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Motivations

Hyperbolic system of conservation laws

oW + i dq¥(w) =0,
k=1
space variable: x € RP | time: t € [0, T].
unknown: w(x,t) € R™.
conservative flux: q(w)-n=YP_ q*(w)n,.
hyperbolic: A(w,n) = Dy, q(w)-n has real eigenvalues A;, i=1...m.

Discontinuities, turbulence.
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Explicit numerical schemes are constrained by a stability condition
At < Ax/A, with A = max; |A;].

» Issues: numerical precision, long time behavior, oscillations, ...



Example I: Two-phase flow model

Fluid of density p, velocity u, pressure p. Color function ¢: ¢ =0 in the
liquid and ¢ =1 in the gas.

p pu-n
w:(pu ), q(w)-n:(p(u-n)qupn). (1)
po pou-n

The pressure is a function of p and ¢, p=n(p, ).



Example II: MagnetoHydroDynamics (MHD)

Magnetized fluid of density p, velocity u, energy @, magnetic field B,
pressure p, internal energy e.

p pu
pu . pu®u+(p+ BE)I-B®B |
o |V (@+p+8Bu-Bwp |T% @
B u®B—B®u
BB

p=n(p,e)=(y—1)pe, y>1

Demo: Orszag-Tang vortex


https://www.youtube.com/watch?v=hE32FTKnHV0

Introduction

Construction of a general numerical method:
» that works for any hyperbolic system of conservation laws;
> explicit;

unconditionally stable;

of arbitrary order;

low-storage (stores only one time-step of the solution);

vV v vy

naturally parallel.



Outlines

The construction is based on a generalization of the Lattice Boltzmann
Method (LBM)

Upwind transport solver

Vectorial kinetic representation

Structure preserving time integration

Implementation



Upwind transport solver



1D transport equation

f(x,t) solution of the simple transport equation at constant velocity
v > 0.
otf +vof=0, v>0.

Approximation by an “implicit” upwind finite volume method.
P ~ f(iAx, pAt).

fP— fipifililio
At VT Aax

The scheme is stable for arbitrary CFL number 8 = "AAXt.

Actually, it is explicit: £ is given by the left boundary condition and

p—1 P
oo TP,
i ) )&y
1+
Low-storage: Only one time-step of the solution is stored and directly
updated in memory.



Higher

vV v vy

order in x: Discontinuous Galerkin (DG)

Ny cells of size h. In cell C;, we consider Gauss-Lobatto points x; ;.
DG basis function ¢y ; with support in cell £.
interpolation property ¢y ;(x;j) = &j.

Expansion on the DG basis
Fx,t) = fo(x,t) = Lo frj (1) rj(x), x € G
DG formulation for v > 0: for all cell C; and all test function ¢y ;

/C (Oefh+ voxfn)@ui+ v (fro — fr-1.d) Pr,i(xe0) = 0. (3)
l
We obtain a set of linear differential equations

Oefy+ Lpfp, =0, (4)

where Ly, is a lower block-triangular matrix because of the upwind
flux. Here also, the “implicit” scheme is explicit.



Extension to dimension D =2 or 3
f(x,t) solution of the transport equation

Oif +v-Vyf =0, xeRP.

Arbitrary mesh. (We use meshes made of hexahedral blocks, but it is not
necessary). The velocity v is constant.

» In each cell L we consider
polynomial basis functions ykE
of degree d.

» Expansion on the polynomial
basis: discontinuous
approximation of f.

» Possible non-conformity in A"
and “d".

f(x,pAt) ~ fP(x) = Zf[”ky/,f(x), xe L.
K



DG approximation

Implicit DG approximation scheme: VL,Vk

pripr_l L \V/ LfP +fP ~fP L__
LT"’k— LV‘ wk L+ aL(V'n L+V'n R)lllk—O

dLNIR

> time step index: p
» R denotes the neighbor cells

along dL.
> v-nT =max(v-n,0),

v-n~ =min(v-n,0).
» n;g is the unit normal vector

on dL oriented from L to R.

Computing P from fP~1 requires the resolution of a large linear system.
But here again the matrix has a block-triangular structure that makes the
scheme explicit.



Upwind numbering

» L is upwind with respect to Rif v-n; g >0 on dLNIR: the
velocity v cross the common edge from L to R.

» In a cell R, the solution depends only on the values of f in the

upwind cells: the linear system is block-triangular with small blocks.
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Dependency graph
For a given velocity v we can build a dependency graph. The graph
vertices are associated with cells, and graph edges with interfaces or
boundaries. We consider two fictitious additional vertices: the “Upwind”
vertex and the “Downwind” vertex.

12

13
12

v =_Cst

Downwind
13/53



Example of transport graph

Mesh of a torus : 720 cells - 2064 interfaces

== Q0N
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Algorithm

Bibliography: [DR78, JNP84, WX99, NLO08]
Transport algorithm:

» Topological ordering of the dependency graph.
> For each cell (in topological order):

» Compute volumic terms contributions.

» Compute fluxes from upwind interfaces/boundaries.
» Solve local-to-the-cell linear systems.

» Extract the results to the downwind cells interfaces.



Comments

» Parallelization is easily achieved thanks to a task-based runtime
system (StarPU, OpenMP 4.0, etc.)

» Grouping the cells into macrocells allows to fine-tune the grain of
the parallelism.
The kinetic approach allows to represent any hyperbolic of conservation

laws by a set of coupled transport equations. This leads to natural
unconditionally stable explicit solvers.



Vectorial kinetic representation



General kinetic model

» Vectorial kinetic equation
o+ Y VFa,f = L(rea() ) (5)
k=1 T
f(x,t) e R", x € RP.
The matrices VX, 1 < k < D are diagonal and constant.
w = Pf where P is a constant m x n matrix, m < n.
The equilibrium distribution fé9(f) is such that Pf = Pfe9(f).

When t — 0, approximation of

vvyyVyVYyy

D
ow+ Y okq*(w) =0,
k=1

where the flux is given by
q“(w) = PVKFea(f).

Stable under a “subcharacteristic’ condition
[Bou99, ADNOO, Gral4].



Example: 1D system

D=1 m>1:
drw + dxq(w) = 0.

The kinetic model is given by n=2m and

—Al 0
P=(1 1), V:< : M),

o f+ +f7 _ q(f+ +f,)

2 22 7T 2 21



Link with Jin-Xin relaxation [JX95]

Jin-Xin relaxation system for approximating a system of m conservation
laws:

dw+diz = 0, (6)

drz+A%hw = %(q(w)—z). (7)

z ~ q(w) is the approximated flux.
Equivalent to the previous representation with the change of variables

w=Ff, +f z=Af —Af_.
Stable if A > p(q'(w)).



Example: isothermal Euler

isothermal compressible flow of density p and velocity u. The sound
speed is fixed to c. The conservative system is given by D=1, m =2
and w = (p,pu),q(w) = (pu,pu?+c?p). The kinetic model is given by
n=4 and

_ 1 1 00
V =diag(—1,A,-A,1), P= ( 0 01 1 )’
w = Pf.

feq wi  q(w)k Feq _ wi | q(w)k k=12

%17 Ty 0 kT T o
Stable under the sub-characteristic condition |u|+c < A.




Actually any system of conservation laws in dimension D admits an
infinite numbers of such representations. In general

n>m(D+1).

For fluids, smaller n is sometimes possible because the mass flux is also a
conserved quantity.

Applications: Magnetohydrodynamics (MHD), elastodynamics,
compressible Euler, etc.



First order splitting algorithm

For each time step of duration At,

> free transport step: solve a set of transport equations with constant
velocities

> relaxation or “collision” step: compute w = Pf and 9 (that
depends only on w), and solve

dif = %(feq —f) < 0f = N(F).

The resulting scheme is O(At) with high numerical viscosity



Structure preserving time integration



Time-symmetric scheme

Let us consider a differential equation

First order numerical method ¢
O(At)vg = v(At) + O(AF).
Another method (Crank-Nicolson):

W(At) :Cb(%)od)(%m)‘l.

The CN method is symmetric:
V(—-At)=V(At)™, w(0)=1.

A symmetric method is necessarily second order.



Usual Strang splitting

We have to solve dify, = Lyf, + Npf,. Each step is solved by the
Crank-Nicolson scheme:

> Transport solver: exp(AtLy) ~ To(At) := (1+&fL,)(1- 4t

» Collision integrator:
142 eq
exp(AtNy)fy ~ G(AL)f, = (CLtge)h 4 20 (fh)

1+ 28 1+

T> and G, are time-symmetric when 7 > 0.
Usual Strang splitting

exp(At(Ly+Np)) ~ T2(%)c2(m) TQ(%).

It is time-symmetric for T > 0 and thus second order.



Asymptotic preserving Strang splitting

> When 7 — 0, G(At)f, =2f7(f,) — f4 and G, is no more symmetric

for =0 (G(0) # ).
» The usual Strang splitting is no more time-symmetric for 7= 0.
» We observe order reduction [Jin95, PRO5].
» Time-symmetric splitting:

M8 = (A (G T Bh a5 (5



Remark: equivalent equation

We apply the previous scheme to the Jin-Xin relaxation in the limit T — 0

ow+dz = 0,
dz+A%*ow = %(q(w)fz).

By Taylor expansions we can compute the equivalent equation of the
numerical scheme. Introducing y =z —f(w), we find

at< . >+< f/((;“) _f,O(W) >ax< . > _ o(aP).

» Cannot be obtained by usual Chapman-Enskog expansion (7)

» Useful analysis for devising stable boundary conditions.



Palindromic composition (I)

General palindromic scheme [MQO02, HLW06, CFH*17] with s+ 1 steps
has the form

Ms(At) = Ma(rAt)Ma(nAt)--- Ma(Y:At), (8)
where the ¥;'s are real numbers such that
’}/I':’}/S—ia OSISS

The method is low-storage: only one time-step of the solution is stored
and directly updated in memory.
Example: the fourth-order Suzuki scheme (see [Suz90, HLWO06, MQO02])

1 41/3
W=N=B=N="nmpm L= (9)



Palindromic composition (II)

Example 2: sixth-order Kahan-Li scheme [KL97]:

Yo=%=  0.392161444007314139275655330038...
nh=%= 0.332599136789359438604272125325...

=%= —0.7062461725576393598098453372227 ... (10)
=% = 0.0822135962935508002304427053341...
Ya = 0.798543990934829963398950353048. ...

The methods (9) and (10) require to apply the elementary collision or
transport bricks C; and T, with negative time steps —At < 0.

> Collision operator: Cy(At)fy, = 2f,(f,) — fp,, reversible when 7 =0.
Works also if 7 < At.

» Transport: we simply solve a transport with the opposite velocity.



Numerical results in 1D

vV v. v v Y

Isothermal Euler.
Riemann problem p; =2, pr =1, uy = ug =0.
Implicit Discontinuous Galerkin scheme of order d = 5.
100 cells (600 nodes).
CFL number
B AAt
- Ax’

where Ax is the minimal distance between two Gauss-Lobatto
points in a cell (Ax < h/d).



density, CFL=3




Smooth solution

Test case with a smooth solution, in the fluid limit 7= 0.
» Initial condition given by
p(x,0) =143 y(x,0)=0.
sound speed ¢ = 0.6, lattice velocity A = 2.

» tnax = 0.4 so that the boundary conditions play no role.

» error = L2 norm of f5,(-, tmax) — F(*, tmax)-



Smooth solution, CFL=b

logl0(delta_x)
—If_.l _.2 —1|.9 _1.'8 —%.7 —1‘.6 —!.5 —1|.4

log10{error)

- slope =2
----- slope =4
- slope =6

order 2 (Strang AP)
order 4 (Suzuki_5)
order 6 (Kahan_Li 9)




Smooth solution, CFL=50

loglO{delta_x)
—I{..G —%.4 —?..2 —‘2 —1‘.8 -1.6

log10(error)

F—10

----- slope =4 ----- slope=6
order 4 (suzuki_5) order 6 (kahan_li 9)




Implementation



Higher dimensions: StarPU parallelization

vV v. v v Y

StarPU is a library developed at Inria Bordeaux [AAF*12]:
http://starpu.gforge.inria.fr

Task-based parallelism.

Task description: codelets, inputs (R), outputs (W or RW).
Several implementations of the same task are possible.

The user submits tasks in a correct sequential order.

StarPU schedules the tasks in parallel if possible.


http://starpu.gforge.inria.fr

Implementation in SCHNAPS

vV v vy

SCHNAPS: "Solveur Conservatif Hyperbolique Non-linéaire
Appliqué aux PlaSmas"

http://schnaps.gforge.inria.fr : DG for general hyperbolic
systems.

Implementation of the implicit transport scheme.
Implementation of a generic collision stage.
Task parallel distributions managed by StarPU.

Palindromic high order extension.


http://schnaps.gforge.inria.fr

Task graph generated by StarPU

» 4 subdomains in a 2D square

> a single time step of the first order scheme ( T + C)

|t
Il




Gantt diagram

D2Q9 model - 2x6 threads

S R T e A

TR HII\III\IHWIHNIII\I |\|III!IIIJI\III]IIIIHIIII\IIHI {0 it

T 7 TR

Low overhead/sleep time




StarPU multithread scaling

D3Q15,D3Q19,D3Q27 models on a cube with 4x4x4 elements and 8000
dof per elements with eager scheduler.

25

T I
+ + 4x4x4x8000 nv 15

+ + 4x4x4x8000 nv 19 : :
20 H+ + 4xax4x8000 nv 27 [~~~ A




StarPU MPI Scaling

Toroidal mesh : 720 macroelements x 3335 dof
2064 interfaces - 192 boundary faces

Wall time in sec for 100 interations.

Nthreads/Nmpi 1 2 3 4
14 6862 2772 1491 1014




Hybrid CPU GPU (explicit solver)

Traditional explicit DG solver (no kinetic representation). C and OpenCL

codelets: StarPU can harness the available CPUs and GPUs.

1GPU [ 2GPU [4GPU | 4 GPU + 1 CPU
1282 14.2 8.8 6.1 4.8
2562 19.7 12.6 9.8 10.4
5122 57 28.8 23.5 24.3
10242 208 96 60 49
20482 | 740 380 250 207

The GPUs are faster, but the CPUs give n additional perfs.
StarPU codelets for the kinetic solver: work in progress...




2D flow around a cylinder

» D2Q9 model for Isothermal Euler
» mesh is adapted to the geometry of the obstacle

» no-slip (v =0) condition on the obstacle imposed using a
penalization method in a small volume (red ring)

> relaxation of each f; towards 0.5(f; 4 f;) where v; = —v;.
» with CN scheme and (7 =0) — "bounce-back" operator :
simply swap f; values between opposite velocities.

» imposed state at boundaries with constant low Mach flow.




» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.

Velocity field norm




» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.

Velocity field norm




» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.

Velocity field norm




» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.

Velocity field norm




» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.

Velocity field norm




» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.
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» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.

Velocity field norm




» imposed velocity field at inlet v~ 0.07c.
» finite T =0.0001.

Velocity field norm




3D Multiphase flow

Rayleigh-Taylor instability. Two immiscible fluids with gravity.
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Rayleigh-Taylor instability. Two immiscible fluids with gravity.




3D Multiphase flow

Rayleigh-Taylor instability. Two immiscible fluids with gravity.




3D Multiphase flow

Rayleigh-Taylor instability. Two immiscible fluids with gravity.




Drifting MHD stationary vortex : 7 x D2Q4

atp-l-Vpu :0
depu+V- {puu—l— (p+ %2)1 - BB} =0

Basic MHD 2
(+divergence cleaning) Q+V- [(QJFPJF F)u—(B- UB)} =0
0tB+V-(Bu—uB+yl) =0
oy +V-(c?B) =0

Closure: p=(y—1)pe=(y—1) {Q fp”—; + 372] Simple 2D stationary

solution (azimuthal symmetry) + constant drift velocity

P =Po
u =ug [ugrirt + h(r)ey]
B =boh(r)es

b2
p(r)=po+ B(1- (1)
by =puj

expressed in cylindrical coordinates in the drifting frame (rp = ugin t).



2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
h(r) = expl(1—r2)/2]

Magnetic field




2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
h(r) = expl(1—r2)/2]

Magnetic field Velocity
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
h(r) = expl(1—r2)/2]

Magnetic field Velocity
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
h(r) = expl(1—r2)/2]

Magnetic field Velocity
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",

h(r) = expl(1-r?)/2]

Magnetic field

Velocity
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2D MHD drifting vortex

Parameters : p =1.0,pg =1,

h(r) = expl(1-r?)/2]

Magnetic field

uo = by = 0.5, ugrire = [1,1]%,

Velocity

A7 5L
i
7 7
/% 4
z //// 754

SRR

2
NN

7

e

SR

ool
AN NN AN



2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
h(r) = expl(1—r2)/2]

Magnetic field Velocity




2D MHD drifting vortex
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
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2D MHD drifting vortex

Parameters : p =1.0,pg =1,
h(r) = expl(1—r2)/2]

Magnetic field

uo = by = 0.5, ugrire = [1,1]%,

Velocity
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2D MHD drifting vortex

Parameters : p =1.0,pg =1,

h(r) = expl(1—r?)/2]

Magnetic field

up = by = 0.5, ugrire = [1,1]%,

Velocity
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",

h(r) = expl(1—r?)/2]

Magnetic field

Velocity
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",
h(r) = exp[(1—r?)/2]

Velocity

Magnetic field
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2D MHD drifting vortex

Parameters : p =1.0,pg =1,

h(r) = expl(1—r?)/2]

Magnetic field

up = by = 0.5, ugrire = [1,1]%,

Velocity
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2D MHD drifting vortex

Parameters :

h(r) = expl(1—r?)/2]

Magnetic field

p=10p =1,

up = by = 0.5, ugrire = [1,1]%,

Velocity
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2D MHD drifting vortex

Parameters : p =1.0,p0 =1, ugp = by = 0.5, ugire = [1,1]",

h(r) = expl(1—r?)/2]

Magnetic field
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MHD drifting vortex : time order check

2D disk mesh : 20 macro-elements

refinement 8 , degree 5 : 2304 quadrature points per element

| 4

>

» six scalar fields (no div B cleaning)

» dt ranges from dt,.r = 0.2 to dt = 0.006250
>

hmin=0.02 , discrete velocity norm ||v;|| = 4;

o«/./*/_.———«

1092(&/€rer)

—8— 1st order
—o— 2nd order
—8— 4th order suzuki

-4 -3 -2 -1 0
log,(dt/dtrer)



Conclusion and prospects

» Explicit kinetic schemes with no CFL condition.
> low-storage : stores only one time-step of the solution.
» High order time integrator compatible with 7 — 0.

» StarPU Task-based parallelization of the solver.

Work in progress:
» 3D MagnetoHydroDynamics.
» Boundary conditions.
» Optimizations: GPU codelets.

» Replacement of the DG solver with a Semi-Lagrangian solver.
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