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We present an implicit-explicit well-balanced finite volume scheme for the Euler equations 
with a gravitational source term which is able to deal also with low Mach flows. To 
visualize the different scales we use the non-dimensionalized equations on which we 
apply a pressure splitting and a Suliciu relaxation. On the resulting model, we apply 
a splitting of the flux into a linear implicit and an non-linear explicit part that leads 
to a scale independent time-step. The explicit step consists of a Godunov type method 
based on an approximative Riemann solver where the source term is included in the flux 
formulation. We develop the method for a first order scheme and give an extension to 
second order. Both schemes are designed to be well-balanced, preserve the positivity of 
density and internal energy and have a scale independent diffusion. We give the low Mach 
limit equations for well-prepared data and show that the scheme is asymptotic preserving. 
These properties are numerically validated by various test cases.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is the construction of an all speed scheme for the Euler equations of gas dynamics with a given 
gravitational source term in multiple space dimensions. Applications of this model can be found for example in astrophysics 
and meteorology. A broad overview is given in the review of Klein [1] where it is demonstrated that atmospheric flows 
can have large scale differences. To reflect those scales in the equations, we use the non-dimensionalised version which is 
characterized by the reference Mach and Froude numbers denoted by M and F r respectively.

In the homogeneous case the behaviour of the fluid changes depending on the Mach number only. It ranges from com-
pressible flow for large Mach numbers to the incompressible limit equations for M going to zero. The derivation of the limit 
equations can be found e.g. in [2–4] and references therein. To accurately approximate all speed flows, asymptotic preserv-
ing (AP) schemes are well suited since they are consistent with the limit behaviour as M tends to zero. The development 
of those schemes is an active field of research and we refer to the review of Jin [5] for an introduction and [6] for a recent 
work on an active flux method for linear acoustics. An important role in the achievement of the AP property is played 
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by the splitting of the pressure following the studies of Klein [7,8] as used in the schemes [9–12]. In [11,12] the pressure 
splitting is combined with a Suliciu relaxation approach [13] which allows for an easy construction of Riemann Solvers. An 
example for a Jin-Xin relaxation approach [14] can be found in [15].

Since for explicit schemes the time step is restricted by the inverse of the largest wave speed which scales with 1/M , 
explicit schemes are not practical for low Mach applications. Therefore implicit [12,15] or implicit-explicit (IMEX) schemes 
[10,16,17] are used to have Mach number independent time step.

The presence of the source term makes it interesting to look at steady states. For zero velocity, we find the hydrostatic 
equilibrium, that is characterized as the balance of the pressure gradient with the weight of the fluid. Most atmospheric-
flow phenomena may be understood as perturbations of such a balanced background state. The scope of well-balanced 
schemes is to maintain the background atmosphere at machine precision to be able to resolve those small perturbations 
accurately. Since the shape of the equilibrium state depends on the underlying pressure law there are schemes focused 
on well-balancing a specific class of equilibria, for example isothermal and polytropic atmospheres [18] or equilibria with 
constant entropy [19]. The latter was extended in [20] to the preservation of hydrostatic equilibria with arbitrary entropy 
stratification using a second order reconstruction of the discrete equilibrium equation. A different approach can be found 
in [21], where the well-balanced property is achieved by using path-conservative finite volumes schemes. Higher order 
well-balanced schemes can be realized by using a high order hydrostatic reconstruction, as done in [22–24]. Since our aim 
is to exactly well-balance arbitrary hydrostatic equilibria, we follow the approaches from [22,25], also used in [23,26], and 
rewrite the gravitational potential in terms of a reference equilibrium state. Note that the above mentioned well-balancing 
techniques were developed for the compressible regime. Instead the scheme presented here is designed to be well-balanced 
also in the low Mach, low Froude regime. It is a natural continuation of the second order AP IMEX scheme developed for the 
homogeneous Euler equations [11] where the focus was mainly on the construction of an AP scheme with a Mach number 
independent time-step as well as preservation of the positivity of the density and internal energy. Here, we complete the 
scheme adding the gravitational source term treated in the framework presented in [26] and we use the approaches utilized 
therein to show the well-balanced and positivity property of the new scheme. One of the main difficulties is to combine 
the well-balanced property with the IMEX framework as the approach in [26] was developed for a purely explicit scheme.

To our knowledge, this is the first case in which the construction of a well balanced scheme for general equilibria is 
addressed which, at the same time, preserves asymptotic properties in the low Mach regime under a gravitational field 
for the full Euler equations. We show the AP property of the scheme by proving that it preserves the divergence free 
constraint in the zero Mach number limit when starting from well prepared initial data. The limit equations are given 
by the incompressible Euler equations in a gravitational field. Similar results were found in [27] for the isentropic case 
with potential temperature. We refer to [28,29] for theoretical studies on the isothermal and isentropic case with a one 
component linear gravitational field and to [30] for a low Mach scheme that allows for a gravitational source term, but 
lacks the well-balanced property.

The paper is organized as follows. In Section 2, we introduce the equations, notion of hydrostatic equilibria and the limit 
equations. Then we give the derivation of the Suliciu type relaxation model in Section 3. The time semi-discrete scheme with 
the flux splitting together with the Mach number expansion of the fast pressure and the asymptotic preserving property are 
discussed in Section 4. Subsequent, we give the derivation of the fully discrete scheme which includes a Godunov type finite 
volume scheme based on an approximative Riemann solver in the explicit part. We show that the scheme is well-balanced 
and that it preserves the positivity of the density and internal energy. The section ends with the extension to second order. 
All properties are numerically validated in Section 6. In particular, we give an example of low Mach flow, starting from well 
prepared initial data, and we study a low Mach stationary vortex in a gravitational field, with a test we derived from the 
classical Gresho vortex test case [31]. We conclude the numerical tests with a simulation of a rising hot air bubble which 
arises in meteorology. A section of conclusion completes this paper.

2. The Euler equations with a gravitational source term

The Euler equations with a gravitational source term in d dimensions are given by

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + ∇p = −ρ∇",

Et + ∇ · (u(E + p)) = −ρu · ∇"

(1)

where the total energy E is given by

E = ρe + 1
2
ρ|u|2.

Here, ρ denotes the density, u ∈Rd the velocity vector, e the internal energy and " :Rd →R is a given smooth stationary 
potential. The pressure is given by the ideal gas law p = (γ − 1)ρe and the speed of sound is denoted by c.

To make the impact of slow and fast scales evident in the equations, we rewrite (1) in its non-dimensional form by 
decomposing all variables ϕ into a scalar reference value ϕr containing the units, and a non-dimensional quantity ϕ̃:
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ϕ = ϕr ϕ̃. (2)

Choosing the reference length xr , time tr , density ρr , sound speed cr and gravitational acceleration #r , we can compute the 
missing reference values as

ur = xr

tr
, and pr = ρrc2

r . (3)

Inserting the decomposition (2) in the dimensional equations (1) and using the relations (3), we arrive at the non-
dimensional Euler equations with a gravitational source term:

ρt + ∇ · (ρu) = 0

(ρu)t + ∇ · (ρu ⊗ u) + 1
M2 ∇p = − 1

F r2 ρ∇#

Et + ∇ · (u(E + p)) = − M2

F r2 ρu · ∇#.

(4)

For simplicity, we have dropped the tilde and, if not otherwise mentioned, we will use the non-dimensional variables 
throughout this paper. The total energy of system (4) is given by

E = ρe + 1
2

M2ρ|u|2.

Equations (4) depend on two non-dimensional quantities, the Mach number M and the Froude number F r. The Mach 
number is defined as the ratio between the velocity of the gas and the sound speed

M = ur

cr

and the Froude number is defined as the ratio between the velocity of the gas and the velocity introduced by the gravita-
tional acceleration

F r = ur√
#r

.

2.1. Hydrostatic equilibria

Hydrostatic equilibria are stationary solutions of (4) that satisfy

u = 0,

1
M2 ∇p = − 1

F r2 ρ∇#.
(5)

Solutions to (5) are not unique and depending on the relation between the pressure and the density they can have com-
pletely different behaviour. To demonstrate this, let us for a moment consider the following class

p = χρ% (6)

with constants χ > 0, % ∈ (0, ∞). For the class of equation of states (6), we obtain for % = 1 (isothermal) with a constant 
c ∈R and χ = RT






u(x) = 0,

ρ(x) = exp

(
c− M2

F r2 #(x)

RT

)

p(x) = RT exp

(
c− M2

F r2 #(x)

RT

) (7)

and for % ∈ (0, 1) ∪ (1, ∞) (polytropic) with a constant c ∈R





u(x) = 0,

ρ(x) =
(

%−1
χ% (c − M2

F r2 #(x))
) 1

%−1

p(x) = χ
1

1−%

(
%−1
χ% (c − M2

F r2 #(x))
) %

%−1
.

(8)
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Since arbitrary solutions ρ and p of the hydrostatic equilibrium (5) are stationary, we follow [25] and define two time-
independent positive functions α(x) = ρ(x) and β(x) = p(x) representing the equilibrium density and pressure respectively. 
Since α, β satisfy (5), we can find a new relation for ∇$ due to the following equivalent description

1
M2 ∇β = − 1

F r2 α∇$ ⇔ ∇$ = − F r2

M2

∇β

α
. (9)

With this definition of the gravitational potential, we can rewrite (4) into

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + 1
M2 ∇p = 1

M2

ρ

α
∇β,

Et + ∇ · (u(E + p)) = ρ

α
u · ∇β.

(10)

We emphasize, that the reference equilibrium has to be known in advance. In general, this is not a restriction, because 
in many applications one is interested in preserving a particular equilibrium state, from which the functions α and β can 
be calculated in advance. For the case of an isothermal or polytropic equilibrium, they can be set according to (7) or (8)
respectively. Since they represent the given stationary potential ∇$, they are also considered as given stationary functions 
and it is not necessary to update them in time. Note, that the equations (10) are only depending on the Mach number, but 
the dependence on the Froude number is implicitly given in the definition of β in (9).

2.2. The low Mach limit

Most interesting for the asymptotic analysis from a well-balancing point of view is the case M = F r. In this case one can 
find a balance between the source and pressure terms in the momentum and energy equation which can also be preserved 
in the limit M, F r → 0. This choice was also considered in [27–29]. To analyse multi-scale effects and the formal asymptotic 
behaviour of (4), we express the variables in form of a Mach number expansion and compare the orders of terms in M . The 
expansions are given by

ρ = ρ0 + Mρ1 + M2ρ2 + O(M3), u = u0 + Mu1 + M2u2 + O(M3),

e = e0 + Me1 + M2e2 + O(M3), p = p0 + Mp1 + M2 p2 + O(M3).
(11)

Inserting the expansion (11) into the Euler equations (10) and collecting the terms of order O(M−2), we have

∇p0 = −ρ0∇$. (12)

For the O(M−1) terms, we find

∇p1 = −ρ1∇$. (13)

This means that the couples p0, ρ0 and p1, ρ1 fulfil the hydrostatic equilibrium and thus are time-independent. Using this 
in the O(M0) terms, we obtain

∇ · (ρ0u0) = 0,

∂tu0 + u0 · ∇u0 + ∇p2

ρ0
= −ρ2∇$

ρ0
,

∇ · u0 = u0 · ∇$

c2
0

,

(14)

where we have used c2
0 = γ p0

ρ0
. An important class of solutions of (14) are solutions with a velocity field orthogonal to the 

gravitational direction. This directly implies a divergence free velocity field ∇ · u0 = 0 in (14). Associated with this case is 
the following set of well-prepared data for a given potential $:

'wp =
{

w ∈Rd+2 |∇p0 = −ρ0∇$, ∇p1 = −ρ1∇$, ∇ · (ρ0u0) = 0,∇ · u0 = 0, u0 · ∇$ = 0
}

. (15)

The well-prepared data for given α, β for the modified equations (10) are defined by

'
αβ
wp =

{
w ∈Rd+2

∣∣∣∣∇p0 = ρ0
∇β

α
, ∇p1 = ρ1

∇β

α
, ∇ · (ρ0u0) = 0,∇ · u0 = 0, u0 · ∇β

α
= 0

}
. (16)

This means that well-prepared pressure and density fulfil the hydrostatic equilibrium up to a perturbation of M2. We want 
to remark that a more general set of well-prepared data can be obtained by only requiring the balance between ∇ · u0 and 
u · ∇$/c2

0 in (14).
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Remark 1. The case M ! F r denotes a very weak gravitational potential with respect to a strong pressure gradient. In the 
limit the source term in the energy equation vanishes and we obtain ∇p0 = 0 and ∇ · u0 = 0 which denotes a special case 
of (15).

3. Suliciu relaxation model

Using a Suliciu Relaxation approach [13,32,33] is one way of simplifying the non-linear structure of the Euler equations 
(4) in such a way that the fields associated with the eigenvalues of the relaxation model are linearly degenerate. This 
structure provides a natural Riemann solver. The derivation of the relaxation model follows the argument given in [10–12]. 
In the spirit of Klein [7], we apply in the momentum and energy equation a splitting of the pressure p into a slow and a 
fast component

p
M2 = p + 1 − M2

M2 p.

The aim is to relax both the slow and the fast pressure in a Suliciu relaxation manner. The pressure in relaxation equilibrium 
is then characterized by

p = M2π + (1 − M2)ψ,

where π is the approximation of the slow and ψ of the fast part. To obtain the evolution of π , we can directly apply the 
Suliciu relaxation technique which leads to the addition of the following equation in conservation form

(ρπ)t + ∇ · (ρπu) + a2∇ · u = ρ

ε
(p − π),

where a > 0 denotes the relaxation parameter which has to fulfil a subcharacteristic condition given in Lemma 1. As dis-
cussed in [12], applying this Suliciu relaxation technique also on the fast pressure does not lead to scheme that is accurate 
for small Mach numbers. Instead a relaxation equation for the velocity û coupled with the pressure ψ is added. We apply 
the same strategy as in the homogeneous case described in [11,12]. Here in addition, the influence of the source term in 
the momentum equation has to be taken into account. As a consequence, the source term will also appear in the relaxation 
equation for û. The relaxation model is developed under the following objectives:

• It has ordered eigenvalues that lead to a clear wave structure easing the construction of a Riemann solver.
• It is a stable diffusive approximation of the non-dimensional Euler equations with gravitational source term (10).
• The resulting numerical scheme has Mach number independent diffusion.

The achievement of the first objective depends also on the treatment of the source term, since it is associated to β with a 
0 eigenvalue. Following [18], we remove the 0 eigenvalue by relaxing also β . It is approximated by a new variable Z that is 
transported with u as

Zt + u · ∇ Z = 1
ε
(β − Z).

This associates the source term with the eigenvalue u. All these considerations lead to the following relaxation model where 
we wish to underline that the homogeneous part is in conservation form:

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + ∇π + 1 − M2

M2 ∇ψ = 1
M2

ρ

α
∇ Z ,

Et + ∇ · (u(E + M2π + (1 − M2)ψ)) = ρ

α
u · ∇ Z ,

(ρπ)t + ∇ · (ρuπ + a2u) = ρ

ε
(p − π),

(ρû)t + ∇ ·
(
ρu ⊗ û

)
+ 1

M2 ∇ψ = 1
M2

ρ

α
∇ Z + ρ

ε
(u − û),

(ρψ)t + ∇ · (ρuψ + a2û) = ρ

ε
(p − ψ),

(ρ Z)t + ∇(ρuZ) = ρ

ε
(β − Z).

(17)

The following lemma sums up some properties of system (17).
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Lemma 1. The relaxation system (17) is hyperbolic and a stable diffusive approximation of (10) under the Mach number independent 
sub-characteristic condition for the relaxation parameter a > ρ

√
∂ρ p(ρ, e). It has the following linearly degenerate eigenvalues

λu = u,λ± = u ± a
ρ

,λ±
M = u ± a

Mρ
.

Proof. A detailed analysis of the homogeneous relaxation model can be found in [12] and for the extension to a gravitational 
potential we refer to [34]. The proof can be performed analogously and is therefore omitted.

Note, that in the case of M = 1, the waves associated with λ±
M and λ± collapse to λ± . For simplicity, we will refer to 

system (10) as

wt + ∇ · f (w) = s(w), (18)

where w = (ρ, ρu, E)T denotes the vector of physical variables, while the flux function f (w) and the source term s(w) are 
given by

f (w) =




ρu

ρu ⊗ u + 1
M2 pI

u(E + p)



 and s(w) =




0

1
M2

ρ
α ∇β

ρ
α u · ∇β



 .

The relaxation model (17) is given by

Wt + ∇F(W ) = S(W ) + 1
ε

R(W ), (19)

where W = (ρ, ρu, E, ρπ , ρû, ρ(, ρ Z)T denotes the state vector, F the flux function as defined in (17). The gravitational 
source term S(W ) and the relaxation source term R(W ) are given by

S(W ) =





0
1

M2
ρ
α ∇ Z

ρ
α u · ∇ Z

0
1

M2
ρ
α ∇ Z
0
0





and R(W ) =





0
0
0

ρ(p − π)
ρ(u − û)
ρ(p − ()
ρ(β − Z)





.

The relaxation time ε indicates how fast the perturbed system (19) is reaching its equilibrium (18). The relaxation equilib-
rium state is given by

W eq = (ρ,ρu, E,ρp(ρ, e),ρu,ρp(ρ, e),ρβ)T . (20)

Following [35], we can connect (19) to (18) through the matrix Q ∈R(2+d)×(2(2+d)+1) defined as

Q =
(
I2+d 02(2+d)+1

)
, (21)

where d denotes the dimension. Then we have for all states W that Q R(W ) = 0 and the physical variables are recovered 
by w = Q W and the flux function f (w) = Q (F(W eq)).

4. Time semi-discrete scheme

To avoid the very restrictive CFL condition that would arise when using an explicit scheme, we will construct an IMEX 
scheme for which the CFL number is independent of the Mach number. Therefore, we split in (17) the flux function F(W )

and source term S(W ) in the following way:

Wt + ∇ · F (W ) + 1
M2 ∇ · G(W ) = S E(W ) + 1

M2 S I (W ) + 1
ε

R(W ) (22)

where F (W ) and S E (W ) will be treated explicitly and G(W ) and S I (W ) implicitly. The functions F (W ), S E (W ), G(W )

and S I (W ) are thus chosen with the purpose of avoiding the need to invert a huge non-linear system which would result 
treating all terms implicitly. Instead we propose
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F (W ) =





ρu
ρu ⊗ u + π1+ 1−M2

M2 ψ1

(E + M2π + (1 − M2)ψ)u
ρπu + a2u

ρu ⊗ û
ρψu
ρ Zu





, S E(W ) =





0
1

M2
ρ
α ∇ Z

ρ
α u · ∇ Z

0
0
0
0





,

G(W ) =





0
0
0
0

ψ1
a2M2û

0





, S I (W ) =





0
0
0
0

ρ
α ∇ Z

0
0





.

(23)

The relaxation source term R will merely drive the system to equilibrium, as is standard in relaxation schemes. The time 
semi-discrete scheme is given by the following sequence of implicit, explicit and relaxation steps

Implicit: Wt + 1
M2 ∇ · G(W ) = 1

M2 S I (W ), (24)

Explicit: Wt + ∇ · F (W ) = S E(W ), (25)

Projection: Wt = 1
ε

R(W ). (26)

The projection step (26) is equivalent to solving R(W ) = 0 for ε = 0, see [35]. Due to the simple structure of R(W ), we can 
immediately set W = W eq as defined in (20) thus guaranteeing that the data at the new time step is on the equilibrium 
manifold and thus the original equations (18) are satisfied at the new time step. The formal time semi-discrete scheme is 
then given by

W (1) − W n + &t
M2 ∇ · G(W (1)) = &t

M2 S I (W (1)), (27)

W (2) − W (1) + &t ∇ · F (W (1)) = &t S E(W (1)), (28)

W n+1 = W (2),eq. (29)

In the projection step (29) the relaxation variables can be directly computed as

πn+1 = p(2), ûn+1 = u(2), ψn+1 = p(2), Zn+1 = β. (30)

Hydrostatic equilibria of (27)-(29) are then given by

û(1) = 0,

∇ψ (1) = ρ(1)

α ∇ Z (1)

}

Implicit (31)

u(1) = 0,

∇π (1) + 1−M2

M2 ∇ψ (1) = 1
M2

ρ(1)

α ∇ Z (1)

}

Explicit (32)

From (31) and (32) we see that if the implicit step is well-balanced, then the hydrostatic equation for the explicit step 
reduces to solving

u(1) = 0,

∇π (1) = ρ(1)

α ∇ Z (1)

}

which is independent of the Mach number.

4.1. Mach number expansion of ψ (1)

Due to the sparse structure of the implicit flux function G and implicit source term S I in (23), the implicit part reduces 
to solving only two coupled equations in the relaxation variables û, ψ given by

(ρû)t + 1
M2 ∇ψ = 1

M2 (∇ Z ,

(ρψ)t + a2∇ · û = 0,

(33)
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where κ = ρ/α. As done in [10,11,27], we rewrite the coupled system (33) into a single equation with an elliptic operator 
for ψ starting from the time-semi-discrete scheme

ρ(1) − ρn

%t
= 0, (34)

(ρû)(1) − (ρû)n

%t
+ 1

M2 ∇ψ (1) − 1
M2 κn∇ Zn = 0, (35)

(ρψ)(1) − (ρψ)n

%t
+ a2∇ · û(1) = 0. (36)

Note, that Z is a relaxation variable approximating the equilibrium pressure β and is not updated in the implicit step and 
therefore appears at time level tn . From the density equation (34) it follows that ρ(1) = ρn . Together we have κ (1) = ρn

α = κn . 
Inserting (35) into (36) we have

ψ (1) − %t2a2τn∇ · (τn 1
M2 ∇ψ (1)) = ψn − %t2a2τn∇ · (τn κn

M2 ∇β)

− %ta2τn∇ · un,

(37)

where we have simplified the notation by using τ = 1/ρ . Since the data at time tn is in relaxation equilibrium, we have 
ûn = un and Zn = β on the right hand side of (37). Note that the update (37) is linear in ψ .

Now we analyse the implicit update of ψ (1) with respect to the Mach number. We assume that the initial data is well-
prepared, that is wn ∈ (

αβ
wp as defined in (16). To preserve the scaling of the pressure, we define the following boundary 

conditions for ψ on the computational domain D

∇ψ
(1)
0 = ∇pn

0
∇ψ

(1)
1 = ∇pn

1

}

on ) D. (38)

Inserting the Mach number expansion according to (αβ
wp for well-prepared data into (37) and separating the O(M−2) terms 

we find

{
∇ ·

(
τn

0 ∇ψ
(1)
0

)
= ∇ ·

(
τn

0 ∇pn
0

)
in D

∇ψ
(1)
0 = ∇pn

0 on ) D
. (39)

This boundary value problem has the unique solution ∇ψ
(1)
0 = ∇pn

0 on the whole domain D . Substituting the Mach number 
expansions of ψ and τ and collecting the O(M−1) terms leads to

τn
1 ∇ ·

(
τn

0 ∇ψ
(1)
0

)
+ τn

0 ∇ ·
(
τn

1 ∇ψ
(1)
0 + τn

0 ∇ψ
(1)
1

)

= τn
1 ∇ ·

(
τn

0
ρn

0

α
∇β

)
+ τn

0 ∇ ·
(
τn

1
ρn

0

α
∇β + τn

0
ρn

1

α
∇β

)
.

(40)

Due to the well-prepared data, we have the relation ρ1
∇β
α = ∇p1 from (16). Then we can simplify the equation (40) using 

∇ψ
(1)
0 = ∇pn

0 to

{
∇ ·

(
τn

0 ∇ψ
(1)
1

)
= ∇ ·

(
τn

0 ∇p1
)

in D

∇ψ
(1)
1 = ∇pn

1 on ) D
(41)

which has the unique solution ∇ψ
(1)
1 = ∇pn

1 on the whole domain D . As a last step we look at the O(M0) terms and find 
using the results from (39) and (41) that

∇ ·
(
τn

0 ∇ψ
(1)
2

)
= ∇ ·

(
τn

0
ρn

2

α
∇β

)
in D. (42)

This means the first two terms in the expansion of ψ (1) fulfil the hydrostatic equilibrium (12), (13). This proves that the 
pressure ψ (1) has the correct asymptotic behaviour.
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4.2. Asymptotic preserving property

Having established the Mach number expansion of ψ (1) , we can show now that the time semi-discrete scheme (27) -
(29) for M → 0 coincides with the time-discretization of the limit equations (14) and that the scheme preserves the set of 
well-prepared data "αβ

wp . We start by inserting the Mach number expansions given in (11) into (28). Then we find for the 
zero order terms in the density, momentum and energy equation

ρn+1
0 − ρn

0 + &t ∇ · ρn
0 un

0 = 0,

ρn+1
0 un+1

0 − ρn
0 un

0 + &t
(
ρn

0 un
0 ⊗ un

0 + ∇ψ
(1)
2

)
= &t

ρn
2

α
∇β,

ρn+1
0 en+1

0 − ρn
0 en

0 + &t
(
∇ · un

0

(
ρn

0 en
0 + ψ

(1)
0

))
= &t

ρ0

α
un

0 · ∇β.

We can simplify the equations by using ∇ψ
(1)
0 = ∇pn

0 and well-prepared data wn ∈ "
αβ
wp :

ρn+1
0 − ρn

0 = 0,

un+1
0 − un

0 + &t

(

un
0 · ∇un

0 + ∇ψ
(1)
2

ρn
0

)

= &t
ρn

2

ρn
0 α

∇β,

pn+1
0 − pn

0 = 0.

From the first and the last equation we see that ρ0 and p0 do not change in time and looking at the O(M1) terms in 
the energy equation we have pn+1

1 = pn
1 + O(&t). This means the pressure and density at tn+1 are still well-prepared up 

to perturbations of &t . Next, we analyse the divergence free property of un+1
0 and ρn+1

0 un+1
0 . This is done by applying the 

divergence operator on the momentum equation and simplifying using (42). We obtain

∇ · un+1
0 = &t ∇ ·

(
−un

0 · ∇un
0
)
= O(&t),

∇ ·
(
ρn+1

0 un+1
0

)
= &t ∇ ·

(
−ρn

0 un
0 · ∇un

0 − ∇ψ
(1)
2 + ρn

2

α
∇β

)
= O(&t).

For showing the orthogonality condition for un+1
0 we multiply the momentum equation by ∇β

α and obtain

un+1
0 · ∇β

αn = &t

(

−un
0 · ∇un

0 − ∇ψ
(1)
2

ρn
0

+ ρn
2

ρn
0 α

∇β

)

· ∇β

α
= O(&t).

Therefore all three conditions are satisfied up to a perturbation in &t . An analogue estimate for the homogeneous case can 
be found in the method proposed in [10]. This analysis yields the following result about the asymptotic preserving property.

Theorem 2 (AP property). For well-prepared initial data wn ∈ "
αβ
wp and under the boundary conditions (38) the time semi-discrete 

scheme (27) - (29) is asymptotic preserving when M → 0 in the sense that if wn ∈ "
αβ
wp then also wn+1 ∈ "

αβ
wp and in the limit M → 0

the time semi-discrete scheme is a consistent time discretization of the limit equations (14) within O(&t) terms.

We remark that the analysis still holds if instead of "αβ
wp the original well-prepared set "wp is used.

5. Derivation of the fully discrete scheme

The derivation of the fully discrete scheme is done in one spatial direction for simplicity, but it can be extended straight-
forwardly to d dimensions using dimensional splitting in the explicit part and discretizing the expressions

∇ · (τ∇(·)) = (x1(τ(x1(·)) + · · · + (xd (τ(xd (·)) and

∇ · u = (x1 u1 + · · · + (xd ud
(43)

with u = (u1, . . . , ud) component-wise in the implicit step. We use a uniform cartesian grid on a computational domain D
divided in N cells Ci = (xi−1/2, xi+1/2) of step size &x. We use a standard finite volume setting, where we define at time tn

the piecewise constant functions w(x, tn) = wn
i , for x ∈ Ci .
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5.1. Well-balanced property of the implicit part

Applying central differences in (37) we obtain

ψ
(1)
i − "t2

"x2

a2

M2 τn
i

(
τn

i+1/2(ψ
(1)
i+1 − ψ

(1)
i ) − τn

i−1/2(ψ
(1)
i − ψn+1

i−1 )
)

=

ψn
i − "t2

"x2

a2

M2 τn
i

(
τn

i+1/2κ
n
i+1/2(βi+1 − βi) − τn

i−1/2κ
n
i−1/2(βi − βi−1)

)

− "t
2"x

a2 (
un

i+1 − un
i−1

)
,

(44)

where τi+1/2 = 1
2 (τi+1 + τi).

Lemma 3 (Well-balancedness of the implicit part). Let the initial condition wn
i be well-balanced, that is

ui = 0,
ρn

i

αi
= 1,

pn
i

βi
= 1. (45)

If the function κ is discretized such that in the hydrostatic equilibrium holds, i.e.

κi+1/2 = 1, (46)

then it is ψ (1)
i = ψn

i for all cells i = 1, . . . N, that means (27) is well-balanced in the sense that W (1) fulfils (31).

Proof. From the condition (45) we have κi+1/2 = 1. At time level tn we know that ψn = pn . Therefore we can write

ψn
i+1 − ψn

i = βi+1 − βi = κn
i+1/2(βi+1 − βi). (47)

Using u = 0 and inserting (47) into (44), we have

ψ
(1)
i − "t2

"x2

a2

M2 τn
i

(
τn

i+1/2(ψ
(1)
i+1 − ψ

(1)
i ) − τn

i−1/2(ψ
(1)
i − ψn+1

i−1 )
)

=

ψn
i − "t2

"x2

a2

M2 τn
i

(
τn

i+1/2(ψ
n
i+1 − ψn

i ) − τn
i−1/2(ψ

n
i − ψn

i−1)
)

.

(48)

Define the tridiagonal coefficient matrix A by

A = diag(−µτn
i τn

i−1/2,1 + µτn
i (τn

i+1/2 + τn
i−1/2),−µτn

i τn
i+1/2),

where µ = "t2

"x2
a2

M2 . Then we can write (48) as

Aψ (1) = Aψn ⇔ A(ψ (1) − ψn) = 0. (49)

Since the matrix A is strict diagonal dominant it is invertible. Then we have from (49) that ψ (1)
i = ψn

i for all i = 1, . . . , N . 
The proof can be extended to d dimensions using (43) for the space discretization. In d dimensions the coefficient matrix 
A is an invertible strict diagonal dominant banded Matrix with 2d + 1 diagonals. Therefore the results hold also in d
dimensions.

In the following we will use a second order accurate discretization of κi+1/2 that fulfils (46) and is given by

κi+1/2 = 1
2

(
ρi+1

αi+1
+ ρi

αi

)
.
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5.2. Godunov type finite volume scheme

We consider the explicit step (28) using the explicit operators F and S E defined in (23).

∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + π + 1 − M2

M2 ψ) = 1
M2 κ∂x Z

∂t E + ∂x((E + M2π + (1 − M2)ψ)u) = uκ∂x Z

∂tρπ + ∂x((ρπ + a2)u) = 0

∂tρû + ∂x(ρuû) = 0

∂tρψ + ∂x(ρψu) = 0

∂tρ Z + ∂x(ρ Zu) = 0.

(50)

The derivation of the Godunove type finite volume scheme follows closely the steps given e.g. in [11,12,18,26,36]. The 
omitted proofs to the results given in this section can be done analogously following those references. To construct a 
Riemann solver for (50), we follow [18] and include the source term in the flux formulation. To calculate the Riemann 
invariants given in Lemma 4, we rewrite (50) in non-conservative form using the primitive variables (ρ, u, e, π , ̂u, ψ, Z). 
Since Riemann invariants are invariant under change of variables, they are the same as for the equations in conservation 
form.

Lemma 4. System (50) admits the linear degenerate eigenvalues λ± = u ± a
ρ and λu = u, where the eigenvalue λu has multiplicity 5. 

The relaxation parameter a as well as the eigenvalues are independent of the Mach number M. The Riemann invariants with respect to 
λu are

Iu
1 = u, Iu

2 = M2π + (1 − M2)ψ − κ Z

and with respect to λ±

I±1 = u ± a
ρ

, I±2 = π + a2

ρ
,

I±3 = e − M2

2a2 π2 − 1 − M2

a2 πψ,

I±4 = û, I±5 = ψ, I±6 = Z .

We follow the theory of Harten, Lax, van Leer [37] for deriving an approximate Riemann solver WRS
(

x
t ; W

(1)
L , W (1)

R

)

based on the states W (1) after the implicit step. Due to the linear-degeneracy from Lemma 4, the structure of the approxi-
mate Riemann solver is given as follows

WRS
( x

t
; W (1)

L , W (1)
R

)
=






W (1)
L

x
t < λ−,

W ∗
L λ− < x

t < λu,

W ∗
R λu < x

t < λ+,

W (1)
R λ+ < x

t .

(51)

To compute the intermediate states W ∗
L,R , we use the Riemann invariants as given in Lemma 4.

Lemma 5. Consider an initial value problem with initial data W = W (1) given by

W0(x) =
{

W L x < 0
W R x > 0

.

Then, the solution consists of four constant states separated by contact discontinuities with the structure given in (51). The solution for 
the intermediate states W ∗

L , W ∗
R with u∗ = u∗

L = u∗
R is given by
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1
ρ∗

L
= 1

ρL
+ 1

a2 (πL − π∗
L ),

1
ρ∗

R
= 1

ρR
+ 1

a2 (πR − π∗
R),

u∗ = 1
2
(uL + uR) − 1

2a

(
πR − πL + 1 − M2

M2 (ψR − ψL) − κ

M2 (Z R − Z L)

)
,

π∗
L = 1

2
(πL + πR) − a

2
(uR − uL) + 1 − M2

2M2 (ψR − ψL) − κ

2M2 (Z R − Z L),

π∗
R = 1

2
(πL + πR) − a

2
(uR − uL) − 1 − M2

2M2 (ψR − ψL) + κ

2M2 (Z R − Z L),

e∗
L = eL − 1

2a2 (π2
L − (π∗

L )2 + (1 − M2)(πL − π∗
L )ψL),

e∗
R = eR − 1

2a2 (π2
R − (π∗

R)2 + (1 − M2)(πR − π∗
R)ψR),

ψ∗
L,R = ψL,R ,

û∗
L,R = ûL,R ,

Z∗
L,R = Z L,R .

(52)

Having established the structure of the Riemann solver, we can show that it is preserving hydrostatic equilibria.

Lemma 6 (Well-balancedness of Riemann solver). Let the initial condition wn
L, w

n
R be given in hydrostatic equilibrium (45). Let the 

function κ be defined as in (46). Then the intermediate states (52) satisfy

W (1)∗
L = W (1)

L , W (1)∗
R = W (1)

R

that is, the approximate Riemann solver as defined in Lemma 5 is at rest.

Proof. From Lemma 3, we know that ψ (1) = pn and satisfies

ψ
(1)
L − ψ

(1)
R = κ(Z (1)

L − Z (1)
R ). (53)

We also know that π (1)
L,R = πn

L,R = pn
L,R and since wn is fulfilling (45) and with (46) we have π (1)

L − π (1)
R = κ(Z (1)

L − Z (1)
R ). 

Then we have

π (1)
R − π (1)

L + 1 − M2

M2 (ψ
(1)
R − ψ

(1)
L ) − κ

M2 (Z (1)
R − Z (1)

L ) =

π (1)
R − π (1)

L − κ(Z (1)
R − Z (1)

L ) = 0.

Since u(1)
L,R = un

L,R = 0, we find u(1)∗ = 0. With u(1)∗ = 0 and (53) and the fact that ψn = pn = πn = π (1) , we can write

π∗
L = 1

2
(π (1)

L + π (1)
R ) + 1 − M2

2M2 (ψ
(1)
R − ψ

(1)
L ) − κ

2M2 (Z (1)
R − Z (1)

L )

= 1
2
(π (1)

L + π (1)
R ) − 1

2
(π (1)

R − π (1)
L )

= πL .

Analogously follows π∗
R = πR . Then it follows directly from the intermediate states (52) that ρ∗

L = ρL , ρ∗
R = ρR and e∗

L = eL , 
e∗

R = eR .

Another important property is that the density and pressure remain positive during the simulation. This is equivalent to 
preserving the following domain

%phy = {w ∈ %,ρ > 0, e > 0} .

We show that the Riemann solver preserves %phy .
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Lemma 7 (Positivity preserving property of Riemann solver). Suppose the initial data W (1)
L,R is composed of w(1)

L,R ∈ !phy ∩ !
α,β
wp and 

ψ (1) satisfies the boundary conditions (38). Then the solution of the Riemann problem given by Q WRS ( x
t ; W

(1)
L , W (1)

R ) is contained 
in !phy for a relaxation parameter a sufficiently large but independent of M.

Proof. The proof for the intermediate states for the density can be taken from [11,26]. After the implicit step we have u(1) =
un , π (1) = πn and Z (1) = Zn . We use the following notation &(·) = (·)R − (·)L . For the internal energy, the intermediate state 
π (1)∗

L is inserted into e∗
L and we have

e(1)∗
L = en

L + 1
8
&u2

+ 1
2a2

(

−
(
πn

L

)2 + 1
4

(
πn

L + πn
R − &ψ (1) + 1

M2 H (1)

)2

+ 1
2

ψ
(1)
L (1 − M2)

(
&πn − &ψ (1) + 1

M2 H (1)

))

+ 1
4a

&un
(

&πn + 2πn
L − &ψ (1) + 1

M2 H (1) + (1 − M2)ψ
(1)
L

)
,

(54)

where we have defined H (1) = (ψ
(1)
R − ψ

(1)
L ) − κ(Zn

R − Zn
L ). We know from the Mach number analysis in Section 4 that 

ψ (1) preserves the hydrostatic equilibrium up to a perturbation of M2, thus H (1) = O(M2). Therefore we find a relaxation 
parameter a > (

√
)( p((, e) independent of M that can control the negative terms in (54) and we have e(1)∗

L > 0.

With the solution of the Riemann problem (51) we can define the numerical fluxes at the interface xi+1/2. With Si+1/2 =
(0, si+1/2, u∗

i si+1/2) where si+1/2 = κi+1/2(Zi+1 − Zi) we have

F −
i+1/2 =






F
(

W (1)
i

)
, λ− > 0

F
(

W (1)∗
i

)
, λu > 0 > λ−

F
(

W (1)∗
i

)
, λu = 0

F
(

W (1)∗
i+1

)
− Si+1/2, λ+ > 0 > λu

F
(

W (1)
i+1

)
− Si+1/2, λ+ < 0

,

F +
i+1/2 =






F
(

W (1)
i

)
+ Si+1/2, λ− > 0

F
(

W (1)∗
i

)
+ Si+1/2, λu > 0 > λ−

F
(

W (1)∗
i+1

)
, λu = 0

F
(

W (1)∗
i+1

)
, λ+ > 0 > λu

F
(

W (1)
i+1

)
, λ+ < 0

,

(55)

where the superscript (1) emphasizes that the states after the implicit step are used. We want to stress that we include the 
source term into the flux definition and therefore in general it is F −

i+1/2 %= F +
i+1/2. This leads to the following update of the 

explicit part

W (2)
i = W (1)

i − &t
&x

(F −
i+1/2 − F +

i−1/2). (56)

To avoid interactions between the approximate Riemann solvers at the interfaces xi+1/2, we have a CFL restriction on the 
time step of

&t ≤ 1
2

&x
max

i
|ui ± a/(i |

(57)

which is independent of the Mach number.
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Remark 2. Due to the projection step (29), we can directly give the update of the physical variables w as

wn+1
i = wn

i − !t
!x

(
Q F −

i+1/2

(
WRS

(
0; W (1)

i , W (1)
i+1

))
− Q F +

i−1/2

(
WRS

(
0; W (1)

i−1, W (1)
i

)))
. (58)

We want to stress that equation (58) means that it is not necessary to update the d + 3 relaxation variables (π , ̂u, ψ, Z) in 
the explicit step. Their update is given by projection in (30). Therefore additional costs due to an update of the relaxation 
variables in the explicit step can be avoided.

Theorem 8 (Well-balanced property 1). Let wi on all cells i ∈ {1, N} be given in hydrostatic equilibrium (45). Let κ be defined as in 
(46). Then the first order scheme given by the steps (44), (58) is well-balanced.

Proof. Since wn fulfils the hydrostatic equilibrium, we know from Lemma 3 that W (1)
i = W n

i fulfils the hydrostatic equi-
librium and from Lemma 6 that the approximate Riemann solver at the cell interfaces is at rest. With the definition of the 
fluxes (55), we have

F +
i−1/2 = F (W n

i ), F −
i+1/2 = F (W n

i ).

Using the formulation (58) for the update of the variables w , we have

wn+1
i = wn

i − !t
!x

Q
(

F −
i+1/2 − F +

i−1/2

)
= wn

i . (59)

This shows the well-balanced property in one dimension. Since we apply dimensional splitting in the multi-dimensional 
set-up, the proof can be easily extended by giving the update (59) as a sum of the flux differences along each dimension.

Theorem 9 (Positivity preserving 1). Let the initial state in d dimensions be given as

wn
i ∈ % = %phy ∩ %

αβ
wp

Then under the Mach number independent CFL condition

!t
!x

max
i

|(±(wn
i )| <

1
2d

,

and the boundary conditions (38) the numerical scheme defined by (44), (58) preserves the positivity of density and internal energy, 
that is wn+1

i ∈ %phy for a sufficiently large relaxation parameter a independent of M.

An important property for any low Mach scheme is the behaviour of the diffusion. Due to the fact that ψ (1) is still well-
prepared after the implicit step, the diffusion of the scheme is of order O(M0). The computations are performed analogously 
to the homogeneous case and can be found in [11].

5.3. Second order extension

Here, we give a strategy to extend the first order scheme to second order accuracy such that the well-balanced and the 
positivity preserving property are maintained.

For the time integration, we use the second order scheme presented in [11]. It is based on the second order time 
integration scheme with variable step size !t1,2 given in [38]. It is applied on the explicit update of the physical variables 
following (58) for the first order scheme.

w =wn − !t1∇ · Q F
(

W
(1)

)
+ !t1 Q S E

(
W

(1)
)

,

w =w − !t2∇ · Q F
(

W
(1)

)
+ !t2 Q S E

(
W

(1)
)

wn+1 =
(

1 − 2!t1!t2

(!t1 + !t2)2

)
wn + 2!t1!t2

(!t1 + !t2)2 w,

!t = 2!t1!t2

!t1 + !t2

(60)

where the matrix Q defined in (21) denotes the projection on the (), )u, E) component of the explicitly treated flux 
function F and source term S E . The variables W

(1)
and W

(1)
are obtained by solving the linear implicit system (44) with 

initial data given by (wn, pn, un) and (w, p, u) respectively. The step sizes !t1,2 are obtained according to the CFL condition 
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of the respective stages in (60). The time integration (60) consists of a convex combination of first order temporal integrators 
and therefore the second order time integration preserves the AP property shown in Section 4.2.

The second order extension in space is realized by a linear reconstruction of the interface values. We reconstruct in 
primitive variables w p = (ρ, u, p) and ψ on each cell. Since we use dimensional splitting, we reconstruct along each space 
dimension separately. We consider a linear function on the cell Ci defined as

w p(x) = w p
i + σ (x − xi). (61)

The slopes σ = (σρ , σ u, σ p) are obtained by using information from the neighbouring cells. The interface values on cell Ci
denoted by w+

i−1/2, w
−
i+1/2 are then obtained by evaluating w p(x) at the cell interfaces. To ensure the well-balanced and 

positivity property of the first oder scheme also for second order, the reconstruction (61) has to fulfil two conditions. Firstly, 
if the cell averages wn fulfil the hydrostatic equilibrium, also the interface values have to fulfil the hydrostatic equilibrium. 
Secondly, since the reconstruction is performed on primitive variables, it has to be ensured that, to satisfy the conditions in 
Lemma 7, the interface values for (ρ, ρu, E) are in the physical domain $phy .

For the well-balanced property, we apply a hydrostatic reconstruction on the pressure as it can be found in [20,26]. It is 
given by

qi−1 = πi−1 + si−1/2,

qi+1 = πi+1 − si+1/2.
(62)

The slope for π is then calculated as

σ q = minmod
(

qi+1 − πi

&x
,
πi − qi−1

&x

)
.

Analogously we get the modified slope for ψ (1) . When being in hydrostatic equilibrium, we have in the minmod function

qi+1 − πi = πi+1 − πi − si+1/2 = 0,

πi − qi−1 = πi − πi−1 − si−1/2 = 0.

Therefore σ q = 0 and the interface values for the pressures coincide with the cell averages π−
i+1/2 = π+

i−1/2 = pn
i and 

ψ
(1),−
i+1/2 = ψ

(1),+
i−1/2 = pn

i . From Lemma 6 follows then that the Riemann Solver leaves the solution at rest.

To meet the positivity criterion we apply a limiting procedure on the slopes σ to guarantee w−
i+1/2, w

+
i−1/2 ∈ $phy . We 

use the limiter from [26] which gives the slopes

σρ = 2 ρi

&x
max

(
−1,min

(
1,

σρ

ρi

))
,

σ u = 2 ω σ u

&x
,

σ p = 2 pi

&x
max

(
−1,min

(
1,

σ p

pi

))
,

(63)

where

σ = &x
2

minmod
(

wi+1 − wi

&x
,

wi − wi−1

&x

)

and ω = min(1, ω), with

ω =






−σρ (ui ·σ u)+
√

(σρ )2(ui ·σ u)2+ρi‖σ u‖2 pi
( −1

ρi‖σ u‖2 if σ u $= 0,

1 if σ u = 0.

This limiter is obtained by following an idea of Berthon given in [38]. Therein, it is shown that a reconstruction in 
primitive variables can be viewed as introducing a third state w∗

i in between the interface values w+
i−1/2 and w−

i+1/2 such 
that

wi = 1
3
(w+

i−1/2 + w∗
i + w−

i+1/2).

More precisely, the cell i is divided into three constant states in the order w+
i−1/2, w

∗
i , w

−
i+1/2 with the volume &x/3

respectively. A necessary condition for positivity according to [38] is then
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Table 1
L1-error with respect to the isothermal equilibrium for the first oder IMEX scheme 
at T = 1 (non-dimensional).

M F r ρ ρu1 ρu2 E

10−1 10−1 2.459E-017 3.605E-016 3.605E-016 2.419E-017
10−2 10−2 5.606E-017 9.999E-017 9.999E-017 5.507E-017
10−3 10−3 2.506E-017 9.811E-016 9.811E-016 2.457E-017
10−4 10−4 2.539E-017 5.304E-017 5.304E-017 2.495E-017
10−2 10−1 6.111E-017 5.6222E-016 5.6222E-016 1.517E-016
10−4 10−2 2.386E-017 5.679E-017 5.679E-017 5.879E-017

Table 2
L1-error with respect to the isothermal equilibrium for the second oder IMEX 
scheme at T = 1 (non-dimensional).

M F r ρ ρu1 ρu2 E

10−1 10−1 1.332E-015 1.479E-015 1.479E-015 6.641E-015
10−2 10−2 1.116E-015 1.315E-015 1.315E-015 5.761E-015
10−3 10−3 1.043E-015 1.324E-015 1.324E-015 5.531E-015
10−4 10−4 5.828E-016 5.848E-016 5.848E-016 2.585E-015
10−2 10−1 3.330E-016 4.047E-016 4.047E-016 1.885E-015
10−4 10−2 7.950E-016 6.265E-016 6.265E-016 3.632E-015

w+
i−1/2, w−

i+1/2, w∗
i ∈ "phy .

The slopes σ in (63) are derived fulfilling this condition.
We summarize the well-balanced and positivity preserving property of the second order scheme in the following theo-

rems. The proofs are analogous to the ones shown in [11,26].

Theorem 10 (Well-balanced property 2). Let the initial condition wn be given in hydrostatic equilibrium (45). Let the function κ be 
defined as in (46). Then, using the transformation (62), the second order scheme is well-balanced.

Theorem 11 (Positivity property 2). Let the initial state be given as wn
i ∈ " satisfying the boundary conditions (38) and the limiting 

procedure given in (63) is used. Then for a sufficiently large relaxation parameter a, under the Mach number independent CFL condition

%t
%x

max
i

|λ±(wn
i∓1/2),λ

±(w∗
i )| <

1
3 · 2d

,

where d denotes the dimension, the second order scheme preserves the domain "phy.

6. Numerical results

In this section, we give numerical test cases to validate the theoretical properties of the first and second order scheme. 
For all test cases we assume an ideal gas law p = (γ − 1)ρe. The implicit non-symmetric linear system given by (44) is 
solved with the GMRES algorithm combined with a preconditioner based on an incomplete LU decomposition. To choose 
the relaxation parameter a, we follow the procedure given in [32] to obtain a local estimate for a. We calculate a global 
estimate by taking the maximum of the local values of a and multiply by a constant ca independent of M to ensure the 
stability property given in Lemma 1. Even though the proof for the AP property was restricted to the case M = F r, the 
scheme can be applied in regimes with different Mach and Froude numbers. Especially the well-balanced and accuracy test 
cases were performed with different Mach and Froude numbers.

6.1. Well-balanced test case

To numerically verify the well-balanced property of the scheme, we compute an isothermal equilibrium with a linear 
potential in two dimensions as given in (7) where u = (u1, u2)= 0, ( = 1 and γ = 1.4. The equilibrium solutions ) and β
are also set according to (7). In Table 1 we give the error with respect to the initial configuration at the final time T f = 1
for different Mach and Froude numbers on the domain D = [0, 1]2 with 100 cells in each direction. In Table 1 the results for 
the first order scheme are given. It can be seen that the error compared to the initial isothermal equilibrium is of machine 
precision. This means that the solution is still in equilibrium at a later time T f . This verifies the well-balanced property 
given in Theorem 8. In Table 2, we have repeated the simulation with the second order scheme. The results clearly show, 
that also the second order scheme is well-balanced.
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Table 3
L1-error and convergence rates for different Mach and Froude numbers.

M F r N ρ
[

kg
m3

]
ρu1

[
kg

m2 s

]
ρu2

[
kg

m2 s

]
E

[
kg

m s2

]

10−1 10−1 25 1.139E-003 — 2.278E-002 — 2.278E-002 — 4.562E-001 —
50 3.142E-004 1.858 6.276E-003 1.859 6.276E-003 1.859 1.257E-001 1.859
100 8.427E-005 1.898 1.680E-003 1.901 1.680E-003 1.901 3.366E-002 1.901
200 2.232E-005 1.916 4.438E-004 1.920 4.438E-004 1.920 8.894E-003 1.920

10−2 10−2 25 1.140E-003 — 2.280E-002 — 2.280E-002 — 4.567E-001 —
50 3.144E-004 1.859 6.280E-003 1.860 6.280E-003 1.860 1.258E-001 1.859
100 8.430E-005 1.899 1.680E-003 1.901 1.680E-003 1.901 3.367E-002 1.901
200 2.233E-005 1.916 4.441E-004 1.919 4.441E-004 1.919 8.901E-003 1.919

10−3 10−3 25 1.141E-003 — 2.281E-002 — 2.281E-002 — 4.569E-001 —
50 3.144E-004 1.859 6.280E-003 1.861 6.280E-003 1.861 1.258E-001 1.860
100 8.431E-005 1.898 1.680E-003 1.901 1.680E-003 1.901 3.368E-002 1.901
200 2.233E-005 1.916 4.441E-004 1.919 4.441E-004 1.919 8.901E-003 1.919

10−4 10−4 25 1.141E-003 — 2.280E-002 — 2.280E-002 — 4.582E-001 —
50 3.143E-004 1.860 6.277E-003 1.860 6.277E-003 1.860 1.257E-001 1.864
100 8.430E-005 1.898 1.680E-003 1.901 1.680E-003 1.901 3.367E-002 1.901
200 2.233E-005 1.916 4.441E-004 1.919 4.441E-004 1.919 8.900E-003 1.919

10−4 10−1 25 1.141E-003 — 2.280E-002 — 2.280E-002 — 4.581E-001 —
50 3.143E-004 1.860 6.277E-003 1.860 6.277E-003 1.860 1.257E-001 1.864
100 8.430E-005 1.898 1.680E-003 1.901 1.680E-003 1.901 3.367E-002 1.901
200 2.233E-005 1.916 4.441E-004 1.919 4.441E-004 1.919 8.900E-003 1.919

10−1 10−4 25 1.139E-003 — 2.278E-002 — 2.278E-002 — 4.562E-001 —
50 3.142E-004 1.858 6.276E-003 1.859 6.276E-003 1.859 1.257E-001 1.859
100 8.427E-005 1.898 1.680E-003 1.901 1.680E-003 1.901 3.366E-002 1.901
200 2.232E-005 1.916 4.438E-004 1.920 4.438E-004 1.920 8.894E-003 1.920

6.2. Accuracy

To numerically validate the second order accuracy of the proposed scheme, we compare the numerical solution obtained 
with the second order scheme to an exact solution of the Euler equations with gravity as given in [39]. In physical variables, 
it is given in 2 dimensions with x = (x1, x2) and u = (u1, u2) as

ρ(x, t) = 1 + 0.2 sin
(
π(x1 + x2 − t(u10 + u20))

) kg
m3

u1(x, t) = u10

m
s

u2(x, t) = u20

m
s

p(x, t) = p0 + t(u10 + u20) − (x1 + x2) + 0.2 cos
(
π(x1 + x2 − t(u10 + u20))

)
/π

kg
m s2 .

(64)

For the parameters we set u10 = 20, u20 = 20 and p0 = 4.5. The gravitational potential is linear and given as #(x) = x1 + x2. 
For u = 0, (64) is in hydrostatic equilibrium and we set α and β as the density and pressure of the stationary state 
respectively. We want to remark that this equilibrium is neither isothermal nor polytropic. The computational domain is 
D = [0, 1]2 and the final time T = 0.01s.

To transform the initial data (64) into non-dimensional quantities, we define the following reference values

xr = 1 m, ur = 1
m
s

, ρr = 1
kg
m3 , pr = 1

M2

kg
m s2 , #r = 1

F r2

m2

s2 .

We use different values for M and F r to show that our scheme is second order accurate independently of the chosen 
regime. In the computations we use exact boundary conditions and γ = 5/3. As can be seen from Table 3 the error and the 
convergence rates are of the same magnitude for all displayed Mach numbers and we achieve the expected second order 
accuracy. In addition, to illustrate that the accuracy is independent of the Mach number, we have plotted the L1 -error in 
Fig. 1. Due to the limiting procedure that we apply on the slopes in the reconstruction step to ensure the positivity property, 
we are not recovering a full second order convergence. Using unlimited slopes in the reconstruction step however will lead 
to the full second order.
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Fig. 1. L1 error curves in dependence of Mach and Froude number (dimensional).

6.3. Strong rarefaction test

Linearized Riemann solvers can fail producing negative pressures or densities in the intermediate states W ∗
L,R for very 

strong rarefactions. In order to demonstrate the positivity preserving property of our schemes proven in Theorems 9 and 11, 
we follow the 1-2-0-3 strong rarefaction test proposed in [40] designed for the homogeneous equations. We modified the 
set-up by launching two rarefaction waves in x-direction on top of an isothermal atmosphere. The initial states for ρ and p
follow the isothermal equilibrium (7) with a quadratic potential Φ(x) = 1

2 [(x1 − 0.5)2 + (x2 − 0.5)2] centred at x = (0.5, 0.5)

with γ = 1.4 and χ = γ − 1. As reference equilibrium expressed by α and β , we set the isothermal equilibrium given by 
(7). As in [40], we choose a compressible regime, i.e. M = 1 and F r = 1. As initial velocity u = (u1, u2), we set

u1 =
{

−2 for x1 < 0.5,

2 for x1 ≥ 0.5,
u2 = 0.

The simulations were performed with the first and second order scheme with 100 cells in each space direction on the 
domain [0, 1]2 up to a final time T f = 0.1 s. In Fig. 2, the solutions computed with the first and second order scheme are 
projected onto the x-axis. As can be seen, the pressure and density are close to zero but remain positive throughout the 
simulation.

6.4. A stationary vortex in a gravitational field

With this test-case, we want to demonstrate the low Mach properties of our scheme. For the derivation of a vortex in a 
gravitational field, we follow the derivation of the Gresho vortex test case for the homogeneous Euler equations [31] as well 
as [34]. The velocity field in the initial condition is chosen such that it fulfils the divergence free property ∇ · u = 0 and the 
orthogonality property u ·∇' = 0. The vortex is placed on top of a hydrostatic equilibrium solution and therefore the initial 
condition is contained in the set of the well-prepared data (wp .

To derive the vortex, we consider the non-dimensional Euler equations (4) in radial coordinates (r, )). The vortex is 
constructed such that it is axisymmetric, stationary and has zero radial velocity. A solution has to satisfy

1
M2 ∂r p = ρu2

)

r
− ρ

∂r'

F r2 ,
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Fig. 2. Density, velocity and energy for the strong rarefaction test at T f = 0.1 s.

where uθ is the angular velocity. The pressure is split into a hydrostatic pressure p0 and a pressure p2 associated with the 
centrifugal forces and in total is given by p = p0 + M2 p2 and has to satisfy

∂r p0 = − M2

F r2 ρ∂r$, ∂r p2 = ρ
u2

θ (r)

r
.

We choose an isothermal hydrostatic pressure p0 = RTρ and the density is given according to (7) by

ρ = exp
(

− M2

F r2

$

RT

)
.

The pressure p2 is then given as

p2 =
r∫

0

exp
(

− M2

F r2

$(s)
χ

)
uθ (s)2

s
ds. (65)

The velocity profile uθ is defined piecewise as in the Gresho vortex test case as

uθ (r) = 1
ur






5r if r ≤ 0.2,

2 − 5r if 0.2 < r ≤ 0.4,

0 if r > 0.4.

To fully determine p2 a continuously differentiable gravitational potential has to be given. We define it piecewise as

$(r) =






12.5r2 if r ≤ 0.2
0.5 − ln(0.2) + ln(r) if 0.2 < r ≤ 0.4
ln(2) − 0.5 rc

rc−0.4 + 2.5 rc
rc−0.4 r − 1.25 1

rc−0.4 r2 if 0.4 < r ≤ rc

ln(2) − 0.5 rc
rc−0.4 + 1.25 r2

c
rc−0.4 if r > rc

.

This choice of $ ensures the use of periodic boundary conditions since $ is constant at the boundary and thus we can 
simulate a closed system. Then we can compute the pressure p2 according to (65) and it is piecewise defined as

p2(r) = F r2 RT

M2 u2
r






p21(r) if r ≤ 0.2
p21(0.2) + p22(r) if 0.2 < r ≤ 0.4
p21(0.2) + p22(0.4) if r > 0.4

with
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Fig. 3. Initial Mach number distribution for M = 10−1.

p21(r) =
(

1 − exp
(

−12.5
M2

F r2 RT
r2

))

p22(r) = 1(
F r2 RT − M2

) (
F r2 RT − 0.5M2

) exp
(

(−0.5 + ln(0.2))M2

F r2 RT

)

(
r− M2

F r2 RT

(
M4(r(10 − 12.5r) − 2) − 4F r4χ2 + F r2M2(r(12.5r − 20) + 6)RT

)

+exp
(− ln(0.2)M2

F r2 RT

)(
4F r4 RT 2 − 2.5F r2M2 RT + 0.5M4

))

.

The reference values are defined as xr = 1 m, ρr = 1 kg
m3 , ur = 2 · 0.2 π m

s , tr = 1 m
ur

and RT = 1
M2

m2

s2 . As reference 
equilibrium expressed by α and β we set the isothermal equilibrium (7), since the vortex is derived from an isothermal 
steady state. The computations are carried out with γ = 5/3 and M = F r on the domain D = [0, 1]2. In Fig. 3 the initial 
Mach number distribution for the vortex for M = 0.1 is given. In Fig. 4, the Mach number distribution for different maximum 
Mach numbers are compared for N = 40 at t = 1 which corresponds to one turn of the vortex. We see that the accuracy of 
the vortices are comparable independently of the chosen Mach number and they show the same amount of diffusiveness 
despite of the coarse grid that is used. The periodic boundary conditions allow us to model a closed system and we can 
monitor the loss of kinetic energy during the simulation which is depicted in Fig. 5. The graphs for the Mach numbers M =
10−2 and M = 10−3 are superposed which shows that the loss of kinetic energy is independent of the Mach number. This 
is in agreement with the AP property and demonstrates the low Mach number properties of the scheme. We remark that 
although using the second order scheme, we do not expect to get second order convergence due to the lack of smoothness 
in the velocity profile uθ and therefore also in the energy.

6.5. Rising bubble test case

This test case is taken from [41] and models a rising bubble which has a higher temperature than the background 
atmosphere on the domain D = [0 km, 10 km] × [0 km, 15 km]. The gravitation acts along the y-direction and is given by

((x, y) = gy
m2

s2 ,

where g = 9.81 m
s2 is the gravitational acceleration. The stratification of the atmosphere is given in terms of the potential 

temperature θ defined by

θ = T
(

p0

p

) R
cp

,

where cp is the specific heat at constant pressure and p0 = 105 kg
m s2 , denotes a reference pressure taken at sea level. 

Pressure, potential temperature and density are connected by the following relation
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Fig. 4. Mach number distribution for different maximal Mach numbers at t = 1. Top left: M = 10−1. Top right: M = 10−2, bottom left: M = 10−3, bottom 
right: M = 10−4.

Fig. 5. Loss of kinetic energy for different grids and Mach numbers after one full turn of the vortex (non-dimensional).

p = p0

(
θ R
p0

)γ

ργ = χργ , (66)

where cv is the specific heat at constant volume and R = cp − cv . Comparing (66) to (6), the atmosphere is isentropic with 
the polytropic coefficient % = γ . We set p(x, 0) = p0 and θ = 300 K. Therefore we have

ρ(x,0) = p0

θ R
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Table 4
Overview over units and scaling relations of the physical 
quantities used in the test cases in Section 6.

Quantity SI unit Scaling

x [m] xr

t [s] tr

ρ
[

kg
m3

]
ρr

u, c
[ m

s

]
ur = xr

tr
, M = ur

cr

p
[

kg
m s2

]
pr = Rsρrθr , pr = ρr c2

r

#
[

m2

s2

]
#r = u2

r
F r2

Rs

[
m2

s2 K

]
—

T , θ [K] θr = u2
r

Rs M2

and the hydrostatic equilibrium is given by (8). To transform the data into non-dimensional quantities, we define the fol-
lowing reference values

xr = 10000 m, tr = 10000 s, ur = 1
m
s

, ρr = 1
kg
m3 .

The scaling of the remaining variables is given in Table 4.
The bubble is modelled as a disturbance in the potential temperature centred at (xc , yc) = (5 km, 2.75 km) as

$θ =
{

$θ0 cos2 (
πr
2

)
if r ≤ 1

0 else

where $θ0 = 6.6 K and

r =
(

x − xc

r0

)2

+
(

y − yc

r0

)2

with the factor r0 = 2.0 km. The resulting perturbation in the pressure can be calculated from equation (66).
In the simulation, we choose γ = 1.4 as it is modelled air as a diatomic gas with the corresponding specific gas constant 

Rs = 287.058 m2

s2 K
. This results in a reference Mach number of M = 10−2 and we set F r = M . Since the bubble is modelled 

as a perturbation on top of an isentropic atmosphere, we set α and ( according to (8). The grid consists of 120 cells 
in x-direction and 180 cells in y-direction which results into a uniform space discretization. At the boundaries, we have 
imposed the isentropic background atmosphere. In Fig. 6, we show the density perturbation at different times t computed 
with the well-balanced second order scheme. Even though the density perturbation is of order 10−5 , the density profile is 
clearly visible and there are no numerical artefacts in the background stemming from errors in calculating the underlying 
equilibrium. To demonstrate the importance of accurately capturing the balance between the pressure gradient and the 
source term, we show in Fig. 7 the same test case without applying the hydrostatic reconstruction (62). In contrast to the 
evolution depicted in the first frame of Fig. 6, the bubble seems to have a physically wrong behaviour already very early in 
the simulation. Since it vanishes from the computational domain at a later time, we compare the results to the first frame 
of Fig. 6. The wrong result is due to the inaccurate calculation of the pressure at the interface and underlines the necessity 
of a well-balanced scheme to perform this kind of test cases.

7. Conclusion

We have extended the second order all-speed IMEX scheme given in [11] developed for the homogeneous Euler equations 
to treat a gravitational source term. It is done in such a way that the new scheme inherits the positivity preserving property 
of the density and internal energy, as well as the scale independent diffusion and the AP property. In addition it is well-
balanced for arbitrary hydrostatic equilibria. To show the AP property of the new IMEX scheme, we have defined a set 
of well-prepared data that consists to leading order of the hydrostatic equilibria where the velocity is divergence free 
and orthogonal to the direction of the gravitational potential. The resulting limit equations are the incompressible Euler 
equations with a gravitational source term. To numerically verify the low Mach properties of our scheme, we have developed 
a stationary vortex in a gravitational field which is well-prepared. With the help of this new test case we can demonstrate 
the scale independent diffusion of our scheme as it is already standard for the homogeneous case. The numerical results 
are concluded with a rising bubble test case to illustrate the applicability of our scheme.
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Fig. 6. Density perturbation from the rising bubble test case from top left to bottom right at times t = 0.07,0.09,0.13,0.18.

Fig. 7. Density perturbation from the rising bubble test case at t = 0.07. Left: Second order well-balanced scheme. Right: Second order not well-balanced 
scheme.
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