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Abstract

In inverse problems, the feasibility and quality of a reconstruction for a model parameter

from indirect experimental measurements strongly depends on the quality of the available

data. It is the goal of experimental design to select suitable experimental setups that

generate informative data for this task, which is classically approached by an optimization

framework through optimal experimental design techniques. In this work, we lay out two

alternative approaches, that are based on sensitivity analysis and rooted in the identifi-

ability analysis framework, allowing them to contribute in bridging the gap between the

theoretical input-to-output map based analysis, and the practical finite data setting. As

they search for a sufficient instead of an optimal design, these approaches are of qualitative

nature.

The first approach derives the finite experimental design through relaxation of a possi-

bly infinite experimental designs on which the theoretical uniqueness proof is based. It is

applied to an inverse problem in mathematical biology that seeks to reconstruct the meso-

scopic chemotaxis tumbling parameter, that describes the directional change of bacteria

in their directed random walk towards attracting chemical stimuli, from macroscopic data

on the bacterial density. After developing a uniqueness proof, that is based on an explicit

construction of a sequence of experimental designs whose measurements are informative

about the parameter by means of the singular decomposition technique, we relax this non-

parametric infinite dimensional model parameter to a parametric, locally constant form

that in turn allows relaxation to one feasible finite design. Similar strategies as in the

uniqueness proof provide sufficiency of this design analytically, which is underpinned by

numerical results.

The second approach is more generally applicable, and assumes a predefined parametric

form of the model parameter. Design selection can then be regarded as a down-sampling

task from the large set of all possible setups in the input-to-output map. The preservation

of sensitivity of the design w.r.t. the parameter throughout the down-sampling process is

ensured by invoking an importance sampling distribution, that is derived from a matrix

sketching algorithm from randomized linear algebra for the sensitivity matrix. We propose

a numerical pipeline for implementation and numerical tests demonstrate the potential of

this method.
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Zusammenfassung

Der Erfolg der Rekonstruktion eines Modellparameters aus indirekten experimentellen

Messungen durch Lösen des inversen Problems hängt maßgeblich von der Qualität der

zur Verfügung stehenden Daten ab. Ziel der Versuchsplanung ist daher die Auswahl von

geeigneten experimentellen Setups, die für diese Aufgabe informative Daten erzeugen.

Dies wird im Zuge der optimalen Versuchsplanung klassischerweise als Optimierungsprob-

lem formuliert. In dieser Arbeit stellen wir zwei alternative Ansätze vor, die auf einer

Sensitivitätsanalyse basieren und in der Identifizierbarkeitsanalyse beheimatet sind. Diese

tragen dazu bei, die Forschungslücke zwischen der theoretischen Analyse des Problems

auf Basis der input-to-output Abbildung und der praktischen Anwendung mit begren-

zten Daten zu verstehen. Da nach einem hinreichenden anstelle eines optimalen Designs

gesuchen wird, sind diese Ansätze qualitativer Natur.

Der erste Ansatz leitet das endliche experimentelle Design durch eine Relaxation eines

konkreten, möglicherweise unendlichen experimentellen Designs aus geeigneten konstruk-

tiven theoretischen Eindeutigkeitsbeweisen her. Wir wenden diesen Ansatz auf ein in-

verses Problem in der mathematischen Biologie an, das darauf abzielt, den mesoskopischen

Chemotaxis-Tumbling-Parameter auf Basis von makroskopischen Daten zur Bakterien-

dichte zu rekonstruieren, der die Richtungsänderung von Bakterien in ihrem gerichteten

Zufallsbewegungsmuster hin zu anziehenden chemischen Stimulus beschreibt. Zunächst

wird ein Eindeutigkeitsbeweis basierend auf der input-to-output Abbildung entwickelt,

der mithilfe der Singular Decomposition Technik eine Folge von experimentellen Designs

explizit konstruiert, deren Messungen den gesuchten Parameter widerspiegeln. Durch

Relaxation des nichtparametrischen, unendlichdimensionalen Modellparameters zu einer

parametrischen, lokal konstanten Form kann auch die konstruierte Folge von Designs zu

einem machbaren, endlichen Design relaxiert werden. Ähnliche Argumente wie im Ein-

deutigkeitsbeweis belegen die Eignung dieses Designs analytisch, was durch numerische

Ergebnisse untermauert wird.

Der zweite Ansatz ist allgemeiner anwendbar, setzt dafür aber eine vordefinierte para-

metrische Form des Modellparameters voraus. Die Auswahl des Designs kann dann als ein

Downsampling-Problem aus einer großen Menge aller möglicher Setups betrachtet werden.

Die Erhaltung der Sensitivität des Designs in Bezug auf den Parameter wird im Downsam-

plingprozess durch die Verwendung einer Importance-Sampling-Verteilung sichergestellt,

die aus einem Matrix-Sketching-Algorithmus der randomisierten linearen Algebra für die

Sensitivitätsmatrix abgeleitet wird. Wir empfehlen eine numerische Pipeline zur Imple-

mentierung, und demonstrieren das Potenzial dieser Methode in numerischen Tests.
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1
Introduction

Mathematical models have proven valuable tools to describe phenomena in various areas

of life, be it in physics, biology, engineering, medicine, economics or even in social studies

[Bol72, KS70, LL92, RS08, MT14]. These models often include adjustable parameters,

which give them the flexibility to describe the phenomenon in different scenarios and

often reflect physical characteristics of the phenomenon, for instant, a speed of motion

or a material specific optical density. Parameter identification inverse problems study

the reconstruction of parameters, which are not directly observable, from experimental

data, as obtained from real world observation of the phenomenon. If successful, this

provides valuable insight into the physical characteristics, describing for instance the com-

position of tissue in medical imaging [RS08], and allows simulation and prediction of the

phenomenon’s future behaviour in the considered scenario by means of the fitted model

[BC09]. Obtaining a good parameter reconstruction, however, is in many cases anything

but simple, and depends predominantly on the quality of the available experimental data

with respect to (w.r.t.) the considered reconstruction task. Identifiability analysis provides

a holistic framework to categorize this quality according to three sources of information

degradation [GDI85], in order to allow a structured search for remedies:

(i) In the worst case, the experiment is intrinsically uninformative of the parameter, no

matter how exactly data is collected.

(ii) The experiment might be informative in general, but suffer from a poor choice in

data collection, as described by the experimental design, for instance measurements

may be taken at uninformative observation locations.

(iii) Noise might pollute the data and distort the reconstruction up to a degree where it

cannot be trusted anymore - this is related to stability issues as encountered in the

famous Calderon problem [Cal80].

The framework is wide spread in ordinary differential equation (ODE) inverse problems

[GDI85, BÅ70, LG94], but application to partial differential equation (PDE) parameter

identification is rather limited.



1. Introduction

In this thesis, we shall focus on experimental design (ii) for PDE parameter identifica-

tion, that is (i.e.) the question how to select a finite number of data that is informative

about the parameter. We lay out two approaches that contrast the classical optimal ex-

perimental design methodology, and relax the search to a sufficient instead of an optimal

design, putting them in the realm of qualitative experimental design. The identifiability

analysis framework above suggests to consider the designing process as a transition from

an informative infinite set of data as given by the input-to-output map, that summarizes

the data of all possible experimental setups as considered in (i), to a practically more

feasible finite data set that is still capable of representing the parameter according to (ii).

This work thus contributes to bridging the gap between theory of inverse problems in the

infinite-data setting and the practical finite data setting, which is poorly understood, and

developed methodologies in parts diverge [BJ09, Ren10].

Approach 1: Relaxation of Theory. The first approach describes a relaxation of a suitable

theoretical proof of identifiability under source (i), and allows a simultaneous, compatible

dimension reduction of the data and the parameter. This parameter discretization becomes

necessary, especially for non-parametric infinite dimensional parameter inverse problems,

when going over to a finite amount of data that can only characterize a finite dimensional

parameter. To sustain identifiability, a-priori information on the parameter is injected that

leverages the loss of information in the data. This approach is exemplified for a specific

parameter identification problem for a kinetic PDE model from mathematical biology,

where inverse problems are still at their fancy, but become more and more relevant as

more refined measurement techniques allow finer modelling of biological phenomena. The

model describes the directed motion of bacteria in response to an external stimulus such

as a chemical substance, termed chemotaxis. Our goal is to determine the microscopic

parameter that uniquely describes their motion through the likelihood of changing the

running direction. We assume the experimental data on the bacterial density to be of

sub-optimal macroscopic type, i.e. non-local in the movement direction, which is more

tractable for practitioners, but poses challenges to the reconstruction [Bal09, BLM08,

Lan08, BJ09, BJ10, BJJ10]. This precise inverse problem has not been studied in literature

before, and in particular the experimental design aspect under (ii) is novel to inverse

problems related to chemotaxis phenomena.

In a first project we develop the proof of general suitability of this experiment to gen-

erate informative data, in the sense of (i). Assuming, theoretically, access to perfect data

according to characteristics (ii) and (iii), i.e. access to the noise free infinite-to-infinite

dimensional input-to-output map, we invoke an existing technique for kinetic parameter

identification, termed singular decomposition [LS20, CS96a, Bal09], to prove analytically

that this input-to-output map uniquely determines a continuous bacterial motion pa-

rameter. The proof explicitly constructs a sequence of experimental setups, that trigger

microscopic information on the turning parameter by inducing increasingly singular initial

data, and exploits the freedom of prescribing spatially and directionally concentrated ini-

tial data for the bacteria and availability of small time, local interior domain measurement

data in this setting. This is the first result to study the combination of all these factors and

to obtain unique identifiability of a kinetic turning parameter from directionally averaged

2



data without any further simplifying assumptions, and has been published in [HKLT24].

In a second project, published under [HKLT25], we then conduct the relaxation, first

in the parameter by imposing a locally constant form of the tumbling kernel, which then

allows relaxation of the singularity and small measurement time requirement in the previ-

ously considered experimental designs, so to obtain a finite number of practically feasible

experimental setups. A similar methodology as before allows us to analytically prove

suitability of the proposed combination of the parameter discretization and experimental

design for reconstruction. This is in contrasted by a study on the decay of information in

the data if experimental setups are not sufficiently diverse, which demonstrates the need

for well chosen designs. These theoretical results are illustrated in numerical experiments

that demonstrate the decay of sensitivity of the data and with it the corresponding pa-

rameter reconstructions under decreasing diversity of the experimental setups, and a good

sensitivity and reconstruction behaviour under the proposed design.

Approach 2: Sampling. The second approach assumes a prescribed finite-dimensional

parametric form of the model parameter and only seeks to reduce the data dimension. Its

goal and setting thus coincide with those in optimal experimental design, however, the

shift in perspective to search for sufficient instead of optimal designs allows us to relax

the experimental design process to a sampling task that can benefit from existing strate-

gies developed for randomized numerical linear algebra [Mah16, MT20]. This perspective

and methodology is novel to experimental design. We then propose a numerical pipeline

to execute the sampling based on Bayesian posterior samplers and a greedy mechanism

and illustrate the potential of this strategy to improve sensitivity of the data w.r.t. the

parameter on numerical examples for the sensor placement problem for the Schrödinger

potential reconstruction problem. This work is summarized in the thus far unpublished

preprint [HKL24].

The thesis is structured as follows. Chapter 2 provides an introduction to inverse prob-

lems, with a particular focus on introducing terminology relevant to parameter identifi-

cation tasks, before the identifiability analysis framework is laid out, followed by a brief

overview on optimal experimental design. Part I is then devoted to approach 1 and starts

with an introduction of the kinetic chemotaxis model and the corresponding inverse prob-

lem under investigation in Chapter 3. The theoretical proof of suitability of the considered

experimental setting according to (i) is developed in Chapter 4 and Chapter 5 then lays

out the relaxation approach to discretize the motion parameter and construct a finite ex-

perimental design, which is then analytically studied for its suitability according to (ii).

The analytical framework also demonstrates a decay of information on the parameter in

the data under decreasing data diversity. These results are illustrated in a numerical

context in Chapter 6. Chapter 8 in Part II then develops the sampling strategy for exper-

imental design and justifies it in numerical experiments. Applicability of both approaches

is discussed in Chapter 9 that concludes the thesis with a brief outlook on possible future

directions of research.

3





2
Inverse Problems

In a large variety of contexts, quantities of interest cannot be observed directly. Examples

can be found in medical imaging [RS08], where the interior of the body shall be examined

without invasive surgery, or similarly in non-destructive testing in engineering [Bil20], in

subsurface structure analysis in geophysics [ILS14], where drilling is expensive and thus

avoided if possible, in image deblurring [BBDM21], where only a blurry version of the

original image is available, or in air pollutant emission tracing in environmental physics

[ZK20], where the locations of pollutant sources are searched according to measurements

of a fixed monitoring network, just to mention some. Another important application is the

fitting of mathematical models through identification of non-observable model parameters,

for instance in the famous Calderon problem [Cal80].

In all these cases, quantities of interest have to be inferred from experimental data

collected from related observable quantities. This means taking the inverse perspective.

2.1. General Formulation

In the following, a short introduction to inverse problem is given in order to fix notation,

following [Bal12]. A plethora of further introductory literature exists, and the interested

reader is referred for example (e.g.) to [Kir21, Gro93, FSU19].

Mathematical formulation. Information on the non-observable quantity of interest p,

termed parameter, shall be acquired from experimental data y ∈ Y, in some data space

Y. The map that assigns the corresponding data to a given parameter value is termed the

forward operator and reads

F : A → Y.

It is defined on the admissible set A that incorporates the shape as well as a-priori knowl-

edge on the parameter p, and is also called the prior model in [Bal12]. In what follows, A
and Y are considered subsets of normed vector spaces.



2. Inverse Problems

The inverse problem amounts in inverting F , i.e. in finding the parameter p⋆ ∈ A
such that the given data y, that was experimentally observed, is reflected well by the

measurement of an experiment with underlying parameter p⋆, in short

find p⋆ ∈ A⋆ such that F (p⋆) = y, (2.1)

where the equality might be changed for an approximate equality for instance in the

context of noisy data. This holds contrast to the forward problem, where F (p̂) is computed

for a given parameter p̂. In both cases, the forward operator F is known.

PDE Parameter Reconstruction. Parameter identification problems for differential equa-

tions have a long history as they appear in many applications. Probably the most famous

example is the Calderón problem from electrical impedance tomography that stimulated

research in the area of inverse problems [FSU19] since its proposal in 1980 [Cal80]. Be-

cause they are often based on the observation of some real world phenomenon, these inverse

problems frequently share a specific structure that shall be introduced in the following,

together with some nomenclature.

Data Generation. The data is generated by real world experiments on the phenomenon

which are initiated by imposing forcing data ϕ on the observable quantity, for instance an

initial or boundary configuration. The evolution of the observable quantity is observed

through detectors, with potentially variable profiles µ, yielding the data yϕ,µ. An experi-

ment is thus described by the choice of the so-called input data (ϕ, µ) = s which we will

also call an experimental setup s in the following.

To conduct the inverse problem, this experiment is translated to the mathematical level,

where the evolution of the observable quantity u is modeled by the PDE model involving

the unknown parameter p, i.e. u = uϕp denotes the solution to the PDE with parameter p

and forcing data ϕ. The measurement by the detector is mimicked mathematically by a

measurement operator Mµ. In total, the forward map reads

Fs(p) = Fϕ,µ(p) = Mµ(uϕp).

A graphical description is given in Figure 2.1. The inverse problem seeks to find that

parameter value p ∈ A for which the synthetic data Fs(p) approximates the experimentally

observed data ys well. In many contexts, forcing data ϕ and measurement specifications

µ can be influenced by experimenters. Then testing with different input data can enrich

the data set and frequently ameliorates the inverse problem, when different aspects of the

parameter can be triggered by different input data or measured by different measurement

specifications. Moreover, generalizability of the found parameter to generic input data may

be enhanced, if experimental setups are chosen appropriately. Collecting all conducted

sub-experiments, each of which following its own experimental setup si = (ϕi, µi) for i in

some index set I ̸= ∅, into one overarching experimental design D = {si}i∈I , one obtains

the full inverse problem

find p ∈ A such that F (p) = FD(p) = (Fs(p))s∈D = (ys)s∈D = y. (2.2)

By denoting the set of all accessible experimental setups by D, then the set of all possible

experimental designs is given by its power set P(D).
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2.1. General Formulation

FORCING DATA

initial configuration

initial condition ϕ

EVOLUTION

EXPERIMENT

MODEL

PDEp with solution uϕp

unknown parameter p

MEASUREMENT

detector with profile µ

operator Mµ

DATA

yϕ,µ

Fϕ,µ(p)

:= Mµ(uϕp )

Figure 2.1.: The structure of a PDE parameter identification inverse problem, where one

imposes the initial condition ϕ. Unknown quantities are depicted in red, known quantities

in blue, and controllable (known) quantities in teal. As only the structure of the PDE,

but not the precise value of the parameter p is known, it is depicted in gray. The inverse

problem seeks to align these two rows so they produce the same data.

The question how to select experimental setups that generate informative data leads to

the research area of (optimal) experimental design (now referring to the designing process).

Because this should typically be decided before real world experimentation, the selection

is based on the mathematical input-to-output map

ItOp : D → R, s 7→ Fs(p),

that can be used to study the influence of variations in the experimental setup s ∈ D on the

synthetic data Fs(p) under a fixed ground truth parameter value p ∈ A and thus mimics

the assumption of a fixed data generating parameter value in real world experiment which

is necessary for meaningful reconstruction. It characterizes the experimental setting, i.e.

the degree of freedom in the input data and its relation to the data - not to be confused

with experimental setups.

Noise. In real contexts, data is mostly polluted by noise that stems from detector in-

accuracy in the measurement procedure, numerical round-offs or imperfect modeling of

the phenomenon by the forward model. This noise is typically modeled as a stochastic

process, and a frequently encountered example is the additive centered Gaussian noise

model, which, for a finite dimensional data space Y ⊂ RL reads

y = F (p) + η with η ∼ N (0,Γn) (2.3)

with symmetric positive definite covariance matrix Γn ∈ RL×L.

In this work, we mostly exclude noise from our considerations, in order to the focus

is on investigating the informative quality of the collected data w.r.t. the parameter in

terms of the data type or the experimental design. We stress, however, that this is an

important and much investigated part of inverse problems. Theories to deal with noise

such as regularization or Bayesian inversion are for instance presented in [Kir21, Gro93,

Stu10, KS06].
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2. Inverse Problems

Well- and Ill-posedness. Hadamard’s concept of well-posedness [Had02] applies to in-

verse problems as well. Continuity of the solution w.r.t. the data is investigated through

so called stability estimates of the form

∥p1 − p2∥A ≤ ω(∥F (p1) − F (p2)∥Y) (2.4)

that characterize continuity of F−1 through a modulus of continuity ω : R+
0 → R+

0 with

ω(0) = 0.

Definition 2.1 ([Bal12]). Inverse problem (2.1) is called (conditionally) well-posed, if the

following properties hold:

(i) Identifiability: For every y ∈ F (A) ⊂ Y, there exists exactly one p ∈ A for which

y = F (p), i.e. F is injective.

(ii) Stability: F satisfies (2.4) and the modulus of continuity ω of the F−1 grows at an

acceptable rate, typically ω(x) ≤ Cx for some C > 0.

If the inverse problem is not well-posed, it is called ill-posed.

The first property states existence and uniqueness of the reconstruction through bijec-

tivity of F : A → F (A), the key requirement for inversion. Stability depends on the choice

of norms and is subjective, since it depends on the context whether a particular rate is

considered acceptable or not. For ω(x) ≤ Cx, this formulation of stability, as also used in

[FSU19], requires Lipschitz continuity and is thus stronger than the pure requirement of

continuity of F−1 as used in [Kir21, Gro93]. In case of linear operators as considered in

[Kir21], both formulations are equivalent. Stability is particularly important when noisy

data are considered, as it bounds the amplification of data noise in the reconstruction.

But also identifiability can be affected by noise, in particular when y is driven out of the

image of F or coinciding data for two different parameters are generated.

Well-posedness can be understood as a proper balance between a-priori knowledge in the

admissible set A and the information compression on the parameter through the forward

map F . In case of ill-posedness, additional information has to be gathered, either by

changing the measuring technique, or by introducing more a-priori knowledge. The latter

refers to regularizing strategies which comprise higher a-priori smoothness or structural

assumptions on the parameter p, penalization methods to promote smallness or sparsity,

or introduction of prior information of p in the Bayesian framework. More details can be

found in standard literature such as [Kir21, Bal12].

In order to treat inverse problem (2.1) numerically, it is typically rephrased in one of

the following two ways. Precise computational methods to solve the inverse problems are

the subject of several textbooks, for instance [Vog02].

2.2. Cost Minimization

Motivated by the fact that noise might prevent a perfect fit in (2.1), a relaxed notion of

solutions to the inverse problem can be considered, when a variational perspective is taken
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and the inverse problem is rephrased as a cost minimization problem [Kir21, Gro93]

p⋆ = arg min
p

Cd(p), (2.5)

with cost function Cd : A → R+
0 that measures the error between the observed data y and

the synthetic data F (p) produced by the considered parameter value p. A typical choice

is C(p) = ∥y − F (p)∥Y . Hence, the solution p⋆ does not necessarily fit the data perfectly,

but in an optimal way as measured by the cost function.

For ill-posed problems, regularization theory suggests to add a penalization term to the

cost functional, for instance α∥p− p0∥A for some α > 0, that biases the solution towards

a reference solution p0 ∈ A and thus restores a unique and stable reconstruction through

introduction of the additional a-priori knowledge that p is supposed to be close to p0
[Kir21, Gro93, TA77].

Given the large variety of well developed optimization algorithms, as summarized for

instance in [Ren10, ABT18, KS06], this framework is well suited for numerical recon-

struction. The level of difficulty of this optimization task depends on the choice of the

cost function, as well as the properties of the forward map, and is therefore very problem

dependent.

It is particularly desirable to work with strongly convex cost functions, because these

uniquely determine the solution of the inverse problem as their unique minimum, and a

successful reconstruction is guaranteed even for even simple optimization methods such as

the vanilla gradient descent method described below. Establishing the strong convexity

property, however, might be challenging due to non-linearity of the forward map F , and

dependence on the chosen experimental design. A lack of convexity calls for techniques

from non-convex optimization which typically require more sophisticated methods and

bigger computational effort, see for instance [JK+17, HL04], or regularization to restore

convexity.

2.2.1. Numerical Optimization by Gradient Descend

Consider the problem of minimizing a C2 cost function C : Rp → R+
0 on Rd:

arg min
p∈Rp

C(p).

Gradient descend is a standard iterative minimization scheme that updates an initial guess

p(0) ∈ Rp according to

p(n+1) = p(n) − ηn∇pC(p(n)), (2.6)

for a suitable step size ηn ∈ R+ [WR22, Pol63] . Given that the gradient is the direction

of steepest descend in the Euclidean norm, this decreases the value of C, if ηn is chosen

sufficiently small, as can be seen from the Taylor expansion

C(p(n+1)) = C(p(n)) − ηn∥∇pC(p(n))∥2 + O(η2n) ≤ C(p(n)),

assuming uniform boundedness of the Hessian HpC(p) ≺ CH . Because the monotonously

decreasing sequence (C(p(n)))n is bounded due to C ≥ 0, it converges. In general, this does

not necessarily guarantee convergence of (p(n))n. Further requirements on C are necessary.
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Definition 2.2. A C2 function C : Rp → R is called cH -strongly convex, if HpC(p) ⪰
cH > 0 for all p. It is called CH -smooth for a constant CH > 0, if CH ⪰ HpC(p) ⪰ −CH

for all p.

Matrix inequalities are understood in the sense of eigenvalues. CH -smoothness ensures

convergence of the sequence C(p(n)) by Taylor, as explained above, while strong convexity

implies the existence of a unique minimum point p⋆. In combination, both properties pro-

vide that the limit is the minimum of C and that convergence translates to the parameters.

Proposition 2.3 ([Pol63]). Let C is cH-strongly convex and CH-smooth, then the gradient

descend scheme (2.6) with ηn ≡ η ≤ 2
CH

converges, in the Euclidean norm, to the unique

minimum point p⋆ ∈ Rp of C, with rate

∥p(n) − p⋆∥ ≤ rn∥p(0) − p⋆∥ with r := (max(|1 − ηcH |, |1 − ηCH |)).

Optimal convergence is obtained for η = 2
CH+cH

.

A proof can be found in [Pol63]. Numerous variants of gradient descend exist that im-

prove convergence or computational cost, for instance line search chooses the optimal ηn
that minimizes C(p(n)−ηn∇pC(p(n))), the heavy ball method includes a momentum term in

the update to improve convergence and avoid saddle points of non-convex functions, New-

ton’s method includes Hessian information to obtain a second-order optimization method,

and the stochastic gradient descend method decreases computational complexity when

∇pC(p) consists of a sum of many sub-gradients. The interested reader is referred to

standard literature such as [WR22, BV04].

2.3. The Bayesian Approach

Another approach to deal with ill-posedness and noise is proposed by the Bayesian frame-

work, where the inverse problem is lifted to a stochastic level. This approach accounts for

uncertainty in the parameter reconstruction based on uncertainty in the concrete value

of noise. Introductory literature, on which this subsection is based, may be found in

[Stu10, KS06].

The Bayesian approach assumes a stochastic noise model. For notational convenience,

the method is presented for a the finite dimensional additive Gaussian noise model (2.3)

and a separable Banach space A. More general frameworks, for instance with non-Gaussian

noise or infinite dimensional data spaces [Stu10, DS17] or multiplicative and mixed noise

models [Dun19], are available in literature.

As the model parameter p is also modeled stochastically, a probability distribution

π0 : A → R+
0 for p, termed prior distribution, encodes the prior model on the parameter

space A. Moreover, p is assumed independent of the data noise η. Then the condi-

tional distribution πy of p|y, i.e. p conditioned on the observed data y, is called posterior

distribution and is regarded as the solution to the Bayesian inverse problem. Bayes’ the-

orem explains its form:
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Theorem 2.4 (Bayes’ theorem; [Stu10]). If F : A → Y is continuous, then p|y is dis-

tributed according to a measure πy that is absolutely continuous w.r.t. π0 and attains a

normalized version of the likelihood ℓ(y|p) = exp(−1
2(y−F (p))TΓ−1

n (y−F (p))) of observ-

ing data y given parameter p under the noise model (2.3) as Radon-Nikodym derivative,

i.e.

πy(p) =
1

Z
ℓ(y|p)π0(p), (2.7)

where Z :=
∫
A ℓ(y|p) dπ0(p) is a normalization constant.

This technique can also be applied when data is not very informative about the parame-

ter. In this case prior knowledge in the prior distribution leverages the missing information

in the data [Bal12, Stu10], see also Section 2.3.2. By equipping the space of posterior dis-

tributions with the Hellinger metric, the concept of well-posedness can be transferred to

the Bayesian inverse framework [Stu10] and it has been shown to hold under very mild

conditions [Lat23, DS17]. Bayesian inversion can thus be regarded a regularization tech-

nique.

On the other hand, the posterior distribution offers richer insight into the structure of

the solution to the inverse problem than the deterministic value attained from cost min-

imization. It allows sampling, identification of multiple modes, and opens opportunities

for uncertainty quantification [DS17].

The numerical treatment of Bayesian inversion, however, poses remarkable challenges,

as mostly no closed form of the posterior distribution is available. Different strategies have

been developed, that are briefly summarized below, following the review in [Stu10]:

� Sampling: Drawing samples from the posterior distribution allows exploration of the

full posterior density without imposing additional structural requirements. However,

sampling from non standard distributions, as arising for non linear inverse problem

or non Gaussian prior or noise distributions, is challenging and requires specific

algorithms. More details can be found in the subsequent Section 2.3.1.

� Variational methods refer either to computing the maximum a-posteriori point (MAP)

pMAP ∈ A, the point that maximizes the posterior probability density function. In-

formation on the posterior is then compressed to only one point value. For Gaussian

priors µ0, this results in maximizing the Lebesgue density of the posterior which can

be rephrased as a Tikhonov regularized cost function minimization as in Section 2.2.

The same optimization techniques [Ren10, KS06] apply, with low computational cost

compared to sampling.

Alternatively, they also refer to techniques that approximate the posterior distribu-

tion by a simpler distribution, for instance a Gaussian in Laplace approximation,

which can then be accessed explicitly or sampled by easier methods [Ada03, GRI21].

� Filtering techniques impose additional structure on the unknown parameter p and

data y which they exploit when building the posterior distribution incrementally by

adding more and more data. The hope is that single update steps can be performed

more efficiently, as the distance between an update and a previous state is not as
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far as between posterior and prior. These methods naturally find application in

online settings, where new data is constantly acquired. In high dimensions, filtering

requires high computational effort and frequently particle approximations are used,

e.g. in the ensemble Kalman filter [BVLE98].

2.3.1. Bayesian Posterior Sampling

Sampling from non standard distributions as arising in non Gaussian Bayesian inverse

problems is challenging. Typically, an a-priori computation of the full posterior distribu-

tion πy(p) = Z−1ℓ(y|p)π0(p) or even the normalization constant Z is not feasible, as each

evaluation of the likelihood requires computing the forward map, which is often expensive

for PDE models.

Samplers have been developed on the basis of Markov chains whose distribution con-

verges to the target sampling distribution, for which these difficulties are circumvented

through building their dynamics such that it

(P1) is invariant w.r.t. scaling of the sampling distribution, which allows us to avoid

computing the normalization constant Z and directly work with ℓ(y|p)π0(p) ∝πy(p)

- this is often achieved working with quotients or (approximations of) the log density

gradient - and

(P2) utilizes a minimal number of expensive sampling distribution evaluations - typically

only local values of the (not normalized) sampling distribution at previously sampled

or the newly proposed states are required to update the Markov chain.

Several methods have been proposed that fulfill these criteria:

� The most classical methods are Markov Chain Monte Carlo (MCMC) methods that

construct a Markov chain, in which sample members are Members are evolved in time

according to a random walk, that is biased so to converge to the target distribution.

Once this equilibrium is reached, a subset of members of the remaining chain con-

stitutes the sample. Typical methods comprise the Metropolis Hastings algorithm

[MRR+53, Has70], Langevin Monte Carlo, Hamiltonian Monte Carlo, Metropolis-

Hastings LMC, and so on [DK19, RT96, CCBJ18, CFG14, MS21, BRH13, DCWY19].

Though very generally applicable, these methods suffer from high computational

cost: gradient free methods often exhibit very slow convergence to the equilibrium

[CV02], leading to a long burning time that consumes many posterior evaluations,

whereas the gradient computation raises the cost of gradient based methods. More-

over, the sequential sample generation leads to autocorrelation, which can be miti-

gated by thinning, entailing additional computational cost to generate the same size

of a sample.

� Recently, the idea to evolve the sample simultaneously as an interacting Markov

chain, originating in data assimilation [Rei11, EVVL22], has been transferred to
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sampling tasks [GIHLS20, CHSV22, SWZ23, DNS23, HV19]. Particles can commu-

nicate and explore the distribution landscape more efficiently. Furthermore, their

interaction can be designed to entail further properties such as affine invariance, or

gradient free approximations, allowing a very efficient application. As these meth-

ods are an active area of research, their non-asymptotic convergence behaviour is

not fully understood yet.

Two ensemble based methods will be explained in the following in more detail: the

Ensemble Kalman Sampler (EKS) [GIHLS20], and the Consensus Based Sampler (CBS)

[CHSV22]. Both methods are very efficient, as they can be used in a gradient-free manner.

Let the admissible A = RQ be finite dimensional and denote the target distribution by

π(p) and assume absolute continuity w.r.t. the Lebesgue measure. Then its positivity

often allows us to rewrite it by means of a potential Φ as

π(p) ∝ e−Φ(p). (2.8)

EKS [GIHLS20]. The EKS is developed as an ensemble version of the overdamped

Langevin dynamics that, in its original form, updates single samples pn independently

according to a noisy gradient flow in Φ, i.e.

dpn = −∇pΦ(pn) dt+
√

2 dWn, n = 1, ..., N, (2.9)

where the Wn denote independent and identically distributed (i.i.d.) Brownian motions on

RQ. Introducing a preconditioner can speed up convergence to the target distribution (2.8),

and by choosing the preconditioner as the empirical particle covariance matrix Cov[p] =

N−1
∑

n(pn − p̄) ⊗ (pn − p̄), where p̄ = N−1
∑

n′ pn′ denotes the ensemble mean, then the

full ensemble {pn}n=1,...,N is evolved in an interactive manner according to the stochastic

differential equation (SDE)

dpn = −Cov[p]∇pΦ(pn) dt+
√

2Cov[p] dWn, n = 1, ..., N. (2.10)

Assuming a certain square norm structure of Φ, gradient free dynamics can be derived: as

a simple extension of [GIHLS20], let Φ(p) = h2(∥h1(p)∥2) be a C1 function h2 : R → R of

the square norm of a mildly non-linear C1 function h1 : A → Rk for some k ∈ N. Then the

drift term can be approximated by a gradient free difference term, leading to the gradient

free implementation of the sampling scheme:

Cov[p]∇pΦ(pn) =
2h′2(∥h1(pn)∥2)

N

∑
n′

(pn′ − p̄)(pn′ − p̄)T (Dph1(pn))Th1(pn)

≈ 2h′2(∥h1(pn)∥2) 1

N

∑
n′

(pn′ − p̄)(h1(pn′) − h̄1)
Th1(pn) =:

∑
n′

Cn,n′pn′ .

Note that the approximation Dph1(pn)(pn′ − p̄) ≈ h1(pn′) − h̄1 in the last line, where

h̄1 = N−1
∑

n′ h1(pn′) denotes the ensemble mean of {h1(pn)}n, is justified by the fact that

h1 attains an almost constant Jacobi matrix Dph1(p). Moreover, the coupling coefficient
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between the ensemble members are summarize in Cn,n′ := 2h′2(∥h1(pn)∥2)N−1(h1(pn′) −
h̄1)

Th1(pn), and the missing summand involving p̄ vanishes due to averaging in h̄1.

Asymptotic Sampling Behaviour. The mean field limit describes the evolution of the

particle density ρ, as the many particle limit N → ∞ of the empirical ensemble distribution

ρ(N)(t) =
1

N

N∑
n=1

δpn(t), (2.11)

and it gives insight into the behaviour of the particle system. For Lipschitz smooth Φ, the

mean field limit for the gradient-based dynamics (2.10) has been derived in [DL21] and

[Vae24] as:

∂tρ = ∇p · (ρCov(ρ)∇pΦ) + tr(Cov(ρ)Hpρ ), (2.12)

where Cov(ρ) denotes the macroscopic covariance

Cov(ρ) =

∫
(q−m(ρ))⊗(q−m(ρ))ρ(q) dq, with macroscopic mean m(ρ) =

∫
q ρ(q) dq.

(2.13)

By independence of Cov(ρ) from p, one easily sees that ρ ∝ e−Φ is a stationary state

of (2.12). Exponential convergence to this steady state can be guaranteed under certain

circumstances, for instance a well chosen initialization distribution πinit, and strong con-

vexity of Φ while excluding ensemble concentration in one point, as shown in [GIHLS20,

Prop. 3.1]. This means that for large N and t, the empirical distribution approximates the

sampling distribution ρ(N)(t)
N large
≈ ρ(t)

t large
≈ π, and the sample {pn}n can be considered

as a sample from π.

Numerical Algorithm. The numerical algorithm first initializes a sample {p01, ..., p0N} ac-

cording to a suitable initial distribution πinit. To derive the numerical sample propagation

law, the gradient free approximation to the continuous SDE (2.10) is discretized in time.

Application of the classical Euler-Maruyama scheme, for instance, yields

pk+1
n = pkn − ∆tk

∑
n′

Ck
n,n′pkn′ +

√
2∆tkCov[pk])ζkn,

with i.i.d. ζkn ∼ N (0, I). An adaptive time step of ∆tk = ∆t0

∥Ck∥F+ε
between the samples pkn

and pk+1
n , for some ε > 0, was proposed in [GIHLS20, KS19], where the matrix RN×N ∋

Ck = (Ck
n,n′)n,n′ summarizes the coupling between all ensemble members. The above

consideration of the asymptotic sampling behaviour justifies taking the output sample as

{pkn}Nn=1 for sufficiently large k, i.e. large evolution times tk.

CBS Sampling [CHSV22]. The CBS leverages the Laplace method [SM95] for sampling.

It is constructed such that its mean field limit converges in the long time limit to a Gaussian

approximation of the target distribution around its maximum.

It evolves a set of N particles {pn}Nn=1 according to the gradient free dynamics given by

the SDE

dpn = −(pn −mβ(ρ(N)(t))) dt+
√

2(1 + β)Covβ(ρ(N)(t)) dWn , (2.14)
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where ρ(N) denotes the empirical particle distribution from (2.11), and mβ(ρ) := m(Lβρ)

and Covβ(ρ) := Cov(Lβρ), for m and Cov as in (2.13), denote the mean and covariance

of the reweighted distribution

Lβρ =
ρe−βΦ∫

ρ(q)e−βΦ(q) dq
, parametrized by some β > 0.

The relaxation in the drift term in (2.14) drives particles towards their reweighted mean.

On the other hand, the diffusion term on the right-hand side (RHS) of (2.14) introduces

a stochastic deviations proportional to the reweighted ensemble covariance, which allows

exploration of the distribution landscape.

Asymptotic Sampling Behaviour. As pointed out in [CHSV22], taking the mean field

limit N → ∞ of (2.14) shows that the particle density follows

∂tρ = ∇p ·
[

(p−mβ(ρ)) ρ+ (1 + β)Covβ(ρ)∇pρ
]
.

For strongly convex, smooth potentials Φ that are bounded by the reciprocal of a Gaus-

sian, the mean field limit admits a Gaussian steady state, that is close to the Laplace

approximation of the target distribution at the MAP for large enough β > 0, and ρ con-

verges to this steady state exponentially fast as t→ ∞, if initialized by a non-degenerate

Gaussian.

Approximation at the MAP can be anticipated by taking the limit as β → ∞: then Lβρ

converges to a Dirac delta that is located at the global minimum of Φ over the support of ρ,

i.e. the MAP if it lies in the support. The mystery why the gradient free dynamics (2.14)

succeeds to optimize the distribution by finding the MAP has been unveiled in [RKGF23],

where the authors linked the process to a gradient free relaxation of the Langevin dynamics

(2.9). Moreover, extensions of the CBS to Gaussian mixture models have been propose in

[BRW24] by introducing a kernelized form of the mean and covariance.

Numerical Algorithm. The algorithms starts by initializing the sample {p0n}Nn=1 by a

non-degenerate Gaussian distribution and choosing a sufficiently large β. A temporal

discretization of the continuous time dynamics (2.14) by an exponential integrator, as

proposed in [CHSV22], then yields the numerical propagation

pk+1
n = e−∆tpkn + (1 − e−∆t)mβ(ρk(N)) +

√
(1 − e−2∆t)(1 + β)Covβ(ρk(N))ζ

k
n,

with ζkn ∼i.i.d. N (0, I), and the output sample is again taken as {pkn}Nn=1 after sufficiently

many time steps k.

2.3.2. Connection between Bayesian and Cost Minimization

A link between Bayesian and the constrained cost optimization framework is established

through the evaluation of the Bayesian MAP, which, for Gaussian priors and noise, turns

out to be a Tikhonov regularized cost function minimization. In this setting, otherwise

arbitrary or heuristic choices of the cost function C, as well as the norm and reference
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solution in the penalty term α∥p−p0∥A are motivated by the noise and the prior distribu-

tion, respectively, see [Stu10, Sec.2.2], [Bal12, Sec.11.3.1]. This underpins the regularizing

nature of the Bayesian framework.

Another connection is established through the small noise limit, that was studied in

[Stu10, HP07, NP08]. As the variance of a centered Gaussian noise vanishes, the Bayesian

solution to a uniquely solvable inverse problem converges weakly to a Dirac measure at the

true solution [Stu10], i.e. Bayesian inversion returns a point value that coincides with the

true solution. For ill-conditioned linear inverse problems with Gaussian prior and noise,

uncertainty from the prior information is pertained in some directions in the small noise

limit [Stu10], which demonstrates that the prior information compliments the missing

information in the data and thus highlights the regularizing effect of Bayesian inversion.

2.4. Identifiability analysis

Being rooted in control theory [BÅ70, GDI85] and applications [Tho19, Koo49, Fis61],

identifiability analysis provides a different perspective onto well-posedness of inverse prob-

lems. It sheds light onto the question whether given data contains enough information to

uniquely identify the model parameter. If the data is of bad quality in the sense that it

is not informative enough, checking for sources of non-identifiability allows a more precise

diagnosis and the proposal of suitable remedies, for instance changes in the model, the ad-

missible set or the experimental design, [GJML+19, WHR+21] to cure such ill-posedness

and lead to better stability in reconstructions. The framework thus takes a holistic per-

spective onto the inverse problem. As the identification of redundant or non-informative

data, the optimal use of information to reduce uncertainty in the parameter reconstruc-

tion and the understanding of remaining uncertainty due to modelling limitations provide

important insight into cost-effective data collection procedures, it is also referred to as

qualitative experimental design [WP96].

In the remainder of this section, a general framework for identifiability analysis is intro-

duced in adaptation of [LG94, WL82, VC99].

Sources of Non-Identifiability. Non-identifiability can be caused by either of the three

subsequent sources [GJML+19, DBP+12]:

(S.I) A mismatch in the structure of the model and the type of collected data might

prevent parameter identification, even for perfectly chosen data. In this case, the

full input-to-output map ItOp, i.e. the experiment in total, is not informative

about p.

(S.II) A poor selection of the particular experimental designD may lead to non-informative

data, even if the type of data is suitable. Poor measurement specifications may

provoke an information loss from the measurement procedure, whereas poorly se-

lected input data might not trigger all aspects of the parameter, or a too small

16



2.4. Identifiability analysis

number of experiments might not allow to collect all necessary information on the

parameter. In this case, the forward map FD for this design is not informative,

calling for experimental design methods.

(S.III) Finally, noise might induce parameter uncertainty such that the reconstruction

cannot be trusted anymore. For instance, the most plausible parameter, e.g. the

MAP, might not be unique, pointing towards non-identifiability.

The following example demonstrates the three sources for an easy toy model.

Example 2.5. Consider the determination of the constant speed c > 0 of a moving object

in the two-dimensional plane R2. The object is known to start at the origin (0, 0) at time

t = 0 and move in direction (1, 0). Imagine for instance a bicycle driving on a straight

street. The location of the object at time t is (l(t), 0), with first coordinate l(t) = ct. An

observer, e.g. a camera, is located at a position x ∈ R2\{(λ, 0)}λ∈R+
0

and a direction of

attention v ∈ S1, in order not to interfere with the potential trajectories of the object.

The observer has a 180◦ field of vision and collects data on the location of the moving

object, if it is in its field of vision. This data shall be used to recover the speed of the

moving object.

(S.I) If the observer only collects the locations of the object without noting the time

at which the object reaches this location, reconstruction of its speed will not be

possible, as all locations (R+
0 , 0) will eventually be reached by the object as long

as its speed is positive and the observation time is not limited. This type of data

is not informative about the speed, no matter which observation position x and

direction of attention v are chosen.

(S.II) Assume instead, that the observer collects data on the location l(T ) of the moving

object for a fixed T > 0. This is only possible if l(T ) is in its field of vision {y ∈
R2 | ⟨y − x, v⟩ ≥ 0}. For a suitable choice of x and v, for instance x = (1,−1) and

v = (0, 1), the observer can perfectly track l(T ) = cT and the speed c = l(T )/T

can uniquely be recovered. If x and v are chosen poorly, however, e.g. x = (1,−1)

and v̂ = (0,−1), then the final location cannot be observed as it lies outside

the observer’s field of vision and a reconstruction of the speed is not possible.

Because x and v refer to properties of the observer, they represent measurement

specifications.

(S.III) Assume that the observer is located at the well suited position x = (1,−1) and

v = (0, 1), but it has a blurred focus and can only determine the final location

within an interval of length 1, i.e. l(T ) ∈ [a, a + 1] for some a ∈ R. Then the

correct speed of the object is not unique. It is only possible to narrow it down to

the interval c ∈ [a/T, (a+ 1)/T ]. In some cases, this estimation will be too coarse

to be useful in practice. In this case, even though reconstruction with the clean

data would work, observation noise prevents a meaningful reconstruction.

⋄
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2.4.1. Structural identifiability

Structural identifiability aims to exclude non-identifiability of source (I) and was intro-

duced in [BÅ70]. Different definitions exist [ACDVM20, CDr80], and the following will be

used throughout this work:

Definition 2.6 (Structural identifiability, persistent excitation; adapted from [SAD03,

LG94]). The inverse problem corresponding (2.2) is called (globally) structurally identifiable,

if for any ground truth parameter p⋆ ∈ A there exists an experimental design D⋆ =

D⋆(p⋆) ∈ P(D), such that FD⋆(p) = FD⋆(p⋆) implies p = p⋆ for all p ∈ A. In this case, D⋆

is called persistently exciting w.r.t. F,A and p⋆.

Local versions of structural identifiability exist, where uniqueness of p⋆ is required to

hold only in a neighbourhood Up⋆ ⊂ A [ACDVM20]. Moreover, it is possible to include

non-observable and non-controllable parameters that shall not be reconstructed[LG94,

SAD03].

Structural identifiability is weaker than identifiability according to Definition 2.1i, since

the experimental design D⋆ is not fixed, but can be chosen in dependence on the true

parameter p⋆, and coinciding values FD⋆(p̂) = FD⋆(p̄) are allowed for p̂ ̸= p̄ as long as

they are distinct from p⋆. Structural identifiability should be examined before exper-

iments are conducted to make sure that the correct type of data is collected and the

experiment is informative. In the proofs, a noise-free setting is considered to exclude non-

identifiability effects of source (III), and access to the full input-to-output map ItOp⋆ is

assumed [WL82, LG94]. The method of investigation of structural identifiability heavily

relies on the model and data structure. A brief overview over the rich methodology devel-

oped for structural ODE identifiability analysis can be found in the literature review at

the end of this subsection.

Persistent excitation [WP96, LG94] refers to the fact that the chosen experimental

design D⋆ is suitable to discriminate between the ground truth p⋆ and other parameter

values in the measurement and thus anticipates identifiability of type (II). Given that the

true parameter is typically unknown a-priori, in the most favourable case, an experimental

design D⋆ can be found that is persistently exciting for all p⋆ ∈ A. Unfortunately, this is

mostly not possible.

2.4.2. Cost Function and Sensitivity Based Identifiability

To study the persistent excitation property of an experimental design D⋆, and thus the

existence or lack of sources (I) and (II), identifiability can be combined with the cost

minimization reconstruction framework in Section 2.2 [BÅ70, GJML+19, RKM+09], or

studied in a linearized setting, for which source (III) is excluded by consideration of noise-

free data.

Cost Function Identifiability.

Definition 2.7 (cost function identifiability; adapted from [BÅ70, CDr80]). Consider

a fixed ground truth parameter p⋆ ∈ A and a prescribed experimental design D⋆ ∈
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P(D). The inverse problem in the cost minimization framework (2.5) is called (locally)

ℓ-identifiable w.r.t. a loss function ℓ : Y × Y → R+
0 at p⋆, D⋆, if the cost C(p) :=

ℓ(y⋆, FD⋆(p)) associated to noise free synthetic data y⋆ = FD⋆(p⋆) has an isolated local

minimum at p = p⋆. If p⋆ is the unique global minimum, then the inverse problem is

globally ℓ-identifiable w.r.t. p⋆, D⋆.

For a suitable class of loss functions, such as the standard ℓ(y1, y2) = ∥y1 − y2∥Y for

some norm on Y, (local/global) cost function identifiability at a point p⋆, D⋆ is equivalent

to the fact that D⋆ is (locally/globally) persistently exciting w.r.t. p⋆.

Remark 2.8. The Bayesian setting by definition does not generate uniqueness of the pa-

rameter. Investigating identifiability from sources (I) and (II) is still beneficial to learn

whether uncertainty in the parameter arises only from uncertain noise or also from other

sources. Statistical approaches to identifiability can be applied, for instance identifiability

can be defined through comparison of the shape of the full (log)-likelihoods almost every-

where (a.e.w.) in the parameter space as in [LHL10] or uniqueness of the maximum of

the log-likelihood [RL19]. This is connected to cost function identifiability with the log

likelihood as a cost function, in analogy to the considerations in Section 2.3.2.

Sensitivity analysis. Sensitivity analysis is another tool frequently used to investigate

identifiability issues of types (I) and (II) [MXPW11, LDM22, GVB17]. The sensitivity

expresses how much the output measurement changes if the parameter is varied. For

notational convenience, a finite dimensional parameter p ∈ A ⊂ RQ and a finite design

D = {s1, ..., sL} ∈ P(D)

are considered in the following, while pointing out that extensions to infinite designs are

studied in Chapter 8. Assuming sufficient regularity of the forward map, the sensitiv-

ity matrix for the finite experimental design D refers to the Jacobi matrix JpFD(p⋆) of

the measurement w.r.t. the parameter values, evaluated at a prescribed ground truth

parameter p⋆ ∈ A,

J = JpFD(p⋆) ∈ RL×Q, with rows Jl: = (∇KMl(fK⋆))T , l = 1, ..., L, (2.15)

and represents the linearized inverse problem with linearization at p⋆

0 = J(p− p⋆).

A lack of sensitivity of all measurements w.r.t. one parameter - i.e. a vanishing column

of J , a high correlation between a pair of columns, collinearity of a group of columns or

rank deficiency of the Hessian JTJ , all allow for non-vanishing solutions to the linearized

inverse problem and therefore indicate non-identifiability of the considered (pair or group

of) parameter(s) or the full set of parameters; an overview over several sensitivity based

methods may be found in [MXPW11]. In this work, sensitivity based identifiability will

be evaluated by the eigenvalue criterion in terms of rank deficiency of JTJ .

Definition 2.9 ([MXPW11]). The inverse problem (2.2) under the experimental design

D is called sensitivity based identifiable at p⋆, if JTJ is positive definite.
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Remark 2.10. Sensitivity based and cost function identifiability are qualitative criteria.

They do not account for poor conditioning of JTJ or equivalently a flat cost landscape

of C, both of with leading to major difficulties in numerical reconstruction through high

computational complexity fo finding the cost minimum, even for noise free data. In these

cases, noise, by slightly distorting the data, can easily render the inverse problem non-

identifiability. To avoid this, the sensitivity based identifiability criterion can for instance

be exchanged by a threshold for the minimum eigenvalue or conditioning of JTJ that is

not be exceeded.

Connection between Cost Function and Sensitivity Based Identifiability. The connec-

tion between sensitivity and identifiability is given by the quadratic cost function for this

design

C(p) = CD(p) =
1

2L
∥y⋆ − FD(p)∥22 =

1

2L

∑
s∈D

(ys − Fs(p))
2

with noise free data y⋆ = FD(p⋆) - this exclude source (III). Linearization of the forward

map FD at p⋆ provides Clin(p) = L−1(p−p⋆)JTJ(p−p⋆), i.e. the Hessian of the linearized

cost function reads HpClin(p) = L−1JTJ . A full rank structure of JTJ reveals that Clin(p)

is strongly convex and has a unique global minimum at p⋆, whereas in case of singularity

of JTJ , the linearized inverse problem contains a non-identifiable parameter [WP01].

By the implicit linearization, sensitivity analysis can in general only provide local guid-

ance on identifiability of the non-linear inverse problem. Under sufficient regularity of the

forward map, however, identifiability results are locally transferable:

Proposition 2.11 (adapted from [HKLT25]). Let a finite design D ∈ P(D) be given and

assume that the forward map Fs(p) is twice continuously differentiable in p and its Hessian

HpFs(p) ∈ RQ×Q is Lipschitz continuous w.r.t. a norm ∥·∥A on the admissible set and the

Frobenius norm on RQ×Q, in a neighbourhood around the ground truth parameter p⋆, for

all s ∈ D. Then sensitivity based identifiability according to Definition 2.9 is equivalent to

local strong convexity of the quadratic cost C, and implies local square loss identifiability.

The proposition connects sensitivity based identifiability with local strong convexity

of the quadratic cost function, a very favourable property that facilitates the numerical

optimization of the cost function. Note that a global characterization of cost function

convexity is in general hard for non-linear forward maps, because the Hessian depends on

the considered parameter value.

The regularity assumption on F is rather mild and holds true in many applications, in

particular in many PDE parameter identification problems, where well posedness of the

forward model typically comprises a certain regularity of the solution w.r.t. the parameters

and initial data.

Remark 2.12. Proposition 2.11 can be extended to infinite experimental designs, as studied

in Chapter 8.

To proof the proposition, recall that local strong convexity is equivalent to positive
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definiteness of the Hessian of the quadratic cost function

RQ×Q ∋ HpC(p) = L−1
∑
s∈D

(
∇pFs(p) ⊗∇pFs(p) + (ys − Fs(p))HpFs(p)

)
(2.16)

for all p in the respective domain, according to Definition 2.2. Noting that the Hessian of

the quadratic cost C evaluated at the ground truth parameter p⋆ reads

HpC(p⋆) = L−1
∑
s∈D

∇pFs(p⋆) ⊗∇pFs(p⋆) = L−1JTJ, (2.17)

the proof is established by extending its positive definiteness to a neighbourhood of p⋆
through Lipschitz continuity of the Hessian of the cost function, established through Lip-

schitz continuity of all terms appearing in (2.16) by assumption.

Proof. By the above characterization of local strong convexity in terms of positivity of

the Hessian eigenvalues, it is clear that it implies sensitivity based identifiability. Vice

versa, matrix perturbation theory [HJ85, Corr.6.3.8] establishes continuity of the minimal

eigenvalue w.r.t. perturbation in the matrix. Moreover, by representation (2.16), local

Lipschitz continuity of the Hessian forward map HpFs in p translates to the quadratic

cost Hessian HpC, and, therefore, one has for all p in a neighbourhood U of p⋆ that

|λmin(HpC(p⋆)) − λmin(HpC(p))| ≤ ∥HpC(p⋆) −HpC(p)∥F ≤ C∥p⋆ − p∥A, (2.18)

for a constant C > 0. Hence, if λmin(HpC(p⋆)) = λmin(JTJ) > 0, then one can find a

∥ · ∥A-neighbourhood Up⋆ ⊂ U of p⋆ for which λmin(HpC(p)) > 0 for all p ∈ Up⋆ , i.e. in

which C is strongly convex.

Minimal Number of Data. As a simple consequence of sensitivity analysis, a minimum

size of an experimental design can be derived that is capable of rendering the inverse

problem sensitivity based identifiable. Intuitively, it makes sense, that this number has to

be related to the dimension of the parameter p: if only few data is collected, it is unlikely

that this data is sufficient to reconstruct a high dimensional parameter, and the inverse

problem is typically underdetermined. The following proposition suggests collecting at

least as many data points as the dimension of the parameter.

Proposition 2.13. Every (finite) experimental design D for which the corresponding

inverse problem (2.2) is sensitivity based identifiable consists of at least Q experimental

setups sl. If |D| > Q, then a reduced design with Q experimental setups exists for which

the corresponding inverse problem is also sensitivity based identifiable.

This is not surprising, given that sensitivity analysis studies identifiability of the lin-

earized inverse problem, i.e. linear system of equations with Q unknowns. A combination

with Proposition 2.11, however, allows drawing conclusions for the nonlinear inverse prob-

lem and local strong convexity of its quadratic cost function.

Proof. If |D| = L < Q, then the Hessian HpC(p⋆), as a sum (2.17) of L tensor products

summands of rank 1, attains a rank of at most L and is thus rank deficient. On the other
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hand, if a design provides more data than the dimension of p ∈ A ⊂ RQ, i.e. |D| > Q, and

leads to a sensitivity based identifiable inverse problem, then one can select a subset of

these experimental setups for which identifiability still holds: Because JTJ ∈ RQ×Q is of

full rank Q by assumption, so is J ∈ RL×Q and one can select Q experimental setups sl for

which the corresponding rows of J are linearly independent, and thus the corresponding

Hessian at ground truth is still of full rank.

Again, the Lemma can be generalized to infinite experimental designs, under the setting

considered in Chapter 8.

2.4.3. Practical identifiability

Even if an experiment can theoretically provide sufficient information, i.e. the inverse

problem is structurally identifiable, parameter identification can fail in practice due to bad

quality of experimental data. One speaks of practical non-identifiability, when the variance

of parameter estimates corresponding to noisy data is ’too high’ compared to the data noise

level [LDM22]. Because the notion of a ’too large variance’ is very problem and method

dependent, no unified definition of practical identifiability exists throughout literature

[LDM22]. Practical identifiability is conceptually related to the stability requirement

2.1(ii).

It might be a consequence of structural non-identifiability (I) or a poor choice of ex-

perimental specification (II), both resulting in a lack of information also in the noise-free

data, or distortion of the data by noise (III). It manifests in (near-) flatness of the cost

function, the likelihood or the Bayesian posterior density landscape. Detection techniques

established in ODE models comprise Monte Carlo simulation of noisy data in order to

evaluate the spread of the corresponding parameter reconstruction, the consideration of

confidence regions based on the profile likelihood function [WHR+21, SM23] or the Hes-

sian matrix of least squares [RKM+11, RKM+09] as well as Bayesian methods [SM23]. A

review over these and some more methods can be found in [MXPW11, LDM22].

2.4.4. Dealing with Non-Identifiability.

The way to deal with non-identifiability depends on the purpose of the reconstruction

[WHR+21, RKM+11]: if the model is supposed to be used for prediction only in the

specific setting of the experiment and predictions are not affected by the concrete choice of

an optimal parameter, then non-identifiability can be tolerated. If, however, the parameter

itself is the quantity of interest, identifiability of this parameter should be improved. The

following methods are proposed in literature [WHR+21, RKM+11]:

� Non-identifiability of source (I) can only be remedied by a change of model structure,

i.e. either another type of data is observed or the complexity of the parameter is re-

duced, for instance by fixation of non-identifiable parts, prescription of a parametric

form of the parameter, reparametrization through parameter pooling or introduction
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of a-priori knowledge.

� A poor choice of the experimental specification (II) calls for improvement through

experimental design.

� Data noise (III) might be reduced by improved measurement quality. Otherwise,

prior knowledge on the parameter could be incorporated through regularization tech-

niques [GJML+19].

2.4.5. Literature Survey

Historical development. Identifiability issues in applications such as econometrics [Koo49]

or psychology [Tho19] shaded light on this problem early on. The development of a sys-

tematic framework for identifiability analysis in a statistical setting started in the 1950s, in

[Koo49, KR50] and literature therein, with a focus on linear systems and rank conditions.

This was picked up well by the econometrics community [Fis61] and further criteria such

as the information matrix criterion were developed [Rot71].

The focus shifted when control theory and systems identification for dynamical ODE

systems provided another access to identifiability analysis [BÅ70, GDI85]. This ansatz was

widely adopted in subsequent literature and a rich methodology was developed as several

review papers suggest [GJML+19, WP96, MXPW11, WHR+21, RKM+11, CBBC11b,

LDM22].

Applications. Applications prompted the development of different notions [ACDVM20]

and techniques for identifiability analysis, recurring to different requirements in the re-

spective fields such as disease modeling [MXPW11], water quality modeling [Bec87] or

environmental studies [GJML+19, BRK01], for instance. Another large area of applica-

tion is biology, where a limited insight into systems provided by restricted measurement

capabilities often faces complex models with numerous potential influence factors. The

question of identifiability was studied particularly well in systems biology, for instance for

enzyme kinetics [RKM+11, CBBC11b], signaling pathways [RKM+09, GVB17], metabolic

models [GVB17, CBBC11b, SCM19], circadian clock related genetic networks [GVB17,

CBBC11b], pharmacokinetic models [CBBC11b, RL19], reaction networks [CBBC11b],

bacterial growth models [RL19] or oncology models [ST18], just to mention some.

Structural ODE identifiability. A variety of methods has been developed to test for

structural identifiability for ODE models. Typical techniques involve

� analytical [DVJB00] or numerical [WBJK04] direct test,

� Laplace transform [RKM+11] for linear models as proposed by [BÅ70],

� generating series expansion (and identifiability tableaus)[WL82, CBBC11a],

� Taylor series expansion [Poh78, WP96],

� similarity transform and local state isomorphism theorem [WL82, DVJB00, VRWL89],

� differential algebra manipulations [LG94, BSAD07, MRCW01],
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� implicit function theorem [XM03, WZMP08].

Several software implementations based on a subset of these techniques exist. An overview

comprising a critical comparison is available under [RBV23].

PDE identifiability analysis. Despite the large number of PDE inverse problem applica-

tions, the focus of most existing literature lies in the sole verification of falsification of the

identifiability property in Definition 2.1(i) and the development of regularization strate-

gies to compensate non-identifiability or instability. Not many works consider the inverse

problem from an identifiability analysis point of view in order to obtain a more detailed

insight into the sources of (non-)identifiability. A brief overview over existing literature

and methods is given in the following.

The first consideration of PDE identifiability analysis dates back to the late 1970s [KN77]

and instigated a line of structural identifiability research that has emerged in an aca-

demic context [TW82, TW85, KS86, Kra88, ZK23, Nak93, Nak97, Les00, LEI00, Suz83,

GH07, Giu91, HM97, Lah87, LC89, CKK97, Kob80, HG13, OB00, CG08, FGBC22, CR80,

KW86, DuC13]. As applications prompted the further development of ODE identifiabi-

lity analysis concept and techniques, the topic reemerged in the 2000s in the context of

PDE applications, most of which can be found in biology [MMS24] such as epidemiology

[RKE22, PLCT11, PR16, TGCM16, GQMT22, ZVDVK18, VMZDV20] or the modelling

of cell invasion [SBVM20, LSM+24], cell cycle [BTFB24, FCCB24, SMM24], cell motion

[HHT13], morphogenesis [CRY19], protein dynamics [CDM+24] or blood-tissue exchange

[VC99]. Further applications were found in information propagation in social networks

[KA21b], food processing [RFBCEB07] or environmental sciences [VDVJB06].

PDE practical identifiability. Given that practical and cost function identifiability does

not directly rely on the underlying model, established methods readily extend to the PDE

context. As such, methods based on sensitivity analysis [KA21b, CDM+24, GQMT22,

ZK23, RKE22, DuC13] as well as Monte Carlo methods [TGCM16], Bayesian MCMC

[SBVM20, CDM+24, FCCB24] or the profile likelihoods [RKE22, SBVM20, CDM+24,

LSM+24, SMM24, HHT13, MMS24] were successfully applied to different types of PDEs

that emerge in applications, as Table 2.1 illustrates.

Another approach incorporates the PDE into the cost functional in the cost minimization

framework 2.2, which then entails specific PDE based methods for investigation. An

example of this idea is given in [LL23] for the interaction potential reconstruction in the

McKean-Vlasov equation and, more generally, for PDEs [GLL24] with linear parameter

dependence with gradient flows as an example.

PDE structural identifiability. Structural identifiability heavily relies on the model and

the data structure. It is thus not obvious which previously mentioned techniques for struc-

tural ODE identifiability analysis generalizes to which type of PDE model [RKE22]. Up to

this point, no unified framework is available [LSM+24, BHO+24] and the development of

general PDE structural identifiability techniques is a subject of current research endeavors

[BHO+24]. Literature so far concentrated on the following approaches:

� Identifiability under approximation. The so-called identifiability analysis under ap-

proximation studies identifiability of discretized versions of the parameter emerg-

ing from spatial discretization of the PDE by different methods such as orthogonal
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Sensitivity Monte Carlo Bayesian MCMC Profile likelihood

parabolic

PDE

1D

[KA21b],

multiD

[DuC13]

1D [SMM24]

2D [LSM+24, HHT13]

reaction diffu-

sion system

[CDM+24] [SBVM20,

CDM+24,

FCCB24]

[SBVM20, CDM+24]

transport

PDE system

[GQMT22,

RKE22]

[TGCM16] [RKE22]

1D quasi-hy-

perbolic PDE

[ZK23]

Table 2.1.: Practical identifiability techniques applied to PDE models.

polynomials, spectral expansions, finite element (FEM) discretization or finite dif-

ference (FD) schemes. The emerging system of ODEs can be investigated by es-

tablished methods for ODE identifiability analysis such as the differential algebra

approach [Lah87, LC89, VDVJB06], the Laplace transform [KW86], direct methods

[CKK97, CR80, FGBC22] or the Taylor series expansion [RFBCEB07]. This method

has been applied to inverse problems for one- [Lah87, LC89, CKK97, CR80, KW86,

VDVJB06] or multi-dimensional [FGBC22] linear parabolic PDE models as well as

a one-dimensional nonlinear second order PDE model in [RFBCEB07]. Table 2.2

summarizes which techniques have been applied to which PDE type in literature.

differential

algebra

Laplace

transform

direct method Taylor

expansion

1D heat

equation

FEM

[CR80,

KW86]

spectral expansion

[CKK97], FEM

[CR80]

1D linear

parabolic PDE

orthogonal

polynomials

[Lah87, LC89],

FD [VDVJB06]

multiD linear

parabolic PDE

FEM [FGBC22]

1D non-linear

2nd order PDE

FD

[RFBCEB07]

Table 2.2.: Structural identifiability under approximation: techniques, types of PDE mod-

els and spatial discretization.
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� Differential algebra approach. As the differential algebra approach provides a sys-

tematic framework for ODE identifiability analysis studies, where it even allows for

software implementation [BSAD07], there has been considerable attempt to apply it

to PDE models. Several types of PDEs have been investigated in this framework, for

instance models in one space dimension for multi-species linear [CRY19, PLCT11]

and semi-linear transport reaction systems [RKE22] emerging from age structured

models, the heat equation [Giu91], a linear parabolic PDE [KN77], linear reac-

tion diffusion systems such as the semi-linear autochemotactic Keller-Segel system

[CDM+24, BTFB24], and a diffusion equation with logistic growth [BTFB24]. Iden-

tifiability of one-dimensional quasi-linear parabolic PDEs and reaction diffusion sys-

tems as well as a linear elliptic equation and the wave equation was studied by this

method in [BHO+24], as it was for the Euler-Bernoulli beam equation in [Les00].

In multiple space dimensions, specific non-linear reaction diffusion systems in epi-

demiology were studied in [ZVDVK18, VMZDV20]. A first attempt to generalize

the technique to one-dimensional problems of quasi-linear elliptic, parabolic and hy-

perbolic type PDE models was undertaken in [HM97], before general higher order

one-dimensional quasi-linear equations of a certain form were considered in [LEI00].

The authors of the preprint [BHO+24] then extended it to generic non-linear spatio-

temporal evolution systems of very general form. It should be mentioned, that

the size of the algebraic system grows cubically in the number of state variables

[BTFB24] and linearly in the number of unknown parameters, making this approach

often computationally infeasible for large systems. Furthermore, the method requires

derivatives of the data which might not be accessible, especially for point wise data.

� Model specific methods. Other proofs in the realm of PDE identifiability rely on

model specific methods to transform the identifiability problem in a more tractable

shape. These comprise explicit solution formulas for linear transport equation models

[PR16, VC99] or a Laplace transformation to study solutions to linear two-species

advection-reaction system [VC99], both in one space dimension. Identifiability for

a quasi-linear heat equation was studied through construction of a suitable test

function in [Kra88]. This is conceptually similar to the Fredholm integral based

adjoint method applied to a n-dimensional parabolic PDE in [DuC13], which is also

applied to a coupled parabolic system of chemotaxis in a moving fluid environment in

combination with a variation method in [LL24]. A projection method was introduced

for general linear PDEs and applied to a one dimensional heat equation in [TW85]

as well as linear parabolic PDEs in one space dimension in [TW82, TW85], for which

transformation into Fourier and Laplace domain proved useful. Both transformations

were combined with a spectral method to study an identifiability problem for the

Klein-Gordon equation, a linear hyperbolic PDE, in one space dimension in [HG13].

Spectral expansions also proved useful for linear parabolic PDE models [CPA81,

KS86, Suz83, GH07, Nak97, KN77] or the wave equation [CG08], both in one space

dimension, as well as a multi-dimensional heat equation [Nak97]. The same technique

was applied to a generic multi-dimensional linear hyperbolic equation as well as

the Euler-Bernoulli beam equation, a linear fourth order equation, in one space
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dimension [Kob80]. A review over early Japanese works in this line of research

can be found in [Nak93]. Table 2.3 summarizes the techniques that were used in

literature to prove structural identifiability for different types of PDEs.

explicit

solution

testing /

adjoint

projection

method

Fourier /

Laplace

domain

spectral

expansion

1D linear

transport

[PR16,

VC99]

1D advection

reaction system

[VC99]

1D linear

parabolic PDE

[TW82,

TW85]

[TW82,

TW85]

[CPA81, KS86,

Suz83, GH07,

Nak97, KN77]

1D quasi-linear

heat equation

[Kra88]

multiD heat

equation

[Nak97]

multiD parabolic

equation / system

[DuC13] /

[LL24] (+

variation

method)

1D linear hyper-

bolic equation

Klein-

Gordon

eq.

[HG13]

wave eq. [CG08],

Klein-Gordon eq.

[HG13]

1D Euler-Bernoulli

beam equation

[Kob80]

multiD linear

hyperbolic PDE

[Kob80]

multiD linear

PDE

[TW85]

Table 2.3.: Further methods used to prove structural PDE identifiability analysis.

� Another criterion was proposed in [RS10], where identifiability is connected to group

theoretic approaches to establish local injectivity of the parameter to output map.

The concrete choice of method also depends heavily on available measurement infor-

mation, see e.g. [KN77] where a differential algebra approach was used for distributed

measurements, available over the full space domain, and a spectral method was used for

point wise measurements. Finally, it should be noted that the application of identifiability
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methods to other types of models, such as SDEs is an evolving field [LLM+21, PHF22,

BWB+20].

2.5. Optimal Experimental Design

The limitations in experimental resources that practitioners face in real world inverse

problems require carefully selecting a finite experimental design to be conducted in re-

ality. As suggested by source (II) of non-identifiability, its choice can have a dramatic

effect on identifiability and stability of an inverse problem, and a poor choice might entail

collection of redundant or sub-optimal data and inaccurate parameter reconstructions.

The mathematical area of optimal experimental design is thus devoted to the develop-

ment of techniques that find experimental designs whose data is most expressive w.r.t.

the parameter, leading to well behaved inverse problems. In the following, we give an

introductory overview into this area on the basis of the review articles [Ale21, HJM24].

For a deeper dive, readers are referred to these or the many other available review articles,

e.g. [Puk06, Das96, CV95, RDMP16], and references therein.

2.5.1. The Basic Idea

In noisy data settings, the stochastic behaviour of the data provokes uncertainty in the pa-

rameter estimate p̂, as observed for instance in the Bayesian framework. An experimental

design D ∈ P(D) is thus regarded as optimal, if it minimizes uncertainty of the param-

eter estimate p̂ associated to the inverse problem with this design D. Different criteria

ϕ : P(D) → R+
0 , some of which are introduced in the subsequent paragraph, have been

proposed to measure this uncertainty, mostly based on notions of variance of the estimate

p̂. The experimental design optimization problem then reads

arg min
D∈P(D)

ϕ(D).

Note that the notion of a design here is rather general: the space of experimental setups

D can be discrete or continuous, or, more generally, it can even be infinite dimensional

and attain the form of a functional space. A particular example is the space of measures

over a domain X ⊂ Rn that might describe a measure valued sensor placement [Wal19,

NPVW19]. We present the following design criteria for finite designs D, yielding a finite

dimensional data space y ∈ Y ⊂ RL, for sake of simplicity, keeping in mind that extensions

to other settings are readily available. Moreover, we assume that the parameter p is finite

dimensional p ∈ A ⊂ RQ for simplicity of the presentation, even though the theory is

clearly not limited to this case and many criteria can readily be extended to the infinite

dimensional case under mild adaptations [Ale21].
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2.5.2. Optimality Criteria.

Optimality criteria are often equivalently defined for both, the non-Bayesian and Bayesian

formulation [HJM24].

i) In the non-Bayesian regime, they mostly refer to an approximation of the covariance

matrix of the maximum likelihood estimate p̂ in the non Bayesian setting, that is given

through the inverse Fisher information matrix FIM−1(d,D) which - under sufficient

regularity - reads

FIM(p,D) = Ey|p,D[∇p log ℓ(y|p,D) ⊗∇p log ℓ(y|p,D)] ∈ RQ×Q,

where ℓ(y|p,D) denotes the likelihood of observing the data y under the parameter

value p and experimental design D, and the expectation is taken over this conditional

distribution.

ii) In the Bayesian framework, criteria utilize the Bayesian posterior covariance matrix.

In a slight abuse of notation, we will also denote the Bayesian parameter estimate,

i.e. the random variable distributed according to the posterior distribution πy, by p̂.

Linear Gaussian Regime. Under a linear forward map FD(p) = FD · p and an ad-

ditive Gaussian noise model as in (2.3), as well as a Gaussian prior distribution π0 =

N (mprior,Γprior) for the Bayesian formulation, then the parameter estimate p̂ is also Gaus-

sian. Its covariance matrix CovD[p] attains an explicit form that is independent of the

ground truth parameter, and given by

i) either the inverse Fisher information matrix FIM−1(p,D) = (F T
DΓ−1

n FD)−1 in the

non-Bayesian setting,

ii) or the Bayesian posterior covariance matrix Γpost = (F T
DΓ−1

n FD + Γprior)
−1.

It can thus be used as a measures of uncertainty for the parameter estimate p̂ independently

of an unknown ground truth p⋆, and many optimality criteria only differ in choice of

’scalarization’ of this covariance [Kie59, Mit00, BSE+09, PKG+18, AC22]:

� A-optimality minimizes the average variance over all parameter entries, which trans-

lates to the trace ϕA(D) = tr(CovD[p]).

� D-optimality minimizes the determinant ϕD(D) = det(CovD[p]) which attains an

information theoretic interpretation as the expected information gain from the prior

distribution to the posterior distribution in the Bayesian setting. Together with

A-optimality, these are the most common criteria.

� E-optimality seeks to minimize the maximum eigenvalue λmax of the covariance

matrix ϕE(D) = λmax(CovD[p]).

� K-optimality minimizes the condition number ϕK(D) = c(CovD[p]) = λmax(CovD[p])
λmin(CovD[p]) .

� c-optimality is a so-called ’goal oriented’ design criterion, that seeks to minimize

the covariance of a linear combination cT p of the parameter entries, which might for

instance describe a linear predictor of a quantity of interest, i.e. ϕc(D) = cTCovD[p]c.
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This list is by far not exhaustive and many more so-called ’alphabetical’ optimality criteria

have been developed for different purposes [HJM24, Puk06].

Remark 2.14. Seldom, optimal experimental design is considered on the basis of sensitivity

analysis where optimality criteria based on the Hessian of a cost function C evaluated at

the ground truth parameter p⋆, which characterizes the size of the ε indifference region of

the cost function {p ∈ A | |C(p) − C(p⋆)| < ε} for some small ε > 0 [LS82, RFKPS07]. In

the common case where C is the quadratic cost function and under linearity of the forward

map F , this represents a special case of the Fisher information matrix FIM, where additive

noise follows an i.i.d. normal distribution N (0, σ2I) and thus

HpC(p⋆) = L−1JTJ = L−1F TF =
σ2

L
FIM. (2.19)

Non-Gaussian Regime. Non-Gaussian distributions of p̂, occurring for instance for non-

linear forward maps, give rise to additional difficulties in the definition of design criteria:

there exists in general no closed form of the Bayesian posterior covariance matrix and the

inverse Fischer information matrix only locally approximates the maximum likelihood es-

timator covariance, and both matrices vary in the data generating parameter p⋆. Different

strategies have been suggested to face these challenges [HJM24, Ale21], for instance

� designing a ’local’ design through implicit linearization by considering the Fisher

information matrix at a guess of the ground truth parameter - for instance the prior

mean or the MAP point pMAP [BTGMS13],

� equivalently, a Laplace approximation of the Bayesian posterior distribution approx-

imates the posterior by a Gaussian and corresponds to the at the MAP linearized

inverse problem [LSTW13, LMT15, APSG16],

� a minimax formulation gets rid of the p dependence by assuming the worst case pa-

rameter value arg minD maxp ϕ(D, p), but leads to a difficult optimization problem,

� an averaging approach averages the design criteria over all unknown values, i.e.

the parameter p, as well as the data y, which might for instance be required for

computing the MAP - possibly weighted by a prior distribution. An example is

the well-known Bayes risk in the Bayesian framework, that measures the averaged

quadratic deviation of the MAP point from the data generating parameter p through

ϕBayes(D) =

∫∫
∥p− pMAP (y,D)∥2ℓ(y|D, p) dy dπ0(p),

where ℓ(y|D, p) denotes the likelihood of observing data y under parameter p and

design D.

It should be noted that the optimal experimental design framework is flexible include other

design criteria that leverage different utility functions [CV95], for instance to tailor the

optimization to the specific needs of the considered inversion framework.
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Computational Complexity. The numerical computation of optimality criteria, as well

as their optimization is often challenging due to high computational complexity arising

from high dimensional objects, the need for repeated inversion within the optimization

procedure, and costly PDE forward solvers. Moreover, external restrictions have to be

taken into account, for instance a limited number of sensors to be placed in the domain

that calls for sparsity promoting penalty functions, whose design is non trivial. The

development of suitable computational strategies and methods is thus an own area of

research, with considerable contributions over the past decades, as summarized for instance

in [HJM24, RDMP16].

2.5.3. Sequential Optimal Experimental Design.

If experiments are conducted sequentially one after another, experimental design can bene-

fit from designing the next experiment adapted to the information, for instance the param-

eter reconstruction, gained in previous experiments [HJM24, RFIBS24]. Two strategies

can be distinguished: Greedy approaches design the next experiment based on feedback

from previous experiments and thus allow application of the previously derived techniques

to continuously updated prior distributions, which reduces computational complexity. In

contrast to that, ’fully’ sequential approaches also take subsequent future experiments

into consideration for planning, and build the design to maximize the total information

collected in all remaining experiments. These approaches are instead based on Markov

decision processes and therefore share similarities to reinforcement learning.
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3
The Inverse Problem for Chemotaxis

Evolution created biological systems of an immense diversity, and with it an incredible

complexity, expressed for instance in redundancies of systems [NBCS97, OL02]. Many

phenomena are not fully understood up to today [SI19]. This complexity, together with

a lack of fundamental principles, poses a major difficulty in quantitative modelling in

biology. Models often represent simplifications, and model parameters have to be fitted

to observed experimental data, which leads to the realm of inverse problems.

In this first part of this work, we study one particular inverse problem from mathemat-

ical biology, that seeks to reconstruct the coefficient in a PDE that describes the directed

motion of bacteria. We assume synthetic data of sub-optimal type, as often encountered

in real applications due to experimental restrictions or insufficient measurement proce-

dures, and study suitability of this experimental setting for parameter identification. The

constructive proof of structural identifiability that is developed in the next chapter will

allow the application of the ’relaxation of theory’ approach of experimental design, that

is then carried out in Chapter 5, turning this part into an example for this approach.

This chapter serves as an introduction to the model and the associated inverse problem.

3.1. Modelling Chemotaxis

In biology, the ability to move autonomously and react to external stimuli represent two

characteristics of life. Since they constitute an evolutionary advantage for many organ-

isms in many situations, a large variety of distinct reaction systems [Adl75] and motility

patterns have evolved among different species [WB22, Hen72]. Chemotaxis combines both

phenomena and describes the motion of organisms in response to an external (chemical)

stimulus, which occurs, for instance, in the context of food procurement, communication

between cells through self-produced chemicals or avoidance of dangers such as environ-

mental toxins. Applications can be found e.g. in motility of bacteria [Ber04] or synthetic

micro-swimmers [LL18] for instance in the context of bioreactors [SO08] or the spread

and prevention of diseases [JS02], cancer metastasis [LNJ18], biofilm formation [OFD16],
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tissue engineering [IMB+06], immune response [OY05] or pest control [LTD+15], just to

mention some.

3.1.1. Biological Background.

Bacterial chemotaxis is particularly well studied for Escherichia coli (E.coli) bacteria,

which serves as a model system to study the biochemical signalling pathway [WA04] as

well as for active matter modelling [SLAJ+16]; see for instance [Adl75] and references

therein or [Ber04, Ber75] for a summary of the history of investigation of bacterial motion.

Bacterial Motility: Run-and-Tumble. Swimming motility of E.coli bacteria is driven by

propellers, the so-called flagella. These organs are long, helical filaments that sit on the

cell surface and can be rotated in two directions by the motors on their roots, steered by

intracellular signals. Counter-clockwise rotation allows the flagella to align and form a

bundle that rotates smoothly, strongly propelling the cell forward along a straight line.

This phase is called ’running’. A change of rotation direction of one or more flagella from

counter-clockwise to clockwise leads to a noisy motion of the bacterium termed ’tumbling’.

It is induced by the change of the rotation direction itself as well as the resulting untangling

of the previously formed flagella bundle. In this process, the bacterium changes orientation.

Switching back to counter-clockwise rotation of all flagella initiates the next running phase.

Since the new direction is chosen at random, the resulting motion describes a random

walk, that can be idealized as non-correlated alternating phases of running and tumbling.

A more detailed presentation can be found in [Ber04] and references therein.

v
′

v

Figure 3.1.: Run-and-tumble motion of a single bacterium.

Chemoattractant sensing. E.coli reacts to a variety of different chemicals, that either

attract it (sugars, Aspartate, Serine, et cetera (e.t.c.)) or provoke a repulsive reaction

(Acetate, alcohols, low or high pH value, Benzoate, e.t.c.) [Adl75]. Those chemicals are

detected by sensors on the cell surface. Because bacteria are too small to sense gradients

along their length, a temporal mechanism involving an excitation and adaptation pro-

cesses in the internal pathway system is used to memorize a previous concentration of the

chemical stimulus and compare it to the current one [HH83, MBBVO03].

Chemotactic response. In this way, cells can determine whether they ascend or descend

the chemical gradient in the running phase. This information is passed to the flagellar

motor. In case of a chemoattractant, the tumbling frequency is decreased when the bac-

terium is moving up the gradient, and increased when it is moving down the gradient
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[BB72] (and vice versa for chemorepellents). This biases the random walk towards direc-

tions of increasing gradient of the chemoattractant concentration and permits a directed

motility.

Modelling assumptions. Typical approximations in modelling, that will also be adopted

in our framework, are:

(M1) All bacteria run with the same constant speed. It can be observed experimentally

[BB72], that the speeds of tracked cells stabilize quickly to an almost identical value

after every tumbling event - for wild type E.coli in a homogeneous medium, this

speed is 14.2µm/s.

(M2) The change in velocity due to tumbling happens instantaneously. This assumption

is justified by the discrepancy in size of run and tumbling times, which are expo-

nentially distributed with means 0.86s and 0.14s, respectively, for wild type E.coli

in a homogeneous medium [BB72].

(M3) Runs are straight lines. In fact, collisions with surrounding water molecules result in

random displacement and rotation of the cells. The effect, however, is manageable

for short run lengths, which explains why cells prefer those [Ber04].

(M4) A full space setting is considered x ∈ Rd of dimension d ∈ {1, 2, 3}. This cor-

responds to the assumption that the experimental domain, e.g. a petri dish, is

infinitely wide, and is frequently assumed in the context of chemotaxis modelling

[CMPS04, ODA88]. It avoids the necessity to deal with boundary conditions, that

might vary between different experimental setups and species. Suitable boundary

conditions could for instance be of reflective [Alt80], Neumann (no flux) [OH02] or

no-slip [ZLCZ15] type. For the models in this work, the simplification to full space

is justified by the local nature of the considered reconstruction strategies with short

experimental time and compactly localized initial data, in combination with a con-

stant speed of propagation according to Assumption (M1), which bounds the data

away from the boundary.

(M5) Birth-death effects are neglected due for a short observation time. In fact, birth

usually does not happen while cells are in motion [OH02] and the cell division

time of around 20min under optimal conditions [Ber04] is large compared to the

chemotaxis time scales as given in (M2).

Moreover, we restrict ourselves to models that satisfy the following additional assumption:

(M6) The chemoattractant concentration is stationary in time, and bacteria do not inter-

act with the chemoattractant. For short experimental times, as will be considered

in our inversion framework, this can be considered an approximation of models with

bacterial interactions, e.g. through auto-chemotactic behaviour or consumption of

the chemical.
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In this setting, many perspectives can be taken to model chemotactic behaviour, and

we will focus on the mesoscopic scale. A brief overview over other types of models is given

afterwards in Sections 3.1.3 and 3.1.4. To properly introduce the model, we make use of

the following notation.

Notation. The velocity space V collects velocities v that the bacteria can move into, and

is set to V := Sd−1, the unit sphere in Rd, to reflect assumption (M1) of a constant bacterial

speed. The convention S0 := {±1} in 1D is used. Accordingly, integrals
∫
V h(v) dv of

a function h over V are considered surface integrals over the sphere S2 in dimension

d = 3, line integrals along the unit circle S1 in dimension d = 2 and sums h(+1) +

h(−1) in dimension d = 1. For k ∈ N0 ∪ {∞} and p > 0, Lebesgue spaces Lp, the

spaces of p-times continuously differentiable functions Cp, as well as Sobolev spaces W k,p

with the usual convention Hk = W k,2, and the corresponding Bochner spaces, as well as

their corresponding norms on [0, T ], Rd, V or their Carthesian products, are defined and

equipped with norms in the typical manner, where T > 0 denotes a final experimental time

horizon. A subscript on a function class indicates that a subset is considered, where +

stands for non-negativity, c for compact support and b for boundedness of the considered

functions.

3.1.2. Kinetic Chemotaxis Model

Mesoscopic models study the collective population dynamics of many particle systems

while preserving individual velocity information, allowing the model to capture fine scale

motions. For chemotaxis, the bacteria density f(t, x, v) at time t ∈ [0, T ] is modelled as a

function on the phase space (x, v) ∈ Rd×V , and denotes the density of bacteria that moves

into direction v at location x at time t. Starting with initial condition ϕ ∈ L1
+∩L∞(Rd×V ),

that is non-negative a.e.w. in V , the further evolution of f can be described on a statistical

level using a linear kinetic PDE [Alt80, ODA88, OH02, CMPS04, EO04]

∂tf + v · ∇xf = K(f) := L(f) − σf , (Ch)

f(t = 0, x, v) = ϕ(x, v). (iCh)

This PDE resembles the run-and-tumble behaviour that was described above: The left-

hand side (LHS) of (Ch) describes a movement along a straight line in direction v - this

corresponds to the ’run’ phase. The RHS, on the other hand, accounts for the velocity

jump due to reorientation during tumbling and exhibits a diffusive nature. It is composed

of the two terms given by

L(f)(t, x, v) =

∫
V
K(x, v, v′)f(t, x, v′) dv′ and σ(x, v) =

∫
V
K(x, v′, v) dv′ , (3.1)

which are determined by the so-called tumbling kernel K(x, v, v′) that encodes the transi-

tion probability of individuals to changes their velocity from v′ ∈ V to v ∈ V at location

x ∈ Rd. As such, the first term L(f) represents a statistical gain to f(t, x, v) from bacteria
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from other velocities v′ ∈ V , sometimes denoted by the short notation

f ′ := f(t, x, v′), (3.2)

that tumbled and attained velocity v afterwards, and the second term −σf describes

a statistical loss of bacteria from f(t, x, v) that tumbled into any other velocity v′. As

suggested by the individual chemotactic response behaviour, the effect of the chemical

stimulus enters into the equation through K by changing the tumbling frequency.

Remark 3.1. Equation (Ch) is a so-called kinetic PDE. These models are often handy when

modelling many particle systems, as they live on the mesoscopic scale, between microscopic

models that trace trajectories of single individuals, and the macroscopic level population

models that lack any individual information. They allow observation of certain micro-

scopic structures of the motion, while avoiding the computational complexity under which

microscopic models suffer for a large particle number. These models find applications in

neutron [DS58], photon or electron [RL86] transport, rarefied gas dynamics [Cer12], animal

migration [TKLRC14] or even opinion formation [ACD24, CFRT09, CLP24, MT14, Tos06].

In comparison to standard kinetic models, such as the Vlasov equation for plasma [Vla68]

or Boltzmann equation in gas dynamics [Bol72], our model does not contain a force term,

because bacteria are assumed to run independently of any external force acting to them,

and the tumbling operator on the RHS is linear in f , resembling the fact that the velocity

change is an individual decision of the bacteria that does not require interaction with a

second individual, as for the collision operator in gas dynamics. There exists a rich litera-

ture on kinetic models, tools for their analysis and numerics, and the interested reader is

referred to [Cer12, Per04, DP14, SK13].

Remark 3.2. The one-dimensional setting d = 1 corresponds for instance to scenarios

where experiments are conducted in tubes [GAM+15, SCB+11, SCB+10]. In this setting,

(Ch) is sometimes regarded as a two species model for the species of forward and backward

moving individuals f±(t, x) = f(t, x,±1), whose reaction term corresponds to tumbling

[OH02, HS00, ODA88, HRL01]. The two species system is also known as the telegraph or

Goldstein-Kac process [McK67, Gol51, Kac74].

Admissible set for K. Throughout this work, we assume the tumbling kernel to be inde-

pendent of time, which is a consequence of a stationary chemical stimulus by assumption

(M6), which, as argued earlier, is a valid approximation of the non-stationary cases, such

as the auto-chemotaxis case, under short observation times. Similarly, temporal changes

in K due to other potential influence factors are assumed to happen on a slower time scale

than the chemotactic behaviour, also allowing for a stationary approximation.

The interpretation as a turning probability motivates the standard assumptions of non-

negativity and uniform boundedness by some constant CK > 0. Since tumbles with

coinciding incoming and outgoing velocity cannot be distinguished from straight running

by assumption (M2) and have no influence on the solution, the value K(x, v, v) = 0 is

prescribed. In summary, K is supposed to belong to the admissible set

AK = {K ∈ L∞(Rd × V × V ) | K ≥ 0, ∥K∥∞ ≤ CK , and K(·, v, v) ≡ 0 ∀v ∈ V }.
(3.3)
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Existence of solutions. Existence of solutions to initial value problem (IVP) (Ch)–(iCh)

is well-established. In literature, the linear case is treated in [HO00] by semigroup theory.

Mostly the more convoluted case of auto-chemotaxis is studied, where (Ch) is coupled

with an elliptic or parabolic equation that describes diffusion of the chemoattractant and

production by the bacteria. The emerging non-linearity is treated by the vanishing viscos-

ity method in [HRL01, HKS06], or a contraction principle in [HS00] for the 1D models. In

2D or 3D, semigroup theory and a-priori bounds were exploited to provide the respective

results in [CMPS04, HKS05, BCGP08]. All previously mentioned references also provide

preservation of non-negativity in the initial data. This list merely points towards some

relevant literature and has no intent to be exhaustive. A review on existence and blow-up

results for the auto-chemotaxis system can be found in [BC10].

Because the thus considered model (Ch)–(iCh) is linear, such sophisticated methods

are not necessary and standard arguments suffice: Semigroup theory directly provides

existence of solutions, and preservation of non-negativity of initial data can be shown by

source iteration, in analogy to [Maj97, HW07]. According to the hyperbolic nature of

(Ch), compactness of the x-support of initial data is preserved for f(t). These findings are

summarized in the following proposition and a detailed proof can be found in Appendix A.1

for sake of completeness.

Proposition 3.3. Let T > 0, K ∈ AK and the initial condition ϕ ∈ L1
+ ∩L∞(Rd × V ) be

non-negative for almost every (a.e.) v ∈ V . Then IVP (Ch)–(iCh) attains a unique mild

solution f ∈ C0([0, T ];L1
+ ∩ L∞(Rd × V )), that is non-negative f(t, x, v) ≥ 0 for all t, x,

for a.e. v ∈ V and bounded by

∥f(t)∥L1∩L∞(Rd×V ) ≤ e|V |CKt∥ϕ∥L1∩L∞(Rd×V ). (3.4)

Moreover, if the initial data ϕ has compact x-support a.e.w. in V , in a sense that there

exists a compact set S ⊂ Rd such that for almost all (a.a.) v one has ϕ(x, v) = 0 for all

x ∈ Rd\S, then f(t) has compact support for all t ∈ [0, T ].

Moreover, the solution to (Ch) admits regularity with respect to the tumbling kernel,

which can be established by consideration of difference equations, as explained in Section

A.1.1.3.

Lemma 3.4. The solution f of (Ch)–(iCh) is twice continuously differentiable in K ∈
AK , and Lipschitz continuity holds for f and its derivatives holds under the L∞ norm on

AK , i.e. there exists a constant C = C(T,CK , ∥ϕ∥L1∩L∞(Rd×V )) independent of K such

that, for instance,

∥fK − fK̃∥C([0,T ];L1∩L∞(Rd×V )) ≤ C∥K − K̃∥∞.

3.1.3. Chemotaxis Models across the Scales

Like many physical phenomena that describe particle dynamics, chemotaxis can be mod-

elled on different physical space-time scales [Hor03]. Figure 3.2 summarizes these models,
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3.1. Modelling Chemotaxis

as well as their relations, and serves as an overview over the subsequent paragraphs that

give a brief insight into different modelling regimes for chemotactic motion and the key

ideas how these are related. Rigorous formulations and results can be found in the refer-

enced literature.

Markov Jump Processes Kinetic Models

SDE Models Macroscopic Models

many particle limit / distribution

[EO04]

scaling limit [RS13] scaling limit [CMPS04]

many particle limit / distribution

[Ste00a]

Figure 3.2.: Relation between particle models on different scales.

Individual Based Models

Individual based models, being placed on the microscopic scale where individual cells can

be distinguished, provide very detailed information of potentially very fine motions. They

model the single trajectories xn(t) ∈ Rd, n = 1, ..., N , of a finite, but possibly large number

N ∈ N of individual cells.

Markov Jump Processes. Markov jump processes track the evolution of the current

state of each individual, described in our case by its current location xn(t) and velocity

vn(t) ∈ V . They are the models closest to the microscopic description of chemotaxis in

Section 3.1.1, and explicitly describe the running phase with velocity vn(t) in (3.5), and

the random change to a new velocity νk at a randomly Poisson distributed jump time Tk
in the tumbling phase in (3.7). New velocities νk are adopted according to a probability

measure m on V . One of the simplest model of this type is the following, as proposed in

[RS13, PHA+17, ODA88]:

dxn(t) = vn(t), (3.5)∫ Tk+1

Tk

σ(xn(t), vn(t)) dt = ζk+1, (3.6)

vn(t) = νk ∼ m, for t ∈ [Tk, Tk+1], (3.7)

where ζk are i.i.d. random variables with normalized exponential distribution, such that

(3.6) generates jump times (Tk)k according to a Poisson process with space and velocity

dependent rate σ.

SDE Models. A parabolic scaling can be introduced to place the above Markov jump

process the long time or equivalent frequent jump regime, in which the model converges
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3. The Inverse Problem for Chemotaxis

in the diffusion limit to an SDE, describing the trajectories xn(t) as biased random walks

of the form

dxn(t) = γ(t, xn(t)) dt+ θ(t, xn(t)) dW
(n)
t , n = 1, ..., N (3.8)

where the W
(n)
· denote independent Rd-valued standard Brownian motions, and γ and

θ describe the bias (drift) and random parts (diffusion) of the motion [Ste00a, Ste00b].

Chemoattractant information enters into the drift term γ, to bias the motion towards high

concentration regions. Note that the state variable is now xn(t), and velocity information

has been lost, as the model is placed in the frequent tumble limit where the velocity

constantly changes.

Population Models.

Because the degree of detail that individual based models provide might not be necessary in

many contexts, and to mitigate the enormous computational cost of running these models

for a large number N of particles, population based models were developed that summarize

the motion of a population by the propagation of its particle density, under the approx-

imation of an infinite number of infinitesimally small particles. These models emerge as

many particle limits N → ∞ of individual based models. Despite the approximation,

population based models are well capable of capturing significant characteristics of the

motion and show good alignment with experimental data [EGB+16, SCB+10, SCB+11],

if parameters are chosen appropriately.

Kinetic Models. Kinetic models lift the Markov particle models to a statistical level and

describe the temporal propagation of the probability density of the state of the model, in

our case denoting the current location and velocity (x(t), v(t)). The kinetic chemotaxis

model (Ch) thus emerges as the Kolmogorov forward equation from Markov jump process

(3.5)–(3.7), when choosing the velocity turning probability at a given (x, v) as the rescaled

tumbling kernel m = (σ−1K)(x, v, v′) dv′ [RS13, EO04]. The state density f can be

regarded as the many particle limit of the empirical distribution function of the particles

(xn, vn)n by the law of large numbers, i.e.

ρkin(N)(t, x, v) =
1

N

N∑
n=1

δxn(t)(x)δvn(t)(v)
N→∞−−−−→ f(t, x, v).

Macroscopic Models. Macroscopic PDE models can be derived either as space-time

scaling limits from kinetic equations [CMPS04], or as so-called mean-field limits of SDE

models [Ste00a], i.e. as Lebesgue densities of the measures that arise as limits N → ∞ of

the empirical density

ρ(N)(t, x) =
1

N

N∑
n=1

δxn(t)(x)
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3.1. Modelling Chemotaxis

of particles (xn(t))n satisfying (3.8). The most well-established model for bacterial chemo-

taxis, the Patlak-Keller-Segel (PKS) model [Pat53, KS70, KS71]

∂tρ−∇ · (D · ∇ρ) + ∇ · (ρΓ) = 0, (3.9)

represents a parabolic PDE and emerges as the diffusion limit of a parabolic space-time

scaling [CMPS04]. It describes an advection-diffusion behaviour with drift term Γ and

diffusion coefficient D, that are linked to the kinetic tumbling kernel K, or equivalently

the turning velocity measure m and time rate σ in the Markov process (3.5)–(3.7), or the

drift γ and diffusion θ in the SDE model (3.8).

By emphasizing the transport part of the kinetic model (Ch) instead of the tumbling,

hyperbolic scaling limits allow to derive macroscopic hyperbolic PDE models for chemo-

tactic behaviour [HS00, FLP05, ST16], which are better suited in certain situations, for

instance when travelling waves occur in large chemoattractant gradient environments.

3.1.4. Refined Models

The modelling of chemotaxis, and related questions have constituted and still constitute

an active area of research. In the following, we mention some directions, without any

intention to cover the field exhaustively. Instead, we direct the interested reader to one of

the many review articles, such as [Hor03, HP09, TMPA08, AT21].

Auto-Chemotaxis. A frequently studied scenario is auto-chemotactic motion, where bac-

teria themselves secrete the chemoattractant and thus exhibit self-attracting behaviour

[TKL18]. In this case, the models of bacterial motion are coupled to a model describing

the propagation of the chemoattractant and its production by the bacteria, most com-

monly a Poisson equation or parabolic PDE [CMPS04, BCGP08, KS70]. The chemoat-

tractant sensing in the chemotaxis equation then renders the coupled model non-linear,

and the bacterial self-attraction provokes interesting behaviour, such as finite time blow-up

[BC09, DP04, BDP06], travelling pulses or waves [SCB+11, SCB+10], as well as pattern

formation [PY18].

Signalling Pathway. The intracellular signalling pathway describes the protein interac-

tions that govern chemotactic behaviour within one cell, by steering the motors of the

flagella and inducing the adaptation process in gradient sensing. The pathway is particu-

larly well understood for E.coli bacteria, as summarized in the overview article [TPM+08].

By incorporating an additional internal state variable, the adaption behaviour can be taken

into account in the chemotaxis models [EO04, XO09], leading to pathway based Markov

velocity jump processes [RS13], pathway based SDE models [ST16] or pathway based

kinetic models [STY14, PTV16]. Under large chemoattractant gradients, these models

explain observed average drift velocities by a hyperbolic macroscopic limit [ST16], and

the consideration of noise in the pathway leads to macroscopic fractional diffusion models

[PST18, XT21] that align with the Levy flights that can be observed experimentally in

certain regimes.
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Interaction of Bacteria and Fluid Environment. A relatively new field studies chemo-

taxis in a dynamic fluid environment, with interactions in both directions: the fluid velocity

drives the bacteria and chemoattractant, but bacterial motion also affects the fluid. This

intricate relationship is typically modelled by coupling an auto-chemotactic PKS model

with a Navier-Stokes equation [GH21, ZZZ21, LL24] which can be shown to suppress

blow-ups of the bacterial concentration under certain conditions [ZZZ21].

Adding more Physics. Finally, some efforts have been undertaken to adjust the modelling

as closely to reality as possible, and avoid some of the simplifying assumptions (M1)– (M6)

at the end of Section 3.1.1:

� unphysical overcrowding in blow-ups under auto-chemotactic behaviour can be avoided

by introducing volume filling or quorum sensing strategies [PH02, CR06],

� birth/death effects can be incorporated in the model [ODA88, OH02],

� non-local sensing of the chemoattractant is often introduced to account for the adap-

tation process [OH02, CMPS04],

� non-instantaneous tumbling can be modelled via introduction of a resting phase,

often combined with birth during the resting phase [ODA88, OH02],

� the consideration of multi species models allows studying e.g. competition scenarios

[BW16, ESV09].

3.2. Inverse Problem for Chemotaxis

In order to run realistic simulations and derive implications on the real world, a realistic

choice of chemotaxis model parameters is essential. These parameters can be influenced

by a plethora of potential factors beyond the chemoattractant, for instance the geometry

of the domain [RLS+19] or the temperature [MISO76] as well as internal factors such as

the type of considered bacteria [BB72, SCF+19]. A lack of general, first-principle-based

descriptions on how the previously mentioned factors interact and translate to concrete

values of model parameters, together with the fact that these parameters are typically not

directly observable, provoke adoption of the inverse perspective in which model parameters

are estimated on the basis of experimental data, and explains the ongoing interest of

biologists and practitioners in model fitting [RHL86, TZL88, FL91, SCF+19, BDM+22,

SLS17, GAM+15].

In this work, we focus on the mesoscopic chemotaxis model (Ch), where the tumbling

kernel K uniquely determines the law of bacterial motion. Our goal is to study the inverse

parameter identification problem that amounts to identifying K from experimental data on

the bacteria density f as an observable quantity. The underlying experiment is described

below and presented graphically in Figure 3.3.
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3.2. Inverse Problem for Chemotaxis

3.2.1. Experimental Setting

Forcing data. The lab experiment is started by placing bacteria in an environment with a

fixed stationary concentration of the chemical stimulus. This initial bacterial configuration

is assumed to be tightly controllable by the practitioner and shall be prescribed by a

compactly supported, non-negative initial density ϕ ∈ L1
+,c ∩ L∞(Rd × V ) in (iCh).

Experiment and Model. During the experimental time horizon [0, T ] motility takes place.

Mathematically, this is described by the linear kinetic model (Ch) and its solution for a

given initial data ϕ is denoted by fϕK ∈ C([0, T ];L1
+ ∩ L∞(Rd × V )) according to Propo-

sition 3.3. The sub- and superscripts, explicitly expressing the value K of the tumbling

kernel and the initial data, may be neglected in cases where they are clear from the

context. Adopting the full space setting despite the confinement in real experiments is

justified by the discussion under assumption (M4), which also suggests that the presented

results extend to finite domain problems.

Measurements. Obtaining velocity dependent data on the bacteria density f(t, x, v) is

technically challenging if a large number of individuals is considered, because it would

require tracking of the single cell trajectories in time through video recordings which

requires specifically designed equipment [JJH+19, GT21, ZBFS10, MBC+12], entails high

computational cost and might even distort the data through photo-toxicity [BMDB09].

Additionally, such elaborate techniques are barely feasible in some contexts. Instead, our

measurement will be based on the velocity-averaged, macroscopic bacteria density

⟨f⟩ :=

∫
V
f dv.

This density is mostly accessible and can be obtained either from measurements on an

individual level, when reading off a photo by counting individual cells on a grid to obtain

a histogram [JDBC12], or on a population level through optical density measurements

[MBJPM85, BFTea20].

Localized interior domain data is collected in time by detectors, which are characterized

by their profile, a space-time test function µ(t, x) ∈ L1([0, T ] × Rd), that we assume to

be controllable by the practitioner. The measurement operator modelling this detector

Mµ : C0([0, T ];L1
+ ∩ L∞(Rd × V )) → R is then given by the duality product

Mµ(f) =

∫ T

0

∫
Rd

⟨f⟩ (x, t) µ(t, x) dx dt =

∫ T

0

∫
Rd

f(t, x, v) dv µ(t, x) dt dx . (M)

Remark 3.5. A typical example for the choice of a measurement test functions would be

a characteristic function on a squared domain and a temporal interval. This corresponds

to a pixel reading from a photo with a given exposure time.

Inverse Problem. In summary, the single experimental setup forward operator Fϕ,µ :

AK → R for this experiment takes the form

Fϕ,µ(K) = Mµ(fϕK) =

∫ T

0

∫
Rd

∫
V
fϕK(t, x, v) dv µ(t, x) dx dt. (F)
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To simplify notation, dependencies on ϕ, µ in previously defined operators may be sur-

pressed when the context is clear. As initial data ϕ and the measurement test function µ

are supposed to be controllable, the input-to-output map for a fixed value K ∈ AK reads

ItOK : L1
+,c ∩ L∞(Rd × V ) × L1([0, T ] × Rd) → R, (ϕ, µ) 7→ Fµ,ϕ(K). (ItO)

After fixing a design D ⊂ L1
+,c ∩ L∞(Rd × V ) × L1([0, T ] × Rd) and an admissible set

A′
K ⊂ AK , the inverse problem amounts to

find K ∈ A′
K such that yD = FD(K), (Ch−1)

where yD is the experimentally observed data under this design D. The inverse problem is

non-linear by non-linearity of the forward map in K, given that the solution fϕK depends

non-linearly on K. Note however, that the input-to-output map is linear in initial data ϕ

and measurement test function µ. Depending on the choice of the admissible set A′
K for

K, the problem can be either framed as a non-parametric or a parametric inversion.

Remark 3.6. If several experimental setups s = (ϕ, µ) ∈ D are conducted with the same

initial data ϕ, this means that these data can be collected from the same experiment by

using multiple detectors.

Remark 3.7. The difficulty to measure velocity dependent data might seem contradictory

to the possibility to freely prescribe initial data ϕ(x, v), also in velocity. But generating

an initial configuration and data measurement are distinct tasks, each bearing its own

challenges. In fact, experimental apparatuses have been developed that can even realize

almost singular in x and v configurations, e.g. micro-confinement in a thin tube was used

with E.coli bacteria [SSW13] and artificial micro-swimmers [LZWZ16]. Euglena gracilis

algae were manipulated by polarized light in [YHZZ21] and the references therein. This

justifies the use of such initial data.

FORCING DATA

initial data ϕ

t = 0

EVOLUTION

∂tf + v · ∇xf = KK(f)

t ∈ (0, T ]

MEASUREMENT

measurement operator Mµ

t ∈ [tm − ε, tm + ε]

µ

DATA

yϕ,µ

Fϕ,µ(K)

Figure 3.3.: Experimental setup, using the same structure and colour coding as in Fig-

ure 2.1: The initial configuration of bacteria is imposed at t = 0. Chemotactic be-

haviour takes place in the time interval (0, T ] and the final configuration of bacteria is

measured by a space-time measurement test function µ, for instance compactly supported

in [tm − ε, tm + ε] in time and the circle in space.
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3.2.2. Research question.

A closer look at (Ch−1) exhibits an intrinsic challenge: The parameter K(x, v, v′) to be

inferred lives on the microscopic level. It describes the probability of a velocity jump and

thus depends on the jump location x, as well as incoming and outgoing velocities v′ and v.

In contrast to that, the data is only collected from the velocity-averaged bacteria density

⟨f⟩ on the coarser macroscopic level that lacks velocity information, i.e. it is non-local in

the velocity. Intuitively, it is not clear how such data can reflect the fine characteristics of

the velocity jump coefficient K. This brings us to the following question :

Can data on the velocity averaged kinetic bacteria density ⟨f⟩ contain enough

information to allow a unique reconstruction of the kinetic tumbling kernel K(x, v, v′)?

(Q)

In fact, the non-locality reduces available information in the data, which lives on a lower

dimensional space compared to velocity dependent data, and was shown to introduce major

difficulties that hinder unique reconstruction in a related context, for the inverse problem

of recovering of the scattering coefficient K in the kinetic radiative transport equation

from angularly averaged data [Bal09, BLM08, Lan08, BJ09, BJ10, BJJ10]. On the other

hand, data on the interior of the domain [0, T ]×Rd is richer than, for instance, frequently

considered boundary data, and the possibility to control the initial condition ϕ and space-

time measurement test function µ of the single experiments offers a detailed insight into

the chemotactic behaviour of the macroscopic bacteria density. Each of these aspects

on its own already ameliorates the reconstruction, as the previously mentioned literature

suggests, but none could fully remediate the degradation in information due to velocity

averaging. A detailed review of this literature can be found in the literature survey of

Chapter 4.

Before deriving a suitable experimental design, it is thus necessary to study whether

the experimental setting described in Section 3.2.1, combining all these ameliorations, is

at all suitable for the purpose of inversion for K. This naturally calls for identifiability

analysis, and the two major aspects that will be addressed in this work are

(Q.i) suitability of the experimental setting, i.e. of the macroscopic data under the

freedom of choosing initial and measurement data, and

(Q.ii) construction of a suitable experimental design.

This information is fundamental to the inverse problem and should be studied before

inversion. In case (Q) is answered with a ’no’, the principle of ’no free lunch’, or as stated

by Lanczos [Lan96]

“A lack of information cannot be remedied by any mathematical trickery.”,

points out that even regularization methods that can render an inverse problem well-posed

will only generate a result that might not be very informative about the ground truth,

unless the introduced additional information is in good alignment with the properties of

the ground truth parameter.

In addressing (Q.ii) we will lay out the ”relaxation of theory” approach to qualitative

experimental design, which will be based on the theoretical considerations under (Q.i).
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3.2.3. Literature on Inverse Problems related to Chemotaxis.

In the subsequent literature survey, we focus on chemotaxis models of the types described

in Section 3.1.3. We thus exclude inverse or model fitting problems dealing with the

signalling pathway modelling [Tu13] or other forms of modelling chemotactic behaviour,

for instance through cell boundary deformation [CEL+15].

Most literature on inverse problems for chemotactic behaviour refers to the PKS model,

or reads off microscopic tumbling statistics from microscopic trajectory data.

Parametric Inference from Microscopic Statistics. In [PHA+17, SABS18], for instance,

the authors used the microscopic statistics to infer the parameters of a Markov velocity

jump process model similar to (3.5)–(3.7). A generalization to renewal theory models, that

need not neccessarily be Markovian, can be found in [ZKZ+24, KZZ+24]. To test accu-

racy of a kinetic model to simulate auto-chemotactic behaviour, the authors in [SCB+11]

adopted a parametric form of the tumbling kernel, based on microscopic running statistics,

which could be read off from microscopic trajectory data. Similarly, a 1D macroscopic

PKS equation has been fitted to real data with this technique in [ZWWC+14, LF01]. The

strategy is extended to a PKS model with two chemoattractants in [WECW97] with ap-

proximations for shallow chemoattractant gradients. More recently, this methodology was

applied to fit other types of stimulus induced motility in cells such as aerotactic behaviour

in Burkholderia contaminans bacteria [BDM+22] or electrotaxis of fibroblast cells [SLS17]

with application in wound healing.

These examples shed light on the fact that a discrepancy in scale of the measured quan-

tity and the to be inferred parameter often occurs in biological frameworks. In the above

examples, the collected microscopic data lived on a finer scale than the mesoscopic or

macroscopic parameters, allowing a derivation of their parametric forms from the limiting

consideration. [KA21a] represents an exception where the authors estimated a parameter

of a microscopic SDE model (3.8) by minimizing the difference of its macroscopic distri-

bution to observed data 1D. The following literature now treats the case where both the

data and the parameter live on the same macroscopic scale.

Parametric inversion for PKS. Many authors focus on fitting the PKS models to var-

ious settings, where the main goal lies in the reproduction of experimental data. The

inverse problem is regularized by complexity reduction through proposing parametrized

expressions for the model parameters with very few specification parameters. The ex-

pressions are obtained heuristically. Reconstruction of the low dimensional specification

parameters from experimental data represents an efficient approach when the proposed

expression is valid. Whereas [PHA+17] used data on the chemoattractant decay to fit

these parameters, most frequently, bacterial density data is used. Examples can be found

in [RHL86, TZL88, FL91], where data on the chemotactic behaviour of E.coli is collected

in different gradient generating chambers and parametrized forms of the drift and diffusion

coefficient are fitted. Different domain geometry and different heuristic formulas are used

in [SCF+19]. In [GAM+15] the performance of different potential formulas for the chemo-

tactic drift term in the PKS model, that are fitted to data on the phototactic behaviour of
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Euglena gracilis, is compared. Together with the historical development for the heuristic

formula for the drift term as displayed in [FL91], the last example elucidates that heuristic

formulas are not always available and might not hold in certain regimes or for different

species of organisms. In such cases the results under this approach are questionable.

Non-parametric inversion for PKS.

Auto-Chemotaxis. A non-parametric setting is considered in [FM08, EPS15] for the au-

tochemotactic PKS model ( in [EPS15] with volume filling), where the chemotactic drift

term is reconstructed as a function for which a-priori only mild regularity and structural

assumptions are prescribed. In this rather general setting, the inverse perspective for the

reconstruction of the drift is adopted and unique identifiability is studied theoretically.

Numerical simulations are based on a Tikhonov regularized least squares setting to mit-

igate stability issues and use a finite element discretization of the drift coefficient with a

large number of degrees of freedom, compared to previously mentioned model fitting ap-

proaches. Unique identifiablity of a solution dependent diffusion coefficient of this model

is discussed in [EPS15].

The authors in [HLH21], instead, point towards the possibility to recover an arbitrary

discretization of the unknown chemotactic drift term as a trainable variable in a neural

network through training. A different access to parameter reconstruction through optimal

control is provided in [FM03] for identification of a death or equivalently harvesting rate

of cells including numerical evidence by finite differences, or in [DP19] for identification of

boundary data on the chemoattractant equation for autochemotaxis.

Moreover, simultaneous structural identifiability of the per capita consumption rate of

the chemoattractant by the bacteria and the gravitational potential of the fluid in an

autochemotactic PKS Navier Stokes system was shown in [LL24] by a variation method.

Chemotaxis for a fixed stimulus. An application in cancer research lead to the develop-

ment of numerical algorithms for the ill-posed reconstruction problem of the chemotactic

diffusion and the chemotactic drift in a finite difference discretization of the PKS model in

[BBN22]. Another methodology [HRP+21] exploits assumed radially symmetric geometry

in the PKS model for drift and diffusion coefficient reconstruction by means of a linear

relation to a specific function and functional regression.

Experimental Design for Biological Models. Biological experiments can be very costly,

for instance due to long waiting times for the model to evolve, high maintenance cost or

complex apparatuses. In addition to that, found models and parameter estimates are not

always trusted due to the complexity of certain biological models and the incapability

of modelling all influence factors, which explains an initial hesitation towards optimal

experimental design methods, as well as the desire to balance optimality against robustness

[FAJ05, HBY10]. Instigated by the development of identifiability analysis methods in

systems biology, nowadays, optimal experimental design techniques have been applied

and proposed in a number of publications, e.g. [CH12, BCAB08, BSE+09, LFKS13].

As pointed out in more detail in the paragraph on related literature in Chapter 5,

however, experimental design for chemotaxis is so far restricted to the development of lab
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apparatuses and protocols to realize experiments.

Inverse problems for kinetic PDEs. The parameters in kinetic PDEs often describe inter-

action between particles or, as in the case of chemotaxis, decisions of single individuals, or

material properties of the background. It is often challenging to observe these parameters

directly, calling for inverse problems. The most prominent example is optical tomography

in medical imaging, where boundary data is used to infer optical properties, and hence

interior structures, of the body. A rich body of literature on the mathematical treatment

of this topic exists, and here we only guide the interested reader to review articles on

theoretical results [BJ09] and their numerical counterparts [AS09, Ren10].

3.2.4. Novelty of this Work and Outline of Part I.

This is the first work to investigate the inverse problem (Ch−1) of reconstructing the kinetic

tumbling kernel from macroscopic data, where the coarser scale of the data in comparison

to the parameter is challenging. On the other hand, this setting allows greater flexibility

in designing the experiments than in optical tomography motivated radiative transport

inverse problems in [BJ09] and references therein.

In Chapter 4, based on the publication [HKLT24], we give a positive answer to (Q.i) by

proving structural identifiability of the tumbling kernel from velocity-averaged data for the

first time, exploiting all degrees of freedom that this experimental setting provides: time

dependent, interior domain data and the possibility to tightly control the initial data. The

proof borrows a technique developed in the realm of optical tomography that explicitly

constructs a suitable design which is capable of triggering microscopic information. This

framing of singular decomposition results on kinetic inverse problems under the structural

identifiability perspective is also novel. It emphasizes clearly the theoretical nature of the

result, requiring access to the full input-to-output map ItOK .

The remaining two chapters of this part are devoted to study (Q.ii) and describes the

’relaxation of theory approach’ of experimental design on the example of chemotaxis. It

originate from the publication [HKLT25]. The investigation of experimental designs for

their suitability in the reconstruction context is also novel for chemotactic phenomena.

By consideration of macroscopic density data instead of microscopic trajectory data, the

question becomes relevant and can help raising reconstruction quality or decreasing ex-

perimental cost, by improving the sensitivity of data w.r.t. the parameter. Chapter 5

builds up the sensitivity based identifiability framework, that we operate in, and ana-

lytically investigates suitability of two different designs, one of which is designed by the

’relaxation of theory’ approach, which demonstrates the coexistence of identifiability and

non-identifiability in dependence on the design. The current part of this work is then

concluded by numerical studies on the suitability of different designs in Section 8.3.2 in

one and two spatial dimensions, contrasting the effectiveness of well chosen designs by the

degradation of reconstructions under decreasing data diversity.
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4
Structural identifiability: Experimental

Setting

This section aims to answer the question (Q.i) of suitability of the experimental setting as

described in Section 3.2.1 for the parameter reconstruction (Ch−1). It utilizes structural

identifiability analysis.

4.1. Setting and Main Results.

By postulating continuity of the tumbling kernel K on Rd ×W , where W := {(v, v′) ∈
V × V | v ̸= v′}, in this chapter, we mildly restrict the admissible set to

Acont
K := {K ∈ AK | K |Rd×W∈ C+(Rd ×W )}. (4.1)

Imposing this additional regularity of K has a regularizing effect on the inverse problem

(Ch−1). However, we regard the assumption of continuity as rather mild in practical

settings.

On the other hand, the choice of the experimental setup (ϕ, µ) ∈ L1
+,c ∩ L∞(Rd × V ) ×

L1([0, T ]×Rd) will not be restricted, i.e. we assume access to the full, infinite dimensional

input-to-output map, and the non-parametric inverse problem of searchingK in the infinite

dimensional function space subset Acont
K can be described as

find K ∈ Acont
K such that ItOK(ϕ, µ) = y(ϕ, µ) ∀(ϕ, µ) ∈ D, (4.2)

where the data y is a function D := L1
+,c ∩ L∞(Rd × V ) × L1([0, T ] × Rd) → R.

Identifiability of this problem, and with it suitability of the given experimental setting

described in Section 3.2.1, was proven in the publication [HKLT24] on which this chapter

is based.

Theorem 4.1 (Structural identifiability; [HKLT24]). The tumbling kernel K ∈ Acont
K

can be uniquely recovered from the input-to-output map ItOK . In particular, for every
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(x, v, v′) ∈ Rd ×W , a proper choice of ϕ, µ allows to explicitly read off the point value

K(x, v, v′) from the measured data Mµ(fϕK).

This theoretical results provides identifiability in the sense of well-posedness in Defi-

nition 2.1i) for the infinite dimensional forward map F : K 7→ ItOK . Given that the

parameter space Acont
K is infinite dimensional, it makes sense that the data has to share

this property, as suggested also by Proposition 2.13. Together with the fact that access

to noise free measurements y = Mµ(fϕK) is considered, this avoids source (II) and (III)

of non-identifiability, and allows sole investigation of source (I). Considered experimen-

tal designs will be constructed independently of the a-priori unknown value of K, which

means they are persistent exciting w.r.t. ItOK and Acont
K uniformly in K. This is a conse-

quence of transport nature of model (Ch) and the fact that K does not affect the spatial

propagation, but only the value of the density in considered locations.

The proof is laid out in the subsequent subsections 4.2 for dimensions d ∈ {2, 3} and in

4.3 for d = 1, where the construction can be simplified due to the discrete velocity space. It

relies on a mathematical machinery termed singular decomposition [CS96b, LS20] that was

specifically designed to trigger microscopic information in kinetic equations by a detailed

construction of an experimental design. This technique exploits the transport nature of

kinetic equations using the following key ingredients:

a) The solution is artificially decomposed in terms of regularity.

b) The propagation of induced singular initial data can then be traced in the more singular

terms in this decomposition.

c) Compatible measurement specifications isolate that term in the decomposition that

shall be used for the reconstruction.

d) The assumption that tumbling is rare underlines the transport nature of (Ch) and

explains why higher regularity terms are negligible.

Intuitively, this methods exploits the fact that the kinetic model describes the distri-

bution of an individual based Markov jump model: the singular initial condition can be

regarded as a particle approximation to the initial density with just one particle. The

propagation with the kinetic equation describes the motion of this one particle in a statis-

tical manner. A compatible measurement procedure filters out the information on those

parts of the solution that correspond to one specific tumbling event and thus allows the

direct read off of the tumbling kernel - encoding the probability of this tumbling event -

from the measurement.

Theorem 4.1 is rigorously proven by an explicit construction of the previously described

experiment through specification of ϕ, µ. The rare tumbling assumption (d) is implemented

via a small measurement time, defined by the temporal component of µ, that leaves no

time for more than one tumbling. It has to be balanced with the singularity in the

initial data to avoid that the measurement only captures the initial data. Then the

experimental geometry enforces that all measured particles must have undergone exactly

one tumbling at a prescribed location and with prescribed outgoing direction. This restores
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singularity in velocity in the measurement, as previously destroyed by velocity averaging

in the measurement.

The small time requirement is in line with the kernel reconstruction for the fragmenta-

tion equation [DET24] and the use of high frequency data in the radiative transfer equation

kernel reconstruction from velocity averaged data in [BJLM11, BM12].

The results presented in this chapter emerge from joint work with Christian Klingenberg,

Qin Li and Min Tang that was published in [HKLT24].

Overview over related literature.

We give a brief overview over literature regarding singular decomposition and structural

identifiability for transport equations, before presenting the novelties of this work.

Singular Decomposition. Singular decomposition is conceptually related to van Neu-

mann decomposition of solutions to kinetic PDEs [CZ63] and the Born series expansion

for the wave equation [Wei63]. Driven by applications in optical tomography, it was tra-

ditionally used for inverse problems in radiative transport or photon transport through

tissue, with boundary data. In the following, we give a brief overview over existing liter-

ature. A comprehensive review can be found in [Bal09].

Angularly resolved data: In 1996, the technique was originally developed to study existence

and uniqueness of the reconstruction of the absorption coefficient and the scattering ker-

nel in the radiative transfer equation from outgoing boundary data [CS96b, CS99, CS96a].

In the stationary case [CS96b, CS99], results showed non-uniqueness, as the coefficients

are determined only up to a specific gauge transform [CS96b, ST09]. Uniqueness can be

restored in sufficiently high dimensions by prescribing simplified dependencies of the pa-

rameters on the variables, e.g. symmetry of the absorption rate in v. The technique was ex-

tended to provide stability results in the cases where uniqueness holds [SU03, BJ08], or oth-

erwise under consideration of the gauge transformation equivalence classes [MST10, BJ18].

Access to time-dependent measurements improves these results: they additionally hold for

a lower spatial dimension [CS96a, BJ10].

Non-linear models were considered in [LS20] by introducing a generic, potentially non-

linear function of the solution to the RHS of a stationary transport equation. This result

was applied to provide uniqueness of velocity independent absorption coefficient and the

scattering coefficient in the linear case of stationary radiative transport. A quadratically

non-linear absorption was reconstructed in an iterative procedure in [SZ22]. Another

example is provided in [LUY21, LO23], where uniqueness of the collision kernel recon-

struction from boundary measurements for the stationary [LUY21] or time-dependent

[LO23] Boltzmann equation is shown through linearization and application of singular

decomposition under certain structural assumptions on the kernel.

Angularly Averaged Data. In certain applications, angularly resolved measurements are

not available. This inspired the consideration of angularly averaged data on the outgoing

boundary for the inversion, mostly the outgoing flux. These macroscopic type measure-

ments reduce the dimensionality of the data and hinder the selection of the desired decom-
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position part, which introduces difficulties to the reconstruction [Bal09]. In the stationary

setting and with a simplified variable dependence of the parameters, isotropic sources

only allowed regularized reconstructions of the parameter up to a certain error [BLM08],

whereas uniqueness and stability of these parameters can be shown if the induced singular

source is angularly resolved [Lan08]. Under isotropic sources, the situation is also im-

proved, if time-dependent measurements are available [BJ09, BJ10], and uniqueness and

stability of integral forms of the absorption σ and scattering kernel K can be shown. A

similar effect was observed in the stationary case when interior domain data was available

[BJJ10].

For radiative transport in the frequency domain, the asymptotic behaviour of the sin-

gular decomposition parts of angularly averaged boundary data is studied in [BJLM11,

BM12], which suggests better identifiability of the coefficients σ,K for high frequencies

and translates to small times in the time domain.

Multi-scale behaviour: Furthermore, the technique was used to study the multi-scale

behaviour of the inversion: the instability introduced by a diffusive scaling was studied

through tracing it in the stability estimates for the reconstruction of the absorption co-

efficient and the scattering cross-section in the stationary radiative transport equation

[LLU19] and explicit, scaling parameter dependent reconstruction formulas were given in

[CLL20].

Structural Identifiability for transport equations. Available literature on structural

identifiability analysis focuses on inverse problems related to advection equations with

fixed velocities. Driven by concrete applications, the spatial variable is chosen one dimen-

sional and often attains a different interpretation, such as the concentration of a catalyst

for chemical reaction dynamics [OH98], or an additional age structure of biological agents

that undergo some reproduction process [RKE22, GQMT22, CRY19, PLCT11, PR16].

Frequently, multi-species systems of transport equations (potentially coupled with ODEs

[GQMT22, OH98]) are considered [PLCT11, VC99, RKE22, CRY19]. Structural iden-

tifiability of parameters such as the transport speed [VC99, OH98], the decay [PR16,

VC99, RKE22, CRY19] or reproduction rate [CRY19], or the reaction parameter that

model the changes between the species [PLCT11, VC99, RKE22] is studied either by a

leveraging explicit solution formulas [PR16], by a generalized differential algebra approach

[PLCT11, RKE22, CRY19] or a Laplace expansion [VC99, OH98].

Another branch of literature considers the question from a more classical inverse problem

perspective and studies identifiability in the sense of well-posedness Definition 2.1i). In

[KP08], the kinetic model (Ch) is considered on a bounded domain and the reconstruction

of the absorption coefficient from observation of the time evolution of boundary data is

studied. (Structural) identifiability is shown under mild assumptions on the initial data

and symmetry assumptions on the absorption coefficient through Carleman estimates.
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Novelty of this work.

The framework of identifiability analysis is applied to a kinetic model for the first time.

Compared to the transport models in identifiability literature, our model (Ch) couples the

bacteria densities f(t, x, v) for all velocities v ∈ V through the term L(f). For d ≥ 2,

the model does not deteriorate to a multi-species model and thus falls out of the realm

of available results from identifiability analysis [PLCT11, VC99, RKE22]. For d = 1, the

consideration of averaged measurements prohibits the use of the differential approach as

in [RKE22, PLCT11]. This work shares some properties with techniques used in [VC99]:

it also makes use of a series representation of the measurement, in response to a singular

initial condition, in order to attain insight into identifiability. The way to obtain this

series representation, however, is fundamentally different: In [VC99], the PDE is solved

by a Laplace transform. For the 1D chemotaxis system, the more complex structure

of the equation, with space and velocity dependent coupling coefficients K(x, v, v′) and

transport in both equations, does not permit this simple solving strategy and we have

to rely on the decomposition according to regularity. This work thus uses the singular

decomposition technique that exploits the characteristic properties of kinetic models and

can thus be regarded as a model specific method. The classification of the results obtained

by singular decomposition in the identifiability framework has not been considered in

previous literature.

Furthermore, angularly averaged measurements are considered, which reduces the infor-

mation in the data and worsens parameter identifiability [Lan08, BLM08, Bal09, CLW18a,

ZZ19]. In this work, this is balanced against the improvement through access to interior

measurements [BJJ10] with time dependence [BJ10], generated by an angularly resolved

induced singularity [Lan08]. The combination of all these remedies has not been studied

in literature, where previous results only included one improvement mechanism. As a

consequence, available results can only guarantee identifiability of the parameters with

simplified dependence on the variables [BJJ10, BJ10, Lan08], whereas similar restrictions

are not required in our result. This is important in the setting of chemotaxis, where

different chemoattractant concentrations generate different tumbling behaviour and thus

different shapes of K.

To provide this detailed picture of K, an additional mechanism is introduced to control

the contribution of the most regular parts: small measurement time reflects the assumption

that tumbling events are rare. It has been shown in [DET24], that the kernel reconstruction

for the fragmentation equation benefited greatly from the use of short time data. In

a radiative transport setting, this was also observed in the frequency domain for high

frequency, velocity averaged boundary flux measurements [BJLM11, BM12]. In this work

interior domain data is available, which improves the previous reconstruction results in

the sense that K can be directly read off the measurement. To achieve this, our result

requires a delicate balance between the short measurement time and the singularity in the

initial data, as described earlier.

The described setting makes sense for the chemotaxis inverse problem: especially for

d ∈ {1, 2}, the bacterial motion in the whole interior domain can be observed from above.

A relatively low bacterial travel speed allows time dependent measurements, and experi-
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mental techniques have been developed to control bacteria or micro-swimmers, as described

in Remark 3.7.

4.2. Proof of Theorem 4.1 in Dimension d = 2, 3

In dimension d ≥ 2, the velocity space V is continuous, and the tumbling kernel K(x, v, v′)

lives on a d(d − 1)2 dimensional manifold. Its reconstruction requires a carefully crafted

experimental design, as the following formal motivation shows.

Formal Intuition. A formal consideration demonstrates required properties of the design:

smallness of measurement time, singular measurement and initial data and an adapted

experimental geometry. Subsequently, an adaptation of the intuition in [DET24] to the

chemotaxis model (Ch) is given. Assume a small measurement time tm > 0 and sufficient

regularity of f . An evaluation of (Ch) at point (t− s, x− vs, v) gives a formula for

−∂sf(t− s, x− vs, v) = −σ(x− vs, v)f(t− s, x− vs, v) + L(f)(t− s, x− vs, v),

also referred to as integration along characteristics. A twofold application leads to the

approximation

f(tm, x, v) ≈ f(0, x− vtm, v) −
∫ tm

0
σ(x− vs, v) ds f(0, x− vtm, v) (4.3)

+

∫ tm

0

∫
V
K(x− vs, v, v′)f(0, x− vs− v′(tm − s), v′) dv′ ds + o(tm),

where the usual Landau notation is used. Now consider singular initial data f(t =

0, x, v) = δxin(x)δvin(v) that is given in terms of Dirac delta functions δxin , δvin which

concentrate at some initial location xin ∈ Rd and velocity vin ∈ V . Assuming that the

remainder term is still of order o(tm), this provides∫
V
f(tm, x, v) dv ≈ δxin(x− vintm)

(
1 −

∫ tm

0
σ(x− vins, vin) ds

)
+ o(tm) (4.4)

+

∫
V

∫ tm

0
K(xin + vin(tm − s), v, vin) δxin(x− vs− vin(tm − s)) ds dv.

It will turn out that the Dirac delta in the integral can be resolved, and for a suitable

choice of the measurement location xm with ∥xm−xin∥ < tm, one finds a unique tumbling

time ttumb ∈ (0, tm) and a unique outgoing direction vout ∈ V \{vin} with xm = xin +

vinttumb + vout(tm − ttumb) such that∫
V
f(tm, xm, v) dv ≈ K(xin + vinttumb, vout, vin) + o(tm).

This shows that a point-measurement of
∫
V f dv, taken at small measurement time tm

at a specifically chosen measurement location xm, approximately reflects the value of the
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tumbling kernel at the so-called tumbling location xtumb := xin + vinttumb, with incoming

velocity vin and outgoing velocity vout. Only information of this one precise travel path is

contained in the measurement.

The goal of the remaining section is to prove this intuition rigorously.

Remark 4.2. Resolving the Dirac delta in the integral in (4.4) can be understood geomet-

rically: For particles that have tumbled exactly once, as the form of the integral suggests,

the tumbling location xtumb and time ttumb, and velocity vout after the tumble are uniquely

determined by their initial location xin and velocity vin and the measurement time tm and

location xm with ∥xin − xm∥ < tm, as Figure 4.1 illustrates. The point-wise measurement

of propagated singular initial data thus only contains information of the tumbling kernel

at one location, namely (xtumb, vout, vin). This allows the point-wise reconstruction.

xin
v in

xtumb

tm

xm
vout

t tum
b

Figure 4.1.: The ellipse with given focal points xin, xm and fixed radius tm determines all

points x with distance ∥x − xin∥ + ∥x − xm∥ = tm. These are all points where particles

that have started in xin and tumbled exactly once before they reach xm at time tm could

potentially have tumbled. As vin is given, the tumbling point xtumb is the unique intersec-

tion of the half line, starting at xin in direction vin, with this ellipse. Due to the constant

speed of motion, the tumbling time ttumb is determined by the length of the line from xin
to xtumb and vout by the direction of the line from xtumb to xm. Color olive green stands

for prescribed quantities that uniquely determine orange quantities.

Construction of Initial Data and Measurement Test Function. Explicit design choices

are laid out in this subsection. Let (xtumb, vout, vin) ∈ Rd ×W be the point at which the

value K(xtumb, vout, vin) shall be reconstructed.

Geometry. Let the measurement time

tm := εα, for an α ∈
(
3
4 , 1
)

and a scaling parameter 0 < ε < T
1
α , (4.5)

become small as ε→ 0. Then set the initial and measurement location as in Figure 4.2 to

xin := xin(tm) := xtumb − vin
tm
2

and xm := xm(tm) := xtumb + vout
tm
2
. (4.6)

Both are pushed towards the tumbling location xtumb as measurement time tm shrinks

with ε. It is important to note that the geometry in Figure 4.2 is sustained, while the

experimental domain shrinks.
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xin
v in

xtumb

xm
vout

tm
2

tm
2

Figure 4.2.: Geometry of the experiment. The quantities tm and xm that belong to the

measurement are depicted in blue and vin and xin that describe the initial data in Olive-

Green.

Singularity in initial data and measurement. As Dirac delta initial conditions are not

covered by the existence theory for the forward equation in Proposition 3.3, mollifications

are constructed subsequently. The previously defined geometry describes the concentration

points of initial data ϕε ∈ C∞
c (Rd × V ) and measurement test functions µε ∈ C∞

c (Rd ×
[0, T ]) defined as

ϕε(x, v) =

 1
εdεβ(d−1)ϕx

(
x−xin

ε

)
ϕv

(
P−vin

(v)

εβ

)
jP−vin

(v), x ∈ Rd, v ∈ V \{−vin}

0, x ∈ Rd, v = −vin
(4.7)

µε(t, x) =

(
tm
2

)d−1 1

εβdεβ
µx

(
x− xm
εβ

)
µt

(
t− tm
εβ

)
Cvin,vout (4.8)

for the same scaling parameters ε > 0 as used in (4.5) for the measurement time, and

some rate β > 1. The test functions ϕx, µx ∈ Ξd, ϕv ∈ Ξd−1 and µt ∈ Ξ1 shall belong to

the spaces

Ξn = {h ∈ C∞
c (Rn;R) | supp(h) ⊂ Bn(0, 1), 0 ≤ h ≤ 1, h(0) = 1 and

∫
Rn

h(s) ds = 1}

(4.9)

of non-negative smooth functions on Rn that are compactly supported in the unit balls

Bn(0, 1) ⊂ Rn of dimension n ∈ {d, d − 1, 1}, bounded by 1, and attain this value at 0,

and integrate to 1. Furthermore, the constant Cvin,vout is defined as

Cvin,vout := (1 − ⟨vin, vout⟩), (4.10)

and P−vin : Sd−1\{−vin} → Rd−1 denotes the stereographic projection on the sphere with

direction −vin and jP−vin
(v) = (1 + ⟨v, vin⟩)−(d−1) its absolute Jacobi determinant. The

projection is described in more detail in Appendix B.1.

Note that the factor (tm/2)d−1 in µε vanishes asymptotically as ε→ 0. This is necessary

to balance the singularities generated by the test functions as ε → 0, in the sense that it

keeps the value of the measurement finite, as will become more obvious in Section 4.2.2.

Measurement time vanishes at a slower rate α ∈ (34 , 1) than singularities in initial

data and measurement are generated. This means that singularity is produced before

measurement time and with it the experimental domain is shrunk. As a consequence, the

experiment does not deteriorate to simply ’measuring the initial data’ and the experimental

geometry is sustained in the limit.

58



4.2. Proof of Theorem 4.1 in Dimension d = 2, 3

Remark 4.3 (Comparison to [HKLT24]). In this work, only one scaling parameter is used

with different rates, opposed to the setting in [HKLT24] with chosen, where independent

scaling parameters ν, η, δ, ε for measurement location and time, initial velocity and loca-

tion, respectively, were used. We believe this to be closer to practical settings, where

singularity is never fully achieved in experiments.

The different rates of the scaling parameter ε determine the relative speed of the gen-

eration of singularities and smallness of measurement time and this order coincides with

with the one used in [HKLT24], where the singularity limit in initial velocity, measure-

ment time and location preceded the coupled singularity in initial location and smallness

of measurement time limit. This order and coupling were crucial ingredients of the proof

in [HKLT24].

Mixed settings are also possible, where the singularities in measurement location or time,

or initial velocity are generated by independent scalings ν, η, δ, as long as the singularity

in these quantities is generated before the singularity in initial location and smallness

of measurement time. Additionally, individual rates εβ1 , εβ2 , εβ3 for βi > 1 for these

singularities could be considered.

The following lemma collects properties of initial data and measurement test function

that will be used multiple times throughout the proof of Theorem 4.1.

Lemma 4.4. Let ε > 0 be sufficiently small.

a) The functions ϕε, µε as constructed above in (4.7)–(4.8) are non-negative, smooth and

compactly supported, to be precise

� ϕε ∈ C∞
c (Rd × V ) with suppϕε ⊂ Bd(xin, ε) × (V ∩Bd(vin, 2ε

β)), and

� µε ∈ C∞
c ([0, T ] × Rd) with suppµε ⊂ B1(tm, ε

β) ×Bd(xm, ε
β).

b) A change of variables makes the concentration effect on functions h : [0, T ] × Rd → R
without v dependence and g : [0, T ] × Rd × V → R with v dependence obvious:

T∫
0

∫
Rd

h(t, x)µε(t, x) dx dt =

1∫
−1

∫
Bd(0,1)

Cvin,vout t
d−1
m

2d−1 h(tm + εβ t̃, xm + εβx̃)µx(x̃)µt(t̃) dx dt,

∫ T

0

∫
Rd

∫
V
g(t, x, v)

1

εβ(d−1)
ϕv

(
P−vin

(v)

εβ

)
jP−vin

(v) dv µε(t, x) dx dt

=

1∫
−1

∫
Bd(0,1)

∫
Bd−1(0,1)

Cvin,vout t
d−1
m

2d−1 g
(
tm+εβ t̃, xm+εβx̃,P−1

−vin
(εβy)

)
ϕx(y) dy µx(x̃)µt(t̃) dx dt.

Proof. a) Non-negativity, smoothness and the support condition for µε directly follow

from the definition. Non-negativity as well as the support of ϕε in x is also clear. To

specify the support in v, observe that ϕv
(
P−vin(v)/εβ

)
̸= 0 is only possible if ε2β ≥

∥P−vin(v)∥2 = (1 + ⟨v,−vin⟩)/(1 − ⟨v,−vin⟩) by Lemma B.1.1a, which is equivalent to

⟨v, vin⟩ ≥ (1 − ε2β)/(1 + ε2β). For such v, one has in particular ∥v − vin∥2 = 2(1 −
⟨v, vin⟩) ≤ 4ε2β/(1 + ε2β) ≤ 4ε2β. Smoothness in v follows from smoothness of ϕv and
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P−vin in V \{−vin} and the fact that a neighbourhood of −vin is excluded from the

support of ϕε by the above considerations for sufficiently small ε.

b) The form of the integrand after a change of variables to t̃ = t−tm
εβ

, y =
P−vin

(v)

εβ
and

x̃ = x−xm
ε is clear, given that P−vin is bijective on its support according to Lemma B.1.1a

and −vin /∈ suppϕε for small enough ε. It remains to verify the form of the integration

domain. These can be reduced in consideration of the supports suppµx ⊂ Bd(0, 1),

suppϕv ⊂ Bd−1(0, 1), and suppµt ⊂ [−1, 1], that are contained in the domains after

the change of variables x̃ ∈ Rd, y ∈ Rd−1, t̃ ∈ [−tm/εβ, (T − tm)/εβ] for sufficiently

small ε, by the fact that tm/ε
β = εα−β → ∞ as ε → 0 due to α < 1 < β and T > 0

fixed by construction.

Decomposition. In the following, the dependence of f on its initial data ϕ will be ex-

pressed explicitly by writing f = fϕ. It is decomposed into three parts

fϕ = fϕ0 + fϕ1 + fϕ≥2. (4.11)

The most singular part is the ballistic part fϕ0 of fϕ that collects the bacteria that did

not tumble up to time t. Starting to count the tumbling at time t = 0, all particles of

initial condition ϕ fully belong to fϕ0 . The run-and-tumble behaviour from section 3.1

suggests that they run along a straight line in direction v until they tumble for the first

time and statistically disappear from fϕ0 . In summary, fϕ0 solves the following transport

problem with absorption

∂tf
ϕ
0 + v · ∇fϕ0 = −σfϕ0 ,

fϕ0 (t = 0, x, v) = ϕ.
(T0)

The particles that tumbled for the first time reappear as a source term L(fϕ0 ) for fϕ1 , the

fraction of particles of fϕ that tumbled exactly once up to time t. A statistical loss is

constituted by particles that tumbled for a second time, and the propagation of fϕ1 can be

described by the following transport equation

∂tf
ϕ
1 + v · ∇fϕ1 = −σfϕ1 + L(fϕ0 ),

fϕ1 (t = 0, x, v) = 0.
(T1)

All remaining particles, i.e. those that tumbled twice or more often, are collected in the

most regular part fϕ≥2. It solves (Ch) with zero initial condition and an additional source

term to account for the particles that were formerly in fϕ1 and then tumbled for a second

time

∂tf
ϕ
≥2 + v · ∇fϕ≥2 = −σfϕ≥2 + L(fϕ1 + fϕ≥2),

fϕ≥2(t = 0, x, v) = 0.
(T≥2)

Existence of solutions for (T0), (T1) and (T≥2) is assured by standard semigroup theory,

as laid out in Corollary A.1.3.
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Lemma 4.5. Let ϕ ∈ L1
+,c ∩ L∞(Rd × V ) be non-negative for a.a. v and let K ∈ AK .

Then (T0), (T1) and (T≥2) attain unique mild solutions fϕ0 , f
ϕ
1 and fϕ≥2 in the space

C0([0, T ];L1
+,c ∩ L∞(Rd × V )) that are non-negative in a.a. v. Explicit formulas for fϕ0

and fϕ1 exist and read

fϕ0 (t, x, v) =e−
∫ t
0 σ(x−vs,v) dsϕ(x− vt, v), (4.12)

fϕ1 (t, x, v) =

∫ t

0

∫
V
e−

∫ s
0 σ(x−vτ,v) dτK(x− vs, v, v′)e−

∫ t−s
0 σ(x−vs−v′τ,v′) dτ · (4.13)

ϕ(x− vs− v′(t− s), v′) dv′ ds ,

and fϕ≥2 is bounded by its source term fϕ1 through

∥fϕ≥2(t)∥∞ ≤ e|V |CKtCK |V |
∫ t

0
∥fϕ1 (s)∥∞ ds. (4.14)

Proof. Existence and positivity for fϕ0 are direct consequences of Corollary A.1.3 and

Lemma A.1.5a. The same results provide the assertion for fϕ1 , given that the source term

L(fϕ0 ) ∈ C0([0, T ];L1
+,c ∩ L∞(Rd × V )) ⊂ L1([0, T ];L1

+,c ∩ L∞(Rd × V )) is non-negative,

since K ∈ Acont
K is. Existence and non-negativity of fϕ≥2 follow analogously. The bound

for its norm ∥f≥2(t)∥∞ is provided by (A.1.6), together with the boundedness of operator

L by ∥L∥ ≤ CK |V |. The explicit formulas for fϕ0 and fϕ1 emerge from a combination of

(A.1.4) and (A.1.7).

The information on K contained in the three parts has different quality: fϕ0 can only

contain information on the integrated version σ(x, v) =
∫
V K(x, v′, v) dv′ of K as suggested

by (T0). On the other hand, particles from fϕ≥2 were subject to two or more tumbles, whose

influence cannot be separated. Both quantities do not seem suitable for a reconstruction

of K, which will instead be based on fϕ1 that contains information on exactly one tumbling

event.

Because tumbling has a diffusive effect, the three parts fϕ0 , f
ϕ
1 and fϕ≥2 attain different

regularity. This smoothing effect becomes obvious with singular initial data and measure-

ment test functions. The aim of our construction is to exploit this behaviour so to obtain

access to fϕ1 through the measurement

Mµ(fϕ) = Mµ(fϕ0 ) +Mµ(fϕ1 ) +Mµ(fϕ≥2) ≈Mµ(fϕ1 ), Mµ(fϕ0 ) ≈ 0 ≈Mµ(fϕ≥2). (4.15)

Since actual singularity is not realizable, neither theoretically by the smoothness assump-

tions on ϕ, µ, nor experimentally due to restrictions in measurement precision and prepa-

ration of initial data, the above will hold in the limit as initial data and measurement test

function become more and more concentrated.

Behaviour of the Measurement.

Theorem 4.1 is a direct consequence of the following proposition.
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Proposition 4.6. Let K ∈ Acont
K and consider a fixed point (xtumb, vout, vin) ∈ Rd ×W .

Let (ϕε, µε) be defined as in (4.7)-(4.8) with xin, xm, tm given in (4.5)–(4.6) for ε > 0.

Then

lim
ε→0

Mµε(fϕ
ε
) = K(xtumb, vout, vin) .

This proposition describes an explicit relationship between the (sequence of) measure-

ment(s) and the parameter that shall be reconstructed. Its proof is divided into the

subsequent three lemmas, each of which treats the limit for one of the parts of the decom-

position of Mµε(fϕ
ε
) in (4.15).

Particles from fϕ0 travel along a straight line, so singular initial data will be propagated

to the ballistic location

xb := xin + vintm ̸= xm (4.16)

at time tm and will thus not appear in the measurement.

Lemma 4.7. Let K ∈ Acont
K . Given a point (xtumb, vout, vin) ∈ Rd ×W , define (ϕε, µε)

for ε > 0 as in (4.7)-(4.8) for xin, xm, tm as in (4.5)–(4.6). Then Mµε(fϕ
ε

0 ) vanishes in

the limit

lim
ε→0

Mµε(fϕ
ε

0 ) = 0 . (4.17)

All particles from fϕ
ε

1 in the measurement were subject to the one tumbling at the same

location, time and with the same outgoing velocity, according to Figure 4.1. As tm → 0,

this happens instantaneously at the beginning, and the measured particles are only subject

to this tumbling, given that no time for further decay while running is left.

Lemma 4.8. Let K ∈ Acont
K , and let a point (xtumb, vout, vin) ∈ Rd × W be given and

construct initial data ϕε and test functions µε as in (4.7)-(4.8) for xin, xm, tm as in (4.5)–

(4.6). Then the measurement Mµε(fϕ
ε

1 ) reconstructs K(xtumb, vout, vin), in the sense that

lim
ε→0

Mµε(fϕ
ε

1 ) = K(xtumb, vout, vin) . (4.18)

The influence of higher regularity parts from fϕ
ε

≥2 is controlled by a small time require-

ment tm = εα → 0 as ε → 0. Intuitively, it means that there is no time left for a second

tumbling event.

Lemma 4.9. Let K ∈ Acont
K , and define initial data ϕε and test function µε as in (4.7)-

(4.8) for a given point (xtumb, vout, vin) ∈ Rd ×W and xin, xm, tm as in (4.5)–(4.6). Then

lim
ε→0

Mµε(fϕ
ε

≥2) = 0. (4.19)

The proofs of these lemmas are the subject of the remainder of this chapter. Together,

they prove Proposition 4.6.

Proof of Proposition 4.6. Combining the previous lemmas, in the limit, equation (4.15) is

obtained

lim
ε→0

Mµε(fϕ
ε
) = lim

ε→0
Mµε(fϕ

ε

1 ) = K(xtumb, vout, vin).
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In the following subsections, the dependence of f on the initial data and the M on the

measurement test function will be omitted, since it is clear that ϕε, µε in (4.7)–(4.8) are

considered.

Remark 4.10. Temporal changes in the chemoattractant might induce time dependence

in K. Our strategy can be extended to this case, with some additional effort in the

experimentation: All arguments in the proofs of the three lemmas are local-in-time and

the setting tm = εα → 0 is considered. They can hence readily be extended to reconstruct

time continuous K(t, x, v, v′), if the initial condition and measurement can be prepared

around any time t̂ > 0. This means that the experiment starts delayed at time t̂, and the

same reconstruction strategy can be used.

4.2.1. The Ballistic Part f0

The proof of Lemma 4.7 is based on a comparison of the spatial supports of measurement

test function µ and f0, given as balls B(xm, ε
β) and B(xb, ε) around the measurement

location xm and the ballistic location xb from (4.16). For sufficiently small supports as

ε → 0, there will be no overlap, leading to a vanishing measurement of f0. The idea is

summarized in Figure 4.3.

xint = 0

B(xin, ε)

xb
t = tm

B(xb, ε)

v in xm

Figure 4.3.: Propagation of the spatial support of fϕ0 for initial data ϕ(x, v) = ϕ̃(x)δvin(v)

from B(xin, ε) at time 0 (OliveGreen) to B(xb, ε) at time tm (green), and spatial support

B(xm, ε
β) of measurement test function µ = µ̃xδtm (blue) for small ε.

Proof of Lemma 4.7. Using the explicit formula (4.12) for f0, a change of variables makes

the supports and their lack of overlap obvious, which leads to a vanishing measurement.

Step 1: Transformation of variables. Insert the explicit form (4.12) of f0 in the

measurement and conduct a change of variables as in Lemma 4.4b to obtain, for small
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4. Structural identifiability: Experimental Setting

enough ε > 0,

M(f0) =

∫ T

0

∫
Rd

∫
V
f0(t, x, v) dv µε(t, x) dx dt

=
Cvin,voutt

d−1
m

2d−1εd

1∫
−1

∫
Bd(0,1)

∫
Bd−1(0,1)

e
−

∫ tm+εβ t̃
0 σ(xm+εβ x̃−P−1

−vin
(εβy)s,P−1

−vin
(εβy)) ds

ϕv (y)µx (x̃) ·

µt
(
t̃
)
ϕx

(
xm + εβx̃− P−1

−vin
(εβy)(tm + εβ t̃) − xin

ε

)
dy dx̃ dt̃.

Step 2: Convergence. The above formula indicates that M(f0) = 0 for small enough

ε, because the argument of ϕx, denoted by

a :=
xm + εβx̃− P−1

−vin
(εβy)(tm + εβ t̃) − xin

ε
,

does not belong to its support Bd(0, 1). This can be seen, as by the reverse triangle

inequality

∥a∥ ≥ ε−1∥xm − vintm − xin∥ − tm
ε ∥vin − P−1

−vin
(εβy)∥ − εβ−1∥x̃∥ − εβ−1∥P−1

−vin
(εβy)∥|t̃|

≥ εα−1 1

2
∥vout − vin∥ − 2εβ+α−1 − 2εβ−1. (4.20)

In the second line, the definition of the measurement geometry (4.5)–(4.6) was exploited,

together with boundedness of ∥x̃∥, |t̃| ≤ 1 and P−1
−vin

(εβy) ∈ Sd−1, and the fact that

P−1
−vin

(εβy) = vin + εβvε
β
(y) with ∥εβvεβ (y)∥ ≤ 2εβ∥y∥ ≤ 2εβ for y ∈ Bd−1(0, 1) by

Lemma B.1.1b. Given β > 1 > α and vin ̸= vout, the first summand becomes arbitrarily

large as ε→ 0, whereas the remaining summands vanish. This shows ∥a∥ > 1 for ε small

enough.

4.2.2. The One Tumble Part f1

The decay that the particle from f1 undergo on their way from xin to xm due to too

early tumbling before xtumb or a second tumble after xtumb, see Figure 4.4, vanishes with

the measurement time tm = εα → 0 and xin, xm → xtumb. Only the effect of the one

tumbling event remains. The different scaling of the singularity in ϕε, µε and the slower

rate of decay of measurement time let the argumentation in Figure 4.1 stay valid, such

that the increasing singularity in ϕε, µε uniquely prescribes the tumbling location xtumb

and outgoing velocity vout.

xin
v in

xtumb

xm
voutσ(x,

v in
) σ(x, vout)

Figure 4.4.: Propagation of particles from f1 from xin to xm, subject to decay at rate σ.
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4.2. Proof of Theorem 4.1 in Dimension d = 2, 3

Proof of Lemma 4.8. The Proof of Lemma 4.8 exploits the availability of an explicit for-

mula (4.13) for f1. Convergence to the tumbling kernel evaluation is established through

the dominated convergence theorem and heavily exploits the construction of initial data

ϕε and µε in (4.7)–(4.8) and the experimental geometry (4.5)–(4.6). A transformation of

variables is conducted and the integration domains are reduced to ε independent domains,

for small enough ε, before the dominated convergence theorem can be applied. Some

technical details are sourced out to Lemma 4.11.

Step 1: Transformation of variables and reduction of integration domain.

After inserting the explicit formula (4.13) for f1 and the definition (4.7) of ϕε, the standard

transformation of variables from Lemma 4.4b shows that for small enough ε > 0

M(f1) =

∫ T

0

∫
Rd

∫
V
f1(t, x, v) dv µε(t, x) dx dt

=

1∫
−1

∫
Bd(0,1)

∫
[0,tm+εβ t̃]×V

∫
Bd−1(0,1)

Cvin,vout t
d−1
m

2d−1εd
e−

∫ s
0 σ(xm+εβ x̃−vτ,v) dτ ·

K(xm+ εβx̃− vs, v,P−1
−vin

(εβy)) e
−

∫ tm+εβ t̃−s
0 σ(xm+εβ x̃−vs−P−1

−vin
(εβy)τ,P−1

−vin
(εβy)) dτ ·

ϕx

(
xm+εβ x̃−vs−P−1

−vin
(εβy)(tm+εβ t̃−s)−xin

ε

)
ϕv (y)µx (x̃)µt

(
t̃
)

dy d(s, v) dx̃ dt̃ .

The concentration of ϕx as ε→ 0 shall be used to derive a unique tumbling point through

specification of (s, v). This requires a change of variables. Write the argument of ϕx as

xm + εβx̃− vs− P−1
−vin

(εβy)(tm + εβ t̃− s) − xin

ε
= z +R(s),

with R(s) defined as in (4.24) and z := T vin
a (s,v)

ε given by the transformation

T vin
a (s, v) := a− s(v − vin) = xm − vs− vin(tm − s) − xin ∈ Rd, (4.21)

where a :=
tm
2

(vout − vin) = xm − xb, (4.22)

where xb denotes the ballistic location xin + vintm as in (4.16). A visualization of these

quantities can be found in Figure 4.5 and the behaviour of T vin
a is studied in Appendix B.2.

Because T vin
a cannot be injective in a, the (s, v) integration domain is reduced to U :=

[c1, tm + εβ t̃] × {v ∈ V | ⟨v, vin⟩ ≤ 1 − c2}, with c1 := ∥a∥
4 and c2 := ∥vout−vin∥2

27
. This

is possible, since the integrand vanishes outside U according to Lemma 4.11b. Then

Lemma B.2.1a suggests that T vin
a : U → T vin

a (U), (s, v) 7→ a − s(v − vin) is bijective

with inverse (T vin
a )−1(z) = (ζ(z), ω(z)) given in (B.2.1) and absolute Jacobi determinant

sd−1(1 − ⟨vin, v⟩). Changing the variables by the full transformation (s, v) 7→ z, and
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4. Structural identifiability: Experimental Setting

xin

xb

xtumb

xmv in

vout
a

c1

tm

tm + εβ t̃

Figure 4.5.: Geometry and quantities used in the proof, displayed in 2D. The gray area

depicts the sliced annulus xin +vs for (s, v) ∈ U , which coincides with the area A in figure

B.2.1a translated by xin. The same colour coding as in Figure 4.3 is used.

inserting definition (4.10) of Cvin,vout , thus gives

M(f1) =

1∫
−1

∫
Bd(0,1)

∫
Bd(0,5)

∫
Bd−1(0,1)

(
tm
2

)d−1

ζ(εz)d−1

1 − ⟨vin, vout⟩
1 − ⟨vin, ω(εz)⟩

e−
∫ ζ(εz)
0 σ(xm+εβ x̃−ω(εz)τ,ω(εz)) dτ ·

K(xm + εβx̃− ζ(εz)ω(εz), ω(εz),P−1
−vin

(εβy))· (4.23)

e
−

∫ tm+εβ t̃−ζ(εz)
0 σ(xm+εβ x̃−ζ(εz)ω(εz)−P−1

−vin
(εβy)τ,P−1

−vin
(εβy)) dτ ·

ϕx (z +R(ζ(εz)))ϕv (y)µx (x̃)µt
(
t̃
)

dy dz dx̃ dt̃ ,

where the z integration domain T vin
a (U)

ε was further reduced to its ε independent subset

Bd(0, 5), for small enough ε, according to Lemma 4.11c.

Step 2: Convergence. In order to establish point-wise convergence and boundedness

of the integrand, first notice that continuity of ω, ζ, their explicit formulas in (B.2.1) and

boundedness of z ∈ B(0, 5) suggest that ω(εz) → vout and ζ(εz) → 0, with

tm
2

ζ(εz)
=
εα| ⟨a− εz,−vin⟩ |

∥a− εz∥2
=

|
〈
vout−vin

2 − ε1−αz,−vin
〉
|

∥vout−vin
2 − ε1−αz∥2

ε→0−−−→
|
〈
vout−vin

2 ,−vin
〉
|

∥vout−vin
2 ∥2

= 1

by the definition (4.22) of a. This provides boundedness and point-wise convergence of

the fractions in the first line of (4.23) to 1. Point-wise convergence and boundedness of

the remaining factors in the integrand follow from continuity and boundendess of K,ϕx
and P−1

−vin
with P−1

−vin
(0) = vin by Lemma B.1.1b and the fact that R(ζ(εz)) → 0 by

Lemma 4.11a.
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4.2. Proof of Theorem 4.1 in Dimension d = 2, 3

This lays the ground for the application of the dominated convergence theorem

lim
ε→0

Mµε(f1)

= K(xtumb, vout, vin)

∫ 1

−1

∫
Bd(0,1)

∫
Bd(0,5)

∫
Bd−1(0,1)

ϕx(z)ϕv(y)µx(x̃)µt(t̃) dy dz dx̃ dt̃

= K(xtumb, vout, vin),

where xm = xtumb + tm
2 vout → xtumb as tm = εα → 0 was used, as well as the fact that

ϕx, ϕv, µx, µt integrate to 1.

The following lemma collects some technical derivations that were used in Step 2 in the

above proof of Lemma 4.8 in the change of variables. The notation from the proof is used.

Lemma 4.11. Let tm, xin, xm be defined as in (4.5)–(4.6) for fixed xtumb ∈ Rd, vin, vout ∈
V with vin ̸= vout and define a := tm

2 (vout− vin). Furthermore, let t̃ ∈ [−1, 1], x̃ ∈ Bd(0, 1)

and y ∈ Bd−1(0, 1).

a) Let ε < 1. Then the function R : [0, tm + εβ t̃] → Rd, with

R(s) =
(vin − P−1

−vin
(εβy))(tm − s) + εβx̃− εβ t̃P−1

−vin
(εβy)

ε
(4.24)

is bounded uniformly in s by ∥R(s)∥ ≤ 4εβ−1, uniformly in y, x̃, t̃.

b) For sufficiently small ε > 0, the function

ψ :[0, tm + εβ t̃] × V → R, ψ(s, v) = ϕx

(
a− s(v − vin)

ε
+R(s)

)
is supported in U := [c1, tm + εβ t̃] × {v ∈ V | ⟨v, vin⟩ ≤ 1 − c2} for c1 := ∥a∥

4 and

c2 := ∥vout−vin∥2
27

.

c) Consider the function

ψ̂ : ε−1T vin
a (U) → R, ψ̂(z) = ϕx (z +R(ζ(εz)))

where ζ is the s-inverse of T vin
a defined by (4.21), compare Lemma B.2.1a). For suffi-

ciently small ε > 0, one has supp ψ̂ ⊂ Bd(0, 5) ⊂ ε−1T vin
a (U).

Proof.

a) The triangle inequality shows

∥R(s)∥ ≤ |tm − s|
ε

∥vin − P−1
−vin

(εβy)∥ + εβ−1∥x̃∥ + εβ−1|t̃|∥P−1
−vin

(εβy)∥ ≤ 4εβ−1

for ε ≤ 1, as |tm − s| ≤ max(εβ, εα) ≤ 1, because s ∈ [0, tm + εβ t̃] and α < β, and

∥vin − P−1
−vin

(εβy)∥ ≤ 2εβ∥y∥ ≤ 2εβ according to Lemma B.1.1b as well as |t̃|, ∥x̃∥ ≤
1 = ∥P−1

−vin
(εβy)∥.
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b) Let s < c1 = ∥a∥
4 and v ∈ V . Then the reverse triangle inequality, together with

Lemma 4.11a and ∥v − vin∥ ≤ 2, shows that∥∥∥∥a− s(v − vin)

ε
+R(s)

∥∥∥∥ ≥ ∥a∥ − 2s

ε
− 4εβ−1

>
∥a∥
2ε

− 4εβ−1 = εα−1 ∥vout − vin∥
4

− 4εβ−1 > 1 ,

for sufficiently small ε > 0 by choice of α < 1 < β and vin ̸= vout and the definition

(4.22) of a.

Similarly, one has for v ∈ V with ⟨v, vin⟩ > 1− c2 = 1− ∥vout−vin∥2
27

and s ∈ [0, tm + εβ t̃]

that

∥∥∥∥a− s(v − vin)

ε
+R(s)

∥∥∥∥ > ∥a∥ − 2εα
√

2∥vout−vin∥2
27

ε
− 4εβ−1

≥ εα−1 ∥vout − vin∥
4

− 4εβ−1 > 1

for small enough ε, where ∥v − vin∥ =
√

2(1 − ⟨vin, v⟩), the estimate s ≤ tm + εβ t̃ ≤
εα + εβ ≤ 2εα and the definition (4.22) of a were applied.

In both cases, the argument a−s(v−vin)
ε +R(s) is not contained in the support suppϕx ⊂

Bd(0, 1) and thus ψ(s, v) = 0.

c) Because ϕx is supported in Bd(0, 1) and ∥R(ζ(εz̃))∥ ≤ 4εβ−1 ≤ 4 by a), the triangle

inequality shows that all z in the support of ϕx(z +R(ζ(εz))) satisfy ∥z∥ ≤ 5.

The second inclusion follows from an application of Lemma B.2.1b) to U . This shows

that there exists a µ > 0 independent of ε such that a small ball Bd(0, µεα) with radius

of order tm = εα is contained in T vin
a (U) for small enough ε, see Fig B.2.1. Therefore,

ε−1T vin
a (U) contains the ball B(0, µεα−1) ⊃ B(0, 5) for small enough ε by α < 1.

4.2.3. The Multiple Tumble Part f≥2

As f≥2 has vanishing initial condition, the only mass it contains stems from from the

non-negative source in (T≥2). The source injects mass over time, and the size of f≥2

corresponds to a time integrated version of this source term (A.1.5). This additional order

of measurement time tm will eventually drive the measurement M(f≥2) → 0 as tm → 0.

Intuitively, there is no time for the source to act, and bacteria do not have enough time

to tumble twice or more frequently.

Proof of Lemma 4.9. Lemma 4.5 provides boundedness of ∥f≥2(t)∥∞ by its source in
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4.3. Proof of Theorem 4.1 in Dimension d = 1

(4.14), which can be used to bound the measurement M(f≥2) by

M(f≥2) =

∫ T

0

∫
Rd

∫
V
f≥2(t, x, v) dv µε(t, x) dx dt

≤
∫ T

0
|V |∥f≥2(t)∥L∞(Rd×V )

∫
Rd

µε(t, x) dx dt (4.25)

≤ CK |V |2eCK |V |T
∫ T

0

∫ t

0
∥f1(s)∥L∞(Rd×V ) ds

∫
Rd

µε(t, x) dx dt.

Step 1: Boundedness of the source term f1. The explicit form of f1 in (4.13), and

the initial data in (4.7) provide

∥f1(s)∥L∞(Rd×V )

≤
∫ s

0

CK

εd

∥∥∥ϕx (x−vτ−v′(s−τ)−xin

ε

)∥∥∥
L∞(Rd×V )

∫
V

1

εβ(d−1)
ϕv

(
P−vin

(v′)

εβ

)
jP−vin

(v′) dv′ dτ

≤ CK

εd
s

by boundedness of K ∈ Acont
K and ϕx ≤ 1, non-negativity of σ, and the fact that the ϕv

integral in the second line attains value 1.

Step 2: Boundedness of f≥2. Inserting the above bound for f1 in (4.25) and appli-

cation of the change of variables according to Lemma 4.4b shows

M(f≥2) ≤
1

εd
C2
K |V |2eCK |V |T

∫ T

0

∫ t

0
sds

∫
Rd

µε(t, x) dtdx

≤
Cvin,voutC

2
K |V |2eCK |V |T

2d
td−1
m

εd

∫ 1

−1
(tm + εβ t̃)2µt(t̃)

∫ 1

−1
µx(x̃) dx̃ dt̃

≤ Cεα(d+1)−d

for sufficiently small ε > 0, since |εβ t̃| ≤ εα = tm for small ε. The constant C :=

Cvin,voutC
2
K |V |2eCK |V |T /2d−2 collects all constants.

Step 3: Convergence of M(f≥2). Non-negativity of M(f≥2) by non-negativity of µε

and f≥2 according to Lemma 4.5 provides the desired result, since α > 3
4 was chosen in

such a way that the exponent (d+ 1)α− d > 0 is positive and therefore

0 ≤ lim
εβ→0

Mµε(fϕ
ε

≥2) ≤ Cε(d+1)α−d ε→0−−−→ 0.

4.3. Proof of Theorem 4.1 in Dimension d = 1

In the 1-dimensional setting, the reconstruction procedure can be simplified. Given that

only two velocities v ∈ {±1} = V exist, the absorption parameter σ in (3.1) only contains

information on one evaluation of the tumbling parameter

σ(x, v) = K(x,−v, v), (4.26)
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as K(x, v, v) = 0 for K ∈ Acont
K by definition (3.3). Chemotaxis model (Ch) then reads

∂tf + v∂xf = K(x, v,−v)f ′ −K(x,−v, v)f,

f(t = 0) = ϕ(x, v),

where the notation f ′(x, t, v) := f(x, t,−v) is used to simplify the presentation. This

shows that information on the decay rate σ is actually sufficient for the reconstruction of

K ∈ Acont
K in one space dimension. As observed in the higher dimensional case in (4.12),

decay can already be observed in the ballistic part f0. For this reason, the construction

of designs for the singular decomposition approach can be simplified.

This is not possible in higher dimensions d ∈ {2, 3}, because σ contains information

of several tumbling kernel values through integration in (3.1), whose influence cannot be

separated. The decay behaviour is not sufficient for the recovery of K in Section 4.2 and

the higher order tumbling part f1 had to be consulted.

The reconstruction strategy presented in the following is based on the reconstruction of

σ, as presented in Section 3 of [HKLT24] in the multidimensional case, and results from

joint work with Christian Klingenberg, Qin Li and Min Tang. This strategy is adapted to

the 1D setting. A detailed comparison is conducted in Remark 4.18

Formal Intuition. The reconstruction process can again be motivated by a formal con-

sideration, as in Section 4.2. Consider (4.3) in the 1D scenario and for initial data

f(t = 0, x, v) = 1xin(x)1vin(v), where e.g. 1vin denotes the indicator function1 over the set

{vin} ⊂ V , and assume that the order of the remainder stays unchanged. Then the point

wise measurement at location x reads∫
V
f(tm, x, v) dv ≈ 1xin(x− vintm)

(
1 −

∫ tm

0
K(x− vins,−vin, vin) ds

)
+

∫ tm

0
K(x+ vins,−vin, vin)1xin(x+ vins− vin(tm − s)) ds+ o(tm).

Choosing measurement location xm = xin + vintm, the second integral term vanishes,

because the indicator function 1xin(xm + vins − vin(tm − s)) = 1xin(xin + 2vins) attains a

non zero value only on the Lebesgue null set {s = 0}. The measurement simplifies to

∫
V
f(tm, xm, v) dv ≈ 1 −

∫ tm

0
K(xin + vins,−vin, vin) ds+ o(tm).

To obtain the evaluation of K at a specific point, the derivative w.r.t. measurement time

can be taken

∂tm

∫
V
f(tm, xm, v) dv ≈−K(xm,−vin, vin) + O(tm).

1The indicator function 1A of a set A is defined as 1A(a) = 1 if a ∈ A and zero otherwise. It is convention

to write 1a := 1{a} for singleton sets {a} with a ∈ A.
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4.3. Proof of Theorem 4.1 in Dimension d = 1

Construction of Initial Data and Measurement Test Function. The detailed construc-

tion is described subsequently.

Geometry. Let (x⋆, vin) ∈ R× V be the point at which the value of the tumbling kernel

K(x⋆,−vin, vin) is supposed to be reconstructed. Furthermore, let ε > 0 be a small scaling

parameter. For small measurement times, compatible initial and measurement locations

shall be given by

tm ∈ (ε, 3ε) with tm < T, and (4.27)

xin = xin(tm) = x⋆ − vintm and xm = x⋆. (4.28)

Singularity. Given ϕx, µx, µt ∈ Ξ1 as defined in (4.9), initial data and measurement test

function with concentration points xin, vin and xm, tm, respectively, are constructed as

ϕεtm(x, v) = ϕx

(
x− xin(tm)

ε

)
1vin(v) , (4.29)

µεtm(t, x) =
1

ε2
µx

(
x− xm
ε

)
µt

(
t− tm
ε

)
. (4.30)

Given that V = {±1} is discrete, 1vin is singular in v. The singularities in initial location

and measurement location and time are coupled through the usage of the same scaling

parameter ε, that also describes smallness of measurement time tm ∈ (ε, 3ε). The following

lemma summarizes frequently used properties of ϕεtm , µ
ε
tm .

Lemma 4.12. Let ε > 0 be sufficiently small.

a) Then ϕεtm , µ
ε
tm as constructed above in (4.29)–(4.30) are non-negative, smooth and com-

pactly supported, to be precise

� ϕεtm(·, v) ∈ C∞
c (R) for all v ∈ V with suppϕεtm ⊂ B(xin, ε) × {vin}, and

� µεtm ∈ C∞
c ([0, T ] × R) with suppµεtm ⊂ B(tm, ε) ×B(xm, ε).

b) For continuous functions h : [0, T ]×Rd → R, the following change of variables formula

holds ∫ T

0

∫
R
h(t, x)µεtm(t, x) dx dt =

∫ 1

−1

∫ 1

−1
h(tm + εt̃, xm + εx̃)µt(t̃)µx(x̃) dx̃ dt̃.

Proof. Assertion a) clear from the definition of ϕεtm , µ
ε
tm . Application of the transforma-

tions t̃ = t−tm
ε and x̃ = x−xm

ε provides the given form of the integrand in assertion b). The

new integration domain is reduced with regards to the supports suppµx ⊂ [−1, 1] ⊂ R
and suppµt ⊂ [−1, 1] ⊂ [− tm

ε ,
T−tm

ε ]. They are contained in the transformed domains,

which are spelled out at the end of the inclusion chains, for sufficiently small ε by choice

of tm ∈ (ε, 3ε) and fixed T > 0.

Remark 4.13 (Comparison to the setting in Section 4.2). In this section, a different geom-

etry is constructed with the aim of measuring at the ballistic location xb = xin + tmvin,

instead of the scattered location xin+ tm
2 vin+ tm

2 vout. Singularity in the initial location and

measurement time and location is generated at the same rate, as smallness of measurement
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4. Structural identifiability: Experimental Setting

time is. The type of singularity that is induced by the initial data is qualitatively different,

as the former formal intuition showed: in Section 4.2, the initial condition converged to

a Dirac delta in space, whereas it is a characteristic function in this setting. This strong

singularity in initial location was necessary to fix the tumbling location, and required a

balancing by a small multiplicative factors of order td−1
m , to keep the measurement finite.

In the 1D setting, it is not necessary, since the geometry explicitly prescribes all considered

locations for the ballistic part f0. The weaker introduced singularity in the initial data

will, however, lead to a more complex postprocessing of the data for reconstruction that

involves differentiation of the measurement w.r.t. measurement time, as suggested by the

above formal intuition.

Decomposition. Given that the ballistic term is already subject to decay with the absorp-

tion rate σ(x, v) = K(x,−v, v), this term is expected to be sufficient for the reconstruction

of K in the one dimensional case. Thus, the solution of f is decomposed into two parts

f = f0 + f≥1, (4.31)

where the ballistic part f0 solves

∂tf
ϕ
0 + v∂xf

ϕ
0 = −K(x,−v, v)fϕ0 , (4.32)

fϕ0 (t = 0) = ϕ, (4.33)

and the remainder f≥1 solves

∂tf
ϕ
≥1 + v∂xf

ϕ
≥1 = K(x, v,−v)((fϕ0 )′ + (fϕ≥1)

′) −K(x,−v, v)fϕ≥1,

fϕ≥1(t = 0) = 0.

In analogy to Lemma 4.5, existence of non-negative solutions f0, f≥1 is provided by Corol-

lary A.1.3 and Lemma A.1.5a for non-negative initial data ϕ.

Behaviour of the Measurement. The following Proposition proves Theorem 4.1 in one

space dimension by deploying of the formerly constructed setting.

Proposition 4.14. Let K ∈ Acont
K and consider a fixed point (x⋆, vin) ∈ R × V . Let

(ϕεtm , µ
ε
tm) and tm, xin, xm be constructed as in (4.27)-(4.30) for ε > 0. Then

lim
ε→0

∂tmMµε
tm

(fϕ
ε
tm ) |tm=2ε= −K(x⋆,−vin, vin)Cϕx,µx,µt ,

with strictly positive, known constant 0 < Cϕx,µx,µt :=
∫ 1
−1

∫
R ϕx (x− vint)µx (x) dx µt(t) dt.

The strict positivity of Cϕx,µx,µt holds due to non-negativity and continuity of ϕx, µx, µt
and the fact they attain value 1 at location 0.

As in the multi-dimensional case, this proposition establishes an explicit relationship

between a sequence of measurements and the parameter. As a result of the simplified

experimental requirements, in particular the weaker introduced singularity in the initial

data, this relationship is more complex compared to the one in Section 4.2.
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The proof is divided in two lemmas that study the different limiting behaviour of the

two parts of the measurement derivative as suggested by the decomposition (4.31):

∂tmM(f) = ∂tmM(f0) + ∂tmM(f≥1). (4.34)

The ballistic part f0 carries the desired information on K.

Lemma 4.15. Let K ∈ Acont
K . Given a point (x⋆, vin) ∈ R× V , let ϕεtm , µ

ε
tm be defined as

in (4.29)-(4.30) with tm, xin, xm as in (4.27)–(4.28) for small ε > 0. Then

lim
ε→0

∂tmMµε
tm

(f
ϕε
tm

0 ) |tm=2ε= −K(x⋆,−vin, vin)Cϕx,µx,µt .

The contribution of the higher regularity part f≥1, instead, vanishes asymptotically. The

reason lies in the short measurement time, that only allows for maximum one tumbling.

One tumble, however, leads to a deviation from the shortest path from xin to xm = xb,

and thus a delayed arrival, which excludes these particles from the measurement.

Lemma 4.16. Let K ∈ Acont
K , and let ϕεtm , µ

ε
tm be defined as in (4.28)-(4.30) with tm, xin, xm

as in (4.27)–(4.28) for some ε > 0, and an evaluation point (x⋆, vin) ∈ R× V . Then

lim
ε→0

∂tmMµε
tm

(f
ϕε
tm

≥1 ) |tm=2ε= 0.

In summary, this proves Proposition 4.14 in the 1D case.

Proof of Proposition 4.14 in 1D. Inserting the results from Lemma 4.15 and Lemma 4.16

into (4.34) shows

lim
ε→0

∂tmMµε
tm

(fϕ
ε
tm ) |tm=2ε= −K(x⋆,−vin, vin)Cϕx,µx,µt .

Remark 4.17. With the same technique as in Remark 4.10, the thus obtained results can

be extended to K with continuous time dependence.

Remark 4.18 (Comparison with [HKLT24]). In contrast to the thus presented setting,

the derivations in [HKLT24] made use of independent scaling parameters. Singularity in

initial velocity and measurement time was generated independently and the limit was taken

before the coupled singularities in initial and measurement location were generated. Post

processing of the measurement in the limiting case, in particular taking the derivative

after the limit is established, yielded the value of σ at the ballistic location xb(tm) =

x⋆+tmvin. In that sense, one initial condition could be used to find all values σ(xb(tm), vin),

if the measurement could be taken for all these measurement times tm ∈ (0, T̂ ) and the

measurement location xb(tm) was moved accordingly.

This work uses a setting where all singularities and smallness of measurement time share

the same scaling parameter, and derivation of the measurement w.r.t. measurement time

is taken before the limit. The reason is the same as in Remark 4.3: in reality, only an

approximation to small time and singular initial and test data will be available and has

to be processed. This setting requires small measurement time to bound the effect of the

scattering part f≥1, that could be controlled by singularity of the initial and measurement

data in [HKLT24].
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4.3.1. The Ballistic Part f0

Similarly to the proofs of Lemma 4.7 and Lemma 4.8, the explicit formula of f0 and the

construction of ϕεtm , µ
ε
tm are exploited in the proof of Lemma 4.15.

Proof of Lemma 4.15. Use the explicit form (4.12) of f0 in the 1D setting (4.26) together

with Lemma 4.12b to see

M(f0)=

1∫
−1

1∫
−1

e−
∫ tm+εt̃
0 K(xm+εx̃−vins,−vin,vin) dsϕx

(
x̃− vint̃+ xm−vintm−xin

ε

)
µx (x̃)µt

(
t̃
)

dx̃ dt̃,

for small enough ε > 0. Because the fraction in the argument of ϕx vanishes xm−vintm−xin
ε =

0 independently of tm by construction of xm, xin in (4.28), derivation w.r.t. tm shows that

∂tmM(f0) =

∫ 1

−1

∫ 1

−1
−K(xm + εx̃− vin(tm + εt̃),−vin, vin)e−

∫ tm+εt̃
0 K(xm+εx̃−vins,−vin,vin) ds·

ϕx
(
x̃− vint̃

)
µx (x̃)µt

(
t̃
)

dx̃ dt̃.

In tm = 2ε, the limit as ε→ 0 is determined by the dominated convergence theorem, since

continuity and boundedness of K provide boundedness and point wise convergence of the

integrand. In summary, one obtains the assertion

lim
ε→0

∂tmM(f0) |tm=2ε = −K(x⋆,−vin, vin)

∫ 1

−1

∫ 1

−1
ϕx
(
x̃− vint̃

)
µx (x̃)µt

(
t̃
)

dx̃ dt̃

= −K(x⋆,−vin, vin)Cϕx,µx,µt .

4.3.2. The Tumble Part f≥1

The remainder is further decomposed into parts f1 that have undergone exactly one tum-

bling event, and the remainder f≥1 = f1 + f≥2, where f1 satisfies (T1) and f≥2 satisfies

(T≥2) in the 1D setting i.e. with absorption σ given by (4.26). The decomposition trans-

lates to the measurement by linearity

M(f≥1) = M(f1) +M(f≥2) . (4.35)

This is necessary, because smallness of the contributions of both parts is generated by

different mechanisms.

The measurement of f1 vanishes in the scaling limit, because these particles cannot reach

the measurement location xm, since tumbling means deviation from the direct route.

Lemma 4.19. Let K ∈ Acont
K and ϕεtm , µ

ε
tm be constricted as in (4.27)–(4.30).

Then limε→0 ∂tmMµε
tm

(f
ϕε
tm

1 ) |tm=2ε= 0.

Smallness of M(f≥2) follows by choice of a small measurement time which leaves no

time for further tumbling, i.e. no time for the source term f1 to introduce mass into f≥2.
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Lemma 4.20. Let K ∈ Acont
K and ϕεtm , µ

ε
tm be given as in (4.27)–(4.30).

Then limε→0 ∂tmMµε
tm

(f
ϕε
tm

≥2 ) |tm=2ε= 0.

This illustrates that the constructed experiment also aims to allow one tumbling event,

but prohibit multiple tumblings, which is again achieved by a small experimental time

horizon. Lemma 4.16 is a direct consequence of the above lemmas and it remains to prove

Lemma 4.19 and Lemma 4.20.

Proof of Lemma 4.19. Similar as in the proof of Lemma 4.15, an explicit form of ∂tmM(f1)

provides convergence.

Step 1: Explicit form of ∂tmM(f1). The explicit form of f1 in (4.13) in the 1D

setting and a change of variables according to Lemma 4.12b yield the following form of

M(f1) for sufficiently small ε:

M(f1) =

1∫
−1

1∫
−1

µt(t̃)µx(x̃)

tm+εt̃∫
0

e−
∫ s
0 K(xm+εx̃+vinτ,vin,−vin) dτK(xm + εx̃+ vins,−vin, vin)·

e−
∫ tm+εt̃−s
0 K(xm+εx̃+vin(s−τ),−vin,vin) dτϕx

(
εx̃+vins−vin(εt̃−s)

ε

)
ds dx̃ dt̃,

where the numerator inside ϕx was simplified by relation (4.28). The derivative w.r.t.

measurement time consists of two parts

∂tmM(f1) =

∫ 1

−1

∫ 1

−1
µt(t̃)µx(x̃)

(
(i) + (ii)

)
dx̃ dt̃,

that originate from the differentiation of the boundary of the integral in s and differenti-

ation of the integrand, respectively, and are spelled out below.

Step 2: Convergence of (i). Term (i) reads

(i) = e
−
tm+εt̃∫

0

K(xm+εx̃+vinτ,vin,−vin) dτ
K(xm + εx̃+ vin(tm + εt̃),−vin, vin)ϕx

(
εx̃+vin(2tm+εt̃)

ε

)
.

Taking tm = 2ε, this term vanishes for all t̃, x̃ ∈ [−1, 1], because the argument of ϕx is

not contained in its support suppϕx ⊂ [−1, 1], as an application of the reverse triangle

inequality suggests∣∣∣ εx̃+vin(2tm+εt̃)
ε

∣∣∣ ≥ 2
tm
ε
|vin| − |vin||t̃| − |x̃| ≥ 4 − 1 − 1 = 2.

Step 3: Convergence of (ii). On the other hand, the term (ii) can be bounded

uniformly in x̃, t̃ by

(ii) =

tm+εt̃∫
0

e−
∫ s
0 K(xm+εx̃+vinτ,vin,−vin) dτK(xm + εx̃+ vins,−vin, vin)ϕx

(
εx̃+vins−vin(εt̃−s)

ε

)
·

e−
∫ tm+εt̃−s
0 K(xm+εx̃+vin(s−τ),−vin,vin) dτ (−K(xm + εx̃+ vin(2s− tm − εt̃),−vin, vin)) ds

= O(tm + εt̃) ≤ O(tm + ε),
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by uniform boundedness of the integrand by C2
K . Choosing tm = 2ε, this means that

limε→0(ii) = 0 uniformly in t̃, x̃. In summarty, this proves the lemma.

Proof of Lemma 4.20. The formal derivation of this part of the measurement yields

|∂tmM(f≥2)| =

∣∣∣∣∫ T

0

∫
R

∫
V

(
(∂tmf≥2) µ

ε + f≥2∂tmµ
ε
)

dv dx dt

∣∣∣∣ (4.36)

≤ ∥∂tmf≥2∥L∞([0,tm+ε]×R×V )∥µε∥L1 + ∥f≥2∥L∞([0,tm+ε]×R×V )∥∂tmµε∥L1

by Hölder’s inequality. Note that the time domain in the norm of f≥2, ∂tmf≥2 was reduced

to [0, tm + ε] by consideration of the temporal domain of µε and ∂tmµ
ε in Lemma 4.12a.

Dependency on tm is introduced in f≥2 by its source term L(f1).

Step 1: L∞ bound for f≥2. A direct application of Corollary A.1.3 shows

|f≥2(t, x, v)| ≤ e2CKt

t∫
0

sup
x,v′

|K(x, v′,−v′)f1(s, x,−v′)|ds ≤ e2CKtCK

t∫
0

sup
x,v′

|f1(s, x, v′)| ds

recalling that |V | = 2 in 1D. By (4.13), one can bound f1(s, x, v
′) by

|f1(s, x, v)| ≤ CKs∥ϕεtm∥L∞ ≤ CKs.

In total, this gives

|f≥2(t, x, v)| ≤ e2CKtC2
K

t2

2
.

Step 2: L∞ bound for ∂tmf≥2. First, note that by linearity of the equations

∂tmf≥2, ∂tmf1, ∂tmf0 solve the same systems (T≥2), (T1), (T0) as f≥2, f1, f0, but with source

term L(∂tmf1),L(∂tmf0) and initial condition ∂tmϕ
ε
tm(x, v) = vinε

−1ϕ′x
(
x−xin

ε

)
1vin(v), re-

spectively, where ϕ′x denotes the derivative of ϕx. The same derivation as above yields

|∂tmf≥2(t, x, v)| ≤ e2CKtC2
K

t2

2
∥∂tmϕεtm∥L∞ ≤ ε−1e2CKtC2

K

t2

2
Cϕ′

x
,

where the derivative ∥ϕ′x∥L∞ ≤ Cϕ′
x
<∞ is bounded by construction of ϕx ∈ C∞

c (R).

Step 3: L1 bounds for µε, ∂tmµ
ε. The standard change of variables from Lemma 4.12b

shows that for small enough ε

∥µε∥L1([0,T ]×R×V ) = 2

∫ 1

−1

∫ 1

−1
µx(x̃)µt(t̃) dx̃ dt̃ = 2,

where 2 = |V | was used. In analogy, one obtains for small ε > 0 that ∂tmµ
ε(t, x) =

−ε−3µx
(
x−xm

ε

)
µ′t
(
t−tm
ε

)
and with ∥µ′t∥L∞ ≤ Cµ′

t
<∞ this is bounded by

∥∂tmµε∥L1([0,T ]×R×V ) = 2ε−1

∫ 1

−1

∫ 1

−1
µx(x̃)

∣∣µ′t (t̃)∣∣ dx̃ dt̃ ≤ ε−14Cµ′
t
.

Step 4: Convergence. Inserting everything in (4.36) shows

|∂tmM(f≥2)| ≤ ε−1(tm + ε)2e2CK(tm+ε)C
2
K

2
(2Cϕ′

x
+ 4Cµ′

t
).

For tm = 2ε, this proves the assertion |∂tmM(f≥2)| → 0 as ε→ 0.
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Identifiability: Experimental Design

In the previous chapter, structural identifiability of the chemotaxis kernel reconstruction

problem (Ch−1) was shown under access to the full infinite dimensional input to output

map ItOK : L1
+ ∩ L∞(Rd × V ) × L1([0, T ] × Rd) → R. In real or numerical experiments,

this is typically a too strong assumption: only a finite number of experiments can be

conducted, with only a finite number of sensors each. This reduces the data space to

finite dimension, and the inverse problem requires a new balancing: the dimension of

the admissible set has to be reduced accordingly, to sustain injectivity of the forward

map. The tighter controlled form of the parameter adds a-priori knowledge in order to

leverage the reduced information available in the data. The precise manner in which the

experiment compresses the parameter information in the data, and with it the required

form of induced a-priori knowledge on the parameter, is dictated by the specific choice of

the experimental design, as anticipated by source (II) of non-identifiability. Vice versa,

designs are typically constructed in adaptation to a given admissible set to maximize the

information on the parameter in the data. This intricate interplay between admissible set,

design and identifiability is, however, far from obvious, and it is not immediately clear

which data are required to reconstruct a parameter of a prescribed form.

This chapter is thus devoted to the analytical investigation of this balance between

a-priori knowledge in the admissible set and demonstrate the ’Relaxation of Theory’ ap-

proach to experimental design for the chemotaxis inverse problem (Ch−1), in the frame-

work of sensitivity based identifiability. First, equivalence of strong convexity in the

quadratic cost function and a sensitivity based criterion [MXPW11, VRWL89] is estab-

lished. Then, this criterion is used to characterize experimental designs for their suitability:

(i) Degeneracy of the inverse problem is shown, if the data is not sufficiently diverse, in

the sense that two out of a minimal number of experimental setups are asymptoti-

cally close. This makes sense intuitively, because the two respective measurements

asymptotically coincide and carry the same information on K. By minimality of the

data dimension, the inverse problem thus becomes underdetermined.
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(ii) In contrast to that, one experimental setting is carefully crafted, for which identifi-

ability is proven analytically in the 1-dimensional case. It represents a relaxation of

the construction of the singular decomposition experiments in Section 4.3, which is

possible by a suitable choice of the admissible set. This demonstrates existence of a

minimal data experimental design that renders the chemotaxis inverse problem least

squares identifiable and provides a direct connection between the theoretical infinite

dimensional and the practical finite dimensional setting.

The analysis demonstrates capabilities and limitations of the inverse chemotaxis setting:

it gives insight, which type of parameter information can be reconstructed from a given

number of data, if these data are well-prepared. This presents a valuable information in

applications where real experimentation is expensive and a traded off between experimen-

tation cost and reconstruction accuracy is typical. It should be mentioned, that even for

higher data dimension, a poorly chosen experimental design can still prohibit a successful

reconstruction, for instance if the problem is nonetheless underdetermined.

The presented analysis is set in a noise-free setting where data is generated by a ground

truth parameter in the admissible set, and no regularization is applied in the cost func-

tion, in order to focus only on the sole effect of the experimental design in the dimension

reduction process. Noise can be incorporated in the analysis of cost function analysis as

demonstrated in [VRWL89] which brings the analysis closer to the framework of Bayesian

optimal experimental design for linear inverse problems, as breifly introduced in Sec-

tion 2.5.

This chapter is based on a joint work with Christian Klingenberg, Qin Li and Min Tang

[HKLT25].

Remark 5.1 (Difference to [HKLT25]). A major difference to [HKLT25] is the explicit

explanation of the derivation of the sensitivity based identifiable experimental design from

the theoretical results of the previous chapter. More emphasis is put on the connection of

the results to the identifiability framework, and the analysis is adapted to the framework of

this work, where the measurement operator is described by spatio-temporal test functions

in instead of a point wise measurement at a prescribed measurement time in [HKLT25].

Moreover, the non-identifiability results under (i) are studied in a generalized setting where

the admissible set prescribes an arbitrary fixed basis element expansion in an arbitrary

spatial dimension, and closeness is generalized to simultaneous closeness of initial data

and measurement test function. An alternative proof allows us to remove the small time

assumption. By proving sufficient regularity of the forward model (Ch)–(iCh) in the

parameter, the local boundedness assumption on the measurement Hessian in [HKLT25,

Thm3.2] could be removed and equivalence of sensitivity based identifiability and strong

convexity of the least squares cost is shown to hold. The suggested design under (ii) is

extended to spatial dimension d = 2 of the model, with the obvious extension to higher

dimension d = 3.

Related Literature. Literature on experimental design for chemotaxis mostly belongs to

the realm of biology, biophysics and related areas, where it focuses on designing suitable
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experimental apparatuses, so called chemotaxis assay chambers, through which chemotac-

tic behaviour can be studied in a controlled environment, and statistics on the microscopic

behaviour or density information can be extracted. Designs are for instance compared by

experimental data reproducibility [MBJPM85], or the effects of different experimental se-

tups such as the initial data preparation are investigated experimentally [EMJ10]. The

latter already represents a step towards comparing experimental designs via sensitivity

analysis. A model based approach in this direction was applied in [PMMA02] for an

autochemotactic Keller-Segel model, where the influence of different choices of certain

constants in a parametric form of the chemotactic drift coefficient on the data was inves-

tigated. Sensitivity of the model w.r.t. these constants and thus their identifiability was

derived heuristically from comparisons of numerical forward simulations.

A more structured framework of sensitivity analysis was applied to a microscopic recep-

tor model for chemotaxis in [DT11]. The sensitivity matrix was used to detect important,

i.e. highly sensitive, parameters, and non-identifiability could of some coefficients could

be revealed.

Moreover, regularization based cost function identifiability was shown for an inverse

problem of determining the chemotactic sensitivity in the auto-chemotactic Patlak Keller

Segel model, as a non-linear function of the chemoatractant concentration, from noisy

data, assuming access to the macroscopic bacteria concentration [EPS15], or the bacteria

and chemoattractant concentration [FM08] for all space-time.

Novelty of this Work. Studying (optimal) experimental design is novel for inverse prob-

lems related to chemotactic behaviour. In comparison to previous literature, designs in

this work are characterized by a finite number of localized measurement test functions,

which reduces the experimental measurement effort. Sensitivity analysis is used to test

suitability of different designs, and a specific design is constructed for which local identi-

fiability can be proven analytically. Similar constructions have not been proposed yet in

the realm of chemotaxis.

The construction relies on the relaxation of theoretical findings and constructions in

Chapter 4 and emphasizes the importance of the choice of the admissible set for exper-

imental design. The idea of transferring the theoretical identifiability or well-posedness

proof to the practical finite data level through a relaxation is not frequently adopted in

inverse problems so far, but it has the potential to connect theory and numerics of inverse

problems. It should be mentioned, however, that the thus presented construction largely

benefits from the constructive nature of the theoretical proof in the singular decomposition

approach.

5.1. General Setting

This section introduces the finite dimensional inverse problem under investigation and

motivates the choice of the sensitivity based identifiability criterion by its connection to

local strong convexity of the cost function which guarantees favourable properties of the
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numerical optimization based reconstruction.

Admissible Set. The finite dimensional admissible set is chosen to prescribe a fixed ex-

pansion form of the parameter, that might for instance emerge from discretization of a

continuous function. It allows more flexibility in comparison to a parametrized form based

on physical insight [RHL86, TZL88, FL91, WECW97], which might not always be avail-

able. The choice of the discretization will later be specified when a specific experimental

design is constructed in Section 5.2.2 to provide well-posedness. It should be mentioned,

that for applied contexts, the choice of the discretization is also limited by the experimen-

tal capabilities, for instance the pixel size of the camera that takes the photograph of the

cell density or the accuracy up to which an initial condition can be generated, that limit

the available data and thus its reconstruction potential.

To construct the admissible set, consider a fixed finite set of linearly independent basis

elements bq : Rd×V ×V → R that are uniformly bounded in L∞ by a constant ∥bq∥∞ ≤ Cb

for all q = 1, ..., Q and satisfy bq(·, v, v) ≡ 0 for all v ∈ V . Then the admissible set consists

of all nonnegative K that attain an expansion into these basis elements:

Afin
K :=

{
AK ∋ K(x, v, v′) =

Q∑
q=1

Kqbq(x, v, v
′) for some Kq ∈ R

}
(5.1)

Note that a K ∈ Afin
K is uniquely determined by the Q scalar coefficients Kq ∈ R, and Afin

K

is of dimension Q.

Remark 5.2. In comparison to Acont
K , continuity of K is exchanged for its expansion form to

guarantee a certain structure of the admissible set. This allows for instance also piecewise

constant K.

Experimental Data. A finite number L ∈ N of synthetic, noise free data of form (M) is

generated by a ground truth parameterK⋆ in the interior of Afin
K , and a predefined set of ini-

tial data ϕl ∈ L1
+,c ∩ L∞(Rd × V ) and spatio-temporal test functions µl ∈ L1([0, T ] × Rd),

for l = 1, ..., L, i.e.

yl = Ml(fK⋆) := Mµl
(fϕl

K⋆
), l = 1, ..., L . (5.2)

Denote by Cϕ, Cµ > 0 constants that uniformly bound all ϕl, µl, respectively

∥ϕl∥L1∩L∞(Rd×V ) ≤ Cϕ, ∥µl∥L1([0,T ]×Rd) ≤ Cµ for all l = 1, ..., L. (5.3)

This ensures existence and uniform boundedness of fϕl by Proposition 3.3

∥fϕl(t)∥L1∩L∞(Rd×V ) ≤ e|V |CKtCϕ. (5.4)

Inverse Problem. The inverse problem consists in finding the Q values (Kq)q=1,...,Q that

determine K ∈ Afin
K :

find K ∈ Afin
K such that (yl)l = F fin(K) := (Ml(fK))l ∈ RL. (5.5)
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Using the quadratic cost function, its minimization form reads

min
K∈Afin

K

C(K) = min
1

2L

L∑
l=1

(Ml(fK) − yl)
2

subject to (Ch) and (iCh).

(5.6)

Strong Convexity of the Quadratic Cost. The convexity of C describes how strong

the measurement changes in comparison to the data, when the parameter is varied. It

thus resembles the expressivity of the data in terms of the parameter and is dictated by

the experimental design (ϕl, µl)l=1,...,L, given that structural identifiability of the inverse

problem (Ch−1) has already been established in Chapter 4. It will be used as a measure

to compare suitability for different designs, and existence of both, identifiable and non-

identifiable designs, will be established in the subsequent Section 5.2.

Strong convexity of the cost function, at least locally around the ground truth parame-

ter K⋆, is particularly favourable: because K⋆ is by definition of the noise free data (5.2)

a minimum of C, strong convexity would guarantee its uniqueness locally around K⋆ and

thus provide local square loss identifiability of K from the respective forward map. Fur-

thermore, optimization of a convex problem (5.6) is significantly easier than in the non

convex setting and reconstruction, even by simple gradient-based methods as described

for instance in Section 2.2.1, is guaranteed to converge to the ground truth [Pol63] - given

that the starting value is chosen in the convexity neighbourhood of K⋆. Given sufficient

regularity, strong convexity of C expresses in the fact that the eigenvalues of the Hessian

are bounded away from 0.

This regularity is established in the following lemma, and allows application of gradient

based optimization methods. For the chemotaxis inverse problem (5.5), it is a direct

consequence of the regularity of the forward model solution fK w.r.t. K as given in

Lemma 3.4, and linearity of Ml.

Lemma 5.3. The quadratic cost function C from (5.6) and the measurements Ml(fK) are

twice continuously differentiable in K. The Hessian of the cost function, given by (2.16),

is Lipschitz continuous in K w.r.t. the L∞ norm.

Note that this in particular implies local CH -smoothness of C.

Connection to Sensitivity based Identifiability. The previously established regularity of

the cost function establishes equivalence of local strong convexity of the quadratic cost

and sensitivity based identifiability for inverse problem (Ch−1) through Proposition 2.11.

This facilitates the testing and comparing of different experimental designs, as the Hessian

needs to be evaluated only at one point.

Proposition 5.4. For inverse problem (5.5), sensitivity based identifiability is equivalent

to local strong convexity of the quadratic cost function around the ground truth. It implies

local square loss identifiability.
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5. Sensitivity Based & Cost Function Identifiability: Experimental Design

Computing the Sensitivity Matrix. To compute the entries the sensitivity matrix (2.15),

different strategies can be employed, each one offering its own advantages and disadvan-

tages:

� Difference approximations of the Q partial derivatives offer an easy reconstruction

formula, but might be inaccurate if the parameter difference ε is chosen too large.

Furthermore, they are computationally costly, as they require at least Q+ 1 forward

computations, if one-sided approximations

∂KqMl(fK) ≈
Ml(fK+εeq) −Ml(fK)

ε
(5.7)

with unit vectors eq in the direction of basis element bq were used.

� By independence of the measurement operator from K, alternatively, the derivative

can be pulled inside the measurement which leads to the still fairly simple formula

∂KqMl(fK) = Ml(∂KqfK). The Q partial derivatives of fK can be computed by

solving their corresponding evolution equations (A.1.11), and one additional com-

putation of fK by (Ch)–(iCh) to compute the source term. In total, this amounts

again in Q+ 1 PDE solves.

� A very efficient way of computing the gradients is given by the adjoint gradient

method that requires solving only two PDEs, namely for the chemotaxis inverse

problem the forward model (Ch)–(iCh) and the adjoint equation corresponding the

to l-th measurement

−∂tgµl
− v · ∇gµl

= K⋆(gµl
) − µl (5.8)

gµl
(t = T, x, v) = 0 , (5.9)

with adjoint tumbling operator given by

K⋆(gµl
) :=

∫
V
K(x, v′, v)(gµl

(t, x, v′) − gµl
(t, x, v)) dv′. (5.10)

Existence of mild solutions gµl
∈ C0([0, T ];L1(Rd;L1 ∩ L∞(V ))) to this equation is

established in Lemma A.1.9 and uniform boundedness follows from uniform bound-

edness of the µl in (5.3) as

∥gµl
(t)∥L1(Rd×V ) ≤ |V |eCK |V |(T−t)Cµ. (5.11)

The partial derivatives ∂KqMl(fK) are then computed by means of a more involved

and model dependent formula, as given for the thus considered inverse problem in

the following Lemma.

The representations of the gradient entries, i.e. the partial derivatives, for the latter

two cases are summarized in the following lemma.
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Lemma 5.5. Denote by fK , ∂KqfK and gµl
the mild solution to the forward model (Ch)–

(iCh), the partial derivative evolution equation (A.1.11) for variation in the q-th unit vector

η = eq, and the adjoint model (5.8)–(5.9), respectively. Then, the partial derivatives can

be represented as

∂Ml(fK)

∂Kq
=

∫∫
[0,T ]×Rd

∫
V
∂KqfK dv µl d(t, x) (5.12)

=

∫∫∫∫
[0,T ]×Rd×V×V

bq(x, v, v
′)f ′(g′µl

− gµl
) d(t, x, v, v′) , (5.13)

where the short notation from (3.2) was applied in the last line.

Proof. The representation in the first line is a direct consequence of the Leibnitz integral

rule [Fol99, Thm. 2.27], whose application is justified by uniform boundedness of the

partial derivative ∂KqfK ∈ C([0, T ];L1 ∩ L∞(Rd × V )) by Lemma A.1.7 and finiteness of

the measure dt µl d(t, x).

The proof of the second line representation follows from a calculation-of-variation argu-

mentation and can be found in Section 5.3.1. The low regularity of the mild solutions f

and gµl
does not allow a standard application of integration by parts and specific attention

has to be paid when deriving the adjoint equation.

5.2. Qualitative Experimental Design

Ideally, an experimental design leads to data that contains information on all aspects

of K and for which changes in the parameter are reflected in the data. This requires

a sufficiently high dimension of the data, initial data that triggers all different aspects

of K and measurement specifications µl that capture the respective triggered aspect of

the parameter. Suitability of designs can be tested by the previously studied sensitivity

identifiability criterion, under which Proposition 2.13 suggests to measure at least Q data

points.

5.2.1. Non Identifiability for Close Measurement Specifications

Even if a sufficient number of data is collected, the inverse problem (5.5) can still be

non-identifiable in the sensitivity sense, if this data does not represent the kernel K well.

An example is provided by the following theorem. It studies the minimal data setting

and shows that identifiability degenerates when two experimental setups become asymp-

totically close, leading to a decay of diversity in the data. This is not surprising: Intuitively,

it makes sense that if two experimental setups almost coincide, they offer almost the same

information and the data lacks one degree of freedom to specify K. Asymptotically, one

data point is redundant and the inverse problem becomes underdetermined.
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5. Sensitivity Based & Cost Function Identifiability: Experimental Design

Theorem 5.6. Consider a minimal design consisting of L = Q experimental setups

((ϕl, µl))l=1,...,L. Then sensitivity based identifiability of the corresponding inverse problem

(5.5) and with it local strong convexity of the cost function (5.6) around K⋆ decay as the

first experimental setup approaches the second one, in the sense that ϕ1 → ϕ2 strongly in

L1 ∩ L∞(Rd × V ) and µ1 ⇀ µ2 weakly in L1([0, T ] × Rd).

Convergence in the measurement test function holds in a distributional sense:

Definition 5.7. A sequence µ(m) of L1([0, T ] × Rd) functions is said to converge weakly

to µ ∈ L1([0, T ] × Rd), if for any test function h ∈ L∞([0, T ] × Rd) the duality product

converges
∫ T
0

∫
Rd µ

(m)(t, x)h(t, x) dx dt→
∫ T
0

∫
Rd µ(t, x)h(t, x) dx dt.

Remark 5.8. Similar weak notions of closeness are required when working with lower reg-

ularity measurement test functions such as measures, e.g. represented by Dirac delta

function corresponding to point wise measurements. It is expected that the result gener-

alizes to this pointwise measurement case, if additional regularity of the forward solution

f is established to provide sufficient measurability.

In the limiting case, convergence of gradient descend methods to reconstructK⋆ can then

no longer be guaranteed. In fact, a significant decay of their reconstruction can already

be observed in the case where two measurements are close but distinct, as numerical

experiments in Section 6.2.2 demonstrate.

It should be mentioned that the result does not prove non-convexity of the quadratic

cost. In fact, local strict convexity and thus cost function identifiability could still hold

in certain cases. In this case, gradient descend methods would still converge to the true

parameter, however, convergence would be slowed down by the vanishing eigenvalue of the

Hessian at the ground truth parameter. To be precise, convergence would hold at linear

instead of an exponential rate [WR22, Thm.3.3]. Numerical experiments in Section 6.2.2,

however, demonstrate actual degeneracy in the sense that the cost function becomes flat

in one direction.

The proof of Theorem 5.6 is laid out in Section 5.3.2. It amounts in proving the increas-

ing alignment of the gradients ∇KM1(fK⋆) with ∇KM2(fK⋆) with the help of formula

(5.12), which results in the Hessian at ground truth

HKC(K⋆) = L−1JTJ = L−1
L∑
l=1

∇KMl(fK⋆) ⊗∇KMl(fK⋆),

by (2.17), lacking at least one rank and thus a collapse of the objective function landscape.

The results of the previous two subsections are not surprising and apply to many other

inverse problems. Often they are understood as common knowledge and not rigorously

justified.

5.2.2. An Identifiable Design in Dimension d = 1

In contrast to the previous section where non identifiability even under a sufficient number

of data was considered, in this section one minimal data (L = Q) design is constructed
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5.2. Qualitative Experimental Design

that generates an identifiable inverse problem for a compatibly chosen admissible set. This

proves existence of identifiable minimal designs.Together with the previous Theorem 5.6

on non identifiability, this demonstrates that the preparation of the experiment, in com-

bination with the choice of the admissible set, is crucial to the reconstruction success.

The construction of the design is based on a relaxation of the singular decomposition

construction in the theoretical identifiability proof from Section 4.3. In this section, the

d = 1 dimensional case is considered, that allows for a simplified design based on the

ballistic part of f , which facilitates the analytical identifiability analysis.

Relaxing the Design from Section 4.3.

Recall that in the proof of structural identifiability in Section 4.3, point values of K

were reconstructed by a sequence of increasingly singular initial data and spatio-temporal

measurement test functions centered around the ballistic location xb = xin + vintm, with

asymptotically vanishing measurement time tm. Asymptotically, the the experimental

geometry, i.e. initial and measurement location, concentrate at the reconstruction location,

such that the data only experienced the value of K at that location.

This is not feasible experimentally, where a finite number of experimental setups (ϕl, µl)
L
l=1

with positive measurement times and bounded bacterial density needs to be considered.

Under such designs, only a finite dimensional version of K will be sensitivity based iden-

tifiable according to Proposition 2.13.

The choice of the parametric form of K will be informed by the theoretical results

in Section 4.3: To allow a relaxation of the short time singular design, the idea is to

extend the domain in which K attains a certain value by choosing a piecewise constant

form. This way particles can travel for a short time while still only observing one value of

the tumbling kernel. Note that this form of K emerges naturally when approximating a

continuous function by a step function.

Admissible set. As the velocity space V = {±1} is already discrete, it remains to dis-

cretize K in space. To do so, prescribe a partition of R = ·⋃R−1
r=0 Ir into R ∈ N intervals

R =
R−1·⋃
r=0

Ir with I0 = (−∞, a1), Ir = [ar, ar+1) for fixed a1 < ... < aR−1 < aR = ∞.

(5.14)

We then restrict ourselves to tumbling kernels K(x, v, v′) that are piecewise constant in

space in these interval and denote their constant value on Ir by Kv′
r = K(x,−v′, v′) for all

x ∈ Ir, v
′ ∈ V . The admissible set collects all such K that are non-negative and uniformly

bounded by a constant CK :

Apwc
K =

{
K ∈ AK

∣∣ K(x, v, v′) =

R−1∑
r=0

1Ir(x)1−v′(v)(K+1
r 1+1(v

′) +K−1
r 1−1(v

′)) (5.15)

for some K±1
r ∈ [0, CK ]

}
where 1A again denotes the characteristic function of a set A. Note that K has Q = 2R

free parameters K±1
r ∈ [0, CK ]. This choice of Apwc

K represents a special case of Afin
K for
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the choice of basis elements

bq(x, v, v
′) = 1Ir(x)1−v′(v)1±1(v

′) with q = 1 + 2r + (1 ± 1)/2. (5.16)

Experimental Design. This piecewise constant form of K allows sufficiently singular

initial data to travel for a small positive time within the domains Ir still only experiences

the local value of K. This is the basic idea behind the following design:

Design (1D). Consider the partition of R from (5.14) and define the middle points

ar+ 1
2

:= ar+ar+1

2 for r = 1, ..., R−2 and the grid size αmin := minr=1,...,R−2(ar+1−ar) and

set a 1
2

:= a1 − αmin
2 and aR−1/2 := aR−1 + αmin

2 . Furthermore, let ψx, ψt ∈ L1 ∩ L∞(R) be

nonnegative, symmetric functions that are monotonously decreasing in |x| and compactly

supported in the domain [−ε, ε] for some ε > 0. Then consider an experiment consisting

of 2R sub-experiments with

� initial conditions ϕr(x, v) = ψx(x − ar+1/2) ∈ L1
+ ∩ L∞(R) supported in ar+1/2 +

[−ε, ε], and

� 2 measurement test functions µ±r (t, x) = ψt(t − tm)ψx(x − ar+1/2 ∓ tm) that are

centered in time around a measurement time tm and in space around the ballistic

locations x±b,r = ar+1/2 ± tm, each,

for r = 0, ..., R− 1, where ε is balanced against tm through the relation

0 < 4ε < tm < T − ε and tm + 2ε <
αmin

2
. (5.17)

This represents a minimal design, as the dimension of the data 2R coincides with the

dimension of the parameter K ∈ Apwc
K . Figures 5.1 and 6.1 visualize the geometries of

Design (1D).

Typical choices of ψx, ψt include characteristic functions as pixel readings, hat functions

or cut-off Gaussians to mimic a detector profile.

The connection to the design in Section 4.3 is rather obvious:

� Localized initial data and measurement test functions approximate the singular data

in the singular decomposition construction.

� A small time 0 < tm < αmin
2 − 2ε is fixed around which the temporal component of

the measurement test function centers. By tm < T − ε, its domain is fully contained

in [0, T ].

� Prescribing the smallness of the support of the initial data and measurement test

function in comparison to the measurement time 4ε < tm by (5.17) ensures that the

ballistic data has traveled at least a distance of 2ε away from the spatial support of

the initial data, before it is measured. It has the same effect as the slower speed at

which measurement time vanishes in comparison to the generation of the singularity

in Section 4.3. Transport and thus tumbling is required to collect information on K.
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� The measurement location is set to the ballistic location xb = xin + vintm. This indi-

cates that the ballistic part f0 of f is measured, which contains enough information

to recover K in the 1D scenario according to Section 4.3.

� Finally, by putting the initial location in the middle of Ir and choosing tm small

according to (5.17), the constant speed of propagation in (Ch) provides

supp fϕr(t, ·, v) ⊂ ar+1/2 + [−ε− t, ε+ t] ⊂ Ir, for all t ≤ tm + ε, v ∈ V , (5.18)

as explained in detail in Lemma A.1.5b, i.e. the data measured by µ±r has in fact

not interacted with values of K±1
s from any other interval Is with s ̸= r, and mea-

surement is taken at the location where we want to recover K. This also justifies

why boundary conditions can be neglected. Moreover, it shows that the experiment

lives on a finer spatial scale than the parameter discretization.

Remark 5.9. Obvious generalizations of Design (1D) include the choice of unequal lengths

of the supports of measurement test functions and initial data, as well as individual designs

on every interval Ir, for instance through different choices of initial data, measurement

test functions or measurement time, as long as the these are reasonably balanced through

an analogon of (5.17).

Inverse Problem. The inverse problem then reads

find K ∈ Apwc
K such that (yir)r=1,...,R

i∈{+,−}
= F 1D(K) := (Mµi

r
(fϕr

K ))r=0,...,R−1
i∈{+,−}

. (5.19)

Properties of Design (1D)

Because each datum y±r = Mµ±
r

(fϕr

K⋆
) is only affected by the values of K in Ir, the recon-

struction of K±1
r only relies on these two data points. The experiments and the reconstruc-

tion of the 2R values of K is thus decoupled into R smaller cell problems of reconstructing

2 the local value K±1
r in the intervals Ir. This opens the door for parallelization in exper-

imentation as well as in the computation. The simplification in the inversion comes with

the cost of prescribing very detailed experiments, involving tightly controlled initial data

and very fine measurements, in dependence on the discretization scales of K through the

size of the intervals Ir. Proposition 5.10 describes this property mathematically.

Proposition 5.10. Let v′, v′′ ∈ V = {±1} and r, s ∈ {0, ..., R − 1} be distinct. Under

Design (1D), the reconstruction of Kv′
r is decoupled from that of Kv′′

s , in the sense that

measurements taken in interval Ir are not sensitive to parameter values K±1
s in other in-

tervals Is. All entries of the gradient ∇KMµv′
r

(fϕr

K ) vanish, except for those two correspond

to the values K±1
r .

Proof. By choice of the basis bq in (5.16), the gradient formula (5.13) reduces to

∂Mµ±
r

(fϕr

K )

∂Kv′
s

=

∫∫
[0,T ]×Is

fϕr(t, x, v′)(gµ±
r

(t, x, v′) − gµ±
r

(t, x,−v′)) d(t, x) . (5.20)
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For s ̸= r, then (5.18) shows that fϕr is not supported in Is for t ≤ tm + ε, and gµ±
r

(t)

vanishes for t > tm +ε by Corollary A.1.10, i.e. the respective gradient entry vanishes.

This provokes a block diagonal structure in the sensitivity matrix, whose rows are exactly

the gradients, and in the Gauss-Newton HKC(K⋆) according to (2.17).

Corollary 5.11. Under Design (1D), the sensitivity matrix J and the Gauss-Newton

Hessian HKC(K⋆) attain a block diagonal structure. The 2 × 2 blocks of the sensitivity

matrix are given by the sub-sensitivity matrices

JKr = (∇KrMµ+
r
,∇KrMµ−

r
)T . (5.21)

Most importantly, Design (1D) ensures local identifiability of inverse problem (5.19), if

the measurement times tm are chosed sufficiently small.

Theorem 5.12. Consider the inverse parameter identification problem (5.19) of finding

K ∈ Apwc
K from measurements generated by Design (1D), for which

ψx = ψt = 1[−ε,ε], (5.22)

CK(tm + ε) < 1, and (5.23)

3e−(tm+ε)CK tm − 12ε− 32 max(1, 2ε)(tm + ε) CK(tm+ε)
1−CK(tm+ε)

(
1

1−CK(tm+ε) + 1
)
> 0. (5.24)

Then inverse problem (5.19) is sensitivity based and least squares identifiable and the

quadratic cost function is locally strongly convex around the ground truth parameter K⋆.

Because the proof is based on the sensitivity matrix, only local square loss identifiability

can be guaranteed. However, the proof shows that local identifiability holds uniformly

over the admissible set, which means that the design is uniformly persistently exciting.

Numerical experiments in Section 6.2 even suggest global identifiability.

Remark 5.13 (About assumptions (5.22)–(5.24)). Characteristic functions for ψx, ψt are

considered purely for readability of the proof. The result generalizes to other forms of

test functions ψx, ψt, when the assumptions (5.22)–(5.24) are adapted accordingly, as the

derivations in [HKLT25] show.

Assumption (5.23) explicitly expresses smallness of tm in comparison to CK . This poses

the model in the rare tumbling regime and serves to control the high regularity parts of

the forward and adjoint solution in the gradient according to (5.13), in analogy to the

theoretical proofs in Chapter 4.

The complicated form of assumption (5.24) originates from estimation in the proof,

where it eventually guarantees positivity of the minimal eigenvalue of JTJ and thus iden-

tifiability. It relates tm, ε and CK and postulates smallness of the measurement time tm,

as a limiting consideration shows: consider ε that is a fixed fraction ε = λtm of the mea-

surement time for some λ ∈ (0, 14) as suggested by (5.17). Then the left hand side of (5.24)

is of order

tm

(
3e−(1+λ)tmCK − 12λ− 32 max(1, 2λtm)(1 + λ) (1+λ)tmCK

1−(1+λ)tmCK

(
1

1−(1+λ)tmCK
+ 1
))

= tm(3 − 12λ+ O(tm))
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as tm → 0. With λ < 1
4 , this shows that (5.24) holds for small enough tm. One suitable

choice is for instance given by tm ≤ 0.02C−1
K and ε ≤ min(12 , 0.1tm).

The rough estimation that we used in the the proof lets us expect that the bound (5.24)

can be improved. This path is not followed in this work in order to concentrate on the

main arguments and in favour of readability of the proof.

By Proposition 5.4, proving Theorem 5.12 amounts in proving sensitivity based identi-

fiability JTJ > 0, which is equivalent to the fact that J attains full rank Q. The block

diagonal structure of J according to Corollary 5.11 suggests that this is equivalent to the

fact that all 2 × 2-blocks JKr , r = 0, ..., R− 1, in (5.21) are of full rank. By symmetry in

the design, the remaining proof concentrates without loss of generality (w.l.o.g.) on JK1 .

Proposition 5.14. Under assumptions (5.22)–(5.24), Design (1D) generates a full rank

sub-sensitivity matrix JK1.

It is easy to see that JK1 is full rank if its entries satisfy the following inequalities∣∣∣∣∣∣
∂Mµ+

1
(fϕ1

K⋆
)

∂K+1
1

∣∣∣∣∣∣ >
∣∣∣∣∣∣
∂Mµ+

1
(fϕ1

K⋆
)

∂K−1
1

∣∣∣∣∣∣ and

∣∣∣∣∣∣
∂Mµ−

1
(fϕ1

K⋆
)

∂K+1
1

∣∣∣∣∣∣ <
∣∣∣∣∣∣
∂Mµ−

1
(fϕ1

K⋆
)

∂K−1
1

∣∣∣∣∣∣ . (5.25)

It is thus the goal of the proof of Proposition 5.14 to verify these inequalities. The

symmetry in Design (1D) suggests that it is sufficient to study the first inequality.

Figure 5.1 helps building an intuition why this inequality should be true: in formula

(5.20) for the partial derivative, consider for a moment only the ballistic parts f0 of fϕ1

and g0 of gµ+
1

that solve, respectively, (4.32) with initial condition f0(t = 0) = ϕ1, and

−∂tg0 − v∂xg0 = −K(x, v′, v)g0 − µ+1 , g0(t = T ) = 0. (5.26)

Existence of f0 and g0 is established in Lemmas 4.5 and 5.18. Then the ballistic part of

the first inequality in (5.25) reads B > 0 with

B :=

∣∣∣∣∫ T

0

∫
I1

f0(v
′)(g0(v

′) − g0(v)) dx dt

∣∣∣∣− ∣∣∣∣∫ T

0

∫
I1

f0(v)(g0(v) − g0(v
′)) dx dt

∣∣∣∣ (5.27)

for (v, v′) = (−1,+1). Positivity of B can be anticipated by a comparison of the supports

of f0 and g0, as depicted in Figure 5.1: the supports of f0(v
′) and g0(v

′) overlap initially

and due to the same direction and speed of transport, they overlap for the whole travel

time t ∈ [0, tm + ε] until g0(v
′) vanishes. In contrast to that, f0(v

′) overlaps with g0(v)

only for a very short period of time when t ≈ tm, whose length is determined by ε. Due

to positivity of f0, g0, the value of the first summand is thus supposed large. In contrast

to that, considering the second summand, the spatial supports of f0(v) and g0(v) never

overlap, and only a small contribution of the product of f0(v) and g0(v
′) is expected, given

that their supports overlap only for a short time at the beginning when t ≈ 0, determined

again by ε. The size of the second summand is thus expected to be small, which shows

positivity of B in total, if measurement time and the support parameter ε are sufficiently

balanced to control the contribution of oppositely facing f0 and g0. It remains to show

that the remaining non ballistic parts do not destroy this positivity.
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x−b,r(t)
ar+1/2 x+b,r(t)

x

va
lu

es

2ε 2ε

Figure 5.1.: Motion of the ballistic parts f0(t = 0, v) (cyan, dashdotted) centered around

ar+1/2 to f0(t = tm, v = +1) (blue, dotted) and f0(t = tm, v = −1) (blue, dashed) centered

around the ballistic locations x±b,r = ar+1/2 ± tm and g0(t = 0, v = +1) (orange, dotted)

and g0(t = 0, v = −1) (orange, dashed) to g0(t = tm, v) (red, dashdotted).

This intuition is made rigorous in Section 5.3.3, first proving that the difference of

the ballistic parts of the partial derivatives B is bounded away from zero, before the

contribution of the remaining high regularity part is bounded smaller than this distance.

5.2.3. Extension to d = 2

In higher dimensions, for demonstration d = 2, the same relaxation strategy can be applied

to construct a design in analogy to the theory presented in Section 4.2. The strategy can

readily be extended to d = 3.

Admissible set. The reconstruction of K in Section 4.2 is point wise in space and in

the velocities, therefore, we adopt a piecewise constant form of K in space x, and in the

incoming and outgoing velocities v′, v to relax the singular design.

Hence, prescribe partitions

� of S1 = ·⋃Nv−1
j=0 Sj into uniform segments Sj = {(cos ζ, sin ζ) | ζ ∈ 2π j

Nv
+[− 2π

2Nv
, 2π
2Nv

)}
of the unit circle, as well as

� of R2 = ·⋃R−1
r1,r2=0A(r1,r2) into, for simplicity, two dimensional intervals A(r1,r2) = Ir1×

Ir2 for intervals Ir described by a fixed partition −∞ < a1 < ... < aR−1 < aR = ∞
of R as in (5.14).

The admissible set is then constructed as

Apwc
K =

{
AK ∋ K(x, v, v′) =

Nv−1∑
i,j=0

R−1∑
r1,r2=0
r=(r1,r2)

Kj,i
r 1Sj (v)1Si(v

′)1Ar(x)

∣∣∣∣∣ 0 ≤ Kj,i
r ≤ CK

}
.

(5.28)
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5.2. Qualitative Experimental Design

Experimental Design. The following design is inspired by the singularity inducing con-

struction in Section 4.2.

Design (2D). The middle points a(r1,r2)+1/2 = (ar1+1/2, ar2+1/2)
T of the intervals Ar1,r2

shall be defined through the one dimensional interval middle points ari+1/2 as defined in

Design (1D), for 0 ≤ r1, r2 ≤ R − 1, and let again αmin := minr=1,...,R−2(ar+1 − ar)

be the grid size. Furthermore, let vj be the middle point of segment Sj. Consider non

negative, radially symmetric functions Ψx ∈ L1 ∩ L∞(R2) and ψt ∈ L1 ∩ L∞(R) that

are monotonously decreasing in ∥x∥ and supported in the balls B(2)(0, ε) and B(1)(0, ε) of

dimension 2 and 1, respectively, for some ε > 0.

Then define for r = (r1, r2) ∈ {0, R−1}2 and i ∈ {0, Nv−1} the (r, i)-th sub-experiments

through

� an initial condition ϕir(x, v) = Ψx(x− ar+1/2)1Si∩B(2)(vi,δ)
(v) for some δ > 0, that is

centered around the middle points ar of the 2D intervals Ar in space and in velocity

around the middle points of the velocity range Si, and

� measurement test functions

µj,ir (t, x) = ψt(t−tm)Ψx

(
x−

(
ar+1/2 +

tm
2
vi +

tm
2
vj

))
, for j ∈ {0, Nv−1}\{i}

centered around the measurement time tm and in space around the scattered location

a(r1,r2)+1/2 + tm
2 vi + tm

2 vj,

where tm, ε and δ satisfy

0 < 5ε < tm + ε < T and tm + 2ε <
αmin

2
, and (5.29)

tm
2

(
1 − cos

(
2π

Nv

))(
tm
2

(
1 − cos

(
2π

Nv

))
− 2(tm + ε)δ

)
> 4ε2. (5.30)

Typical choices for Ψx, ψt are again characteristic functions, hat functions, or cut off

Gaussians of the corresponding dimension. Unlike Design (1D), Design (2D) prescribes an

initial direction of travel for the particles by the velocity dependency of the initial data.

This becomes necessary in the two dimensional setting, where the velocity space V = S1

is continuous.

Assumption (5.29) shares the same purpose as (5.17) in the one dimensional case: Note

in particular, that smallness of tm w.r.t. the grid size αmin in the second inequality again

ensures that the measured data in the r-th experiment does not leave the domain Ar of

constant value of K, due to the finite speed of propagation in Lemma A.1.5b

supp fϕ
i
r(t, ·, v) ⊂ B(2)(ar+1/2, ε+ t) ⊂ Ar, for all t ≤ tm+ε, v ∈ V, i ∈ {0, ..., Nv−1}.

(5.31)

This entails the same local decoupling of the inverse problem, as observed already for

Design (1D) in Proposition 5.10 and Corollary 5.11.

Proposition 5.15. Under Design (2D), the reconstruction of Kj,i
r is decoupled from that

of Kk,l
s for all r ̸= s and i, j, k, l ∈ {0, ..., Nv − 1}, in the sense that measurements taken
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inside Ar are not sensitive to parameter values Kk,l
s in other areas As. All entries of the

gradient ∇KMµj,i
r

(f
ϕi
r

K ) vanish, except for those correspond to the values Kk,l
r for distinct

k, l ∈ {0, ..., Nv − 1}.
Hence, the sensitivity matrix J and the Gauss-Newton Hessian HKC(K⋆) attain block

diagonal structures, where the Nv(Nv − 1) × Nv(Nv − 1) blocks of the sensitivity matrix

are given by the sub-sensitivity matrices JKr = (∇KrMµj,i
r

)Tj,i.

In contrast to Design (1D), the measurement location of Design (2D) centers around

the scattered instead of the ballistic location. Together with the additional assumption

(5.30), this excludes the ballistic part f0 of the solution fϕ
i
r from the measurement, as

shown in the subsequent Lemma 5.16. This is necessary in the higher dimensional case,

where f0 does not contain sufficient information for the recovery of the tumbling kernel,

as explained in Section 4.2, but could distort - especially numerical - reconstructions, as it

exceeds the size of the desired one tumbling part f1 by one order of magnitude in TCK |V |.

Lemma 5.16. Consider Design (2D) and choose r ∈ {0, ..., R−1}2 and i ∈ {0, ..., Nv−1}
arbitrary, but fixed. Then the ballistic part f0 of fϕ

i
r does not contribute to any measure-

ment in the (r, i)-th sub-experiment, i.e. M
µj,i
r

(f0) = 0 for all j ̸= i.

The argument is based on a lack of overlap of the supports of the ballistic part f0 and

the measurement test function, just as the proof in Section 4.2.1.

Proof. Recall that by construction of Design (2D),

suppµj,ir = [tm − ε, tm + ε] ×B(2)

(
ar+1/2 +

tm
2
vi +

tm
2
vj , ε

)
,

supp f0(t, ·, v) = B(2)(ar+1/2 + tv, ε), for t ≥ 0, v ∈ Si ∩B(2)(vi, δ), and

f0(·, ·, v) ≡ 0, for v /∈ Si ∩B(2)(vi, δ),

by the explicit formula (4.12) for f0. The spatial supports of µj,ir and f0 do not overlap

for any t ∈ [tm − ε, tm + ε], given that for all v = vi + w ∈ Si ∩ B(2)(vi, δ) with ∥w∥ ≤ δ,

the Cauchy Schwarz inequality shows∥∥∥∥ar+1/2 +
tm
2
vi +

tm
2
vj − (ar+1/2 + tv)

∥∥∥∥2 =

∥∥∥∥ tm2 vi +
tm
2
vj − t(vi + w)

∥∥∥∥2
≥
∥∥∥∥(t− tm

2

)
vi −

tm
2
vj

∥∥∥∥(∥∥∥∥(t− tm
2

)
vi −

tm
2
vj

∥∥∥∥− 2tδ

)
≥ tm

2

(
1 − cos

(
2π

Nv

))(
tm
2

(
1 − cos

(
2π

Nv

))
− 2(tm + ε)δ

)
> 4ε2

by assumption (5.30). In the last line, it was used that ⟨vi, vj⟩ ≤ cos(2π/Nv) for i ̸= j,

and thus by a simple minimization

∥∥(t− tm
2

)
vi − tm

2 vj
∥∥ ≥

√(
t− tm

2

)2
+
(
tm
2

)2 − tm
(
t− tm

2

)
cos
(

2π
Nv

)
≥ tm

2

(
1 − cos

(
2π
Nv

))
.
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5.3. Proofs of this Chapter

Tuples tm, ε, δ that satisfy the assumptions (5.29)–(5.30) exist: approximating small δ ≈
0, (5.30) becomes tm(1 − cos(2π/Nv)) > 4ε. Therefore, after fixing tm and ε accordingly,

δ can be chosen sufficiently small such that (5.30) is fulfilled.

The similarities to Design (1D) and the construction in Section 4.2, as well as numerical

experiments in Section 6.3, let us conjecture that Design (2D) might also yield a locally

or even globally identifiable inverse problem, potentially under complementing the above

assumptions by further smallness requirements on tm w.r.t. CK in order to place the

experiment in the rare tumbling regime.

Analytical proofs of identifiability in analogy to Theorem 5.12 are left for future work,

as derivations are expected to become even more technical, given that the design is based

on measuring the one-tumbling part f1 instead of the ballistic part f0. The proof can

again take advantage of the block diagonal structure of J , in the sense that the full rank

property has to be established only for one block. Then a decomposition of the forward

and adjoint solutions according to regularity may provide a similar size structure in the

partial derivatives ∂
Kj,i

1
M

µk,l
1

, where the construction of Design (2D) in analogy to the

construction in Section 4.2 suggests that ∂
Kj,i

1
M

µj,i
1

will be the dominant entries.

5.3. Proofs of this Chapter

This section collects the proofs from the previous chapter that were postponed.

5.3.1. Proof of Lemma 5.5

Because the first representation (5.12) of the partial derivative of the measurement w.r.t.

the parameter is a direct consequence of the Leibnitz integral rule, only the adjoint gradient

representation (5.13) is proven in the following.

Proof of representation (5.13). Consider the l-th data as a measurement of a generic func-

tion f , under the constraint that f = fK is the mild solution to (Ch)–(iCh), i.e. that

(A.1.8) holds. The corresponding Lagrangian function is defined as

L : Afin
K × C0([0, T ];L1

+,c ∩ L∞(Rd × V )) × L1([0, T ] × Rd × V ) → R,

L(K, f, h) = Mµl
(f) +

〈
h, f(t, x, v) − T(t)ϕ−

∫ t

0
T(t− s)KK(f)(s) ds

〉
t,x,v

,

where the notation KK := L − σ explicitly expresses the K dependence, (T(t))t is the

transport semigroup from Lemma A.1.2 such that the right hand side of the duality bracket

⟨·, ·⟩t,x,v w.r.t. integration in variable t, x, v describes exactly the mild solution form for f .

Choosing f = fK as the mild solution to (Ch)–(iCh), one obtains L(K, fK , h) = Ml(fK).

The gradient at a point K̂ can thus be expressed as

dMl(fK)

dK

∣∣∣∣
K=K̂

=
∂L
∂K

∣∣∣∣K=K̂
f=fK̂

+
∂L
∂f

∣∣∣∣K=K̂
f=fK̂

dfK
dK

∣∣∣∣
K=K̂

.
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The multiplier h = ĥ will be chosen such that second summand vanishes, and one is left

with

∂Ml(fK)

∂Kq

∣∣∣∣
K=K̂

=
∂L
∂Kq

∣∣∣∣K=K̂,f=fK̂ ,

h=ĥ

=
∂
〈
h,−

∫ t
0 T(t− s)KK(f)(s) ds

〉
t,x,v

∂Kq

∣∣∣∣K=K̂,f=fK̂ ,

h=ĥ

.

By the definition of the transport semigroup (T(t))t from Lemma A.1.2, a change of

variables in x and in the order of integration in s and t shows〈
h,−

∫ t

0
T(t− s)KK(f)(s) ds

〉
t,x,v

= −
∫∫∫

Rd×V×V

T∫
0

K(x, v, v′)f(s, x, v′)

T∫
s

h(t, x+ v(t− s), v) − h(t, x+ v′(t− s), v′) dtdsd(x, v, v′)

= −
〈
f,K⋆

K

(∫ T

t
T⋆(s− t)h(s) ds

)〉
t,x,v

,

where (T⋆(t))t≥1 denotes the backward transport semigroup from Lemma A.1.9, and K

dependence of the adjoint tumbling operator K⋆ from (5.10) is explicitly expressed. For-

mula (5.13) then follows from the second line by using the form of K prescribed by the

admissible set in (5.1) and denoting g(t, x, v) :=
∫ T
t h(s, x+ v(s− t), v) ds.

It remains to compute such ĝ corresponding to ĥ, for which ∂L/∂f |f=fK̂ ,K=K̂,h=ĥ= 0.

From the last manipulation, one sees that

∂L
∂f

=
∂

∂f

〈
f, µl + h−K⋆

K

(∫ T

t
T⋆(s− t)h(s) ds

)〉
t,x,v

.

This always vanishes, if h = ĥ satisfies

ĥ(t) = K⋆
K

(∫ T

t
T⋆(s− t)ĥ(s) ds

)
− µl.

Existence of such ĥ ∈ L1([0, T ] × Rd × V ) can be established by a similar argument

as in the proof of Lemma A.1.4, by proving that the source iteration is a contraction

mapping w.r.t. the weighted norm ∥h∥ := ∥e4CK |V |th∥L1 on L1([0, T ] × Rd × V ). Then

ĝ is continuous in time by regularity of h ∈ L1 because ∥ĝ(t + ζ) − ĝ(t)∥L1(Rd×V ) =

∥
∫ t+ζ
t ĥ(s, x+ v(s− t), v) ds∥L1(Rd×V ) → 0 for ζ → 0. Furthermore, ĝ satisfies

ĝ(t, x, v) =

∫ T

t
T⋆(s− t)ĥ(s) ds =

∫ T

t
T⋆(s− t)

(
K⋆

K

(∫ T

s
T⋆(τ − s)ĥ(τ) dτ

)
− µl

)
ds

=

∫ T

t
T⋆(s− t)(K⋆

K (ĝ(s)) − µl(s)) ds.

Lemma A.1.9 thus indicates that ĝ is in fact the mild solution to the adjoint problem

(5.8)–(5.9).
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5.3.2. Proof of Theorem 5.6

From (2.17) it is clear that HKC(K⋆) shares the same rank as J , which is determined

by the number of its linearly independent rows ∇KMl(f
ϕl). In a minimal setting where

L = Q, an increasing alignment of two gradients ∇KM1(f
ϕ1) → ∇KM2(f

ϕ2) hence results

in a loss of strong convexity.

Proposition 5.17. As the first experimental setup converges to the second such that µ1 ⇀

µ2 weakly in L1([0, T ]×Rd) and ϕ1 → ϕ2 strongly in L1 ∩L∞(Rd ×V ), the corresponding

measurement gradients converge in the Euclidean norm ∇KM1(fK) → ∇KM2(fK) for all

K ∈ Afin
K .

Then Theorem 5.6 follows from the continuity of eigenvalues w.r.t. matrix perturbations.

Proof of Theorem 5.6. Let ∇KM1(fK⋆) → ∇KM2(fK⋆) in the Euclidean norm. To show

that the Hessian at K⋆ degenerates asymptotically, rewrite (2.17) as

JTJ =

(
2∇KM2⊗∇KM2 +

Q∑
l=3

∇KMl⊗∇KMl

)
︸ ︷︷ ︸

=:A

+(∇KM1⊗∇KM1 −∇KM2⊗∇KM2)︸ ︷︷ ︸
=:B

,

in the short notation Ml := Mµl
(fϕl). The matrix A has a rank of at most Q − 1

and thus it has at least one vanishing eigenvalue: λj(A) = 0 for some j. Furthermore,

∥B∥F → 0 due to ∥∇KM1(fK⋆) −∇KM2(fK⋆)∥2 → 0. Continuity of the j-th eigenvalue

w.r.t. perturbation of matrix A by B [HJ85, Corr.6.3.8] then provides

|λj(HKC(K⋆))| = |λj(HKC(K⋆))−λj(A)| ≤ ∥B∥F → 0, as ∇KM1(fK⋆) → ∇KM2(fK⋆).

This shows that asymptotically the Hessian looses one rank, it thus lacks positive definite-

ness, and the strong convexity of the cost function around K⋆ decays.

The increasing alignment of the gradients can be anticipated, as it is well known that the

duality bracket of elements of a weakly convergent sequence µ1 with elements of a strongly

convergent sequence ϕ1 in its dual space yields a convergent sequence in R [Bre11, Prop.

3.5], and the strong convergence of ϕ1 translates to fϕ1 by (A.1.12).

Proof of Proposition 5.17. Using representation (5.12), one obtains∣∣∣∣∂M1(f
ϕ1)

∂Kq
− ∂M2(f

ϕ2)

∂Kq

∣∣∣∣ =

∣∣∣∣∣
∫∫∫

[0,T ]×Rd×V
(∂Kqf

ϕ1−ϕ2)µ1 + (∂Kqf
ϕ2)(µ1 − µ2) d(t, x, v)

∣∣∣∣∣
≤ |V |∥∂Kqf

ϕ1−ϕ2∥∞∥µ1∥1 +

∣∣∣∣∣
∫∫

[0,T ]×Rd

∫
V

(∂Kqf
ϕ2) dv (µ1 − µ2) d(t, x)

∣∣∣∣∣
by Hölder’s inequality. As ϕ1 → ϕ2 strongly in L1 ∩ L∞(Rd × V ), then (A.1.12) shows

∥∂Kqf
ϕ1−ϕ2∥∞ ≤ 2|V |e2|V |CKTT∥ϕ1 − ϕ2∥L1∩L∞(Rd×V ) → 0.
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Moreover, ∥µ1∥1 as a weakly convergent sequence is bounded by the uniform boundedness

principle, compare for instance [Bre11, Prop. 3.5, Cor. 2.4]. In total, this shows that

the first summand vanishes asymptotically. The same holds true by Definition 5.7 for the

second summand, given that
∫
V ∂Kqf

ϕ2 dv ∈ L∞([0, T ] × Rd) by regularity of ∂Kqf
ϕ2 ∈

C([0, T ];L1 ∩ L∞(Rd × V )) from Lemma A.1.7.

5.3.3. Proof of Proposition 5.14

Existence of a mild solution g0 to the ballistic adjoint equation (5.26) is ensured by

Lemma A.1.9 and an explicit formula can be obtained from representation (A.1.16).

Lemma 5.18. The ballistic adjoint equation (5.26) attains a unique mild solution g0 ∈
C0([0, T ];L1(Rd × V )) that is explicitly given by

g0(t, x, v) =

∫ T

t
e−

∫ s−t
0 σ(x+vτ,v) dτµ(s, x+ v(s− t)) ds. (5.32)

The approximation of the measurement gradient by its ballistic part then allows esti-

mation of the gradient difference by∣∣∣∣∣∣
∂Mµ+

1
(fϕ1

K⋆
)

∂K+1
1

∣∣∣∣∣∣−
∣∣∣∣∣∣
∂Mµ+

1
(fϕ1

K⋆
)

∂K−1
1

∣∣∣∣∣∣ ≥ B − |R+1| − |R−1|,

where B as in (5.27) collects the ballistic part of the gradient difference and

Rv′ =
∂Mµ+

1
(fK⋆)

∂Kv′
1

−
∫ T

0

∫
I1

f0(v
′)(g0(v

′) − g0(−v′)) dx dt, v′ ∈ V

are the remainders. The proof of the first inequality in (5.25) then consists in showing

that B is sufficiently large such that its positivity is not destroyed by the remainders.

Lemma 5.19. Denote (v, v′) = (−1,+1) and consider an experiment under the Design

(1D) with ψ = 1[−ε,ε] as in (5.22). Then B from (5.27) satisfies

B ≥ e−(tm+ε)CK3ε2tm − 12ε3.

Lemma 5.20. In the framework of Design (1D) and under (5.22)–(5.24), the remainder

Rv′ is uniformly bounded in v′ ∈ V by

|Rv′ | ≤ 4(2ε)2 max(1, 2ε)(tm + ε) CK(tm+ε)
1−CK(tm+ε)

(
1

1−CK(tm+ε) + 1
)
.

Proposition 5.14 is a direct consequence of these bounds and inequality (5.25).

Proof of Proposition 5.14. By symmetry, it is sufficient to verify the first inequality of

(5.25). Using the bounds from Lemma 5.19 and 5.20, one obtains∣∣∣∣∣∂Mµ+
1

(fK⋆)

∂K+1
1

∣∣∣∣∣−
∣∣∣∣∣∂Mµ+

1
(fK⋆)

∂K−1
1

∣∣∣∣∣ ≥ B − 2 max
v′

|Rv′ |

≥ ε2
(

3e−(tm+ε)CK tm − 12ε− 32 max(1, 2ε)(tm + ε) CK(tm+ε)
1−CK(tm+ε)

(
1

1−CK(tm+ε) + 1
))

> 0,

by choice of tm and ε that satisfy (5.24).
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5.3. Proofs of this Chapter

It remains to prove Lemmas 5.19 and 5.20. The proof of the former is based on a

consideration of the overlap in the supports of the ballistic forward and adjoint solution,

as described after Proposition 5.14.

Proof of Lemma 5.19. Explicit representations of f0 and g0 are available in (4.12) and

(5.32). Setting (v, v′) = (−1,+1), the first summand in B can be estimated as

i1 :=

∫ T

0

∫
I1

f0(v
′)g0(v

′) dx dt

=

∫ T

0

∫
I1

∫ T

t
e−

∫ t
0 σ(x−τ,+1) dτ1a3/2+[−ε,ε](x− t)1tm+[−ε,ε](s)e

−
∫ s−t
0 σ(x+τ,+1) dτ ·

1a3/2+tm+[−ε,ε](x+ (s− t)) ds dx dt

≥ e−(tm+ε)CK

∫ tm+ε

0

∫
I1

∫ tm+ε

max(t,tm−ε)
1a3/2+t+([−ε,ε]∩[tm−s−ε,tm−s+ε])(x) ds dx dt

= e−(tm+ε)CK3ε2tm.

In the second to last row, the fact that g0(t) = 0 for t > tm +ε was used, together with the

form (4.26) of σ = K(x, v′, v) in 1D, to bound the exponential functions. Furthermore,

the indicator function in s was evaluated. In the last row the integral was evaluated by a

case-by-case consideration, keeping in mind that a3/2+[−ε, ε]+t ⊂ I1 for all t ∈ [0, tm+dµ]

by choice of tm and ε in (5.17). Similarly, one obtains

i2 :=

∫ T

0

∫
I1

f0(v
′)g0(v) dx dt

=

∫ T

0

∫
I1

∫ T

t
e−

∫ t
0 σ(x−τ,+1) dτ1a3/2+[−ε,ε](x− t)1tm+[−ε,ε](s)e

−
∫ s−t
0 σ(x−τ,−1) dτ ·

1a3/2+tm+[−ε,ε](x− (s− t)) ds dx dt

≤
∫ tm+ε

0

∫
I1

∫ tm+ε

max(t,tm−ε)
1a3/2+([t−ε,t+ε]∩[tm+s−t−ε,tm+s−t+ε])(x) dsdx dt

≤
∫ tm+ε

tm−1.5ε

∫
I1

∫ tm+ε

max(t,tm−ε)
1a3/2+t+[−ε,ε](x) dsdx dt = 6ε3

In the last row, t ≥ tm− 1.5ε was set since the integrand vanishes for all t < tm− 1.5ε and

s ≥ tm − ε and x, by an empty support of the characteristic function, as

t+ ε < tm − 0.5ε ≤ tm + s− t− ε.

Furthermore, the third summand vanishes

0 ≤i3 :=

∫ T

0

∫
I1

f0(v)g0(v) dx dt

=

∫ T

0

∫
I1

∫ T

t
e−

∫ t
0 σ(x+τ,−1) dτ1a3/2+[−ε,ε](x+ t)1tm+[−ε,ε](s)e

−
∫ s−t
0 σ(x−τ,−1) dτ ·

1a3/2+tm+[−ε,ε](x− (s− t)) ds dx dt

≤
∫ tm+ε

0

∫
I1

∫ tm+ε

max(t,tm−ε)
1a3/2−t+([−ε,ε]∩[s+tm−ε,s+tm+ε])(x) ds dx dt = 0,
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5. Sensitivity Based & Cost Function Identifiability: Experimental Design

given that the integrand vanishes for all s ≥ tm−ε, because the domain of the characteristic

function is empty, since

s+ tm − ε ≥ 2(tm − ε) ≥ 6ε

by (5.17). Finally,

i4 :=

∫ T

0

∫
I1

f0(v)g0(v
′) dx dt

=

∫ T

0

∫
I1

∫ T

t
e−

∫ t
0 σ(x+τ,−1) dτ1a3/2+[−ε,ε](x+ t)1tm+[−ε,ε](s)e

−
∫ s−t
0 σ(x+τ,+1) dτ ·

1a3/2+tm+[−ε,ε](x+ (s− t)) ds dx dt

≤
∫ tm+ε

0

∫
I1

∫ tm+ε

max(t,tm−ε)
1a3/2+([−t−ε,−t+ε]∩[t−s+tm−ε,t−s+tm+ε])(x) ds dx dt

≤ 6ε3

because the integrand vanishes for t > 1.5ε for all s ≤ tm + ε and x, since

t− s+ tm − ε ≥ 1.5ε− ε− ε = −0.5ε > −t+ ε.

In summary, this shows

B ≥ i1 − i2 − i3 − i4 ≥ e−(tm+ε)CK3ε2tm − 12ε3.

To prove Lemma 5.20, Rv′ is further decomposed by regularity as

Rv′ =
N∑

n,k=0
n+k≥1

∫ T

0

∫
I1

fk(v′)(gn(v′) − gn(v)) dx dt+

∫ T

0

∫
I1

f(v′)(g≥N+1(v
′) − g≥N+1(v)) dx dt

+
N∑

n=0

∫ T

0

∫
I1

f≥N+1(v
′)(gn(v′) − gn(v)) dx dt , (5.33)

for some N ∈ N where fk, f≥N+1, gn and g≥N+1 are defined as follows:

� In extension to (4.11)–(T≥2), the fk collect all particles that have tumbles exactly

k ∈ N times until time t. They satisfy

∂tfk + v · ∇xfk = L(fk−1) − σfk, fk(t = 0) = 0. (Tk)

The remainder f≥N+1 collects all particles that have tumbled more than N times

and evolves according to

∂tf≥N+1 + v · ∇xf≥N+1 = L(fN + f≥N+1) − σf≥N+1, f≥N+1(t = 0) = 0.

(T≥N+1)

Again, the diffusive effect of tumbling leads to an increasing regularity of fk in k.

98



5.3. Proofs of this Chapter

� Similarly, the gn solve

−∂tgn − v∂xgn = −σgn + L⋆(gn−1), gn(t = T ) = 0, (5.34)

and represent that part of the adjoint solution that has been affected by exactly

n ∈ N tumblings after time t, on their way of being transported backwards in time

from the final condition. The remaining part is collected in g≥N+1 that satisfies

−∂tg≥N+1 − v∂xg≥N+1 = −σg≥N+1 + L⋆(gN ) + L⋆(g≥N+1), g≥N+1(t = T ) = 0,

(5.35)

where one has σ = K(x,−v, v) by (4.26) and L⋆(g)(t, x, v) := K(x,−v, v)g(t, x,−v)

in 1D for the operator L⋆ = K⋆ + σ. The regularity of the gn also increases in n.

Existence of fk, f≥N+1 and their smallness follows in analogy to Lemma 4.5 and

Lemma A.1.9.

Lemma 5.21. Let K ∈ Apwc
K and consider Design (1D) with ψ = 1[−ε,ε] as in (5.22). Then

(Ch)–(iCh), (Tk) and (T≥N+1) attain unique mild solutions f, fk, f≥N+1 ∈ C0([0, T ];L1
+∩

L∞(R× V )) for all N ∈ N and k ∈ {0, ..., N}, that are bounded by

∥f(t)∥L∞(R×V ) ≤ eCKt max(1, 2ε),

∥fk∥L∞([0,t]×R×V ) ≤ (CKt)
k max(1, 2ε), and

∥f≥N+1∥L∞([0,t]×R×V ) ≤ eCKt(CKt)
N+1 max(1, 2ε).

Proof. An iterative application of Corollary A.1.3 provides existence of fk, f≥N+1 and the

recursive bounds

∥fk∥L∞([0,t]×R×V ) ≤ ∥fk∥L∞([0,t];L1∩L∞(R×V )) ≤ CKt∥fk−1∥L∞([0,t];L1∩L∞(R×V )), and

∥f≥N+1∥L∞([0,t]×R×V ) ≤ eCKtCKt∥fN∥L∞([0,t];L1∩L∞(R×V )),

when using the tighter bound ∥L∥ ≤ CK in 1D. Similarly, the bound (3.4) for f can be

improved to ∥f(t)∥∞ ≤ eCKt∥ϕ∥L1∩L∞(R×V ). The bounds in the lemma then follow by

iteration and the fact that ∥f0∥L∞([0,t];L1∩L∞(R×V )) ≤ ∥ϕ∥L1∩L∞(R×V ) = max(1, 2ε) by

(4.12) for Design (1D).

Existence and smallness of solutions gn, g≥N+1 to (5.34) and (5.35) is established in

Lemma A.1.9.

Lemma 5.22. Let K ∈ Apwc
K and consider Design (1D) with ψ = 1[−ε,ε] as in (5.22).

Then for all N ∈ N, unique mild solutions gn and gN+1 to (5.34) and (5.35), respectively,

exist in C0([0, T ];L1(Rd;L∞(V ))) for all n ∈ {1, ..., N}. They vanish for t > tm + ε and

satisfy

∥gn∥L1([0,tm+ε]×R;L∞(V )) ≤ 2(CK(tm + ε))n(tm + ε)(2ε)2, and

∥g≥N+1(t)∥L1(R;L∞(V )) ≤ 2eCK(tm+ε−t)(CK(tm + ε))N+1(2ε)2.
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5. Sensitivity Based & Cost Function Identifiability: Experimental Design

Proof. Lemma A.1.9 and iteratively obtained regularity of gn−1 ∈ C([0, T ];L1(Rd;L1 ∩
L∞(V ))) yield existence, uniqueness and the recursive bounds

∥gn∥L1([0,tm+ε]×R;L∞(V )) ≤ ∥gn∥L1([0,tm+ε]×R;L1∩L∞(V ))

≤ CK(tm + ε)∥gn−1∥L1([0,tm+ε]×R;L1∩L∞(V )), and

∥g≥N+1(t)∥L1(R;L∞(V )) ≤ eCK(tm+ε−t)CK∥gN∥L1([0,tm+ε]×R;L1∩L∞(V )),

by the improved bound ∥L⋆∥ ≤ CK , because gn and g≥N+1 vanish for t ≥ tm + ε by

Corollary A.1.10. The absolute bounds follow from (A.1.14) by

∥g0∥L1([0,tm+ε]×R;L1∩L∞(V )) ≤ (tm + ε)∥µ+1 ∥L1([0,tm+ε]×R;L1∩L∞(V )) ≤ 2(tm + ε)(2ε)2.

Note that g≥N+1 vanishes strongly in L1 as N → ∞, due to CK(tm + ε) < 1 by assump-

tion (5.22). Lemma 5.20 then follows from the previously derived bounds on fk, f≥N+1, gn
and g≥N+1.

Proof of Lemma 5.20. The parts in Rv′ are estimated separately by Hölder’s inequality.

Noting that gn(t) = 0 = g≥N+1(t) for t ≥ tm + ε by Corollary A.1.10, then representation

(5.33) in connection with the previous two Lemmas yields

|Rv′ | ≤ 2

( N∑
n,k=0
n+k≥1

∥fk∥L∞([0,tm+ε]×R×V )∥gn∥L1([0,tm+ε]×R;L∞(V ))

+

∫ tm+ε

0
∥f(t)∥L∞(R×V )∥g≥N+1(t)∥L1(R;L∞(V )) dt

+
N∑

n=0

∥f≥N+1∥L∞([0,tm+ε]×R×V )∥gn∥L1([0,tm+ε]×R;L∞(V ))

)

≤ 4(2ε)2 max(1, 2ε)(tm + ε)

( N∑
n,k=0
n+k≥1

(CK(tm + ε))n+k + eCK(tm+ε)(CK(tm + ε))N+1

+
N∑

n=0

eCK(tm+ε)(CK(tm + ε))N+1+n

)
≤ 4(2ε)2 max(1, 2ε)(tm + ε)

(
CK(tm+ε)

1−CK(tm+ε)

(
1

1−CK(tm+ε) + 1
)

+ eCK(tm+ε)(CK(tm + ε))N+1
(

1 + 1
1−CK(tm+ε)

))
where we estimated

∑N
n=0(CK(tm + ε))n ≤

∑∞
n=0(CK(tm + ε))n = 1

1−(CK(tm+ε)) by the

geometric series formula, justified by CK(tm + ε) < 1 by (5.23). Because this estimate

holds independently of N ∈ N, letting N → ∞ shows the desired bound.
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6
Numerical experiments

In this chapter, we present numerical evidence to support the theoretical results from

the previous chapter on identifiability of the kinetic tumbling kernel K ∈ Apwc
K from

macroscopic data. To study and compare the identifiability behaviour of inverse problems

corresponding to different experimental designs, the cost minimization inversion framework

is implemented numerically, and the convexity of the cost function (5.6) is studied.

Inverse Problem. The inverse problem under investigation in this chapter coincides with

that of the previous chapter, with admissible set chosen as Apwc
K from (5.15) or (5.28),

according to the considered spatial dimension d. For a prescribed experimental design

(ϕl, µl)l=1,...,L the noise free synthetic data is generated by forward computations as in

(5.2), and the inverse problem is posed as the cost minimization (5.6).

While several literature exists on computing the forward kinetic autochemotactic chemo-

taxis model [FY13, CKLMNO19, Yas17, Vau10], this work thus represents the first nu-

merical treatment of an inverse problem related to the kinetic chemotaxis model.

The following numerical results represent adaptations of the numerical experiments in

1D in [HKLT25] to the setting where measurement is distributed in space and time through

a space-time test function. The framework is extended to 2D, where identifiability of the

inverse problem related to Design (1D) is shown.

Outline. After a short introduction of the numerical framework in Section 6.1, then

identifiability of Design (1D) and the decay of identifiability as two experimental setups

become close are discussed in spatial dimension d = 1 in Section 6.2, and a design is inves-

tigated that provides local but not global convexity of the cost function to demonstrate the

local nature of Proposition 5.4. In Section 6.3, identifiability of Design (2D) is numerical

demonstrated. The chapter is concluded in ??.



6. Numerical experiments

6.1. Numerical Setting

In order to keep the focus of this chapter on demonstrating identifiability, questions of

computational efficiency and high accuracy will not be addressed. Instead, results are

based on a simple fixed step size gradient descend method for the inversion through cost

minimization (5.6) and an easy first order explicit finite difference solver for the forward

and adjoint equations in the gradient computation. Details of the numerical techniques

are placed in Appendix C.

It is worth mentioning that more sophisticated methods can readily be integrated in the

inversion framework. Possible adaptations are discussed in Section 6.1.3.

6.1.1. Optimization by Gradient Descent

If local strong convexity of the cost function C around K⋆ is given, then a simple gradient

descend method with a suitable step size ηn ∈ R+ is guaranteed to converge to K⋆, if the

initial guess K(0) is sufficiently close to K⋆. A brief introduction into the gradient descend

method can be found in Section 2.2.1. The iterative reconstruction step reads

K(n+1) = K(n) − ηn∇KC(K(n)) . (6.1)

Choice of Step Size. A constant step size ηn ≡ η = 1
λmax

is used in the numerical exam-

ples, where λmax is the maximal eigenvalue of HKC(K⋆). This step size guarantees conver-

gence of the gradient descend method locally under strong convexity by Proposition 2.3

and [Pol63], because Lipschitz continuity of of HKC(K) in K according to Lemma 5.3

ensures that this step size falls below the upper bound η ≤ 2
M , where M denotes an upper

bound on the eigenvalues of HKC(K) in a sufficiently small neighbourhood of K⋆.

6.1.2. Calculation of the Gradient

To solve (5.6), a first optimize, then discretize approach is adopted. In the thus considered

framework, this means that the formula for the gradient is derived for the continuous vari-

able model. The numerical gradient update is then computed as the numerical analogon

of this formula, using the numerical solutions to the forward and adjoint equations.

Gradient Formula. In analogy to Lemma 5.5, the gradient ∇KC(K⋆) can be computed

by a calculus of variation method via the augmented Lagrangian. This yields the formulas

∂C
∂K±

r
=

∫∫
[0,T ]×Ir

f(t, x,±1)(g(t, x,±1) − g(t, x,∓1)) d(t, x), for d = 1, and

∂C
∂Kj,i

r

=

∫∫∫∫
[0,T ]×Ar×Sj×Si

f(t, x, v′)(g(t, x, v′) − g(t, x, v)) d(t, x, v, v′), for d = 2,
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6.1. Numerical Setting

where g denotes the solution to the adjoint cost equation

−∂tg − v · ∇xg = K⋆(g) − 1
L

∑L
l=0(Ml(fK) − yl)µl,

g(t = T, x, v) = 0.
(6.2)

Note that g is a linear combination of the adjoint measurement functions gµl
solving (5.8)–

(5.9) by linearity of the PDE, and existence of a mild solution g ∈ C0([0, T ];L1(Rd;L1 ∩
L∞(V ))) is established in Lemma A.1.9.

PDE Discretization. In dimension d = 1, the velocity space is already discrete V = {±1}.

For dimension d = 2, a discrete ordinate (SN ) method with equidistant quadrature points

is employed to discretize the velocity domain V = S1, which aligns well with the piecewise

constant in velocity tumbling kernels in Apwc
K in the 2D setting in (5.28), as further ex-

plained in Appendix C.1.3. The resulting system of coupled equations for the forward and

adjoint model are then solved by the first order explicit finite difference schemes (C.1.7)

and (C.1.8) that are based on a Lax Wendroff discretization for the transport part and

treat the tumbling operators and source terms explicitly. A detailed derivation can be

found in Appendix C.1.3.

6.1.3. Integration of Advanced Methods.

More sophisticated methods can readily be integrated in the presented inversion frame-

work. Some possible adaptations include:

Velocity quadrature. The choice of more advanced quadrature rules, for instance Gauss

quadrature, for the discrete ordinates method could improve accuracy of the velocity

integral approximation in the numerical measurement procedure as well as the numerical

evaluation of the tumbling operator. Thus would entail adaptations in the structure of the

admissible set, by adjusting the domains of constant parameter value to the new velocity

quadrature points.

Improved Inversion Mechanisms. Convergence of the parameter reconstruction can be

improved by the choice of more sophisticated optimization techniques. Starting with

integrating a line search for the gradient descend step size [WR22], there exists a vast

range of possibilities [Ren10, AS09]. In the realm of gradient based inversion mechanisms,

for instance, the Landweber Kaczmarz method [PD16] or stochastic gradient descend

methods [CLL18], as well as the Gauss-Newton method [ES13], the method of augmented

Lagrangian and (quasi-)Newton methods [Ren10] were successfully implemented for kinetic

inverse problems. Sequential quadratic programming [STLH21, HAO00, BM02] or the

conjugate gradient method [AS09] present further possible choices.

Numerical forward and adjoint solvers. The development of numerical methods to solve

kinetic PDEs constitutes an own area of research, where the main goals are improving
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the approximation accuracy and computational efficiency. In the realm of chemotaxis,

two second order finite difference schemes were developed for the autochemotaxis system

[CKLMNO19, FY13], and a semi-Lagrangian method [Vau10] as well as a Monte Carlo

individual path based simulation [Yas17] were proposed.

Such approaches can readily be incorporated in the inversion framework, as long as

forward and adjoint schemes are chosen in a compatible fashion w.r.t. the ”first optimize,

then discretize” gradient computation [HPUU08, AF12].

First discretize, then optimize. On the other hand, the order can be changed and a ”first

discretize, then optimize” approach brings advantages such as automatic compatibility of

forward and adjoint solvers [AF12, Gun02], at the cost of a reduced flexibility in the choice

of discretization of the adjoint [HPUU08] and the potential introduction of additional

difficulties, such as spurious oscillations in the optimized parameter [LW19].

6.1.4. Computational Setting.

The following settings are adopted for all subsequent computations, in both dimension

d = 1 and d = 2.

Admissible set. The piecewise constant form of the parameter K ∈ Apwc
K is described by

the choice of CK = 1 and a partition of the spatial domain R, which is chosen as aq = q
Q

and yields the intervals I0 = (−∞, 1
Q), Iq = [ qQ ,

q+1
Q ) and IQ−1 = [Q−1

Q ,∞). In case d = 2,

the two dimensional intervals Ar are the Cartesian products of these intervals.

Experimental Designs. The spatial test functions ψx and Ψx are chosen as cut off 1-

and 2-dimensional Gaussians to minimize spurious oscillations of the numerical scheme,

whereas the temporal part ψt is chosen as a characteristic function for simplicity. They

are the building blocks of all considered experimental designs. Furthermore, all measure-

ments share the same temporal component ψt(t − tm), with tm and ε that satisfy (5.17).

Assumptions (5.23)–(5.24) will not be enforced for Design (1D).

Experimental Data. The entries of the ground truth parameter K⋆ to generate synthetic

data yl = Ml(fK⋆) are chosen randomly, following independent uniform distributions in

[0, CK ], unless stated otherwise.

Temporal computational domain. Designs will be constructed such that the temporal

support of all considered test functions is bounded by T = tm + ε, and the temporal

domain is set to [0, T ].

Spatial computational domain. The discretization of the spatial domain is chosen a lot

finer than the spatial discretization of the parameter K, to resolve fine structures as those

generated by Design (1D).
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The spatial computational domains for f and g are set to the d-dimensional intervals

[0, 1]d and [−(tm + ε), 1 + (tm + ε)]d, respectively: For any initial datum ϕ prescribed by

Design (1D) or Design (2D), (5.18) or (5.31) and the choice of tm + ε show that [0, 1]d

contains the support of all considered forward solutions fϕ(t) for t ≤ tm+ε of (Ch)–(iCh).

Similarly, by Corollary A.1.10 the adjoint solution g is supported in the extended domain

supp g(t, ·, v) ⊂ [−(tm + ε), 1 + (tm + ε)]d for all t ∈ [0, T ], v ∈ V . Other considered designs

will share these properties and computational domains.

Zero boundary conditions are imposed, as the boundary will not be reached by the finite

speed of propagation.

Space-time discretization. The spatial computational domains are discretized by equidis-

tant points of grid size 1
Nx

= 1
300R in the 1D experiments and 1

Nx
= 1

200R for the 2D

experiments, to reduce the computational cost. To obey the stability constraint of the

numerical schemes (C.1.7) and (C.1.4), a time step τ = T/⌈Td3/2Nx⌉ is chosen.

6.2. 1D Numerical examples.

Numerical experiments provide insight into the identifiability of the inverse problems cor-

responding to different experimental designs.

6.2.1. Well-Posedness of Design (1D).

Theorem 5.12 analytically proves local identifiability of the inverse problem related to

Design (1D) and local strong convexity of the cost function. In this section, numerical

evidence is presented that even suggests global strong convexity and identifiability. This

in particular shows that the reconstruction of K ∈ Apwc
K from velocity averaged data is

possible, if a suitable experimental design was chosen, i.e. structural identifiability holds

in the parametric setting. Uniform strong convexity even indicates possible stability of the

parameter reconstruction: in the sense of practical identifiability with noise, the confidence

intervals related to the parameter reconstruction are finite. A more detailed investigation,

including noise in the data, is left for future investigation.

The geometry of Design (1D) in the first interval I0 is summarized in the two panels

of Figure 6.1. The experiments in the remaining intervals are constructed symmetrically.

The left panel shows the propagation of the bacteria density
∫
V f dv in time from tm−ε to

tm + ε in comparison to the stationary value of µ±1 in this time interval. The ballistic part

is the most dominant, and it decays over time due to tumbling. In order to observe this

effect, R = 2 was chosen in this computation to allow for larger measurement times tm by

(5.17). As the right panel suggests, the ballistic trajectory of the data passes through the

support of the measurement test function and they perfectly overlap at t = tm, indicating

that the ballistic part is measured well in this design.

In what follows, R = 20 is chosen to demonstrate the flexibility of the reconstruction
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Figure 6.1.: Propagation of the bacteria density data
∫
V f dv (blue) and the test functions

µ+0 (red) and µ−0 (green) in the first interval I0 under Design (1D), for R = 2. Left panel:

Function values at times tm − ε and tm + ε. Right panel: space time propagation.

setting to cope with high dimensional (Q = 40) parameters. By the modular construction

of Design (1D), the considered properties are supposed to hold independently of the precise

choice of R.

Marginal Strong Convexity. Local strong convexity of the quadratic cost C(K) with

noise free data around a ground truth parameter K⋆, as suggested by Theorem 5.12,

can be observed in numerical experiments. These experiments not only show positivity

of the minimum eigenvalue, but even exhibit a good conditioning of the Gauss-Newton

Hessian, with an inverse condition number c−1 = λmin(HKC(K⋆)
λmax(HKC(K⋆)

≈ 0.791 close to 1, which

guarantees a weak eigenvalue decay of the sensitivity matrix J and thus well posedness of

the linearized inverse problem.

Moreover, marginal (global) strong convexity of the cost function is observed: Figure 6.2

displays the marginal cost functions that fix all but two parameters of K to the ground

truth values of K⋆ and vary only the two remaining parameters, i.e. for prescribed r, s ∈
{0, ..., R− 1} and i, j ∈ {±1} one considers the cost function

C(K̂k1,k2) with K̂i
r = k1, K̂

j
s = k2 and K̂±1

q = K±1
⋆,q for the remaining values. (6.3)

Global strong convex throughout the full parameter domain k1, k2 ∈ [0, 1], suggests

marginal convexity.

To obtain further insight into the shape of the full 2R = 40-dimensional cost landscape,

its values C(Kλ) on lines

{Kλ = K⋆ + λω, λ ∈ R} (6.4)

through K⋆ in a randomly chosen direction ω ∈ S39 are plotted in the subsequent Figure 6.3

against the distance λ of Kλ to K⋆. Because only those line segments inside the parameter

domain [0, 1]40 are considered, the lines start and end at different λ values by randomness

of the direction ω. It can be observed that the cost function is almost uniformly convex in

each direction, starting at K⋆. This is also indicated (locally) by the very weak eigenvalue

decay of the Hessian HKC(K⋆), expressed in the high inverse condition number of 0.791.
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6.2. 1D Numerical examples.

Figure 6.2.: Strong convexity of the marginal cost function landscapes under Design (1D).
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Figure 6.3.: Values of C on lines through K⋆ in 100 randomly chosen directions under

Design (1D).

Moreover, marginal strong convexity can be observed as strict positivity in the minimum

eigenvalue landscape of the Hessian. To speed up the computation, a smaller setting with

R = 2 is considered and the ground truth parameter is set to K±1
⋆,r = 0.5 for all r for an

simpler visualization. In this setting, the minimal eigenvalue λmin(HKC(K̂)) is plotted

against two varying parameters, which are denoted on the axes in Figure 6.4. If the

remaining parameters of K are set to the values of the ground truth (left panel), then

107



6. Numerical experiments

this describes the minimal eigenvalue landscape of the marginal cost as in (6.3). In the

right panel, these remaining parameters are chosen at random. Positivity even in this case

strongly suggests global strong convexity, as to be further investigated in Section 6.2.4.

Figure 6.4.: Minimum eigenvalues of the Hessian HKC(K̂) for Design (1D) at varying

values of K̂, where all entries apart from those on the x and y axis are fixed to either the

ground truth, whose value is marked by the green dot (left panel), or randomly selected

values (right panel).

Parameter Reconstruction. Iterative reconstructions K(n) by the simple gradient de-

scent scheme (6.1) attain exponential convergence towards the ground truth parameter

K⋆, independent of the randomly chosen the initial value K(0), as predicted by Proposi-

tion 2.3. Figure 6.5 shows this convergence for all 40 entries K±1
r of K when R = 20 in

linear and logarithmic scale, as well as the cost function.
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Figure 6.5.: Convergence of the values K
(n),±1
r of K(n) (solid lines) to those K±1

⋆,r of K⋆ in

linear (left panel) and logarithmic scale (right panel) under Design (1D). The red dashed

line depicts the cost of the chosen parameter K(n) in the n-th iteration.
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6.2. 1D Numerical examples.

6.2.2. Ill-conditioning for Close Experimental Setups

In this section we study the behaviour of the reconstruction as two measurement test

functions that share the same initial data become asymptotically close. The following

family of designs is constructed, in dependence on a closeness parameter s ∈ [−1, 1]:

Design (Closes). The designs coincide with Design (1D), except for the first measure-

ment function: µ−0 is exchanged for µs0(t, x) = ψ(t − tm)ψ(x + tm · s − a1/2) for a fixed

value s ∈ [−1, 1].

For s = −1, this yields the original Design (1D), whereas µs0 → µ+0 in L1([0, T ] × R)

as s → 1. Figure 6.6 shows Design (Closes) for two values of s ∈ {0.9, 0.97}. The

measurement test function µ0.90 is close to µ+0 but still distinguishable, whereas µ0.970 almost

overlaps µ+0 . The experiments in the remaining intervals are constructed in analogy to the

first interval of Design (1D), as displayed in Figure 6.1.
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Figure 6.6.: Propagation of the ballistic parts of the bacteria density
∫
V f dv (blue) and

the test functions µ+0 (red) and µs0 (green) in the first interval I0 from tm−ε to tm +ε (left

panel) and in the full space-time domain (right panel) for Design (Closes) with s = 0.9

(upper row) and s = 0.97 (lower row).

Loss of Convexity. Theorem 5.6 suggests that the rank structure of the Hessian de-

teriorates as µs0 → µ+0 . This is observed numerically in Figure 6.7 by plotting the mini-

mum eigenvalue λmin(HKC(K⋆)) as well as the inverse condition number c−1(HKC(K⋆)) =
λmin(HKC(K⋆))
λmax(HKC(K⋆))

of the Hessian of the cost function at the ground truth parameter K⋆ against

s.
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Figure 6.7.: Deterioration of the minimum eigenvalue λmin(HKC(K⋆)) of the Hessian of the

cost function at ground truth (blue), and of its inverse condition number c−1(HKC(K⋆)) =
λmin(HKC(K⋆))
λmax(HKC(K⋆))

(orange, dotted), as s→ 0 in Design (Closes).

This is a consequence of a loss in sensitivity of the cost function w.r.t. parameter K−
0 .

Figure 6.6 shows that the negative velocity part of fϕ0 in Design (1D), previously measured

by µ−0 , is not captured well by any sensor. This part was mostly affected by the decay due

to tumbling with K−
0 . The lack of sensitivity expresses through flatness of the marginal

cost functions in Figure 6.8, for fixed s = 0.9, as well as the small minimal eigenvalue of

λmin(HKC(K⋆)) ≈ 0.00036 and inverse conditioning c−1 ≈ 0.0033.

Figure 6.8.: Flat marginal cost functions w.r.t. change in K−
0 and one further parameter

under Design (1D) with s = 0.9.

The sensitivity w.r.t. other parameters of K is not affected, as Figure 6.9 shows. This

makes sense, given that the relevant sensors were not moved by Design (Closes) in com-

parison to Design (1D).
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6.2. 1D Numerical examples.

Figure 6.9.: Examples of marginal cost functions that do not vary the parameter K−
0 under

Design (Closes) with s = 0.9.

The existence of very flat directions in the cost landscape can also be observed in a plot

of C(Kλ) along random lines through K⋆, as defined in (6.4), in Figure 6.10.
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Figure 6.10.: Values of C on lines through K⋆ in 100 randomly chosen directions, under

Design (Closes) with s = 0.9.

Failure in Parameter Reconstruction. The decay of convexity and flatness of the cost

in certain directions provokes a significant slow down in the parameter convergence of

gradient based minimization methods, such as the thus applied gradient descend scheme

(6.1), as can be observed in Figure 6.11. The slow convergence expresses most prominently

in the parameter convergence of K−1
0 , the direction in which the cost function is flat. For

s = −1, the design equals Design (1D) and reconstructions converge very fast, and after

only 5 iteration steps a parameter accuracy of 10−3 is reached, compare Figure 6.5. For

s = 0.9, instead, Figure 6.12 shows that convergence is so slow that after 1000 iteration

steps of the gradient descend scheme, though reaching accuracy 10−3, the parameter error

is still larger compared to the 5-step accuracy with Design (1D). This behaviour is even

worse for s = 0.97, where the value of K
(n),−1
0 is improved only very mildly towards K−1

⋆,0
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6. Numerical experiments

within the first 1000 iterations, and convergence is not clear. In the underdetermined

case s = 1 where µs0 = µ+0 and one measurement is redundant, the parameter K−1
0 is not

updated by the gradient scheme after step 4 and remains far away from the true value.

The reconstruction of other parameters K±1
r in intervals Ir ̸= I0 is not affected by the

deterioration, as they do not rely on the measurements inside I0 by Proposition 5.10.

Neither is the minimization of the cost, which explicitly expresses that the measurement

is not sensitive w.r.t. K−1
0 .
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Figure 6.11.: Comparison of the convergence behaviour of reconstruction of the parameters

K−1
r (solid lines) and K+1

r (dashed lines) with r ∈ {0, 1, 8} and the cost under Design

(Closes) with different values s ∈ {−1, 0.9, 0.97, 1}, in the first 50 gradient descend steps.
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Figure 6.12.: Convergence of reconstruction of K0 under Design (Closes) with different

values s ∈ {−1, 0.9, 0.97, 1}, for 1000 gradient descend steps.
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6.2. 1D Numerical examples.

6.2.3. A Locally but Non-Globally Convex Design

Proposition 5.4 ensures local convexity, if sensitivity based identifiability holds. The result

cannot be improved to imply global convexity, as the following design demonstrates.

To study global convexity of the cost function, a simplified setting with R = 2 different

values of K in space is adopted, which reduces the dimension of K to 4. This facilitates the

Hessian computation and allows plotting the minimum Hessian eigenvalue λmin(HKC(K))

at a large variety of K values. Furthermore, the ground truth is placed in the middle of

the domain by setting K±1
⋆,r = 0.5 for better observability in the plots.

Even in this reduced setting, a design can be constructed that leads to local convexity of

the cost function around the ground truth, but that is not globally convex. Its geometry

is depicted in Figure 6.13

Design (Convloc). With the same choice of tm, ε, T and ψx, ψt as in the previous

designs, choose

� one velocity independent initial datum ϕ(x, v) = ψx(x − x0) + ψx(x − x1) centered

around the positions x0 = 0.5 − T
3 , x1 = 0.5 + T

3 , and

� measurement test functions µ±r (t, x) = 1tm+[−ε,ε](t)ψx(x − (xr ± (tm − T
6 ))), for

r = 0, 1.

Note that the initial data is not located in the middle of intervals I0, I1, but shifted

towards their joint boundary such that the data starting in one interval will cross the

border at time T
3 . The ’inner’ measurement test functions µ+0 and µ−1 are located in the

respective other interval and do not capture the ballistic parts of the data well.
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Figure 6.13.: Geometry of Design (Convloc) and propagation of the ballistic part of
∫
V f dv

from tm − ε to tm + ε (upper panel), and in full space time (lower panel).

The cost function related to Design (Convloc) is not globally convex, as can be observed

in Figure 6.14, where the eigenvalues of the cost function Hessian become negative at

certain marginal parameter values K̂, as defined in (6.3). At the ground truth param-

eter (green dot), positivity of the minimum eigenvalue suggests local identifiability and
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6. Numerical experiments

convexity of the cost, and as predicted by Proposition 5.4, one can find a neighbourhood

where this remains true.

Figure 6.14.: Minimum eigenvalues of the Hessian HKC(K̂) for Design (Convloc) at varying

values of K̂, where all entries apart from those on the x and y axis are fixed to the ground

truth. The ground truth parameter is marked by the green dot.

It should be mentioned, however, that the thus observed non convexity was so mild that

it could not be observed with bare eye in marginal cost function plots in Figure 6.15. In

all numerical examples, it belonged to a saddle point and numerical reconstructions still

converged, even if initial values are taken in the corresponding region of non convexity.

This is not surprising, given the well-known fact that first order methods, such as gradient

descend, tend to avoid saddle points almost surely [LPP+19]. An example is shown in

Figure 6.16, where the peaks in the logarithmic parameter convergence plot in the right

panel in Figure 6.16 originate from changes in the sign of the parameter difference.

It should be mentioned that although Design (Convloc) is convex by positivity of its

minimum eigenvalue of order 10−1, the quality of convexity is very low, as the minimum

eigenvalue, as well as the inverse conditioning of order 10−2 are very small. Precise values

can be found in Table 6.1. Especially in numerical contexts, where positivity of the Hessian

is exchanged for small positive lower bound, this design might not be considered convex

anymore.

Figure 6.15.: Marginal cost function landscapes under Design (Convloc).
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Figure 6.16.: Convergence of the values K
(n),±
r of K(n) (solid lines) to those K±1

⋆,r of K⋆

in linear (left panel) and logarithmic scale (right panel) under Design (Convloc). The

red dashed line depicts the cost of the chosen parameter K(n) in the n-th iteration. The

number of iterations was increased for the logarithmic plot.

6.2.4. Comparison of the Convexity of considered Designs.

To compare the convexity of the cost functions corresponding to the thus considered

Designs (1D), (Closes) and (Convloc), the setting of the previous subsection is adopted,

where R = 2 and K±1
⋆,r = 0.5 for all r = 1, 2 is fixed.

Local Strong Convexity. Proposition 5.4 suggests to study local strong convexity of the

cost function around the ground truth by means of the eigenvalue structure of the Gauss-

Newton Hessian HKC(K⋆), in particular by consideration of its minimal eigenvalue as a

theoretical indicator of convexity. Moreover, the (inverse) conditioning c−1 = λminHKC(K⋆)
λmaxHKC(K⋆)

gives insight into the rate at which the experiment compresses information on the parame-

ter and thus well-posedness of the inverse problem, and affects the convergence of numerical

minimization schemes, as described in Proposition 2.3.

Comparing the cost function plots Figures 6.2, 6.8 and 6.15, it is obvious that Design

(1D) attains the best local strong convexity, underlined by the largest minimum Hessian

eigenvalue and a conditioning close to 1. Design (Convloc) and Design (Closes) both adhere

very flat directions, as indicated by very small inverse condition numbers and minimal

eigenvalues in Table 6.1, which anticipates worse identifiability properties, especially with

noisy data which might easily perturb the flat cost landscape.

Global Convexity. To study global convexity of the cost functions corresponding to the

three considered designs, the minimal eigenvalues and inverse conditionings of their Hes-

sians are plotted for 1000 randomly sampled parameter values in the 4 dimensional pa-

rameter space Apwc
K in Figure 6.17.

Strong positivity of the minimal eigenvalues and a conditioning close to 1 in all consid-
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Design Design (1D) Design (Closes) with s = 0.9 Design (Convloc)

λmin(HKC(K⋆)) 69.093 0.30028 0.13165

c−1 0.79703 0.0029271 0.0098018

Table 6.1.: Local convexity of the cost function related to different designs, expressed

through the minimal Gauss-Newton Hessian eigenvalue and its inverse conditioning.

ered points suggests that Design (1D) in fact yields a globally strongly convex quadratic

cost function. The conditioning for Design (Closes) with s = 0.9 is much smaller. By

positivity of the minimal eigenvalue, minimization algorithms will still converge, but at

very much slower rates. This could also be observed in Figure 6.12. Design (Convloc),

instead, also attains negative eigenvalues and thus non-convexity of the cost function in

certain regions of the K domain, as observed already in Figure 6.14. It can be noticed

that the eigenvalues are nicely aligned on one line, which indicates that the maximum

eigenvalue of Design (Convloc) does not vary (much) throughout the parameter space.
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Figure 6.17.: Minimum eigenvalue and inverse conditioning of the cost function Hessian

corresponding to Design (1D), Design (Closes) with s = 0.9 and Design (Convloc) at 1000

randomly sampled values of K in the parameter space.

6.3. Extension to 2D

The effects of close measurements and the local nature of the well-posedness result have

been extensively studied in the 1D case, such that this section is restricted to the demon-

stration of well-posedness of Design (2D).

The 2D setting comes with increased computational complexity in connection with the

higher dimensional x and v space, and the following computational setting shall considered:

a Nv = 4 velocity model is considered under R = 2, i.e. the spatial domain is divided

into R2 = 4 intervals in which the tumbling kernel is spatially constant. Note that this

setting already amounts in a R2Nv(Nv − 1) = 48-dimensional parameter K. The spatial
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discretization is reduced to 1
Nx

= 1
200R , to speed up the computations. As before, it is

expected that the numerical results of this section generalize to finer discretizations by

the modular construction of Design (2D).

The geometry of Design (2D) is summarized in Figure 6.18. In the left panel, the full

data
∫
V f

ϕ0
r dv is shown for all intervals Ar simultaneously. The ballistic part dominates

and the first order tumbling part
∫
V f1 dv becomes only visible once the ballistic part is

cut out in the right panel. Three rays correspond to the three directions of tumbling in

the Nv = 4 velocity model. The corresponding densities f1 are measured by test functions

that centre around red dots, marking the scattered locations ar+1/2 + tm
2 v0 + tm

2 vj .
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Figure 6.18.: Distribution of the full data (left panel), and the data where the ballistic

part is cut out (right panel) for ϕ0r under Design (2D) with R = 2 and under simultaneous

experimentation in the 4 spatial domains of K. The red dots mark the scattered locations

ar+1/2 + tm
2 v0 + tm

2 vj at which the measurements are taken.

Convexity of the Cost Landscape. Marginal cost landscapes can be defined in a similar

manner as in (6.3) by fixing all but two parameters of K to the ground truth. Their

strong convexity all over the parameter domain in Figure 6.19 again suggests marginal

strong convexity the the cost function associated to Design (2D).

Figure 6.19.: Three marginal cost landscapes under Design (2D).

Similarly, the marginal strong convexity can be observed by plotting the value of C(Kλ)
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on lines (Kλ)λ through the true parameter, as in (6.4), in Figure 6.20.
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Figure 6.20.: Value of C on lines through K⋆ in 30 randomly chosen directions under Design

(2D).

Parameter Reconstruction. As in the 1D case, a cost function minimization succeeds

to reconstruct the true parameter in very few steps, with exponential convergence. The

convergence of the single parameters is displayed in Figure 6.21 in linear and logarithmic

scale. As in Figure 6.16, the peaks in the logarithmic plot originate from changes in the

sign of the parameter difference during convergence.
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Figure 6.21.: Convergence of the values K
(n),j,i
r to those K

(n),j,i
⋆,r of K⋆ in linear (left panel)

and logarithmic scale (right panel) under Design (2D). The red dashed line depicts the

cost of the chosen parameter K(n) in the n-th iteration.
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7
Conclusion of Part I

In this part, we laid out the approach to derive an experimental design from a theoretical

proof on a concrete example, the inverse problem of recovering the kinetic chemotaxis

tumbling kernel from macroscopic data which has not been considered in literature before,

underpinned by numerical examples.

Non-Parametric Structural Identifiability. After introducing the kinetic forward model

and the inverse problem under investigation, structural identifiability of the non-parametric

kernel K ∈ Acont
K from the corresponding input-to-output map is established, where, for

the first time, unique identifiability of the kinetic kernel from macroscopic data could be

shown without further simplifications on K, owed to the tight control over the experimen-

tal setup. Based on the singular decomposition framework, a rigorous, constructive proof

could be given which relied on the detailed construction of a sequence of experimental se-

tups with increasing singularity in the initial data and measurement test function and a si-

multaneously vanishing measurement time, under a specifically designed geometry. These

setups triggered microscopic information on K in the measurement, and allowed reading

off the value of K at one design-determining evaluation point (xtumb, vout, vin) ∈ Rd ×W

from the data.

Finite Data Parametric Setting. Because it is not feasible, neither experimentally nor

computationally, to run a sequence of vanishing time singular input data experiments for

each evaluation point of K, the next project studied the simultaneous reduction of the

data dimension and the dimension of the admissible set to a finite data parametric setting.

A delicate balancing between the loss of information on the parameter in the data and

the additional injection of a-priori knowledge through the admissible set is required to

sustain identifiability over this process, and we laid out how the theoretical proof guided

our choices: the pointwise reconstruction suggested adopting a locally constant form of

K which allowed relaxing the singularity and short time requirements for the designs.

This discretization form of K is more general than frequently encountered physical insight

based parametric forms and directly connects the infinite data non-parametric inverse

problem with its finite dimensional parametric counterpart. Similar techniques as in the
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non-parametric identifiability proof allowed us to analytically demonstrate sensitivity of

the found design w.r.t. the parametric K in dimension d = 1, entailing local strong

convexity of the quadratic cost function and thus good numerical reconstruction results.

This was contrasted by studying the deterioration of the inversion setting under a decay

of data diversity analytically and numerically, demonstrating the need for well chosen

experimental designs.

Comments and Further Directions. The presented application of the ”relaxation of the-

ory” approach to experimental design benefitted greatly from the constructive nature of

the theoretical proof based on the explicit construction of experimental designs. It em-

phasized the duality between the discretization of the admissible set and the experimental

design, which should be constructed such that the information in its data compliments

the remaining degrees of freedom in the parameter.

While an analytical proof of this sensitivity of the proposed relaxation based Design

(2D) w.r.t. the parameters in Afin
K is remains open for higher spatial dimensions such

as d = 2, its similarities to Design (1D), together with numerical experiments, make us

confident that such a proof can be established as an extension of the 1D proof under mild

additional efforts.

The shown analysis and numerics were presented in a noise free setting, which allowed

us to isolate the influence of the experimental design on the compression of the infor-

mation on K, and its relation to the admissible set. However, practical inverse problem

typically suffer from data noise which can distort the cost landscapes and challenge pa-

rameter reconstruction. This entails the investigation of stability of the inverse problem.

On a theoretical side, it amounts in a characterization of the admissibly type of noise

in the data, and a quantification of its amplification by the inverse problem through

suitable norms, which can also be approached by the singular decomposition technique

[SU03, BJ08], assuming again access to the infinite dimensional input-to-output map as

data. This can be complemented by the numerical application of practical identifiability

techniques [SM23, LDM22] to study the influence of noise on the reconstruction with a

fixed experimental design, as briefly discussed in Section 2.4.3. Investigation of the rela-

tion of infinite dimensional designs and their finite counterparts in terms of stability could

lead to further insight into the behaviour of well-posedness under the transition to the

finite dimensional problem.

In contrast to the presented approach to experimental design, the Bayesian optimal ex-

perimental design framework [APSG16] automatically embeds data noise by constructing

designs that minimize the uncertainty in the parameter reconstruction under noisy data.

Moreover, noisy data may require more advanced inversion techniques to mitigate

computational artifacts. The flexibility of the inversion framework, as discussed in Sec-

tion 6.1.3, supports such adaptations.

Another interesting question when dealing with inverse problems related to kinetic for-

ward models refers to their multiscale behaviour. As described in Section 3.1.3, the ki-

netic forward model (Ch) is linked to other types of descriptions of the chemotaxis phe-

nomenon, for instance the PKS model on the macroscopic scale through a scaling limit
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[CMPS04, EHPS24]. It has been shown in [HKLT21] that this limit translates to the

Bayesian reconstruction of the kinetic tumbling kernel K, however, as shown for the sta-

tionary radiative transport equation in [CLW18b, NLS20, LNW22], the limit might still be

ill-posed, and a thorough investigation of the limiting problem remains open. Moreover,

the multiscale limit is expected to also affect experimental designs, which were clearly

based on the finite speed of propagation and rare tumbling so far, both of which is no

longer true in the diffusion limit. Especially if the true scaling is unknown, this raises the

question for asymptotically sensitive experimental designs.

Having chosen the experimentally easier accessible macroscopic data for the reconstruc-

tion of the chemotaxis tumbling kernel, we hope that eventually our work lays the foun-

dation of reliable estimation of the kinetic dynamics from real data. The insights into

experimental design and its interplay with a-priori assumptions, together with the de-

velopment of a basic reconstruction algorithm to produce the numerical results, provide

a first step in this direction. Nonetheless, it is still a long route to apply the inversion

strategy to real experimental data: the realizability of the proposed experimental design

in the lab setting would have to be checked and potentially adjusted, and the robustness

of the inversion algorithm w.r.t. measurement noise should be investigated and possibly

improved through regularization techniques. These steps require detailed insight into the

practical procedures, and call for a close collaboration between mathematicians and prac-

titioners. Ultimately, reconstructing the parameter under different factors of influence

might lead to biological insight into first principles on how bacteria react to these factors

on a quantitative level.
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8
Experimental Design through Sampling

A typical approach to solve inverse problems is to minimize the quadratic deviation

CD(p) = ∥FD(p) − y∥22

of the synthetic measurements Fs(p) from the experimentally observed data ys for all

experimental setups s in the design D, in which case local strong convexity of this cost

function around the ground truth parameter is a particularly desirable property, as de-

scribed in Section 2.2.

Structural identifiability, i.e. identifiability under access to the full input-to-output map,

often implies this local strong convexity - or equivalently sensitivity based identifiability ac-

cording to Proposition 2.11 - under access to a large, possibly infinite number of noise-free

data {ys}s∈Dfull , generated by a large experimental design Dfull ∈ P(D). If the parameter

to be reconstruction only attains Q << |Dfull| degrees of freedom, it seems reasonable that

such a large number of experiments might not be necessary for reconstruction, as suggested

for instance by Proposition 2.13, nor may it be feasible, neither experimentally nor com-

putationally. Selecting a small finite number L ≥ Q of informative experimental setups

s1, ..., sL such that the inverse problem corresponding to the finite design DL = {s1, ..., sL}
is still locally cost function identifiable, is thus a core challenge when designing real world

experiments, that is classically addressed by optimal experimental design techniques, as

introduced in Section 2.5.

In this chapter, we relax the optimality condition and our goal is to propose a design

mechanism in the realm of sensitivity based methods, that yields a sufficient experimental

design in the sense that it ensures local strong convexity of the quadratic cost function.

Through regarding the design process as a down-sampling task to select DL ⊂ Dfull,

the main question is how to choose the sampling distribution in order to preserve cost

function convexity under a small number of experimental setups L. By translating local

strong convexity into positivity of the Gauss Newton Hessian HpCDfull(p⋆) = JTJ of the

quadratic cost function by means of Proposition 2.11, we find the answer to this question

in the seemingly unrelated area of Randomized Numerical Linear Algebra (RNLA), that

was originally developed to analyse large data that exceed RAM capabilities and make big

data applications feasible [Mah16, MT20, W+14, HB21]. A matrix sketching algorithm
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[Mah16, MT20] leverages importance down-sampling of rows of J , encoding in our case

the experimental setups s ∈ Dfull, to approximate the matrix-matrix product JTJ . Its

quantitative guarantees on the approximation quality translate to identifiability guarantees

under high probability.

Practical application then requires invoking a sampling algorithm, and we propose to

adopt algorithms from Bayesian posterior sampling, given that the same difficulties as

described in Section 2.3.1 arise in the design sampling context. In particular, ensemble

based methods are deployed for their efficiency in a numerical example for the sensor

placement problem related to the Schrödinger potential reconstruction, which illustrates

the capability of our method to greatly improve convexity of the quadratic cost landscape.

In contrast to the very model specific approach and techniques that were exploited in

the previous Part I to construct an identifiability guaranteeing experimental design for the

kinetic chemotaxis kernel reconstruction problem, this approach uses the model as a black

box and requires no deep insight, making it applicable to a large class of inverse problems.

This project emerged from a collaboration with Christian Klingenberg and Qin Li,

summarized in the preprint [HKL24], which has been submitted to peer review.

Remark 8.1 (Difference to [HKL24]). The method presented in this work extends the re-

sults from [HKL24] to settings where the full data experimental design Dfull describes

an infinite set of experimental setups, possibly even a subset of an infinite dimensional

function space, as frequently encountered as the domain of the input-to-output map. In

this sense, the starting point of this method is put even closer to the structural identifia-

bility setting. On a technical side, we introduce a (probability) measure on Dfull in order

to reasonably define the quadratic cost function. The above mentioned adaptations then

require an extension of the randomized matrix multiplication algorithm to quasimatrices.

Moreover, the theoretical guarantee on sensitivity under a sufficiently large sample size

is slightly extended to additionally guarantee a conditioning close to the full data set-

ting. Numerically, the example for the Schrödinger potential reconstruction is extended

to a sensor placement and source term design problem to demonstrate the capabilities

of the method to sample also forcing data and work in contexts where the full sampling

distribution as well as its normalization constant are not available.

Outline. The subsequent quick review of related literature is followed by the extension

of the matrix sketching algorithm from RNLA to quasimatrices in Section 8.1. This serves

as a prerequisite for setting up the general design sampling program in Section 8.2, that

is initiated by describing the starting point of a sensitivity based identifiable inverse prob-

lem corresponding to a large, noise-free data set in Section 8.2.1, followed by the idea

to consider experimental design as a sampling task, and a translation of the importance

sampling strategy and its theoretical guarantees to the design sampling context in Sec-

tion 8.2.3. The general program is concluded by practical considerations around the choice

of sampling algorithms and the addition of a greedy mechanism in Sections 8.2.4 and 8.2.5.

The potential of the developed program to improve cost function convexity is illustrated on

the sensor placement problem for the inverse Schrödinger potential reconstruction prob-

lem in Section 8.3, where importance sampling distributions are studied in Section 8.3.1,
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before the improvements in cost function convexity are demonstrated in Section 8.3.2. An

extension of the setting to the sensor placement and forcing data design problem verifies

applicability of the method when the full sampling landscape is not available. The chapter

is concluded in Section 8.4.

Novelty of this Work. The main contribution of this work lies in the change of per-

spectives: instead of searching the optimal design, we search for a sufficient design, that

describes the inverse problem comparably as well as the full data setting. This allows

us to relax the methodology from optimization to sampling. The choice of an efficient

sampling strategy is key to render even a low number of experimental setups and, hence,

low experimental cost, sufficient and we propose a model-informed importance sampling

strategy that optimally preserves the convexity properties of the full data cost in the

down-sampled problem. Sampling from these non-standard distributions then requires

more sophisticated samplers, and we propose a pipeline to apply our strategy in practice.

Related Literature. After highlighting similarities to standard optimal experimental de-

sign techniques, we collect literature connecting experimental design with randomized

linear algebra approaches.

Optimal Experimental Design. Our approach is rather ’qualitative’ in comparison the

’quantitative’ optimal experimental design methods in literature that determine a design

as the minimizer of certain optimality criteria that measure uncertainty in the reconstruc-

tion by means of the conditioning of the Fisher information matrix or Bayesian posterior

variance matrix [Kie59, Mit00, BSE+09, PKG+18, AC22], as described in Chapter 2. For

a review, the reader is referred to [HJM24, Ale21].

By (2.19) the Hessian HpCDfull(p⋆) = JTJ coincides (up to a constant) with the Fisher

information matrix FIM for the linearized inverse problem under an additive i.i.d. Gaus-

sian noise model, and therefore our objective is to preserve - instead of optimize - its

conditioning through sampling, as it encodes the convexity of the cost C.

Moreover, the implicit linearization of the inverse problem through sensitivity methods

is also in line with the approach to study the linearized problem for design questions, or

equivalently a Laplace approximation of the Bayesian posterior around the maximum a

posteriori point [BTGMS13, LSTW13, LMT15, APSG16], yielding locally optimal designs,

so to circumvent the challenges of optimal experimental design for non-linear problems.

Random Matrix Sketching and Inverse Problem Design. The application of random ma-

trix sketching to design tasks in inverse problems is currently at its fancy. In compressed

sensing literature, the usefulness of sparse, model-independent random measurement ma-

trices to recover a low rank signal in a generic basis has been known for a long time, as

summarized in [MBKB18].

Model dependent sampling strategies were used in [BTLZNn22] for design selection in

electrical impedance tomography based on sketching the input-to-output map. Model

based information entered the sparse uniform random sketching through part-wise sketch-

ing on the basis of a specific rank structure decomposition, and the strategy was con-

structed in such a way that a subsequent matrix completion step could successfully re-
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construct the input-to-output map, yielding astonishing numerical reconstruction results.

In [OHC24], a sparse random mask for MRI data acquisition was constructed, based on a

data- and model-adapted design parameter. This design significantly improved posterior

images in Bayesian reconstructions, as compared to hand crafted designs.

Moreover, a branch of operator learning research investigates the learning of elliptic

solution operators from random input-solution pairs [BT23, BHT23], based on a random-

ized singular value decomposition, and a hierarchical low rank structure of the solution

operator, as exploited already in [BTLZNn22].

More generally, random matrix sketching finds numerous applications in enhancing the

efficiency of solving linear inverse problems through preconditioning, for instance for wave

form inversion [AAGO21]. In [CLNW20] and [CJ21], the authors highlighted advantages

of choosing a structure of the random sketching matrices that is consistent to the forward

matrix when solving the linear inverse problem or a constrained least squares optimization,

respectively. As the sketching matrices in these examples were non-sparse, no further

implications on the experimental design could be drawn.

Another application of sketching to inverse problems was developed in [JLNS24] in a

setting very similar to this work, where the authors also utilize positive definiteness (and

the conditioning) of the Gauss-Newton Hessian of the quadratic cost in the noise free

setting to study well-behavedness of the inverse problem. Assuming a fixed experimental

design with fewer data than the dimension of the parameter to reconstruct, their starting

point differs significantly from ours, and therefore the goal of their work is to gain insight

into the dimension of a random subspace reduction of the admissible set which yields

a convex cost minimization problem - instead of the experimental design, they sketch

the admissible set. As this reduction can be expressed as a random sketching of the

underdetermined full-admissible-set Gauss-Newton cost Hessian, RNLA methods allow

them to give high probability bounds on the conditioning of the reduced-admissible-set

Gauss-Newton Hessian, and numerical examples validate their approach.

8.1. Prerequisites: Randomized Quasimatrix Multiplication

In this section, an extension of the randomized matrix multiplication algorithm from

randomized linear algebra [Mah16, MT20] to quasimatrices, with possibly an infinite row

dimension, shall be derived. This is necessary to justify our sampling approach in case of

an infinite full data design Dfull.

Quasimatrices. Quasimatrices are linear operators between a finite dimensional vector

space and an infinite dimensional vector space. As such, they generalize tall but skinny ma-

trices. For a given domain D, a probability measure µ on D and a natural number Q, the

(D,µ)×Q quasimatrices J is of the form J = (j1, ..., jQ) ∈ (L2(D;µ))Q with L2(D;µ) func-

tions jl in its columns and possibly an infinite number of ’rows’ Js = (j1(s), ..., jQ(s)) ∈ RQ,

denoting the evaluation of J at a fixed s ∈ D. Many matrix operations can be generalized

to quasimatrices through exchanging the column scalar product by the L2(D;µ) inner
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product. For instance, the quasimatrix product JTJ is defined as

RQ×Q ∋ JTJ =
(
⟨jl, jm⟩L2(D;µ)

)Q
l,m=1

=

∫
D
Js ⊗ Js dµ(s), (8.1)

and the Frobenius norm can be defined via

∥J∥2F =

∫
D
∥Js∥22 dµ(s).

A short introduction to quasi matrices may be found in [TT15, BT23, Ste98].

Generalizing Radomized Matrix Multiplication to Quasimatrices. In what follows, we

extend the derivations in [Mah16, MT20] to approximate the matrix product JTJ for a

tall matrix J through row sampling, to the quasimatrix context. These approaches exploit

the structure of JTJ as an integral over the ’tall’ direction of the quasimatrix on the RHS

of (8.1).

Standard Monte Carlo. A standard approach would be to apply a Monte Carlo method

and draw i.i.d. samples rl of a random variable η according to the distribution µ, and

approximate the matrix product by the uniformly weighted sum

JTJ =

∫
D
Jr ⊗ Jr dµ(r) = Eη∼µ(Jη ⊗ Jη) ≈ 1

L

L∑
l=1

Jrl ⊗ Jrl = ĴT Ĵ , (8.2)

for some L ∈ N, justified by the law of large numbers, where Ĵ denotes the sketched

random matrix whose l-th row is given by Ĵl: = L−1/2Jrl . This method typically requires

a large number of samples for good accuracy.

Importance Sampling. Importance sampling often requires a smaller sample size to

achieve the same accuracy as standard Monte Carlo [MT20]. The basic idea behind this

approach is to transform the sampling measure through introducing a density ρ ∈ L1(D,µ)

with
∫
D ρs dµ(s) = 1, that vanishes in s only if Js = 0, such that

JTJ =

∫
D

(ρ−1
s Js ⊗ Js)ρs dµ(s) = Eζ∼ρµ(ρ−1

ζ Jζ ⊗ Jζ) ≈ 1

L

L∑
l=1

ρ−1
sl
Jsl ⊗ Jsl = J̃T J̃

by the law of large numbers, where the l-th row of sketched random matrix J̃ reads

J̃l: = (ρslL)−1/2Jsl for l = 1, ..., L, and random draws sl ∼ ρµ. (8.3)

This allows more flexibility in sampling, and a clever choice of ρ as the relative size of the

s-th ’row’

ρ̃s :=
∥Js∥22
∥J∥2F

(8.4)

minimizes the expected quadratic deviation E(∥JTJ − J̃T J̃∥2F ) of J̃T J̃ from its mean

E(J̃T J̃) = JTJ , in complete analogy to the finite dimensional case [Mah16, MT20]. Simi-

larly, an application of concentration bounds yields closeness in Frobenius norm with high

probability:
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Theorem 8.2 (Extension of [Mah16, Thm.7]). Let J be a (D;µ) × Q quasimatrix with

finite Frobenius norm ∥J∥F < ∞, and fix a natural number L << |D|, and consider a

probability density ρ on D with
∫
D ρs dµ(s) = 1 such that there exists a positive number

β ∈ (0, 1] for which

ρs ≥ βρ̃s for µ almost all s ∈ D, (8.5)

and let J̃ be constructed as in (8.3). Then J̃T J̃ approximates JTJ with high accuracy,

with high probability: For any failure rate δ ∈ (0, 1),

P

(
∥JTJ − J̃T J̃∥F ≤

1 +
√

8β−1 log(δ−1)√
βL

∥J∥2F

)
≥ 1 − δ.

Note that the optimal sampling density is given by ρ = ρ̃, where β = 1 minimizes the

error sampling error in Frobenius norm. It suggests biasing the sampling towards those

elements s ∈ D for which the evaluation of J in s attains a big norm ∥Js∥22 ∝̃ρ in relative

terms - in a finite dimensional setting this means a big relative row size. Introducing

smaller β allows for more flexibility in the choice of the sampling distribution, at the cost

of accuracy, sample size or occurrence probability. The order
√

log(δ−1)/L of the sampling

error in L could be anticipated from the central limit theorem.

8.2. General Program

In this section we present the sampling strategy at the core of this project. Starting with an

over-sampled setting for which identifiability holds - for instance established in structural

identifiability studies -, experimental design can be regarded a down-sampling task to select

the meaningful designs, and the sampling distribution is derived from a sketching algorithm

for the Gauss-Newton Hessian encoding the cost function convexity. The program is

completed by practical considerations about the choice of sampling algorithms, and the

suggestion to combine the method with a greedy selection mechanism to further improve

cost convexity.

8.2.1. Starting Point

Consider a finite dimensional admissible set A ⊂ RQ for the inverse problem

find p ∈ A s.t. (ys)s∈D = (Fs(p))s∈D (8.6)

associated to an experimental design D. The sensitivity analysis framework, as introduced

in Section 2.4.2, can be extended to potentially infinite experimental designs D, when

defining the cost by means of a fixed probability measure µ on D as

CD,µ(p) =
1

2
∥F (p) − y∥2L2(D,µ) =

1

2

∫
D

(Fs(p) − ys)
2 dµ(s).
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If CD,µ attains sufficient regularity, then, in analogy to the finite design setting, its Hessian

RQ×Q ∋ HpCD,µ(p⋆) = JTJ =

∫
D
Js ⊗ Js dµ(s),

where J is a (D,µ)×Q quasimatrix and Js = ∇pFs ∈ RQ denotes its value at experimental

setup s ∈ D, is informative about local strong convexity of CD,µ, as an obvious extension

of Proposition 2.11 shows. Again, a global characterization of the landscape is hard for

nonlinear inverse problems.

Remark 8.3. The measure µ(s) might for instance indicate the difficulty of preparing the

an experimental setup s, or its likelihood of appearance. For finite designs D, the uniform

measure µ(s) = 1
|D| will be deployed without further specification. A probability measure

is taken for notational convenience, but the theory below still holds true for non-zero finite

measures, when normalization is conducted where necessary.

We pose the following assumptions to further characterize the setting of our inverse

problems (8.6).

Assumption 8.4. Assume that there exists a (possibly infinite) design Dfull, called full

data design, and a probability measure µ on Dfull such that

(A1) the noise free data y = F (p⋆) is generated by an underlying ground truth parameter

p⋆ under design Dfull,

(A2) the single experiment forward maps Fs are C2 in p in a small neighbourhood of p⋆,

with uniformly continuous Hessians HpC{s} for all s ∈ Dfull, and

(A3) the Hessian of the full data cost Cfull(p) := CDfull,µ(p) at the global optimizer is

positive definite, i.e. HpCfull(p⋆) ≻ 0.

Assumption (A1) summarizes the setting that we operate in: to study solely experimen-

tal design according to source (II) of non-identifiability, noise is excluded at this point of

consideration. Moreover, it ensures that the true parameter p⋆ is a global minimum of the

cost function.

As discussed below Proposition 2.11, regularity assumptions on F and continuity of

the Hessian in (A2) are rather mild and often satisfied, in particular for PDE inverse

problems, where forward well-posedness often includes regularity of the solution w.r.t. the

parameters, which then translates to regularity of the quadratic cost function and thus its

Hessian, as shown in Lemmas 3.4 and 5.3.

Positive definiteness of the Hessian at the ground truth in assumption (A3) ensures

sensitivity based identifiability, if the full data under Dfull is accessed. This implies local

structural identifiability and excludes the worst case scenario, where any data is uninforma-

tive about the parameter. Vice versa, if structural identifiability holds, i.e. the parameter

is identifiable from the input-to-output map, then chances are good that a probability

measure µ on the (possibly infinite dimensional) domain of the input-to-output map, the

set D of all considered experimental designs, can be constructed such that (A3) holds. As

we do not want to dive into the technicalities of infinite dimensional probability measures,

we keep this discussion on an intuitive level.
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Together with (A2), a straightforward extension of Proposition 2.11 for possibly infi-

nite designs in the realm of quasimatrices then ensures local strong convexity of the cost

function Cfull at p⋆.

8.2.2. Experimental Design as Sampling

In this setting, the question of experimental design can be approached through search-

ing a small subset of experimental setups DL ⊂ Dfull of finite size L ≥ Q, according

to Proposition 2.13, that still generates a sensitivity based identifiable inverse problem.

Experimental design thus becomes a down-sampling problem, with the goal to preserve

positivity (or alternatively the conditioning) of Gauss Newton Hessian of the quadratic

cost

HpCfull(p⋆) =

∫
Dfull

Js ⊗ Js dµ(s) ≻ 0.

The main challenge remains to define a sampling distribution that achieves preservation

under a small number L of experimental setups.

Remark 8.5. Our approach is can be regarded as a generalized preconditioning strategy:

In case of a finite Dfull, we are searching a sparse preconditioning matrix M ∈ RL×|Dfull|,

with only one non-zero entry in each row, for which the preconditioned cost ∥M(Jp−y)∥22
attains a similar local convexity structure as the unconditioned problem. This shape

of M extracts single rows of J and allows linking the preconditioner to experimental

setup selection. Statistical methods allow us to build M efficiently and to generalize to

quasimatrices.

8.2.3. Importance Sampling and Matrix Sketching

The quasimatrix sketching approach from Section 8.1 suggests to sample sl from a dis-

tribution ρµ where ρ approximates the relative size importance density ρ̃ in (8.4), so to

obtain the approximation

HpCfull(p⋆) =

∫
Dfull

(ρ−1
s Js ⊗ Js)ρs dµ(s) ≈ 1

L

L∑
l=1

ρ−1
sl
Jsl ⊗ Jsl = HpC̃(p⋆).

Note that the sample sum on the RHS can be regarded as the Gauss-Newton Hessian of

the weighted quadratic cost

C̃(p) =
1

2L

L∑
l=1

(ρsl)
−1(Fsl(p) − ysl)

2 associated to design DL = {sl}Ll=1 with sl ∼ ρµ.

(8.7)

Hence, if HpC̃(p⋆) is sufficiently close to HpCfull(p⋆) ≻ 0, then Lipschitz continuity of

eigenvalues w.r.t. matrix perturbation [HJ85] ensures positivity of HpC̃(p⋆) ≻ 0, i.e. local

strong convexity of cost function C̃ and sensitivity based identifiability of the respective

inverse problem.
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Theoretical guarantees on the matrix approximation quality with high probability under

a sufficiently high number L thus translate to local identifiability guarantees for experi-

mental setups in our context, as summarized by the following adaptation of Theorem 8.2.

Theorem 8.6. Consider an inverse problem (8.6) that satisfies Assumption 8.4. More-

over, assume that J is bounded in Frobenius norm ∥J∥F < ∞, and consider the cost

function C̃ from (8.7), where DL is sampled from Dfull by i.i.d. draws with a sampling

distribution ρµ on Dfull, whose density ρ satisfies
∫
Dfull ρdµ = 1 and

ρ ≥ βρ̃ = β
∥Js∥22
∥J∥2F

(8.8)

for some β ∈ (0, 1]. Then, if L is sufficiently large, the data under DL is sensitive to

the parameter and C̃ is locally strongly convex at the ground truth parameter p⋆ with high

probability.

To be more precise, denoting by λfullmin, λ
full
max, c

full and λ̃min, λ̃max, c̃ the minimal and max-

imal eigenvalue and condition number of HpCfull(p⋆) and HpC̃(p⋆), respectively, then for

any failure probability δ ∈ (0, 1) and accuracy ε ∈ (0, λfullmin), a choice of

L ≥ ∥J∥4F
(1 +

√
8β log(δ−1))2

βε2

is sufficient to ensure that with probability at least 1 − δ, the cost function C̃ is locally

strongly convex at p⋆ with minimum Hessian eigenvalue λ̃min ≥ λfullmin − ε > 0 and the

condition number of its Hessian is close to the full data setting c̃ ≤ (cfull+ ε
λfull
min

)(1− ε
λfull
min

)−1.

The importance density ρ̃ ∝ ∥Js∥2 = ∥∇pFs(p⋆)∥2 suggests that the sampling distribu-

tion is skewed towards favouring those experimental setups s, that are the most sensitive

w.r.t. the parameter locally in p⋆, in the sense that their gradient is large and thus a

small deviation in the parameter, in a suitable direction, will have a relatively big impact

on the forward map. With this and Assumption (A3) in mind, it makes sense that the

down-sampled inverse problem is also likely to be sensitive to the parameter entries, if a

sufficient number of experiments can be conducted.

Although this theorem provides an explicit bound for this number L, the bound is of

limited use in practical applications, where typically ∥J∥F as well as λfullmin are unknown due

to the high computational effort linked to their computation. Furthermore, the bound on

L is a worst case bound, and we expect that a significantly lower number of samples will

already perform well in many cases. In this sense, the result must rather be understood

as an ’existence’ result. This is good news for applications where the number of sensors is

frequently constrained by the experimental restrictions or economical considerations.

Again, approximating ρ̃ by some ρ ≥ βρ̃ with β < 1 is possible, but might entail a

higher sample size, i.e. a larger number of experiments, or a smaller success probability.

Proof. By an extension of Proposition 2.11, local strong convexity of C̃ follows from

HpC̃(p⋆) ≻ 0. Again, continuity of the eigenvalues w.r.t. matrix perturbation [HJ85]

provides the lower bound

λ̃min ≥ λfullmin − |λfullmin − λ̃min| ≥ λfullmin − ∥HpCfull(p⋆) −HpC̃(p⋆)∥F .
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8. Experimental Design through Sampling

Positivity of the first term on the RHS holds by Assumption (A3) on the positivity of

HpCfull(p⋆) ≻ 0, and it remains to bound the Hessian difference term. By construction of

C̃, Theorem 8.2 can be applied and it shows that with probability at least 1 − δ

∥HpCfull(p⋆) −HpC̃(p⋆)∥F = ∥JTJ − J̃T J̃∥F ≤
1 +

√
8β−1 log(δ−1)√

βL
∥J∥2F .

The bound for L then follows from bounding the above by ε so to achieve λ̃min ≥ λfullmin−ε >
0, and the bound for the condition number c(HpC̃) follows by analogous estimations for

the maximal eigenvalue λ̃max.

Note that another viable way, as suggested by the Monte Carlo method, is to sim-

ply draw i.i.d. random samples rl ∈ Dfull from the distribution µ, and approximate

the Hessian through (8.2). This approach leads to a quadratic cost function CDL
(p) =

1
L

∑L
l=1(Frl(p) − yrl)

2. However, the method typically requires a large number of samples

for similar accuracy of the Hessian approximation under the same probability, and hence

to ensure local identifiability. Keeping in mind that experimentation is often expensive,

we base our analysis on importance sampling that often requires a smaller sample to at-

tain the same approximation accuracy, as described in Section 8.1 - at the cost of a more

complex sampling distribution that then requires sophisticated sampling algorithms.

Remark 8.7. So far the cost function did not involve any regularization term R(p). A

regularized cost function of the form CR = C(p) + R(p) will lead to similar results, with

small modifications, as long as the regularizer R attains sufficient regularity.

8.2.4. Choice of Sampling Algorithms

In the practical context, drawing samples from non standard distributions is challenging.

Hence, we share some practical considerations about the implementation of sampling.

Sampling from an Approximate Distribution. Theorem 8.6 leaves flexibility of using an

approximation ρ to the optimal sampling density ρ̃ with β < 1. In certain situations,

insight into the forward model might allow the derivation of an approximation ρ. If, for

instance, one was able to show that the ∥Js∥2 are uniformly bounded from above by a

moderately large constant, this would suggest a uniform density as a suitable approxima-

tion. As could be observed in our numerical test in Figure 8.6, this can yield satisfactory

results. In general, however, these simple densities might not capture a complex ρ̃ well,

and deriving a good approximation with reasonably large β might be challenging itself

and require model insight, as well as analytical manipulations. Sampling will still require

calling specific sampling algorithms for more complex approximation distributions ρµ,

depending on their specific properties.

Sampling from the Importance Sampling Distribution. The alternative is (to attempt)

direct sampling from the importance sampling distribution µ̃ := ρ̃µ. Because this distri-

bution is typically highly non-standard and very model dependent, as can be observed in
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Figures 8.2 and 8.3, this requires more sophisticated sampling techniques. We propose the

application of samplers developed for Bayesian posterior sampling, as briefly introduced

in Section 2.3.1, for two simple reasons:

� The structure of the sampling distribution µ̃ = ρ̃µ resembles that of a Bayesian

posterior distribution in (2.7), and

� the same challenges as for Bayesian posterior sampling arise: the computation of

the density ρ̃ ∝ ∥Js∥2 = ∥∇pFs(p⋆)∥2 requires solving the forward (and adjoint)

model, and is often expensive - especially for PDE models, which restricts computa-

tional capabilities to a few evaluations, and suggests avoiding the calculation of the

normalization constant ∥J∥F , calling for solvers that satisfy (P1)-(P2).

Both, classical MCMC methods as well as the newly developed ensemble samplers can

be deployed, and the concrete choice of the sampling algorithm is usually affected by

many other factors in addition to their advantages and disadvantages in computational

cost and theoretical convergence guarantees, as described in Section 2.3.1. For instance, a

discrete or function space structure of Dfull would require specific extension of the standard

algorithms that were originally developed on continuous domains, as available for MCMC

methods in [RG22, BS09], for instance. Moreover, external factors such as the desired

balance between computational cost of the experimental design sampling and experimental

cost might provide guidance, whether a cheaper but possibly less accurate computation

with gradient-free, ensemble methods should be favoured over expensive MCMC methods

with well established theoretical high accuracy guarantees.

Although the presentation of the ensemble samplers in Section 2.3.1 allows direct appli-

cation to our design sampling strategy in case of a probability measure µ(s) = q(s) ds

on a continuous Dfull with sufficiently regular Lebesgue density q by setting Φ(s) =

− log(∥Js∥22q(s)), it should be mentioned that the approximation of the gradient by the

difference term may not be very accurate, if Js is not almost linear in s or the sample size

is small. Due to the lack of exhaustive non-asymptotic convergence results, convergence

of the sample distribution to µ̃ can in general not be guaranteed.

However, sampling most accurately from µ̃ in order to obtain high alignment with

the original Gauss-Newton Hessian is not our primary goal, but rather improving the

convexity of the weighted quadratic cost C̃. In that sense, ensemble methods might still

yield satisfactory results in numerical experiments as observed in Section 8.3.2. Intuitively,

these cases can be understood as examples where the approximate sampling distribution ρµ

in Theorem 8.6 is generated through (non optimal) sampling by the ensemble methods,

whose target distribution is still somewhat informed by the model, even if it does not

coincide with the optimal µ̃ = ρ̃µ.

8.2.5. Greedy Sampling

In order to leverage the previous thought, the samplers will be combined with a selec-

tion process that accepts or rejects newly proposed samples according to a criterion that
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Figure 8.1.: Evolution of the minimal eigenvalue λmin (solid lines) and deviation of the

down-sampled Hessians to the full Hessian ∥HpC̃ −HpCfull∥F (dotted) of inverse problem

(8.10) for designs DL generated by three different sampling strategies: EKS (blue), CBS

(orange) sampling, as well as repeated random sampling from the initial normal distri-

bution (green), without (left panel) and with (right panel) greedy mechanism. All three

sampling methods share the same initial configuration.

measures cost function convexity. Similar rejection mechanisms are well established and

have been successfully implemented to improve certain quantities of samplers, for instance

to remove the bias in MCMC samples by adding an additional Metropolis-Hastings step

[SWZ23].

For the purpose of this work, we choose another criterion that evaluates convexity of the

down-sampled cost function, and update the sample only if the newly proposed sample

improves local convexity, measured for instance in terms of the minimum eigenvalue or the

conditioning of the Gauss-Newton Hessian - in analogy to the E- or K- optimality criteria

of optimal experimental design in Section 2.5. Numerical examples show that this minimal

additional effort significantly improves the convexity of the down-sampled cost function,

up to a degree where it even exceeds the full data setting in Figures 8.5, 8.6 and 8.9.

This mechanism can be regarded an early stopping mechanism for the sampling algo-

rithm at favourable configurations, to cope with the oscillations in the eigenvalue structure

introduced by the random samplers, as observed in Figure 8.1.

8.3. Application to the Schrödinger Potential Reconstruction

The performance of our method will be demonstrated on a specific example: the inverse

problem of reconstructing a non negative potential p ∈ C∞
+ (X) from pointwise evaluations

of the solution up to the steady state Schrödinger equation on the quadratic spatial domain

X = (−1, 1)2 ⊂ R2:
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8.3. Application to the Schrödinger Potential Reconstruction

(−∆ + p)up = γ for x ∈ X,

up = 0 on x ∈ ∂X.
(8.9)

Vanishing boundary conditions and a constant source term γ = 104 complement the PDE.

The large size of γ is chosen to facilitate readability of subsequent values, and smoothness

of p is chosen for convenience.

This model describes diffusion of a density up and decay according to a (reaction)

rate, given by the potential p. The source term corresponds to a continuous injection of

mass into the system. The model belongs to the broad class of reaction diffusion models

that describe various phenomena, for instance the chemical concentration dynamics in a

chemical reaction process [DAB03], the spread of diseases [CM81], or the propagation of a

population density, e.g. of bacteria, under reproduction and death [KS70], each of which

attains its own interpretation for the parameter p.

Existence of a unique solution up ∈ C∞
+ (X) to (8.9) that is positive up > 0 in X follows

from standard elliptic theory [Bre11, Eva22]. Details are placed in Proposition A.2.2 in

Appendix A.2.

The inverse problem thus reads

find p ∈ Ap such that Fx(p) := up(x) = y(x) for all x ∈ D, (8.10)

where the design D ⊂ X collects all locations at which up is tested, and Ap denotes the

chosen admissible set.

Lemma 8.8. The inverse problem (8.10) is structurally identifiable, even for large admis-

sible sets such as Ap = C∞
+ (X).

Proof. If up can be observed on the full domain, i.e. D = X, then its derivatives can

be built and p can be reconstructed point wise by the simple formula p =
γ+∆up

up
, where

positivity of up holds according to Proposition A.2.2.

Challenges arise when only a finite number of measurements of up are available, in which

case only a finite dimensional parameter can be expected to be recovered, as suggested for

instance by Proposition 2.13. Naturally, the choice of measurement locations determines

identifiability: measurements on the boundary where up = 0, for instance, do not carry

any information on p. The goal in this section is thus to find good measurement locations

for a prescribed form of the admissible set.

Parameter discretization. Given a finite set of smooth basis functions {bq : X → R}Q−1
q=0 ,

the admissible set for the parameter p collects their linear combinations that attain non

negative values on X

Ap :=

{
p : X → R+

0 , x =

(
x1

x2

)
7→ p(x) =

Q−1∑
q=0

pqbq(x1, x2) for some pq ∈ R
}
.

(8.11)

In numerical experiments, this basis will be fixed to

{bq1,q2(x1, x2) = cos(q1πx1) cos(q2πx2)}
√
Q−1

q1,q2=0 . (8.12)
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8. Experimental Design through Sampling

Experimental Setup. Noise free data {y(x) = Fx(p⋆) = up⋆(x)}x∈D shall be considered

that was generated by a ground truth parameter p⋆ ∈ Ap, reflecting Assumption (A1).

The selection of a suitable design then translates to defining the number L = |DL| and

locations DL ⊂ X of sensors to be placed in the domain, with the goal to obtain a locally

strongly convex associated cost function.

Space Discretization. The solution to (8.9) will be accessed on an equidistant Cartesian

grid X = {xn, n = 1, ..., (Nx + 1)2}, where Nx cells are placed in every direction.

Full Measurement Setup. Define the full data setup as pointwise measurements on all

interior vertices Dfull = X\∂X, which amounts to a total number of |Dfull| = N = (Nx−1)2

measurements. The cost function reads

Cfull(p) =
1

2N

∑
x∈Dfull

|up(x) − y(x)|2 .

Computation of Jx̂. Application of sampling algorithms, such as the EKS or the CBS,

require evaluation of the negative log density Φ(x̂) = − log(∥Jx̂∥22) of ρ̃ from (8.4), which

in turn amounts in computing the gradient Jx̂ = ∇pFx̂(p⋆) = ∇pup⋆(x̂) at different x̂ ∈ X.

An adjoint gradient method, as spelled out in Section 8.5, provides an efficient approach

that computes the q-th entry of the gradient as

[Jx̂]q = ∂pqup⋆(x̂) = ⟨gx̂, bqup⋆⟩L2(X),

where gx̂ solves the adjoint equation corresponding to point wise measurement at location

x̂ ∈ X

−∆gx̂ + pgx̂ = −δx̂ in X, and gx̂ = 0 on ∂X. (8.13)

The singularity in the source reflects the singular point wise measurement of up. It reduces

regularity of solutions and requires introduction of a new solution concept. Existence of

solutions gx̂ ∈ L1(X) to (8.13) in the sense of Definition A.2.3 is established in Proposi-

tion A.2.4 in Appendix A.2.

Numerically, the forward and the adjoint Schrödinger equation (8.9) and (8.13) will

both be solved by a finite element method with nodal basis defined on the equidistant

Cartesian grid X. More details are provided in Appendix C.2.

8.3.1. Importance Sampling Distributions.

The optimal sampling distribution µ̃ = ρ̃N−1 describes good positions for the sensors. It

will be investigated numerically numerically, by plotting it on a fine discretization of the

spatial domain X. In the four subsequent examples, the dimension of the parameter is

fixed to Q = 9, and the parameter values (pq1,q2)q1,q2=0,1,2 that characterize the chosen

ground truth parameters corresponding to the basis (8.12) are displayed in Table 8.1.
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8.3. Application to the Schrödinger Potential Reconstruction

Figure 8.2 demonstrates that the optimal sampling distribution µ̃ admits significant

dependence on the underlying ground truth parameter. Qualitative differences in the

shapes of the sampling distributions are clearly observable.

System ground truth parameter

A pA⋆ =


13.6 10 10

10 10 10

10 10 10


B pB⋆ =


5.856 0.103 3.168

3.7441 2.493 1.124

0.9902 3.803 0.846



System ground truth parameter

C pC⋆ =


11 8.889 7.778

6.667 5.556 4.444

3.333 2.222 1.111


E pE⋆ =


10 0 0

0 0 0

0 0 0


Table 8.1.: Scenarios under which the optimal sampling strategy µ̃ is studied. The (i, j)

entry of the matrix encodes the coefficient pi,j .
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Figure 8.2.: Four different ground-truth media p⋆ (top row), ordered alphabetically by

pA⋆ , p
B
⋆ , p

C
⋆ , p

E
⋆ from right to left, lead to four different corresponding optimal sampling

distribution µ̃ (bottom row).

To test whether these qualitative differences originate from the qualitatively different

shape of the ground truth parameters p⋆, the latter are scaled by a scaling factor α ∈
{0.1, 1, 10} that varies their amplitude, and the respective µ̃ landscapes are plotted in

Figure 8.3. Even under the same qualitative shape of p⋆, the sampling distribution µ̃

varies significantly. It is striking that µ̃ is more centered in the middle of the domain when

p⋆ values are small, whereas interesting patterns, also reaching towards the boundaries,

evolve for large scaling values.
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(a) System C.
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Figure 8.3.: Optimal sampling distributions µ̃ for scaled ground truth parameters αp⋆ with

α = 0.1 (left), α = 1 (center) and α = 10 (right), where the ground truth parameters p⋆
from System C and E from Table 8.1 are taken.

8.3.2. Effect of Sampling

In the following, we deploy the thus developed design sampling strategy for the recovery of

good sensor locations in the inverse Schrödinger potential reconstruction (8.10) as a proof

of concept. Local convexity of the respective cost landscapes will be examined through the

minimal eigenvalue of the Gauss-Newton Hessian, as well as its inverse condition number

cinv(H) = λmin(H)
λmax(H) . As an updating criterion for the greedy strategy, we chose an increase

in the minimum eigenvalue.

Effect on Sensor Locations and Hessian Eigenvalues. To study the effect of sampling

of the sensor locations, from now on, the ground truth parameter of system C in Table 8.1

will be fixed. The numerical discretization is set to Nx = 30 cells in each direction.

The starting point is marked in Figure 8.4: the red dots mark all N = (Nx − 1)2 = 841

sensor locations in the full data design Dfull, against the optimal sampling distribution µ̃

in the background. The minimal eigenvalue of the Gauss Newton Hessian in this setting is

strictly positive λfullmin = 0.8 > 0 and the inverse condition number is 8.18 · 10−4, indicating

that the problem is locally strongly convex. Given that Q = 9, it can be suspected that

not all N = 841 sensor locations are required, and our down-sampling strategy shall be

applied to find a representative subset, for which we allow only L = 18 = 2Q sensor

locations.

An initial guess Dinit
18 of narrowly centred, normally distributed sensor locations in X
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Figure 8.4.: Full Data Design Dfull: Measurement locations (red dots) are located in all

grid points. The optimal importance sampling distribution µ̃ is drawn in the background.

performs poorly, as the minimal eigenvalue and the inverse conditioning of Gauss Newton

Hessian degrade to 1.29 · 10−4 and 1.26 · 10−7, respectively.

Running greedy versions of the EKS in [GIHLS20] and the CBS from [CHSV22], as de-

scribed in Sections 2.3.1, 8.2.4 and 8.2.5, to sample from the optimal sampling distribution

µ̃, instead, demonstrates the potential of our method to significantly improve this initial

sample: after running 25 iterations, the sensor location sample has moved around the do-

main and the suggested locations are shown in Figure 8.5. This leads to an increase in the

minimum eigenvalue and the conditioning of the corresponding Gauss Newton Hessians

to λEKS
min = 0.99 and cEKS

inv = 1.12 · 10−3 and λCBS
min = 1.63 and cCBS

inv = 1.75 · 10−3, where

the superscript denotes the sampling method.

Both methods are compared to a repeated greedy sampling strategy w.r.t. the initial

guess distribution, to observe the influence the importance sampling distribution µ̃. This

strategy, though improving convexity up to a minimum eigenvalue and conditioning of the

Hessian of λrandmin = 1.83 · 10−2 and crandinv = 1.92 · 10−5, clearly falls behind the performance

of EKS and CBS, which confirms that the narrow centered Gaussian is not a good ap-

proximation to the importance sampling distribution µ̃ as depicted in the background of

Figure 8.5.

It is remarkable that the minimum eigenvalue, as well as the inverse condition number

for the down-sampled Hessian, using our proposed strategy, even exceed that one of the

full dataset Dfull. This indicates that a large number of data might in fact hide more

important data points and dilute the information on the parameter, hence diminishing

the convexity of the cost landscape. Moreover, a better conditioning typically comes

along with improved stability properties.

The evolution of the minimal eigenvalue, and the Hessian approximation error along

the sampling iterations follows the behaviour in the right panel of Figure 8.1, that in

fact originated from this setting (under an increased number of iterations). The resulting

convexity measures of all considered designs are summarized in Table 8.2.

141



8. Experimental Design through Sampling

−0.5 0.0 0.5
x1

−0.5

0.0

0.5

x 2

Initial design normal
 λ init

min = 1.29e-04,    cinit
inv = 1.26e-07

0.0000
0.0004
0.0008
0.0012
0.0016
0.0020
0.0024
0.0028
0.0032

−0.5 0.0 0.5
x1

−0.5

0.0

0.5

x 2

random design: normal
 λrand

min = 1.83e-02,    crand
inv = 1.92e-05

0.0000
0.0004
0.0008
0.0012
0.0016
0.0020
0.0024
0.0028
0.0032

−0.5 0.0 0.5
x1

−0.5

0.0

0.5

x 2

EKS design
 λEKS

min = 0.99,         cEKS
inv = 1.12e-03

0.0000
0.0004
0.0008
0.0012
0.0016
0.0020
0.0024
0.0028
0.0032

−0.5 0.0 0.5
x1

−0.5

0.0

0.5

x 2

CBS design
 λCBS

min = 1.63,         cCBS
inv = 1.75e-03

0.0000
0.0004
0.0008
0.0012
0.0016
0.0020
0.0024
0.0028
0.0032

Figure 8.5.: Different designs and the convexity measures of their cost functions: sensor

locations are depicted by red markers on the optimal sampling distribution in the back-

ground. Considered designs are the normally distributed initial guess (upper left panel),

a greedy repeated sampling from this initial distribution (upper right), and the EKS and

CBS samples from µ̃ (lower left and right), each after 25 iterations.

Design D λmin cinv

full data Dfull 0.8 8.18 · 10−4

normal initial guess 1.29 · 10−4 1.26 · 10−7

EKS sample 0.99 1.12 · 10−3

CBS sample 1.63 1.75 · 10−3

greedy normal sampling 1.83 · 10−2 1.92 · 10−5

uniform initial guess 1.17 1.24 · 10−3

EKS sample 2.34 2.54 · 10−3

CBS sample 2.41 2.1 · 10−3

greedy normal sampling 2.73 3.07 · 10−3

Table 8.2.: Comparison of convexity measures of the cost function landscape associated to

different designs. Rows below an initial guess refer to sampling starting from this initial

guess.
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Interestingly, in this scenario, uniformly distributed sensor locations, as depicted in Fig-

ure 8.6, already perform very well: the initial guess attains a minimum Hessian eigenvalue

of λinitmin = 1.17 and a conditioning of cinitinv = 1.24 · 10−3. This can be anticipated, observing

that the optimal importance sampling distribution µ̃ is bounded from above by 0.0031.

Comparing the value to a uniform distribution 1
N ≈ 0.0012, then a choice of β = 0.383 in

(8.8) shows that the uniform distribution is a good approximation to µ̃, potentially even a

better one than the approximation generated by the EKS and CBS under a poorly chosen

initial distribution and a non-Gaussian target. Starting from this uniform initial guess, a

greedy sampling with the EKS and CBS from µ̃, and repeated uniform sampling for 25

iterations further improve the minimum Hessian eigenvalue to 2.34, 2.41 and 2.73, and

inverse condition numbers 2.54 · 10−3, 2.66 · 10−3 and 3.07 · 10−3, respectively.
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Figure 8.6.: Convexity measures for cost functions, corresponding to four different designs,

whose sensor locations are depicted by red markers on the optimal sampling distribution

in the background: a uniformly distributed initial guess (upper left), and three designs

originating from greedy random sampling, either w.r.t. this initial distribution (upper

right), with the EKS (lower left) or the CBS (lower right) from µ̃, after 25 iterations each.

Effect on the Cost Function. In the previous paragraph, local convexity of the cost

function around the ground truth, and its improvement by the proposed design sampling

strategy, were explored by means of the minimum eigenvalue and the inverse conditioning
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8. Experimental Design through Sampling

of the Gauss Newton Hessian. In the following, this effect shall be visualized globally in

the parameter space. To plot the Q-dimensional cost function landscape, a reduced setting

with a two dimensional admissible set

Ap = {p : X → R+
0 | p(x) = p1 cos(πx1) + p2 cos(πx2) + 12}

shall be considered and the ground truth parameter is fixed to p⋆(x1, x2) = 1 cos(x1) +

10 cos(x2) + 12. Its profile as well as the corresponding optimal importance sampling

distribution µ̃ are plotted in Figure 8.7. The different scaling of p⋆ in x1 and x2 direction

leads to a stronger sensitivity of p⋆ w.r.t. x2, which is also reflected in the sampling

probability.
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Figure 8.7.: Shape of the ground truth parameter p⋆ (left) and the optimal importance

sampling distribution µ̃ (right) in the two-dimensional setting.

The cost function landscape under the full data design Dfull, as plotted in Figure 8.8,

which demonstrates global strong convexity. In analogy to previous examples, the con-

vexity is significantly reduced under an initial guess of L = 6 = 3Q narrowly centred,

normally distributed sensor location, which expresses through flatness of the cost function

in one direction. An application of greedy greedy sampling from µ̃ with the EKS and

CBS clearly improves the global convexity of the cost landscape, as can be observed in

Figure 8.9. Repeated greedy random sampling with the initial distribution also improves

convexity a little, but fails to reach the full data configuration, and the flatness in the

diagonal direction can not fully be mitigated.

8.3.3. Extension to Controllable Source

With a second example, we leave the well observable setting of a fixed constant source term

104, and instead consider a controllable function γ(x) = γ1x1 + γ2x2 + 10, with additional

design parameter (γ1, γ2) ∈ [−2, 2]2. By a slight abuse of notation, we identify the source

function γ(x) with its parameters (γ1, γ2) ∈ [−2, 2]2 and denote both by γ. Then writing

uγp for the solution to (8.9) under the respective source γ, the inverse problem associated

to an experimental design D ⊂ [−2, 2]2 ×X reads

find p ∈ Ap such that Fs(p) := uγp(x) = ys for all s = (γ, x) ∈ D, (8.14)
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Figure 8.8.: Cost function landscapes (upper row) for different sensor locations (lower row):

full data setup Dfull (left) and normally distributed initial sensor locations Dinit
6 (right).

with admissible set Ap as in (8.11), and where the data ys := uγp⋆(x) shall again be

generated by a ground truth parameter p⋆, that will be chosen as scenario C in Table 8.1.

Lemma 8.8 still provides structural identifiability of this inverse problem.

Choosing the same spatial discretization setting as previously, we can consider the full

data setting Dfull = [−2, 2]2 × X\∂X. Because accessing a large number of data with

many different values of γ, each of which entailing a separate forward computation, is

computationally costly, the computation of ∥J∥2F shall be avoided. Instead, we base the

application of our sampling strategy on the unscaled sampling measure µ̃′(s) = ∥Js∥22.
This also means that the displayed minimal eigenvalues refer to a scaled version of the

cost function Ĉ(p) = ∥J∥−2
F C̃(p), and the performance of designs can not be compared to

the unavailable full data setting.

Remark 8.9. Admittedly, this setting is somewhat exaggerated for the easy toy problem,

given that Lemma 8.8 already suggests that access to all spatial measurements for only one

source term γ(x) ≡ const > 0 is sufficient for the reconstruction. This additional model-

based insight shall not enter our construction of Dfull or the further sampling strategy,

assuming an agnostic access to the inverse problem, and instead demonstrate how the

algorithm can be applied, if HpCfull(p⋆) is not available.

Figure 8.10 compares four designs and their convexity measures, where the source term

parameters γ1, γ2 are encoded as the colour and size of the dots, respectively, and their lo-

cation reflects the corresponding measurement location. The considered designs comprise:
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Figure 8.9.: Cost function landscapes (upper row) corresponding to different sensor loca-

tions, marked by red dots in front of the sampling distribution in the background (lower

row), that were obtained from sampling according to greedy EKS (left) or CBS (middle)

from µ̃ and greedy repeated normal sampling (right) with the right panel of Figure 8.8 as

initial setup.

� an initial guess of narrowly centered normally distributed sensor locations for ex-

periments with randomly uniformly chosen γ ∈ [−2, 2]2. It attains a very small

minimum eigenvalue and inverse condition number of the Gauss Newton Hessian,

compared to the other designs.

� a design derived from repeated greedy random sampling according to the initial guess

distribution, which improves both convexity measures by an order of 103, or

� designs obtained from sampling with the EKS or the CBS according to the measure

µ̃′, which yields an improvement of convexity measures by five orders of magnitude,

compared to the initial guess. Noting that the scale invariant inverse conditioning of

the Hessian is then of the same order 10−3 as for the full data Gauss Newton Hessian

for the fixed constant source term in the previous examples in Section 8.3.2, and

knowing that fixed constant source term knowledge is sufficient for reconstruction

by Lemma 8.8, this suggests that the found designs might already exhibit very similar

local cost function convexity properties, and thus reconstruction performance, as the

full data setting.

In total, 60 iterations were used for each sampling algorithm. The precise values of the
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convexity measures for these designs, as well as the same experiment with uniformly

distributed initial sensor locations are summarized in Table 8.3.

Design D λDmin cDinv

normal initial guess 2.95 · 10−9 3.27 · 10−9

EKS sample 9.34 · 10−4 1.24 · 10−3

CBS sample 6.22 · 10−4 8.4 · 10−4

greedy normal sampling 4.02 · 10−6 4.82 · 10−6

uniform initial guess 4.06 · 10−4 5.38 · 10−4

EKS sample 1.6 · 10−3 2.06 · 10−3

CBS sample 9.18 · 10−4 1.15 · 10−3

greedy uniform sampling 2.06 · 10−3 2.75 · 10−3

Table 8.3.: Comparison of local convexity measures of the cost function landscapes under

different designs. Rows below an initial guess refer to sampling starting from this initial

configuration.

8.4. Conclusion

In this chapter, we proposed a mechanism to transition from a well identifiable parametrized

inverse problem with much more data than parameters to reconstruct, to a small data in-

verse problem, by leveraging a sampling strategy to select informative data points. A shift

of paradigm from searching an optimal experimental design to a sufficient one allows us to

change the methodology from optimization to sampling. By leveraging the Gauss-Newton

Hessian in a quadratic cost minimization framework as an indicator of identifiability, its

specific structure allows adopting a well-studied matrix sketching algorithm from RNLA

to propose an importance sampling distribution that selects experimental setups whose

data is particularly sensitive w.r.t. the parameter. Via extending RNLA results to infinite

dimensional quasimatrices, theoretical identifiability guarantees under high probability

can be stated. To execute sampling from the model-informed importance sampling dis-

tribution in applications, we propose Bayesian posterior sampling algorithms, if no easy

approximate distribution can be found, in combination with a greedy mechanism. This

strategy is applicable to a broad class of experimental design tasks in inverse problems,

and does not require deep model insight. Its power has been illustrated in numerical

examples for the Schrödinger potential reconstruction problem.

We expect that the performance of our method can be improved when introducing

advanced cooling schemes for hyperparameters or stopping rules for iterative samplers

instead of the heuristically chosen values in our example, or more advanced samplers, for

instance the polarized CBS [BRW24] which is able to cope with multi modal distributions.
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Figure 8.10.: Four different designs, with sensor locations given by the dot locations,

and γ1, γ2 values encoded in colour and size of the dots, and their convexity measures:

normally distributed initial sensor location guess with uniformly distributed γ1, γ2 (upper

left), greedy repeated sampling w.r.t. this distribution (upper right), greedy EKS (lower

left) and CBS (lower right) w.r.t. µ̃′, after 60 iterations each.

The practical advantage of these methods should be evaluated while keeping in mind that

optimal sampling is not the main focus of this project, but rather improving the cost

function convexity.

A challenge in the application of our method to real inverse problems lies in the depen-

dence of the sampling distribution µ̃ on a usually unknown ground truth parameter p⋆.

Because this is a commonality among all experimental design tasks, several strategies have

been proposed to solve this problem [LMT15, Ale21, HJM24, BBKS00], as described in

Section 2.5, the easiest being to derive the design based on the MAP point. Alternatively,

designs are often based on a mean design criterion which is averaged over the parameter

space possibly weighted by a prior distribution, or on a constantly updated parameter

reconstruction in sequential optimal experimental design. We expect these strategies to

be transferable to our design sampling setting, and even see synergies between a greedy

sequential approach and the sampling algorithm: because sampling requires computation
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of the gradient Js = ∇pFs(p⋆), anyways, performing one gradient descend parameter up-

date after each design iteration is basically for free and can readily be integrated in the

design process.

Additionally, the relation between our sampling approach and existing methods should

be further investigated, where we see similarities to

� classical optimization based design methods that utilize similar optimality criteria

as deployed in the greedy mechanism, which already adds a certain portion of opti-

mization to the method - for instance E- or K-optimality investigating the minimum

eigenvalue or conditioning, respectively,

� measure based optimal experimental design that seeks to optimize a sensor location

measure [NPVW19] which might be related to the transition from µ to µ̃ = ρ̃µ, and

� least squares preconditioning, as mentioned in Remark 8.5.

Furthermore, it is worth mentioning that measurement noise is naturally taken into

account in Bayesian optimal experimental design contexts, whereas an addition to our

context is more involved, and only intuitively suggested in the spirit of sensitivity analysis,

where a good cost function convexity leads to small confidence region for the parameter.

A detailed investigation is left to future work.

Finally, we hope that our strategy can help bridging the gap between inverse problem

theory, where structural identifiability analysis assumes access to the full input-to-output

map, and practical finite data implementation: after discretizing the parameter, the found

experimental design suggests which experiments shall be conducted for a successful recon-

struction. A combination with a parameter sketching idea, as adopted in [JLNS24], might

yield the missing step from an infinite dimensional non-parametric to the finite dimensional

parametric admissible set to achieve an efficient sketching of the whole input-to-output

map. This approach could then be compared to the strategy proposed in [BTLZNn22],

and complemented by a similar matrix completion step to further improve numerical re-

construction.

8.5. Derivation of the formula for ∇pup(x̂)

Application of the EKS and CBS, as well as other sampling algorithms, requires computa-

tion of the log density Φ(x̂) = − log(∥Jx̂∥22) = − log(∥∇pup⋆(x̂)∥22) and hence the gradient

∇pup⋆(x̂). An adjoint based formula will be derived in the following, in analogy to the

proof of Lemma 5.5 in Section 5.3.1.

For a fixed x̂ ∈ X, the Lagrangian considers the measurement up(x̂) as a measurement

of a generic function u ∈ C∞(X) at x̂ under the constraint that u = up solves (8.9). The

corresponding Lagrangian function can be defined as

Lx̂ : Ap × C∞(X) × L1(X) → R, Lx̂(p, u, g) = u(x̂) + ⟨g,−∆u+ pu− γ⟩L1(X),L∞(X)
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8. Experimental Design through Sampling

with Lagrange multiplier g ∈ L1(X), and where ⟨·, ·⟩L1(X),L∞(X) denotes the duality

bracket on L1(X)×L∞(X). By (8.9), inserting u = up yields the measurement Lx̂(p, up, g) =

up(x̂). The chain rule then shows

∂up(x̂)

∂pq

∣∣∣∣
p=p̂

=
∂Lx̂

∂pq

∣∣∣∣ p=p̂
u=up̂

+
∂Lx̂

∂u

∣∣∣∣ p=p̂
u=up̂

∂up
∂pq

∣∣∣∣
p=p̂

for arbitrary g ∈ L1(X) and q = 0, ..., Q − 1, in particular for such g = ĝ for which

∂Lx̂/∂u = 0. Using the parametric form of p according to (8.11), the partial derivative

then becomes

∂up(x̂)

∂pq

∣∣∣∣
p=p̂

=
∂Lx̂

∂pq

∣∣∣∣ p=p̂
u=up̂

g=ĝ

=
∂⟨g, pu⟩
∂pq

∣∣∣∣ p=p̂
u=up̂

g=ĝ

=
∂
∑

q′ pq′⟨g, bqu⟩
∂pq

∣∣∣∣ p=p̂
u=up̂

g=ĝ

= ⟨ĝ, bqup̂⟩L1(X),L∞(X) .

In order to assemble the gradient according to the above formula, it remains to compute

ĝ that satisfies

0 =
∂

∂u
Lx̂

∣∣∣∣
g=ĝ

=
∂

∂u
[u(x̂) + ⟨ĝ,−∆u+ pu⟩] .

According to Definition A.2.3, the inner bracket vanishes for all u ∈ C∞(X), if ĝ = gx̂
is the unique solution to the adjoint equation (8.13), with Proposition A.2.4 showing its

existence.
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Discussion

In inverse problems, reducing the amount of data, for instance when going over from the

theoretical input-to-output map to a practically feasible finite experimental design, is a

delicate business, and a careful selection of the ’important’ data, potentially combined

with a compatible injection of a-priori knowledge on the parameter to bridge the missing

information in the data, is necessary to sustain identifiability properties. The problem

is classically treated by first choosing a parametric form of the model parameter and

then applying methods of optimal experimental design [HJM24, APSG16] to find that

experimental design that minimizes uncertainty in the parameter reconstruction.

In this work, we laid out two further approaches to sustain sensitivity based identifi-

ability in the finite data setting, when the infinite data inverse problem is structurally

identifiable.

Relaxation of Theory Approach. The first approach implemented the full transition from

the non-parametric input-to-output map to the parametric finite experimental design, and

emphasized the benefits of a compatible construction of the parameter discretization in

the admissible set and the experimental design, as derived by a relaxation of a suitable

theoretical structural identifiability proof.

Such a proof was developed for the inverse problem related to the kinetic chemotaxis

model, where the tumbling kernel shall be reconstructed from macroscopic measurements.

Following the singular decomposition technique, a delicate construction of sequences of ex-

perimental designs allowed to directly read off the tumbling kernel from the measurement

and thus provided structural identifiability of a non-parametric tumbling kernel under ac-

cess to the full input-to-output map. The design injected singular initial data to trigger

the microscopic information in the system, which could then be tracked by a suitable sin-

gular short time measurement strategy, allowing the direct reading of the point evaluation

of the tumbling kernel evaluation from the respective measurement.

In order to transfer identifiability to the finite data setting, we leveraged this construc-

tion to build a suitable experimental setting, consisting of a compatible pair of a finite

dimensional admissible set, and a finite experimental design. Inspired by the point-wise

reconstruction of the tumbling kernel from the experimental design that becomes locally
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concentrated in the reconstruction point, we discretized the shape of K to a step function

in space and velocity, reducing it to a finite dimension. The point wise value K(x, v, v′) to

be recovered was hence attained at a larger area, leaving more space for the experimental

setup to develop, and softening the requirement to reach the singular initial datum and

vanishing measurement time limit. Moreover, a similar strategy as deployed in the the-

oretical structural identifiability proof allowed us to analytically prove sensitivity based

identifiability for this design. Numerical examples quantified the sensitivity of this design

at a high level through the strong convexity of the corresponding quadratic cost function,

leading to fast and accurate reconstructions.

Despite the mathematical elegance in the unified treatment and methodology in both,

the non-parametric theoretical inverse problem, as well as the parametric finite data set-

ting, this approach, in general, suffers from the requirement for a constructive proof that

already indicates an experimental design construction. In many cases, this is out of reach.

We thus proposed another approach, which treats the model as a black box and requires

not further insight, and is thus applicable to generic parameter identification problems.

Sampling Approach. The sampling approach assumed that the parametric form of the

parameter to be inferred has been fixed beforehand, as adaptation to the model is not

possible without further insight. Then, being rooted in the sensitivity based identifiabi-

lity framework, local identifiability was expressed in terms of positivity or conditioning of

the Gauss-Newton Hessian of the quadratic cost function. Its matrix product structure

allowed utilizing a matrix sketching algorithm from RNLA to derive an importance sam-

pling distribution of the experimental setups, encoded as rows of the sensitivity matrix,

according to their sensitivity, and theoretical high probability guarantees on sensitivity

and conditioning of the Gauss-Newton Hessian of the thus down-sampled design under a

sufficiently high number of data carried over from RNLA theory. To realize sampling from

these non-standard distributions, we proposed Bayesian posterior samplers in combination

with a greedy strategy based on sensitivity measures, which proved very effective for of

sensor placement (and source design) problem for the Schrödinger potential reconstruction.

Conclusion. In summary, these two techniques both represent a perspective onto exper-

imental design construction that differs from optimal experimental design, as it relaxes

the objective of obtaining an optimal design to finding a sufficient design that provides

identifiability. Numerical experiments underline that both approaches describe viable al-

ternatives.

The first approach is in line with the wide-spread mentality to discretize a problem

as late as possible, and instead base theory and the setup of methods on the infinite

dimensional setting [Stu10, Ale21]. This ensures that the finite parametric inverse problem

attains a reasonable limit, as the discretization becomes arbitrarily fine, and renders our

found design adaptive to the parameter discretization, at the cost of potentially very fine

measurement requirements. As mentioned before, this approach suffers from a lack of

availability of suitable theoretical results to be relaxed, and the derivation of constructive

proofs, if possible, may entail significant additional efforts [FSU19].
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The second approach, instead, is applicable to a large class of inverse problems, in

particular those with non-constructive uniqueness proofs. It is closer to the optimal ex-

perimental design setting, as the parametric form is prescribed a priori, which allows an

efficient ’black box’ application. However, this hides the intricate balance between a pri-

ori information in the admissible set and the experimental design, which - if designed

compatibly as in the first approach - might yield even more powerful inversion settings.

Outlook. We see many possible directions for future research: a combination of the

design sampling strategy with a sketching of the parameter information, as proposed in

[JLNS24], would lift the method to a sketching of the full infinite-to-infinite dimensional

input-to-output map for a non-parametric model parameter and could establishing the full

link between the theoretical non-parametric and the parametric finite data setting for this

approach. Because the design sketching depends on the sensitivity and thus on the chosen

parametric form of the model parameter, this might lead to automatic compatibility of

admissible set and experimental design. Executing the sampling and the derivation of

theoretical guarantees, however, can become very involved. We leave this for future work.

The resulting sketching mechanism can then be compared to the strategy proposed in

[BTLZNn22] for the electrical impedance tomography problem, and, as suggested in this

publication, be combined with a matrix completion algorithm to build the bridge back

from the finite setting to the non-parametric inverse problem and improve reconstruction.

A shortcoming of the thus presented methods is their dependence on the typically un-

known ground truth parameter - where independence of the found designs (1D) and (2D)

follows rather coincidentally from the transport nature of the model, and will in general

not hold for other types of models. For the sketching approach, well-established strategies

from optimal experimental design [HJM24] can be applied to tackle this problem, whereas

it is obvious how to proceed in the model-based relaxation approach.

Undoubtedly, the numerical methods in this work leave room for further improvements:

the implementation of the sketching approach could benefit from samplers with better

capabilities to sample from multi modal distributions [BRW24, MS21], improved criteria

for the greedy mechanism, or hyperparameter tuning might. On the other hand, conver-

gence of the reconstruction algorithms, even under weak convexity, can be improved when

more advanced optimization methods are invoked. However, referring back to Lanczos

[Lan96], even the most sophisticated methods cannot cure intrinsic ill-posedness of the

problem, suggesting that these methods can never replace experimental design to procure

an informative data.

In addition to that, it should be noted that both considered approaches did not take

measurement noise into account, but solely select designs according to their sensitivity.

Optimal experimental design, instead, naturally embeds measurement noise through its

consideration of uncertainty of the reconstruction as an objective. Nonetheless, sensitivity

is in some sense related to the robustness of the reconstruction against noise, for instance

by consideration of standard quadratic confidence intervals. Elaborating this connection

for the presented approaches might help understanding the relation of the design sampling

approach to the optimal experimental design methodology could reveal additional insight
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9. Discussion

into how stability is propagated to the finite dimensional setting under the ’relaxation of

theory’ approach.

Finally, we hope that experimental design - be it qualitative or optimal - will lead

to more interaction between the experimenters and mathematicians involved in inverse

problem solving, to disseminate a holistic perspective on inverse problems and instigate a

collaborative design process where a-priori parameter information and data information

is well balanced and takes measurement restrictions into account, to obtain meaningful

reconstructions of the parameters and gain deeper insight into the world that we are

surrounded by.
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Appendices





A
Existence Theory

A.1. Existence Results for the Kinetic Chemotaxis Equation via

Semigroup Theory

This section provides existence theory of the forward and adjoint equations, through

application of semigroup theory. For a detailed introduction, the reader is referred to

[EN01, Paz12]. For both equations, the solution concept of mild solutions will be adopted.

Definition A.1.1 (Mild and classical solutions; [EN01]). Consider the inhomogeneous

abstract Cauchy problem with initial data x ∈ X in a Banach space X and inhomogeneity

h ∈ L1([0, T ];X )

u̇(t) = Au(t) + h(t) for t ∈ [0, T ],

u(0) = x,
(iACP)

where the operator A : D(A) → X generates a strongly continuous semigroup S(t) : X →
X on X and is defined on D(A) := {x ∈ X | Ax ∈ X}. Then the function u ∈ C0([0, T ];X )

defined by

u(t) := S(t)x+

∫ t

0
S(t− s)h(s) ds (A.1.1)

is called the (unique) mild solution to (iACP). If, additionally, x ∈ D(A) and h ∈
W 1,1([0, T ];X ), then u ∈ C1([0, T ];X ) ∩ C0([0, T ];D(A)) is called a classical solution to

(iACP).

Note that for classical solutions u, their derivatives appearing in the equation (iACP)

exist in X , whereas they might not be well-defined for mild solutions. The concept is

transferable to final value problems with negative in time propagation.



1. Existence Theory

A.1.1. Forward Problem Existence

Consider the kinetic initial value problem

∂tf + v · ∇xf = αL(f) − σf + h, for (t, x, v) ∈ [0, T ] × Rd × V,

f(t = 0, x, v) = ϕ(x, v), for (x, v) ∈ Rd × V,
(A.1.2)

where α ∈ {0, 1} and L and σ are defined as in (3.1) for K ∈ AK as in (3.3). Let a source

term h and an initial condition ϕ be given.

In this section, the proof of existence of a solution to (A.1.2) is presented and it is shown

that the solution preserves positivity of initial data and source term. These results are

well-established in literature and can be found e.g. in [CMPS04, Maj97]. Their derivation

by standard arguments is described in the following for sake of completeness.

A.1.1.1. Existence

The proof of existence is based on semigroup theory. Two decompositions of the full

differential operator A = −v · ∇ − σ + αL describing (A.1.2) will be used, defined by the

operators

T̃ : u 7→ −v · ∇xu− σu and L : u 7→ L(u), and

T : u 7→ −v · ∇xu and Kα : u 7→ −σu+ αL(u).
(A.1.3)

The operators T , T̃ : D(T ) → X account for transport and transport with decay at rate

σ, respectively. In contrast to that, the operators L,Kα : X → X account for the gain due

to tumbling into the given velocity, and the overall effect of tumbling, respectively. The

first decomposition A = T̃ +αL provides advantages for bounding the solution f , whereas

the second one A = T +Kα is beneficial when the influence of the tumbling kernel K shall

be separated, as in Chapter 5.

Lemma A.1.2. Fix 1 ≤ p <∞ and consider X := Lp(Rd×V ). The operators (T ,D(T )),

(T̃ ,D(T )) generate strongly continuous semigroups (T(t))t≥0, (T̃(t))t≥0 on X defined by

T(t) : u(x, v) 7→ u(x−vt, v), and T̃(t) : u(x, v) 7→ e−
∫ t
0 σ(x−vs,v) dsu(x−vt, v) (A.1.4)

that are bounded ∥T(t)∥, ∥T̃(t)∥ ≤ 1 in operator norm. The operator (A = T̃ + αL,D(T ))

generates a strongly continuous semigroup (Sα(t))t≥0 on X that is bounded by ∥Sα(t)∥ ≤
eα|V |CKt.

Proof. The semigroup properties of T(t), T̃(t) and their boundedness by 1 are obvious.

Strong continuity translates from the dense subset C1
c (Rd;Lp(V )) to X . Furthermore,

they are generated by T , T̃ by the difference quotient form of weak directional derivatives.

Linearity of the operator L and its boundedness

∥L(u)∥X =

∥∥∥∥∫
V
K(x, v, v′)u(x, v′) dv′

∥∥∥∥
X
≤ CK |V |∥u∥X ⇒ ∥L∥ ≤ CK |V |

by Jensen’s inequality then allow application of the bounded perturbation theorem [EN01,

Th. III.1.3] to see that T̃ +αL generates a strongly continuous semigroup (Sα(t))t≥0 with

∥Sα(t)∥ ≤ eα∥L∥t.
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Existence and boundedness of a mild solution to (A.1.2) in C0([0, T ];Lp(Rd × V )) im-

mediately follows by construction [EN01, Cor. IV.7.6]

f(t) = Sα(t)ϕ+

∫ t

0
Sα(t− s)h(s) ds. (A.1.5)

In fact, this solution lives in C0([0, T ];L1 ∩ L∞(Rd × V )) under sufficiently regular data.

Corollary A.1.3 (Forward Existence). Let T > 0 and initial data ϕ ∈ Y := L1∩L∞(Rd×
V ) and a source term h ∈ L1([0, T ];Y) be given. Then initial value problem (A.1.2) attains

a unique solution f ∈ C0([0, T ];Y) in the sense of (A.1.5), that is bounded by

∥f(t)∥Y ≤ eα|V |CKt

(
∥ϕ∥Y +

∫ t

0
∥h(s)∥Y ds

)
. (A.1.6)

If additional regularity of initial data ϕ ∈ DY(T ) := {u ∈ Y | v · ∇u ∈ Y for a.a. x ∈ Rd}
and source term h ∈ W 1,1([0, T ];Y) is given, then f is the classical solution of (A.1.2)

and attains additional regularity C1([0, T ];Y) ∩ C0([0, T ];DY(T )).

Proof. Hölder’s inequality gives ∥u∥p ≤ ∥u∥Y and thus Y ⊂ Lp(Rd×V ) for all 1 ≤ p <∞.

From the previous considerations it is clear that the mild Lp(Rd × V ) solution f defined

in (A.1.5) satisfies the uniform bound

∥f(t)∥Lp(Rd×V ) ≤ e2|V |CKt∥ϕ∥Y +

∫ t

0
e2|V |CK(t−s)∥h(s)∥Y ds.

For p = 1 and as p → ∞, this provides (A.1.6). Existence of a classical solution follows

similarly, by extending Lp bounds to L∞.

Because the semigroup (Sα(t)) has no explicit form, it will be convenient in various

contexts to work with implicit forms of f in terms of T(t) and T̃(t). They originate as

fixed points of the source iteration maps

Φ, Φ̃ : C0([0, T ];Y) → C0([0, T ];Y), Φ(u) = f̂ , and Φ̃(u) = f̃

that maps u, respectively, to the mild solutions of{
∂tf̂ = T f̂ + Kα(u) + h,

f̂(t = 0) = ϕ,
and

{
∂tf̃ = T̃ f̃ + αL(u) + h,

f̃(t = 0) = ϕ.

Lemma A.1.4 (Implicit forms of f , source iteration). In the setting of Corollary A.1.3,

f ∈ C0([0, T ];Y) is the mild solution to (A.1.2), if and only if it satisfies one of the two

equivalent implicit forms

f(t) = T̃(t)ϕ+

∫ t

0
T̃(t− s)(h(s) + αL(f)(s)) ds, or (A.1.7)

f(t) = T(t)ϕ+

∫ t

0
T(t− s)(h(s) + Kα(f)(s)) ds. (A.1.8)

Moreover, f is the limit of any source iteration through Φ and Φ̃ as defined above, i.e.

f = limn→∞ Φn(u) = limn→∞ Φ̃n(u) for any u ∈ Y.
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Proof. ⇒: This representation follows directly from semigroup theory and the fact that

the strongly continuous semigroup (Sα(t))t∈[0,T ] of the sum A = T̃ + αL of the generator

T̃ of another strongly continuous semigroup (T̃(t))t∈[0,T ] and a bounded linear operator

αL can be expressed as

Sα(t)u = T̃(t)u+

∫ t

0
T̃(t− s)αL(Sα(s)u) ds

for u ∈ Y [EN01, Cor. III.1.7]. Inserting this into (A.1.5) and using the linearity of T̃ and

L and time independence of αL to retrieve f in the argument of the operator L yields the

representations (A.1.7). Formula (A.1.8) follows analogously by boundedness, linearity

and time independence of the operator Kα.

⇐: Obviously f is a fixed point of Φ, Φ̃ by (A.1.7)–(A.1.8) and thus satisfies (iACP) in

a mild sense.

By proving that Φ̃ is a contraction in a suitable norm, Banach’s fixed point theorem

then guarantees that the fixed point is unique and every source iteration sequence (Φ̃n(u))n
converges to f . Spell out

Φ̃ : u 7→ T̃(t)ϕ+

∫ t

0
T̃(t− s)(h(s) + αL(u)(s)) ds,

and define - in analogy to [Maj97] - the weighted norm ∥u∥λ := ∥e−λtu∥C0([0,T ];Y) on

C0([0, T ];Y), and set λ := 2∥αL∥ = 2αCK |V |. By norm equivalence, the completeness

of C0([0, T ];Y) w.r.t. ∥ · ∥λ is inherited from ∥ · ∥C0([0,T ];Y). Furthermore boundedness of

∥T̃(t)∥ ≤ 1 and ∥αL∥ ≤ λ
2 on Y follows from uniform in p boundedness of both operators

on Lp(Rd × V ) and provide the contraction property of Φ̃, as

∥Φ̃(u) − Φ̃(u′)∥λ =

∥∥∥∥∫ t

0
T̃(t− s)αL(u− u′)(s) ds

∥∥∥∥
λ

≤ sup
t
e−λt

∫ t

0
αCK |V |eλse−λs∥(u− u′)(s)∥Y ds

≤ 1

2
sup
t

∫ t

0
λeλ(s−t) ds ∥u− u′∥λ

≤ 1

2
∥u− u′∥λ.

The contraction property for Φ is shown analogously.

A.1.1.2. Properties of f

Besides boundedness in (A.1.6), f also preserves non-negativity and compactness of the

spatial support of initial data ϕ and source term h. Intuitively, non-negativity of f makes

sense by its interpretation as the particle density and the fact that particles are only

transported, absorbed with a certain rate σ, or produced by a positive source h and may

(α = 1) or may not (α = 0) reappear after a change of velocity. Because the evolution

of f is governed by a kinetic equation, the speed of propagation in space is finite - to be
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precise, it is 1 by choice of V = Sd−1. This means, that a compactly in x supported initial

condition evolves to a compactly in x supported density f , given that the source term h

does not introduce any non-compactly supported contributions.

Lemma A.1.5. Consider the setting of Corollary A.1.3.

a) Consider non-negative initial data ϕ(x, v), h(t, x, v) ≥ 0 for all t ∈ [0, t], x ∈ Rd, v ∈
V .Then the solution f to (A.1.2) is non-negative f(t, x, v) ≥ 0 a.e.w. in Rd × V , for

all t ∈ [0, T ].

b) Equation (A.1.2) has constant speed of propagation 1.

In particular, let h be zero and consider ϕ that is compactly supported in x a.e. in

V , in the sense that there exists a compact subset S of Rd such that for a.a. v ∈ V

one has ϕ(x, v) = 0 for all x ∈ SC . Then one has for a.a. v that f(t, x, v) = 0 for

all t ∈ [0, T ] and a.a. x with Euclidean distance d(x, S) > t, i.e. f(t) has a compact

essential support in x, that is contained in the closed ball B̄(S, t) around S with radius

t, for every t ∈ [0, T ].

The proof follows the arguments of [Maj97] by source iteration.

Proof. By Lemma A.1.4, f is the pointwise a.e. limit of the source iteration (f (n))n with

f (n+1) = Φ̃(f (n)) and starting value f (0) = 0.

a) Because T̃(t) sustains non-negativity of ϕ and h, one has

f (1)(t) − f (0)(t) = f (1)(t) = T̃(t)ϕ+

∫ t

0
T̃(t− s)h(s) ds ≥ 0 a.e.w. in Rd × V.

Because L(g) ≥ 0 if g ≥ 0 a.e.w. in Rd × V , one iteratively obtains

(f (n+1) − f (n))(t, x, v) = α

∫ t

0
T̃(t− s)L(f (n) − f (n−1))(s) ds ≥ 0

which provides f (N) =
∑N

n=0(f
(n+1) − f (n)) ≥ 0. This translates to the f = limN f (N)

by point wise convergence a.e.w. in x, v.

b) An induction shows that f (n)(t, x, v) = 0 for a.e. v ∈ V and all x with distance

d
(
x, S

)
> t. The assertion is clear for f (0) ≡ 0 and follows for all n ∈ N from the

recursive definition of

f (n+1)(t, x, v) = Φ̃(f (n))(t, x, v)

= e−
∫ t
0 σ(x−vs,v) dsϕ(x− vt, v) +

∫ t

0
e−

∫ t−s
0 σ(x−vτ),v)αL(f (n))(s, x− v(t− s), v) ds.

For x ∈ Rd with d
(
x, S

)
> t, then d(x − vt, S) > 0 and thus ϕ(x − vt, v) = 0 for

a.a. v. Due to d
(
x − v(t − s), S

)
> s, the induction hypothesis yields for a.a. v′ that

f (n)(s, x− v(t− s), v′) = 0, which shows L(f (n))(s, x− v(t− s), v) = 0 for all s ≤ t. In

summary, this gives for a.e. v that f (n+1)(t, x, v) = 0 for these x, which concludes the

induction. The assertion follows again by point-wise a.e.w. in x, v convergence of f (n)

to f .
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A.1.1.3. Regularity in K

Regularity of the solutions of PDEs to their coefficients is frequently encountered and

sometimes even included in the definition of well-posedness. In this section, it shall be

verified for the solution fK to (Ch)–(iCh), in order to prove Lemma 3.4 on twice continuous

differentiability. In fact, one can show that fK is smooth in K by further iteration of the

arguments in the proof. For the purposes of this work, however, C2 is sufficient.

The desired regularity is established iteratively, starting with Lipschitz continuity of f .

Lemma A.1.6. The solution f to (Ch)–(iCh) is Lipschitz continuous w.r.t. K

∥fK̃ − fK∥C([0,T ];L1∩L∞(Rd×V )) ≤ C∥K̃ −K∥∞ for K̃,K ∈ AK (A.1.9)

for some C = C(T,CK , ∥ϕ∥L1∩L∞(Rd×V )) independent of K, K̃.

Proof. Consider the difference f̄ := fK̃ −fK of two solutions to (Ch)–(iCh) corresponding

to two distinct tumbling kernel values K̃,K ∈ AK . This is a solution to the difference of

the PDEs and thus satisfies

∂tf̄ + v · ∇xf̄ = KK(f̄) + KK̃−K(fK̃) (A.1.10)

with vanishing initial condition. By regularity of fK̃ in Proposition 3.3, the source

KK̃−K(fK̃) belongs to L1(0, T ;L1∩L∞(Rd×V )), which allows application of the solution

bound in Corollary A.1.3 and boundedness of fK̃ in (A.1.6) yields

∥f̄(t)∥L1∩L∞(Rd×V ) ≤ eCK |V |t
∫ t

0
∥KK̃−K(fK̃)(s)∥L1∩L∞(Rd×V ) ds

≤ 2∥K⋆ −K∥∞|V | t e2CK |V |t∥ϕ∥L1∩L∞(Rd×V ).

Directional derivatives can be obtained as limits of difference quotients and their Lip-

schitz continuity provides continuous differentiability. In the following, an admissible

variation for a given K ∈ AK describes an η ∈ L∞(Rd × V × V ) such that K + εη ∈ AK

for small enough ε ̸= 0.

Lemma A.1.7. The solution f to (Ch)–(iCh) is continuously differentiable w.r.t. K.

The directional derivatives ∂ηfK ∈ C([0, T ];L1 ∩ L∞(Rd × V )) for admissible variations

η ∈ L∞(Rd × V × V ) are solutions to the kinetic equations

∂t∂ηf + v · ∇x∂ηf = KK(∂ηf) + Kη(fK), (A.1.11)

∂ηf(t = 0) = 0,

they are Lipschitz continuous in K and bounded by

∥∂ηfK(t)∥L1∩L∞(Rd×V ) ≤ 2|V |∥η∥∞e2|V |CKtt∥ϕ∥L1∩L∞(Rd×V ). (A.1.12)
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Proof. Let η ∈ L∞(Rd × V × V ) be an admissible variation for the considered K ∈ AK .

Then by (A.1.10), the difference quotient δεηf := ε−1(fK+εη − fK) satisfies

∂tδ
ε
ηf + v · ∇xδ

ε
ηf = KK(δεηf) + Kη(fK+εη)

with vanishing initial condition. As ε→ 0, the directional derivative ∂ηf of f in direction

η then satisfies (A.1.11). It is thus well defined in C0([0, T ];L1∩L∞(Rd×V )) and satisfies

the estimate (A.1.6) by regularity of the source Kη(fK) ∈ L1([0, T ];L1∩L∞(Rd×V )) and

Corollary A.1.3. Inserting the estimate (3.4) for fK then yields formula (A.1.12). Taking

the limit in the equation is a standard procedure. For sake of completeness, it is rigorously

justified once in the following: Define the difference f̄ := δεηf − ∂ηf , then its propagation

is determined by the difference equation

∂tf̄ + v · ∇xf̄ = KK(f̄) + Kη(fK+εη − fK).

Then Corollary A.1.3 shows that

∥f̄(t)∥L1∩L∞(Rd×V ) ≤ e|V |CKt

∫ t

0
∥Kη(fK+εη − fK)(s)∥L1∩L∞(Rd×V ) ds

≤ e|V |CKt

∫ t

0
2|V |∥η∥∞∥(fK+εη − fK)(s)∥L1∩L∞(Rd×V ) ds

≤ ε2|V |∥η∥2∞ t e|V |CKtC,

where the Lipschitz continuity of f in K with Lipschitz constant C from (A.1.9) was

applied in the last row. As ε → 0, this shows that δεηf → ∂ηf , i.e. f is directionally

differentiable in K.

Lipschitz continuity of the directional derivative is established in analogy to the proof

of Lemma A.1.6.

Lemma A.1.8. The solution f to (Ch)–(iCh) is twice continuously differentiable w.r.t.

K and the second order directional derivatives are Lipschitz continuous in K.

Proof. Let η, ζ ∈ L∞(Rd × V × V ) and K ∈ AK such that K + ε(η + ζ) ∈ AK for small

enough ε > 0. Similarly as in the proof of Lemma A.1.7, one obtains from consideration

of the difference quotient δεζ∂ηf = ε−1(∂ηfK+εζ + ∂ηfK), that the second order directional

derivative ∂2ζ,ηf ∈ C0([0, T ];L1 ∩L∞(Rd×V )) is the unique mild solution to the equation

∂t∂
2
ζ,ηf + v · ∇x∂

2
ζ,ηf = KK(∂2ζ,ηf) + Kζ(∂ηf) + Kη(∂ζf).

Lipschitz continuity w.r.t. K follows analogously by Lipschitz continuity of ∂ηf and ∂ζf .

A.1.2. Adjoint Problem Existence

For the adjoint problem, consider the final value problem

−∂tg − v · ∇xg = −σg + αL⋆(g) + µ, for (t, x, v) ∈ [0, T ] × Rd × V,

g(t = T, x, v) = ψ(x, v), for (x, v) ∈ Rd × V,
(A.1.13)
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where α ∈ {0, 1}, L⋆(g) :=
∫
V K(x, v′, v)g(t, x, v′) dv′ for someK ∈ AK and µ ∈ L1([0, T ];X )

and ψ ∈ X with Banach space X := L1(Rd;L1 ∩ L∞(V )).

Semigroup theory provides existence of mild solutions, in analogy to the results in

Subsection A.1.1.1.

Lemma A.1.9. The final value problem (A.1.13) with final data ψ ∈ X := L1(Rd;L1 ∩
L∞(V )) and source term µ ∈ L1([0, T ];X ) attains a unique mild solution g ∈ C0([0, T ];X )

that is bounded by

∥g(t)∥X ≤ eαCK |V |(T−t)

(
∥ψ∥X +

∫ T

t
∥µ(s)∥X ds

)
. (A.1.14)

Furthermore, g coincides with the unique solutions in C0([0, T ];X ) of the implicit equations

g(t) = T⋆(T − t)ψ +

∫ T

t
T⋆(s− t)(µ(s) + K⋆

α(g(s))) ds, (A.1.15)

g(t) = T̃⋆(T − t)ψ +

∫ T

t
T̃⋆(s− t)(µ(s) + αL⋆(g(s))) ds, (A.1.16)

with adjoint tumbling operator K⋆
α := −σ + αL⋆ and the semigroups (T⋆(t))t and (T̃⋆(t))t

on X corresponding to backward transport and backward transport with decay given by

T⋆(t) : u(x, v) 7→ u(x+ vt, v), and T̃⋆(t) : u(x, v) 7→ e−
∫ t
0 σ(x+vτ,v) dτu(x+ vt, v).

Proof. Through a transformation of variables t 7→ T − t, x 7→ −x, the final value problem

(A.1.13) can be transformed into an initial value problem of the form of (A.1.2)

∂tg⃗ + v · ∇g⃗ = −σ⃗g⃗ + αL⃗⋆(g⃗) + µ⃗

g⃗(t = 0) = ψ⃗,
(A.1.17)

where the notation h⃗(t, x, v) := h(T − t,−x, v) is used for quantities in the forward trans-

port equation.1 It then follows in analogy to Lemma A.1.2 and Corollary A.1.3, that the

full operator ⃗̃T + αL⃗⋆ generates a strongly continuous semigroup on L1(Rd;Lp(V )) that

is bounded in operator norm by eα∥L⃗
⋆∥t = eαCK |V |t for all p and thus (A.1.17) attains a

unique mild solution g⃗ ∈ C([0, T ];L1(Rd;Lp(V ))) that is uniformly in p bounded by

∥g⃗(t)∥L1(Rd;Lp(V ))) ≤ eαCK |V |t
(
∥ψ⃗∥X +

∫ t

0
∥µ⃗(s)∥X ds

)
.

An analogous argumentation as in Lemma A.1.4 shows that g⃗ ∈ C([0, T ];X ) and it solves

g⃗(t) = T(t)ψ⃗ +

∫ t

0
T(t− s)(µ⃗(s) + K⃗⋆

α(g⃗)(s)) ds, and

g⃗(t) =
⃗̃T(t)ψ⃗ +

∫ t

0

⃗̃T(t− s)(µ⃗(s) + α⃗L⋆(g⃗)(s)) ds,

1In particular, it does not mean that the considered quantity is vector valued, as in other literature.
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where (T(t))t>0 and (
⃗̃T(t))t>0 are given by (A.1.4) and denote the strongly continuous

semigroups on X that are generated by the transport and transport with decay operators

T and ⃗̃T := T − σ⃗, respectively. Vice versa, any solution to either of these equation in

C0([0, T ];X ) coincides with the mild solution to (A.1.17) and is thus unique. Transforming

back to original variables yields (A.1.15) and the bound (A.1.14).

By transforming (A.1.13) into (A.1.17), it is clear that g shares certain properties with

f , in particular the constant speed of propagation 1. Furthermore, g vanishes for times

bigger than the upper bound of the temporal support of µ, if the final condition ψ vanishes.

Corollary A.1.10. Let g be the solution of (A.1.13) with ψ = 0 and µ ∈ L1([0, T ];L1(Rd;X ))

with µ(t) = 0 for t ∈ [b, T ] for some 0 < b < T . Then g(t) = 0 for t > b and

∥g(t)∥X ≤ eαCK |V |(b−t)∥µ∥L1([t,b];X ).

Proof. By (A.1.14), it follows that g(t) vanishes for t > b and the bound on g(t) for t < b

follows by setting T = b.

A.2. Existence Results for the Stationary Schrödinger Equation

via Elliptic Theory

In this section, existence of solutions to the forward and adjoint Schrödinger equation (8.9)

and (8.13) is established through standard elliptic theory [Bre11, Eva22]. Some attention

is required in the applications of standard results, given that the domain X = (−1, 1)2 is

not C1. In the following, consider the stationary PDE

−∆u+ pu = f in X = (−1, 1)2 and u = 0 on ∂X, (A.2.1)

with non negative potential p ∈ C∞
+ (X) and a source term f .

A.2.1. L2 Data

If f ∈ L2(X), the weak formulation of (A.2.1) can be derived by testing with a test

function ϕ ∈ H1
0 (X) and application of integration by parts, assuming sufficient regularity

of the solution u:

⟨f, ϕ⟩L2(X) = ⟨−∆u+ pu, ϕ⟩L2(X) = ⟨∇u,∇ϕ⟩L2(X) + ⟨u, pϕ⟩L2(X) . (A.2.2)

Note that the boundary terms vanish due to ϕ = 0 on ∂X. This formulation allows for

weaker regularity of solutions. Setting the solution space to H1
0 , boundary conditions can

be taken into account.

Definition A.2.1. Let f ∈ L2(X). A function u ∈ H1
0 (X) is called weak solution to

(A.2.1), if it satisfies (A.2.2) for all test functions ϕ ∈ H1
0 (X).
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Existence of weak solutions to the forward Schrödinger equation (8.9) follows from

standard elliptic theory [Bre11, Eva22]. Higher regularity of the source and the parameter

then translate to the solution, turning weak solutions into a classical one, that satisfied

(A.2.1) point wise.

Proposition A.2.2. Let p ∈ C∞
+ (X) be non negative and f ∈ C∞(X), then (A.2.1)

attains a unique solution u ∈ C∞(X). Moreover, if f ≥ 0 is positive somewhere inside X,

then u > 0 in X.

A short proof, as can be found in [Bre11], is included for sake of completeness.

Proof. Define the bilinear form B : H1
0 (X)×H1

0 (X) → R according to the RHS of (A.2.2)

by

B[u, ϕ] = ⟨∇u,∇ϕ⟩L2(X) + ⟨u, pϕ⟩L2(X) .

It is continuous |B[u, ϕ]| ≤ max(1, ∥p∥∞)∥u∥H1
0
∥ϕ∥H1

0
and coercive due to non negativity

of p and Poincaré’s inequality [Bre11, Cor.9.19] ∥u∥2L2 ≤ C∥∇u∥2L2 for some C > 0, as

B[u, u] = ∥∇u∥2L2 + ∥√pu∥2L2
≥ ∥∇u∥2L2 ≥ 1

2

(
∥∇u∥2L2 +

1

C
∥u∥2L2

)
≥ β∥u∥H1

0

for β = min(1/2, 1/(2C)) > 0. The Lax Milgram theorem [Bre11, Cor.5.8] hence provides

existence of a unique solution u ∈ H1
0 (X) to the weak formulation B[u, ϕ] = ⟨f, ϕ⟩L2(X)

of (A.2.1) in (A.2.2). Higher regularity u ∈ C∞(X) then follows from Theorem 6.3.3 in

[Eva22], and positivity for positive f from the strong maximum principle, compare [Eva22,

Thm. 6.4.4].

A.2.2. Dirac Data

Regarding the adjoint Schrödinger equation (8.13), the singularity in the source term re-

quires a new solution concept. Following [Pon12], we may introduce the following notion

of solutions to the Schrödinger equation with measure data, in the spirit of the Defini-

tion A.2.1 of weak solutions:

Definition A.2.3. Denote by M(X) the set of finite Borel measures on X. A function

u ∈ L1(X) will be called a solution to (A.2.1) with measure valued data f ∈ M(X), if it

satisfies

−
∫
X
u∆ψ dx+

∫
X
puψ dx =

∫
X
ψ df(x) (A.2.3)

for all continuous test functions ψ ∈ Cc ∩W 2,∞(X̄) that vanish on the boundary ∂X.

An adaptation of the proof of Proposition 3.2 in [Pon12] to the Schrödinger equation,

involving the additional potential term, shows existence of solutions to (8.13).

Proposition A.2.4. For every x̂ ∈ X, there exists a unique solution gx̂ ∈ L1(X) to (8.13)

in the sense of Definition A.2.3.
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Proof. Fix x̂ ∈ X. Through mollification, there exists a sequence (fn)n ⊂ C∞
c (X̄) that

converges weakly in the sense of measures to δx̂ ∈ M(X), i.e.

lim
n→∞

∫
X
ψfn dx =

∫
X
ψ dδx̂(x) for all ψ ∈ Cc(X̄),

with limn→∞ ∥fn∥L1(X) = ∥δx̂∥M(X) = |δx̂|(X) = 1, and thus ∥fn∥L1(X) is bounded.

Denoting by gn the corresponding solution to (A.2.1) with source term fn ∈ C∞
c (X̄) then

in analogy to Corollary 4.3 in [Pon12] one can show boundedness of gn in W 1,q
0 (X) by

∥fn∥L1(X) for some q ∈ (1, 2). The compact embedding of this Sobolev space in L1(X) by

the Rellich Kondrachov theorem [Ada75, Thm.6.2] allows us to extract a weakly convergent

subsequence (gnk
)k, whose limit shall be denoted by g ∈ L1(X). Together with weak

convergence of fn ⇀ δx̂ in the sense of measures, this ensures that the limit is a solution

to (8.13) in the sense of Definition A.2.3: For all ψ ∈ Cc ∩W 2,∞(X̄) one has

−
∫
X
g∆ψ dx+

∫
X
pgψ dx = lim

k→∞

(
−
∫
X
gnk

∆ψ dx+

∫
X
pgnk

ψ dx

)
= lim

k→∞

(∫
X
fnk

ψ dx

)
=

∫
X
ψ dδx̂(x).

Uniqueness of g, and thus g = gx̂, then follows from uniqueness of the zero solution to

(A.2.1) with RHS f ≡ 0 ∈ C∞(X) according to Proposition A.2.2.
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B
Transformations on the Sphere

This section collects several transformations and their characteristics that were used during

Chapter 4. In Appendix B.1, the stereographic projection is explained in more detail and

its Jacobi determinant is derived. Then, in Appendix B.2, the behaviour of transformation

T w
a as applied in the proof of Lemma 4.8 is investigated.

B.1. Stereographic projection

The stereographic projection PN is a well established tool from differential geometry [Spi75,

Cox69] that projects the sphere Sd−1\{N} in Rd, with exception of the north pole N =

(0, ..., 1)T , onto Rd−1 bijectively for d = 2, 3. Every point v = (v1, ..., vd) ∈ Sd−1\{N}
is projected onto the unique intersection of the line through N and v, with the plane at

vd = 0, as displayed in Figure B.1.1 in 2D.

N

v

0 PN (v)

Figure B.1.1.: Stereographic projection in 2D.

An explicit formula for PN in Cartesian coordinates reads

PN (v) = ( v1
1−vd

, ...,
vd−1

1−vd
)T .

The stereographic projection can also be defined for another point w ∈ Sd−1 than the

north pole by setting Pw(v) = PN (Rwv) for v ∈ Sd−1\{w}, where Rw is a fixed rotation

that maps w onto N .



2. Transformations on the Sphere

In Section 4.2, the stereographic projection is used to define closeness of points on

the sphere. A change of variables via Pw requires its bijectivity and its absolute Jacobi

determinant.

Lemma B.1.1 (Stereographic Projection).

a) The stereographic projection Pw : Sd−1\{w} → Rd−1 for a fixed w ∈ Sd−1 is smooth and

bijective. Its image has norm ∥Pw(v)∥2 = 1+⟨v,w⟩
1−⟨v,w⟩ and its absolute Jacobi determinant

is given by

jPw(v) =
1

(1 − ⟨v, w⟩)d−1
.

b) Its inverse P−1
w : Rd−1 → Sd−1\{w} is smooth and reads P−1

w (y) = R−1
w · ((P−1

N (y))i)
d
i=1,

with

(P−1
N (y))i =


2yi

1+y21+...+y2d−1
, i = 1, ..., d− 1,

−1+y21+...+y2d−1

1+y21+...+y2d−1
, i = d

.

For λ ∈ R it satisfies P−1
w (λy) = −w + λvλ(y) for some vλ(y) ∈ Rd that is bounded

independently of λ by ∥vλ(y)∥ ≤ 2∥y∥.

The proof of this lemma is an easy calculation exercise. It is displayed for the sake of

completeness.

Proof. Bijectivity follows from the existence of a well-defined inverse. Smoothness of Pw

and its inverse is a result of smoothness of the entries, because the denominator cannot

vanish, as

(Rv)d = ⟨Rv,N⟩ = ⟨Rv,Rw⟩ = ⟨v, w⟩ ≠ 1 (B.1.1)

for v ∈ Sd−1\{w}.

a) Using Rwv ∈ Sd−1 and thus
∑d

i=1(Rwv)2i = 1, as R is a rotation matrix and thus an

isometry, the formula for the norm of the image follows from (B.1.1)

∥Pw(v)∥2 =

d−1∑
i=1

(Rwv)2i
(1 − (Rwv)d)2

=
1 − (Rwv)2d

(1 − (Rwv)d)2
=

1 + ⟨v, w⟩
1 − ⟨v, w⟩

To compute the absolute Jacobi determinant, we use polar or spherical coordinates.

� In 2D, a change to polar coordinates gives PN (ϕ) = cos(ϕ)
1−sin(ϕ) and therefore the

polar coordinate Jacobi determinant

∂ϕPN (ϕ) =
− sin(ϕ)(1 − sin(ϕ)) + cos2(ϕ)

(1 − sin(ϕ))2
=

1

1 − sin(ϕ)

and with the relation

jPN
(v) dv = jPN

(v(ϕ)) dϕ =
1

1 − v2(ϕ)
dϕ,

one obtains jPN
(v) = 1

1−v2
.
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� In 3D, the relation

jPN
(v) dv = jPN

(v(ϕ, θ)) sin(θ) d(ϕ, θ) = | detDϕ,θ[PN (v(ϕ, θ)]|d(ϕ, θ)

describes the change of variables to spherical coordinates v(ϕ, θ) =

(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))T . With

detDϕ,θ[PN (v(ϕ, θ)] = detDϕ,θ

[(
sin(θ) cos(ϕ)
1−cos(θ) , sin(θ) sin(ϕ)1−cos(θ)

)T]

= det

− sin(θ) sin(ϕ)
1−cos(θ)

− cos(ϕ)
1−cos(θ)

cos(ϕ) sin(θ)
1−cos(θ)

− sin(ϕ)
1−cos(θ)

 =
sin(θ)

(1 − cos(θ))2
=

sin(θ)

(1 − v3(ϕ, θ))2

one obtains jPN
(v) = 1

(1−v3)2
.

In summary, jPN
(v) = 1

(1−vd)d−1 for d ∈ {2, 3}. For the stereographic projection from

a general w ∈ Sd−1 one then has

j
(d)
Pw

(v) = | det(D[PN ](Rwv)Rw)| = |det(D[PN ](Rwv)) det(Rw)| = jPN
(Rwv)

= 1
(1−(Rwv)d)d−1 ,

given that the determinant of a rotation matrix is ±1. The given formula arises when

inserting (Rv)d = ⟨v, w⟩.

b) Using the explicit formula for P−1
−vin

, one sees that

P−1
w (λy) = R−1

w

((
2λyi

1+λ2
∑d−1

i=1 y2i

)
i=1,...,d−1

,
−1+λ2

∑d−1
i=1 y2i

1+λ2
∑d−1

i=1 y2i

)T

= R−1
w

−N +

((
2λyi

1+λ2
∑d−1

i=1 y2i

)
i=1,...,d−1

,
2λ2

∑d−1
i=1 y2i

1+λ2
∑d−1

i=1 y2i

)T
 = −w + λvλ(y),

by linearity of the inverse R−1
w of the rotation matrix Rw that maps w 7→ N and thus

R−1
w (N) = w. Moreover,

vλ(y) := R−1
w

((
2yi

1+λ2
∑d−1

i=1 y2i

)
i=1,...,d−1

,
2λ

∑d−1
i=1 y2i

1+λ2
∑d−1

i=1 y2i

)T

is bounded by 2∥y∥ independently of λ, since R−1
w is an isometry and thus

∥vλ(y)∥2 =

d−1∑
i=1

4y2i
(1+λ2

∑d−1
i=1 y2i )

2
+

4λ2(
∑d−1

i=1 y2i )
2

(1+λ2
∑d−1

i=1 y2i )
2

=
4
∑d−1

i=1 y2i
1+λ2

∑d−1
i=1 y2i

≤ 4∥y∥2.
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B.2. On the transformation T w
a

In the d ∈ {2, 3}-dimensional setting, let a constant t′ > 0 as well as a w ∈ Sd−1 and a ∈ Rd

be given and consider the map T w
a : [0, t′] × Sd−1 → Rd, (s, v) 7→ a − s(v − w). It first

transforms the points by Sw : (s, v) 7→ s(v − w) and afterwards applies a point reflection

at the origin and a shift by a. Obviously, all points (s, w) as well as all points (0, v) are

mapped to a. Excluding these points from the domain, however, one obtains an injective

map that maps inner points onto inner points. The behaviour of T w
a is summarized by

the following lemma, and can be understood when considering Figure B.2.1 that focuses

on the first transformation Sw.

Lemma B.2.1. Fix t′ > 0 and w ∈ Sd−1 and a ∈ Rd.

a) For all c1 ∈ (0, t′) and c2 ∈ (0, 1), the map T w
a : U → Sw(U), (s, v) 7→ a − s(v − w)

defined on U := [c1, t
′]×{v ∈ Sd−1 | ⟨v, w⟩ ≤ 1−c2} is bijective with continuous inverse

(T w
a )−1(z) = (ζ, ω)(z) =

(
∥a− z∥2

2| ⟨a− z, w⟩ |
, w +

a− z

ζ(z)

)
, z ∈ T w

a (U). (B.2.1)

and absolute Jacobi determinant jT w
a

(s, v) = sd−1(1 − ⟨v, w⟩).

b) Furthermore, let (ŝ = λt′, ŵ) ∈ (0, t′) × Sd−1\{w} be arbitrary with 1 > λ > 0 and let

a = ŝ(ŵ − w). If c1 = ĉ1t
′ for a ĉ1 < λ and c2 < λ(1 − ⟨ŵ, w⟩), then there exists a

µ = µ(w, ŵ, λ, ĉ1, c2) that does not depend on t′ such that the ball B(0, µt′) around the

origin with radius of order t′ is contained in T w
a (U).

0 w

ŵc1t′

(a) Sliced annulus A.

0

−wt′t′ c1

(b) Perturbation of U by Sw.

Figure B.2.1.: Transformation Sw in 2D:

(a) For any point ŝŵ (red) in the interior of the sliced annulus A = {sv | (s, v) ∈ U}
(gray), a neighbourhood in A in form of a slice of the annulus (yellow, dotted) can be

constructed as the area between the arches of two circles.

(b) In the image of U by Sw (gray), each point in vs ∈ A is translated by −ws. The image

of the yellow dotted slice of A (again yellow dotted) is bounded by the same arches of the

circles, whose centres are shifted in direction −w by the amount of the radius such that

they touch 0 at angle w. It contains the image Sw(ŝ, ŵ) (red) as an interior point, as well

as a ball around â whose boundary is depicted by the red circle. The radius of the circle

can be chosen as a fixed fraction µt′.
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a

Proof. a) The inverse (B.2.1) is well defined, since for every z = a − s(v − w) ∈ T w
a (U),

the denominators are positive due to

| ⟨a− z, w⟩ | = s(1 − ⟨v, w⟩) ≥ c1(1 − (1 − c2)) = c1c2 > 0, and

∥a− z∥2 = s2(2 − 2 ⟨v, w⟩) ≥ 2c21c2 > 0.

This also assures continuity of ζ, ω. Bijectivity thus follows from the existence of an

inverse. In order to compute the absolute Jacobi determinant jT w
a

, in 3D a change to

spherical coordinates ϕ, θ with v(ϕ, θ) = (sin θ cosϕ, sin θ sinϕ, cos θ)T yields

j
(3)
T w
a

(s, v) ds dv = j
(3)
T w
a

(s, v(ϕ, θ)) sin(θ) ds d(ϕ, θ) = |detDs,ϕ,θ[T w
a (s, v(ϕ, θ))]| ds d(ϕ, θ),

where the Jacobi matrix of T w
a (s, v(ϕ, θ)) w.r.t. s, ϕ, θ is given by

Ds,ϕ,θ[T w
a (s, v(ϕ, θ))] =


w1 − sin θ cosϕ s sin θ sinϕ −s cos θ cosϕ

w2 − sin θ sinϕ −s sin θ cosϕ −s cos θ sinϕ

w3 − cos θ 0 s sin θ


and has determinant

detDs,ϕ,θ[T w
a (s, v(ϕ, θ))] = − sin θs2 ⟨v(ϕ, θ) − w, v(ϕ, θ)⟩ = − sin θs2(1 − ⟨w, v(ϕ, θ)⟩).

In 2D, polar coordinates v(ϕ) = (cosϕ, sinϕ) similarly give

j
(2)
T w
a

(s, v) ds dv = j
(2)
T w
a

(s, v(ϕ)) ds dϕ = |detDs,ϕ[T w
a (s, v(ϕ))]| ds dϕ

=

∣∣∣∣∣det

(
w1 − cosϕ s sinϕ

w2 − sinϕ −s cosϕ

)∣∣∣∣∣ ds dϕ = s ⟨v(ϕ) − w, v(ϕ)⟩ ds dϕ

= s(1 − ⟨w, v(ϕ)⟩) ds dϕ.

b) To prove the last assertion, let ŝ = λt′, ŵ, a, c1 and c2 be as in the Lemma. Consider

an element z ∈ B(0, µt′) with µ := min(δ∥a/t′∥, δ| ⟨a/t′, w⟩ |, λ(1 − ⟨ŵ, w⟩) − c2) for

some 1 > δ > 0 such that

λ
(1 − δ)2

1 + δ
≥ ĉ1, λ

(1 + δ)2

1 − δ
≤ 1.

Such δ exists due to the monotone convergence of (1−δ)2

1+δ , (1+δ)2

1−δ to 1 and the restriction

on ĉ1. The definition of a shows that a/t′ is in fact independent of t′ and therefore, so

is µ. Our aim is now to show that the preimage of z by ζ, ω is contained in U . Using
∥a∥2

2|⟨a,w⟩| = λt′ and the (reverse) triangle inequality as well as the Cauchy-Schwartz

inequality, one has

ζ(z) =
∥a− z∥2

2| ⟨a− z, w⟩ |
≥ (∥a∥ − ∥z∥)2

2(| ⟨a,w⟩ | + | ⟨z, w⟩ |)
≥ (∥a∥ − µt′)2

2(| ⟨a,w⟩ | + µt′)

≥ ∥a∥2

2| ⟨a,w⟩ |
(1 − δ)2

1 + δ
= λt′

(1 − δ)2

1 + δ
≥ c1,

ζ(z) ≤ (∥a∥ + ∥z∥)2

2(| ⟨a,w⟩ | − | ⟨z, w⟩ |)
≤ (∥a∥ + µt′)2

2(| ⟨a,w⟩ | − µt′)
≤ ∥a∥2

2| ⟨a,w⟩ |
(1 + δ)2

1 − δ
≤ t′.
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Moreover, by definition of ζ, ω in (B.2.1), it holds that

∥ω(z)∥2=
∥∥∥w + 2|⟨w, a−z

∥a−z∥⟩|
a−z

∥a−z∥

∥∥∥2=1 + 4|⟨w, a−z
∥a−z∥⟩|

2
(

sgn(⟨w, a−z
∥a−z∥⟩) + 1

)
=1,

where sgn(x) denotes the sign of a quantity x. It is negative for the considered scalar

product, since

⟨a− z, w⟩ = ⟨a,w⟩ − ⟨z, w⟩ ≤ t′λ̂ ⟨ŵ − w,w⟩ + µt′ = t′(µ− λ̂(1 − ⟨ŵ, w⟩)) ≤ −t′c2 < 0

by the Cauchy-Schwartz inequality and the definition of µ. Finally, the above as well

as the bound ζ(z) ≤ t′ show

⟨ω(z), w⟩ =
〈
w + a−z

ζ(z) , w
〉

= 1 + 1
ζ(z) ⟨w, a− z⟩ ≤ 1 +

−c2t′

t′
= 1 − c2.

This shows that (ζ(z), ω(z)) ∈ U .
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C
Numerical Schemes for PDE Discretization

This chapter introduces numerical schemes to discretize the PDEs that we encountered

during the main part. For the kinetic equations, a simple finite difference scheme will be

laid out in Appendix C.1, whereas Appendix C.2 displays the finite element schemes that

were used for the elliptic stationary Schrödinger equation.

C.1. Finite Difference Schemes for Transport Equations

This section starts with a brief overview over the central concepts of accuracy, stability

and convergence for finite difference schemes. After motivating the derivation of the Lax

Wendroff scheme, the schemes for discretizing the forward and adjoint kinetic chemotaxis

equations (Ch) and (6.2) are derived. For more detailed introductions to numerics of

PDEs, the reader is referred to literature, for instance [LL92, Str04].

C.1.1. Review on Properties of Numerical Schemes.

Fundamental properties of numerical schemes are their capability to approximate the

original PDE, computability in the sense that errors do not propagate in an uncontrolled

fashion and make the solution explode, as well as the convergence of their solutions to the

PDE solution. In the following, denote the PDE by

Pu = 0 on (0, T ] ×X, (C.1.1)

for some spatial domain X ⊂ Rd, and let it be complemented by suitable initial and

boundary conditions. Finite difference schemes rely on a pointewise discretization of the

domain [0, T ] ×X.

Space-time Discretization. After grid sizes κ > 0, τ > 0 for spatial and temporal domain

have been fixed, the computational domain [0, T ]×X of a space and time dependent PDE



3. Numerical Schemes for PDE Discretization

(C.1.1) can be discretized to T× X, where X := {X ∋ xm = κ
∑d

i=1miei | m = (mi)i ∈ Zd}
denotes a set of equidistant points in space, described by the linear combinations of unit

vectors ei ∈ Rd with entries (ei)j = 1i(j), and the temporal equidistant grid T := {tn =

nτ | n ∈ {0, 1, ..., ⌊Tτ ⌋ = N}}.

One Step Schemes. In the following, denote by Pτ,κ the numerical one-step update

scheme u(tn+1) = Pκ,τu(tn) defined on the space-time grid T×X with time step size τ > 0

and spatial step size κ > 0, corresponding to the PDE (C.1.1) with solution u.

Accuracy. The order of accuracy of a numerical scheme measures how well it approxi-

mates the temporal update through the evolution equation, in relation to the time step

size τ .

Definition C.1.1 ([LL92, Str04]). Assume that u is smooth and define the local trun-

cation error as Eτ,κ(t, x) :=
u(t+τ,x)−Pτ,κu(t,x)

τ . Then the numerical scheme is called

consistent, if ∥Eκ,τ (t)∥ → 0 for all t ∈ T in a suitable norm (typically the discrete L1(X)

or L2(X) norm) as τ, κ → 0, and accurate of order p in time and q in space, if for any

smooth solution u(t, x), corresponding to a compactly supported initial condition u0, one

has ∥Eκ,τ (t)∥ = O(τp) + O(κq). Accurate schemes with orders p, q ≥ 1 are consistent.

Stability. Numerical stability ensures that errors, introduces for instance by rounding

values to computer precision, do not accumulate over time in an uncontrolled fashion

which might eventually dominate the true behaviour of the solution. Through bounding

the operator norm of Pnτ,κ, one can ensured that errors, that have been introduced in the

initial condition and propagated by the scheme up to time tn, stay bounded and the

computation does not diverge.

Definition C.1.2 ([LL92, Str04]). A numerical time update scheme Pτ,κ is stable in a

stability region Λ, if for every time T > 0, there exists a constant CT such ∥Pnτ,κ∥ ≤ CT

for all nτ ≤ T with τ, κ ∈ Λ, where ∥ · ∥ again refers to a suitable operator norm.

Convergence. Ideally, the numerical solution should converge to the true solution point

wise, as the grid size becomes arbitrarily small.

Definition C.1.3 ([Str04]). A numerical scheme u(tn+1, x) = Pτ,κu(tn, x) for the PDE

(C.1.1) is convergent, if the numerical solution u(tn, xm) → u(t, x) for (tn, xm) → (t, x)

and u0(xm) → u0(x) as τ, κ→ 0.

For finite difference schemes that are linear in the previous time solution, the above

properties are linked.

Theorem C.1.4 (Lax-Richtmyer Equivalence Theorem [LR05]). A consistent and linear

finite difference scheme corresponding to a well-posed initial value problem is convergent

if and only if it is stable.
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C.1.2. The Lax Wendroff Scheme

The Lax Wendroff scheme [LW64] is a second order finite difference scheme for the advec-

tion equation in Rd with constant velocity v

∂tu+ v · ∇xu = 0 with initial data u(t = 0) = u0. (C.1.2)

It updates point values of the solution on the space grid, based on the Taylor approximation

u(t+ τ, x) = u(t, x) + τ∂tu(t, x) +
τ2

2
∂ttu(t, x) + O(τ3) (C.1.3)

for sufficiently regular u. Using (C.1.2), the time derivatives can be exchanged for spatial

derivatives

∂tu(t, x) = −v · ∇xu = −
d∑

i=1

vi∂xiu, and ∂ttu(t, x) = (−v · ∇x)2u =
d∑

i,j=1

vivj∂xixju.

The spatial derivatives can then be approximated by centered finite differences according

to the Taylor expansion

∂xiu(t, x) = u(t,x+κei)−u(t,x−κei)
2κ + O(κ2) =: dκxi

u(t, x) + O(κ2),

∂xixiu(t, x) = u(t,x+κei)−2u(t,x)+u(t,x−κei)
κ2 + O(κ2) =: dκxixi

u(t, x) + O(κ2), for i ∈ {1, ..., d},

∂xixju(t, x) =
u(t,x+κ(ei+ej))−u(t,x+κ(ei−ej))−u(t,x+κ(ej−ei))+u(t,x−κ(ei+ej))

(2κ)2
+ O(κ2)

=: dκxixj
u(t, x) + O(κ2), for i ̸= j.

If one considers points x = x ∈ X and t = tn ∈ T on the grid and neglects higher order

terms, then the computations involve only values of u on neighbouring grid points at the

previous time tn to update to u(tn+1, x). Inserting the approximations into (C.1.3) then

yields the Lax Wendroff time update formula for the point values on the grid

u(tn+1, x) = u(tn, x) − τ
d∑

i=1

vid
κ
xi
u(tn, x) +

τ2

2

d∑
i,j=1

vivjd
κ
xixj

u(tn, x) =: PLWκ,τ ;vu(tn, x),

(C.1.4)

where u denotes the numerical solution and PLWκ,τ ;v : u(tn) 7→ u(tn+1) the one step finite

difference update operator with velocity v. The scheme can be used to propagate an initial

condition u0(x) = u0(x) through the time grid to obtain the solution on every space time

grid point in T× X.

Properties of the Lax Wendroff Scheme. The above derivations show that the local

truncaiton error is or order τ−1(u(t + τ) − PLWτ,κ;vu(t)) = O(κ2) +O(τ2) in L2(X), because

the order of approximation of the spatial derivatives by finite differences holds uniformly

in x for sufficiently smooth and compactly supported u by Taylor’s theorem. An obvious

extension of the original proof by Lax and Wendroff [LW64] in two space dimensions

provides stability of scheme (C.1.4) in general space dimension d and the Lax-Richtmyer

theorem provides convergence.
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Lemma C.1.5 ([LW64]). The Lax Wendroff scheme (C.1.4) for the advection equation

(C.1.2) is consistent, second order accurate in space and time, and stable in the discrete

L2(X) norm if for τ
κ maxi |vi| ≤ d−3/2 in which case ∥PLWτ,κ;v∥ ≤ 1. Fixing the ratio τ = λκ

that satisfies the stability condition, the scheme is convergent for κ→ 0.

C.1.3. Finite Difference Schemes for the Forward and Adjoint Chemotaxis
Equations

In order to apply a Lax Wendroff type scheme to numerically compute solutions to the

forward and adjoint equations, a discretized velocity space is considered that turns the

kinetic PDEs into a system of coupled transport equations. Note that no discretization is

necessary in spatial dimension d = 1, with velocity space V = {±1}, where the forward

and adjoint models (Ch), (6.2) can be regarded as a two-species model.

In higher dimensions d = 2 the choice of the admissible set Apwc
K in (5.28) proposes the

use of the discrete ordinate method (SN ) to discretize the velocity space V = S1.

Discrete Ordinates Velocity Discretization for d = 2. The discrete ordinate method is

based on a quadrature rule of the velocity integral, and the solution is only computed at

the quadrature velocities, and only those values of the tumbling kernel at the quadrature

velocities enter the further computation.

The method thus nicely aligns with the piecewise constant in velocity tumbling kernels

prescribed by Apwc
K : by choosing a simple quadrature rule based on an equidistant step

function representation of the integral in polar coordinates, the quadrature points can be

set to V = {vj = (cos(2πj(Nv), sin(2πj/Nv)) | j = 0, ..., Nv − 1}, the middle points of the

segments Sj defined by the admissible set Apwc
K , and the coefficient values Kj,i

r correspond

to the values of K at the quadrature velocities vj , vi. Weights are uniformly set to |V |/Nv.

The method then exchanges every integral in v by the quadrature rule, and computes the

solution only in the quadrature points on V. This transforms (Ch), and analogously (6.2),

into a system of transport equations for the densities corresponding to the quadrature

velocities v that are coupled through the discretized tumbling operator on the right hand

side, and can be regarded as a multi-species model:

∂tf(t, x, v) + v · ∇xf(t, x, v) =
|V |
Nv

∑
v′∈V

K(x, v, v′)f(t, x, v′) −K(x, v′, v)f(t, x, v) (C.1.5)

=:K(f(t, x)), and

−∂tg(t, x, v) − v · ∇xg(t, x, v) =
|V |
Nv

∑
v′∈V

K(x, v′, v)(g(t, x, v′) − g(t, x, v)) (C.1.6)

− 1

L

L∑
l=0

(Ml(f) − yl)µl(t, x),

=:K⋆(g(t, x)) − 1

L

L∑
l=0

(Ml(f) − yl)µl(t, x),
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where K,K⋆ and Ml(f) :=
∫ T
0

∫
Rd

|V |
Nv

∑
v′∈V f(t, x, v′)µl(t, x) dx dt describe the discrete ve-

locity forward and adjoint tumbling operators and measurement operator, respectively.

Initial and final data f(t = 0, x, v) = ϕ(x, v) and g(t = T, x, v) = 0 are defined point wise

in velocity.

Remark C.1.6. An alternative approach to discretize the velocity space is given by the

spherical harmonics (PN ) method that works with an expansion of the function into finitely

many basis functions on the sphere. This non local discretization seems less suited for the

purpose of this work, given that a spherical harmonics expansion form of the locally

discretized tumbling kernel K ∈ Apwc
K would have to be constructed for the computation,

introducing an additional level of error. For more details on the PN and SN methods, the

reader is referred to [Cha50, LM84, Pom73].

Finite Difference Schemes for the Forward and Adjoint Equation. The Lax Wendroff

scheme can be extended to deal with the systems for velocity discretized forward and

adjoint equations (C.1.5) and (C.1.6). We propose a scheme that uses a Lax Wendroff dis-

cretization for the transport part and, for simplicity, treats the discrete tumbling operators

and source terms explicitly:

f(tn+1, x, v) = PLWτ,κ;vf(tn, x, v) + τK(f)(tn, x, v) =: Pchemτ,κ f(tn, x, v), (C.1.7)

g(tn−1, x, v) = PLWτ,κ;−vg(tn, x, v) + τK⋆(g)(tn, x, v) + τm(tn, x, v) =: Padjτ,κg(tn, x, v),

(C.1.8)

for all x ∈ X, v ∈ V and n < N in the forward scheme (C.1.7) and n > 0 in the backward

adjoint scheme (C.1.8). The discretized source term reads m(tn, x, v) = 1
L

∑
l=1 L(Ml(f) −

yl)µ(tn, x) where Ml(f) = |V |
τκNv

∑
n,m,j f(tn, xm, vj)µl(t

n, xm) now denotes the fully dis-

crete analogon to the measurement operator Ml. Boundary conditions are neglected, as

computations will involve only compactly supported initial data, and the computational

domain can be chosen large enough such that its boundary will not be reached, according

to Lemma A.1.5. This yields consistent, stable and convergent schemes.

Proposition C.1.7. Let K ∈ Afin
K . Then the proposed schemes (C.1.7), (C.1.8) to numer-

ically approximate the velocity discrete forward and adjoint chemotaxis equation (C.1.5)

and (C.1.6) are accurate of order 1 in time and 2 in space, and therefore consistent in the

discrete L2(X×V) norm. Furthermore, they are stable for τ/κ ≤ d−3/2. If a ratio of τ and

κ that satisfies the constraint is fixed, then they are convergent as κ→ 0.

Proof. The proof only refers to the forward scheme (C.1.7). The result for the adjoint

scheme (C.1.8) follows analogously.

Accuracy. For smooth f the Taylor theorem provides

f(t + τ, x, v) − PLWτ,κ f(t, x, v) − τK(f)(t, x, v)

τ

=
τ

2

∂ttf(t, x, v) −
d∑

i,j=1

vivjd
κ
xixj

f(t, x, v)

+ O(τ2) + O(κ2)

=
τ

2
(−v · ∇xK(f) + K(−v∇xf + K(f))) + O(τ2) + O(κ2) = O(τ) + O(κ2),
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and thus consistency of the scheme. In the second to last line, a twofold application of

(Ch) showed

∂ttf = −v · ∇x(∂tf) + K(∂tf) = (v · ∇x)2f − v · ∇xK(f) + K(−v · ∇xf + K(f)).

Stability is given, because the scheme is derived from the Lax Wendroff scheme under

addition of a bounded in norm linear operator K with L2(X × V) operator norm ∥K∥ ≤
2CK |V |[Str04, Corollary 2.2.2]. In particular,

∥(Pchemτ,κ )n∥ ≤ ∥Pchemτ,κ ∥n ≤ (1 + 2CK |V |τ)n ≤ e2CK |V |τn ≤ e2CK |V |T .

Convergence is provided by the Lax-Richtmyer theorem.

One order of accuracy in time is lost in comparison to the Lax Wendroff scheme due to

the first order in time explicit treatment of the tumbling operator, as can be observed by

the fact that the tumbling part in the second order in time derivative is not taken care of.

C.2. Finite Element Scheme for the Stationary Schrödinger

Equation.

In the following, a Ritz-Galerkin method with nodal basis will be applied to discretize the

forward and adjoint Schrödinger equation (8.9) and (8.13). For an exhaustive introduction

to finite element methods, the reader is referred to standard literature, such as [Cia02,

Red93, Log11, SF97].

Weak formulation. The finite element approach is based on the weak formulations of

the equations that, in analogy to (A.2.2) and (A.2.3), read

⟨∇up,∇ϕ⟩L2(X) + ⟨pup, ϕ⟩L2(X) = ⟨γ, ϕ⟩L2(X) , (C.2.1)

−⟨gx̂,∆ψ⟩L1(X),L∞(X) + ⟨pgx̂, ψ⟩L1(X),L∞(X) = −ψ(x̂) (C.2.2)

for test functions ϕ ∈ H1
0 (X) and ψ ∈ Cc ∩W 2,∞(X), where ⟨·, ·⟩L1(X),L∞(X) denotes the

L1(X), L∞(X) duality bracket.

Ritz Approximation. After choosing a finite set of basis elements {ϕn}Nn=1 of the solution

spaces H1
0 (X) and L1(X), the method then searches for the solution to the equation in

the finite dimensional subspace VN generated by this basis. This is achieved by expanding

the solutions up(x) =
∑

n u
(n)ϕn(x), gx̂(x) =

∑
n g

(n)ϕn(x) and testing (C.2.1) and (C.2.2)

with ϕ = ψ = ϕm, respectively, which yields the linear system

Su⃗ = F⃗ ,

Sg⃗ = G⃗,
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where u⃗ = (u(n))Nn=1 and g⃗ = (g(n))Nn=1 collect the coefficients of up and gx̂, the stiff-

ness matrix S = (Smn)Nm,n=1 is given by Smn = ⟨∇ϕm,∇ϕn⟩ + ⟨pϕm, ϕn⟩ - assuming

sufficient smoothness of the basis elements - and the loads are F⃗ = (⟨γ, ϕm⟩)Nm=1 and

G⃗ = (−ϕm(x̂))Nm=1. The linear systems can be solved by inverting S.

Accuracy. Cea’s lemma [Cia02, Thm.2.4.1] bounds the approximation error of the finite

element solutions up, gx̂ at order of the projection error of u ∈ H1
0 (X), gx ∈ L1(X) over

VN , the subspace generated by the chosen basis, stating that accuracy of the scheme is

solely determined by the choice of the basis.

Choice of Basis. To ensure compatibility of the forward and adjoint computation in the

”first optimize, then discretize” setting, we use the same basis will be used for up and gx̂.

A nodal basis will be deployed. It is based on a discretization of the computational space

by an equidistant Cartesian grid X = {xn}(Nx+1)2

n=1 with Nx ∈ N cells in every direction and

a criss triangulation that connects the lower left vertex with the upper right one in every

grid cell. The nodal basis functions ϕn for interior points xn ∈ X \ ∂X are then defined as

the unique piece wise linear functions that attain values 1 in xn and 0 in xm for m ̸= n, i.e.

ϕn(xm) = 1{n}(m). Because boundary points are excluded due to the vanishing boundary

condition, N = (Nx − 1)2 basis functions are considered, and w.l.o.g. they are numbered

from 1 to N .

Computational aspects. Because computing the gradient ∇pup(x̂) requires repeated

solves of the adjoint equation, it makes sense to prepared the stiffness matrix beforehand

and store it. Analytic forms of the nodal basis elements can be leveraged.

If p changes, for instance due to updating through an adaptive version of the design

sampling method, certain parts of the p dependent stiffness matrix can still be pre-

computed: By the prescribed form of p ∈ Ap in (8.11), the scalar products in Smn =

⟨∇ϕm,∇ϕn⟩ +
∑

q pq ⟨bqϕm, ϕn⟩ can be precomputed and the new stiffness matrix can be

reassembled through cheap matrix summation.
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Glossary of Abbreviations

a.a. almost all. 40, 61, 161, 163

a.e. almost every. 40, 163

a.e.w. almost everywhere. 19, 38, 40, 163

CBS Consensus Based Sampler. 13–15, 136, 138, 141–144, 146–149

E.coli Escherichia coli. 36, 37, 43, 46, 48

e.g. for example. 5, 12, 17, 27, 28, 35, 37, 44, 46, 49, 53, 70, 84, 137, 160

e.t.c. et cetera. 36

EKS Ensemble Kalman Sampler. 13, 136, 138, 141–144, 146–149

FD finite difference. 25

FEM finite element. 25

i.e. that is. 2, 6–8, 10, 11, 13–17, 19–22, 29, 30, 40, 42, 47, 51, 60, 74, 79, 80, 82, 85, 87,

88, 92, 93, 105, 106, 116, 125, 131–133, 137, 161, 163, 165, 169, 183

i.i.d. independent and identically distributed. 13–15, 30, 41, 127, 129, 133, 134

IVP initial value problem. 40

LHS left-hand side. 38

MAP maximum a-posteriori point. 11, 15, 17, 30, 148

MCMC Markov Chain Monte Carlo. 12, 24, 25, 135, 136

ODE ordinary differential equation. 1, 18, 22–26, 54

PDE partial differential equation. 1, 2, 6, 7, 12, 20, 24–27, 31, 35, 38, 39, 42, 43, 50, 53,

55, 82, 103, 131, 135, 137, 164, 167, 177, 178, 180

PKS Patlak-Keller-Segel. 43, 44, 48, 49, 120
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RHS right-hand side. 15, 38, 39, 53, 129, 132, 134, 168, 169

RNLA Randomized Numerical Linear Algebra. 125, 126, 128, 147, 154

SDE stochastic differential equation. 13, 14, 28, 41–43, 48

w.l.o.g. without loss of generality. 89, 183

w.r.t. with respect to. 1, 3, 7, 8, 11–13, 18–21, 28, 50, 52, 70, 72–75, 79, 81, 91, 93–95,

104, 110, 112, 120, 121, 131–133, 141, 143, 144, 147, 148, 162, 164, 165, 175
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gasmolekülen, volume 66. Aus der kk Hot-und Staatsdruckerei, 1872.

[Bre11] H Brezis. Functional Analysis, Sobolev Spaces and Partial Differential

Equations. Springer Science & Business Media, 2011.

[BRH13] Nawaf Bou-Rabee and Martin Hairer. Nonasymptotic mixing of the MALA

algorithm. IMA Journal of Numerical Analysis, 33(1):80–110, 2013.

[BRK01] Roland Brun, Peter Reichert, and Hans R Künsch. Practical identifiabi-
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timal experimental design for seismic source inversion. Computer Methods

in Applied Mechanics and Engineering, 291:123–145, 2015.

[LNJ18] Seongjin Lim, Hyeono Nam, and Jessie S Jeon. Chemotaxis model

for breast cancer cells based on signal/noise ratio. Biophysical journal,

115(10):2034–2043, 2018.

[LNW22] Qin Li, Kit Newton, and Li Wang. Bayesian instability of optical imaging:

Ill conditioning of inverse linear and nonlinear radiative transfer equation

in the fluid regime. Computation, 10(2):15, 2022.

[LO23] Li Li and Zhimeng Ouyang. Determining the collision kernel in the

boltzmann equation near the equilibrium. Proceedings of the American

Mathematical Society, 151(11):4855–4865, 2023.

[Log11] Daryl L Logan. A first course in the finite element method, volume 4.

Thomson, 2011.

[LPP+19] Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz,

Michael I Jordan, and Benjamin Recht. First-order methods almost al-

ways avoid strict saddle points. Mathematical programming, 176:311–337,

2019.

[LR05] Peter D Lax and Robert D Richtmyer. Survey of the stability of linear

finite difference equations. In Selected Papers Volume I, pages 125–151.

Springer, 2005.

[LS82] Kenneth R Lutchen and Gerald M Saidel. Sensitivity analysis and experi-

mental design techniques: application to nonlinear, dynamic lung models.

Computers and Biomedical Research, 15(5):434–454, 1982.

205

https://doi.org/10.1016/j.spa.2020.10.005
https://doi.org/10.1016/j.spa.2020.10.005


BIBLIOGRAPHY

[LS20] Qin Li and Weiran Sun. Applications of kinetic tools to inverse trans-

port problems. Inverse Problems, 36(3):035011, Feb 2020. doi:10.1088/

1361-6420/ab59b8.

[LSM+24] Yue Liu, Kevin Suh, Philip K Maini, Daniel J Cohen, and Ruth E Baker.

Parameter identifiability and model selection for partial differential equa-

tion models of cell invasion. Journal of the Royal Society Interface,

21(212):20230607, 2024. doi:10.1098/rsif.2023.0607.
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eter identifiability of nonlinear systems: the role of initial conditions.

Automatica, 39(4):619–632, 2003.

[SBVM20] Matthew J Simpson, Ruth E Baker, Sean T Vittadello, and Oliver J Ma-

claren. Practical parameter identifiability for spatio-temporal models of

212

https://doi.org/10.2307/1913267
https://doi.org/10.2307/1913267
http://www.jstor.org/stable/3318418
https://doi.org/10.1088/1367-2630/aae72c
https://doi.org/10.1088/1367-2630/aae72c


BIBLIOGRAPHY

cell invasion. Journal of the Royal Society Interface, 17(164):20200055,

2020.

[SCB+10] Jonathan Saragosti, Vincent Calvez, Nikolaos Bournaveas, Axel Buguin,
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