
METHODS AND APPLICATIONS OF ANALYSIS. © 2023 International Press
Vol. 30, No. 3, pp. 113–128, September 2023 002

HYPOCOERCIVITY OF THE LINEARIZED BGK EQUATION WITH
STOCHASTIC COEFFICIENTS∗

T. HERZING† , C. KLINGENBERG‡ , AND M. PIRNER§

Abstract. We consider an approximation of the Boltzmann equation, the Bathnagar-Gross-
Krook (BGK) equation. This equation is used in many applications because it is very efficient in
numerical simulations. In this paper we study the effect of randomness on a BGK-model. We prove
exponential decay rate to a global equilibrium. In addition we prove the decay rate of the n-th
derivative with respect to the stochastic variable of the solutions. The novelties are i.) for the
first time hypocoercivity is shown for a linearized BGK model that conserves mass, momentum and
energy with randomness in the collision frequency, ii.)new estimates for the decay of the derivatives
of the solution with respect to the stochastic variable, which is very useful in applications.
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1. Introduction. In this paper, our aim is to study the decay to equilibrium
of the solution of a linearized BGK model introduced in [AAC18] with a random
parameter in the collision frequency. We begin by introducing the non-linear BGK
model

∂tf + v · ∇xf = σ(M − f). (1.1)

Here f(x, v, t) is the number density distribution of one species of gas with respect
to the phase space measure dxdv. Here x ∈ ( L

2πT)
d in the d−dimensional torus of

side length L is the position of the coordinate in phase space. v ∈ Rd is the velocity
coordinate in dimension d ∈ N and t ≥ 0 is the time. In the following, we will consider
the dimension d = 1 . The relaxation operator on the right-hand side of (1.1) involves
the Maxwellian

M =
n√
2πT

exp

(
−|v − u|2

2T

)
depending on the macroscopic quantities (density n, mean velocity u, temperature T )
defined as

ˆ
f(v)

 1
v

(v − u)2

 dv =

 n
nu
nT

 .

Moreover, the BGK model (1.1) contains the collision frequency σ. The purpose of
the collision operator in (1.1) is to provide an approximation of the Boltzmann col-
lision operator that is more computationally tractable, but still maintains important
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structural properties. It was first introduced in [BGG54] by Bathnagar, Gross and
Krook. It has the same collision invariants as the Boltzmann operator (which lead
to conservation of number of particles, momentum and energy) and it satisfies an
H-Theorem.

One natural aspect of kinetic equations are uncertainties. The form of some terms
(for instance of the collision frequency) in the equations are usually unjustified due to
modelling errors. The blurred measurements are typically not enough to sufficiently
determine all coefficients. Therefore, in this paper, we consider the collision frequency
σ(z) depending on a random parameter z. In the whole paper, we assume that this
dependency is continuous.

Now, the aim of the paper is to study the regularity and the large-time behavior of

f and of the derivatives ∂
(n)
z f in dimension d = 1. This is based on the hypocoercivity

theory which has been studied for a large variety of equations. Some considerable
examples in the deterministic case are the Fokker-Plank equations [AAS15, AE14],
linear kinetic equations [DMS15, FS20, NS15, BDMMS20, D06, DMS09, H06], a multi-
species Boltzmann system [DJMZ16] as well as the BGK-equations [AAC16, AAC18,
LP19]. Especially in [AAC16, AAC18, AE14] it was an issue to find sharp exponential
decay rates. In the random case, this has been extended in many cases for example
to linear kinetic equations in [LJ18, LW17, AJW20], for the multi-species Boltzmann
equation in [DJL19], the Vlasov-Poisson-Fokker-Planck system [JZ2018] and equations
used for traffic modelling [HI2021]. Such a study of the regularity and the large-time

behavior of f and of the derivatives ∂
(n)
z f allows to adopt the gPC framework for its

possible fast convergence. To do that, one mainly needs to prove that the perturbation
in the solution continuously depends on the perturbation where one chooses to perform
linearization. According to the standard spectral method theory, the higher degree
of continuity means the faster convergence. For example such a study is provided by
[LJ18] for the Boltzmann equation.

In this paper, we want to understand the regularity and decay to equilibrium

of the function f and also of its derivatives ∂
(n)
z f for all n ∈ N. We denote by

dx̃ := L−ddx the normalized Lebesque measure and consider normalized initial data
ˆ ˆ

f Idx̃dv = 1,

ˆ ˆ
vf Idx̃dv = 0,

ˆ ˆ
v2f Idx̃dv = 1 (1.2)

Now, we linearize the BGK equation (1.1) around the unique space-homogeneous
steady state

M1(v) =
1

(2π)1/2
exp

(
−v2

2

)
as it is performed in [AAC18]. For this, we consider the splitting f(x, v, t) = M1(v)+
h(x, v, t, z) with the macroscopic quantities of h defined as

ω(x, t, z) :=

ˆ

R

h(x, v, t, z) dv, µ(x, t, z) :=

ˆ

R

vh(x, v, t, z) dv

τ(x, t, z) :=

ˆ

R

v2h(x, v, t, z) dv

(1.3)

If we insert this ansatz into (1.1), do a Taylor expansion of M with respect to ω, µ, τ
around 0, and take only the linear terms, one can derive similar as it is done in
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[AAC18] the linearized equation

∂th(x, v, t, z) + v∂xh(x, v, t, z) = σ(z) L (h(x, v, t, z)) (1.4)

with

L(h) := M1(v)

[(
3

2
− v2

2

)
ω(h) + vµ(h) +

(
−1

2
+

v2

2

)
τ(h)

]
− h,

Uncertainties are also important from the point of view of numerics. Nowadays many
numerical methods with the aim to address the issues related to uncertainties have
been developed. Well known numerical methods are the Monte-Carlo method, the
moment equation approach and the perturbation methods. In addition there are
spectral-methods like the (Galerkin) generalized polynomial chaos method and the
stochastic collocation method. A review of spectral type methods can be found in
[Xiu10]. One thing spectral methods have in common is that they provide a higher
order of accuracy if the solution has a high level of regularity. Thus it is a common
procedure to check the derivatives or show boundedness or even decay in time in some
reasonable norm. In this context we point out the paper by Li and Wang [LW17],
where such a regularity condition has been studied for a large set of kinetic equations.
Their paper contains the linear BGK-operator with constant velocity and temperature
(where only mass is conserved).

The aim of this article is to extend the results in [LW17] to the linearized BGK
equation (1.4). In our case we have a dependency on the macroscopic quantities ω, µ, τ
instead of a constant Maxwell distribution with a fixed constant mean velocity and
temperature. In our case, not only the mass is conserved but also momentum and
energy. We will show exponential decay in time with a rate −λ independent of the
random variable and λ strictly positive in a physical reasonable norm. To do so, we
use the technique developed in [AAC16, AAC18]. The advantage of this approach is
that we directly inherit the optimization strategies made in these articles. In addition
to the aforementioned differences in our model, we also differ from [LW17] that we
look for sharp decay rates. To achieve this, we adapt a method proposed by [AAC16]
for the deterministic case. However, in contrast to the literature for sharp decay rates
[AAC16] we need to find estimate which hold for every possible realization of z. This
requires careful modifications of the already known approaches.

This has to be understood as kind of an a priori estimate, which means that we
find sharp decay rates which serve as lower bound for all possible realizations. This
means, the slowest possible decay rate which can be realized tends to be sharp in
the sense of [AAC16, AAC18]. Furthermore, the resulting decay rates are directly
computable. Moreover, we show that this decay rate λ also holds for the decay of the
derivatives in the random space. That means, computing such a decay rate λ for the
underlying BGK equation once, gives us immediately a decay rate for the derivatives
in the random space.

In summary, the novelty of this article consists of showing hypocoercivity for the
linearized BGK model with randomness in the collision frequency conserving mass,
momentum and energy. We include new estimates for the decay of the derivatives of
the solution with respect to the stochastic variable, which is very useful in applications.

In section 2, we will begin by writing the linearized BGK-model with uncertainties
in one space dimension as an infinite system of ODEs similar as it is done in [AAC18].
Section 3 is divided in three parts. In the first subsection we will extend Lyapunov’s
direct method in infinite dimensions to equations with a random parameter in the
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collision frequency. This is a crucial step on our search for decay rates and directly
leads to our first decay estimate presented in the second part of this section. Finally,
in the third part we deal with decay estimates in z-derivatives. The main idea here
is to benefit from two Gronwall-like estimate theorems presented in [LW17].

2. Transformation of the linearized BGK equation to an infinite system
of ODEs. To prepare for the following proofs, we want to rewrite (1.4) into an
(infinite dimensional) system of differential equations as it is done in the deterministic
case in [AAC18, AAC16]. We do this by expanding h(x, v, t, z) in a Fourier series in
x

h(x, v, t, z) =
∑
k∈Z

hk(v, t, z)e
ik 2π

L x.

Then, we will expand hk(·, t, z) ∈ L2
(
R;M−1

1 (v)
)
in normalized Hermite functions

gm(v) := (πm!)−1/2Hm(v) exp

(
−v2

2

)
,

Hm(v) := (−1)m exp

(
v2

2

)
dm

dvm
exp

(
−v2

2

)
by writing

hk(v, t, z) =

∞∑
m=0

ĥk,m(t, z)gm(v) with ĥk,m(t, z) = ⟨hk(v, ·, ·), gm(v)⟩L2(M−1
1 ).

For each k ∈ Z the vector ĥk(t, z) =
(
ĥk,0(t, z), ĥk,1(t, z), . . .

)T
∈ ℓ2(N0) contains

all Hermite coefficients of hk(·, t, z). Note that the first three normalized Hermite
functions are given by

g0(v) = M1(v), g1(v) = vM1(v), g2(v) =
v2 − 1√

2
M1(v).

Moreover, we have

ĥk,0(t, z) =

ˆ
R
hk(v, ·, ·)g0(v)M−1

1 (v) dv = ωk(t, z) (2.5)

ĥk,1(t, z) =

ˆ
R
hk(v, ·, ·)g1(v)M−1

1 (v) dv = µk(t, z) (2.6)

ĥk,2(t, z) =

ˆ
R
hk(v, ·, ·)g2(v)M−1

1 (v) dv =
1√
2
(τk(t, z)− ωk(t, z)) . (2.7)

where ωk, µk, τk are the spatial modes of the moments ω, µ, τ given by

ωk(t, z) =

ˆ
hk(v, t, z) dv,

µk(t, z) =

ˆ
vhk(v, t, z) dv,

τk(t, z) =

ˆ
v2kk(v, t, z) dv.
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It can be shown that (1.4) is equivalent to

∂

∂t
hk + ik

2π

L
vhk

= σ(z)
(
g0(v)ĥk,0 + g1(v)ĥk,1 + g2(v)ĥk,2 − hk

)
, k ∈ Z; t ≥ 0. (2.8)

For details of this derivation see [AAC18]. Since this derivation does not act on the
z variable, the derivation is exactly the same as in [AAC18], so we will not repeat it
here. Now, the vector of its Hermite coefficients satisfies

∂

∂t
ĥk(t, z) + ik

2π

L
L1ĥk(t, z) = −σ(z)L2ĥk(t, z), k ∈ Z; t ≥ 0

with the operators L1, L2 represented by the (infinite) matrices

L1 :=


0

√
1 0 · · ·√

1 0
√
2 0

0
√
2 0

√
3

... 0
√
3

. . .

 , L2 := diag (0, 0, 0, 1, 1, · · · )

Equivalently, we can also write

∂

∂t
ĥk(t, z) = −Ckĥk(t, z) k ∈ Z; t ≥ 0 with Ck := ik

2π

L
L1 + σ(z)L2. (2.9)

We note that this model satisfies the following conservation properties.

Lemma 1. The moments ω0(t, z), µ0(t, z), τ0(t, z) satisfy

ω0(t, z) = 0, µ0(t, z) = 0, τ0(t, z) = 0,

for all t > 0.

This can be proven by multiplying (2.8) for k = 0 by 1, v, v2 and then integrating
with respect to v. In the resulting equations one can compute the Maxwellian integrals
and use the relations (2.5), (2.6). (2.7) to deduce that ω0(t, z), µ0(t, z) and τ0(t, z)
are constant functions in t and then equal to zero due to the assumption on the initial
data (1.2).

Since in the following, we also want to find estimates for ∂
(n)
z h, we will also

consider the n− th derivative of equation (1.4) with respect to z, and get

∂(n)
z ∂th(x, v, t, z) + v∂(n)

z ∂xh(x, v, t, z) = ∂(n)
z (σ(z)L (h(x, v, t, z))) (2.10)

With the same approach as above, this leads to

∂(n)

∂z(n)
∂

∂t
ĥk(t, z)

= −ik
2π

L
L1

∂(n)

∂z(n)
ĥk(t, z)−

n∑
i=0

(
n

i

)
∂(i)

∂z(i)
σ(z)L2

∂(n−i)

∂z(n−i)
ĥk(t, z) (2.11)

for k ∈ Z; t ≥ 0. Alternatively, directly differentiating (2.9) n times with respect to
z leads to the same result.
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3. Decay rate for a linearized BGK model with uncertainties. In this
section, we will study the decay to equilibrium of the function h. For this, we will
follow the strategy of [AAC18]. We define the matrices Pk as

Pk :=


1 − iα

k 0 0
iα
k 1 − iβ

k 0

0 iβ
k 1 − iγ

k

0 0 iγ
k 1

0

0 I

 k ∈ N (3.12)

with I being the identity matrix and α, β, γ ∈ R will be chosen later in an appro-
priate way. We start with the following lemma.

Lemma 2. Assume 0 < σmin ≤ σ(z) ≤ σmax, L > 0. Choose the matrices
Pk as in (3.12) and Ck from (2.9). Then there exists an αmax > 0, such that with
α ∈ (0, αmax), β =

√
2α, γ =

√
3α the matrices Pk and C∗

kPk + PkCk are positive
definite for all k ∈ Z \ {0} and

C∗
kPk + PkCk ≥ 2µPk

with a µ > 0 independent of k.

The proof consists of standard algebra derivations. Therefore, we will move the
proof to the appendix. Because of the structure of Pk we had to exclude the case
k = 0 in the proof above. We want to catch up this now. This case can be deduced
from lemma 1. If we insert this result into (1.4), we obtain for k = 0

∂

∂t
h0(v, t, z) = −σ(z) h0(v, t, z). (3.13)

Using Gronwall’s lemma, this shows the decay in the case k = 0.

3.1. Decay estimate. Now, we continue with the decay estimate on h. For
this, we define

E(h)(t, z) :=
∑
k∈Z

⟨hk(v, z), Pkhk(v, z)⟩L2(M−1
1 ), (3.14)

Here the matrices P0 := I and Pk are regarded as bounded operators on ℓ2(N0) (and
thus also on L2(M−1

1 )).

Theorem 3. Let h(t) be a solution of (1.4) with 0 < L, 0 < σmin ≤ σ(z) ≤ σmax

and E(h(0))(z) < ∞, then we have

E (h(t)) (z) ≤ e−2λtE (h(0)) (z)

with some λ > 0 for all z.

Proof. Equation (3.13) leads to

∂

∂t
⟨h0(v), P0h0(v)⟩L2(M−1

1 ) =

〈
∂

∂t
h0(v), h0(v)

〉
L2(M−1

1 )

+

〈
h0(v),

∂

∂t
h0(v)

〉
L2(M−1

1 )

= −2σ(z) ⟨h0(v), h0(v)⟩L2(M−1
1 )

≤ −2σmin ⟨h0(v), h0(v)⟩L2(M−1
1 )
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and thus using lemma 2 we get

∂

∂t
E(h)(t, z) := ∂

∂t

∑
k∈Z

⟨hk(v, z), Pkhk(v, z)⟩L2(M−1
1 )

=
∑

k∈Z\{0}

∂

∂t

〈
ĥk(z), Pkĥk(z)

〉
ℓ2
+

∂

∂t

〈
ĥ0(z), P0ĥ0(z)

〉
ℓ2

≤ −
∑

k∈Z\{0}

〈
ĥk(z), (C

∗
kPk + PkCk)ĥk(z)

〉
ℓ2
− 2σmin

〈
ĥ0(z), P0ĥ0(z)

〉
ℓ2

≤ −2µ
∑

k∈Z\{0}

〈
ĥk(z), Pkĥk(z)

〉
ℓ2
− 2σmin

〈
ĥ0(z), P0ĥ0(z)

〉
ℓ2

= −2µ
∑

k∈Z\{0}

⟨hk(v, z), Pkhk(v, z)⟩L2(M−1
1 )

− 2σmin ⟨h0(v, z), P0h0(v, z)⟩L2(M−1
1 )

≤ −2λ E(h)(t, z)

where we define λ = min{µ, σmin} with µ from (3.41). Applying Gronwall’s lemma
finishes the proof.

3.2. Decay estimates in z-derivatives. For both, analytic and numeric rea-
sons, one might also be interested in the decay of the n-th derivative of a solution
with respect to the random variable z. For the following, we define

F (f, g) :=
∑
k∈Z

⟨f(k), Pkg(k)⟩ℓ2 for f(k), g(k) : Z 7→ ℓ2

and we denote ||f ||F :=
√

F(f, f).

3.2.1. Special case: σ(z) linear in z. We will show that in the special case
of linear random dependence, which means that σ(z) is linear in z, the linearized
BGK-equation (1.4) still follows an exponential decay with the same rate λ as in the
case without z derivatives.

Theorem 4. Let h(t) be a solution of (1.4) with 0 < L, 0 < σmin ≤ σ(z) ≤ σmax.

Further we assume σ(z) to be linear in z and E
(

∂(n)

∂z(n)h
)
(0, z) < ∞ for all n ∈ N0.

Then, for all n ∈ N0 and for all z, we have√
E
(

∂(n)

∂z(n)
h

)
(t, z) ≤ e−λt

n∑
i=0

(
n

i

)
(c̃ t)

i

√
E
(

∂(n−i)

∂z(n−i)
h

)
(0, z) (3.15)

with the same positive λ as in theorem 3. Further if E
(

∂(n)

∂z(n)h
)
(0, z) ≤ H2n for a

constant H > 0 and for all n ∈ N0 we can simplify (3.15) to√
E
(

∂(n)

∂z(n)
h

)
(t, z) ≤ e−λt (H + c̃t)

n
. (3.16)

Proof. We want to show the claim in two steps. First, we prove that the inequality

∂

∂t
||ĥ(n)

k (t, z)||F ≤ −λ ||ĥ(n)
k (t, z)||F + c̃ n ||ĥ(n−1)

k (t, z)||F (3.17)
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holds for all n ∈ N0. Then, this will imply (3.15) for all z as a direct consequence of
lemma 6. To start with this we first note that because of

σ(n)(z) = 0 for all n > 1, σ(1)(z) = c1

with c1 being a constant, equation (2.11) simplifies to

∂

∂t
ĥ
(n)
k (t, z) = −ik

2π

L
L1ĥ

(n)
k (t, z)− σ(z)L2ĥ

(n)
k (t, z)− nc1L2ĥ

(n−1)
k (t, z)

= −
(
Ckĥ

(n)
k (t, z) + nc1L2ĥ

(n−1)
k (t, z)

)
k ∈ Z; t ≥ 0

with Ck from (2.9). Thus, for each k ∈ Z \ {0} we have

∂

∂t

〈
ĥ
(n)
k (t, z), Pkĥ

(n)
k (t, z)

〉
ℓ2

=

〈
∂

∂t
ĥ
(n)
k (t, z), Pkĥ

(n)
k (t, z)

〉
ℓ2
+

〈
ĥ
(n)
k (t, z), Pk

∂

∂t
ĥ
(n)
k (t, z)

〉
ℓ2

= −
〈
Ckĥ

(n)
k (t, z) + nc1L2ĥ

(n−1)
k (t, z), Pkĥ

(n)
k (t, z)

〉
ℓ2

−
〈
ĥ
(n)
k (t, z), Pk

(
Ckĥ

(n)
k (t, z) + nc1L2ĥ

(n−1)
k (t, z)

)〉
ℓ2

= −
〈
ĥ
(n)
k (t, z), (C∗

kPk + PkCk) ĥ
(n)
k (t, z)

〉
ℓ2

+
〈
−nc1L2ĥ

(n−1)
k (t, z), Pkĥ

(n)
k (t, z)

〉
ℓ2
+
〈
ĥ
(n)
k (t, z),−nc1PkL2ĥ

(n−1)
k (t, z)

〉
ℓ2
.

Thus using theorem 3 we get

∂

∂t

〈
ĥ
(n)
k (t, z), Pkĥ

(n)
k (t, z)

〉
ℓ2

≤ −2µ
〈
ĥ
(n)
k (t, z), Pkĥ

(n)
k (t, z)

〉
ℓ2

(3.18)

+
〈
−nc1L2ĥ

(n−1)
k (t, z), Pkĥ

(n)
k (t, z)

〉
ℓ2
+
〈
ĥ
(n)
k (t, z),−nc1PkL2ĥ

(n−1)
k (t, z)

〉
ℓ2
.

Now we want to get an estimate of the form (3.18) for the case k = 0. Using (3.13)
we get

∂

∂t
h
(n)
0 (v, t, z) =

∂(n)

∂z(n)
(
− σ(z)h0(v, t, z)

)
=

n∑
i=0

(
n

i

)
− σ(i)(z) h

(n−i)
0 (v, t, z)

= −σ(z)h
(n)
0 (v, t, z)− nc1h

(n−1)
0 (v, t, z)

and thus with the same arguments as in the estimate k ̸= 0 above

∂

∂t

〈
h
(n)
0 (v, z), P0h

(n)
0 (v, z)

〉
L2(M−1

1 )
= −2σ(z)

〈
h
(n)
0 (v, z), h

(n)
0 (v, z)

〉
L2(M−1

1 )
(3.19)

+
〈
−nc1h

(n−1)
0 (v, z), h

(n)
0 (v, z)

〉
L2(M−1

1 )
+
〈
h
(n)
0 (v, z),−nc1h

(n−1)
0 (v, z)

〉
L2(M−1

1 )

Now we set λ := min{µ, σmin} and remember that ⟨·, ·⟩L2(M−1
1 ) = ⟨̂·, P0̂·⟩ℓ2 with

P0 = I. Thus combining (3.18) with (3.19) and summing up over all k ∈ Z leads to

∂

∂t
F
(
ĥ
(n)
k (t, z), ĥ

(n)
k (t, z)

)
≤ −2λ F

(
ĥ
(n)
k (t, z), ĥ

(n)
k (t, z)

)
(3.20)

+ F
(
h̃k(t, z), Pkĥ

(n)
k (t, z)

)
+ F

(
ĥ
(n)
k (t, z), Pkh̃k(t, z)

)
,
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where we defined

h̃k(t, z) :=

{
−nc1ĥ

(n−1)
0 (t, z) if k = 0

−nc1L2ĥ
(n−1)
k (t, z) if k ̸= 0.

More precise, the only difference between h̃k(t, z) and L2ĥ
(n−1)
k (t, z) is the first sum-

mand (this is the case k = 0). So, continuing estimate (3.20):

∂

∂t
F
(
ĥ
(n)
k (t, z), ĥ

(n)
k (t, z)

)
≤ −2λ F

(
ĥ
(n)
k (t, z), ĥ

(n)
k (t, z)

)
+

∣∣∣∣F (h̃k(t, z), Pkĥ
(n)
k (t, z)

)
+ F

(
ĥ
(n)
k (t, z), Pkh̃k(t, z)

) ∣∣∣∣
≤ −2λ F

(
ĥ
(n)
k (t, z), ĥ

(n)
k (t, z)

)
+
∣∣∣F (h̃k(t, z), Pkĥ

(n)
k (t, z)

)∣∣∣+ ∣∣∣F (ĥ(n)
k (t, z), Pkh̃k(t, z)

)∣∣∣ .
Using the Cauchy–Schwartz inequality leads to

∂

∂t
F
(
ĥ
(n)
k (t, z), ĥ

(n)
k (t, z)

)
(3.21)

≤ −2λ F
(
ĥ
(n)
k (t, z), ĥ

(n)
k (t, z)

)
+ ||h̃k(t, z)||F ||ĥ(n)

k (t, z)||F + ||ĥ(n)
k (t, z)||F ||h̃k(t, z))||F .

We have the following relation

F
(
h̃k(t, z), h̃k(t, z)

)
= (nc1)

2

(〈
ĥ
(n−1)
0 (t, z), P0ĥ

(n−1)
0 (t, z)

〉
ℓ2

+
∑

k∈Z\{0}

〈
L2ĥ

(n−1)
k (t, z), PkL2ĥ

(n−1)
k (t, z)

〉
ℓ2

)

≤
(
nc1C̃

)2
F
(
ĥ
(n−1)
k (t, z), ĥ

(n−1)
k (t, z)

)
.

In the last inequality, we used the definition of L2. Now taking the roots, define
c̃ := |c1|C̃ and inserting into (3.21) leads to

∂

∂t
||ĥ(n)

k (t, z)||2F ≤ −2λ ||ĥ(n)
k (t, z)||2F + 2nc̃||ĥ(n−1)

k (t, z)||F ||ĥ(n)
k (t, z)||F .

Dividing by 2||ĥ(n)
k (t, z)||F gives (3.17).

Now, we can deduce (3.15) as it is described in the beginning of the proof. Finally

inserting

√
E
(
h̃(n)

)
(0, z) ≤ Hn for all n ∈ N0 in (3.15) and using the binomial

theorem leads directly to (3.16). This finishes the proof.

3.2.2. General case under the assumption
∣∣∣ 1n! ∂(n)

∂z(n)σ(z)
∣∣∣ < C. The assump-

tion that σ(z) is linear in z, is very restrictive, so that our next goal is to loosen this
condition. Therefore, from now on, the z-dependence of σ(z) can be arbitrary, as
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long as
∣∣∣ 1n! ∂(n)

∂z(n)σ(z)
∣∣∣ < C for all n ∈ N0, where C is a constant independent of n.

Actually, this is a very weak constraint. It does not require that all derivatives have
to be bounded by the same constant, the bound can grow with n!. Further, we want
to simplify the notation and set

ĥ
(n)
k (t, z) :=

∂(n)

∂z(n)
ĥk(t, z) h̃

(n)
k (t, z) :=

ĥ
(n)
k (t, z)

n!

σ(n)(z) :=
∂(n)

∂z(n)
σ(z) η

(n)
k (t, z) := eλt||h̃(n)

k (t, z)||F .

Then the following theorem, with the same explicit computable λ as in theorem 4,
holds:

Theorem 5. Let h(t) be a solution of (1.4) with 0 < L, 0 < σmin ≤ σ(z) ≤
σmax.Further we assume

∣∣ 1
n!σ

(n)(z)
∣∣ < C as well as E

(
∂(n)

∂z(n) f̃
)
(0, z) ≤ H2n for all

n ∈ N0 for the initial data, then, we have√
E
(

∂(n)

∂z(n)
h

)
(t, z) ≤ e−λtHn + n!(1 +H)n+1 min

{
e−λt(1 + Ĉt)n, e(Ĉ−λ)t2n−1

}
for all n ∈ N with the same positive λ as in theorem 3 and a positive constant Ĉ.

Proof. Repeating the same arguments as presented in the proof of theorem 4 leads
to

∂

∂t
||ĥ(n)

k (t, z)||2F ≤ −2||ĥ(n)
k (t, z)||2F + 2C̃

n∑
i=1

||
(
n

i

)
σ(i)ĥ

(n−i)
k ||F ||ĥ(n)

k (t, z)||F .

Now we will use arguments presented in [LW17]. They are presented in lemma 7.
We first prove that all requirements are satisfied to use it. Therefore we first use∣∣ 1
n!σ

(n)(z)
∣∣ < C for all n ∈ N0 to estimate further:

∂

∂t
||ĥ(n)

k (t, z)||2F ≤ −2λ||ĥ(n)
k (t, z)||2F + 2C̃C||ĥ(n)

k (t, z)||F
n∑

i=1

n!

(n− i)!
||ĥ(n−i)

k (t, z)||F .

We denote Ĉ := C̃C, shift the index in the sum, and divide by (n!)2 on both sides,
we have

∂

∂t
||h̃(n)

k (t, z)||2F ≤ −2λ||h̃(n)
k (t, z)||2F + 2Ĉ||h̃(n)

k (t, z)||F
n−1∑
i=0

||h̃(i)
k (t, z)||F

and dividing by 2||h̃(n)
k (t, z)||F leads to

∂

∂t
||h̃(n)

k (t, z)||F ≤ −λ||h̃(n)
k (t, z)||F + Ĉ

n−1∑
i=0

||h̃(i)
k (t, z)||F . (3.22)

Then,we obtain for η
(n)
k

∂

∂t
η
(n)
k (t, z) ≤ Ĉ

n−1∑
i=0

η
(i)
k (t, z).
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Because of
(

∂(n)

∂z(n)h
)
(0, z) ≤ H2n we have η

(n)
k (0, z) ≤ Hn

n! , so that we can use lemma

7 point-wise in z to get

η
(n)
k (t, z) ≤ Hn

n!
+ (1 +H)n+1 min

{
(1 + Ĉt)n, eĈt2n−1

}
. (3.23)

Now we multiply (3.23) with e−λt to reach

||h̃(n)
k (t, z)||F ≤ e−λtH

n

n!
+ (1 +H)n+1 min

{
e−λt(1 + Ĉt)n, e(Ĉ−λ)t2n−1

}
.

Multiplying with n! finishes the proof.

Appendix.

3.3. Inequalities and estimates from the literature. The following two
inequalities had first been introduced in [LW17]. Even so we use a slightly different
notation in our article, the proofs can be taken from their article.

Lemma 6. Assume J = [0,∞), n ∈ N0 and a sequence f(l) ∈ C1(J,R) for all
l ∈ {0, · · · , n}. If further the system of inequalities

∂

∂t
f(l) ≤ −λf(l) + Clf(l−1), l ∈ {0, · · · , n} (3.24)

with constants λ, C > 0 holds, then

f(n)(t) ≤ e−λt
n∑

i=0

(
n

i

)
(Ct)

i
f(n−i)(0), (3.25)

where we set f(−1) to zero.

Lemma 7. Assume J = [0,∞), n ∈ N0 and a sequence f(l) ∈ C1(J,R+) for all
l ∈ {0, · · · , n}.

∂

∂t
f̃(l)(t) ≤ C

l−1∑
k=0

f̃(k)(t) (3.26)

f̃(l)(0) ≤
H l

l!

with constants λ, C > 0, H ≥ 0 and f̃(l)(t) := eλtf(l)(t) hold for all l ∈ {0, · · · , n},
then

f̃(n)(t) ≤
Hn

n!
+ (1 +H)n+1

n∑
k=1

(Ct)k

k!(k − 1)!

(n− 1)!

(n− k)!
(3.27)

and (3.27) can further be relaxed to

f̃(n)(t) ≤
Hn

n!
+ (1 +H)n+1 min

{
(1 + Ct)n, eCt2n−1

}
. (3.28)
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3.4. Proof of lemma 2.

Proof of lemma 2. Note first that C∗
kPk +PkCk has the form of a block-diagonal-

matrix (
Dk,α,β,γ,σ(z) 0

0 Ĩ

)
with Ĩ being 2σ(z) times the (infinite dimensional) identity matrix and

Dk,α,β,γ,σ(z) :=
2lα 0 l

(√
2α− β

)
0 0

0 2l
(√

2β − α
)

0 l
(√

3β −
√
2γ

)
0

l
(√

2α− β
)

0 2l
(√

3γ −
√
2β

)
− iγσ(z)

k
2lγ

0 l
(√

3β −
√
2γ

) iγσ(z)
k

2σ(z)− 2l
√
3γ 0

0 0 2lγ 0 2σ(z)


where l := 2π

L . Because of 0 < 2σmin < 2σ(z) the matrix Ĩ is already positive definite,
such that it only remains to show the positive definiteness of Dk,α,β,γ,σ(z). However,
instead of seeking α, β , γ such that the matrix Dk,α,β,γ,σ(z) is positive definite for all

k ∈ Z \ {0}, we simplify the problem by setting β =
√
2α and γ =

√
3α. Thus, we get

Dk,α,σ(z) :=


2lα 0 0 0 0
0 2lα 0 0 0

0 0 2lα − i
√
3ασ(z)
k 2

√
3lα

0 0 i
√
3ασ(z)
k 2σ(z)− 6lα 0

0 0 2
√
3lα 0 2σ(z)


which will be an easier structure to analyze. However, we note that we have to pay
for this with a reduction of the decay rate. Now we will use Sylvester’s criterion to
find a sufficient condition for α, such that the matrix Dk,α,σ(z) is positive definite for
all k ∈ Z\{0} Therefore we define δj (k, α, σ(z)) as the determinant of the lower right
j × j submatrix of Dk,α,σ(z) with 1 ≤ j ≤ 5 and search for assumptions on α, which
lead to δj (k, α, σ(z)) > 0 for all 1 ≤ j ≤ 5. Thus we get

δ1 (k, α, σ(z)) = 2σ(z)

δ2 (k, α, σ(z)) = 4σ(z) (σ(z)− 3lα)

δ3 (k, α, σ(z)) = α

(
72l3α2 −

(
48l2σ(z) +

6σ(z)3

k2

)
α+ 8lσ(z)2

)
≥ α

(
72l3α2 −

(
48l2σ(z) + 6σ(z)3

)
α+ 8lσ(z)2

)
= δ3 (1, α, σ(z)) (3.29)

δ4 (k, α, σ(z)) = 2αl δ3 (k, α, σ(z))

δ5 (k, α, σ(z)) = 4α2l2 δ3 (k, α, σ(z))

The first determinant δ1 is positive because of the assumption 0 < σ(z). The second
determinant δ2 is positive if we have

α <
σ(z)

3l
, (3.30)
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whereas δ3, δ4 and δ5 are positive if

0 < α <
8l2σ(z) + σ(z)3 −

√
16l2σ(z)4 + σ(z)6

24l3
. (3.31)

So, to make sure that Dk,α,σ(z) is positive definite, we need to choose an α such that
(3.30) and (3.31) hold. However, because of

8l2σ(z) + σ(z)3 −
√
16l2σ(z)4 + σ(z)6

24l3
≤ σ(z)

3l
(3.32)

it is sufficient to find an α such that (3.31) is fulfilled. Equation (3.32) is true since
we have

√
16l2σ(z)4 + σ(z)6 > σ(z)3. However, it still remains to show that (3.31)

can be fullfilled. So, we want to show that there exists an αmax such that

0 < αmax ≤
8l2σ(z) + σ(z)3 −

√
16l2σ(z)4 + σ(z)6

24l3
. (3.33)

Then (3.31) would be true for all α ∈ (0, αmax). For proving this, we first note that

0 <
1

24l3
σ(z)

(√
64l4 + 16l2σ(z)2 + σ(z)4 −

√
16l2σ(z)2 + σ(z)4

)
=

8l2σ(z) + σ(z)3 −
√
16l2σ(z)4 + σ(z)6

24l3
:= α(l, σ(z)) (3.34)

because of σ(z) > 0 and l > 0. Furthermore, α(l, σ(z)) is a continuous function, such
that if we take

αmax := min
σ(z)∈[σmin,σmax]

α(l, σ(z)) (3.35)

one gets αmax ≤ α(l, σ(z)) for arbitrary fixed l > 0. This, together with (3.34) leads
to (3.33). Therefore, we get that Dk,α,σ(z) is positive definite for all α ∈ (0, αmax)
with αmax given by (3.35).

It remains to prove that the matrices Pk are positive definite for this choice. In
[AAC18] it is proven that Pk is positive definite if | α |2 + | β |2 + | γ |2< 1. Since
we set β =

√
2α and γ =

√
3α this reduces to 6α2 < 1.

One can compute that α(l, σ(z)) takes its maximum at l =
√
3
4 σ(z) and we get

α2 ≤ α2
max <

(
8l2σ(z) + σ(z)3 −

√
16l2σ(z)4 + σ(z)6

24l3

)2

<
4

9
√
3

(3.36)

if l < σmax

2
√
2
, so that the matrices Pk are also positive definite for all α ∈ (0, αmax)

with αmax from (3.35) for l < σmax

2
√
2
.

Next, we want to find a lower bound for the smallest eigenvalue of C∗
kPk +PkCk.

All eigenvalues of Ĩ are 2σ(z) and because of the block diagonal structure, Dk,α,σ(z)

has a double eigenvalue 2lα together with the eigenvalues of its lower 3× 3 submatix

D
(3)
k,α,σ(z) :=

 2lα − i
√
3ασ(z)
k 2

√
3lα

i
√
3ασ(z)
k 2σ(z)− 6lα 0

2
√
3lα 0 2σ(z)

 .
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Let {λ1, λ2, λ3} be the eigenvalues of D
(3)
k,α,σ(z) arranged in increasing order. So our

aim is to find the minimum of the eigenvalues 2σ(z), 2lα and λ1. We can estimate λ1

from below by using the inequality of the arithmetic-geometric mean and get

λ1(k, α, σ(z)) =
δ3(k, α, σ(z))

λ2λ3
≥ δ3(k, α, σ(z))

(
λ2 + λ3

2

)−2

≥ δ3(k, α, σ(z))

Tr D
(3)
k,α,σ(z)

2

−2

= δ3(k, α, σ(z))
1

4 (σ(z)− αl)
2 > 0,

since D
(3)
k,α,σ(z) is positive definite for α ∈ (0, αmax). So, all in all, we need to find

a lower bound of min{2lα, δ3(k,α,σ(z))

4(σ(z)−αl)2
, 2σ(z)}. However, with α ∈ (0, αmax) the

following holds:

min{2lα, δ3(k, α, σ(z))

4 (σ(z)− αl)
2 , 2σ(z)} = min{2lα, δ3(k, α, σ(z))

4 (σ(z)− αl)
2 }

≥ min{2lα, δ3(1, α, σ(z))

4 (σ(z)− αl)
2 }

=
δ3(1, α, σ(z))

4 (σ(z)− αl)
2 := λ(l, α, σ(z)). (3.37)

The first equality is true due to (3.30), the inequality follows from (3.29). For the last
equality we have to show

α
(
72l3α2 −

(
48l2σ(z) + 6σ(z)3

)
α+ 8lσ(z)2

)
4 (σ(z)− αl)

2 ≤ 2lα

with α ∈ (0, αmax). One can compute that this is equivalent to

α

(
16l2 (2lα− σ)− 3σ3

)
≤ 0,

which is true due to (3.30). To get an estimate independent of σ(z), we define for
fixed l > 0 and α ∈ (0, αmax)

λmin(l, α) := min
σ(z)∈[σmin,σmax]

λ(l, α, σ(z)) > 0. (3.38)

Then we get

C∗
kPk + PkCk ≥ λmin(l, α) I. (3.39)

Furthermore, a straight forward computation shows that the eigenvalues of Pk are

{1, 1 ± α
√

3+
√
6

k , 1 ± α
√

3−
√
6

k }. These eigenvalues are positive for all α ∈
(0, αmax), L > 0, k ∈ N according to (3.36). Hence(

1− α

√
3 +

√
6

)
I ≤ Pk ≤

(
1 + α

√
3 +

√
6

)
I (3.40)

Combining (3.39) and (3.40) leads to

C∗
kPk + PkCk ≥ 2µ Pk (3.41)

with µ = 1
2

λmin(l,α)(
1+α

√
3+

√
6
) > 0, which completes the proof.
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