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Preserving positivity of Gauss-Newton Hessian through random
sampling

Kathrin Hellmuth, Christian Klingenberg, Qin Li

• A novel perspective is proposed to consider experimental design as a
down-sampling problem from a comprehensive set of design variables.

• In a least squares optimization framework, the problem of preserving
local convexity of the loss function is formulated into the positivity-
preserving problem of the Gauss-Newton Hessian. Matrix sketching
techniques are then deployed to provide quantitative bounds for down-
sampling.

• To execute the down-sampling, gradient-free ensemble sampling meth-
ods are deployed to select samples.

• Numerical validation is provided using the Schrödinger potential recon-
struction problem as an example, where the optimal sensor placements
problem is investigated.
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Abstract

Numerically the reconstructability of unknown parameters in inverse prob-
lems heavily relies on the chosen data. Therefore, it is crucial to design
an experiment that yields data that is sensitive to the parameters. We ap-
proach this problem from the perspective of a least squares optimization,
and examine the positivity of the Gauss-Newton Hessian at the global mini-
mum point of the objective function. We propose a general framework that
provides an efficient down-sampling strategy that can select data that pre-
serves the strict positivity of the Hessian. Matrix sketching techniques from
randomized linear algebra is heavily leaned on to achieve this goal. The
method requires drawing samples from a certain distribution, and gradient
free sampling methods are integrated to execute the data selection. Numer-
ical experiments demonstrate the effectiveness of this method in selecting
sensor locations for Schrödinger potential reconstruction.
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1. Introduction

Inverse problems are ubiquitous. A system in the forward setting maps
the parameter to data:

y(u) = F(u, p) + η , (1)

where F is the map, p is the parameter, and η stands for measurement error.

F : Ω× RK → R, with Ω ⊂ Rdu , and |Ω| ≫ 1 . (2)

When the parameter p is fixed, the forward problem returns the solution y(u)
for every u ∈ Ω, the design variable set. |Ω| denotes the number of possible
experiments/readable data, and it can be infinity.

The associated inverse problem is to revert the process: given the reading
of y, we are to infer parameter p. There are many approaches to execute this
inversion, and optimization is one popular choice:

p∗ = argminpC(p) = ∥y(·)−F(·, p)∥2 . (3)

Often there are abundant choices in the design set, namely |Ω| ≫ K. In
this case, it is natural to suspect that one does not need the full data set
of {y(u)}u∈Ω, which contains much more data than necessary. The task at
hand is to select a down-sampled y that can give an almost equally good
recovery of p. This reduces experimental as well as computational cost, and
sometimes renders the problem computationally or experimentally tractable
at all [1]. More specifically, we are to design a subset Ωc, either through a
deterministic or random selection process, and the down-sampled data:

|Ωc| = c ≪ |Ω| , and accordingly define yc = y|Ωc , Fc = F|Ωc
,

so that
p∗ ≈︸︷︷︸

hopefully

pc,∗ = argminpCc(p) = ∥yc(·)−Fc(·, p)∥2 , (4)

and thus recovering (3) using a smaller set of data.
There are many perspectives to take to compare (3) and (4). In the lin-

ear setting when F becomes a matrix F(u, p) = Au,: · p, the optimization
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problem (3) is quadratically convex. The solution is explicit and the Hes-
sian of the landscape is independent of p: A⊤A. In this setting, the problem
of reducing (3) to (4) resembles optimal design, sometimes referred to op-
timal experimental design, with the goal being finding the rows of A that
are “informative.” This task is usually translated to analyzing the spectrum
of A|⊤Ωc

· A|Ωc
, with A|Ωc

standing for down-sampling A by only keeping the
rows whose indices are in Ωc. This matrix can be viewed as a down-sampled
Hessian. The goal is to design Ωc well so that this down-sampled Hessian
has a good conditioning. The standard quantities to consider are its trace
(A-optimal) and determinant (D-optimal) [2, 3, 4, 5, 6, 7]. We also refer
readers to a very nice review in [8].

In the nonlinear setting, for any given general F , this nice structure is
lost, and the objective function usually becomes non-convex, with Hessian
depending on p. Studying the whole landscape is infeasible, but we can
nevertheless examine the local behavior of the objective function around the
global minimum point. In particular, if the objective function in (3) is strictly
convex close to the global minimum, we hope the down-sampled problem (4)
is also, with a preserved convexity constant. This poses the major question
we are to address in this paper

How to down-sample data y to ensure local strong convexity of (4)?

This change of perspective from global to local gives us some freedom to
address the problem in a general setting. The goal of the current work is to
spell out a generic condition for c, and a generic down-sample strategy that
still achieves the convexity for a very general class of problems. The proposed
sampling strategy is probabilistic in nature, and thus the strong convexity
with a preserved convexity coefficient can only be guaranteed with a high
probability. This sampling strategy, when applied to any specific problem,
leads to a specific distribution for constructing the mask Ωc. This distribution
incorporates the property of F , and thus integrates the knowledge from the
underlying model.

The technical preparation of our approach comes from a seemingly un-
related research area of randomized linear algebra (RNLA) [9]. Indeed, the
strong convexity of an objective function is coded in its Hessian matrix, and
in the vicinity of the global minimum, linearization is a very good approxima-
tion, and the Hessian of (3) enjoys a special tensor structure (that sometimes
termed Gauss-Newton Hessian [10, 11, 12, 13]). This special structure allows
us to deploy random sketching techniques from RNLA, to pin the conditions
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for ensuring the positivity. Specifically in this context, we can spell out a
probability distribution to draw Ωc, and show that with high probability, the
associated down-sampled Hessian is strictly positive, and thus Problem (4)
still enjoys the local strong convexity.

The integration of probabilistic methods to design tasks is currently at its
fancy and has been studied for instance in [14, 15] for with matrix sketching
techniques for the input-to output map or a low rank basis representation
of the data, respectively. In a Bayesian optimal design setting, a data and
model adapted random mask for MRI data acquisition could be constructed
in [16].

The two main technical pillars of our proposed method is the matrix
sketching, and probability sampling method. We briefly review them in Sec-
tion 2.1 and Section 2.2 respectively. In Section 3 we turn back to the
problems (3)-(4), and examine their Hessian’s relation around the global
minimum. The problem will be cast in a setting to invite the direct use of
random sketching. Such application to our context is discussed in Section 3.2
that will lead to a very concrete down-sample strategy. Theoretical guaran-
tees will be provided also in this section. To execute this strategy, practical
considerations about sampling choices also play a vital role, and they are
discussed in Section 3.3. In Section 4, we apply this general program to
the potential reconstruction problem for the Schrödinger equation, and we
conclude the article in Section 5.

2. Preview of technical preparations

Two main bodies of technical preparation for the current work are matrix
sketching techniques rooted in randomized numerical linear algebra (RNLA),
and sampling, rooted in Bayesian problems. The material in this section
serves as an overview of these tools, and we also unify notations.

2.1. Matrix Sketching by RNLA

RNLA sees its biggest impact in big data applications, where large data
sets, that usually exceed RAM capacities, need to be stored and analyzed
quickly. Techniques developed within the domain of RNLA typically target
at accessing and assessing a subset of data that is reduced in size but still
representative, through “sketching”, see [9, 17, 18, 19] and references therein.

The technique most relevant to our context is the simple computation of
matrix-matrix product: how to compute AA⊤ efficiently? Of specific inter-
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ests, we are now in the regime where A ∈ RK×N is a very short but fat matrix
with N ≫ K, so it has significantly many more columns than its number
of rows. Denoting A:,i its i-th column, the problem is to compute a rather
small-sized matrix B from a large-sized matrix A:

RK×K ∋ B = AA⊤ =
N∑
i=1

A:,iA
⊤
:,i .

The grand philosophy of Monte Carlo is that anything written in a sum-
mation form can be interpreted as taking an expectation, and thus can be
turned into a sampling problem. In this setting, define the random object

X =
1

πi

A:,iA
⊤
:,i , with probability πi , then B = E (X) ,

and the law of large number indicates:

B ≈ 1

c

c∑
j=1

Xj , where Xj ∼ X is a draw. (5)

The following algorithm summarizes this proposal:

Algorithm 1 BasicMatrixMultiplication; [9, Algorithm 3]

Input: Matrix A ∈ RK×N , a sample size c ≪ N and probabilities {πn}Nn=1.
Output: Matrix C ∈ RK×c such that CC⊤ ≈ AA⊤.

1: for j = 1, ..., c do
2: Sample nj i.i.d. using P(nj = m) = πm;
3: Set the j-th column of C as C:j = A:nj

/
√
cπnj

.
4: end for
5: return C and CC⊤.

Clearly, this algorithm is arrived simply by setting Xj = C:jC
⊤
:,j in (5). To

justify the algorithm, we need to make the approximation sign in (5) more
precise, and spell out the dependence on c and {pi} explicitly, largely by
deploying central limit theorem and various application of Chernoff bound. It
is worth noting that the random variable here X is a matrix instead of a scalar,
so the application of concentration inequality needs caution. Nevertheless,
we have a theorem:
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Theorem 1 ([9, Theorem 7]). Let A ∈ RK×N , c ≪ N and probabilities {πn},
such that

∑N
n=1 πn = 1. Denote β a positive number 0 < β ≤ 1 so that

πn ≥ β
∥A:,n∥22
∥A∥2F

,

and let C be constructed by Algorithm 1, then, CC⊤ approximates AA⊤ with
high precision and high probability:

P

(
∥AA⊤ − CC⊤∥F ≤

1 +
√

8β−1 log(δ−1)√
βc

∥A∥2F

)
≥ 1− δ . (6)

Here δ is any prescribed failure rate, and P is taken over all drawings of C.

The implication of the theorem is the following. If the columns of A are
chosen proportional to its “volume” – the L2 norm of the column – then with
high probability (1− δ), the approximated B using CC⊤ is accurate, with the

error of the Frobenius norm decaying in the format of

√
| log δ|
√
c

, where c is
the chosen number of columns. This result is roughly expected through the
central limit theorem argument.

The optimal choice of the sampling strategy is to set πn =
∥A:,n∥22
∥A∥2F

. When

this happens β = 1, and the error term in (6) achieves its minimum. Suppose
we set δ = 0.01, then noting log(δ−1) only gives 2 and is an O(1) number,

having the error to be ϵ∥A∥2F requires c ≥ O(1)
ϵ2

.
We should stress the statement of the problem does not have explicit

dependence on N . Indeed, N can be infinity, and A is a continuously indexed
matrix. In our setting, this corresponds to the case when our design space
|Ω| = ∞.

2.2. Sampling Algorithms

Sampling is the class of tasks aimed at drawing representative samples
from a desired distribution, denoted by µ through this section. It often raise
in the context of Bayesian sampling, where the target desired distribution is
the posterior distribution µ(u)

.
= µpos(u|y) ∝ µpr(u)l(y|u). In general, due

to the positivity of a probability measure, we denote the target distribution

µ(u) ∝ e−Φ(u) . (7)

6



where Φ is sometimes referred to as the potential, and ∝ means that µ is
normalized to be integrable to 1.

Classical methods are predominantly Markov Chain Monte Carlo (MCMC)
type algorithms, which corresponds to designing a Markov chain whose in-
variant measure is the desired target distribution. When a sample walks
through this Markov chain, in time, the distribution of the sample converges
to the target distribution. Most well-known examples include Langevin
Monte Carlo, Hamiltonian Monte Carlo, and Metropolis-Hasting LMC, and
so on [20, 21, 22, 23, 24, 25, 26].

Another sampling paradigm that recently has garnered a lot of research
interests is the ensemble type method. Originating from data assimilation
[27, 28], the idea is then integrated to solve sampling problems, with the
well-known examples being Ensemble Kalman Sampler (EKS) [29] or Con-
sensus Based Sampler (CBS) [30]. The idea is to evolve a full set of samples
altogether in an interactive manner. The interaction encodes the communi-
cation, and is designed to achieve certain properties, such as gradient free and
affine invariance. This is an active area of research, and the non-asymptotic
convergence theory is yet to be developed.

In our setting, we could choose the sampling methods at our will, so both
the classical MCMC and the newly made available ensemble methods can
potentially be useful. Since we are choosing a subset of samples u ∈ Ωc,
evolving the whole set is directly relevant. We discuss EKS and CBS below.

EKS Sampling. EKS can be viewed as an ensemble version of the Langevin
dynamics. It allocates computational resources to update N samples of
{un}Nn=1 simultaneously:

dun = −C(U)∇Φ(un) dt+
√

2C(U) dWn , (8)

where C(U) = N−1
∑

n(un− ū)⊗ (un− ū) is the empirical covariance matrix
between the particles, and ū = N−1

∑
n′ un′ is the mean. Wn are independent

and identically distributed Brownian motions. Often Φ takes on a quadratic
form: Φ(u) = 1

2
∥f(u)− d∥2, then if f is mildly nonlinear

C(U)∇Φ(un) =
f(un)− d

N

∑
n′

(un′ − ū)⊗ (un′ − ū) · ∇f(un)

≈ f(un)− d

N

∑
n′

(un′ − ū)⊗ (f(un′)− f̄) , (9)
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where we used the mild nonlinearity and assumed ∇f(un) stays close to

a constant for all un. The notation f̄ =
∑

n f(un)

N
is used. Though strong

assumptions are made, the implementation of (8) is made gradient free, a
desired property.

When Φ is Lipschitz-smooth, [31] and [32] showed the mean-field limit
of (8) is:

∂tρ+∇ · (C(ρ)∇Φ) = C(ρ)∆ρ .

It is a straightforward computation that ρ ∝ e−Φ is an invariant measure.
When Φ is strongly convex, it was also shown in [29] that this PDE converges
exponentially fast.

In summary, denoting ρN = 1
N

∑
δun the empirical distribution, for large

enough N and t, ρN ≈ µ, and {un} are regarded as samples drawn from the
target distribution µ ∝ e−Φ.

CBS Sampling. CBS was introduced in [30] as another method to draw a set
of samples simultaneously from a target distribution. It relies on the Laplace
principle [33]. A set of N particles {un}Nn=1 evolve according to

dun = −(un −Mβ(ρ
N
t )) dt+

√
2(1 + β)Γβ(ρNt ) dWn , (10)

where ρNt = 1
N

∑N
n=1 δun(t) is the empirical distribution. Mβ(ρ) is the weighted

mean parameterized by β: Mβ(ρ) := M(Lβρ) =
∫
u (Lβρ)(du) with Lβρ =

ρe−βΦ∫
ρe−βΦ du

being the weighted version of ρ and M operator takes the mean of

a probability distribution. In the β → ∞ limit, Lβρ converges to a Dirac
delta centered on the global minimum of Φ over the support of ρ, and thus
Mβ(ρ) → argminu Φ|supp(ρ). The second term introduces stochastic devia-
tions in proportion to the covariance of the weighted distribution

Γβ(ρ) := Γ(Lβρ) :=

∫
(u−M(Lβρ))⊗ (u−M(Lβρ)) (Lβρ)(du)

and allows exploration of the distribution landscape. In the mean field limit
N → ∞, the particle distribution follows

∂tρ = ∇ · ((u−M(Lβρ)) ρ+ (1 + β)Γβ(ρ)∇ρ) .

Under certain conditions [30], one can show the steady state of this equa-
tion is a Gaussian approximation of the target distribution around its global
maximum, and the PDE solution converges to it exponentially fast. Further-
more, in [34] the author links this process with Langevin dynamics, viewing
it as a gradient-free relaxation.

8



Greedy Sampling. All the sampling strategies above can be improved. In
the MCMC framework, for example, MCMC solvers can be paired-up with
a selection process. Sample proposals can be either accepted or rejected
according to a certain criteria. A classical example is to introduce Metropo-
lis–Hastings (MH) algorithm, as a post-processing to select “good” samples.
This additional effort is minimum, but can de-bias the numerical error intro-
duced in the MCMC step.

Similar strategy can be deployed for ensemble type methods as well. Sam-
ples proposed by the algorithm can either be accepted or rejected, depending
on a preset criterion. In comparison, only limited work is available in this
framework: MH algorithm was introduced to turn biased samples to unbiased
ones [35]. We should mention the introduction of MH is mainly to correct
the bias. Other criteria can also be introduced that are more specific to the
problem at hand. For example, in our case, we examine the convexity of
the down-sampled Hessian, so samples are kept or rejected based on if the
convexity is improved. This simple strategy is summarized in Algorithm 2
and provokes the ensemble evolution at favourable configurations.

Algorithm 2 Greedy Sampling

Input: initial sample {nj}j=1,...,c, sample update rule R : {1, ..., N}c →
{1, ..., N}c, number of iterations I > 0, a quantity of interest to be maximized
Q
Output: updated sample {nj}j=1,...,c with improved evaluation criterion.

1: for i = 1, ..., I do
2: Generate sample update: {mj}j=1,...,c = R({nj}j=1,...,c).
3: if Q({mj}) > Q({nj}), thenUpdate {nj}j=1,...,c = {mj}j=1,...,c

4: end if
5: end for
6: return sample {nj}j=1,...,c.

3. The general program

We now deploy the techniques to solve our experimental design prob-
lem. To be more specific, we are tasked to find suitable experimental setups
to ensure the local strong convexity of (3), and the global basin preserves
positivity when data is down-sampled (4). We will do so by formulating
the problem as sketching the Hessian matrix, for which Theorem 1 becomes
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handy in providing a theoretical guarantee. This reformulated problem, to
be executed in an algorithm, needs to be combined with a sampling strategy,
and ensemble type sampling methods, such as (8) and (10) are deployed to
serve the purpose.

3.1. Hessian structure at the global basin

Recalling (3) is a non-convex optimization, precise characterization of the
landscape for the general F can hardly be made. When we confine ourselves
to the vicinity of the global minimum, we can potentially study the local
convexity of the problem. This usually translates to finding conditions for
achieving the positivity of the Hessian term. In the generic form of (3),
Hessian can be computed explicitly.

HpC(p) =
∫

[∇pF(u, p)⊗∇pF(u, p) + (F(u, p)− y(u))HpF(u, p)] du (11)

=

∫
G(u, p)G⊤(u, p)︸ ︷︷ ︸

=:HpC(u,p)

du+

∫
(Fn(u, p)− y(u))HpF(u, p)du,

where G(u, p) collects the gradients, for every fixed u:

G(u, p) = ∇pF(u, p) ∈ RK×1 .

It is clear that there are two terms in the formulation of (11). The second
term reflects the perturbation from the groundtruth and is regarded small
in this neighborhood. The first has the nice matrix-matrix product form as
was discussed in Section 2.1. To proceed we now make three assumptions:

(A1) There is an underlying ground truth parameter p⋆ such that y = F(p⋆).

(A2) The Hessian HpC(u, p) is uniform continuous in the small neighborhood
of p⋆ for all u ∈ Ω.

(A3) The Hessian at the global optimizer HpC(p⋆) is positive definite.

All these assumptions are valid for a large class of examples. In particular,
(A1) states that the measurements are generated by the true model and are
pollution free. The continuity requirement in (A2) is also rather mild, and
is usually fulfilled by inheriting the parameter smooth-dependence from the
inverse problem at hand. For example, in the setting of the PDE-constrained
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inversion, this property can frequently be established, as well-posedness of
the forward partial differential equation (PDE) typically involves continuous
dependence on parameters and initial data, see one example from the authors
in [36], where a parameter identification problem for the kinetic chemotaxis
equation was studied. (A3) is imposed to prevent the worst case scenario:
the problem ought to be strictly convex at the global optimum at least when
all data gets used. The failure of this assumption means the Hessian is not
strictly positive even when we deploy the information from all available data,
suggesting the problem is intrinsically ill.

With all assumptions made, it is straightforward to see:

HpC(p⋆) =
∫
Ω

G⋆(u)G
⊤
⋆ (u)du ≻ 0, where G⋆(u) := G(u, p⋆) . (12)

This formulation sets us up squarely in the framework specified in Sec-
tion 2.1. Preserving the positivity with down-sampled data now translates
to selecting columns in G⋆ so that∫

Ω

G⋆(u)G
⊤
⋆ (u)du ≈ 1

c

∑
u∈Ωc

G⋆(u)G
⊤
⋆ (u) (13)

with a high probability. Noting that columns in G⋆ are exactly ∇F , the
problem is equivalent to finding the subset of F , so that this subset of ex-
periments can already produce a convex objective function.

Remark 1. We formulate the problem by only comparing the output of the
experiment with the data y. When regularization presents, the cost function
becomes CR(p) = C(p)+λR(p) for some λ > 0 and a regularization R. Similar
results can be established with small modifications.

3.2. Experimental Design through Sampling

Following (12) and (13), and combine with Algorithm 1, it is straightfor-
ward to arrive at the following. Let the subsampled cost function be:

Cc(p) =
1

2c

∑
u∈Ωc

1

π2
u

|F(u, p)− y(u)|2 , (14)

with Ωc being a c-subset of Ω. Each u ∈ Ωc is an i.i.d. sample from Ω
according to the distribution {π(u)}. The associated Hessian HpCc at the
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global optimizer becomes:

HpCc(p⋆) =
∑
u∈Ωc

1

cπ(u)
G⋆(u)⊗G⋆(u) .

Local strong convexity of this cost function is assured by the Theorem 2,
a quick corollary of Theorem 1, with high probability, given that enough
samples were drawn.

Theorem 2. Consider an inverse problem that satisfies assumptions (A1)–
(A3) and let the weighted cost function Cc(p) be constructed as in (14), where
the sampling distribution π(u) ∈ P(Ω) satisfies

π ≥ βπ̃ with π̃(u) ∝ ∥G⋆(u)∥22, (15)

for some β ∈ (0, 1]. Furthermore, assume that ∥G⋆(u)∥2 is bounded for every
u ∈ Ω, then with a sufficiently large c, Cc is locally strongly convex at p⋆ with
a high probability.

To be more precise, for any failure probability δ ∈ (0, 1) and any minimum
value ε ∈ (0, λmin(HpC(p⋆)), a choice of the sample size

c ≥ ∥G⋆∥4F
(1 +

√
8β−1 log(δ−1))2

β(λmin(HpC(p⋆))− ε)2
(16)

assures that with probability at least 1 − δ, the quadratic cost function Cc is
locally strongly convex at the true parameter p⋆ with minimum eigenvalue
λmin(HpCc(p⋆)) ≥ ε > 0.

Proof. Assumption (A2) states that the Hessian in continuous in the neigh-
borhood of p⋆. This implies that to achieve local strong convexity, it is
sufficient to show HpCc(p⋆) ≻ 0. Noting that

λmin(HpCc(p⋆)) ≥λmin(HpC(p⋆))− |λmin(HpC(p⋆))− λmin(HpCc(p⋆))|
≥λmin(HpC(p⋆))− ∥HpC(p⋆)−HpCc(p⋆)∥F , (17)

and the positivity of HpC(p⋆) ≻ 0 from Assumption (A3), we are to bound
the second term. Using Theorem 1, it is straightforward to see that with
probability at least 1− δ

∥HpC(p⋆)−HpCc(p⋆)∥F = ∥G⋆G
T
⋆ − CCT∥F

≤
1 +

√
8β−1 log(δ−1)√

βc
∥G⋆∥2F .
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To achieve λmin(HpCc(p⋆)) ≥ ε, according to (17), we need the term above
bounded above by λmin(HpC(p⋆))−ε. The choice of c is given by calling The-
orem 1.

3.3. Practical considerations

According to Theorem 2, we are looking for c i.i.d samples from the
optimal probability distribution π̃. As a probability measure over the design
space Ω, it can be characterized as:

π̃(u) =
1

Z
e−Φ(u) with Φ(u) := − log(∥G⋆(u)∥22) . (18)

A natural application of EKS provides us the following sampling strategy.
Set c interactive samples U = {ui}i=1,...,c uniformly at initial time, and we
evolve them according to

dun =
∑
n′

Dn,n′un′ dt+
√

2C(U) dWn,

where the first term contains the approximation to C(U) · ∇uΦ(un)

C(U) · ∇uΦ(un) =

(
1

N

∑
n′

(un′ − ū)⊗ (un′ − ū)

)
· ∇uΦ(u

n)

=
2

N∥G⋆(un)∥22

∑
n′

(DuG⋆(un)(un′ − ū))T G⋆(un)(un′ − ū)

≈ 2
N∥G⋆(un)∥22

∑
n′

(
G⋆(un′)−G⋆(U)

)T
G⋆(un)un′

=:
∑
n′

Dn,n′un′ ,

where we approximated the gradient term by a difference in analogy to
(9), with G⋆(U) = 1

N

∑
n G⋆(un), and used the fact that the ū term van-

ishes. Running this SDE forward in time using the classical Euler-Maruyama
method gives:

utk+1
n = utk

n +∆tk
∑
n′

Dtk
n,n′u

tk
n′ +

√
2∆tkC(U tk)ζtkn ,
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with ζtkn ∼ N(0, I) independent and identically distributed and adaptive time
step ∆tk =

∆t0
∥Dtk∥F+ε

in dependence of the difference matrix Dtk = (Dtk
n,n′)n,n′

for some ε > 0 as proposed in [37, 29].
Application of CBS is straightforward. As in [30] we deploy the forward

in time discretization using an exponential integrator:

utk+1
n = e∆tutk

n + (1− e∆t)Mβ(ρ
N
tk
) +

√
(1− e2∆t)(1 + β)Γβ(ρNtk)ζ

tk
n .

Remark 2. We make a remark on the accuracy of these algorithms. One
key drawback of ensemble based method is the lack of non-asymptotic con-
vergence rate. The samples provided by these methods are not necessarily
the best samples drawn from the optimal distribution. Meanwhile, though the
bound in Theorem 2 is explicit, the constants depend on quantities are not
known a-priori (e.g. either ∥G⋆∥2F =

∫
∥G⋆(u)∥22du or the minimum eigen-

value λmin(HpC(p⋆)) are known a-priori), bringing another uncertainty to set
parameters.

However, we should note that drawing samples from the target distribution
π is not the ultimate goal, improving the Hessian convexity is. As a conse-
quence, we are relaxed in finding precise samples, but place the emphasis on
the Hessian eigenvalues.

Remark 3. The optimal distribution is π̃(u) ∝ ∥G⋆(u)∥22, but Theorem 2
does allow us to be β different from it. In certain situations, the underlying
inverse problem structure and some prior knowledge of F could potentially
give some insights. For instance, in certain cases, one can show G⋆(u) is
uniformly bounded above and below for all u. When this happens, choosing
a uniform distribution for π may already give a satisfying sampling result.
This is confirmed in our numerical test, seen in Figure 6.

4. Application to the Schrödinger potential reconstruction

In this section, we demonstrate the performance of the proposed algo-
rithm on a specific example: inverse steady state Schrödinger equation. The
spacial domain is set to be X = [−1, 1]2 ⊂ R2 and the time-independent
PDE with constant source term writes as:

(−∆+ p)up = 105 x ∈ X, (19)

up = 0 x ∈ ∂X.
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The source term is set to be large only for readability of subsequent com-
putation. The inverse problem is to reconstruct the potential p from mea-
surements of the observable solution up. Clearly inferring p when the full

knowledge of up is known is trivial: p = 1+∆up

up
pointwise in X. The problem

arises when p is assumed to be finite-dimensional (represented by finite many
parameters) and only a finite number of measurements of up is taken. The
goal is to find the optimal experimental setting to conduct such reconstruc-
tion.

Parameter Discretization. Let {ϕk : X → R}k=1,...,K be a given finite set of
basis functions on X, and our admissible set for p is assume to be:

A :=

{
p : X → R, x =

(
x1

x2

)
7→ p(x) =

K∑
k=1

pkϕk(x1, x2)

for some pk ∈ R, k = 1, ..., K

}
.

In the numerical examples in Section 4.1, we used K = 9 with corresponding
basis

{ϕk1,k2(x1, x2) = cos(k1πx1) cos(k2πx2)}k1,k2=0,1,2.

Experimental Setup. Without loss of generality, we assume all possible mea-
surements are point-wise measurements, meaning F(x, p) = up(x) for all
x ∈ X. We denote the ground truth data generated by the ground truth
media {y(x) = F(x, p⋆) = up⋆(x)} with p⋆ ∈ A, so Assumption (A1) is sat-
isfied. The question related to optimal design now translates to a search for
the number c and locations Ωc ⊂ X so to make the associated down-sampled
optimization problem locally strictly convex.

Space discretization. To numerically realize the PDE solution, we use its nu-
merical solution computed on equidistant Cartesian grid {ξn, n = 1, ..., (Nx+
1)2}, where we set Nx cells in every direction.

Numerical full measurement setup. The full measurement setup considers

measurements taken at all vertices, meaning Ω = {ξn}(Nx+1)2

n=1 \∂X. So |Ω| =
N = (Nx − 1)2. The cost function reads

C(p) = 1

2N

∑
x∈Ω

|up(x)− y(x)|2 .
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Computation of G⋆(x). Evaluation of π̃ requires computation of the gradient
G⋆(x) for all x ∈ Ω, and in this context, it is ∇pup⋆(x) evaluated at x ∈ Ω.
In Appendix A we spell out the details of deploying an adjoint based method
to compute the gradient. For example, the k-th entry of the gradient reveals

[G⋆(x)]k = [∇pup(x)]k = ⟨g(x), ϕkup⟩L2(X),

where g(x) satisfies the adjoint equation

−∆g(x) + pg(x) = −δx on X, g(x) = 0 on ∂X. (20)

Computationally both the forward and adjoint solvers are conducted by a
finite element approach with nodal basis defined on an equidistant Cartesian
grid {ξn}.

4.1. Importance Sampling Distributions
As a numerical study, we first run the equation with fine discretization,

and plot out the optimal sampling strategy π̃. In the four examples shown,
the K = 9 ground truth parameters are set according to Table 1. As shown
in Figure 1, the optimal sampling distribution π̃ shows significant dependence
on the underlying ground truth parameter.

System ground truth parameter

A pA⋆ =

13.6 10 10
10 10 10
10 10 10



B pB⋆ =

 5.856 0.103 3.168
3.7441 2.493 1.124
0.9902 3.803 0.846



C pC⋆ =

 11 8.889 7.778
6.667 5.556 4.444
3.333 2.222 1.111



D pD⋆ =

10 0 0
0 0 0
0 0 0


Table 1: Test scenarios to study the optimal sampling strategy π̃. The (i, j) entry of the
matrix is the coefficient for pk with (k1 = i, k2 = j).
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Figure 1: Top row shows four different ground-truth media p⋆, and the bottom row shows
the optimal sampling distribution π̃ for each of them.

We then scale the parameters by multiplying p⋆ with a scaling parameter
α. Varying the amplitude of α, we observe very different pattern for π̃ as well,
as shown in Figure 2. In this plot, we scale the ground truth distribution by
constant (α = 10 or 0.1) and we observe very different optimal distribution.
Drawn from this numerical observation, we expect π̃ to be more centered in
the middle when p⋆ takes on small values, but develop interesting patterns
when p⋆ has a large scaling.

4.2. Effect of Sampling

As a proof of concept, we now study the performance of EKS sampling
strategy for its recovery of optimal sensor locations. The minimal eigenvalue
of the Hessian is a key quantity to be examined.

Effect on sensor locations and minimal Hessian eigenvalue. We choose the
ground truth parameter of System C in Table 1 and use an adapted greedy
version of EKS in [29] as described in Section 3.3 and a similar adaptation
of CBS in [30].

To start, we evaluate the Hessian given by the full dataset. In Figure 3,
with Nx = 30, we mark N = (Nx−1)2 = 841 red dots as the sensor locations
and computed the optimal distribution π̃. The minimum eigenvalue of the
Hessian in this setting is 70.21 > 0, and the problem is locally strictly convex.

To proceed with down-sampling, we allow only c = 18 = 2K sensor
locations. The initial guess was a normal distribution over Ω and the output
is severely worse, with the minimal eigenvalue degenerated to 1.13e−2. Both
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(a) System C.
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Figure 2: Optimal importance sampling distributions π̃ for scaling parameters αp⋆ with α = 0.1 (left),
α = 1 (center) and α = 10 (right). The ground truth parameters p⋆ from System C and D from Table 1
are taken.

EKS and CBS with greedy selection, after a running of 25 iterations, move
the samples to new locations, and increase the minimum eigenvalue of the
Hessian to 86.33 and 142.39, respectively. The samples drawn from the initial
distribution, the iterated solution according to EKS and CBS are all plotted
in Figure 4, and the evolution of the smallest eigenvalues and the Hessian
error along iteration are plotted in Figure 5.

We note that the minimum eigenvalue for the Hessian generated by EKS
and CBS are even larger than the minimum eigenvalue given by the full
dataset. This suggests a vast number of data actually dilutes the information,
making the landscape less convex than it can be by only using a smaller
number of data points.

An interesting numerical discovery is that in this case, the uniformly
distributed sensor locations, as depicted in Figure 6, also perform well, at-
taining a minimum eigenvalue of 102.03. Indeed the optimal importance
sampling distribution π̃ is bounded from above by 0.0031 (in comparison to
1
N

=≈ 0.0012) for a uniform distribution. Hence, the uniform distribution in
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Figure 3: Full Data Setup: Measurement locations (red dots) are located in all grid points.
The optimal importance sampling distribution π̃ is drawn in the background.
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Figure 4: Red markers demonstrate the location of the sensors, with the background
plotted as the optimal distribution. The left panel shows the distribution of the initial
samples. The middle and the right panel show, respectively, the EKS and CBS samples
after 25 iterations. The minimum eigenvalues of the Hessian change from 1e− 2 to 86 and
142 respectively, ensuring local strong convexity.
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Figure 5: Evolution of minimum eigenvalue (solid lines) and deviation of the down-sampled
Hessians from the full Hessian in Frobenius norm (dashed lines). Three sampling methods
are used: EKS (blue), CBS (orange) and repeated sampling from the initial guess distribu-
tion (green), all used in greedy mode. Initial distribution is shared across three sampling
methods.

this particular case is a good approximation (with β ≤ 0.383). Starting from
uniform distribution, we once again apply greedy EKS, CBS and repeated
random sampling for 25 iterations and can further improve the eigenvalue to
204.88, 161.91 and 238.69, respectively.

Effect on the loss function. For a concrete visualization of the convexity
improvement of the loss function, we confine ourselves to a two-dimensional
admissible set with A = {p : X → R | p(x) = p1 cos(x1)+p2 cos(x2)} and the
ground truth parameter p⋆(x1, x2) = 1 cos(x1) + 10 cos(x2). The profile of p⋆
and the optimal importance sampling distribution are depicted in Figure 7.
The scaling for p⋆ in the x1 and x2 direction is very different, with p⋆ changes
its profile in x2 direction significantly more. This is in alignment with the
extension of the sampling probability.

When the full dataset if used, the loss function is convex, with the min-
imum eigenvalue being 4791.3, as shown in Figure 8. An initial setup of 8
normally distributed sensor locations shows significantly reduced convexity in
the loss landscape, and the minimum eigenvalue becomes 301.85. Sampling
with a greedy strategy in Figure 10 according to EKS and CBS enhances
convexity dramatically, as plotted in Figure 10.
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Figure 6: Uniformly distributed initial guess (upper left) of the distribution of the sensors
(red dots) in the domain X, where the optimal importance sampling distribution is drawn
in the background. Application of greedy EKS (lower left), CBS (lower left) and repeated
sampling with respect to (w.r.t.) the uniform distribution changes the sensor distribution
and dramatically increases the minimum eigenvalue of the Hessian of the cost function
HCc.
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Figure 8: Loss landscapes (left) for different sensor locations (right): full data setup (first
row) and normally distributed initial sensor locations (second row).
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Figure 9: The top row shows the Loss landscapes and the bottom row shows the locations
of the samples with the background presenting the optimal distribution. The three panels
are results from greedy EKS, greedy CBS and repeated normal sampling from initial guess
distribution.

5. Discussion

In this work, we study the unique reconstructability of a parameterized
inverse problem with the perspective of preserving the positivity of the Gauss-
Newton Hessian. Set in the framework of optimization problem, we translate
the problem of examining the numerical reconstructability to that of convex-
ity of the cost function at the global optimum point. Suppose the full data
set provides the strict positivity of the Hessian, we examine how much one
can down-sample the data. This problem is formulated as a matrix sketch-
ing problem, where a well-studied sketching algorithm from RNLA becomes
handy. To down sample, the sample size depends on a sampling distribution
that reflects the structure of the forward problem. To draw samples from this
distribution, sampling algorithms such as EKS and CBS are implemented.

The general program described in this article can be applied to a variety
of experimental design / data selection tasks merged from inverse problems.
As a proof of concept, we provide a numerical test using Schrödinger equation
as the forward model. The optimal distribution is problem dependent and
is typically unavailable. In various applications, knowledge of the forward
model can be used to obtain some qualitative estimates.

Following this work, many new questions can be asked. The paper
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Figure 10: Loss landscapes (left) for different sensor locations (right) obtained by sampling
according to greedy EKS (first row), CBS (second row) and repeated normal sampling (last
row) with initial setup in the second row of Figure 8.
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presents result assuming the design space is finite with |Ω| = N < ∞,
but Theorem 1 should be extendable to handle situations where the de-
sign space is infinite in size. In Bayesian optimal experimental design [4],
E-optimality seeks to maximize the minimal eigenvalue of inverse of the co-
variance matrix, and thus evaluates the same quantity that we are examining
in this work. Finding the explicit relation between the two approaches is also
one of interesting future direction. Other optimal design criterion can also
be considered. For example, one criterion to characterize convexity of the
loss function is the K-optimality criterion [38], which minimizes the condition
number of the covariance matrix. Running the greedy algorithm with this
criterion could prevent flat looking loss functions due to different sizes of the
eigenvalues of HpC, as in the case of the last row of Figure 10. Furthermore,
our presentation focuses on noise-free case. With noise present in data, by
controlling the size of the noise, one can still argue the positivity of the Hes-
sian around the global basin. The derivation is more convoluted and will be
in our future research.

Finally, we see potential application of our approach to more recently
developed inversion frameworks that rely on a least squares optimization.
Examples of such frameworks can be found in [39, 40], where Gaussian pro-
cesses or neural networks are incorporated in the inversion process. A de-
tailed derivation is left for further investigation.

Appendix A. Appendix: Derivation of the formula for ∇pup(x)

We derive the formula for the gradient ∇pup(x) of the solution to the
Schrödinger equation w.r.t. the potential p, that we require for the compu-
tation of the sampling probabilities.

In the following derivations, all gradients are with respect to x, unless
specified otherwise. For a fixed measurement location x ∈ X, we can then
define the Lagrange function L : A×H1

0 (X)×H1
0 (X) → R as

Lx(p, u, g) = u(x) + ⟨∇g,∇u⟩L2(X) + ⟨g, pu⟩L2(X) − ⟨g, f⟩H1(X),H−1(X),

where g is the Lagrange multiplier, and ⟨·, ·⟩H1
0 (X),H−1(X) denotes the duality

bracket in H1
0 (X)×H−1(X). Using (19), one immediately sees Lx(p, up, g) =

up(x). Therefore, confined on this solution manifold, chain rule gives:

∂up(x)

∂pj

∣∣∣∣
p=p̂

=
∂Lx

∂pj

∣∣∣∣ p=p̂
u=up̂

+
∂Lx

∂u

∣∣∣∣ p=p̂
u=up̂

∂up

∂pj

∣∣∣∣
p=p̂

.
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This equation holds valid for arbitrary g, and thus we would like to choose
g = gx such that ∂Lx/∂u = 0. If so:

∂up(x)

∂pj

∣∣∣∣
p=p̂

=
∂Lx

∂pj

∣∣∣∣ p=p̂
u=up̂

=
∂⟨gx, pu⟩L2(X)

∂pj

∣∣∣∣ p=p̂
u=up̂

=
∂⟨gx,

∑
k pkϕku⟩L2(X)

∂pj

∣∣∣∣ p=p̂
u=up̂

= ⟨gx, ϕjup̂⟩L2(X) .

It remains to compute gx ∈ H1
0 (X) for which ∂Lx(p, u, gx)/∂u = 0. From

integration by parts we see

∂uLx =∂u
[
u(x) + ⟨∇gx,∇u⟩L2(X) + ⟨gx, pu⟩L2(X)

]
=∂u

[
u(x) + ⟨−∆gx, u⟩H−1(X),H1(X) + ⟨pgx, u⟩L2(X)

]
.

Setting this to be zero, we have the condition for gx:

−∆gx + pgx = −δx on X, gx = 0 on ∂X .
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