Similarly, for 𝑙 = 0 (note that 𝑢Δ𝑥−1 = 0), the convergence rate estimate (5.6) and the bound from Lemma 4.5
give

‖𝑢Δ𝑥0(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) ≤ ‖𝑢Δ𝑥0(·, 𝑡)− 𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) + ‖𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷))

≤ 𝐶

(︂
‖𝑢0‖

1− 1
̃︀𝑝

L𝑞(Ω;L∞(𝐷)) ∆𝑥
1
2̃︀𝑝
0 + ‖𝑢0‖L𝑞(Ω;L∞(𝐷))

)︂
.



1054 J. BADWAIK ET AL.

Combining all estimates finally gives⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L𝑞(Ω;L𝑝(R))

≤ 𝐶

(︃
‖𝑢0‖

1− 1
̃︀𝑝

L1(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

𝐿 + ‖𝑢0‖L𝑞(Ω;L∞(𝐷)) 𝑀
1−𝑞

𝑞

0 + ‖𝑢0‖
1− 1

̃︀𝑝
L𝑞(Ω;L∞(𝐷))

𝐿∑︁
𝑙=0

𝑀
1−𝑞

𝑞

𝑙 ∆𝑥
1
2̃︀𝑝
𝑙

)︃
.

�

5.4. Work estimates and sample number optimization

In order to analyze the efficiency of the MC and MLMCFVM, it is important to estimate the computational
work which is needed to compute one approximation of the solution by the deterministic FVM and how it
increases with respect to mesh refinement. Here, by computational work, we understand the number of floating
point operations performed when executing an algorithm and we assume that this in turn is proportional to the
runtime of the algorithm.

In practice, we deal with bounded domains instead of working on the whole real line and thus the number of
grid cells scales as 1/∆𝑥. For the deterministic FVM (5.2) the number of floating point operations per time step
is proportional to the number of cells in the spatial domain, hence the computational work can be bounded by
𝐶∆𝑡−1∆𝑥−1. Considering the CFL condition (5.3), we thus obtain the computational work estimate

𝑊FVM(∆𝑥) ≤ 𝐶∆𝑥−2

for the deterministic FVM approximation. However, for the sake of generality, we will in the following only
assume that the computational work scales as

𝑊FVM(∆𝑥) ≤ 𝐶∆𝑥−𝑤 (5.12)

for some 𝑤 > 0. As seen before, we have the L𝑝 convergence rate estimate

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑝(𝐷) ≤ 𝐶∆𝑥
𝑠
𝑝

(for 𝑠 = 1
2 ) which yields the following deterministic convergence rate with respect to work:

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑝(𝐷) ≤ 𝐶
(︀
𝑊FVM

)︀− 𝑠
𝑤𝑝 . (5.13)

In particular, for 𝑝 = 1, 𝑤 = 2, and 𝑠 = 1
2 we have

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L1(𝐷) ≤ 𝐶
(︀
𝑊FVM

)︀− 1
4 .

5.4.1. Work estimates for the MCFVM approximation

Since for the Monte Carlo finite volume method 𝑀 deterministic finite volume approximations need to be
computed, each of which require work as in (5.12), the computational work for the MCFVM is bounded as

𝑊MC
𝑀 ≤ 𝐶𝑀∆𝑥−𝑤. (5.14)

In order to obtain the order of convergence of the approximation error in terms of computational work, we
equilibrate the terms 𝑀

1−𝑞
𝑞 and ∆𝑥

𝑠
𝑝 in (5.8) by choosing 𝑀 = 𝐶∆𝑥

𝑠𝑞
𝑝(1−𝑞) . Inserting this into the work

bound (5.14) yields

𝑊MCFVM
𝑀 ≤ 𝐶∆𝑥

𝑠𝑞−𝑤𝑝(1−𝑞)
𝑝(1−𝑞)
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such that we obtain from (5.8)

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶∆𝑥
𝑠
𝑝 ≤ 𝐶

(︀
𝑊MC

𝑀

)︀− 𝑠
𝑤𝑝+𝑠

𝑞
𝑞−1 . (5.15)

Note that, since 𝑞/(𝑞 − 1) is positive, we have

𝑠

𝑤𝑝 + 𝑠 𝑞
𝑞−1

≤ 𝑠

𝑤𝑝

and thus the rate (5.15) is worse than the error rate in terms of computational work (5.13) of the deterministic
finite volume method.

In particular, for 𝑝 = 1 and 𝑟 ≥ 2 (which implies 𝑞 = 2), and taking into account that 𝑤 = 2 and 𝑠 = 1
2 , the

rate (5.15) reads

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L2(Ω;L1(𝐷)) ≤ 𝐶
(︀
𝑊MC

𝑀

)︀− 1
6 .

5.4.2. Optimal sample numbers for the MLMCFVM approximation

In [32], Koley et al. showed the following general result for multilevel Monte Carlo finite volume methods
which we can apply to our case to determine the number of samples needed at each level 𝑙 such that, given an
error tolerance 𝜀 > 0, the computational work of the MLMCFVM is minimal.

Lemma 5.7 ([32], Lem. 4.9). Assume that the work of a multilevel Monte Carlo finite volume method with 𝐿
discretization levels scales asymptotically as

𝑊MLMC
𝐿 = 𝐶

𝐿∑︁
𝑙=0

𝑀𝑙∆𝑥−𝑤
𝑙

for some 𝑤 > 0 and that the approximation error (raised to the 𝑞-th power) scales as

Err𝐿 = 𝐶

(︃
∆𝑥

𝑠𝑞
𝑝

𝐿 + 𝑀1−𝑞
0 +

𝐿∑︁
𝑙=0

𝑀1−𝑞
𝑙 ∆𝑥

𝑠𝑞
̃︀𝑝

𝑙

)︃

where ̃︀𝑝 = max(𝑝, 𝑞) (cf. (5.11)). Then, given an error tolerance 𝜀 > 0, the optimal sample numbers 𝑀𝑙 mini-
mizing the computational work given the error tolerance 𝜀 are given by

𝑀0 ≃

(︃
1 + ∆𝑥

𝑠
̃︀𝑝
0

∑︀𝐿
𝑙=1 2𝑙(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )

𝜀−∆𝑥
𝑠𝑞
𝑝

𝐿

)︃ 1
𝑞−1

(5.16)

and
𝑀𝑙 ≃ 𝑀0∆𝑥

𝑠
̃︀𝑝
0 2−𝑙( 𝑠

̃︀𝑝 + 𝑤
𝑞 ), for 𝑙 > 0, (5.17)

where ≃ indicates that this is the number of samples up to a constant which is independent of 𝑙 and 𝐿. The
minimal amount of work then is

𝑊MLMC
𝐿 ≃ ∆𝑥−𝑤

0

(︃
1 + ∆𝑥

𝑠
̃︀𝑝
0

𝐿∑︁
𝑙=1

2𝑙(𝑤 𝑞−1
𝑞 − 𝑠

̃︀𝑝 )
)︃(︃

1 + ∆𝑥
𝑠
̃︀𝑝
0

∑︀𝐿
𝑙=1 2𝑙(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )

𝜀−∆𝑥
𝑠𝑞
𝑝

0 2−𝐿 𝑞𝑠
𝑝

)︃ 1
𝑞−1

.

Lemma 5.7 can be used to derive a rate for the approximation error of the MLMCFVM in terms of the
computational work.
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Corollary 5.8. In addition to the assumptions of Lemma 5.7, assume that 𝑤 𝑞−1
𝑞 − 𝑠

̃︀𝑝 > 0 and that 𝐿 and ∆𝑥0

are large enough such that

∆𝑥
𝑠
̃︀𝑝

𝑞
𝑞−1−𝑤

𝐿 > ∆𝑥−𝑤
0

where ̃︀𝑝 = max(𝑝, 𝑞) and 𝑤 is as in (5.7). Then, for each 0 ≤ 𝑡 ≤ 𝑇 and for 𝑞 = min(2, 𝑟) the L𝑞(Ω; L𝑝(𝐷))-
approximation error of the MLMCFVM (5.10) scales with respect to computational work as

⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶
(︀
𝑊MLMC

𝐿

)︀− 𝑠

𝑤𝑝+𝑠
̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1 . (5.18)

Proof. Since
(︁
𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝

)︁
> 0 the sums in the expression for 𝑊MLMC

𝑀 from Lemma 5.7 are dominated by

2𝐿(𝑤 𝑞−1
𝑞 − 𝑠

̃︀𝑝 ). Choosing 𝜀 = 2∆𝑥
𝑠𝑞
𝑝

𝐿 and using that ∆𝑥
𝑠
̃︀𝑝

𝑞
𝑞−1−𝑤

𝐿 > ∆𝑥−𝑤
0 in the last step, we find

𝑊MLMC
𝐿 ≃ ∆𝑥−𝑤

0

(︁
1 + ∆𝑥

𝑠
̃︀𝑝
0 2𝐿(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )
)︁(︃1 + ∆𝑥

𝑠
̃︀𝑝
0 2𝐿(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )

∆𝑥
𝑠𝑞
𝑝

𝐿

)︃ 1
𝑞−1

≃ ∆𝑥−𝑤
0 ∆𝑥

− 𝑠𝑞
𝑝(𝑞−1)

𝐿

(︁
1 + ∆𝑥

𝑠
̃︀𝑝
0 2𝐿(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )
)︁ 𝑞

𝑞−1

≃ ∆𝑥
− 𝑠𝑞

𝑝(𝑞−1)

𝐿

(︁
∆𝑥−𝑤

0 + ∆𝑥
𝑠
̃︀𝑝

𝑞
𝑞−1−𝑤

𝐿

)︁
≃ ∆𝑥

𝑠( 1
̃︀𝑝−

1
𝑝 ) 𝑞

𝑞−1−𝑤

𝐿 .

Thus, we have

⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L2(Ω;L1(𝐷))

= 𝜀
1
𝑞 ≃ ∆𝑥

𝑠
𝑝

𝐿 ≃
(︀
𝑊MLMC

𝐿

)︀− 𝑠

𝑤𝑝+𝑠
̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1 .

�

Since (̃︀𝑝−𝑝)
̃︀𝑝 and 𝑞

(𝑞−1) are nonnegative, we have

𝑠

𝑤𝑝 + 𝑠 ̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1

≤ 𝑠

𝑤𝑝

and thus the error rate in terms of the computational work (5.18) of the MLMCFVM is worse than the error
rate (5.13) for the deterministic scheme. However, since ̃︀𝑝−𝑝

̃︀𝑝 ≤ 1− 𝑝
𝑞 ≤ 1, we have

𝑠

𝑤𝑝 + 𝑠 ̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1

≥ 𝑠

𝑤𝑝 + 𝑠 𝑞
𝑞−1

and thus the error rate (5.18) of the MLMCFVM constitutes an improvement over the (single-level) MCFVM,
cf. (5.15).

Note that, in particular, for 𝑝 = 1 and 𝑟 ≥ 2 (which implies 𝑞 = 2 and ̃︀𝑝 = 2), and taking into account that
𝑤 = 2 and 𝑠 = 1

2 , the error rate (5.18) reads

⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L2(Ω;L1(𝐷))

≤ 𝐶
(︀
𝑊MLMC

𝐿

)︀− 1
5 .



MULTILEVEL MONTE CARLO FINITE VOLUME 1057

Figure 1. Two possible fluxes of the form (6.1) for 𝑘(𝑥) = 0.7 (dashed line) and 𝑘(𝑥) = 2.3
(solid line)

6. Numerical experiments

In this section, we present numerical experiments motivated by two-phase flow in a heterogeneous porous
medium1. The time evolution of the oil saturation 𝑢 ∈ [0, 1] can be modeled by (1.1) where the flux is given by

𝑓(𝑘(𝑥), 𝑢) =
𝜆o(𝑢)

𝜆o(𝑢) + 𝜆w(𝑢)
(1− 𝑘(𝑥)𝜆w(𝑢)), (6.1)

see Example 8.2 of [25]. Here, the functions 𝜆o and 𝜆w denote the phase mobilities/relative permeabilities of
the oil and the water phase, respectively. Typically, one uses the simple expressions

𝜆o(𝑢) = 𝑢2, 𝜆w(𝑢) = (1− 𝑢)2

which we will also do in the first two subsequent experiments. The coefficient 𝑘 in (6.1) corresponds to the
absolute permeability of the medium. Since the medium is usually layered to some extent throughout the
reservoir and even continuously varying geology is typically mapped onto some grid, the coefficient 𝑘 is often
modeled as a piecewise constant function [23].

Since numerical experiments for conservation laws where the initial datum or the flux is uncertain have been
reported in other works (albeit without spatially discontinuous flux), we will here focus on numerical experiments
where, in particular, the discontinuous coefficient 𝑘 is subject to randomness. We consider the initial datum

𝑢0(𝑥) =

{︃
0.8, −0.9 < 𝑥 < −0.2,

0.4, otherwise,
(6.2)

on the spatial domain 𝐷 = [−1, 1] with periodic boundary conditions. Figure 1 shows two examples of fluxes of
the form (6.1) and indicates the relevant domain determined by the initial datum (6.2). In all experiments we
use 𝜆 = Δ𝑡

Δ𝑥 = 0.2 in the finite volume approximation (5.2).
When choosing the number of samples for the MLMC estimator we use the formulae (5.16) and (5.17) with

“=” replacing “≃” and rounding to the next biggest integer. Here we use 𝑝 = 1, 𝑟 = 𝑞 = 2, 𝑤 = 2, 𝑠 = 1
2 , and

𝜀 = 2∆𝑥2𝑠
𝐿 in (5.16) and (5.17)2.

1The code used to produce these experiments can be found at https://github.com/adrianmruf/MLMC_discontinuous_flux
2For example, for 𝐿 = 7 and Δ𝑥0 = 2−4 we use (𝑀𝑙)

𝐿
𝑙=0 = (95 646, 20 107, 8 454, 3 555, 1 495, 629, 265, 112) samples.
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In order to compute an estimate of the approximation error⃦⃦
E[𝑢(·, 𝑇 )]− 𝐸𝐿[𝑈(·, 𝑇 )]

⃦⃦
L2(Ω;L1(𝐷))

=
(︁
E
[︁⃦⃦

E[𝑢(·, 𝑇 )]− 𝐸𝐿[𝑈(·, 𝑇 )]
⃦⃦2

L1(𝐷)

]︁)︁ 1
2

we use the root mean square estimator introduced in [38]: We denote by 𝑈ref(·, 𝑇 ) a reference solution and by
(𝑈𝑖(·, 𝑇 ))𝐾

𝑖=1 a sequence of independent approximate solutions 𝐸𝐿[𝑈(·, 𝑇 )] obtained by running the MLMCFVM
estimator with 𝐿 levels 𝐾 times. Then, we estimate the relative error by

ℛℳ𝒮 =

(︃
1
𝐾

𝐾∑︁
𝑖=1

(ℛℳ𝒮𝑖)
2

)︃ 1
2

where

ℛℳ𝒮𝑖 = 100×
‖𝑈ref(·, 𝑇 )− 𝑈𝑖(·, 𝑇 )‖L1(𝐷)

‖𝑈ref(·, 𝑇 )‖L1(𝐷)

·

Here, as suggested in [38], we use 𝐾 = 30 which was shown to be sufficient for most problems. In each experiment,
as a reference approximation 𝑈ref(·, 𝑇 ) of E[𝑢(·, 𝑇 )], we use a solution computed by the MLMCFVM with
∆𝑥0 = 2−4 and 𝐿 = 8 which entails using 213 cells on the finest level.

In our figures we also indicate the approximated standard deviation. To that end, we approximate the variance
by

𝑉𝐿 =
𝐿∑︁

𝑙=0

𝐸𝑀𝑙

[︀
(𝑢Δ𝑥𝑙

(·, 𝑇 )− 𝑢Δ𝑥𝑙−1(·, 𝑇 )− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑇 )− 𝑢Δ𝑥𝑙−1(·, 𝑇 )])2
]︀
.

6.1. Uncertain position of rock layer interface

For our first numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =

{︃
1, 𝑥 < 𝜎(𝜔),
2, 𝑥 > 𝜎(𝜔)

corresponding to an uncertain position of the interface between two rock types in the reservoir. Here, the
random variable 𝜎 is uniformly distributed in [−0.3, 0.3]. Figure 2a shows two samples of the approximate
random entropy solution (with 𝜎 = −0.3 and 𝜎 = 0.3, respectively) calculated using 210 grid points at time
𝑇 = 0.2 and Figure 2b shows an estimate of the expectation E[𝑢(·, 𝑇 )] computed by the MLMCFVM with
∆𝑥0 = 2−4 and 𝐿 = 7.

Table 1 and Figure 3 show the estimated ℛℳ𝒮 error as a function of the number of levels. In particular,
Table 1a shows the observed order of convergence (OOC) with respect to ∆𝑥𝐿 while Table 1b shows the observed
order of convergence with respect to the computational work calculated based on a best linear fit under the
assumptions that ℛℳ𝒮 ∼ (∆𝑥𝐿)𝑟1 and ℛℳ𝒮 ∼ (work)𝑟2 . Here, we use the runtime as a surrogate for the
computational work. We observe that in Experiment 1 both rates are better than the rates guaranteed by our
convergence analysis.

6.2. Uncertain absolute permeabilities

For our second numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =

{︃
𝜉1(𝜔), 𝑥 < 0,

𝜉2(𝜔), 𝑥 > 0

corresponding to uncertain absolute permeabilities of two rock layers. Here, the random variables 𝜉1 and 𝜉2 are
independent and uniformly distributed in [0.7, 1.3] and [1.7, 2.3], respectively.
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Figure 2. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 1 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area between
the mean ± standard deviation. For each sample the discontinuity of 𝑘 is located in the interval
between the dotted lines. (A) Two samples of the random entropy solution (𝜎 = −0.3 (solid
line), 𝜎 = 0.3 (dashed line), ∆𝑥 = 2−9). (B) MLMCFVM approximation (∆𝑥0 = 2−4, 𝐿 = 7).

Table 1. ℛℳ𝒮 error in Experiment 1 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in s) for various values of 𝐿 and for
∆𝑥0 = 2−4.

(a) ℛℳ𝒮 versus Δ𝑥𝐿 (b) ℛℳ𝒮 versus work.

𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC 𝐿 Runtime ℛℳ𝒮 OOC

1 2−5 4.03 1 0.09 4.03
2 2−6 2.53 2 0.23 2.53
3 2−7 1.53 3 0.73 1.53
4 2−8 0.88 4 2.65 0.88
5 2−9 0.49 5 10.12 0.49
6 2−10 0.24 0.80 6 39.23 0.24 −0.45

Figure 4a shows two samples of the approximate random entropy solution (with (𝜉1, 𝜉2) = (1.3, 1.7) and
(𝜉1, 𝜉2) = (0.7, 2.3), respectively) calculated using 210 grid points at time 𝑇 = 0.2 and Figure 4b shows an
estimate of the expectation E[𝑢(·, 𝑇 )] computed by the MLMCFVM with ∆𝑥0 = 2−4 and 𝐿 = 7.

Table 2 and Figure 5 again show the root mean square error estimate and the observed order of convergence
with respect to ∆𝑥𝐿 and with respect to the computational work. As before, we observe that the observed
convergence rates are better than the theoretical bounds.

6.3. Uncertain position of rock layer interface and absolute and relative permeabilities

In our last numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =

{︃
𝜉1(𝜔), 𝑥 < 𝜎(𝜔),
𝜉2(𝜔), 𝑥 > 𝜎(𝜔)
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Figure 3. ℛℳ𝒮 error in Experiment 1 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in 𝑠) corresponding to the values in
Table 1. The dashed lines indicate the observed order of convergence based on a best linear fit.
(A) ℛℳ𝒮 error versus ∆𝑥𝐿. (B) ℛℳ𝒮 error versus work.

Figure 4. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 2 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area
between the mean ± standard deviation and the dotted line marks the (fixed) position of
the discontinuity of 𝑘. (A) Two samples of the random entropy solution ((𝜉1, 𝜉2) = (1.3, 1.7)
(solid line), (𝜉1, 𝜉2) = (0.7, 2.3) (dashed line), ∆𝑥 = 2−9). (B) MLMCFVM approximation
(∆𝑥0 = 2−4, 𝐿 = 7).
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Table 2. ℛℳ𝒮 error in Experiment 2 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in s) for various values of 𝐿 and for
∆𝑥0 = 2−4.

(a) ℛℳ𝒮 versus Δ𝑥𝐿. (b) ℛℳ𝒮 versus work.

𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC 𝐿 Runtime (s) ℛℳ𝒮 OOC

1 2−5 3.86 1 0.07 3.86
2 2−6 2.32 2 0.18 2.32
3 2−7 1.41 3 0.64 1.41
4 2−8 0.82 4 2.52 0.82
5 2−9 0.45 5 9.88 0.45
6 2−10 0.22 0.82 6 38.16 0.22 −0.44

Figure 5. ℛℳ𝒮 error in Experiment 2 as a function of the finest grid solution ∆𝑥𝐿 and as
a function of the work (here measured by the runtime in 𝑠) corresponding to the values in
Table 2. The dotted lines indicate the observed order of convergence based on a best linear fit.
(A) ℛℳ𝒮 error versus ∆𝑥𝐿. (B) ℛℳ𝒮 error versus work.

corresponding to an uncertain position of the interface between two rock types as well as uncertain absolute
permeabilities of the rock layers. Here, the random variables 𝜉1, 𝜉2, and 𝜎 are uniformly distributed in [0.7, 1.3],
[1.7, 2.3] and [−0.3, 0.3], respectively. Furthermore, we will model the relative permeabilities 𝜆𝑜 and 𝜆𝑤 in (6.1)
as

𝜆𝑜(𝑢) = 𝑢𝑝(𝜔), 𝜆𝑤(𝑢) = (1− 𝑢)𝑝(𝜔)

where the random exponent 𝑝 is uniformly distributed in [1.5, 2.5]. Here, 𝜉1, 𝜉2, 𝜎 and 𝑝 are mutually independent.
Figure 6a shows two samples of the approximate random entropy solution (with (𝜉1, 𝜉2, 𝜎, 𝑝) =

(0.3,−0.3,−0.3, 1.5) and (𝜉1, 𝜉2, 𝜎, 𝑝) = (−0.3, 0.3, 0.3, 2.5), respectively) calculated using 210 grid points at
time 𝑇 = 0.2 and Figure 6b shows an estimate of the expectation E[𝑢(·, 𝑇 )] computed by the MLMCFVM with
∆𝑥0 = 2−4 and 𝐿 = 7.
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Figure 6. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 3 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area between
the mean ± standard deviation and the dotted line marks the (fixed) position of the disconti-
nuity of 𝑘. (A) Two samples of the random entropy solution ((𝜉1, 𝜉2, 𝜎, 𝑝) = (1.3, 1.7,−0.3, 1.5)
(solid line), (𝜉1, 𝜉2, 𝜎, 𝑝) = (0.7, 2.3, 0.3, 2.5) (dashed line), ∆𝑥 = 2−9). (B) MLMCFVM approx-
imation (∆𝑥0 = 2−4, 𝐿 = 7).

Table 3. ℛℳ𝒮 error in Experiment 3 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in s) for various values of 𝐿 and for
∆𝑥0 = 2−4.

(a) ℛℳ𝒮 versus Δ𝑥𝐿. (b) ℛℳ𝒮 versus work.

𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC 𝐿 Runtime (s) ℛℳ𝒮 OOC

1 2−5 3.44 1 0.08 3.44
2 2−6 1.97 2 0.21 1.97
3 2−7 1.14 3 0.74 1.14
4 2−8 0.63 4 3.07 0.63
5 2−9 0.33 5 12.93 0.33
6 2−10 0.17 0.86 6 55.93 0.17 −0.45

Table 3 and Figure 7 again show the root mean square error estimate and the observed order of convergence
with respect to ∆𝑥𝐿 and with respect to the computational work. Notably, the observed convergence rates are
very similar to those in Experiments 1 and 2 despite the four dimensional parameter space.

7. Conclusion

In this paper, we have considered conservation laws with discontinuous flux where the model parameters,
i.e., the initial datum, the flux function, and the discontinuous spatial dependency coefficient, are uncertain.
Based on adapted entropy solutions for the deterministic case, we have introduced a notion of random entropy
solutions and have proved well-posedness.

To numerically approximate the mean of a random entropy solution, we have proposed Monte Carlo meth-
ods coupled with a class of finite volume methods suited for conservation laws with discontinuous flux. Our
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Figure 7. ℛℳ𝒮 error in Experiment 3 as a function of the finest grid solution ∆𝑥𝐿 and as
a function of the work (here measured by the runtime in 𝑠) corresponding to the values in
Table 3. The dotted lines indicate the observed order of convergence based on a best linear fit.
(A) ℛℳ𝒮 error versus ∆𝑥𝐿. (B) ℛℳ𝒮 error versus work.

convergence analysis includes convergence rate estimates for the Monte Carlo and multilevel Monte Carlo finite
volume method. Further, we have provided error versus work rates which show that the multilevel Monte Carlo
finite volume method is more efficient than the (single-level) Monte Carlo finite volume method.

We have presented numerical experiments motivated by two-phase flow in heterogeneous porous media, e.g.,
oil reservoirs with different rock layers. The numerical experiments verify our theoretical results concerning
convergence rates of the multilevel Monte Carlo finite volume method.

As a possible direction of future research, we want to mention that – from a practical standpoint – it would be
desirable to design multilevel Monte Carlo finite volume methods based on finite volume methods that require
no processing of the flux discontinuities. Such numerical methods have been considered in [15, 51], however,
there are currently no convergence rate results available for these methods.
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Abstract
We propose an explicit, single-step discontinuous Galerkin method on moving grids using 
the arbitrary Lagrangian–Eulerian approach for one-dimensional Euler equations. The grid 
is moved with the local fluid velocity modified by some smoothing, which is found to con-
siderably reduce the numerical dissipation introduced by Riemann solvers. The scheme 
preserves constant states for any mesh motion and we also study its positivity preservation 
property. Local grid refinement and coarsening are performed to maintain the mesh qual-
ity and avoid the appearance of very small or large cells. Second, higher order methods are 
developed and several test cases are provided to demonstrate the accuracy of the proposed 
scheme.

Keywords  Discontinuous Galerkin method · Moving meshes · Arbitrary Lagrangian–
Eulerian · Euler equations

Mathematics Subject Classification  65M60 · 35L04

1  Introduction

Finite volume schemes based on exact or approximate Riemann solvers are used for solv-
ing hyperbolic conservation laws like the Euler equations governing compressible flows. 
These schemes are able to compute discontinuous solutions in a stable manner since they 
have implicit dissipation built into them due to the upwind nature of the schemes. Higher 
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order schemes are constructed following a reconstruction approach combined with a high 
order time integration scheme. Discontinuous Galerkin methods can be considered as 
higher order generalizations of finite volume methods which also make use of Riemann 
solver technology but do not need a reconstruction step since they evolve a polynomial 
solution inside each cell. While these methods are formally high order accurate on smooth 
solutions, they can still introduce too much numerical dissipation in some situations. Sprin-
gel [1] gives the example of a Kelvin–Helmholtz instability in which adding a large con-
stant velocity to both states leads to suppression of the instability due to excessive numeri-
cal dissipation. This behaviour is attributed to the fact that fixed grid methods based on 
upwind schemes are not Galilean invariant. Upwind schemes, even when they are formally 
high order accurate, are found to be too dissipative when applied to turbulent flows  [2] 
since the numerical viscosity can overwhelm the physical viscosity.

For the linear convection equation ut + aux = 0 , the first-order upwind scheme has the 
modified partial differential equation

which shows that the numerical dissipation is proportional to |a| which is the wave speed. 
In case of Euler equations simulated with a Riemann solver, e.g., the Roe scheme, the wave 
speeds are related to the eigenvalues of the flux Jacobian and the numerical dissipation 
would be proportional to the absolute values of the eigenvalues, e.g., |v − c|, |v|, |v + c| 
where v is the fluid velocity and c is the sound speed. This type of the numerical viscosity 
is not Galilean invariant since the fluid velocity depends on the coordinate frame adopted 
for the description of the flow. Adding a large translational velocity to the coordinate frame 
will increase the numerical viscosity and reduce the accuracy of the numerical solution. 
Such high numerical viscosity can be eliminated or minimized if the grid moves along 
with the flow as in Lagrangian methods [3–5]. However, pure Lagrangian methods encoun-
ter the issue of large grid deformations that occur in highly sheared flows as in the Kel-
vin–Helmholtz problem requiring some form of re-meshing. A related approach is to use 
the arbitrary Lagrangian–Eulerian approach [6, 7] where the mesh velocity can be chosen 
to be close to the local fluid velocity but may be regularized to maintain the mesh qual-
ity. Even in the ALE approach, it may be necessary to perform some local remeshing to 
prevent the grid quality from degrading. In  [1], the mesh is regenerated after every time 
step based on a Delaunay triangulation, which allows it to maintain good mesh quality 
even when the fluid undergoes large shear deformation. However, these methods have been 
restricted to second-order accuracy as they rely on unstructured finite volume schemes on 
general polygonal/polyhedral cells, where achieving higher order accuracy is much more 
difficult compared to structured grids.

Traditionally, ALE methods have been used for problems involving moving boundaries 
as in wing flutter, store separation and other problems involving fluid structure interac-
tion [8–12]. In these applications, the main reason to use ALE is not to minimize the dissipa-
tion in upwind schemes but to account for the moving boundaries and, hence, the grid veloci-
ties are chosen based on boundary motion and with a view to maintain good mesh quality. 
Another class of methods solves the PDE on moving meshes where the mesh motion is deter-
mined based on a monitor function which is designed to detect regions of large gradients in 
the solution, see [13, 14] and the references therein. These methods achieve automatic clus-
tering of grid points in regions of large gradients. ALE schemes have been used to compute 
multi-material flows as in [15], since they are useful to accurately track the material interface. 

�u

�t
+ a

�u

�x
=

1

2
|a|h(1 − �)

�2u

�x2
+ O(h2), � =

|a|Δt
h

,
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The mesh velocity was chosen to be equal to the contact speed but away from the mate-
rial contact, the velocity was chosen by linear interpolation and was not close to Lagrangian. 
There are other methods for choosing the mesh velocity which have been studied in [16, 17]. 
Lax–Wendroff type ALE schemes for compressible flows have been developed in [18]. Finite 
volume schemes based on the ADER approach have been developed on unstructured grids 
[19–21]. The theoretical analysis of ALE-DG schemes in the framework of Runge–Kutta 
time stepping for conservation laws has been done in [22].

In the present work, we consider only the one-dimensional problem to set down the fun-
damental principles with which in an upcoming work, we shall solve the multi-dimensional 
problem. The numerical method developed here will be usable in the multiple dimensions, 
but additional work is required in multiple dimensions to maintain a good mesh quality 
under fluid flow deformation. We develop an explicit discontinuous Galerkin scheme that is 
conservative on moving meshes and automatically satisfies the geometric conservation law. 
The scheme is a single-step method which is achieved using a predictor computed from a 
Runge–Kutta scheme that is local to each cell in the sense that it does not require any data 
from neighbouring cells and belongs to the class of schemes called the ADER method. Due 
to the single-step nature of the scheme, the TVD limiter has to be applied only once in each 
time step unlike in multi-stage Runge–Kutta schemes where the limiter is applied after each 
stage update. This nature of the ADER scheme can reduce its computational expense, espe-
cially in multi-dimensional problems and while performing parallel computations. The mesh 
velocity is specified at each cell face as the local velocity with some smoothing. We analyze 
the positivity of the first-order scheme using the Rusanov flux and derive a CFL condition. 
The scheme is shown to be exact for steady moving contact waves and the solutions are invar-
iant to the motion of the coordinate frame. Due to the Lagrangian nature, the Roe scheme 
does not require any entropy fix. However, we identify the possibility of spurious contact 
waves arising in some situations. This is due to the vanishing of the eigenvalue correspond-
ing to the contact wave. While the cell averages are well predicted, the higher moments of the 
solution can be inaccurate. This behaviour of Lagrangian DG schemes does not seem to have 
been reported in the literature. We propose a fix for the eigenvalue in the spirit of the entropy 
fix of Harten [23] that prevents the spurious contact waves from occurring in the solution. 
The methodology developed here will be extended to multi-dimensional flows in a future 
work with a view towards handling complex sheared flows.

The rest of the paper is organized as follows. Section 2 introduces the Euler equation model 
that is used in the rest of the paper. In Sect. 3, we explain the derivation of the scheme on a 
moving mesh together with the quadrature approximations and computation of mesh velocity. 
The computation of the predicted solution is detailed in Sect. 4. The TVD type limiter is pre-
sented in Sect. 5 for a non-uniform mesh, Sect. 6 shows the positivity of the first-order scheme 
and Sect. 7 shows the preservation of constant states. The grid coarsening and refinement strat-
egy are explained in Sect. 8, while Sect. 9 presents a series of numerical results.

2 � Euler Equations

The Euler equations model the conservation of mass, momentum and energy, and can be 
written as a system of coupled partial differential equations laws of the form

(1)�u

�t
+

�f (u)

�x
= 0,
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where u is called the vector of conserved variables and f (u) is the corresponding flux given 
by

In the above expressions, � is the density, v is the fluid velocity, p is the pressure and E is 
the total energy per unit volume, which for an ideal gas is given by E = p∕(� − 1) + �v2∕2 , 
with 𝛾 > 1 being the ratio of specific heats at constant pressure and volume, and 
H = (E + p)∕� is the enthalpy. The Euler equations form a hyperbolic system; the flux Jac-
obian A(u) = f �(u) has real eigenvalues and linearly independent eigenvectors. The eigen-
values are v − c, v, v + c where c =

√
�p∕� is the speed of sound and the corresponding 

right eigenvectors are given by

The hyperbolic property implies that A can be diagonalized as A = R�R−1 where R is the 
matrix formed by the right eigenvectors as the columns and � is the diagonal matrix of 
eigenvalues.

3 � Discontinuous Galerkin Method

3.1 � Mesh and Solution Space

Consider a partition of the domain into disjoint cells with the jth cell being denoted by 
Cj(t) = [x

j−
1

2

(t), x
j+

1

2

(t)] . As the notation shows, the cell boundaries are time dependent which 
means that the cell is moving in some specified manner. The time levels are denoted by tn with 
the time step Δtn = tn+1 − tn . The boundaries of the cells move with a constant velocity in the 
time interval (tn, tn+1) given by

which defines a cell in space–time as shown in Fig. 1. The algorithm to choose the mesh 
velocity wn

j+
1

2

 is explained in a later section. The location of the cell boundaries is given by

u =

⎡
⎢⎢⎣

�

�v

E

⎤
⎥⎥⎦
, f (u) =

⎡
⎢⎢⎣

�v

p + �v2

�Hv

⎤
⎥⎥⎦
.

(2)r1 =

⎡⎢⎢⎣

1

v − c

H − vc

⎤⎥⎥⎦
, r2 =

⎡⎢⎢⎣

1

v
1

2
v2

⎤⎥⎥⎦
, r3 =

⎡⎢⎢⎣

1

v + c

H + vc

⎤⎥⎥⎦
.

w
j+

1

2

(t) = wn

j+
1

2

, tn < t < tn+1,

Fig. 1   Example of a space–time 
cell in the time interval (t

n
, t
n+1)
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Let xj(t) and hj(t) denote the center of the cell Cj(t) and its length, i.e.,

Let w(x, t) be the continuous linear interpolation of the mesh velocity which is given by

We will approximate the solution of the conservation law by piecewise polynomials 
which are allowed to be discontinuous across the cell boundaries as shown in Fig. 2. For a 
given degree k ≥ 0 , the solution in the jth cell is given by

where {uj,m ∈ ℝ3, 0 ≤ m ≤ k} are the degrees of freedom associated with the jth cell. The 
basis functions �m are defined in terms of Legendre polynomials

where Pm ∶ [−1,+1] → ℝ is the Legendre polynomial of degree m. The above definition of 
the basis functions implies the following orthogonality property:

We will sometimes also write the solution in the jth cell in terms of the reference coordi-
nates � as

x
j+

1

2

(t) = xn
j+

1

2

+ (t − tn)w
n

j+
1

2

, tn ≤ t ≤ tn+1.

xj(t) =
1

2
(x

j−
1

2

(t) + x
j+

1

2

(t)), hj(t) = x
j+

1

2

(t) − x
j−

1

2

(t).

w(x, t) =
x
j+

1

2

(t) − x

hj(t)
wn

j−
1

2

+
x − x

j−
1

2

(t)

hj(t)
wn

j+
1

2

, x ∈ Cj(t), t ∈ (tn, tn+1).

uh(x, t) =

k∑
m=0

uj,m(t)�m(x, t), x ∈ Cj(t),

𝜑m(x, t) = 𝜑̂m(𝜉) =
√
2m + 1Pm(𝜉), 𝜉 =

x − xj(t)

1

2
hj(t)

,

(3)�
x
j+

1
2

(t)

x
j−

1
2

(t)

�l(x, t)�m(x, t)dx = hj(t)�lm, 0 ≤ l,m ≤ k.

uh(𝜉, t) =

k∑
m=0

uj,m(t)𝜑̂m(𝜉),

Fig. 2   Example of a discon-
tinuous piecewise polynomial 
solution
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and we will use the same notation u to denote both functions.

3.2 � Derivation of the Scheme

To derive the DG scheme on a moving mesh, let us introduce the change of variable 
(x, t) → (�, �) given by

For any 0 ≤ l ≤ k , we now calculate the rate of change of the lth moment of the solution 
starting from

wherein we used the change of variables given by  (4). But we also have the inverse 
transform

and hence

Using the above relations, we can easily show that

Moreover

since w(x, t) is linear in x and hence �w
�x

 is constant inside each cell. Hence, the lth moment 
evolves according to

(4)� = t, � =
x − xj(t)

1

2
hj(t)

.

d

dt ∫
x
j+

1
2

(t)

x
j−

1
2

(t)

u(x, t)𝜑l(x, t)dx =
d

d𝜏 ∫
+1

−1

u(𝜉, 𝜏)𝜑̂l(𝜉)
1

2
hj(𝜏)d𝜉

=
1

2 ∫
+1

−1

[
hj(𝜏)

𝜕u

𝜕𝜏
+ u

dhj

d𝜏

]
𝜑̂(𝜉)d𝜉,

t = �, x = xj(�) +
�

2
hj(�),

�t

��
= 1,

�x

��
=

dxj

d�
+

�

2

dhj

d�
=

1

2
(w

j−
1

2

+ w
j+

1

2

) +
�

2
(w

j+
1

2

− w
j−

1

2

) = w(x, t).

�u

��
(�, �) =

�u

�t
(x, t) + w(x, t)

�u

�x
(x, t).

dhj

d�
= w

j+
1

2

− w
j−

1

2

= hj
�w

�x
,

d

dt ∫
x
j+

1
2

(t)

x
j−

1
2

(t)

u(x, t)𝜑l(x, t)dx = ∫
+1

−1

(
𝜕u

𝜕t
+ w

𝜕u

𝜕x
+ u

𝜕w

𝜕x

)
𝜑̂l(𝜉)

1

2
hjd𝜉

= ∫
x
j+

1
2

(t)

x
j−

1
2

(t)

(
−
𝜕f (u)

𝜕x
+

𝜕

𝜕x
(wu)

)
𝜑l(x, t)dx,
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where we have transformed back to the physical coordinates and made use of the conserva-
tion law (1) to replace the time derivative of the solution with the flux derivative. Define 
the ALE flux

Performing an integration by parts in the x variable, we obtain

where we have introduced the numerical flux

which provides an approximation to the ALE flux, see Appendix A. Integrating over the 
time interval (tn, tn+1) and using (3), we obtain

The above scheme has an implicit nature since the unknown solution uh appears on the 
right-hand side integrals whereas we only know the solution at time tn . To obtain an 
explicit scheme, we assume that we have available with us a predicted solution Uh in the 
time interval (tn, tn+1) , which is used in the time integrals to obtain an explicit scheme. 
Moreover, the integrals are computed using quadrature in space and time leading to the 
fully discrete scheme

where �r is the weight for time quadrature and �q is the weight for spatial quadrature. For 
the spatial integral, we will use q = k + 1 point Gauss quadrature. For the time integral, we 
will use the mid-point rule for k = 1 and two-point Gauss quadrature for k = 2, 3 . Since the 
mesh is moving, the spatial quadrature points xq depend on the quadrature time �r though 
this is not clear from the notation. In practice, the integrals are computed by mapping the 
cell to the reference cell, and the basis functions and its derivatives are also evaluated on 
the reference cell. The quadrature points in the reference cell are independent of time due 
to the linear mesh evolution.

(5)g(u,w) = f (u) − wu.

d

dt ∫
x
j+

1
2

(t)

x
j−

1
2

(t)

uh(x, t)𝜑l(x, t)dx =∫
x
j+

1
2

(t)

x
j−

1
2

(t)

g(uh,w)
𝜕

𝜕x
𝜑l(x, t)dx

+ ĝ
j−

1

2

(uh(t))𝜑l(x
+

j−
1

2

, t) − ĝ
j+

1

2

(uh(t))𝜑l(x
−

j+
1

2

, t),

ĝ
j+

1

2

(uh(t)) = ĝ(u−
j+

1

2

(t),u+
j+

1

2

(t),w
j+

1

2

(t)),

hn+1
j

un+1
j,l

= hn
j
un
j,l
+ ∫

tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

g(uh,w)
𝜕

𝜕x
𝜑l(x, t)dxdt

+ ∫
tn+1

tn

[ĝ
j−

1

2

(t)𝜑l(x
+

j−
1

2

, t) − ĝ
j+

1

2

(t)𝜑l(x
−

j+
1

2

, t)]dt.

(6)

hn+1
j

un+1
j,l

= hn
j
un
j,l

+ Δtn
∑
r

𝜃rhj(𝜏r)
∑
q

𝜂qg(Uh(xq, 𝜏r),w(xq, 𝜏r))
𝜕

𝜕x
𝜑l(xq, 𝜏r)

+ Δtn
∑
r

𝜃r[ĝj− 1

2

(Uh(𝜏r))𝜑l(x
+

j−
1

2

, 𝜏r) − ĝ
j+

1

2

(Uh(𝜏r))𝜑l(x
−

j+
1

2

, 𝜏r)],
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3.3 � Mesh Velocity

The mesh velocity must be close to the local fluid velocity to have a Lagrangian charac-
ter to the scheme. Since the solution is discontinuous, there is no unique fluid velocity at 
the mesh boundaries. Some researchers, especially in the context of Lagrangian meth-
ods, solve a Riemann problem at the cell face to determine the face velocity. Since we 
use an ALE formulation, we do not require the exact fluid velocity which is anyway not 
available to use since we only have a predicted solution. Following the exact trajectory 
of the fluid would also lead to curved trajectories for the grid point, which is an unnec-
essary complication. In our work, we make two different choices for the mesh velocities.

	 i.	 The first choice is to take an average of the two velocities at every face. In the numeri-
cal results, we refer to this as ADG 

	 ii.	 The second choice is to solve a linearized Riemann problem at the face at time tn . In 
the numerical results, we refer to this as RDG. For simplicity of notation, let the solu-
tion to the left of the face x

j+
1

2

 be represented as u−
j+

1

2

 and the solution to the right be 

represented as u+
j+

1

2

 . Then, 

We will also perform some smoothing of the mesh velocity, e.g., the actual face velocity 
is computed from

Note that our algorithm to choose the mesh velocity is very local and hence easy and effi-
cient to implement as it does not require the solution of any global problems. In Springel 
[1], the mesh velocity is adjusted so that the cells remain nearly isotropic which leads to 
smoothly varying cell sizes. Such an approach leads to many parameters that need to be 
selected and we did not find a good way to make this choice that works well for a range of 
problems. Instead, we will make use of mesh refinement and coarsening to maintain the 
quality of cells, i.e., to prevent very small or large cells from occurring in the grid. The 
use of a DG scheme makes it easy to perform such local mesh adaptation without loss of 
accuracy.

Remark 1  Consider the application of the proposed ALE-DG scheme to the linear advection 
equation ut + aux = 0 . In this case, the mesh velocity is equal to the advection velocity 
w
j+

1

2

= a , i.e., the cells move along the characteristics. This implies that the ALE flux 
g(u,w) = au − wu = 0 and also the numerical flux ĝ

j+
1

2

= 0 . Thus, the DG scheme reduces to

w̃n

j+
1

2

=
1

2

[
v

(
x−
j+

1

2

, tn

)
+ v

(
x+
j+

1

2

, tn

)]
.

w̃n

j+
1

2

=
𝜌n
j
cn
j
vn
j
+ 𝜌n

j+1
cn
j+1

vn
j+1

𝜌n
j
cn
j
+ 𝜌n

j+1
cn
j+1

+
pn
j
− pn

j+1

𝜌n
j
cn
j
+ 𝜌n

j+1
cn
j+1

.

wn

j+
1

2

=
1

3

(
w̃n

j−
1

2

+ w̃n

j+
1

2

+ w̃n

j+
3

2

)
.

∫
xn+1

j+
1
2

xn+1

j−
1
2

uh(x, tn+1)�l(x, tn+1)dx = ∫
xn
j+

1
2

xn
j−

1
2

uh(x, tn)�l(x, tn)dx, l = 0, 1,⋯ , k,
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so that the solution at time tn has been advected exactly to the solution at time tn+1 . Note 
that there is no time step restriction involved in this case and the accuracy of the predicted 
solution is also not relevant. If the initial condition has a discontinuity coinciding with a 
cell face, then the scheme advects the discontinuity exactly without any diffusion.

4 � Computing the Predictor

The predicted solution is used to approximate the flux integrals over the time interval (tn, tn+1) 
and the method to compute this must be local, i.e., it must not require solution from neigh-
bouring cells. Several methods for computing the predictor have been reviewed in [24]. The 
simplest approach is to use a Taylor expansion in space and time. Since the cells are moving, 
the Taylor expansion has to be performed along the trajectory of the mesh motion. For a sec-
ond-order scheme, an expansion retaining only linear terms in t and x is sufficient. Consider 
a quadrature point (xq, �r) , the Taylor expansion of the solution around the cell center xn

j
 and 

time level tn yields

and the predicted solution is given by truncating the Taylor expansion at linear terms, lead-
ing to

Using the conservation law, the time derivative is written as �u
�t

= −
�f

�x
= −A

�u

�x
 so that the 

predictor is given by

The above predictor is used for the case of polynomial degree k = 1 . This procedure can 
be extended to higher orders by including more terms in the Taylor expansion but the 
algebra becomes complicated. Instead we will adopt the approach of continuous explicit 
Runge–Kutta (CERK) schemes [25] to approximate the predictor.

Let us choose a set of (k + 1) distinct nodes, e.g., Gauss–Legendre or Gauss–Lobatto 
nodes, which uniquely define the polynomial of degree k. These nodes are moving with veloc-
ity w(x, t), so that the time evolution of the solution at node xm is governed by

uh(xq, �r) = uh(x
n
j
, tn) + (�r − tn)

�uh

�t
(xn

j
, tn) + (xq − xn

j
)
�uh

�x
(xn

j
, tn)

+ O(�r − tn)
2 + O(xq − xn

j
)2,

U(xq, �r) = uh(x
n
j
, tn) + (�r − tn)

�uh

�t
(xn

j
, tn) + (xq − xn

j
)
�uh

�x
(xn

j
, tn).

(7)Uh(xq, �r) = un
h
(xn

j
) − (�r − tn)

[
A(un

h
(xn

j
)) − wqI

]�un
h

�x
(xn

j
).

dUm

dt
=

�

�t
Uh(xm, t) + w(xm, t)

�

�x
Uh(xm, t)

= −
�

�x
f (Uh(xm, t)) + w(xm, t)

�

�x
Uh(xm, t)

= −[A(Um(t)) − wm(t)I]
�

�x
Uh(xm, t) =∶ Km(t),



	 Communications on Applied Mathematics and Computation

1 3

wherein we have made use of the PDE to write the time derivative in terms of spatial deriv-
ative of the flux. This equation is solved with the initial condition

Using a Runge–Kutta scheme of sufficient order (see Appendix B), we will approximate 
the solution at these nodes as

where Km,s = Km(tn + �sΔtn) , �sΔtn is the stage time and bs are certain polynomials related 
to the CERK scheme and given in Appendix B. Note that we are evolving the nodal values 
but the computation of Km,s requires the modal representation of the solution in order to 
calculate spatial derivative of the solution.

Once the predictor is computed as above, it must be evaluated at the quadrature point 
(xq, �r) as follows. For each time quadrature point �r ∈ (tn, tn+1),

	 i.	 compute nodal values Um(�r) , m = 0, 1,⋯ , k;

	 ii.	 for each r, convert the nodal values to modal coefficients um,r , m = 0, 1,⋯ , k;

	 iii.	 evaluate predictor Uh(xq, �r) =
k∑

m=0

um,r�m(xq, �r).

The conversion from nodal to modal values is accomplished through a Vandermonde 
matrix of size (k + 1) × (k + 1) which is the same for every cell and can be inverted once 
before the iterations start. The predictor is also computed at the cell boundaries using the 
above procedure. Figures 3 and 4 show the quadrature points used in the second-, third- 
and fourth-order scheme. For the second-order scheme, the values at ∙ and □ points are 
obtained from the predictor based on Taylor expansion as given in (7). For third- and 

Um(tn) = uh(xm, tn).

Um(t) = uh(xm, tn) +

ns∑
s=1

bs((t − tn)∕Δtn)Km,s, t ∈ [tn, tn+1), m = 0, 1,⋯ , k,

Fig. 3   Quadrature points for 
second-order scheme

Fig. 4   Quadrature points for 
third-order scheme
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fourth-order schemes, the nodal values × are evolved forward in time by the CERK scheme 
and evaluated at the ∙ points. The ∙ point values are converted to modal coefficients using 
which the solution at the □ points is computed.

Remark 2  By looping over each cell in the mesh, the predicted solution is computed in 
each cell and the cell integral in (6) is evaluated. The trace values U−

j+
1

2

(�r) and U+

j−
1

2

(�r) at 

the □ points needed for quadrature in time are computed and stored. These are later used in 
a loop over the cell faces where the numerical flux is evaluated. Thus, the algorithm is eas-
ily parallelizable on multiple core machines and/or using threads.

5 � Control of Oscillation by Limiting

High order schemes for hyperbolic equations suffer from spurious numerical oscillations 
when discontinuities or large gradients are present in the solution which cannot be accu-
rately resolved on the mesh. In the case of scalar problems, this is a manifestation of loss 
of TVD property and hence limiters are used to satisfy some form of TVD condition. In 
the case of DG schemes, the limiter is used as a post-processor which is applied on the 
solution after the time update has been performed. If the limiter detects that the solution 
is oscillatory, then the solution polynomial is reduced to at most a linear polynomial with 
a limited slope. In the present scheme, the limiter is applied after the solution is updated 
from time tn to time tn+1 , i.e., the solution un+1

h
 obtained from (6) is post-processed by the 

limiter. Since the mesh is inherently non-uniform due to it being moved with the flow, we 
modify the standard TVD limiter to account for this non-uniformity. Also, since we are 
solving a system of conservation laws, the limiter is applied on the local characteristic vari-
ables which gives better results than applying it directly on the conserved variables [26].

The solution in cell j can be written as1

where ūj is the cell average value and sj is proportional to the derivative of the solution at 
the cell center. Let Rj , Lj denote the matrix of right and left eigenvectors evaluated at the 
cell average value ūj which satisfy Lj = R−1

j
 , and the right eigenvectors are given in (2). The 

local characteristic variables are defined by ū∗ = Ljū and s∗ = Ljs . We first compute the 
limited slope of the characteristic variables from

where the minmod function is defined by

uh(x) = ūj +
x − xj
1

2
hj

sj + higher order terms,

s∗∗
j

= hj minmod

(
s∗
j

hj
,

ū∗
j
− ū∗

j−1

1

2
(hj−1 + hj)

,
ū∗
j+1

− ū∗
j

1

2
(hj + hj+1)

)
,

minmod(a, b, c) =

{
smin(|a|, |b|, |c|), if s = sign(a) = sign(b) = sign(c),

0, otherwise.

1  We suppress the time variable for clarity of notation.



	 Communications on Applied Mathematics and Computation

1 3

If s∗∗
j

= s∗
j
 , then we retain the solution as it is, and otherwise, the solution is modified to

This corresponds to a TVD limiter which is known to lose accuracy at smooth extrema [27] 
since the minmod function returns zero slope at local extrema. The TVB limiter corre-
sponds to replacing the minmod limiter function with the following function:

where the parameter M is an estimate of the second derivative of the solution at smooth 
extrema [27] and has to be chosen by the user.

6 � Positivity Property

The solutions of Euler equations are well defined only if the density and pressure are pos-
itive quantities. This is not a priori guaranteed by the DG scheme even when the TVD 
limiter is applied. In the case of Runge–Kutta DG schemes, a positivity limiter has been 
developed in [28] which preserves accuracy in smooth regions. This scheme is built on a 
positive first-order finite volume scheme. Consider the first-order version of the ALE-DG 
scheme which is a finite volume scheme given by

The only degree of freedom is the cell average value and the solution is piecewise constant. 
We will analyze the positivity of this scheme for the case of the Rusanov flux which is 
given in 1. The update equation can be rewritten as

From the definition of the Rusanov flux formula, we can easily see that2

uh(x) = ūj +
x − xj
1

2
hj

Rjs
∗∗
j
.

(8)minmod(a, b, c) =

{
a, if |a| ≤ Mh2,

minmod(a, b, c), otherwise,

(9)hn+1
j

ūn+1
j

= hn
j
ūn
j
− Δtn[ĝ

n

j+
1

2

− ĝn
j−

1

2

].

hn+1
j

ūn+1
j

=

[
hn
j
−

Δtn

2

(
𝜆n
j−

1

2

+ wn

j−
1

2

+ 𝜆n
j+

1

2

− wn

j+
1

2

)]
ūn
j

+
Δtn

2

[(
𝜆n
j−

1

2

− wn

j−
1

2

)
ūn
j−1

+ f n
j−1

]

+
Δtn

2

[(
𝜆n
j+

1

2

+ wn

j+
1

2

)
ūn
j+1

− f n
j+1

]

= an
j
ūn
j
+

Δtn

2
Bn
j
+

Δtn

2
Cn
j
.

(
𝜆
j−

1

2

− w
j−

1

2

)
+ vj−1 ≥ cj−1 > 0,

(
𝜆
j+

1

2

+ w
j+

1

2

)
− vj+1 ≥ cj+1 > 0.

2  We drop the superscript n in some of these expressions.
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Consider the first component of Bn
j

Consider the first component of Cn
j

The pressure corresponding to Bn
j
 is

and similarly the pressure corresponding to Cn
j
 is non-negative. Hence, if the coefficient in 

term an
j
 is positive, then the scheme is positive. This requires the CFL condition

The time step will also be restricted to ensure that the cell size does not change too much 
in one time step. If we demand that the cell size does not change by more than a fraction 
� ∈ (0, 1) , then we need to ensure that the time step satisfies

Combining the previous two conditions, we obtain the following condition on the time 
step:

We can now state the following result on the positivity of the first-order finite volume 
scheme on moving meshes.

Theorem 1  The scheme (9) with the Rusanov flux is positivity preserving if the time step 
condition (10) is satisfied.

(
𝜆
j−

1

2

− w
j−

1

2

)
𝜌j−1 + 𝜌j−1vj−1 ≥

(
|vj−1 − w

j−
1

2

| + cj−1 − w
j−

1

2

+ vj−1

)
𝜌j−1

≥cj−1𝜌j−1 > 0.

(
𝜆
j+

1

2

+ w
j+

1

2

)
𝜌j+1 − 𝜌j+1vj+1 ≥(|vj − w

j+
1

2

| + cj+1 + wj−1 − vj+1)𝜌j+1

≥cj+1𝜌j+1 > 0.

pj−1

(
−pj−1 +

2�j−1(vj−1 + �
j−

1

2

− w
j−

1

2

)2

� − 1

)
≥ pj−1�j−1c

2
j−1

� + 1

� − 1
≥ 0,

Δtn ≤
2hn

j

�n
j−

1

2

+ wn

j−
1

2

+ �n
j+

1

2

− wn

j+
1

2

.

Δtn ≤
�hn

j

|wn

j+
1

2

− wn

j−
1

2

| .

(10)Δtn ≤ Δt(1)
n

∶= min
j

⎧
⎪⎪⎨⎪⎪⎩

�
1 −

1

2
�

�
hn
j

1

2

�
�n
j−

1

2

+ �n
j+

1

2

� ,
�hn

j

����w
n

j+
1

2

− wn

j−
1

2

����

⎫
⎪⎪⎬⎪⎪⎭

.
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Remark 3  In this work, we have not attempted to prove the positivity of the scheme for 
other numerical fluxes. We also do not have a proof of positivity for higher order version 
of the scheme. In the computations, we use the positivity preserving limiter of [28] which 
leads to robust schemes which preserve the positivity of the cell average value in all the test 
cases.

7 � Preservation of Constant States

An important property of schemes on moving meshes is their ability to preserve constant 
states for any mesh motion. This is related to the conservation of cell volumes in relation 
to the mesh motion. In our scheme, if we start with a constant state un

h
= c , then the predic-

tor is also constant in the space–time interval, i.e., Uh = c . The space–time terms in (6) are 
polynomials with degree k + 1 in space and degree one in time and these are exactly inte-
grated by the chosen quadrature rule. The flux terms at cell boundaries in (6) are of degree 
one in time and these are also exactly integrated. Hence, the scheme (6) can be written as

where un
j,0

= c and un
j,l
= 0 for l = 1, 2,⋯ , k . Due to the constant predictor and by consist-

ency of the numerical flux

Moreover, for l = 1, 2,⋯ , k,

where we have used the property that w is an affine function of x and �l are orthogonal. 
This implies that un+1

j,l
= 0 for l = 1, 2,⋯ , k . For l = 0 , we get

hn+1
j

un+1
j,l

= hn
j
un
j,l
+ ∫

tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

g(c,w)
𝜕

𝜕x
𝜑l(x, t)dxdt

+ ∫
tn+1

tn

[
ĝ
j−

1

2

(t)𝜑l

(
x+
j−

1

2

, t

)
− ĝ

j+
1

2

(t)𝜑l

(
x−
j+

1

2

, t

)]
dt,

ĝ
j+

1

2

(t) = f (c) − wn

j+
1

2

c.

∫
tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

g(c,w)
𝜕

𝜕x
𝜑l(x, t)dxdt + ∫

tn+1

tn

�
ĝ
j−

1

2

(t)𝜑l

�
x+
j−

1

2

, t

�
− ĝ

j+
1

2

(t)𝜑l

�
x−
j+

1

2

, t

��
dt

= ∫
tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

𝜕

𝜕x
g(c,w)𝜑l(x, t)dxdt + ∫
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1

2
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1

2
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�
− ĝ
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1
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x−
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1

2

, t

��
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− ∫
tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

𝜑l(x, t)
𝜕

𝜕x
g(c,w)dxdt

= −∫
tn+1

tn

𝜕

𝜕x
g(c,w)

⎛⎜⎜⎝∫
x
j+

1
2

(t)

x
j−

1
2

(t)

𝜑l(x, t)dx

⎞
⎟⎟⎠
dt = 0,

hn+1
j
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j,0
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j
c + ∫
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[
ĝ
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1
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(t) − ĝ
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1

2
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dt =

[
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+
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]
c,
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and since hn+1
j

= hn
j
+

(
wn

j−
1

2

− wn

j+
1

2

)
Δt , we obtain uj,0 = c which implies that un+1

h
= c.

8 � Grid Coarsening and Refinement

The size of the cells can change considerably during the time evolution process due to the near 
Lagrangian movement of the cell boundaries. Near shocks, the cells will be compressed to 
smaller sizes which will reduce the allowable time step since a CFL condition has to be satis-
fied. In some regions, e.g., inside expansion fans, the cell size can increase considerably which 
may lead to loss of accuracy. To avoid too small or too large cells from occurring in the grid, 
we implement cell merging and refinement into our scheme. If a cell becomes smaller than 
some specified size hmin , then it is merged with one of its neighbouring cells and the solution 
is transferred from the two cells to the new cell by performing an L2 projection. If a cell size 
becomes larger than some specified size hmax , then this cell is refined into two cells by division 
and the solution is again transferred by the L2 projection. The use of the L2 projection for solu-
tion transfer ensures the conservation of mass, momentum and energy and preserves the accu-
racy in smooth regions. We also ensure that the cell sizes do not change drastically between 
neighbouring cells. To keep a track of refinement of cells, each cell is assigned an initial level 
equal to 0. The daughter cells created during refinement are assigned a level incremented from 
the parent cell, while the coarsened cells are assigned a level decremented from the parent cell.

The algorithm for refinement and coarsening is carried out in three sweeps over all the 
active cells. In the first sweep, we mark the cells for refinement or coarsening based on their 
size and the level of neighboring cells. Cells are marked for coarsening if the size is less than 
a pre-specified minimum size. They are marked for refinement if either the size of the cell is 
larger than the maximum size or if the level of the cell is less than the level of the neighboring 
cells. If none of the conditions are satisfied, the cells are marked for no change. In the second 
sweep, a cell is marked for refinement if both the neighboring cells are marked for refinement. 
A cell is also marked for refinement if the size of the cell is larger than twice the size of either 
of the neighboring cells, and is also larger than twice the minimum size. The last condition is 
inserted to prevent a cell being alternately marked for refinement and coarsening in consecu-
tive adaptation cycles. In the third and final sweeps, we again mark cells for refinement if both 
the neighboring cells are marked for refinement. Further, we ensure that a cell marked for 
refinement does not have a neighboring cell marked for a coarsening, since this can lead to an 
inconsistent mesh.

9 � Numerical Results

The numerical tests are performed with polynomials of degree one, two and three, together 
with the linear Taylor expansion, two stage CERK and four stage CERK, respectively, for the 
computation of the predictor. For the quadrature in time, we use the mid-point rule, two- and 
three-point Gauss–Legendre quadrature, respectively. The time step is chosen using the CFL 
condition,

Δtn =
CFL

2k + 1
Δt(1)

n
,
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where Δt(1)
n

 is given by (10), and the factor (2k + 1) comes from linear stability analysis 
[27]. In most of the computations, we use CFL = 0.9 unless stated otherwise. We observe 
that the results using the average or linearized Riemann velocity are quite similar. We use 
the average velocity for most of the results and show the comparison between the two 
velocities for some results. The main steps in the algorithm within one time step tn → tn+1 
are as follows:

	 i.	 choose the mesh velocity w
j+

1

2

;

	 ii.	 choose the time step Δtn;
	 iii.	 compute the predictor Uh;

	 iv.	 update the solution un
h
 to the next time level un+1

h
;

	 v.	 apply the TVD/TVB limiter on un+1
h

;

	 vi.	 apply the positivity limiter on un+1
h

 from [28];
	vii.	 perform grid refinement/coarsening.

In all the solution plots given below, symbols denote the cell average value.

9.1 � Order of Accuracy

We study the convergence rate of the schemes by applying them to a problem with a known 
smooth solution. The initial condition is taken as

whose exact solution is �(x, t) = �(x − t, 0) , u(x, t) = 1 , p(x, t) = 1 . The initial domain 
is [−5,+5] and the final time is t = 1 units. The results are presented using Rusanov and 

�(x, 0) = 1 + exp(−10x2), u(x, 0) = 1, p(x, 0) = 1,

Table 1   Order of accuracy study 
on static mesh using Rusanov 
flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 4.370E−02 – 3.498E−03 – 3.883E−04 –
200 6.611E−03 2.725 4.766E−04 2.876 1.620E−05 4.583
400 1.332E−03 2.518 6.415E−05 2.885 9.376E−07 4.347
800 3.151E−04 2.372 8.246E−06 2.910 5.763E−08 4.239
1 600 7.846E−05 2.280 1.031E−06 2.932 3.595E−09 4.180

Table 2   Order of accuracy study 
on moving mesh using Rusanov 
flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 2.331E−02 – 3.979E−03 – 8.633E−04 –
200 6.139E−03 1.9250 4.058E−04 3.294 1.185E−05 6.186
400 1.406E−03 2.0258 5.250E−05 3.122 7.079E−07 5.126
800 3.375E−04 2.0366 6.626E−06 3.077 4.340E−08 4.760
1 600 8.278E−05 2.0344 8.304E−07 3.057 2.689E−09 4.573
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HLLC numerical fluxes. The L2 norm of the error in density is shown in Tables 1 and 3 for 
the static mesh and in Tables 2 and 4 for the moving mesh. In each case, we see that the 
error behaves as O(hk+1) which is the optimal rate we can expect for smooth solutions. In 
Table 5, we show that the ALE DG methods preserve its higher order in the presence of a 
limiter.

The mesh velocity is constant since the fluid velocity is constant. To study the effect 
of perturbations in mesh velocity, we add a random perturbation to each mesh velocity, 
w
j+

1

2

← (1 + �r
j+

1

2

)w
j+

1

2

 where r
j+

1

2

 is a uniform random variable in [−1,+1] and � = 0.05 
and a sample velocity distribution is shown in Fig.  5. Note that this randomization is 
performed in each time step with different random variables drawn for each face. For 
the moving mesh, there is no unique cell size and the convergence rate is computed 
based on initial mesh spacing which is inversely proportional to the number of cells. 
From Table  6 which shows results using HLLC flux, we again observe that the error 
reduces at the optional rate of k + 1 even when the mesh velocity is not very smooth.

Table 3   Order of accuracy study 
on static mesh using HLLC flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 4.582E−02 – 3.952E−03 – 3.464E−04 –
200 9.611E−03 2.253 4.048E−04 3.287 2.058E−05 4.073
400 2.052E−03 2.240 4.640E−05 3.206 1.287E−06 4.036
800 4.803E−04 2.192 5.623E−06 3.152 8.061E−08 4.023
1 600 1.184E−04 2.149 6.929E−07 3.119 5.050E−09 4.016

Table 4   Order of accuracy study 
on moving mesh using HLLC 
flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 1.590E−02 – 1.626E−03 – 1.962E−04 –
200 4.042E−03 1.977 2.072E−04 2.972 1.269E−05 3.950
400 1.014E−03 1.985 2.605E−05 2.982 7.983E−07 3.971
800 2.538E−04 1.990 3.261E−06 2.988 4.997E−08 3.980
1 600 6.349E−05 1.992 4.077E−07 2.991 3.124E−09 3.985

Table 5   Order of accuracy 
study on moving mesh using 
Rusanov flux using higher order 
limiter [29]

N k = 1 k = 2

Error Rate Error Rate

100 2.053E−02 – 2.277E−03 –
200 4.312E−03 2.251 3.425E−04 2.732
400 1.031E−03 2.064 4.565E−05 2.907
800 2.550E−04 2.015 5.812E−06 2.973
1 600 6.356E−05 2.004 7.315E−07 2.990
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9.2 � Smooth Test Case with Non‑constant Velocity

We also test the accuracy of our schemes on a isentropic problem with smooth solutions. In 
the test case, the initial conditions are given by

with � = 3 and periodic boundary conditions. For this kind of special isentropic problem, 
the Euler equations are equivalent to the two Burgers equations in terms of their two Rie-
mann invariants which can then be used to derive the analytical solution. The errors are 
then computed with respect to the given analytical solution. In contrast to the previous test 

(11)�(x, 0) = 1 + 0.999 999 5 sin(�x), u(x, 0) = 0, p(x, 0) = �� (x, 0)

Fig. 5   Example of randomized 
velocity distribution for smooth 
test case

Table 6   Order of accuracy study 
on moving mesh using HLLC 
flux with randomly perturbed 
mesh velocity

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 1.735E−02 – 1.798E−03 – 2.351E−04 –
200 4.179E−03 2.051 2.848E−04 2.676 1.416E−05 4.069
400 1.054E−03 2.035 4.301E−05 2.703 8.578E−07 4.041
800 2.615E−04 1.943 6.012E−06 2.838 5.476E−08 3.958
1 600 7.279E−05 1.852 8.000E−07 2.909 3.505E−09 3.966

Table 7   Order of accuracy 
study on fixed mesh using Roe 
flux with non-constant velocity 
smooth test case

N k = 1 k = 2

Error Rate Error Rate

100 8.535E−03 – 1.033E−03 –
200 1.958E−03 2.124 1.221E−04 3.08
400 4.721E−04 2.052 1.581E−05 2.95
800 1.238E−04 1.931 2.14E−06 2.89
1 600 3.563E−05 1.796 2.63E−07 3.02
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case, the velocity and pressure are not constant which makes this a more challenging test 
case. We run the simulation with a WENO-type limiter from [28] and the positivity limiter 
enabled. As we can see from Tables 7 and 8, the rate of convergence is maintained for the 
moving mesh method with the moving mesh methods exhibiting much lower errors.

9.3 � Single Contact Wave

In this example, we choose a Riemann problem which gives rise to a single contact 
wave in the solution that propagates with a constant speed. The initial condition is 
given by

and the contact wave moves with a constant speed of 1.0. The solutions on static and mov-
ing meshes are shown in Fig. 6 at time t = 0.5 using the Roe flux. The moving mesh is 
able to exactly resolve the contact wave while the static mesh scheme adds considerable 
numerical dissipation that smears the discontinuity over many cells. The accurate resolu-
tion of contact waves is a key advantage of such moving mesh methods, which are capable 
of giving very good resolution of the contact discontinuity even on coarse meshes.

(𝜌, v, p) =

{
(2.0, 1.0, 1.0), if x < 0.5,

(1.0, 1.0, 1.0), if x > 0.5,

Table 8   Order of accuracy study 
on moving mesh using Roe 
flux with non-constant velocity 
smooth test case

N k = 1 k = 2

Error Rate Error Rate

100 4.235E−03 – 2.238E−04 –
200 1.058E−03 2.001 3.255E−05 2.87
400 2.586E−04 2.035 4.301E−05 3.133
800 5.804E−05 2.155 5.762E−06 2.901
1 600 1.271E−05 2.192 7.401E−07 2.96

(a) (b)

Fig. 6   Single contact wave using Roe flux and 100 cells: a static mesh, b moving mesh
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9.4 � Sod Problem

The initial condition for the Sod test case is given by [30]

and the solution is computed up to a final time of T = 0.2 with the computational domain 
being [0,  1]. Since the fluid velocity is zero at the boundary, the computational domain 
does not change with time for the chosen final time. The exact solution consists of a rare-
faction fan, a contact wave and a shock wave. In Fig. 7, we show the results obtained using 
the Roe flux with 100 cells and the TVD limiter on static and moving meshes. The contact 
wave is considerably well resolved on the moving mesh as compared to the static mesh due 
to reduced numerical dissipation on moving meshes (Figs. 8 and 9).

To study the Galilean invariance or the dependence of the solution on the choice 
of coordinate frame, we add a boost velocity of V = 10 or V = 100 to the coordinate 
frame, which implies that the initial fluid velocity is v(x, 0) = V  and the other quantities 
remain as before. Figure 10a shows that the accuracy of the static mesh results degrades 

(𝜌, v, p) =

{
(1.0, 0, 1.0), if x < 0.5,

(0.125, 0, 0.1), if x > 0.5,

(a) (b)

Fig. 7   Sod problem using Roe flux, 100 cells and TVD limiter: a static mesh, b moving mesh

(a) (b)

Fig. 8   Sod problem using Roe flux, 100 cells and TVD limiter: a static mesh, b moving mesh
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with increase in velocity of the coordinate frame, particularly the contact discontinuity 
is highly smeared. The results given in Fig. 10b clearly show the independence of the 
results on the moving mesh with respect to the coordinate frame velocity. The allowed 
time step from CFL condition decreases with increase in coordinate frame speed for the 
static mesh case, while in case of the moving mesh, it remains invariant. This means 
that in case of static mesh, we have to perform more time steps to reach the same final 
time as shown in Table  9, which increases the computational time. Thus, the moving 
mesh scheme has the additional advantage of allowing a larger time step compared to 
the fixed mesh scheme.

Finally, we compute the solutions using quadratic and cubic polynomials and the 
results are shown in Fig. 11. The solutions look similar to the case of linear polynomials 
and have the same sharp resolution of discontinuities.

Fig. 9   Sod problem using Roe 
flux, 100 cells and TVD limiter. 
ADG average velocity, RDG 
linearized riemann velocity

Table 9   Number of iterations 
required to reach time t = 0.2 
for Sod test for different boost 
velocity of the coordinate frame

V 0 10 100

Static mesh 144 810 6 807
Moving mesh 176 176 176

(a) (b)

Fig. 10   Effect of coordinate frame motion on Sod problem using Roe flux, 100 cells and TVD limiter: a 
static mesh, b moving mesh



	 Communications on Applied Mathematics and Computation

1 3

9.5 � Lax Problem

The initial condition is given by

The computational domain is [−10,+10] and we compute the solution up to a final time 
of T = 1.3 . This problem has a strong shock and a contact wave that is difficult to resolve 
accurately. The zoomed view of density is shown at the final time in Fig.  12, and we 
observe that the moving mesh results are more accurate for the contact wave, which is the 
first discontinuity in the figure. The second discontinuity is a shock which is equally well 
resolved in both cases. We can observe that the grid is automatically clustered in the region 
between the contact and shock wave, but no explicit grid adaptation was used in this simu-
lation (Fig. 13).

(𝜌, v, p) =

{
(0.445, 0.698, 3.528), if x < 0,

(0.5, 0, 0.571), if x > 0.

(a) (b)

Fig. 11   Sod problem on moving mesh using Roe flux, 100 cells and TVD limiter: a Degree = 2, b Degree 
= 3

(a) (b)

Fig. 12   Lax problem using HLLC flux, 100 cells and TVD limiter: a static mesh, b moving mesh
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Fig. 13   Lax problem using 
HLLC flux, 100 cells and TVD 
limiter. ADG average veloc-
ity, RDG linearized Riemann 
velocity

(a) (b)

(c) (d)

Fig. 14   Shu–Osher problem using Roe flux: a static mesh, 200 cells, M = 0, b moving mesh, 200 cells, 
M = 0, c static mesh, 200 cells, M = 100, d static mesh, 300 cells, M = 100
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9.6 � Shu–Osher Problem

The initial condition is given by [31]

which involves a smooth sinusoidal density wave which interacts with a shock. The domain 
is [−5,+5] and the solution is computed up to a final time of T = 1.8 . The solutions are 
shown in Fig. 14a, b on static and moving meshes using 200 cells and the TVD limiter. The 
moving mesh scheme is considerably more accurate in resolving the sinusoidal wave struc-
ture that arises after interaction with the shock. In Fig. 14c, we compute the solution on 
static mesh with the TVB limiter and the parameter M = 100 in (8). In this case, the solu-
tions on static mesh are more accurate compared to the case of the TVD limiter but still not 
as good as the moving mesh results. The moving mesh result has more than 200 cells in 
the interval [−5,+5] at the final time since cells enter the domain from the left side. Hence 
in Fig. 14d, we show the static mesh results with 300 cells and using the TVB limiter. The 
results are further improved for the static mesh case but still not as accurate as the moving 
mesh case. The choice of parameters in the TVB limiter is very critical but we do not have 
a rigorous algorithm to choose a good value for this. Hence, it is still advantageous to use 
the moving mesh scheme which gives improved solutions even with the TVD limiter.

The above results show that the ALE method is very accurate in terms of the cell aver-
ages. In Fig. 15, we show a zoomed view of density and pressure, where we also plot the 
linear polynomial solution. The slope of the solution is not accurately predicted with the 
Roe scheme and there are spurious contact discontinuities as the pressure and velocity 
are nearly continuous. This behaviour is observed with all contact preserving fluxes like 
Roe, HLLC and HLL-CPS but not with the Rusanov flux. Due to the almost Lagrangian 
character of the scheme, the eigenvalue corresponding to the contact wave, �2 = v − w , is 
nearly zero, which leads to the loss of dissipation in the corresponding characteristic field. 
If a spurious contact wave is generated during the violent dynamics, then this wave will be 
preserved by the scheme leading to wrong solutions. We modify the Roe scheme by pre-
venting this eigenvalue from becoming too small or zero, which is similar to the approach 

(𝜌, v, p) =

{
(3.857 143, 2.629 369, 10.333 333), if x < −4,

(1 + 0.2 sin(5x), 0, 1.0), if x > −4,

Fig. 15   Shu–Osher problem 
using Roe flux on moving mesh
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used for the entropy fix. The eigenvalue |�2| used in the dissipative part of the Roe flux is 
determined from

With this modification and using � = 0.1 , the solution on the moving mesh is shown in 
Fig. 16 and we do not observe the spurious contact discontinuities which arise with the 
standard Roe flux, while at the same time, the solution accuracy compares favourably with 
the previous results that did not use the eigenvalue fix.

We next compute the solutions using quadratic polynomials. Figure  17 shows the 
results obtained with the TVD limiter which shows the dramatically better accuracy that 
is achieved on the moving mesh compared to static mesh. In Fig.  18, we perform the 
same computation with a WENO limiter taken from [29]. The static mesh results are now 
improved over the case of the TVD limiter but still not as good as the moving mesh results 
in terms of capturing the extrema. In Fig. 19, we show a zoomed view of the results on the 

|𝜆2| =
{ |v − w|, if |v − w| > 𝛿 = 𝛼c,

1

2
(𝛿 + |v − w|2∕𝛿), otherwise.

Fig. 16   Shu–Osher problem 
using modified Roe flux on mov-
ing mesh

(a) (b)

Fig. 17   Shu–Osher problem using the modified Roe flux, the TVD limiter, quadratic polynomials and 150 
cells. a static mesh, b moving mesh
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moving mesh with TVD and WENO limiters. We see that the TVD limiter is also able to 
capture all the features and is almost comparable to the WENO limiter.

9.7 � Titarev–Toro Problem

Titarev–Toro problem is an extension of the Shu–Osher problem [32] to test a severely 
oscillatory wave interacting with a shock wave. It aims to test the ability of higher order 
methods to capture the extremely high-frequency waves. The initial condition is given by

The computation is carried out on a mesh of 1 000 cells with the final time T = 5 and the 
density at this final time is shown in Figs. 20 and 21. The fixed mesh is not able to resolve 
the high-frequency oscillations due to dissipation in the fluxes and the TVD limiter, but the 
ALE scheme gives an excellent resolution of these high-frequency oscillations. Note that 

(12)(𝜌, v, p) =

{
(1.515 695, 0.523 346, 1.805), − 5 < x ≤ −4.5,

(1 + 0.1 sin(20𝜋x), 0, 1), − 4.5 < x ≤ 5.

(a) (b)

Fig. 18   Shu–Osher problem using modified Roe flux, WENO limiter, quadratic polynomials and 150 cells. 
a Static mesh, b moving mesh

(a) (b)

Fig. 19   Shu–Osher problem using modified Roe flux, moving mesh, quadratic polynomials and 150 cells. a 
TVD limiter, b WENO limiter
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the ALE scheme also uses the same TVD limiter but it is still able to resolve the solution 
to a very degree of accuracy. This result again demonstrates the superior accuracy that can 
be achieved using a nearly Lagrangian ALE scheme in problems involving interaction of 
shocks and smooth flow structures.

9.8 � 123 Problem

The initial condition is given by [33]

The computational domain is [0, 1] and the final time is T = 0.15 . The density using 100 
cells is shown in Fig. 22 with static and moving meshes. The mesh motion does not signifi-
cantly improve the solution compared to the static mesh case since the solution is smooth. 

(𝜌, v, p) =

{
(1.0,−2.0, 0.4), x < 0.5,

(1.0,+2.0, 0.4), x > 0.5.

Fig. 20   Titarev problem with 
HLLC flux, 1 000 cells and TVD 
limiter

mesh
mesh

Fig. 21   Titarev problem with 
HLLC flux, 1 000 cells and TVD 
limiter (zoomed version)

mesh
mesh
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On the contrary, the mesh becomes rather coarse in the expansion region, though the solu-
tion is still well resolved. However, severe expansion may lead to very coarse meshes 
which may be undesirable. To prevent very coarse cells, we switch on the mesh refinement 

(a) (b)

Fig. 22   123 problem using HLLC flux and 100 cells: a static mesh, b moving mesh

(a) (b)

Fig. 23   123 problem using HLLC flux and grid refinement: a static mesh, b moving mesh with mesh adap-
tation ( hmax = 0.05 ) leading to 108 cells at final time

Fig. 24   123 problem using 
HLLC flux, 100 cells and TVD 
limiter. ADG average veloc-
ity, RDG linearized Riemann 
velocity
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algorithm as described before and use the upper bound on the mesh size as hmax = 0.05 . 
The resulting solution is shown in Fig. 23 where the number of cells has increased to 108 
at the time shown. The central expansion region is now resolved by more uniformly sized 
cells compared to the case of no grid refinement (Fig. 24).

9.9 � Blast Problem

The initial condition is given by [34]

(𝜌, v, p) =

⎧⎪⎨⎪⎩

(1.0, 0, 1 000.0), x < 0.1,

(1.0, 0, 0.01), 0.1 < x < 0.9,

(1.0, 0, 100.0), x > 0.9

(a) (b)

Fig. 25   Blast problem using HLLC flux and 400 cells. a Static mesh, b moving mesh with adaptation 
( hmin = 0.001 ) leading to 303 cells at final time

(a) (b)

Fig. 26   Blast problem using HLLC flux, quadratic polynomials and 400 cells. a Static mesh, b moving 
mesh with adaptation ( hmin = 0.001 ) leading to 293 cells at final time



	 Communications on Applied Mathematics and Computation

1 3

with a domain of [0, 1] and the final time is T = 0.038 . A reflective boundary condition 
is used at x = 0 and x = 1 . A mesh of 400 cells is used for this simulation and in case of 
the moving mesh, we perform grid adaptation with hmin = 0.001 since some cells become 
very small during the collision of the two shocks. The positivity preserving limiter of [28] 
is applied together with the TVD limiter and HLLC flux. The static mesh results shown in 
Fig. 25a indicate too much numerical viscosity in the contact wave around x = 0.6 . This 
wave is more accurately resolved in the moving mesh scheme as seen in Fig. 25b which 
is an advantage due to the ALE scheme and is a very good indicator of the scheme accu-
racy as this is a very challenging feature to compute accurately. We next compute the same 
problem using quadratic polynomials with all other parameters being as before. The solu-
tions are shown in Fig. 26 and indicate that the Lagrangian moving mesh scheme is more 
accurate in resolving the contact discontinuity. The higher polynomial degree does not 
show any major improvement in the solution compared to the linear case, which could be a 
consequence of the strong shock interactions present in this problem, see Fig. (4.11–4.12) 
in [29] and Fig. (3.7) in [35] in comparison to current results (Fig. 27).

9.10 � Le Blanc Shock Tube Test Case

The Le Blanc shock tube test case is an extreme shock tube problem where the initial dis-
continuity separates a region of high energy and density from one of low energy and den-
sity. This is a much more severe test than the Sod problem and hence more challenging 
for numerical schemes. The computational domain is 0 ⩽ x ⩽ 9 and is filled with an ideal 
gas with � = 5∕3 . The gas is initially at rest and we perform the simulation up to a time of 
T = 6 units. The initial discontinuity is at x = 3 and the initial condition is given by

Note that both the density and pressure have a very large jump in the initial condition. The 
solution that develops from this initial condition consists of a rarefaction wave moving to 
the left and a contact discontinuity and a strong shock moving to the right. In Fig. 28, we 

(13)(𝜌, v, p) =

{
(1.0, 0, 0.1), if x < 3,

(0.001, 0, 10−7), if x > 3.

Fig. 27   Blast problem using 
HLLC flux, 100 cells and TVD 
limiter. ADG average veloc-
ity, RDG linearized Riemann 
velocity
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show the comparison of the internal energy profile at final time between a fixed mesh solu-
tion and moving mesh solutions with two different mesh velocities as described before. 
Most methods tend to generate a very large spike in the internal energy in the contact 
region, e.g., compare with Fig.  (11) in  [36], while the present ALE method here is able 
to give a better profile. We plot the pressure profile in Fig. 29 which shows that the ALE 
scheme is able to better represent the region around the contact wave as compared to fixed 
mesh method.

9.11 � Two‑Dimensional Isentropic Vortex Test Case

The extension to two dimensions involves two aspects that need to be addressed. The first 
issue is how to handle the grid motion and the second is how to formulate the ALE-DG 
scheme. The second part is a natural generalization of the DG scheme we have described 

Fig. 28   Internal energy for Le Blanc shock tube with Rusanov flux, 1  400 cells and TVD limiter, ADG 
average velocity, RDG linearized Riemann velocity

Fig. 29   Pressure for Le Blanc 
shock tube with Rusanov flux, 
1 400 cells and TVD limiter, 
ADG average velocity, RDG 
linearized Riemann velocity
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for the 1-D case in this paper, except that we have to construct basis functions on triangles 
and perform some numerical quadrature. The first part involving grid movement is more 
complicated and we present only very preliminary results in this section to demonstrate 
that the idea has merit. We now consider the two-dimensional Euler equations written as

where

The test case we consider involves an isentropic vortex that is advecting with the constant 
velocity and is a smooth solution for which error norms can be calculated. The test is car-
ried out on a square domain [−10, 10] × [−10, 10] with periodic boundary conditions. The 
initial condition is an isentropic vortex (Table 10)

with u∞ = 1, v∞ = 0, � = 1.4, � = 10 . As the solution evolves in time, the mesh becomes 
quite deformed because the vortex is continually shearing the mesh, which can lead to 

(14)
�u

�t
+

�f (u)

�x
+

�g(u)

�y
= 0,

(15)u =

⎡⎢⎢⎢⎣

�

�u

�v

E

⎤⎥⎥⎥⎦
, f (u) =

⎡⎢⎢⎢⎣

�u

p + �u2

�uv

(E + p)u

⎤⎥⎥⎥⎦
, g(u) =

⎡⎢⎢⎢⎣

�v

�uv

p + �v2

(E + p)v

⎤⎥⎥⎥⎦
,

(16)p = (� − 1)
[
E −

1

2
�(u2 + v2)

]
.

(17)T = 1 −
(� − 1)�2

8��2
e1−r

2

,

(18)� = T
1

�−1 ,

(19)u = u∞ −
�

2�
ye

1−r2

2 ,

(20)v = v∞ −
�

2�
ye

1−r2

2 ,

(21)p = ��

Table 10   Isentropic vortex in 
2D: order of accuracy study on 
two-dimensional static mesh

N k = 1 k = 2

Error Rate Error Rate

50 × 50 2.230E−03 – 1.762E−04 –

100 × 100 5.987E−04 1.945 2.305E−05 2.934
200 × 200 1.498E−04 1.998 2.973E−06 2.955
400 × 400 3.786E−05 1.984 3.762E−07 2.982
800 × 800 9.617E−06 1.977 3.474E−08 2.991
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degenerate meshes, as shown in Fig. 30. We avoid the occurrence of badly shaped triangles 
using a combination of face swapping and mesh velocity smoothing algorithms [37, 38]. 
The mesh modification is a very local procedure and does not require global remeshing 
which is a costly process. With these techniques, we are able to maintain a good mesh 
quality even after the vortex has rotated 4 times around its center as shown in Fig. 31. As 
the vortex is translating, we plot the solution in a window centered at the vortex center. We 
can see that the method maintains its high order of accuracy from the convergence rates of 
the error shown in Table 11; using linear basis functions yields second-order convergence 
while quadratic basis functions lead to third-order convergence.

Table 11   Isentropic vortex in 
2D: order of accuracy study on 
two-dimensional moving mesh

N k = 1 k = 2

Error Rate Error Rate

50 × 50 2.230E−03 – 1.762E–04 –
100 × 100 5.987E−04 1.945 2.305E−05 2.934
200 × 200 1.498E−04 1.998 2.973E−06 2.955
400 × 400 3.786E−05 1.984 3.762E−07 2.982
800 × 800 9.617E−06 1.977 3.474E−08 2.991

Fig. 30   Isentropic vortex in 2-D: 
skewed mesh without remeshing 
t = 2.660 534
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10 � Summary and Conclusions

We have developed an explicit DG scheme on moving meshes using ALE framework 
and space–time expansion of the solutions within each cell. The near Lagrangian nature 
of the mesh motion dramatically reduces the numerical dissipation, especially for con-
tact waves. Even moving contact waves can be exactly computed with a numerical flux 
that is exact for stationary contact waves. The scheme is shown to yield superior results 
even in the presence of the large boost velocity of the coordinate system indicating its 
Galilean invariance property. The standard Roe flux does not suffer from entropy viola-
tion when applied in the current nearly Lagrangian framework. However, in some prob-
lems with strong shocks, spurious contact waves can appear and we propose to fix the 
dissipation in Roe-type schemes that eliminates this issue. The method yields accurate 
solutions even in combination with standard TVD limiters, where fixed grid methods 

Fig. 31   Isentropic vortex in 2-D: mesh and pressure solution at various times a t = 0 , b t = 6 , c t = 12 , d 
t = 20
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perform poorly. The mesh motion provides automatic grid adaptation near shocks but 
may lead to very coarse cells inside expansion waves. A grid adaptation strategy is 
developed to handle the problem of very small or very large cells. The presence of the 
DG polynomials makes it easy to transfer the solution during grid adaptation without 
loss of accuracy. The proposed methodology is general enough to be applicable to other 
systems of conservation laws modelling fluid flows. The basic idea can be extended 
to multi-dimensions but additional considerations are required to maintain good mesh 
quality under fluid deformations. The preliminary results shown for the isentropic vor-
tex are very promising for the 2-D case.
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Appendix A: Numerical Flux

The ALE scheme requires a numerical flux ĝ(ul, ur,w) which is usually based on some 
approximate Riemann solver. The numerical flux function is assumed to be consistent in the 
sense that

Since the ALE versions of the numerical fluxes are not so well known, here we list the for-
mulae used in the present work.

Rusanov Flux

The Rusanov flux is a variant of the Lax–Friedrich flux and is given by

where �lr = �(ul, ur,w),

which is an estimate of the largest wave speed in the Riemann problem. Since the mesh 
velocity is close to the fluid velocity, the value of � is close to the local sound speed. Thus, 
the numerical dissipation is independent of the velocity scale.

Roe Flux

The Roe scheme  [39] is based on a local linearization of the conservation law and then 
exactly solving the Riemann problem for the linear approximation. The flux can be written as

ĝ(u,u,w) = g(u,w), ∀u ∈ ℝ
3
,w ∈ ℝ.

ĝ(ul, ur,w) =
1

2
[g(ul,w) + g(ur,w)] −

1

2
𝜆lr(ur − ul),

�(ul, ur,w) = max{|vl − w| + cl, |vr − w| + cr},

ĝ(ul, ur,w) =
1

2
[g(ul,w) + g(ur,w)] −

1

2
|Aw|(ur − ul),
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where the Roe average matrix Aw = Aw(ul, ur) satisfies

and we define |Aw| = R|� − wI|R−1 . This matrix is evaluated at the Roe average state u(q̄) , 
q̄ =

1

2
(ql + qr) , where q =

√
�[1, v, H]T is the parameter vector introduced by Roe.

HLLC Flux

This is based on a three wave approximate Riemann solver and the particular ALE version 
we use can also be found in [15]. Define the relative velocity q = v − w ; then, the numeri-
cal flux is given by

where the intermediate states are given by

and

where

which gives SM as

The signal velocities are defined as

where v̂ , ĉ are Roe’s average velocity and speed of sound.

Appendix B: Continuous Expansion Runge–Kutta (CERK) Schemes

We use a Runge–Kutta scheme to compute the predicted solution used to compute all the inte-
grals in the DG scheme. In this section, we list down the CERK scheme for the following 
ODE:

g(ur,w) − g(ul,w) = Aw(ur − ul),

ĝ(ul, ur,w) =

⎧⎪⎨⎪⎩

g(ul,w), Sl > 0,

g∗(u∗
l
,w), Sl ≤ 0 < SM ,

g∗(u∗
r
,w), SM ≤ 0 ≤ Sr,

g(ur,w), Sr < 0,

u∗
�
=

1

S� − SM

⎡⎢⎢⎣

(S� − q�)��
(S� − q�)(�v)� + p∗ − p�

(S� − q�)E� − p�q� + p∗SM

⎤⎥⎥⎦
, � = l, r,

g∗(u,w) = SMu +

⎡⎢⎢⎣

0

p∗

(SM + w)p∗

⎤⎥⎥⎦
,

p∗ = �l(ql − Sl)(ql − SM) + pl = �r(qr − Sr)(qr − SM) + pr,

SM =
�rqr(Sr − qr) − �lql(Sl − ql) + pl − pr

�r(Sr − qr) − �l(Sl − ql)
.

Sl = min{ql − cl, v̂ − w − ĉ}, Sr = max{qr + cr, v̂ − w + ĉ},
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Given the solution un at time tn , the CERK scheme gives a polynomial solution in the time 
interval [tn, tn+1) of the form

where ns is the number of stages and h denotes the time step.

Second Order (CERK2)

The number of stages is ns = 2 and

and

Third Order (CERK3)

The number of stages is ns = 4 and

and
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Arbitrary Lagrangian-Eulerian discontinuous
Galerkin method for 1-D Euler equations

Praveen Chandrashekar and Jayesh Badwaik

Abstract We propose an explicit in time discontinuous Galerkin scheme on moving
grids using the arbitrary Lagrangian-Eulerian approach for one dimensional Euler
equations. The grid is moved with a velocity that is close to the local fluid velocity,
which considerably reduces the numerical dissipation in the Riemann solvers. Lo-
cal grid refinement and coarsening are performed to maintain the mesh quality and
avoid very small or large cells. Second, third and fourth order methods are devel-
oped and several test cases are provided to demonstrate the accuracy of the proposed
scheme.

1 Introduction

Finite volume schemes based on exact or approximate Riemann solvers are able to
compute discontinuous solutions in a stable manner since they have implicit dissipa-
tion built into them due to the upwind nature of the schemes. Higher order schemes
are constructed following a reconstruction approach combined with a high order
time integration scheme. While formally high order methods can converge at high
rates for smooth solutions, they can still introduce too much numerical dissipation
on coarse meshes. Springel [5] gives the example of a Kelvin-Helmholtz instability
in which adding a large constant velocity to both states leads to suppression of the
instability due to excessive numerical dissipation. This behaviour is attributed to the
fact that fixed grid methods based on upwind schemes are not Galilean invariant.
Upwind schemes, even when they are formally high order accurate, are found to be
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too dissipative when applied to turbulent flows [2] since the numerical viscosity can
overwhelm the physical viscosity.

The inherent numerical dissipation in upwind schemes can be reduced if the
grid moves along with the flow as in Lagrangian methods or arbitrary Lagrangian-
Eulerian approach [1], where the mesh velocity can be chosen to be close to the
local fluid velocity but may be regularized to maintain the mesh quality. In [5], the
mesh is regenerated after every time step based on a Delaunay triangulation, which
allows it to maintain good mesh quality even when the fluid undergoes large shear
deformation. However these methods have been restricted to second order accuracy.

Traditionally, ALE methods have been used for problems involving moving
boundaries as in wing flutter, store separation and other problems involving fluid
structure interaction. Another class of methods solve the PDE on moving meshes
where the mesh motion is determined based on a monitor function which is de-
signed to detect regions of large gradients in the solution, see [6] and the references
therein. These methods achieve automatic clustering of grid points in regions of
large gradients. ALE schemes have been used to compute multi-material flows as
in [3], since they are useful to accurately track the material interface.

In the present work, we consider the one dimensional problem and propose an
explicit discontinuous Galerkin scheme that is conservative on moving meshes and
automatically satisfies the geometric conservation law. The scheme is a single step
method which is achieved by using a predictor. Numerical results show the dramatic
improvement in resolving discontinuities, especially contact waves. Apart from the
geometric complexity, the proposed scheme can be extended to multiple dimen-
sions.

2 Euler equations

The Euler equations are a hyperbolic system of conservation laws for mass, momen-
tum and energy, and can be written as

∂uuu
∂ t

+
∂ fff (uuu)

∂x
= 0 (1)

where uuu is called the vector of conserved variables and fff (uuu) are the corresponding
fluxes given by

uuu =

 ρ

ρv
E

 , fff (uuu) =

 ρv
p+ρv2

ρHv


In the above expressions, ρ is the density, v is the velocity, p is the pressure and E is
the total energy per unit volume, which for an ideal gas is given by E = p/(γ−1)+
ρv2/2, with γ > 1 being the ratio of specific heats at constant pressure and volume,
and H = (E + p)/ρ is the enthalpy.
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Fig. 1 Space-time cell

3 Mesh and solution space

Consider a partition of the domain into disjoint cells with the j’th cell being denoted
by C j(t) = (x j− 1

2
(t),x j+ 1

2
(t)). As the notation shows, the cell boundaries are time

dependent which means that the cell is moving in some specified manner. The time
levels are denoted by tn with the time step ∆ tn = tn+1− tn. The boundaries of the
cells move with a constant velocity in the time interval (tn, tn+1) given by

w j+ 1
2
(t) = wn

j+ 1
2
, tn < t < tn+1

which defines a cell in space-time as shown in figure (1). The algorithm to choose
the mesh velocity wn

j+ 1
2

is explained in a later section. Let w(x, t) be the continuous

linear interpolation of the mesh velocity. We approximate the solution of the conser-
vation law by piecewise polynomials which are allowed to be discontinuous across
the cell boundaries. For a given degree k≥ 0, the solution in the j’th cell is given by

uuuh(x, t) =
k

∑
m=0

uuu j,m(t)ϕm(x, t), x ∈C j(t)

where {uuu j,m ∈ R3,0 ≤ m ≤ k} are the degrees of freedom associated with the j’th
cell. The basis functions ϕm are defined in terms of Legendre polynomials by map-
ping to a reference cell.

4 Discontinuous Galerkin method

Define the ALE flux as ggg(uuu,w) = fff (uuu)−wuuu. The weak formulation after performing
an integration by parts in the x variable, leads to
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d
dt

∫ x
j+ 1

2
(t)

x
j− 1

2
(t)

uuuh(x, t)ϕl(x, t)dx =
∫ x

j+ 1
2
(t)

x
j− 1

2
(t)

ggg(uuuh,w)
∂

∂x
ϕl(x, t)dx

+ĝgg j− 1
2
(uuuh(t))ϕl(x+j− 1

2
, t)− ĝgg j+ 1

2
(uuuh(t))ϕl(x−j+ 1

2
, t)

where we have introduced the numerical flux

ĝgg j+ 1
2
(uuuh(t)) = ĝgg(uuu−

j+ 1
2
(t),uuu+

j+ 1
2
(t),w j+ 1

2
(t))

which provides an approximation to the ALE flux. The above scheme has an im-
plicit nature since the unknown solution uuuh appears on the right hand side integrals
whereas we only know the solution at time tn. In order to obtain an explicit scheme,
we assume that we have available with us a predicted solution UUUh in the time interval
(tn, tn+1), which is used in the time integrals to obtain an explicit scheme. Moreover,
the integrals are computed using quadrature in space and time leading to the fully
discrete scheme

hn+1
j uuun+1

j,l = hn
juuu

n
j,l +∆ tn ∑

r
θrh j(τr)∑

q
ηqggg(UUUh(xq,τr),w(xq,τr))

∂

∂x
ϕl(xq,τr)

+∆ tn ∑
r

θr[ĝgg j− 1
2
(UUUh(τr))ϕl(x+j− 1

2
,τr)− ĝgg j+ 1

2
(UUUh(τr))ϕl(x−j+ 1

2
,τr)]

where θr are weights for time quadrature and ηq are weights for spatial quadrature.
In practice, the integrals are computed by mapping the cell to the reference cell, and
the basis functions and its derivatives are also evaluated on the reference cell.

4.1 Mesh velocity

The mesh velocity must be close to the local fluid velocity in order to have a La-
grangian character to the scheme. Since the solution is discontinuous, there is no
unique fluid velocity at the mesh boundaries. Some researchers, especially in the
context of Lagrangian methods, solve a Riemann problem at the cell face to deter-
mine the face velocity. Since we use an ALE formulation, we do not require the
exact velocity and in our work we make a simple choice which is to take an average
of the two velocities at every cell face

w̃n
j+ 1

2
=

1
2
[v(x−

j+ 1
2
, tn)+ v(x+

j+ 1
2
, tn)]

We will also perform some smoothing of the mesh velocity, e.g., the actual face
velocity is computed from

wn
j+ 1

2
=

1
3
(w̃n

j− 1
2
+ w̃n

j+ 1
2
+ w̃n

j+ 3
2
)
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Note that our algorithm to choose the mesh velocity is very local and hence easy and
efficient to implement as it does not require the solution of any global problems.

5 Computing the predictor

The predicted solution is used to approximate the flux integrals over the time inter-
val (tn, tn+1) and the method to compute this must be local, i.e., it must not require
solution from neighbouring cells. For a second order scheme, a Taylor expansion re-
taining only linear terms in t and x is sufficient. For higher order schemes, we adopt
the approach of continuous explicit Runge-Kutta (CERK) schemes [4] to approxi-
mate the predictor. Let us choose a set of (k+1) distinct nodes, e.g., Gauss-Legendre
or Gauss-Lobatto nodes, which uniquely define the polynomial of degree k. These
nodes are moving with velocity w(x, t), so that the time evolution of the solution at
node xm is governed by

dUUUm

dt
=−[A(UUUm(t))−wm(t)I]

∂

∂x
UUUh(xm, t) =: KKKm(t)

with initial condition UUUm(tn) = uuuh(xm, tn). Using a Runge-Kutta scheme of sufficient
order, we will approximate the solution at these nodes as

UUUm(t) = uuuh(xm, tn)+
ns

∑
s=1

bs((t− tn)/∆ tn)KKKm,s, t ∈ [tn, tn+1), m = 0,1, . . . ,k

where KKKm,s = KKKm(tn+θs∆ tn), θs∆ tn is the stage time and bs are certain polynomials
related to the CERK scheme.

6 Positivity property

The solutions of Euler equations are well defined only if the density and pressure are
positive quantities. This is not a priori guaranteed by the DG scheme even when the
TVD limiter is applied. In the case of Runge-Kutta DG schemes, a positivity limiter
has been developed in [7] which preserves accuracy in smooth regions. This scheme
is built on a positive first order finite volume scheme. For the first order ALE-DG
scheme using Rusanov flux, we can show positivity property provided the time step
satisfies

∆ tn ≤ ∆ t(1)n := min
j

 (1− 1
2 β )hn

j
1
2 (λ

n
j− 1

2
+λ n

j+ 1
2
)
,

βhn
j

|wn
j+ 1

2
−wn

j− 1
2
|

 (2)

Here β ∈ (0,1) is the maximum allowed change in cell size during one time step
relative to the previous size.
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Theorem 1. The scheme first order ALE-DG scheme with Rusanov flux is positivity
preserving if the time step condition (2) is satisfied.

Remark 1. In the computations, we use the positivity preserving limiter of [7] which
leads to robust schemes which preserve the positivity of the cell average value in all
the test cases.

Remark 2. An important property of schemes on moving meshes is their ability to
preserve constant states for any mesh motion. This is related to the conservation
of cell volumes in relation to the mesh motion. In our scheme, if we start with a
constant state uuun

h = ccc, then we can prove that the solution remains constant.

7 Grid coarsening and refinement

The size of the cells can change considerably during the time evolution process due
to the near Lagrangian movement of the cell boundaries. Near shocks, the cells will
be compressed to smaller sizes which will reduce the allowable time step since a
CFL condition has to be satisfied. In some regions, e.g., inside expansion fans, the
cell size can increase considerably which may lead to loss of accuracy. In order
to avoid too small or too large cells from occuring in the grid, we implement cell
merging and refinement. If a cell becomes smaller than some specified size hmin,
then it is merged with one of its neighbouring cells and the solution is transfered
from the two cells to the new cell by performing an L2 projection. If a cell size
becomes larger than some specified size hmax, then this cell is refined into two cells
by division and the solution is again transfered by L2 projection.

8 Numerical results

The numerical tests are performed with polynomials of degree one, two and three,
together with the linear Taylor expansion, two stage CERK and four stage CERK,
respectively, for the predictor. For the quadrature in time, we use the mid-point rule,
two and three point Gauss-Legendre quadrature, respectively. High order schemes
for hyperbolic equations suffer from spurious numerical oscillations when discon-
tinuities or large gradients are present in the solution which cannot be accurately
resolved on the mesh. To control these oscillations, we use standard TVD and TVB
limiters applied to characteristic variable and account for non-uniform meshes. The
time step is chosen based on equation (2),

∆ tn =
CFL

2k+1
∆ t(1)n
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N k = 1 k = 2 k = 3
Error Rate Error Rate Error Rate

100 4.370E-02 - 3.498E-03 - 3.883E-04 -
200 6.611E-03 2.725 4.766E-04 2.876 1.620E-05 4.583
400 1.332E-03 2.518 6.415E-05 2.885 9.376E-07 4.347
800 3.151E-04 2.372 8.246E-06 2.910 5.763E-08 4.239
1600 7.846E-05 2.280 1.031E-06 2.932 3.595E-09 4.180

Table 1 Order of accuracy study on static mesh using Rusanov flux

N k = 1 k = 2 k = 3
Error Rate Error Rate Error Rate

100 2.331E-02 - 3.979E-03 - 8.633E-04 -
200 6.139E-03 1.925 4.058E-04 3.294 1.185E-05 6.186
400 1.406E-03 2.0258 5.250E-05 3.122 7.079E-07 5.126
800 3.375E-04 2.0366 6.626E-06 3.077 4.340E-08 4.760
1600 8.278E-05 2.0344 8.304E-07 3.057 2.689E-09 4.573

Table 2 Order of accuracy study on moving mesh using Rusanov flux

where the factor (2k+ 1) comes from linear stability analysis, and in most of the
computations we use CFL = 0.9. In all the solutions plots given below, symbols
denote the cell average value.

8.1 Order of accuracy

We study the convergence rate of the schemes by applying them to a problem with
a known smooth solution. The initial condition is taken as

ρ(x,0) = 1+ exp(−10x2), u(x,0) = 1, p(x,0) = 1

whose exact solution is ρ(x, t) = ρ(x− t,0), u(x, t) = 1, p(x, t) = 1. The initial do-
main is [−5,+5] and the final time is t = 1 units. The L2 norm of the error in density
are shown in table (1) for the static mesh and in table (2) for the moving mesh. In
each case, we see that the error behaves as O(hk+1) which is the optimal rate for
smooth solutions.

8.2 Sod problem

The initial condition for the Sod test case is given by
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Fig. 2 Sod problem using Roe flux, 100 cells and TVD limiter: (a) static mesh (b) moving mesh

(ρ,v, p) =

{
(1.0,0.0,1.0) if x < 0.5
(0.125,0.0,0.1) if x > 0.5

and the solution is computed upto a final time of T = 0.2 where the domain is [0,1].
Since the fluid velocity is zero at the boundary, the computational domain does
not change with time for the chosen final time. In figure (2), we show the results
obtained using Roe flux with 100 cells and TVD limiter on static and moving mesh.
The contact wave is considerably well resolved on the moving mesh as compared to
the static mesh.

To study the Galilean invariance or the dependance of the solution on the choice
of coordinate frame, we add a boost velocity of V = 10 or V = 100 to the coordinate
frame, while implies the initial fluid velocity if v(x,0) =V and the other quantities
remain as before. The results given in figure (3b) clearly show the independance of
the results on the moving mesh. Figure (3a) shows that the accuracy of the static
mesh results degrades with increase in velocity of the coordinate frame, particularly
the contact discontinuity is highly smeared.

8.3 Shu-Osher problem

The initial condition is given by

(ρ,v, p) =

{
(3.857143,2.629369,10.333333) if x <−4
(1+0.2sin(5x),0.0,1.0) if x >−4

which involves a smooth sinusoidal density wave which interacts with a shock. The
domain is [−5,+5] and the solution is computed upto a final time of T = 1.8. The
solutions are shown in figure (4a)-(4b) on static and moving meshes using 200 cells
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Fig. 3 Effect of coordinate frame motion on Sod problem using Roe flux, 100 cells and TVD
limiter: (a) static mesh (b) moving mesh

and TVD limiter. The moving mesh scheme is considerably more accurate in re-
solving the sinusoidal wave structure that arises after interaction with the shock. In
figure (4c) we compute the solution on static mesh with TVB limiter and the pa-
rameter M = 100 is used. In this case the solutions on static mesh are more accurate
compared to the case TVD limiter but still not as good as the moving mesh results.
The moving mesh results has more than 200 cells in the interval [−5,+5] at the final
time since cells enter the domain from the left side. Hence in figure (4d), we show
the static mesh results with 300 cells and using TVB limiter. The results are further
improved but still not as accurate as the moving mesh case. The choice of parame-
ters in the TVB limiter is very heuristic and hence it is still advantageous to use the
moving mesh scheme which gives improved solutions even with TVD limiter.

8.4 Low density problem

The initial condition is given by

(ρ,v, p) =

{
(1.0,−2.0,0.4) x < 0.5
(1.0,+2.0,0.4) x > 0.5

The computational domain is [0,1] and the final time is T = 0.15. The density using
100 cells is shown in figure (5) with static and moving meshes. The mesh mo-
tion does not significantly improve the solution. On the contrary, the mesh becomes
rather coarse in the expansion region, though the solution is still accurate. By en-
abling grid refinement when h > 0.05, we obtain the result shown in figure (6),
where better resolution of the low density region is obtained.
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Fig. 4 Shu-Osher problem using Roe flux: (a) static mesh, 200 cells, M = 0 (b) moving mesh, 200
cells, M = 0 (c) static mesh, 200 cells, M = 100 (d) static mesh, 300 cells, M = 100
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Fig. 5 Low density problem using HLLC flux: (a) static mesh, (b) moving mesh
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Fig. 6 Low density problem using HLLC flux with 100 cells and moving mesh (a) no adaptation
(b) with adaptation.

8.5 Blast problem

The initial condition is given by

(ρ,v, p) =


(1.0,0.0,1000.0) x < 0.1
(1.0,0.0,0.01) 0.1 < x < 0.9
(1.0,0.0,100.0) x > 0.9

and the final time is T = 0.038. As shown in figure (7), static mesh results suffer
from too much dissipation especially in the contact wave, while the moving mesh is
able to resolve this more accurately. Since some cells can become very small in this
problem, we have enabled mesh coarsening whenever h < 0.001 for any cell.

9 Summary

We have developed an explicit DG scheme on moving meshes using ALE frame-
work and space-time expansion of the solutions within each cell. The near La-
grangian nature of the mesh motion dramatically reduces the numerical dissipation
especially for contact waves. The scheme is shown to yield superior results in the
presence of large boost velocity of the coordinate system indicating its Galilean in-
variance property. The mesh motion provides automatic grid adaptation near shocks
but may lead to very coarse cells inside expansion waves. A grid adaptation strategy
is developed to handle the problem of very small or very large cells. The proposed
methodology is general enough to be applicable to other systems of conservation
laws modeling fluid flows.
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Fig. 7 Blast problem using HLLC flux with 400 cells on static and moving meshes
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TASK-BASED PARALLELIZATION OF AN IMPLICIT KINETIC SCHEME ∗

Jayesh Badwaik1, Matthieu Boileau2, David Coulette2, Emmanuel Franck2,
Philippe Helluy2, Christian Klingenberg1, Laura Mendoza3 and Herbert

Oberlin3

Abstract. In this paper we present and implement the Palindromic Discontinuous Galerkin (PDG)
method in dimensions higher than one. The method has already been exposed and tested in [4] in the
one-dimensional context. The PDG method is a general implicit high order method for approximating
systems of conservation laws. It relies on a kinetic interpretation of the conservation laws containing
stiff relaxation terms. The kinetic system is approximated with an asymptotic-preserving high order
DG method. We describe the parallel implementation of the method, based on the StarPU runtime
library. Then we apply it on preliminary test cases.

1. Introduction

In this work we consider the time discretization of compressible fluid models that appear in gas dynamics,
biology, astrophysics or plasma physics for tokamaks. These models can be unified in the following form

∂tw +
D∑
k=1

∂kq
k(w) = s, (1)

where w : RD × [0, Tmax] −→ Rm is the vector of conservative variables, qk(w) : Rm −→ Rm is the flux and
s : RD × R× Rm −→ Rm is a source term. D represents the physical space dimension and m the number of
unknowns.

In many physical applications such as MHD flows, low Mach Euler equations, Shallow-Water with sedimen-
tation, the model presents several time scales associated to the propagation of different waves. When the time
scale of the fast phenomena, which constrains the explicit CFL condition, is very small compared to the time
scale of the most relevant phenomena, it becomes necessary to switch to implicit schemes. However standard
implicit schemes are very costly in 2D or 3D because they require the resolution of linear or non-linear systems
at each time step. In addition, the matrices associated with the hyperbolic systems are generally ill-conditioned.

In this paper, we propose to follow another approach for avoiding the resolution of complicated linear systems.
Instead of solving the full fluid model (1) directly, we replace it by a simpler kinetic interpretation made of a
set of transport equations coupled through a stiff relaxation term [1, 3, 7]. See also [4] and included references.

∗ This work has benefited from several supports: ANR/SPPEXA (EXAMAG project), French Public Bank of Investment (BPI
HOROCH project), Euratom (Eurofusion project).
1 Departement of Mathematics, Würzburg University, Germany
2 IRMA, University of Strasbourg, Inria TONUS, France
3 Max-Planck-Institut für Plasmaphysik, Garching, Germany

c© EDP Sciences, SMAI 2018

Article published online by EDP Sciences and available at https://www.esaim-proc.org or https://doi.org/10.1051/proc/201863060



ESAIM: PROCEEDINGS AND SURVEYS 61

The kinetic system is then solved by a splitting method where the transport and relaxation stages are treated
separately. The method is then well adapted to parallel implementation. The method is already presented in [4]
in the one-dimensional case. Here we present its implementation in higher dimensions. We particularly focus
our presentation on the massive parallelization of the method with the StarPU runtime system [2].

The paper is organized as following.
First we recall that it is possible to provide a general kinetic interpretation of any system of conservation

laws. The interest of this representation is that the complicated non-linear system is replaced by a (larger) set
of scalar linear transport equations that are much easier to solve. The transport equations are coupled through
a non-linear source term that is fully local in space.

Then, we detail the approximation which allows to solve the transport equation in an efficient way. We adopt a
Discontinuous Galerkin (DG) method based on an upwind numerical flux and Gauss-Lobatto quadrature points.
Thanks to the upwind flux, the matrix of the discretized transport operator has a block-triangular structure.

The main part of this work is devoted to the task parallelization based on the StarPU library for treating the
transport and relaxation steps efficiently. We use the MPI version of StarPU, which allows to address clusters
of multicore processors. We also describe the domain decomposition and the macrocell approach that we have
used to achieve better performance.

Finally, we present the performance of our parallel implementation on a cluster 4 MPI nodes. Each node
contains 24 CPU cores.

2. Kinetic model

We consider the following kinetic equation

∂tf +
D∑
k=1

Vk∂kf =
1

τ
(feq(f)− f) + g. (2)

The unknown is a vectorial distribution function f(x, t) ∈ Rnv depending on the space variable x = (x1 . . . xD) ∈
RD and time t ∈ R. g(x, t, f) is a vectorial source term, possibly depending on space, time and f . The partial
derivatives are noted

∂t =
∂

∂t
, ∂k =

∂

∂xk
.

The relaxation time τ is a small positive constant. The constant matrices Vk, 1 ≤ k ≤ D are diagonal

Vk =


vk1

vk2
. . .

vknv


In other words, (2) is a set of nv transport equations at constant velocities vi = (v1

i , . . . , v
D
i ), coupled through

a stiff BGK relaxation, and with an optional additional source term. We denote by V · ∂ =
∑D
k=1 Vk∂k the

transport operator, and by Nf = (feq(f)− f)/τ the BGK relaxation term (also called the “collision” term).
Generally, this kinetic model represents an underlying hyperbolic system of conservation laws. The macro-

scopic conservative variables w(x, t) ∈ Rm are obtained through a linear transformation

w = Pf , (3)

where P is an m × nv matrix. Generally the number of conservative variables is smaller than the number of
kinetic data, and thus we have m < nv. The equilibrium (or “Maxwellian”) distribution feq(f) is such that

Pf = Pfeq(f), (4)
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and
w = Pf1 = Pf2 ⇒ feq(f1) = feq(f2), (5)

which states that the equilibrium actually depends only on the macroscopic data w. We could have used the
notation feq = feq(w) = feq(Pf), but we have decided to respect a well-established tradition.

When τ → 0, the kinetic equations provide an approximation of the system of conservation laws

∂tw +

D∑
k=1

∂kq
k(w) = s, (6)

where the flux is given by

qk(w) = PVkfeq(f).

The flux is indeed a function of w only because of (5).
Similarly the source term is given by

s(x, t,w) = Pg(x, t, feq) (7)
System (2) has to be supplemented with conditions at the boundary ∂Ω of the computational domain Ω. We

denote by n = (n1 . . . nD) the outward normal vector on ∂Ω. For simplicity, we shall only consider very simple
imposed and time-independent boundary conditions f b. We note

V · n =

D∑
k=1

Vknk, V · n+ = max(V · n, 0), V · n− = min(V · n, 0).

A natural boundary condition, which is compatible with the transport operator V · ∂, is

V · n−f(x, t) = V · n−f b(x), x ∈ ∂Ω. (8)

It states that for a given velocity vi, the corresponding boundary data f bi is used only at the inflow part of the
boundary.

Let us point out that the programming optimization that we propose in this paper rely in an essential way on
the nature of the boundary condition (8). For other boundary conditions, such as periodic or wall conditions,
additional investigations are still needed.

3. Numerical method

3.1. Discontinuous Galerkin approximation

For solving (2) we shall treat the transport operator V · ∂ and the collision operator N efficiently, thanks
to a splitting approach. This allows to achieve a better parallelism. Let us start with the description of the
transport solver.

For a simple exposition, we only consider one single scalar transport equation for f(x, t) ∈ R at constant
velocity v

∂tf + v · ∇f = 0. (9)
The general vectorial case is easily deduced.

We consider a mesh M of Ω made of open sets, called “cells”, M = {Li, i = 1 . . . Nc}. In the most general
setting, the cells satisfy

(1) Li ∩ Lj = ∅, if i 6= j,
(2) ∪iLi = Ω.
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nLR

∂L ∩ ∂R

L

R

Figure 1. Convention for the L and R cells orientation.

In each cell L ∈ M we consider a basis of functions (ϕL,i(x))i=0...Nd−1 constructed from polynomials of order
d. We denote by h the maximal diameter of the cells. With an abuse of notation we still denote by f the
approximation of f , defined by

f(x, t) =

Nd−1∑
j=0

fL,j(t)ϕL,j(x), x ∈ L.

The DG formulation then reads: find the fL,j ’s such that for all cell L and all test function ϕL,i∫
L

∂tfϕL,i −
∫
L

fv · ∇ϕL,i +

∫
∂L

(v · n+fL + v · n−fR)ϕL,i = 0. (10)

In this formula (see Figure 22):
• R denotes the neighboring cell to L along its boundary ∂L ∩ ∂R, or the exterior of Ω on ∂L ∩ ∂Ω.
• n = nLR is the unit normal vector on ∂L oriented from L to R.
• fR denotes the value of f in the neighboring cell R on ∂L ∩ ∂R.
• If L is a boundary cell, one may have to use the boundary values instead: fR = f b on ∂L ∩ ∂Ω.
• v · n+fL + v · n−fR is the standard upwind numerical flux encountered in many finite volume or DG

methods.
In our application, we consider hexahedral cells. We have a reference cell

L̂ =]− 1, 1[D

and a smooth transformation x = τL(x̂), x̂ ∈ L̂, that maps L̂ on L

τL(L̂) = L.

We assume that τL is invertible and we denote by τ ′L its (invertible) Jacobian matrix. We also assume that τL
is a direct transformation‌

det τ ′L > 0.

In our implementation τL is a quadratic map based on hexahedral curved “H20” finite elements with 20
nodes. The mesh of H20 finite elements is generated by gmsh [6].

On the reference cell, we consider the Gauss-Lobatto points (x̂i)i=0...Nd−1, Nd = (d + 1)D and associated
weights (ωi)i=0...Nd−1. They are obtained by tensor products of the (d + 1) one-dimensional Gauss-Lobatto
(GL) points on ] − 1, 1[. The reference GL points and weights are then mapped to the physical GL points of
cell L by

xL,i = τL(x̂i), ωL,i = ωi det τ ′L(x̂i) > 0. (11)
In addition, the six faces of the reference hexahedral cell are denoted by Fε, ε = 1 . . . 6 and the corresponding
outward normal vectors are denoted by n̂ε. A big advantage of choosing the GL points is that the volume and
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the faces share the same quadrature points. A special attention is necessary for defining the face quadrature
weights. If a GL point x̂i ∈ Fε, we denote by µεi the corresponding quadrature weight on face Fε. We also use
the convention that µεi = 0 if x̂i does not belong to face Fε. A given GL point x̂i can belong to several faces
when it is on an edge or in a corner of L̂. Because of symmetry, we observe that if µεi 6= 0, then the weight µεi
does not depend on ε.

We then consider basis functions ϕ̂i on the reference cell: they are the Lagrange polynomials associated to
the Gauss-Lobatto point and thus satisfy the interpolation property

ϕ̂i(x̂j) = δij .

The basis functions on cell L are then defined according to the formula

ϕL,i(x) = ϕ̂i(τ
−1
L (x)).

In this way, they also satisfy the interpolation property

ϕL,i(xL,j) = δij . (12)

In this paper, we only consider conformal meshes: the GL points on cell L are supposed to match the GL points
of cell R on their common face. Dealing with non-matching cells is the object of a forthcoming work.

Let L and R be two neighboring cells. Let xL,j be a GL point in cell L that is also on the common face
between L and R. In the case of conformal meshes, it is possible to define the index j′ such that

xL,j = xR,j′ .

Applying a numerical integration to (10), using (11) and the interpolation property (12), we finally obtain

∂tfL,iωL,i −
Nd−1∑
j=0

v · ∇ϕL,i(xL,j)fL,jωL,j+

6∑
ε=1

µεi
(
v · nε(xL,i)+fL,i + v · nε(xL,i)−fR,i′

)
= 0. (13)

We have to detail how the gradients and normal vectors are computed in the above formula. Let A be a square
matrix. We recall that the cofactor matrix of A is defined by

co(A) = det(A)
(
A−1

)T
. (14)

The gradient of the basis function is computed from the gradients on the reference cell using (14)

∇ϕL,i(xL,j) =
1

det τ ′L(x̂i)
co(τ ′L(x̂j))∇̂ϕ̂i(x̂j).

In the same way, the scaled normal vectors nε on the faces are computed by the formula

nε(xL,i) = co(τ ′L(x̂i))n̂ε.

We introduce the following notation for the cofactor matrix

cL,i = co(τ ′L(x̂i)).
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The DG scheme then reads

∂tfL,i −
1

ωL,i

Nd−1∑
j=0

v · cL,j∇̂ϕ̂i(x̂j)fL,jωj+

1

ωL,i

6∑
ε=1

µεi
(
v · cL,in̂ε+fL,i + v · cL,in̂ε−fR,i′

)
= 0. (15)

On boundary GL points, the value of fR,i′ is given by the boundary condition

fR,i′ = f b(xL,i), xL,i = xR,i′ .

For practical reasons, it is interesting to also consider fR,i′ as an artificial unknown in the fictitious cell. The
fictitious unknown is then a solution of the differential equation

∂tfR,i′ = 0. (16)

In the end, if we put all the unknowns in a large vector F(t), (15), (16) read as a large system of coupled
differential equations

∂tF = LhF. (17)
In the following, we call Lh the transport matrix. The transport matrix satisfies the following properties:
• LhF = 0 if the components of F are all the same.
• Let F be such that the components corresponding to the boundary term vanish. Then FTLhF ≤ 0.

This dissipation property is a consequence of the choice of an upwind numerical flux [9].
• In many cases, and with a good numbering of the unknowns in F, Lh has a block triangular structure,

with small blocks corresponding to the local cell unknowns. This aspect is discussed in Subsection 4.1.
As stated above, we actually have to apply a transport solver for each constant velocity vi.

Let L be a cell of the mesh M and xi a GL point in L. As in the scalar case, we denote by fL,i the
approximation of f in L at GL point i. In the sequel, with an abuse of notation and according to the context,
we may continue to note F(t) the big vector made of all the vectorial values fL,j at all the GL points j in all
the (real or fictitious) cells L.

We may also continue to denote by Lh the matrix made of the assembly of all the transport operators for
all velocities vi. With a good numbering of the unknowns it is possible in many cases to suppose that Lh is
block-triangular. More precisely, because in the transport step the equations are uncoupled, we see that Lh can
be made block-diagonal, each diagonal block being itself block-triangular. See Section 4.1.

3.2. Palindromic time integration

We can also define an approximation Nh of the collision operator N. We define by Feq(F) the big vector
made of all the feq(fL,i), L ∈M, i = 0 . . . Nd − 1.

We set
NhF =

1

τ
(Feq(F)− F). (18)

Similarly we note Gh the discrete approximation of the kinetic source term g.
The DG approximation of (2) finally reads

∂tF = LhF + NhF + GhF.

We use the following Crank-Nicolson second order time integrator for the transport equation:

exp(∆tLh) ' T2(∆t) := (I +
∆t

2
Lh)(I− ∆t

2
Lh)−1. (19)
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Similarly, for the collision integrator, we use

exp(∆tNh) ' C2(∆t) := (I +
∆t

2
Nh)(I− ∆t

2
Nh)−1.

Because during the collision step, the conservative variables w = Pf do not change and the equilibrium function
is explicit, the collision integrator is solved with a local and linear implicit scheme. We have the explicit formula:

C2(∆t)F =
(2τ −∆t)F

2τ + ∆t
+

2∆tFeq(F)

2τ + ∆t
. (20)

The source operator is also approximated by a Crank-Nicolson integrator

exp(∆tGh) ' S2(∆t) := (I +
∆t

2
Gh)(I− ∆t

2
Gh)−1,

requiring to solve a nonlinear local equation whenever g depends on f .
If τ > 0, we observe that the operators T2 and C2 are time-symmetric: if we set O2 = T2 , O2 = C2, or

O2 = S2, then O2 satisfies
O2(−∆t) = O2(∆t)−1, O2(0) = Id. (21)

This property implies that O2 is necessarily a second order approximation of the exact integrator [8, 10].
When τ = 0, we also remark that

C2(∆t)F = 2Feq(F)− F 6= F

and then C2 does not satisfy (21) anymore.
For τ > 0, the Strang formula permits us to construct a five steps second order time-symmetric approximation

Ms
2 (∆t) = T2

(
∆t

2

)
S2

(
∆t

2

)
C(∆t)S2

(
∆t

2

)
T2

(
∆t

2

)
= exp (∆t (Lh + Nh + Sh)) +O(∆t3),

and a three step one

M2(∆t) = T2

(
∆t

2

)
C(∆t)T2

(
∆t

2

)
= exp (∆t (Lh + Nh)) +O(∆t3),

in the source-less case.
However this formula is no more a second order approximation of (2) when τ → 0. Indeed, when τ = 0

M2(0)F = 2Feq(F)− F.

As explained in [4] it is better to consider the following method, which remains second order accurate even
for infinitely fast relaxation:

Mkin
2 (∆t) = T2

(
∆t

4

)
C2

(
∆t

2

)
T2

(
∆t

2

)
C2

(
∆t

2

)
T2

(
∆t

4

)
.

By palindromic compositions of the second order method Mkin
2 it is then very easy to achieve any even order

of accuracy (see [4]). However, in this paper, we concentrate on the parallel optimization of the method and we
shall only present numerical results at second order for the limit system 6. To that end it is sufficient to use the
method M2, as PM2(0) properly converges towards identity on the macroscopic variable space when τ → 0.

4. Optimization of the kinetic solver

In this section, we describe the optimizations that can be applied in the implementation of the previous
numerical method.
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4.1. Triangular structure of the transport matrix

Because of the upwind structure of the numerical flux, it appears that the transport matrix is often block-
triangular. The size of the diagonal blocks is the number of nodes Nd in a cell. This is very interesting because
this allows to apply implicit schemes to (17) at a low cost [11]. Indeed, the block-triangular solver only requires
the factorization of the small the diagonal blocks and a simple forward substitution algorithm. We can provide
the formal structure of Lh through the construction of a directed graph G with a set of vertices V and a set of
edges E ⊂ V × V. The vertices of the graph are associated to the (real or fictitious) cells ofM. Consider now
two cells L and R with a common face FLR. We denote by nLR the normal vector on FLR oriented from L to
R. If there is at least one GL point x on FLR such that

nLR(x) · v > 0,

then the edge from L to R belongs to the graph:

(L,R) ∈ E ,

see Figure 2.
In (15) we can distinguish between several kinds of terms. We write

∂tfL + ΓL←LfL +
∑

(R,L)∈E

ΓL←RfR,

with

ΓL←LfL = − 1

ωL,i

Nd−1∑
j=0

v · cL,j∇̂ϕ̂i(x̂j)fL,jωj

+
1

ωL,i

6∑
ε=1

µεiv · cL,in̂ε+fL,i,

and, if (R,L) ∈ E ,
ΓL←RfR =

1

ωL,i
µεiv · cL,in̂ε−fR,i′ .

We can use the following convention
(R,L) /∈ E ⇒ ΓL←R = 0. (22)

ΓL←L contains the terms that couple the values of f inside the cell L. They correspond to diagonal blocks of
size Nd × Nd in the transport matrix Lh. ΓL←R contains the terms that couple the values inside cell L with
the values in the neighboring upwind cell R. If R is a downwind cell relatively to L then µεiv ·CL,in̂ε− = 0 and
ΓL←R = 0 is indeed compatible with the above convention (22).

Once the graph G is constructed, we can analyze it with standard tools. If it contains no cycle, then it is
called a Directed Acyclic Graph (DAG). Any DAG admits a topological ordering of its nodes. A topological
ordering is a numbering of the cells i 7→ Li such that if there is a path from Li to Lj in G then j > i. In
practice, it is useful to remove the fictitious cells from the topological ordering. In our implementation they are
put at the end of the list.

Once the new ordering of the graph vertices is constructed, we can construct a numbering of the components
of F by first numbering the unknowns in L0 then the unknowns in L1, etc. More precisely, we set

FkNd+i = fLk,i.

Then, with this ordering, the matrix Lh is lower block-triangular with diagonal blocks of size Nd×Nd. It means
that we can apply implicit schemes to (17) without inverting large linear systems.
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Figure 2. Construction of the dependency graph. Left: example of mesh (it is structured here
but it is not necessary) with 9 interior cells. The velocity field v is indicated by red arrows.
We add two fictitious cells: one for the upwind boundary condition (cell 9) and one for the
outflow part of ∂Ω (cell 10). Right: the corresponding dependency graph G. By examining the
dependency graph, we observe that the values of Fn+1 in cell 0 have to be computed first, using
the boundary conditions. Then cells 1 and 3 can be computed in parallel, then cells 2, 4, and
6 can be computed in parallel, then etc.

As stated above, we actually have to apply a transport solver for each constant velocity vi. In the sequel,
with another abuse of notation and according to the context, we continue to note F the vector of large dimension
made of all the vectorial values fL,j at all the GL points j in all the (real or fictitious) cells L.

We may also continue to denote by Lh the matrix made of the assembly of all the transport operators
for all velocities vi. With a good numbering of the unknown it is still possible to suppose that Lh is block-
triangular. More precisely, as in the transport step the equations are uncoupled, we see that Lh can be made a
block-diagonal matrix, each diagonal block being itself block-triangular.

4.2. Parallelization of the implicit solver

In this section, we explain how it is possible to parallelize the transport solver. Here again we consider the
single transport equation (9) and the associated differential equation (17). We apply a second order Crank-
Nicolson implicit scheme. We have explained in Section 3.2 how to increase the order of the scheme. We
compute an approximation Fn of F(n∆t). The implicit scheme reads

(I−∆tLh)Fn+1 = (I + ∆tLh)Fn. (23)
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As explained above, the matrices (I −∆tLh) and (I + ∆tLh) are lower triangular. It is thus possible to solve
the linear system explicitly cell after cell, assuming that the cells are numbered in a topological order.

It is possible to perform further optimization by harnessing the parallelism exhibited by the dependency
graph. Indeed, once the values of f in the first cell are computed, it is generally possible to compute in parallel
the values of f in neighboring downwind cells. For example, as can be seen on Figure 2, once the values in cells
0, 1 and 2 are known, we can compute independently, and in parallel, the values in cells 2, 4 and 6.

We observe that at the beginning and at the end of the time step, the computations are “less parallel” than
in the middle of the time step, where the parallelism is maximal.

Implementing this algorithm with OpenMP or using pthread is not very difficult. However, it requires to
compute the data dependencies between the computational tasks carefully, and to set adequate synchronization
points in order to get correct results. In addition, a rough implementation will probably not exhibit optimized
memory access. Therefore, we have decided to rely on a more sophisticated tool called StarPU1 for submitting
the parallel tasks to the available computational resources.

StarPU is a runtime system library developed at Inria Bordeaux [2]. It relies on the data-based parallelism
paradigm.

The user has first to split its whole problem into elementary computational tasks. The elementary tasks are
then implemented into codelets, which are simple C functions. The same task can be implemented differently
into several codelets. This allows the user to harness special acceleration devices, such as vectorial CPU cores,
GPUs or Intel KNL devices, for example. In the StarPU terminology these devices are called workers.

For each task, the user has also to describe precisely what are the input data, in read mode, and the output
data, in write or read-write mode. The user then submits the task in a sequential way to the StarPU system.
StarPU is able to construct at runtime a task graph from the data dependencies. The task graph is analyzed
and the tasks are scheduled automatically to the available workers (CPU cores, GPUs, etc.). If possible, they
are executed in parallel into concurrent threads. The data transfer tasks between the threads are automatically
generated and managed by StarPU, which greatly simplifies the programming.

When a StarPU program is executed, it is possible to choose among several schedulers. The simplest eager
scheduler adopts a very simple strategy, where the tasks are executed in the order of submission by the free
workers, without optimization. More sophisticated schedulers, such as the dmda scheduler, are able to measure
the efficiency of the different codelets and the data transfer times, in order to apply a more efficient allocation
of tasks.

Recently a new data access mode has been added to StarPU: the commute mode. In a task, a buffer of data
can now be accessed in commute mode, in addition to the write or read-write modes. A commute access tells
to StarPU that the execution of the corresponding task may be executed before or after other tasks containing
commutative access. This allows StarPU to perform additional optimizations.

There exists also a MPI version of StarPU. In the MPI version, the user has to decide an initial distribution of
data among the MPI nodes. Then the tasks are submitted as usual (using the function starpu_mpi_insert_task
instead of starpu_insert_task). Required MPI communications are automatically generated by StarPU. For
the moment, this approach does not guarantee a good load balancing. It is the responsibility of the user to
migrate data from one MPI node to another for improving the load balancing, if necessary.

4.3. Macrocell approach

StarPU is quite efficient, but there is an unavoidable overhead due to the task submissions and to the on-
the-fly construction and analysis of the task graph. Therefore it is important to ensure that the computational
tasks are not too small, in which case the overhead is not amortized, or not too big, in which case some workers
are idle.

In order to achieve the right balance, we have decided not to apply directly the above task submission
algorithm to the cells but to groups of cells instead.

1http://starpu.gforge.inria.fr
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Figure 3. Macrocell approach: an example of a mesh made of five macrocells. Each macrocell
is then split into several subcells. Only the subcells of the top macrocell are represented here
(in green).

The implementation of the whole kinetic scheme is done into the schnaps software2. schnaps is a C99
software dedicated to the numerical simulation of conservation laws.

In schnaps we construct first a macromesh of the computational domain. Then each macrocell of the
macromesh is split into subcells. See Figure 3. We also arrange the subcells into a regular sub-mesh of the
macrocells. In this way, it is possible to apply additional optimizations. For instance, the subcells L of a same
macrocell L can now share the same geometrical transformation τL, which saves memory.

In schnaps we define an interface structure in order to manage data communications between the macrocells.
An interface contains the faces that are common to two neighboring macrocells. We do not proceed exactly
as in Section 4.1 where the vertices of graph G were associated to cells and the edges to faces. Instead, we
construct an upwind graph whose vertices are associated to macrocells, and edges to interfaces. This graph is
then sorted, and the macrocells are numbered in a topological order.

For solving one time step of one transport equation (23), we split the computations into several elementary
operations: for each macrocell L taken in a topological order, we perform the following tasks:

(1) Volume residual assembly: this task computes in the macrocell L the part of the right hand side of (23)
that comes from the values of f inside L;

(2) Interface residual assembly: this task computes, in the macrocell L, the part of the right hand side of
(23) that comes from upwind interface values;

(3) Boundary residual assembly: this task computes, in the macrocell L, the part of the right hand side of
(23) that comes from upwind boundaries values.

(4) Volume solve: this task solves the local transport linear system in the macrocell.
(5) Extraction: this task copies the boundary data of L to the neighbor downwind interfaces.

Let us point out that in step 4 above, the macrocell local transport solver is reassembled and refactorized at
each time step: we have decided not to store a sparse linear system in the macrocell for each velocity vi, in
order to save memory. The local sparse linear system is solved thanks to the KLU library [5]. This library

2http://schnaps.gforge.inria.fr/
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is able to detect efficiently sparse triangular matrix structures, which makes the resolution quite efficient. In
practice, the factorization and resolution time of the KLU solver is of the same order as the residual assembly
time.

In schnaps, we use the MPI version of StarPU. The macromesh is initially split into several subdomains and
the subdomains are distributed to the MPI nodes. Then the above tasks are launched asynchronously with the
starpu_mpi_insert_task function. MPI communications are managed automatically by StarPU.

It is clear that if we were solving a single transport equation our strategy would be very inefficient. Indeed,
the downwind subdomains would have to wait for the end of the computations of the upwind subdomains. We
are saved by the fact that we have to solve many transport equations in different directions. This helps the MPI
nodes to be equally occupied. Our approach is more efficient if we avoid a domain decomposition with internal
subdomains, because these subdomains have to wait the results coming from the boundaries.

In our approach it is also essential to launch the tasks in a completely asynchronous fashion. In this way, if
a MPI node is waiting for results of other subdomains for a given velocity vi it is not prevented from starting
the computation for another velocity vj .

4.4. Collisions

In this section we explain how is computed the collision step (20). The computations are purely local to each
GL point, which makes the collision step embarrassingly parallel. However it is not so obvious to attain high
efficiency because of memory access. If the values of F are well arranged in memory in the transport stage, it
means that the values of f attached to a given velocity vi are close in memory, for a better data locality. On the
contrary, in the collision step at a given GL point, a better locality is achieved if the values of f corresponding
to different velocities are close in memory. Additional investigations and tests are needed in order to evaluate
the importance of data locality in our algorithm.

In our implementation, we adopt the following strategy. We first identify the following task:

(1) Reduction task for a velocity vi: this task is associated with one macrocell L. It computes the contri-
bution to w of the components of f that have been transported at velocity vi with formula (3). The
StarPU access to the buffer containing w is performed in read-write and commute modes. In this way
the contribution from each velocity can be added to w as soon as it is available.

(2) Relaxation task for a velocity vi: this task is associated to one macrocell L. Once w is known, it
computes the components of feq corresponding to velocity vi. Then it computes the relaxation step (20)
for the associated component of f .

In step 2 we can separate the computations for each velocity because the collision term (18) is diagonal. Some
Lattice Boltzmann Methods rely on non-diagonal relaxations. It can be useful for representing more general
viscous terms for instance. For non-diagonal relaxation we would have to change a little the algorithm.

We can now make a few comments about the storage cost of the method. In the end, we have to store at
each GL point xi and each cell L the values of fL,i and wL,i. We do not have to keep the values of the previous
time-step, fL,i and wL,i can be replaced by the new values as soon as they are available. In this sense, our
method is “low-storage”. As explained in [4] it is also possible to increase the time order of the method, without
increasing the storage.

We can also comment the complexity of a whole implicit step. Because relaxation is local to each node,
its complexity is fully linear: the number of floating point operations is proportional to the number of DOF,
which is Nv × Nd × Nc. The most expensive part of the algorithm is the transport step, whose complexity is
Nv ×N3

d ×Nc. The N3
d comes from the inversion of the diagonal blocks in the block-triangular linear system.

For instance, for a 3D computation of order d = 3, we have Nd = 64. For the moment, we do not store the
factorization of the diagonal blocks. If we stored the factorizations, the complexity would become Nv×N2

d ×Nc
at the cost of more memory access. We do not know for the moment which solution is the best.
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Figure 4. D2Q9 and D3Q27 velocity grids.

4.5. Scaling test

For all performance tests presented in this section, we used standard models from the family Lattice-
Boltzmann-Method (LBM) kinetic models devised for the simulation of Euler/Navier Stokes systems. We
will not give a detailed description of their properties from the modeling point of view: we simply take them as
good representative of the typical workload of kinetic relaxation schemes. The most relevant feature impacting
the performance of our algorithm is the discrete velocity set of the kinetic model, which determines the task
graph structure of the transport step when combined with a particular mesh topology. In standard LBM models,
velocity sets are usually built-up from a sequence of pairs of opposite velocities with an additional zero velocity
node. On Figure 4 we show the two representative velocity sets of the D2Q9 and D3Q27 LBM models.

4.5.1. Multithread performance (D2Q9, D3Q*)
We first test the multithread performance of our implementation for the full (transport + relaxation) scheme

for the standard D2Q9 model. All tests are performed on a single node of the IRMA-ATLAS cluster, with 24
available cores. We consider several square meshes build-up from 1 to 64 macrocells. The number of geometric
degrees of freedom per element is kept constant with a value of 3375 points per macrocell, so that the workload
per macrocell does not change. For each mesh, we allow StarPu to use from 1 to the full 24 cores of the node
and measure the total wall time. The results for this first batch of performance measurements are given in
Fig. 5. First we verify that for 1 unique macrocell, parallel performance saturates when the number of cores
roughly equals the number of velocities in the model. This is to be expected, as no topological parallelism
can be exploited in that case. Increasing the number of macro-element allows to take advantage of topological
parallelism. For that workload, parallel efficiency saturates at about 80, which is quite good. On Fig. 6,
we consider on the same cubic mesh three different models differing by the number of velocity values. Those
cases exhibit a large amount of potential parallelism, due to the large number of velocities combined with the
macrocell decomposition. On an ideal machine, they could in theory scale perfectly up to 24 cores. The observed
saturation, still around 80 efficiency, is still quite good and comes from the unavoidable concurrency in memory
access between the various cores and the scheduling overhead. It is important to note, when considering those
results, that the bulk of the computational cost occurs in the transport step of the algorithm. The collision
step forces synchronization between all the fields corresponding to individual velocities for the computation of
the macroscopic fields. However its actual cost is negligible with respect to the transport step.

4.5.2. MPI scaling: D3Q15 in a torus
Having verified the good multithread performance of our code on a single node, we now check whether for

larger problem sizes the workload can be distributed among several computing nodes. To that end, accounting
for the fact that we aim notably at performing simulations for Tokamak physics, we considered a toroidal
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Figure 5. Multithread scaling for the D2Q9 model and a collection of square meshes from 1
to 64 macro-elements.
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Figure 6. Multithread scaling on a 4x4x4 macro-element mesh for models D3Q15, D3Q19 and D3Q27

mesh subdivided into 720 macrocells. The workload distribution across nodes is done using a standard domain
decomposition approach: the mesh is partitioned statically into as many sub-domains as computing nodes,
ranging from 1 to 4 for our experiment on the IRMA-ATLAS cluster. From an implementation point of view,
the transition from a multithreaded code to a hybrid MPI/multithread one is made fairly easy by StarPU. When
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Figure 7. Toroidal macromesh (720 macrocells) - Mesh partitions used in the MPI scaling tests.

Nthreads/Nmpi 1 2 3 4
14 6862 2772 1491 1014

Table 1. Wall time (in seconds) for the D3Q15 model for 1 to 4 mpi processes with 14 threads
per process.

declaring data to StarPU, one simply has to specify the MPI process owning the data. At runtime, each MPI
process hosts a local scheduler instance which acts only on data relevant to the local execution graph. All MPI
communications are handled transparently by the local scheduler when inter-node data transfers are necessary.
In table 1 we show the wall time for a hundred iterations of the full scheme for the D3Q15 model. The number
of available threads per node is set to 14, matching the number of velocities actually participating in transport
(there is one null-velocity in the model). We observe a super-linear scaling when the load is spread from 1 to 4
nodes. This is not surprising for such an experiment with fixed total problem size. Indeed, both the memory
load and size of the local task graph for each decrease when the number of sub-domains increases.

5. Numerical results

5.1. Euler with gravity

For this test case we consider the isothermal Euler equations in two dimensions with a constant gravity source
term

∂tρ+ ∂k(ρuk) = 0, (24)

∂t(ρu
k) + ∂jΠ

kj = ρg, (25)

with Π =

[
ρc2 + ρu2

x ρuxuy
ρuxuy ρc2 + u2

y

]
and g = −gey.

The conservative variables vector is thus w = [ρ, ρux, ρuy]t . The kinetic model is the standard D2Q9 one
with nine velocities

V = λdiag [(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1)] (26)
and the (3× 9) projection matrix P reads

P =

1 1 1 1 1 1 1 1 1
0 λ 0 −λ 0 λ −λ −λ λ
0 0 λ 0 −λ λ λ −λ −λ

 , (27)

i.e ρ =
∑
i fi, ρu =

∑
i fivi.

The equilibrium distribution function is given by
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Figure 8. Time order convergence for the 2D Euler gravity test case with D2Q9 model.
Convergence is estimated using the relative L2 error ε on macroscopic variables with respect
to the analytical solution at tmax ≈ 0.12. The reference values (∆tref , εref ) of the logarithmic
scale are ∆tref = 0.024, εref = 0.0143.

fi = wiρ

(
1 +

(u · vi)
c2

+
(u · vi)2

2c4
− u · u

2c2

)
(28)

with c = λ/
√

3, and the weights w0 = 4
9 , wi = 1

9 for i = 1, . . . , 4, wi = 1
36 for i = 5, . . . , 8.

The stationary solution for a fluid at rest in the gravity field is

ρ = ρ0 exp(−gy/c2), u = 0. (29)
For this test case, the numerical scheme is made up of three stages: a transport step (T), a source step (S)

where the source is applied on the equilibrium part of the distribution function, and the collision step (C). Due
to the absence of explicit time dependency and the linearity in w of the source, the local nonlinear resolution of
the source operator converges in one Picard iteration. All steps are implemented as weighted implicit schemes,
parametrized by a weight θ and a time step ∆t.

We compared several 1st and 2nd order splitting schemes built up from either fully implicit (θ = 1) first order
or Crank-Nicolson (θ = 1

2 ) steps:
• Lie first order splitting scheme Ms

1 = T1(∆t)S1(∆t)C1(∆t) with first order building blocks.
• Lie first order splitting scheme Ms

1,2 = T2(∆t)S2(∆t)C2(∆t) with second order building blocks, for
which the order loss comes from the splitting error.

• a palindromic second order Strang scheme Ms
2 = T2(∆t

2 )S2(∆t
2 )C2(∆t)S2(∆t

2 )T2(∆t
2 ) .

• a collapsed version of the second order Strang scheme Ms
2 for which the last transport substep of each

global step and the first transport substep of the next one are fused in a single T2(∆t) substep except
obviously for the first and last time steps of the simulation.

We perform time order convergence tests on a 2D square mesh partitioned into 4 × 4 macrocells with 1024
points per macrocell. As shown by Fig. 8, we obtain the expected convergence orders for each of the splitting
schemes used.
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was

Figure 9. . Flow around cylindrical obstacle. Vorticity norm |∇ × u| at t = 83, showing the
turbulent field behind the obstacle.

5.2. 2D Flow around a cylinder using a penalization method

In this test case we consider the flow of a fluid in a rectangular duct with a cylindrical solid obstacle. The
simulation domain is the rectangle [−1, 1]× [−5, 5].

The effect of the obstacle on the flow is modeled using a volumic source term of the form

s = K(x)(w −ws), (30)
with ws = [1.0, 0, 0]t the target fluid state in the “solid” part of the domain and the relaxation frequency

K(x) is given by

K(x) = Ks exp(−κ(x− xc)
2), (31)

with Ks = 300, xc = [−4, 0]tand κ = 40. The net effect is a very stiff relaxation towards a flow with zero
velocity and the reference density near the center xc of the frequency mask. The effective diameter of the
cylinder for this simulation is about 0.5. The initial state, which is also applied at the duct boundaries for the
whole simulation is ρ = 1, ux = 0.03, uy = 0. Accounting for the fact that for this model the sound speed is
1/
√

3, the Mach number of the unperturbed flow is approximately 0, 017. The simulation is performed on a
macromesh with 16 × 16 macrocells stretched with a 1 : 5 aspect ratio to match the domain dimension; each
macrocell contains 12×60 integration points. On figure 9 we show the vorticity norm at t = 83, when turbulence
is well developed in the wake of the obstacle.

6. Conclusion

In this paper, we have presented an optimized implementation of the Palindromic Discontinuous Galerkin
Method for solving kinetic equations with stiff relaxation. The method presents the following interesting features:

• It can be used for solving any hyperbolic system of conservation laws.
• It is asymptotic-preserving with respect to the stiff relaxation.
• It is implicit and thus is not limited by CFL conditions.
• Despite being formally implicit, it requires actual implicit computations only at the subcell level, while

the global computation is basically explicit.
• It is easy to increase the time order with a composition method.
• It presents many opportunities for parallelization and optimization: in this paper we have presented

the parallelization of the method with the aid of the MPI version of the StarPU runtime system. In
this way we address both shared memory and distributed memory MIMD parallelism.

Our perspectives are now to apply the method for computing MHD instabilities in tokamaks. We will also try
to extend the method to more general boundary conditions.
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