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Abstract The quality of numerical reconstructions of unknown parameters
in inverse problems heavily relies on the chosen data. It is crucial to select
data that is sensitive to the parameters, which can be expressed through a
sufficient conditioning of the Fisher Information Matrix. We propose a general
framework that provides an efficient down-sampling strategy that can select
experimental setups that preserves this conditioning, as opposed to the stan-
dard optimization approach in optimal experimental design. Matrix sketching
techniques from randomized linear algebra is heavily leaned on to achieve this
goal. The method requires drawing samples from a sensitivity-informed distri-
bution, and gradient free sampling methods are integrated to execute the data
selection. Numerical experiments demonstrate the effectiveness of this method
in selecting sensor locations for Schrodinger potential reconstruction.
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1 Introduction

Inverse problems are ubiquitous. A system in the forward setting maps the
parameter to data:

y(u) = F(u,p) +n(u), (1.1)

where F : 2 x RE — R is the map, and u is the design variable in the design
space {2, the set that collects all accessible experimental specifications, with
is typically of infinite size |{2|. p is the to-be-inferred parameter, assumed to
be K-dimensional, and  ~ N(0,I") describes Gaussian measurement noise.
When the parameter p is fixed, the forward problem returns the solution y(u)
for every chosen experimental design variable u.

The associated inverse problem is to revert the process: given the reading
of y, we are to infer parameter p. There are many approaches to execute this
inversion, such as cost function minimization, maximum likelihood estimation
or Bayesian maximum-a-posteriori estimation. In the following, let

p="R(y,02) (1.2)

be an unbiased estimator resulting from a generic reconstruction strategy R.

Often there are abundant choices in the design set, namely |2 > K.
In this case, it is natural to suspect that one does not need the full data
set of {y(u)}uen to characterize p € R¥. The task at hand is to select a
down-sampled y that can give an almost equally good recovery of p. This
reduces experimental as well as computational cost, and sometimes renders the
problem computationally or experimentally tractable [12]. More specifically,
one aims to design a small finite subset 2. C {2, either through a deterministic
or random selection process, and define the down-sampled data:

92| = c< |2, and accordingly define y. =ylo., Fe= Flg , (1.3)

so that

p \%/ Pe = R(Ye, £2c) (1.4)
hopefully
and thus recovering (1.2) using a smaller set of data.
There are many perspectives to take to compare (1.2) and (1.4). One fre-
quently encountered quantity is the Fisher Information Matrix (FIM). When
the full set of data in the design space {2 is used, the FIM is defined as:

RN 5 I(2) = Z(2,p.) = G (p) T G (pi)

:/QGT(p*,U)Fil(u)G(p*’u)du’ (15)
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where G(p4) is the Frechet derivative of F at a background parameter p,:
G(p*a u) = vpf(p*7 U) .

Accordingly, when the data is down-sampled as is done in (1.3), the associated
FIM is

REXE 5 7(0,) = /Q G (pe, u) 71 (1)G (py, u)du . (1.6)

FIM is an important quantity that can describe the amount of information
contained in data through characterizing the local sensitivity of the data with
respect to (w.r.t.) the parameter around a presumed groundtruth parameter
ps«. Indeed, according to the Cramer-Rao inequality [29], the inverse of FIM
bounds the variance of the unbiased estimator p in the reconstruction. If a FIM
has a good conditioning with high eigenvalues, we obtain low variance, and
thus high confidence in the reconstruction. We note a global characterization
of solvability is hardly feasible for any generic non-linear inverse problems,
and localization as is done by FIM is conventional. Many classical optimal
experimental design methods are about manipulating this FIM matrix. This
is typically rephrased as an optimization task: One is to examine a weigh-
ing strategy so that the re-weighted Z({2) presents the optimal eigenvalue
structure. The standard quantities to consider are its trace (A-optimal) and
determinant (D-optimal) [22,28,1,3,31,2]. We also refer readers to a very nice
review in [19].

In this work, we would like to approach the problem from a different per-
spective: instead of searching for an optimal subset of experiments 2., we are
content when finding a sufficient one whose data adheres similar parameter
sensitivity as the full setup (2. Mathematically, this amounts to finding those
designs 2. = {u1,...,u.} C 2 so that Z(£2.) is as informative as Z({2), or

Design 2. to ensure Eig(Z(2.)) ~ Fig(Z(£2)), so that (1.4) holds.

This strategy is in significant contrast to the “optimal design” where one
looks the best weighing/selection strategy that provides the optimal eigen-
value structure of FIM. We relax this optimality requirement. This relaxation
provides us some flexibility in developing algorithms. More specifically, since
we do not look for optimizing the eigenvalue structure, techniques typically
unemployed to experimental design can now be leveraged on, and one can
potentially avoid deploying iterative solvers. The newly involved technics can
also expand the breath of conclusion.

Indeed, we will spell out a generic condition for ¢, and a generic down-
sample strategy that still yields sensitive data for a very general class of prob-
lems. These strategies are independent of the source of the inverse problem,
nor do they require a specific structure of the original FIM. The proposed
sampling strategy is probabilistic in nature, and thus sensitivity can only be
guaranteed with a high probability. This sampling strategy, when applied to
any specific problem, leads to a specific distribution for constructing the mask
£2.. This distribution incorporates the property of F, and thus integrates the
knowledge from the underlying model.
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The technical preparation of our approach comes from a seemingly un-
related research area of randomized linear algebra (RNLA) [24]. Indeed, the
sensitivity of the data is coded in its FIM (1.6), which enjoys a special tensor
structure, in case of Gaussian noise. This special structure allows us to deploy
random sketching techniques from RNLA, to pin the conditions for preserv-
ing the eigenvalue structure. Specifically in this context, we can spell out a
probability distribution to draw (2., and show that with high probability, the
associated down-sampled FIM is well-conditioned, and thus (1.4) holds true
with high probability.

As such, the novelty of our work lies in establishing this new perspective
on qualitative experimental design in a rather general framework. With this
new perspective, we propose a concrete algorithmic pipeline to numerically
execute this data selection through sampling.

The integration of probabilistic methods to design tasks is currently in
its fancy and has been studied for instance in [7,26] for matrix sketching
techniques for the input-to-output map or a low rank basis representation
of the data, respectively. In a Bayesian optimal design setting, a data and
model adapted random mask for MRI data acquisition could be constructed in
[30]. Further interesting applications can be found in elliptic solution operator
learning [6,5] from random input data on the basis of the randomized singular
value decomposition. In [21], the authors examined the same question in a
different light, where they used the sketching methods to study how many
variables can be stably recovered when the experiments are fixed.

The two main technical pillars of our proposed method is the matrix sketch-
ing, and probability sampling method. We briefly review them in Section 2.1
and Section 2.2 respectively. In Section 3 we turn back to the problems (1.2)-
(1.4), and examine their FIMs’ relation around the global minimum. The prob-
lem will be cast in one that invites direct use of random sketching. Such appli-
cation to our context is discussed in Section 3.3 that will lead to a very concrete
down-sample strategy. Theoretical guarantees will be provided also in this sec-
tion. To execute this strategy, practical considerations about sampling choices
also play a vital role, and they are discussed in Section 3.4. In Section 4, we
apply this general program to the potential reconstruction problem for the
Schrodinger equation, and we conclude the article in Section 5.

2 Preview of technical preparations

Two main bodies of technical preparation for the current work are matrix
sketching techniques rooted in randomized numerical linear algebra (RNLA),
and sampling algorithms, rooted in Bayesian problems, that will be leveraged
to implement the downsampling. We recall these tools in this section and unify
notations.
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2.1 Matrix Sketching in RNLA

RNLA sees its biggest impact in big data applications, where large data sets,
that usually exceed RAM capacities, need to be stored and analyzed quickly.
Techniques developed within the domain of RNLA typically target at accessing
and assessing a subset of data that is reduced in size but still representative,
through “sketching”, see [24,27,38,20] and references therein.

The technique most relevant to our context is the simple computation of
matrix-matrix product: how to compute B := ATA € REXK efficiently? In the
regime where A is a tall but skinny matrix, id est (i.e.) when it attains sig-
nificantly many more rows than its number of columns, matrix A significantly
outsizes matrix B, suggesting information is condensed. A Monte Carlo based
method can be proposed as a sketching mechanism that sketches rows of A.
In the following, we lay out an obvious generalization of this well-established
result from RNLA [24,27] which generalizes the treatment of A, a tall skinny
matrix to a quasimatrix defined on measures (hence potentially having un-
countable infinitely many rows).

Definition 2.1 Let u be a probability measure on {2, and consider a func-
tion A : 2 x R¥ — R such that A(u,-) is linear in - for all u, and that
| AC, P || 2 (23) < oo for all p € RX. Furthermore, at any fixed u € £2, denote
A, € RME the function A’s evaluation (‘row’) as A, : p — A, p = A(u, p).
The Frobenius norm for this matrix is defined as [|Al|3 = [, [|Av.: |3 dp(u) and
the quasimatrix product is defined in the typical manner

REXE 3 B=ATA = /QAW ® Ay dp(u).

By definition, B takes on an integral form, and thus can be rewritten into an
expectation. More precisely, define the random variable

1
X = (—)AI_/—\U,: , with w~ mu for a probability density 7 on (§2, u).
w(u)

Then B = E (X). It is then a standard Monte Carlo technique to replace the
integral by sample averages:

1 c
B~ - E X;j, where X;~X isa drawing. (2.1)
c
Jj=1

We can summarize this proposal in the following algorithm:
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Algorithm 1 BasicMatrixMultiplication; extended from [24, Algorithm 3]

Input: 2 x K quasimatrix A, a finite sample size ¢ < |§2] and probability measure 7u on
0.

Output: Matrix C € R°*X such that CTCa~ ATA.

1: for j=1,...,cdo

2 Sample u; ~ mp iid.;

3 Set the j-th row of C as Cj. = Ay;,:/+/cm(uy).
4: end for

5: return C and CTC.

Clearly, this algorithm is arrived simply by setting X; = C]T:Cj: in (2.1).
To justify the algorithm, the approximation sign in (2.1) can be made more
precise, and the dependence on ¢ and 7 can be spelled out explicitly, largely
by deploying central limit theorem and various application of the Chernoff
estimate. It is worth noting that the random variable here X is a matrix in-
stead of a scalar, so the application of concentration inequality needs caution.
Nevertheless, a clever choice of 7 allows derivation of the following theorem.
The proof tightly follows the (finite dimensional) matrix setting in RNLA
literature, especially in [24, Theorem 7]:

Theorem 2.1 Let A be a {2 x K quasimatriz with the space {2 with a proba-
bility measure p. Fiz a small, finite number ¢ < |2| and consider a probability
density ™ on (2; u), for which there exists a B € (0, 1] with

A3
Al

m(u) >

and let the matriz C € RK be constructed by Algorithm 1. Then CTC ap-
prozimates AT A with high precision and high probability:

P (nATA— e = ||A||%> S1-5 (22

Here § is any prescribed failure rate, and P is taken over all drawings of C.

The theorem states that if the rows of A are chosen proportional to its
“volume” — the Lo norm of the row — then with high probability (1 — 9),
the approximation of B by C'C is accurate, with the error of the Frobenius
norm decaying in the format of /log (6—1)/c, where ¢ is the chosen number
of columns.

The optimal choice of the sampling strategy is to set w(u) = ||A,..||3/[|Al|%.
Then one has § = 1, and the error term in (2.2) achieves its minimum. Suppose
we set & = 0.01, then noting log(6~—!) only gives 2 and is an O(1) number,
having the error to be €||A||% requires ¢ > %. This is an expected MC
sampling rate.
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2.2 Sampling Algorithms

Sampling is the class of tasks aimed at drawing representative samples from a
desired distribution (sometimes referred to as target distribution). Throughout
this section, we denote i as our desired distribution. This task is frequently
called upon in the context of Bayesian sampling, where the target distribu-
tion is the posterior distribution fi(u) = ppos(u|y) x ppr(v)l(ylu), and thus a
drawing from this distribution provides one solution to the associated inverse
problem. In general, due to the positivity of a probability measure, we denote
the target distribution

fi(u) oc e P | (2.3)

where @ is sometimes referred to as the potential, and o« means that g is
normalized to be integrable to 1.

Classical methods are predominantly of Markov Chain Monte Carlo (MCMC)
type. The strategy is to design a Markov chain whose invariant measure is the
target distribution. When a sample walks through this Markov chain, in time,
the distribution of the sample converges to the target distribution. Most well-
known examples include Langevin Monte Carlo, Hamiltonian Monte Carlo,
and Metropolis-Hasting LMC, and so on [13,34,11,9,25,4,16].

Another sampling paradigm that has recently attracted significant research
interest is the ensemble-type method. Originally developed in the context of
data assimilation [32,17], this approach has since been adapted to address
sampling problems. Notable examples include the Ensemble Kalman Sampler
(EKS) [18] or the Consensus Based Sampler (CBS) [8]. These methods evolve
an entire ensemble of samples simultaneously through interactive dynamics.
The interaction mechanism encodes communication among particles and is
carefully crafted to ensure desirable properties, such as being gradient-free or
affine-invariant. This remains an active area of research, with non-asymptotic
convergence theory still under development.

In our setting, we have the flexibility to choose among various sampling
methods, making both classical MCMC approaches and more recently devel-
oped ensemble-based methods potentially valuable. Since our goal involves
selecting a subset of samples u € (2., methods that evolve the entire ensemble
are directly relevant. We provide further discussion of the EKS and the CBS
below.

EKS Sampling. EKS can be viewed as an ensemble version of the Langevin
dynamics. It allocates computational resources to update ¢ samples of {u; }jzl
simultaneously:

du; = —C(U)VS(uy) dt + /2C(0) dW; , (2.4)

where C(U) = ¢! >_j(uj —u) ® (u; — u) is the empirical covariance matrix
between the particles, and @ = ¢ 1 i ugr is the mean. WW; are independent
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and identically distributed Brownian motions. Often @ takes on a quadratic

form: ®(u) = 1|/ f(u) — d||?, then if f is mildly nonlinear,

C)Vr(y) = =S -y - ) V1)
DSy e ) -0, @)

where the mild nonlinearity of f allows us to approximate V f(u;) by a con-
stant for all u;. f = %Z] f(u;) is used to denote the ensemble average of
f evaluation. Under this weakly nonlinear assumption, the implementation
of (2.4) is gradient free, and thus achieves a desired property.

When & is Lipschitz-smooth, it was shown in [14] and [37] that the mean-
field limit of (2.4) when ¢ — oo is:

dip =V - (pC(p)V®) + tr(C(p) D?p),
and for this equation, it is straightforward to check that p oc =% is an invariant
measure. When @ is strongly convex, it was also shown in [18] that this PDE
converges exponentially fast.
In summary, when denoting p. = % >_ 0y, the empirical distribution, then
for large enough c and t one has p. ~ [, and {u;} are regarded as samples
drawn from the target distribution fi oc e .

CBS Sampling. CBS was introduced in [8] as another method to draw a set
of samples simultaneously from a target distribution. It relies on the Laplace
principle [35]. A set of ¢ particles {u;}$_, evolve according to

duy = —(u; — Ma(p)) dt + \/2(1 + B)Ts(p5) AW, (2.6)

where p§ = 1 25:1 Oy, (t) is the empirical distribution. Mg(p) is the weighted

C

mean parameterized by 8: Mg(p) := M(Lgp) = [u(Lgp)(du) with Lgp =
—BP

I ::7&1) du

of a probability distribution. In the 8 — oo limit, Lgp converges to a Dirac

delta centered on the global minimum of @ over the support of p, and thus

Mg(p) — argmin,, @\Supp( ) The second term introduces stochastic deviations

in proportion to the covariance of the weighted distribution

being the weighted version of p and M operator takes the mean

Is(p) = I'(Lgp) := /(u — M(Lgp)) ® (u— M(Lgp)) (Lgp)(du)

and allows exploration of the distribution landscape. In the mean field limit
¢ — oo, the particle distribution follows

Ohp=V-((u—M(Lsp)) p+ (1+B)Is(p)Vp) .
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Under certain conditions [8], one can show the steady state of this equation is a
Gaussian approximation of the target distribution around its global maximum,
and the PDE solution converges to it exponentially fast. Furthermore, in [33]
the author links this process with Langevin dynamics, viewing it as a gradient-
free relaxation.

Greedy Sampling. All of the sampling strategies discussed above can be further
improved. Within the MCMC framework, for instance, sampling algorithms
can be enhanced by incorporating a selection mechanism in which proposed
samples are accepted or rejected based on a prescribed criterion. A classical
example is the use of the Metropolis—-Hastings (MH) algorithm as a post-
processing step to retain only “good” samples. This added step incurs min-
imal computational cost but helps mitigate bias introduced by the MCMC
procedure.

Similar strategies can also be applied to ensemble-based methods. However,
in contrast to the well-established use of MH in MCMC, the development of
such correction mechanisms for ensemble methods is still limited. One notable
example is the recent introduction of a Metropolis adjustment to correct bias
in ensemble-based sampling [36].

It is important to note that the introduction of the Metropolis—Hastings
(MH) step is primarily aimed at correcting sampling bias. However, other ac-
ceptance criteria tailored to the specific problem can also be employed. In
our case, for instance, we evaluate the convexity of the down-sampled Hessian
and retain or discard samples based on whether they lead to an improvement
in convexity—measured by a selection criterion such as the inverse condition
number of the Gauss—Newton Hessian, or its minimum eigenvalue. This simple
yet effective strategy is summarized in Algorithm 2 and serves to guide the en-
semble evolution toward more favorable configurations through early stopping
of the sampling algorithm.

Algorithm 2 Greedy Sampling

Input: initial sample {u;};=1,. . ., sample update rule R : 2° — ¢, number of iterations
I > 0, a quantity of interest to be maximized Q
Output: updated sample {u;};—1, .. . with improved evaluation criterion.
:fori=1,..,I do

Generate sample update: {v;}=1,....c = R{u;j}j=1,....c)-

if Q({v;}) > Q({u;}), then Update {u;}j=1,....c < {vj}j=1,...c

end if
end for
return sample {u;};=1,...c.

3 The general program

Having reviewed both matrix sketching techniques and sampling algorithms,
we now return to our qualitative experimental design problem and apply these



10 Kathrin Hellmuth et al.

tools to address it. Specifically, our goal is to identify suitable experimen-
tal setups that preserve data sensitivity for parameter reconstruction (1.2),
even when the data is down-sampled (1.4). To achieve this, we reformulate
the task as a sketching problem over the FIM, allowing us to leverage re-
sults such as Theorem 2.1 for theoretical guarantees. This reformulated prob-
lem, when executed numerically, is coupled with a sampling strategy. In par-
ticular, ensemble-based sampling methods—such as those described in (2.4)
and (2.6)—are employed to guide the selection process.

In the following sections, we begin by analyzing the structure of the FIM,
which lays the foundation for applying sketching techniques. This is followed by
the introduction of sampling methods as an algorithmic strategy for selecting
informative data points. Additional practical considerations are discussed in
subsection 3.4.

3.1 FIM structure

Without any specifics, it is impossible to characterize the global behavior of the
landscape of the loss function for a generic nonlinear inverse problem in (1.2).
Nevertheless, when we confine ourselves to the vicinity of a fixed parameter
value p,, data sensitivity can be quantified by the conditioning of the FIM
(1.6). Drawing from linear algebra, FIM that has small conditioning number
and relatively big eigenvalues are tied to problems that are sensitive to data,
and are thus preferred.

In order to define the FIM for very general sets {2, we require the following
technical assumptions in accordance to [29]:

Assumption 1 Equip the space 2 of admissible experimental designs with
a probability measure p. Then let that the additive measurement error n ~
N(0,T) follows a centered Gaussian distribution error with self-adjoint, posi-
tive covariance operator I' : L?(§2, u) — L?(82, 1) of trace class.

Moreover, assume that F is Fréchet differentiable, and the image of its
Fréchet derivative is contained in the Cameron-Martin space corresponding to
I.

In the generic form of (1.2), the formula for FIM, denoted as Z({2), can be
recasted. Denoting J := I'"Y/2G(p,):

I(Q)=/Q(F_l/QG(p*))u,:(F_l/QG(p*))I,:du(U) ZI/QJu,:JJ,: dp(u), (3.1)

3.2 Setup and Sampling Perspective

To proceed we now make two assumptions that outline the setting in which
we operate:

Assumption 2
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(A2.1) There is an underlying ground truth parameter p, such thaty = F(p«)+1.
(A2.2) The FIM Z(2) at the ground truth parameter p. is positive definite with
reasonably high inverse condition number ¢f2, and minimal eigenvalue A\, .

These assumptions outline the setting in which we operate. Assumption (A2.1)
states that the measurements are generated by the true model that we aim to
recover. Assumption (A2.2) is introduced to ensure that the data contains suf-
ficient information to enable successful reconstruction when all measurements
are used. A violation of this assumption indicates that the problem is intrin-
sically ill-posed, in which case further structural improvements are necessary
before addressing experimental design questions, and is out of the scope of the
current paper.

This formulation places us within the framework described in Section 2.1.
Preserving data sensitivity under down-sampling now translates into selecting
rows from the matrix G, := G(p,) such that

1
/ th'];r,d/“l’(u’) ~ E Z Ju,:J»;I:; (32)
2

ue R,

holds with high probability.

3.3 Experimental Design through Sampling
In light of (3.2), we deploy Algorithm 1 and obtain the following down-
sampling strategy:

yc_{y(u)} with [f2.|=¢, and wu~mu. (3.3)
CW(U) u€ 2

The associated FIM at the global ground truth parameter then becomes:

()= Y CWEU)J@#JJ:.

ue .

As suggested in Theorem 2.1, there is an optimal sampling strategy with each
row being selected with a rate proportional to its volume. In our context, this
optimal strategy is:

fii=7p, with () o || Ju.3-

A specific case is when the design space £2 C R’ is continuously parameterized
and of finite Lebesgue measure. Assuming for simplicity of the presentation
that p is the uniform distribution over (2. Then ji can be characterized as:

1 o .
fi(w) = e~ with  ®(u) = —log([|Ju.:[3) - (3.4)

We show below that if 7 is close to the optimal 7, having enough samples
ensures the local sensitivity of down-sampled data with high probability.
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Theorem 3.1 Consider an inverse problem that satisfies assumptions (A2.1)-
(A2.2) and let the re-weighted data be constructed as in (3.3), where the sam-
pling probability density w(u) on §2 satisfies

T > pT, (3.5)

for some B € (0,1]. Furthermore, assume that ||Jy||2 is bounded for every
u € {2, then with a sufficiently large ¢, the forward map F|q, is locally sen-
sitive w.T.t. p at px with a high probability. More specifically, for any failure
probability 6 € (0,1) and any error tolerance € € (0 A a choice of the
sample size

mm)

o> s Lt V88  log @) (3.6)

pBe?

assures that with probability at least 1 — §, the inverse condition numbers

e ce . and minimum eigenvalues A2, NS, of T(£2) and Z(§2.), respectively,
satisfy
A2 €
c 2 min c 2
Cinv Z Clnvm and )\mln > >\m1n e>0.
Proof Noting that
A(‘I]']ll'l ZAIZIH |)\m11’1 mll’l| > A]"ﬂlﬂ ||I(Q) - I(QC)HF’ (3'7)

we are to bound the second term. Using Theorem 2.1, it is straightforward to
see that with probability at least 1 — §

83~ 1log(6~1)
VBe

To achieve X, > A2, — e, according to (3.7), we need to bound the term
above by ¢, Wthh yields the choice of ¢ as given by Theorem 2.1. Similar esti-

mations of the maximum eigenvalue yields the bound for the inverse condition

IZ(2) = Z(2:))llr = 17T = CTCllr < 1717

min
number ¢, = .

3.4 Practical considerations

According to Theorem 3.1, we are looking for ¢ i.i.d samples from the optimal
probability distribution f := 7pu.

A natural application of EKS provides us the following sampling strategy:
Set c¢ interactive samples U = {u;};=1,. . uniformly at initial time, noting
that the strategy can readily be adapted for Gaussian p. We then evolve them
according to

duJ = Z Djyj/'LLj/ dt + 2C(U) de,
j/
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where the first term contains the approximation to C'(U) - V,®(u,):
~C(U) - Vub(ug) = = | 2D (uy = @) @ (uye — 1) | - V()

T _

=0 2 (P = ) ol =0

N T
%mzcj%w B J(U)) Juj,:uj/

j/
=) Djjuj .
j/

The approximation in the second to last line originates from approximating
the gradient term by a difference in analogy to (2.5), with J(U) = 2 Y- i Jus s
and the fact that the u term vanishes. Running this SDE forward in time using
the classical Euler-Maruyama method gives:

ul = ult + Aty Z D ulh + \/2A0,C(U)(E,

with (;" ~ N(0,I) independent and identically distributed and adaptive time
_ At
Step Atk = W
for some € > 0 as proposed in [23,18].
Application of CBS is straightforward. As in [8] we deploy the forward in
time discretization using an exponential integrator:

ulft = e (1= e A M5, + /(1 e=2A0) 1+ B) T (05, )2

Remark 3.1 (On sampling accuracy) One key drawback of ensemble based
method is the lack of non-asymptotic convergence rate. The samples provided
by these methods are not necessarily the best samples drawn from the optimal
distribution. Meanwhile, though the bound for ¢ in Theorem 3.1 is explicit,
the constants depend on quantities that are not known a-priori ( ||J||% =
J | 7u,:/3dp(u) or the minimum eigenvalue A bringing another uncertainty
to set parameters.

However, it is important to note that accurately sampling from the target
distribution f is not our ultimate goal; rather, our primary objective is to
improve the conditioning of the FIM. As a result, we are willing to tolerate
imperfect sampling if it leads to better conditioning.

in dependence of the difference matrix D' = (D¥",); ;i

mll’l)

Remark 3.2 The optimal sampling density is 7(u) o ||.J,,..||3, but Theorem 3.1
does allow us to set 5 < 1. In certain situations, the underlying inverse problem
structure and some prior knowledge of F could potentially give some insights.
For instance, in certain cases, one can show J,, . is uniformly bounded above
and below for all u, and the bounds are tight enough. When this happens,
choosing a uniform density m may already give a satisfying sampling result.
This is confirmed in our numerical test, seen in Figure 4.6.
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4 Application to the Schrédinger potential reconstruction

In this section, we demonstrate the potential of the proposed algorithm on
a specific example!: inverse steady state Schrodinger equation. The spatial
domain is set to be X = [~1,1]2 C R? and the time-independent PDE with
non-negative source term v € C°(X) writes as:

(—A+plu,=v z€X, (4.1)
up, =0 x€0X.

In the forward problem with a fixed source v # 0, existence of a positive solu-
tion w, for a fixed non-negative parameter p € C°*°(X) follows from standard
elliptic theory.

The inverse problem is to reconstruct the potential p from measurements
of the observable solution u,. Clearly inferring p becomes trivial when the full
noise free u,, is known for only one source v > 0: one has p = %Lu& pointwise
in X. The problem arises in the finite dimensional setting: Only a %nite number
of potentially noisy measurements of u, is taken and p is parameterized by
finite many parameters. The goal is to find the optimal experimental setting

(measuring location) for best inferring p.

Parameter Discretization. Let {¢r : X — R}p=1. x be a given finite set of
basis functions on X, and our admissible set for p is assumed to be:

K
A= {p X >Ry, = @;) = p() = pedr(1, 72)

k=1

for some pp € R k = 1,...,K}.

In the numerical examples in Section 4.1.1, we used K = 9 with corresponding
basis

{Pky kn (@1, 22) = cos(k1ma1) cos(kamx2) iy ka=0,1,2-

Space discretization. To numerically realize the PDE solution, we use its nu-
merical solution computed on equidistant Cartesian grid {&,,n =1, ..., (N, +
1)2}, where we set N, cells in every direction.

4.1 Fixed Source Term -y

In the first set of experiments, we fix the source term at v = 10* for all
trials. Based on the above considerations, this well-controlled setting should be
sufficient for successful reconstruction, provided that the data is appropriately
chosen.

1 Code for generating the examples is available upon request.
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Data. Without loss of generality, we assume all possible measurements are
point-wise measurements, meaning F(x,p) = u,(z) for all € X. We denote
the ground truth data generated by the ground truth media p, € A and
independent and identically distributed (i.i.d.) standard normal noise n(z) ~

N(0,1) by
{y(x) = F(z,p.) +1(x) = up, (2) + 1(2) }eca,

so Assumption (A2.1) is satisfied. The question related to experimental design
now translates to a search for the number ¢ and locations 2. C X so to make
the associated down-sampled optimization problem locally strictly convex.

Numerical full measurement setup. The full measurement setup considers uni-
formly weighted measurements taken at all inner vertices, i.e.

2 1
Q={& T ox.  and p= g itk 2] =N = (N, — 1),
(4.2)

Computation of J, .. Evaluation of 7 requires computation of the gradient
Ju,. = Vpuy, (x) for all z € 2. In Appendix A we spell out the details of
deploying an adjoint based method to compute the gradient. For example, the
k-th entry of the gradient reveals

[k = Vpup. (@)]i = (9, drup. ) 2 (), (4.3)
where ¢(*) satisfies the adjoint equation
~Ag® +pg® = -6, on X, ¢ =0ondX. (4.4)

This demonstrates Assumption 1. Computationally both the forward and ad-
joint solvers are conducted by a finite element approach with nodal basis de-
fined on an equidistant Cartesian grid {&,}.

4.1.1 Importance Sampling Distributions

As a numerical study, we first run the equation with fine discretization, and
plot out the optimal sampling strategy fi. In the four examples shown, the
K = 9 ground truth parameters are set according to Table 4.1. As shown
in Figure 4.1, the optimal sampling distribution g := 7y o 7 shows significant
dependence on the underlying ground truth parameter.
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Potential p. Potential p. Potential p. Potential p.

20
15
10

7 0.0032 r0.0032

0.0024 0.0045

05 0.0024 0.5 0.0024 0.5

0.0018

0.0 0.0016 ' 0.0 0.0016 %' 0.0 0.0030

X2

0.0012

-0.5 0.0006 0.0008 0.5 0.0008 05 0.0015

0.0000
-05 0.0 05 -0.5 0.0

0.0000 0.0000 0.0000

-05 0.0 05

-0.5 0.0
X1 X1 X1 X1

Fig. 4.1: Top row shows four different ground-truth media p,, and the bottom
row shows the optimal sampling distribution 7 for each of them.

System ground truth parameter
13.6 10 10

A pA =1 10 1010
10 10 10

5.856 0.103 3.168
B pB 3.7441 2.493 1.124
0.9902 3.803 0.846

11 8.889 7.778
C pS = | 6.667 5.556 4.444
3.333 2.222 1.111
1000
D pP=1000
000

Table 4.1: Test scenarios to study the optimal sampling strategy 7. The (i, )
entry of the matrix is the coefficient for py with (k1 =4, ks = 7).

We then scale the parameters by multiplying p. with a scaling parameter
«. Varying the amplitude of «,, we observe very different pattern for i as well,
as shown in Figure 4.2. In this plot, we scale the ground truth distribution by
constant (o = 10 or 0.1) and we observe very different optimal distribution.
Drawn from this numerical observation, we expect i to be more centered in
the middle when p, takes on small values, but develop interesting patterns
when p, has a large scaling.

4.1.2 Effect of Sampling

As a proof of concept, we now study the performance of the sensitivity based
sampling strategy for its recovery of optimal sensor locations. The inverse
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fi under 0.1p§ [ under 1p§ {i under 10p§

0.0040 0.0032
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(a) System C.

[ under 1pf i under 10p£,

0.0045 05 0.0045 05
0.0015  _g5 0.0015 _g5
0.0000 0.0000

-0.5 0.0 0.5
X1 X1 X1

(b) System D.

[ under 0.1p%

X2

0.008

0.006

0.004

0.002

0.000

0.0040
0.0032
0.0024
0.0016
0.0008
0.0000

Fig. 4.2: Optimal importance sampling distributions i for scaling parameters ap, with
a = 0.1 (left), & = 1 (center) and o = 10 (right). The ground truth parameters p, from
System C and D from Table 4.1 are taken.

condition number c¢j,, and the minimal eigenvalue Ap;, of the FIM are key
quantities to be examined, and superscripts will refer to the specific design
under investigation.

Effect on sensor locations and minimal FIM eigenvalue. We choose the ground
truth parameter of System C in Table 4.1 and use an adapted greedy version,
based on the condition number, of EKS in [18] as described in Section 3.4 and
a similar adaptation of CBS in [8].

To start, we evaluate the FIM given by the full dataset. In Figure 4.3, with
N, = 30, we mark N = (N, — 1)2 = 841 red dots as the sensor locations
and computed the optimal distribution zi. The inverse condition number and
minimum eigenvalue of the FIM in this setting are cfUll = 8e—4 and AUl =
0.8 > 0, and the problem is locally sensitive.

To proceed with down-sampling, we allow only ¢ = 18 = 2K sensor loca-
tions. The initial guess was a uniformly weighted normal distribution over {2
and the output is severely worse, with the inverse conditioning and minimal
eigenvalue degenerated to ¢l = 1.54e—7 and ANt = 1.48e—4. Both EKS
and CBS with greedy selection, after a running of 25 iterations, move the
samples to new locations, and improve the conditioning of the weighted FIM
to cEKS = 2.25¢—3 with AEKS = 2.06, and B8 = 1.56e—3 with ACBS = 1.41,

inv min inv min
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Full data design

Al =0.8, ciull = 8.18e-04
0.5 0.0024

< 0.0 0.0016
-0.5 0.0008
0.0000

-0.5 0.0 0.5
X1

Fig. 4.3: Full Data Setup: Measurement locations (red dots) are located in all
grid points. The optimal importance sampling distribution f is drawn in the
background.

respectively. We also compare these results to a repeated greedy random sam-
pling from the normal distribution that was used to produce the initial guess,
with 25 iterations. This yields a design that is informed by the same num-
ber of intermediate sensor locations, but attains worse sensitivity values of
(Anormal fpnormaly — (5 )8e—4, 4.05e—7). The samples drawn from the initial
distribution, the iterated solution according to EKS and CBS are all plotted
in Figure 4.4, and the evolution of the smallest eigenvalues and the approxi-

mation error in the FIM along iteration are plotted in Figure 4.5.

We observe that the inverse condition number and the minimum eigenvalue
of the FIM corresponding to designs generated by EKS and CBS are even
larger than those obtained using the full dataset. This suggests that incorpo-
rating a large number of data points can, in fact, dilute the information—by
averaging highly sensitive sensors with less informative ones. In contrast, our
experimental design strategy focuses on selecting informative data points and
emphasizing them more heavily, thereby amplifying the overall information
content.

An interesting numerical discovery is that in this case, the uniformly dis-
tributed sensor locations, as depicted in Figure 4.6, also perform well, attaining
a minimum eigenvalue and conditioning (A" c™"*) being (0.36,3.4e—4).
Indeed the optimal importance sampling distribution f is bounded from above
by 0.0031 (in comparison to % A 0.0012 for a uniform distribution). Hence, the
uniform distribution in this particular case is a good approximation (with g <
0.383). Starting from uniform distribution, we once again apply greedy EKS,
CBS for 25 iterations and can further improve (AEXS cEKS) and (ACBS oCBS)
to (1,77,1.91e—3) and (1.17,1.24e—3) respectively. We find that a greedy re-
peated sampling w.r.t. the uniform distribution improves the conditioning to



Title Suppressed Due to Excessive Length 19

Initial design normal EKS design CBS design

At =1.48e-08, cif=154e-07 . AES=2.06, 5 =225e-03 A =141, cCES=1.56e-03

0.0024 0.0024 0.0024

< o 00016 ' O. 0.0016 0.0016

X2

—05 . 0.0008 0.0008 —05 . 0.0008

0.0000

0.0000 0.0000

Fig. 4.4: Red markers demonstrate the location of the sensors, with the back-
ground plotted as the optimal distribution. The left panel shows the distribu-
tion of the initial samples. The middle and the right panel show, respectively,
the EKS and CBS samples after 25 iterations. The minimum eigenvalues of the
FIM change from 1.48¢—4 to 2.06 and 1.41 and the inverse condition numbers
from order 1le—7 to le—3, ensuring local sensitivity.

Greedy Sampling

1073
500 5
S 10 g
° o
° r400 5
) L
1075 g
é 300 Y
=
-6 =
10 =

- 200
1077

0 10 20 30 40 50
iteration

Fig. 4.5: Evolution of minimum eigenvalue (solid lines) and deviation of the
down-sampled FIMs from the full data setup in Frobenius norm (dashed lines).
Three sampling methods are used: EKS (blue), CBS (orange) and repeated
sampling from the initial guess distribution (green), all used in greedy mode.
Initial distribution is shared across three sampling methods.

cand = 9.88¢—4 and A'*d = (.84 in comparison to the initial guess, but does

min

not reach the sensitivity of our proposed designs, as summarized in Table 4.2.

Effect on the square loss function. The sensitivity of the data w.r.t. the pa-
rameter is reflected, for example, in the strong convexity of the quadratic cost
function C(p) = |ly(-) — f('ap)”%Z(n,p)’ whose minimization serves as a com-
monly used inversion technique. In what follows, we visualize the landscape
of this cost function across the parameter space for different experimental de-
signs, in order to assess the impact of our sampling strategy on data sensitivity
and the difficulty of the full nonlinear inversion problem.



20 Kathrin Hellmuth et al.

Design D AD cP

min inv
full data Dfull 0.8 8.18-10%
normal initial guess 1.48-10~% 1.54-1077
EKS sample 2.06 2.25-1073
CBS sample 1.41 1.56 - 1073
greedy normal sampling 5.08-10~% 4.05-107
uniform initial guess 0.36 3.4-107%
EKS sample 1.77 1.91-1073
CBS sample 1.17 1.24-103
greedy uniform sampling 0.84 9.88-10~4

Table 4.2: Comparison of sensitivity measures associated to different designs.
Rows below an initial guess refer to sampling starting from this initial design.

For visualization, we confine ourselves to a two-dimensional admissible set
with A ={p: X — R | p(x) = p1cos(z1) + pz2 cos(z2) + 12} and the ground
truth parameter p,(r1,x2) = 1cos(z1) + 10 cos(z2) + 12 and work with noise
free synthetic data in the following. The profile of p, and the optimal impor-
tance sampling distribution are depicted in Figure 4.7. The scaling for p, in
the 1 and o direction is very different, and p, changes its profile in x5 direc-
tion significantly more. This is in alignment with the extension of the sampling
probability.

When the full dataset is used, the loss function is convex, indicating the full
dataset contains sufficient information for the recovery, with a conditioning

of M = 0.43 and a minimum eigenvalue being AUl = 47.3, as shown in

mv
Figure 4.8. An initial setup of 8 normally distributed sensor locations shows
significantly reduced convexity in the landscape of the objective function, and
the inverse condition number becomes 0.01, with a minimum eigenvalue of 2.06.
Sampling with a greedy strategy based on the condition number in Figure 4.9
according to EKS and CBS enhances both the convexity and the conditioning

dramatically, as plotted in Figure 4.9.

4.2 Source Term Design

In our second set of experiments, we allow the source term to be adjusted as
well. In particular, we set:

v(z) = 121 + Y220+ 10, with 5 = (y1,72) € [-2, 2]2.

Similar to the previous example, the possible measurements are the solution
evaluated at points «”(z). The entire forward map is:

N

F(z,7,p) =u"(x), and §(z,7) = F(x,7,ps) +n(z,7).

The flexibility of x and ¥ means we have four dimension of design space:
2 = 2 x [-2,2]2. We endow this space with u, the uniform distribution,
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Initial design uniform random design: uniform
Alnit =0.36, clnit = 3.40e-04 Afand = .84, crand = 9,.88e-04

0.0032

0.0032
0.5 0.0024 0.0024
0.0 0.0016 0.0016
05 0.0008 0.0008
0.0000 0.0000
-0.5 0.0 0.5 ) .
X1 X1
EKS design CBS design
AEKS =1.77, cEXS =1.91e-03 ABS=1.17, ctBS=1.24e-03

X1 X1

Fig. 4.6: Uniformly distributed initial guess (upper left) of the distribution
of the sensors (red dots) in the domain X, where the optimal importance
sampling distribution is drawn in the background. Application of greedy EKS
(lower left), CBS (lower left) and repeated sampling w.r.t. the uniform distri-
bution changes the sensor distribution and dramatically increases the condition
number and minimum eigenvalue of the respective FIM.

and fix the parameter dimension to K = 9 again. The continuous 7 space
prevents us to compute the full landscape, as well as the normalization constant
of 7 exactly, and we use this as an example to demonstrate our method in
this setting. Note however, that the eigenvalues of the FIM in our sampling
approach depend on the normalization constant through the data reweighting
process, which prevents us to utilize the minimum eigenvalue to evaluate and
compare sensitivity between reweighted and uniformly weighted designs.

To initiate the program, we sample in the design space using a Gaussian in
space 2 and uniform distribution on [—2, 2]2. The sampling strategies, upon a
few runs, improve the data sensitivity: the inverse condition number increase
from 1le—9 to le—4 or 1le—3 depending on the sampling method, and both out-

1y 0.0032
0.5 0.0024 0.5
< 0.0 0.0016 ' 0.0
—-0.5 0.0008 -0.5
0.0000
-0.5 0.0 0.5 -0.5 0.0 0.5

0.0032

0.0024

0.0016

0.0008

0.0000
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Sampling distribution i Potential p.

0.004

Fig. 4.7: Optimal importance sampling distribution f (left) and shape of the
ground truth parameter p, (right) in the two-dimensional setting.

~ Full data design
Loss function: full design At = 47.28, chit=0.43
Al =473e+01, cfW'=0.43

33 0.004
i
0.75 33
353 0.003
0.50 ~ $33333
X 111341
0.25 131 0.002
11
—05 38! 0.001
0.000
-05 0.0 05
X1
Initial design: normal
Loss function: init design Alnit = 2.06, cint=1.34e-02

init — init —
Ainit =2 06e+00,  cinNt=0.01
0.004
: A
4 A 0.003
2 2 < 0.0
M 0.002
0
0.9 9.9 =05 0.001
1.0 10.0
o 11101  p2
0.000

-0.5 0.0 0.5
X1

Fig. 4.8: Loss landscapes (left) for different sensor locations (right): full data
setup (first row) and normally distributed initial sensor locations (second row).
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Loss function: EKS design Loss function: CBS design Loss function: random design
AEKS=721e+01, cE5=0.86 2585 =6.12e+01,  c$35=0.64 Afendom — 7 11401, c@Ndom=0.2:

0.75 0.75

0.50 0.50

0.25 0.25 0.25

9.9

1.0 10.0 1.0 10.0
o 11101 ; £ 11101 2

EKS designs CBS designs random designs
AEKS=72.06, c5=0.86 A$85=6122,  c85=0.64 Azndom = 71,14, ¢fandom = 0.21

05 0.004
0.003

< 0.0
0.002
—0.5 0.001
0.000

Fig. 4.9: The top row shows the quadratic loss landscapes and the bottom row
shows the locations of the samples with the background presenting the optimal
distribution. The three panels are results from greedy versions of EKS, CBS
and repeated normal sampling from initial guess distribution.

perform the repeated greedy random sampling, as summarized in Table 4.3.
The second test is to initiate the program by sampling using uniform distri-
bution on the entire £2. As in the case for a fixed source term, this produces
local convexity values 2.25e—4 for the FIM conditioning, which is already sig-
nificantly better than the normal initial sampling. Our sampling algorithm,
both sampled by EKS and CBS, as well as the greedy uniform sampling can
further improve this sensitivity up to an inverse conditioning of order e—3. See
Table 4.3.

In Figure 4.10, we show the final output of the distribution of the selected
data points. The initial guess collects data at 18 = 2K experiments with
randomly chosen source parameters 4 uniformly sampled in [—2,2], and cor-
responding normally distributed sensor locations that are very concentrated
in the center. Both EKS and CBS both push these samples to the wider do-
main, and they return better sensitivity. No clear tendency is observable for
the change in the source parameters.

As in the case for a fixed source term, a uniform sensor placement per-
forms well already, yielding local convexity values 2.25e—4 and for the inverse
FIM conditioning, but can be slightly improved by repeated greedy random
sampling, or EKS or CBS sampling from the sensitivity based distribution to
values exceeding le—3.
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Initial guess normal
clnit = 3,02e-09

random design: normal

crand = 8.34e-06
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Fig. 4.10: Four different designs, characterized by their sensor locations given
by the dot locations, and 1,2 values encoded in colour and size of the dots,
together with their sensitivity measures: normally distributed initial sensor
location guess with uniformly distributed ~1,72 (upper left), greedy repeated
sampling w.r.t. this distribution (upper right), greedy EKS (lower left) and
CBS (lower right) w.r.t. the rescaled sensitivity based sampling distribution,
after 60 iterations each.

Design D cﬁv

normal initial guess 3.02-107°
EKS sample 1.68-103
CBS sample 8.75-10~4
greedy normal sampling 8.34-10~9
uniform initial guess 2.25.1074
EKS sample 1.83-1073
CBS sample 1.68-103
greedy uniform sampling 1.16-10~3

Table 4.3: Comparison of the inverse conditioning as a local sensitivity measure
emerging from different designs strategies. Rows below an initial guess refer
to sampling starting from this initial configuration.
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5 Discussion

In this work, we study the question of experimental design of a parameterized
inverse problem with the perspective of preserving the sensitivity of the data
w.r.t. the parameter as a basis for successful numerical reconstruction, at least
locally around a presumed true parameter value. Supposing that the full data
set is sensitive w.r.t. the parameter, we examine how much one can down-
sample the data. Taking the perspective of random sampling rather than an
optimal selection of data, this problem is formulated as a matrix sketching
problem, where a well-studied sketching algorithm from RNLA becomes handy.
The sample size depends on a sampling distribution that reflects the structure
of the forward problem. To draw samples from this distribution, sampling
algorithms such as EKS and CBS are implemented.

The general program described in this article can be applied to a variety
of experimental design / data selection tasks merged from inverse problems.
As a proof of concept, we provide a numerical test using Schrédinger equation
as the forward model. The optimal distribution is problem dependent and is
typically unavailable. In various applications, knowledge of the forward model
can be used to obtain some qualitative estimates.

Following this work, many new questions can be asked. In (Bayesian) op-
timal experimental design [1,39], K- and E-optimality seek to maximize the
inverse condition number or the minimal eigenvalue of inverse of the Bayesian
covariance matrix or the FIM, respectively, i.e. the same quantities we use to
evaluate sensitivity of designs in this work and run the greedy selection. Find-
ing the explicit relation between the two approaches is also one of interesting
future direction.

Our approach suffers from a drawback that is typical for all experimental
design methods: the sampling of designs requires knowledge of the underlying
ground truth parameter p, to build 7, as demonstrated in Figure 4.1. Sev-
eral strategies have been developed in classical optimal experimental design
literature [1,19] to mitigate this drawback, summarized under sequential ex-
perimental design, some of which can be directly integrated into our approach.
In particular, we see synergies between our approach and the greedy approach
consisting of alternating phases of experimental design and parameter infer-
ence through gradient based optimization.

Finally, we see potential application of our approach to more recently devel-
oped inversion frameworks that rely on a least squares optimization. Examples
of such frameworks can be found in [10,15], where Gaussian processes or neu-
ral networks are incorporated in the inversion process. A detailed derivation
is left for further investigation.

A Appendix: Derivation of the formula for V,u,(x)

We derive the formula for the gradient Vpup(z) of the solution to the Schrédinger equation
w.r.t. the potential p, that we require for the computation of the sampling probabilities.
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In the following derivations, all gradients are with respect to x, unless specified otherwise.
For a fixed measurement location z € X, we can then define the Lagrange function £ :
Ax HY(X) x HY(X) - R as

Lo(p,u,9) = u(@) +(Vg, V)L, (x) + (9, pw) L2 (x) — (9 ) ui(x),m-1(x)

where g is the Lagrange multiplier, and (-, ~>H5<X)7H,1<X) denotes the duality bracket
in H}(X) x H~1(X). Using (4.1), one immediately sees Lz(p,up,g) = up(x). Therefore,
confined on this solution manifold, chain rule gives:
Oup(z)
8pj

L. 0L,

. Op; | p=p du | p=p Op;
p=p Pj up:upi, u=up P

Sup

p=p

This equation holds valid for arbitrary g, and thus we would like to choose g = g such that
0Ly /0u = 0. If so:

dup (@)
Op;

9L

- Op;

gz, pu) L2 (x)
=T m

—p

P

g
Il
3

B

_ 0{gay 2k PRORU) L2(x)
Opj

= (9w Pjup) L2(x) -
p=p
u=u

b~

It remains to compute g, € H& (X) for which 9L4(p,u,gs)/0u = 0. From integration by
parts we see

Bula =0u [u(@) + (Vgz, Va2 (x) + (9o, P02 (x) |
=0u [U(m) +(=Agasu) g-1(x),51(x) <P9z7“>L2(X)] :
Setting this to be zero, we have the condition for g,:

—Agy +pgr = 6z on X, g =0o0n09X.
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