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NUMERICAL RECONSTRUCTION OF THE KINETIC
CHEMOTAXIS KERNEL FROM MACROSCOPIC

MEASUREMENTS, WELLPOSEDNESS AND ILLPOSEDNESS

KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG, QIN LI, AND MIN TANG

Abstract. Directed bacterial motion due to external stimuli (chemotaxis)
can, on the mesoscopic phase space, be described by a velocity change param-
eter K. The numerical reconstruction for K from experimental data provides
useful insights and plays a crucial role in model fitting, verification and predic-
tion. In this article, the PDE-constrained optimization framework is deployed
to perform the reconstruction of K from velocity-averaged, localized data taken
in the interior of a 1D domain. Depending on the data preparation and ex-
perimental setup, this problem can either be well- or ill-posed. We analyze
these situations, and propose a very specific design that guarantees local con-
vergence. The design is adapted to the discretization of K and decouples the
reconstruction of local values into smaller cell problem, opening up opportuni-
ties for parallelization. We further provide numerical evidence as a showcase
for the theoretical results.

1. Introduction

Kinetic chemotaxis equation is one of the classical equations describing the col-
lective behavior of bacteria motion. Presented on the phase space, the equation
describes the “run-and-tumble” bacteria motion. The solution f(t, x, v) represents
the density of bacteria at any given time t for any location x moving with velocity
v. Since it contains more detailed phase-space information, compared to macro-
scopic models at the population level, such as the Keller Segel model, the equation
has the greater potential to capture the fine motion of the bacteria. Indeed, it is
observed that the dynamics predicted by the model is in high agreement with real
measurements, see [6, 16, 42, 43].

It is noteworthy that these comparisons are conducted in the forward-simulation
setting. Guesses are made about parameters, and simulations are run to be com-
pared with experimental measurements. To fully reveal the bacteria’s motion and
its interaction with the environment, inverse perspectives have to be taken. The
measurement data can be at the individual or the population level, i.e., biophysi-
cists can use a high-resolution camera and trace each single bacterium for a long
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time or they can take photos and record the evolution of the density of bacteria on a
cell cultural dish. These collected data should be used to unveil the true interaction
between particles [31]. This framework necessitates the application of numerical in-
version algorithms. To be specific, we frame this problem into a PDE-constrained
optimization and study the well-posedness and the ill-posedness of the numerical
reconstruction when different types of initial condition and measurement schemes
are provided.

As more first-principle based physics get involved in applications, kinetic models
are becoming more important in scientific domains, see modeling of neutrons [13],
photons or electrons [40] and rarefied gas [9]. The applications on biological and
social science have also been put forward in [35] for cell motion, in [46] for animal
(birds) migration or in [1, 8, 12, 34, 47] for opinion formation. In most, if not all
of these models, parameters are included to characterize the interactions between
agents or with the media. The applications in which the interactions are hard to
be measured experimentally naturally prompts the use of inverse solvers.

The most prominent application of inverse problem confined to the domain of
kinetic-equation governed systems is optical tomography from medical imaging,
where non-intrusive boundary data maps out the relation between optical properties
of interior bio-tissue and the measured light intensity on the surface of the domain.
Mathematically the problem is framed to evaluate the richness of data in the albedo
operator. Singular decomposition is deployed as a specific mathematical technique
to conduct such investigation [5, 11, 29, 32], and these studies have their numerical
counterparts in [4, 10, 15, 38, 39], just to mention a few references.

Since tracing every single bacterium is much more difficult than measuring the
density evolution and is sometimes not possible in some extreme environments, one
natural question is whether it is possible to unveil how the bacteria interact with
the environment by the measurement at the population level. Due to the specific
biological question at hand, the biggest difference between our problem setup and
the previous ones is the fact that our measurements are taken in the interior of
the domain, but are macroscopic. The kind of data preparation is intrusive in
the sense that photos are taken over the entire cultural dish but not only on the
boundary (domain surface), so it enriches the available dataset. While optical
tomography equipment can read off the velocity information, the photos usually
only provide density information, except for very special cases [28, 50] that have very
high requirements on the lab equipements. Since the measurement is macroscopic,
this reduces the richness of data.

In [25] the authors examined the theoretical aspect of this reconstruction prob-
lem with macroscopic interior data. It was shown that trading off the microscopic
information for the interior data still gives us sufficient information to recover the
transition kernel, but the experiments need to be accordingly designed. However, in
the theoretical paper we assumed that the transition kernel is an unknown function,
and thus an infinitely dimensional object, and the available data is the full map
(from initial condition to density for all time and space), and thus an infinite di-
mensional object as well. This infinite-to-infinite setup is hard to be implemented
numerically, so the theoretical results only provide a guidance but not a direct
guarantee. The current paper can be seen as the numerical counterpart of [25].
In particular, we study, on the discrete level, if measurement data are finite in
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size, and the to-be-reconstructed transition kernel is also represented by a finite
dimensional vector, can one still successfully recover the unknowns.

It turns out that the numerical issue is significantly more convoluted. When
the dimension of K, the transition kernel, is changed from infinite to finite, we
expect the amount of data needed to recover this finite-dimentional parameter
should also be reduced. However, by how much and in what way is far from being
clear. We will present below two different scenarios to argue that when data is
prepared well, a stable reconstruction is expected, but when the data “degenerates,”
it loses information for a full recovery. Such well-posedness and ill-posedness are
separately presented in two subsections of Section 3. Then in Section 5 we present
the numerical evidence to showcase the theoretical prediction.

It should be noted that it is well within anticipation that different data prepara-
tion gives different conditioning for parameter reconstruction. This further prompts
the study of experimental design. In the context of reconstructing the transition
kernel in the chemotaxis equation, in Section 4 we will design a particular experi-
mental setup that guarantees a unique reconstruction.

We should further note that reconstructing parameters for bacterial motion us-
ing the inversion perspective is not entirely new. In literature, there exist two
different approaches: the first involves the utilization of statistical information at
the individual level to extrapolate the microscopic transition kernel, whereas the
second entails employing density data at a macroscopic scale to reconstruct certain
parameters associated with a parametrized model through an optimization frame-
work [21, 22, 41, 48]. To our knowledge, these available studies focus on either
microscopic or macroscopic models with a very limited number of unknowns to be
recovered, and data of the corresponding scale are used to construct model param-
eters of the corresponding scale. For instance, in [36, 44], the tumbling behavior is
inferred statistically on a microscopic level, i.e. the tumbling, as an individual ran-
dom process, is described by a few moments of its probability distribution that are
recovered from data. In [14, 20], the macroscopic problem was considered where pa-
rameterization emerged from discretization, and regularization was used to counter
the noise. Moreover, the viewpoint of constructing the optimization problem in this
article significantly differs from the existing literature. Similar as in [14, 20], we
recover the discretized version of the kinetic parameter, as this framework brings
more flexibility. Our focus, however, lies on the study of well- and ill-posedness
of the optimization problem related to the parameter reconstruction. To observe
these effects, no regularization is applied and numerical examples are presented in
a noise-free setting. This demonstrates the necessity for well-designed experimental
setups, which are adapted to the fineness of the parameter discretization.

2. Framing a PDE-constrained optimization problem

We frame the problem as a PDE-constrained optimization, which is to recon-
struct K that fits data as much as possible conditioned on the fact that the kinetic
chemotaxis model is satisfied.

To start off, we first present the kinetic chemotaxis model. Denoting f(t, x, v)
the probability density distribution of bacteria in space x ∈ R1, time t > 0 and
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velocity v ∈ V , the equation writes:

∂tf + v ⋅ ∇xf = K(f) ∶= ∫
V
K(x, v, v′)f(x, t, v′) −K(x, v′, v)f(x, t, v)dv′,(2.1)

f(t = 0, x, v) = ϕ(x, v) ∈ L∞+,c(R × V )(2.2)

where v⋅∇xf characterizes the “run”-part where bacteria move straight forward with
velocity v, and the terms on the right characterize the “tumble”-part, with bacteria
changing from having velocity v′ to v using the transitional rate K(x, v, v′) ≥ 0
and K(x, v, v′) is called the tumbling kernel. Initial data is given at t = 0 and
is denoted by ϕ(x, v). We reduce the original problem for (x, v) ∈ R3 ⊗ S2 to
(x, v) ∈ R1 ⊗ {±1} [22, 42, 43],i.e. the bacteria either moves to the left or to
the right, and x is 1D in space. This simple setting on the one hand applies
to the case when experiments are conducted in a bacteria culture tube, thus is
biologically meaningful, on the other hand, it includes the difficulties of our setting
of inversion. More details will be discussed in the subsequent part. Moreover, in
some applications, the environment changes with time then the tumbling kernel K
may depend on time as well, we focus on the time-independent case here when the
outside signaling does not change.

To understand the the particle interaction with the environment, one needs to
determine K and data is collected to infer it. Typically, it is unnecessary to recover
it as a function, but some fine-discretization of it would suffice. To do so, we assume
that K can be well represented by a list of finite many parameters:

(2.3) K(x, v, v′) =
R

∑
r=1

Kr(v, v′)1Ir(x) ,

meaning in the interval of Ir = [ar−1, ar), r = 2, ...,R − 1 (with ar−1 < ar and
I1 = (−∞, a1), IR = [aR−1,∞)), K(x, v, v′) can be well approximated by a function
independent of the spatial variable x. Since V = {±1}, there are only two choices for
the velocity change encrypted by Kr(v, v′): Kr(1,−1) or Kr(−1,1), and thus there
are in total 2R free values for K. Throughout the paper we abuse the notation and
denote K ∈ R2R as the unknown vector to be reconstructed. Moreover, we set:

(2.4) Kr = [Kr,1,Kr,2] , with Kr,1 =Kr(1,−1) Kr,2 =Kr(−1,1) .

The dataset is also finite in size. In particular, we mathematically represent the
local pixel reading of the photo by a test function µl ∈ L1(R) for some l, then the
data takes the form of

(2.5) Ml(K) = ∫
R
∫
V
fK(x,T, v)dv µl(x)dx, l = 1, ..., L ,

where fK denotes the solution to (2.1) with kernel K. Denote the ground-truth
transition kernel to be K⋆, then the true data is:

yl =Ml(K⋆), l = 1, ..., L .(2.6)

As discussed in Section 1, when K is reduced to be represented by a finite dimen-
sional vector we expect the amount of data needed is also finite, but how to do
the reduction for a stable reconstruction is still unknown. Mathematically, this
amounts to studying the intricate relation between R and L and {µl}.
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The numerical inversion is presented as a PDE-constrained optimization. We
aim to minimize the square loss between the simulated data M(K) and the data y:

(2.7)
min
K

C(K) =min
1

2L

L

∑
l=1
(Ml(K) − yl)2

subject to (2.1), and (2.2).

There are many algorithms that can be deployed to solve this minimization
problem, and we are particularly interested in calling the simple gradient-descent
(GD) algorithm. The update is given by:

(2.8) K(n+1) =K(n) − ηn∇KC(K(n)) ,

with a suitable step size ηn ∈ R+. It is a standard application of calculus-of-variation,
as detailed in Appendix A, to derive that the (r, i)-th (i = 1,2, r = 1,⋯,R) entry of
the gradient ∇KC:

(2.9) ∂C
∂Kr,i

= ∫
T

0
∫
Ir
f(t, x, v′i)(g(t, x, v′i) − g(t, x, vi))dxdt ,

where (vi, v′i) = ((−1)i, (−1)i+1) in analogy to notation (2.4) for K and g is the
adjoint state that solves the adjoint equation

−∂tg − v ⋅ ∇g = K̃(g) ∶= ∫
V
K(x, v′, v)(g(x, t, v′) − g(x, t, v))dv′,(2.10)

g(x, t = T, v) = − 1
L

L

∑
l=1
µl(x) (Ml(K) − yl) .(2.11)

Notice that by definition of the measurement procedure (2.5), the final condition
of g in (2.11) is independent of v and contains the spatial test functions µl.

The convergence of GD in (2.8) is guaranteed for a suitable step size if the ob-
jective function is convex. Denoting HKC the Hessian function of the loss function,
we need HKC > 0 at least in a small neighborhood around K⋆. If so, a constant step
size ηn = η = 2λmin

λ2
max

approximates the step size suggested in [49] for optimal conver-
gence. Here λmin, λmax denote the smallest and largest eigenvalues of HKC(K⋆).
More sophisticated methods include line search for the step size or higher order
methods for the update are also possible, see e.g. [39, 49].

To properly set up the problem, we make some general assumptions and fix some
notations.

Assumption 1. We make assumptions to ensure the wellposedness of the forward
problem in a feasible set, in particular:

● We will work locally in K, so we assume in a neighbourhood UK⋆ of K⋆,
there is a constant CK so that for all K ∈ UK⋆ :

(2.12) 0 < ∥K∥∞ ≤ CK .

● Assume the initial data ϕ be in the space L∞+,c(R × V ) of non negative,
compactly supported functions with essential bound

∥ϕ∥L∞(R×V ) =∶ Cϕ .
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● Reciprocally, we assume the test functions µl, l = 1, ..., L, are in the space
L1(R) with uniform L1 bound

∫
R
∣µl∣dx ≤ Cµ, l = 1, ..., L .

These assumptions allow us to operate f and g in the right spaces. In particular,
we can give an upper bound for both the forward and adjoint solution in L∞ sense,
see Lemma B.1 and B.2 in Appendix B. In fact, these assumptions are in line with
realistic modelling: the boundedness of the parameter K emerges from its inter-
pretation as a probability of changing directions. Non-negativity and boundedness
of the initial bacteria density are physical, as bacteria cannot infinitely aggregate
due to volume filling effects.

3. Well-posedness vs. ill-posedness

The well-posedness of the inversion heavily depends on the data preparation. If
a suitable experimental setting is arranged, the optimization problem is expected to
provide local wellposedness around the groundtruth parameter K⋆, so the classical
GD can reconstruct the groundtruth. However, if data becomes degenerate, we
also expect ill-conditioning and the GD will find it hard to converge to the global
minimum. We spell out the two scenarios in the two theorems below.

Theorem 3.1. Assume the hessian matrix of the cost function is positive definite
at K⋆ and let the remaining assumptions of Proposition 3.1 hold, then there exists
a neighbourhood U of K⋆, in which the optimization problem (2.7) is Tykhonov
well-posed. In particular, the gradient descent algorithm (2.8) with initial value
K0 ∈ U converges.

This theorem provides the well-posedness of the problem. To be specific, it spells
out the sufficient condition for GD to find the global minimizer K⋆. The condition
of the hessian being positive definite at K⋆ may seem strong, but, paying attention
to certain restrictions such as the minimal of measurements number L ≥ 2R, we
can carefully craft an experiment so to make sure it holds true. This line of study
is in essence experimental design, as we will be more specific in Section 4.

On contrary to the previous wellposedness discussion, we also provide a negative
result below on ill-conditioning.

Theorem 3.2. Let L = 2R and let Assumption 1 hold for all considered quantities.
Consider a sequence (µ(m)1 )m of test functions for the first measurement M1(K)
for which one of the following scenarios holds:

(1) µ
(m)
1 → µ2 in L1 as m→∞.

(2) (µ(m)1 )m and µ2 are mollifications of singular point-measurements in mea-
surement points {(x(m)1 )m, x2} such that x(m)1 → x2 as m → ∞. Further-
more, let the assumptions of Proposition 3.3 hold.

Then, as m→∞, the loss function cannot be strongly convex, and the convergence
of the gradient descent algorithm (2.8) to K⋆ cannot be guaranteed. In scenario 2,
this holds independently of the mollification parameter.

The two theorems, to be proved in detail in Section 3.1 and 3.2 respectively, hold
vast contrast to each other. The core of the difference between the two theorems
is the data selection, with the former guaranteeing the convexity of the objective
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function, and the latter does not. To evaluate the convexity of the loss function
amounts to the study of the hessian, a 2R × 2R matrix:

(3.1) HKC(K) =
1

L

L

∑
l=1
(∇KMl(K)⊗∇KMl(K) + (Ml(K) − yl)HKMl(K)) .

It is a well-known fact [37] that a positive definite hessian provides the strong con-
vexity of the loss function, and is a sufficient criterion that permits the convergence
in the parameter space. If HKC(K⋆) is known to be positive, given in a small
neighborhood, the hessian matrix does not change much, the convexity is guaran-
teed. Such boundedness of perturbation in the hessian is spelled out in Proposition
3.1, and Theorem 3.1 naturally follows. Theorem 3.2 is to look at the opposite
side of the problem. In particular, it examines the degeneracy when two data col-
lection points get very close. The degeneracy is reflected mathematically by the
deficient rank structure in the hessian (3.1), prompting the collapse of the land-
scape of the objective function. The two scenarios of deficient ranks are presented
in Proposition 3.3 and 3.2 respectively, and then Theorem 3.2 naturally follows.

3.1. Local well-posedness of the optimization problem. Generally speaking,
it would not be easy to characterize the landscape of the distribution and thus
hard to prescribe conditions for obtaining global convergence. However, suppose
the data is prepared well enough that guarantees the positive definiteness for the
Hessian HKC(K⋆) evaluated at the groundtruth K⋆, there is a good chance that in
a small neighborhood of this groundtruth, positive-definiteness persists and GD, if
starts within this neighborhood, finds the global minimum to (2.7). This gives us
a local well-posedness.

This local behavior is characterized in the following proposition.

Proposition 3.1. Let Assumption 1 hold. Assume the Hessian HKC(K⋆) is posi-
tive definite at K⋆, and that there is a uniform bound for the Hessian of the mea-
surements in the neighborhood UK⋆ in the sense that ∥HKMl(K)(v, v′)∥F ≤ CHKM

for all l = 1, ..., L and K ∈ UK in the Frobenius norm. Then there exists a (bounded)
neighbourhood U ⊂ UK⋆ of K⋆, where HKC(K) is positive definite for all K ∈ U .
Moreover, the minimal eigenvalues λmin(HKC) satisfies

(3.2) ∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ ≤ ∥K⋆ −K∥∞C ′,

where the constant C ′ depends on the measurement time T , R, and the bounds Cµ,
Cϕ, CK in Assumption 1 and CHKM . As a consequence, the radius of U can be
chosen as λmin(HKC(K⋆))/C ′.

The proposition is hardly surprising. Essentially it suggests the hessian term is
Lipschitz continuous with respect to its argument. This is expected if the solution
to the equation is somewhat smooth. Such strategy will be spelled out in detail in
the proof. With this proposition in hand, Theorem 3.1 is immediate.

Proof for Theorem 3.1. By Proposition 3.1, there exists a neighbourhood U in
which the Hessian is positive definite, HKC(K) > 0 for all K ∈ U . Without loss of
generality, we can assume that U is a convex set. By the strong convexity of C in
U , the minimizer K⋆ ∈ U of C is unique and thus the finite dimension of the param-
eter space K ∈ R2R guarantees Tykhonov well-posed of the optimization problem
(2.7) [18, Prop.3.1]. □
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Now we give the proof for Proposition 3.1. It mostly relies on the matrix per-
turbation theory [27, Cor. 6.3.8] and continuity of the equation.

Proof for Proposition 3.1. According to the matrix perturbation theory, the min-
imal eigenvalue is continuous with respect to a perturbation to the matrix, we
have

∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ ≤ ∥HKC(K⋆) −HKC(K)∥F

≤ 1

L
∑
l

(∥(∇KMl ⊗∇KMl)(K⋆) − (∇KMl ⊗∇KMl)(K)∥F

+ ∥(Ml(K) − yl)HKMl(K)∥F)(3.3)

≤ 1

L
∑
l

(∥∇KMl(K⋆) −∇KMl(K)∥F (∥∇KMl(K⋆)∥F + ∥∇KMl(K)∥F )

+ ∣Ml(K) − yl∣∥HKMl(K)∥F)

where we used the hessian form (3.1), triangle inequality and sub-multiplicativity
for Frobenius norms. To obtain the bound (3.2) now amounts to quantifying each
term on the right hand side of (3.3) and bounding them by ∥K⋆ −K∥∞. This is
respectively achieved in Lemmas 3.3, 3.5 and 3.6 that give controls to Ml(K) − yl,
∥∇KMl(K)∥F and ∥∇KMl(K⋆)−∇KMl(K)∥F . Putting these results together, we
have:

∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ ≤ ∥HKC(K⋆) −HKC(K)∥F

≤ 2∥K⋆ −K∥∞CµCϕe
2CK ∣V ∣T

⎡⎢⎢⎢⎢⎣
8RCϕCµe

2∣V ∣CKTT (∣V ∣T 2 + 1

CK
(e

2CK ∣V ∣T − 1
2CK ∣V ∣

− T))

+ ∣V ∣2TCHKM

⎤⎥⎥⎥⎥⎦
=∶ ∥K⋆ −K∥∞C ′.

The positive definiteness in a small neighborhood of K⋆ now follows. Finally, given
∥K⋆ −K∥∞ < λmin(HKC(K⋆))/C ′, the triangle inequality shows

λmin(HKC(K)) ≥ λmin(HKC(K⋆)) − ∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ > 0.

We note the form of C ′ is complicated but the dependence is spelled out in the
following lemmas and summarized in the theorem statement.

□

As can be seen from the proof, Proposition 3.1 strongly relies on the boundedness
of the terms in (3.3). We present the estimates below.

Lemma 3.3. Let Assumptions 1 holds, then the measurement difference is upper
bounded by:

∣Ml(K) − yl∣ ≤ ∣V ∣Cµ∥(fK⋆ − fK)(T )∥L∞(R×V ) ≤ ∥K⋆ −K∥∞2∣V ∣2CµCϕTe
2CK ∣V ∣T .



NUMERICAL RECONSTRUCTION OF CHEMOTAXIS TRANSITION KERNEL 9

Proof. Apply Lemma B.1 to the difference equation for f̄ ∶= fK⋆ − fK
∂tf̄ + v ⋅ ∇xf̄ = KK(f̄) +K(K⋆−K)(fK⋆)(3.4)

with initial condition 0 and source h = K(K⋆−K)(fK⋆) ∈ L1((0, T );L∞(R × V )) by
the regularity (B.1) of fK⋆ . This leads to

ess sup
v,x

∣f̄ ∣(x, t, v) ≤∫
t

0
e2∣V ∣CK(t−s) ess sup

v,x
∣K(K⋆−K)(fK⋆)(s)∣ds

≤2∣V ∣∥K⋆ −K∥∞e2∣V ∣CKtCϕt,(3.5)

where we used the estimate ∥fK⋆(s)∥L∞(R×V ) ≤ e2∣V ∣CKs∥ϕ∥L∞(R×V ) from Lemma
B.1 in the last step. □

To estimate the gradient ∇KMl(K) and its difference, we first recall the form
in (2.9) with C changed to Ml here. Analogously, we can use the adjoint equation
to explicitly represent the gradient:

Lemma 3.4. Let Assumption 1 hold. Denote by fK the mild solution of (2.1) and
by gl ∈ C0 ([0, T ];L∞(V ;L1(R))) the mild solution of

−∂tgl − v ⋅ ∇gl = K̃(gl) ∶= ∫
V
K(x, v′, v)(gl(x, t, v′) − gl(x, t, v))dv′,(3.6)

gl(t = T,x, v) = −µl(x) .
Then

(3.7) ∂Ml(K)
∂Kr,i

= ∫
T

0
∫
Ir
f ′(g′l − gl)dxdt ,

where we used the abbreviated notation h ∶= h(t, x, vi) and h′ ∶= h(t, x, v′i) for h =
f, gl, with (vi, v′i) defined as in (2.9).

We omit explicitly writing down the x, t dependence when it is not controversial.
The proof for this lemma is the application of calculus-of-variation and will be
omitted from here. We are now in the position to derive the estimates of the
gradient norms.

Lemma 3.5. Under Assumption 1, the gradient is uniformly bounded

∥∇KMl(K)∥F ≤
√
2R2CϕCµe

2CK ∣V ∣TT, for all K ∈ UK .

Proof. The Frobenius norm is bounded by the entries ∥∇Ml(K)∥F ≤
√
2Rmaxr,i ∣ dMl(K)

dKr,i
∣.

Representation (3.7) together with (B.2) then gives the bound

∣ dMl

dKr,i
∣ ≤ 2Cϕ ∫

T

0
e2∣V ∣CKtmax

v
(∫

R
∣gl∣ dx) dt,(3.8)

Application of lemma B.2 to g = gl, h = 0 and ψ = −µl yields

max
v
∫
R
∣gl∣ dx (t) ≤ ∫

R
∣ − µl(x)∣dx e2CK ∣V ∣(T−t) ≤ Cµe

2CK ∣V ∣(T−t),(3.9)

which, when plugged into (3.8), gives

∣ ∂Ml

∂Kr,i
∣ ≤ 2CϕCµe

2CK ∣V ∣TT .

□
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Lemma 3.6. In the setting of Theorem 3.1 and under Assumption 1, the gradient
difference is uniformly bounded in K ∈ UK by

∥∇Ml(K⋆) −∇Ml(K)∥F

≤
√
2R∥K⋆ −K∥∞2CϕCµe

2CK ∣V ∣T (∣V ∣T 2 + 1

CK
(e

2CK ∣V ∣T − 1
2CK ∣V ∣

− T)) .

Proof. Now consider the entries of∇Ml(K⋆)−∇Ml(K) to show smallness of ∥∇Ml(K⋆)−
∇Ml(K)∥F . Rewrite, using lemma 3.4 and (B.2)

∣∂Ml(K⋆)
∂Kr,i

− ∂Ml(K)
∂Kr,i

∣ = ∣∫
T

0
∫
Ir
fK⋆(g′l,K⋆ − gl,K⋆) − fK(g

′
l,K − gl,K)dxdt∣

≤∫
T

0
∥(fK⋆ − fK)(t)∥L∞(R×V )2max

v
∫
R
∣gl,K⋆(t)∣dxdt

+ 2Cϕ ∫
T

0
e2∣V ∣CKtmax

v
∫
R
∣(gl,K⋆ − gl,K)(t)∣dxdt.

The first summand can be bounded by (3.5) and (3.9). To estimate the second
summand, apply Lemma B.2 to ḡ ∶= gl,K⋆ − gl,K with evolution equation

−∂tḡ − v ⋅ ∇xḡ = K̃K⋆(ḡ) + K̃(K⋆−K)(gl,K),
ḡ(t = T ) = 0,

and h = K̃(K⋆−K)(gl,K) ∈ L1((0, T );L∞(V ;L1(R))) by the regularity (B.6) of
gl,K∈ C0 ((0, T );L∞(V ;L1(R))). This leads to

max
v
∫
R
∣ḡ∣dx ≤ e2∣V ∣CK(T−t) ∫

T−t

0
max

v
∥K̃(K⋆−K)(gl,K)(T − s, v)∥L1(R) ds

≤ 2∣V ∣∥K⋆ −K∥∞e2∣V ∣CK(T−t) ∫
T−t

0
max

v
∥gl,K(T − s, v)∥L1(R) ds

≤ ∥K⋆ −K∥∞
Cµ

CK
e2∣V ∣CK(T−t)(e2CK ∣V ∣(T−t) − 1),

where we used (3.9) in the last line. In summary, one obtains

∣∂Ml(K⋆)
∂Kr,i

− dMl(K)
dKr,i

∣

≤ ∥K⋆ −K∥∞[∫
T

0
2∣V ∣Cϕte

2CK ∣V ∣t ⋅ 2Cµe
2CK ∣V ∣(T−t) dt

+ 2Cϕ ∫
T

0
e2∣V ∣CKt Cµ

CK
e2CK ∣V ∣(T−t)(e2CK ∣V ∣(T−t) − 1)dt]

≤ ∥K⋆ −K∥∞2CϕCµe
2CK ∣V ∣T (∣V ∣T 2 + 1

CK
(e

2CK ∣V ∣T − 1
2CK ∣V ∣

− T)) .

□

Together with the boundedness of the gradient (3.8), this shows that the first
summands in (3.3) are Lipschitz continuous in K around K⋆ which concludes the
proof of Proposition 3.1.
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3.2. Ill-conditioning for close measurements. While the positive hessian at
K∗ guarantees local convergence, such positive-definiteness will disappear when
data are not prepared well. Especially, when a minimal number of measurements is
considered and two measurements, M1(K) and M2(K) for example, become close,
we will show that the hessian degenerates, and the strongly convexity is lost, and
hence the convergence to K⋆ is no longer guaranteed.

The closeness of two measurements can be quantified through different manners.
For example, we can argue that the two measurements are close when the two test
functions µ1, µ2 are close in L1 sense. Or they can be close if the reading of the
measurements are taken at two locations closeby. In this case, µ1 and µ2 can be
taken as mollifiers from direct Dirac-δ readings of the density at x1 and x2, and the
closeness is quantified by ∣x1 − x2∣.

We will study how the hessian degenerates in these two scenarios. In both cases,
we examine the two parts in (3.1) and evaluate their change as two measurements
get close. In particular, the application of Lemma 3.3 already suggests the second
part in (3.1) is negligible for K is close to K⋆ and the rank structure of the hessian is
predominantly controlled by the first part, which reads as the summation of many
rank 1 matrices ∇KMl(K)⊗∇KMl(K). When two measurements (µ1 and µ2) get
close, we will argue that ∇KM1(K) is almost parallel to ∇KM2(K), making the
hessian lacking at least one rank, and the strong convexity is lost. Mathematically,
this means we need to show ∥∇KM1(K) − ∇KM2(K)∥2 ≈ 0 when µ1 ≈ µ2 in the
two senses spelled out above.

Recalling (3.7), we have for every r ∈ {1,⋯,R} and i ∈ {1,2}

∂M1(K)
∂Kr,i

− ∂M2(K)
∂Kr,i

= ∫
T

0
∫
Ir
f ′((g1 − g2)′ − (g1 − g2))dxdt

= ∫
T

0
∫
Ir
f ′(ḡ′ − ḡ)dxdt ,(3.10)

where ḡ ∶= g1−g2 solves (2.10) with final condition ḡ(t = T,x, v) = µ2(x)−µ1(x). So
the bulk of the analysis in the two subsections below is to quantify the smallness
of (3.10) in terms of the smallness of µ1(x) − µ2(x).

3.2.1. L1 measurement closeness. The following proposition states the loss of strong
convexity as µ2−µ1 → 0 in L1(R). In particular, the requirement of Proposition 3.1
that HKC(K⋆) is positive definite is no longer satisfied, so local well-posedness of
the optimization problem and thus the convergence of the algorithm can no longer
be guaranteed.

Proposition 3.2. Let Assumption 1 hold. Then, as µ(m)1

m→∞ÐÐÐ→ µ2 in L1(R), one
eigenvalue of the Hessian HKC(K⋆) vanishes.

This proposition immediately allows us to prove scenario 1 in Theorem 3.2:

Proof of Theorem 3.2. Propositions 3.2 establishes one eigenvalue ofHKC(K⋆) van-
ishes as m → ∞. This lack of positive definiteness and thus strong convexity of C
around K⋆ means that it cannot be guaranteed that the minimizing sequences of C
converge to K⋆. □

We now give the proof of the proposition.
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Proof. As argued above, we show ∥∇KM
(m)
1 (K) − ∇KM2(K)∥2 → 0 as m → ∞.

Recall (3.10), we need to show:

∂M
(m)
1 (K)
∂Kr,i

− ∂M2(K)
∂Kr,i

m→∞ÐÐÐ→ 0 ∀(r, i) ∈ {1,⋯,R} × {1,2} .(3.11)

where ḡ ∶= g1 − g2 solves (2.10) with final condition ḡ(t = T,x, v) = µ2(x)−µ(m)1 (x).
Application of Lemma B.2 gives

∥ḡ(t)∥L∞(V ;L1(R)) ≤ e2CK ∣V ∣(T−t)∥µ2 − µ(m)1 ∥L∞(V ;L1(R)) = e2CK ∣V ∣(T−t)∥µ2 − µ(m)1 ∥L1(R).

Plug this into (3.10) and estimate f by (B.2) to obtain
RRRRRRRRRRR

∂(M (m)
1 −M2)(K)
∂Kr,i

RRRRRRRRRRR
≤ 2Cϕ ∫

T

0
e2CK ∣V ∣t∥ḡ(t)∥L∞(V ;L1(R)) dt

≤ 2Cϕe
2CK ∣V ∣TT ∥µ2 − µ(m)1 ∥L1(R).

Since every entry (r, i) converges, the gradient difference vanishes ∥∇KM
(m)
1 (K)−

∇KM2(K)∥2 → 0 as m→∞.
We utilize this fact to show the degeneracy of the Hessian. Noting:

HKC(K⋆) = [
2R

∑
l=3
∇Ml ⊗∇Ml + 2∇M2 ⊗∇M2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+ [∇M (m)
1 ⊗∇M (m)

1 −∇M2 ⊗∇M2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B(m)

.

It is straightforward that the rank of A is at most 2R−1, so the j-th largest eigen-
value λj(A) = 0 vanishes for some j. Moreover, since ∥∇KM

(m)
1 (K)−∇KM2(K)∥2 →

0, we have ∥B(m)∥F → 0. Using the continuity of the minimal eigenvalue with re-
spect to a perturbation of the matrix, the j-th largest eigenvalue of HKC(K⋆)
vanishes

∣λj(HKC(K⋆))∣ = ∣λj(HKC(K⋆)) − λj(A)∣ ≤ ∥B(m)∥F → 0, as m→∞ .

□

3.2.2. Pointwise measurement closeness. We now study the second scenario of The-
orem 3.2 and consider µ1, µ2 as mollifications of a singular pointwise testing. For
this purpose, let ξ ∈ C∞c (R) be a smooth function, compactly supported in the
unit ball B1(0) with 0 ≤ ξ ≤ 1 and ξ(0) = 1. In the following, we consider the
measurement test functions

(3.12) µη
i (x) =

1

η
ξ (x − xi

η
) , i = 1,2.

Our aim is to show that the assertion of Theorem 3.2 is true independently of
the mollification parameter η > 0. This shows that in the limit as η → 0, i.e. in the
pointwise measurement case, we still lose strong convexity around K⋆.

Proposition 3.3. Let µη
1 , µ

η
2 be of the form (3.12) with measurement locations

x2 ∉ {ar}r=1,...,R for the partition of R from (2.3). Consider a small neighbourhood
of K⋆ and let Assumption 1 hold. Additionally, let the measurement time T and
locations be chosen such that

(eT ∣V ∣CK − 1) < 1, min
r
∣x2 − ar ∣ − T > η0 > 0.
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If the initial condition ϕ is uniformly continuous in x, uniformly in v, then
∇KM1(K) → ∇KM2(K) as x1 → x2 in the standard Euclidean norm, and the
convergence is independent of η ≤ η0.

This proposition explains the breakdown of well-posedness presented in Theo-
rem 3.2 in the second scenario. Since the proof for the theorem is rather similar to
that of the first scenario, we omit it from here.

Similar to the previous scenario, we need to show smallness of the gradient
difference (3.10). This time, we have to distinguish two sources of smallness: For
singular parts of the adjoint ḡ, the smallness of the corresponding gradient difference
is generated by testing it on a sufficiently regular f at close measuring locations.
So it is small in the weak sense. The regular parts ḡ>N of ḡ represent the difference
of ḡ and its singular parts and evolve form the integral operator on the right hand
side of (2.10), which exhibits a diffusive effect. Smallness is obtained by adjusting
the cut off regularity N .

Let us mention, however, that the time constraint is mostly induced for a tech-
nical reason. In order to bound the size of the regular parts of the adjoint solu-
tion, we use the plain Grönwall inequality which leads to an exponential growth
that we counterbalance by a small measuring time T . The spatial requirement
minr ∣x2 − ar ∣ − T > η0 > 0 is a reflection of the fact that we need the measuring
blob (support of µ) to be somewhat centered in the constant pieces of the piecewise-
constant function K. This helps to force the measuring to precisely pick up only the
information from that particular piece. This specific design will later be discussed
in Section 4 as well.

To put the above considerations into a mathematical framework, we deploy the
singular decomposition approach, and we are to decompose

(3.13) ḡ =
N

∑
n=0

ḡn + ḡ>N ,

where the regularity of ḡn increases with n. Here, we define ḡ0 as the solution to
−∂tḡ0 − v ⋅ ∇xḡ0 = −σḡ0 ,
ḡ0(t = T,x, v) = µη

2(x) − µ
η
1(x) ,

for σ(x, v) ∶= ∫V K(x, v′, v)dv′, and ḡn are inductively defined by

−∂tḡn − v ⋅ ∇xḡn = −σḡn + L̃(ḡn−1) ,(3.14)
ḡn(t = T,x, v) = 0 ,

where we used the notation L̃(ḡ) ∶= ∫ K(x, v′, v)ḡ(x, t, v′)dv′. The remainder ḡ>N
satisfies

−∂tḡ>N − v ⋅ ∇xḡ>N = −σḡ>N + L̃(ḡN + ḡ>N) ,(3.15)
ḡ>N(t = T,x, v) = 0 .

It is a straightforward calculation that

(3.16) (3.10) =
N

∑
n=0
∫

T

0
∫
Ir
f ′(ḡ′n − ḡn)dxdt +∫

T

0
∫
Ir
f ′(ḡ′>N − ḡ>N)dxdt .

We are to show, in the two lemmas below, that both terms are small when x1 → x2.
To be more specific:
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Lemma 3.7. Let the assumptions of Proposition 3.3 be satisfied. For any ε > 0,
and any n ∈ N0, there exists a δn(ε) > 0 such that

(3.17) ∣∫
T

0
∫
Ir
f ′ḡn dxdt∣ ≤ ε , if ∣x1 − x2∣ < δn(ε) .

The remainder can be bounded similarly.

Lemma 3.8. Under the assumptions of Proposition 3.3, one has

∣∫
T

0
∫
Ir
f ′ḡ>N dxdt∣ ≤ T 2∣V ∣CKCϕe

2∣V ∣CKT (eCK ∣V ∣T − 1)NCµ,

which becomes arbitrarily small for large N .

The proofs for both lemmas exploit the continuity of f by choice of ϕ, and the
smallness of the higher regularity components of the g term. Since it is not keen to
the core of the paper, we leave the details to Appendix C. The application of the
two lemmas gives Proposition 3.3:

Proof of Proposition 3.3. Let ε > 0. Because eCK ∣V ∣T − 1 < 1 by assumption, we
can choose N ∈ N large enough such that 2T 2∣V ∣CKCϕe

2∣V ∣CKT (eCK ∣V ∣T − 1)N < ε
2
.

Furthermore, let ∣x1 − x2∣ < minn≤N δn( ε
4(N+1)). Then with the triangle inequality

and Lemmas 3.7 and 3.8, we obtain from (3.16)

∣∂(M1 −M2)(K)
∂Kr,i

∣ ≤
N

∑
n=0
∣∫

T

0
∫
Ir
f ′(ḡ′n − ḡn)dxdt∣ + ∣∫

T

0
∫
Ir
f ′(ḡ′>N − ḡ>N)dxdt∣

≤2N ε

4(N + 1)
+ 2T 2∣V ∣CKCϕe

2∣V ∣CKT (eCK ∣V ∣T − 1)NCµ

≤ε .

□

4. Experimental Design

As discussed in the previous sections, it is clear that different setups bring dif-
ferent conditioning to the inverse problem. We are to study a particular design
where the well-posedness can be ensured. To be more specific, in Proposition 3.1
we require the positive-definiteness of the Hessian term at K⋆. This is a strong as-
sumption and is typically not true unless certain initial condition and the measuring
setups are in place. We propose to use the following:

Design (D). We divide the domain I = [a0, aR) into R intervals I = ⊍R
r=1 Ir with

Ir = [ar−1, ar), and the center for each interval is denoted by ar−1/2 ∶= ar−1+ar

2
. The

spatial supports of the values Kr(v, v′) takes on the form of (2.3). The design is:
● initial condition ϕ(x, v) = ∑R

r=1 ϕr(x) is a sum of R positive functions ϕr
that are compactly supported in ar−1/2+[−d, d] with d <min (ar−ar−1

4
), sym-

metric and monotonously decreasing in ∣x−ar−1/2∣ (for instance, a centered
Gaussian with a cut-off tail);
● measurement test functions µlri

= C̄µ1[(−1)iT−dµ,(−1)iT+dµ]+ar−1/2 , i = 1,2,
for some C̄µ > 0, centered around ar−1/2 ± T with dµ ≤ d;
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● measurement time T such that

T <min((1 − δ) 0.09

CK ∣V ∣
,min

r
(ar − ar−1

4
− d
2
))(4.1)

for δ = (d + dµ)/T < e−TCK ∣V ∣.(4.2)

Remark 4.1. Note that this design requires a delicate balancing between T and
d and dµ. Requirement (4.1) prescribes that T must not be too large. On the
other hand, (4.2) requires that it must not be too small compared to d, dµ. An
exemplary choice of d = dµ = cT 2 for some c > 0, for instance, automatically verifies
requirement (4.2) for small enough T .

This particular design of initial data and measurement is to respond to the fact
that the equation has a characteristic and particles moves along the trajectories.
The measurement is set up to single out the information we would like to reconstruct
along the propagation. The visualization of this design is plotted in Figure 1.

ar−1 x1 ar−1/2 x2 ar x
2dµ 2d

Figure 1. Motion of the ballistic parts f (0)(t = 0, v) (cyan, dash-
dotted) to f (0)(t = T, v = +1) (blue, dotted) and f (0)(t = T, v = −1)
(blue, dashed) and g

(0)
1 (t = 0, v = +1) (orange, dotted) and

g
(0)
1 (t = 0, v = −1) (orange, dashed) to g

(0)
1 (t = T, v) (red, dash-

dotted), compare also (4.5).

Under this design, we have the following proposition:

Proposition 4.1. The design (D) decouples the reconstruction of Kr. To be more
specific, recall (2.4)

K = [Kr] , with Kr = [Kr,1,Kr,2] .
The Hessian HKC has a block diagonal structure with each of the blocks is a 2 × 2
matrix given by the Hessian HKrC.

Proof. By the linearity of (2.1), (2.10), their solutions f = ∑R
r=1 fr and g = ∑R

r=1∑
2
i=1 glri

decompose into solutions fr of (2.1) with initial conditions ϕr and glri with final
condition −(Mlri

− ylri )µlri
/2R, the summands of the final condition (2.11), corre-

spondingly. By construction of T and the constant speed of propagation ∣v∣ = 1,
the spatial supports of fr and glr1 , glr2 are is fully contained only in Ir for all
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t ∈ [0, T ], v ∈ V . As such, only fr and glrj carry information about Kr, and no
information for other Ks with s ≠ r. □

This not only makes boundary conditions superfluous, but also translates the
problem of finding a 2R valued vector K into R individual smaller problems of
finding the two-constant pair (Kr,1,Kr,2) within Ir. This comes with the cost of
prescribing very detailed measurements depending on the experimental scales Ir
and d, but opens the door for parallelized computation.

Furthermore, under mild conditions, this design ensures the local reconstructabil-
ity of the inverse problem.

Theorem 4.2. Let Assumption 1 hold. Given the Hessian HKMl(K) is bounded in
Frobenius norm in a neighbourhood of K⋆, Design (D) generates a locally well-posed
optimization problem (2.7).

The proof is layed out in the subsequent subsection 4.1.

Remark 4.3. Let us mention that the bounds for T in Design (D) are not optimal.
In the proof of theorem 4.2 we used crude estimates, and we believe these estimates
can potentially be relaxed to allow for longer measurement times T . Furthermore,
the setup can easily be modified to use different measurement times for different
intervals Ir, for instance. In this case, again, the bounds on T can be relaxed.

Remark 4.4. Design (D) shares similarities with the theoretical reconstruction set-
ting in [25], where a pointwise reconstruction of a continuous kernel K̃ was obtained
by a sequence of experiments where the measurement time T became small and the
measurement location gets close to the initial location. The situation is also seen
here. As we refine the discretization for the underlying K-function using higher
dimensional vector, measurement time has to be shortened to honor the refined
discretization. However, we should also note the difference. In [25], we studied the
problem in higher dimension and thus explicitly excluded the ballistic part of the
data from the measurement

4.1. Proof of Theorem 4.2. Given Theorem 3.1, it remains to prove HKC(K⋆) >
0. As the Hessian attains a block diagonal structure (Proposition 4.1), we are to
study the 2 × 2-blocks
(4.3) HKrC(K⋆) = ∇KrMlr1

(K⋆)⊗∇KrMlr1
(K⋆) +∇KrMlr2

(K⋆)⊗∇KrMlr2
(K⋆).

Here the two measurements Mlr1
, Mlr2

are inside Ir, and ∇Kr = [∂Kr,1 , ∂Kr,2]. The
positive definiteness of the full HKC(K⋆) is equivalent to the positive definiteness
of each individual HKrC(K⋆). This is established in the subsequent proposition.

Proposition 4.2. Let Assumption 1 hold. If the Hessian HKMl(K) is bounded in
Frobenius norm in a neighbourhood of K⋆, then the Design (D) produces a positive-
definite hessian HKC(K⋆).

According to (4.3), HK1C(K⋆) is positive definite if

(4.4) ∣∂M1(K⋆)
∂K1,1

∣ > ∣∂M1(K⋆)
∂K1,2

∣ and ∣∂M2(K⋆)
∂K1,1

∣ < ∣∂M2(K⋆)
∂K1,2

∣

holds true for the measurements M1,M2 corresponding to K1. Due to design
symmetry, it is sufficient to study the first inequality. Consider the difference
∂M1(K⋆)
∂K1,1

− ∂M1(K⋆)
∂K1,2

. Similar to (3.13) and (3.16), we are to decompose the equation
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for f and g ((2.1) and (3.6) respectively, with K =K⋆) into the ballistic parts g(0)1

and f (0) and the remainder terms. Namely, let g(0)1 and f (0) satisfy
⎧⎪⎪⎨⎪⎪⎩

−∂tg(0)1 − v ⋅ ∇xg
(0)
1 = −σg(0)1

g
(0)
1 (t = T,x, v) = µ1(x)

and
⎧⎪⎪⎨⎪⎪⎩

∂tf
(0) − v ⋅ ∇xf

(0) = −σf (0)

f (0)(t = 0, x, v) = ϕ(x, v).
(4.5)

Then the following two lemmas are in place with µ1(x) and ϕ(x, v) as in Design
(D).

Lemma 4.5. In the setting of Proposition 4.2, for (v, v′) = (+1,−1), the ballistic
part

B ∶= ∣∫
T

0
∫
I1
f (0)(v′)(g(0)1 (v

′) − g(0)1 (v))dxdt∣(4.6)

− ∣∫
T

0
∫
I1
f (0)(v)(g(0)1 (v) − g

(0)
1 (v

′))dxdt∣

satisfies
B ≥ Cϕµ (e−TCK ∣V ∣T − (dµ + d)) > 0,(4.7)

where Cϕµ = ∫I1 ϕ1(x)µ1(−T + x)dx = maxa,b ∫I1 ϕ1(x + a)µ1(−T + x + b)dx by
construction of ϕ1, µ1.

At the same time, the remainder term is small.

Lemma 4.6. In the setting of Proposition 4.2, the remaining scattering term

S ∶=∫
T

0
∫
I1
f (v′)(g1(v′) − g1(v))dxdt −∫

T

0
∫
I1
f (0)(v′)(g(0)1 (v

′) − g(0)1 (v))dxdt

is bounded uniformly in (v, v′) by

∣S∣ ≤ 4CϕµT
CK ∣V ∣T

(1 −CK ∣V ∣T )2
.(4.8)

Proposition 4.2 is a corollary of Lemmas 4.5, 4.6.

Proof of Proposition 4.2. By the bounds obtained in lemmas 4.5, 4.6, one has

∣∂M1(K⋆)
∂K1,1

∣ − ∣∂M1(K⋆)
∂K1,2

∣ ≥ B − 2∣S∣

≥ Cϕµ (e−TCK ∣V ∣T − (dµ + d)) − 8CϕµT
CK ∣V ∣T

(1 −CK ∣V ∣T )2

≥ CϕµT (1 − TCK ∣V ∣ − δ − 8
0.09(1 − δ)
(1 − 0.09)2

) .

By assumption 0 < T < (1 − δ) 0.09
CK ∣V ∣ with δ = d+dµ

T
< 1, the last line is positive. In

total, this shows the first part of inequality (4.4). As the second part can be treated
in analogy, it follows that HK1C(K⋆) is positive definite. □

Finally, Theorem 4.2 is a direct consequence of Proposition 4.2.

Proof of Theorem 4.2. Repeated application of the arguments to all HKr
C(K⋆), r =

1, ...,R shows that HKC(K⋆) > 0. Assuming boundedness of the Hessian HKMl(K)
in a neighbourhood of K⋆, theorem 3.1 proves local well-posedness of the inverse
problem. □
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The proofs for the Lemmas 4.5-4.6 are rather technical and we leave them to
Appendix D. Here we only briefly present the intuition. According to Figure 1,
f (0)(v′ = −1) and g

(0)
1 (v′ = −1) have a fairly large overlapping support, whereas

g
(0)
1 (v = +1) overlaps with f (0)(v′ = −1) and g

(0)
1 (v′ = −1) with f (0)(v = +1) only

for a short time spans T ≈ T and T ≈ 0 respectively. Recalling (4.6), we see the
negative components of the term B are small, making B positive overall. The
smallness of S is a result of small measurement time T .

5. Numerical experiments

As a proof of concept for the prediction given by the theoretical results in Section
3, we present some numerical evidence.

An explicit finite difference scheme is used for the discretization of (2.1) and
(2.10). In particular, the transport operator is discretized by the Lax-Wendroff
method and the operator K is treated explicitly in time. The scheme is consistent
and stable when ∆t ≤ min(∆x,C−1K ), and thus it converges according to the Lax-
Equivalence theorem. More sophisticated solvers for the forward model [19] can
be deployed when necessary. Also, when a compatible solver [3] for the adjoint
equation exists, these pairs of solvers can readily be incorporated in the inversion
setting.

All subsequent experiments were conducted with noise free synthetic data yl =
Ml(K⋆) that was generated by a forward computation with the true underlying
parameter K⋆.

5.1. Illustration of well-posedness. In Section 4, it was suggested a specific
design of initial data and measurement mechanism can provide a successful recon-
struction of the kernel K, and that the loss function is expected to be strongly
convex. We observe it numerically as well. In particular, we set R = 20 and use
Gaussian initial data, and plot the (marginal) loss function in Figure 2. Figure 3
depicts the convergence of some parameter values Kr(v, v′) in this scenario against
the corresponding loss function value. An exponential decay of the loss function,
as expected from theory [37, Th.3], can be observed.
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Figure 2. (Marginal) loss functions C(K) for R = 20: For a fixed
r ∈ {2,9,13,15}, we plot C as a function of Kr with all Ks≠r set to
be the groundtruth (K⋆)s.

Figure 3. Convergence of the parameter values Kr(v, v′) from
(2.3) for r = 2,9,13,15 to the ground truth as the cost function
converges.

The strictly positive-definiteness feature persists in a small neighborhood of the
optimal solution K⋆. This means adding a small perturbation to K⋆, the mini-
mal eigenvalue of the Hessian matrix HKC(K) stays above zero. In Figure 4 we
present, for two distinct experimental setups, the minimum eigenvalue as a function
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of the perturbation to Kr(v, v′). In both cases, the green spot (the groundtruth)
is positive, and it enjoys a small neighborhood where the minimum eigenvalue is
also positive, as predicted by Theorem 3.1. In the right panel, we do observe, as
one moves away from the groundtruth, the minimal eigenvalue takes on a negative
value, suggesting the loss of convexity. This numerically verifies that the well-
posedness result in Theorem 3.1 is local in nature. The panel on the left deploys
the experiment design provided by Section 4. The simulation is ran over the entire
domain of [0,1]2 and the positive-definiteness stays throughout the domain, hint-
ing the proposed experimental design (D) can potentially be globally well-posed.To
generate the plots, a simplified setup with R = 2 and constant initial data was
considered.

Figure 4. Minimal eigenvalues of the Hessian HKC(K) around
the true parameterK⋆ for two experimental designs. We perturbK
by changing values in K1(1,−1) and K2(−1,1). The groundtruth
is marked green in both plots.

5.2. Ill-conditioning for close measurement locations. We now provide nu-
merical evidence to reflect the assertion from 3.2. In particular, the strong convexity
of the loss function would be lost if measurement location x1 becomes close to x2.

We summarize the numerical evidence in Figure 5. Here we still use R = 20
and constant initial data but vary the detector positions. To be specific, we assign
values to x1 using {x(0)1 = c1−T ,x(1)1 = c1+ T

2
, x
(2)
1 = c1+ 4

5
T ,x

(3)
1 = x2 = c1+T}. As

the superindex grows, x1 → x2 with x
(3)
1 = x2 when the two measurements exactly

coincide. For x1 = x2, the cost function is no longer strongly convex around the
ground truth K⋆, as its hessian is singular. The thus induced vanishing learning
rate η = 2λmin

λ2
max

was exchanged by the learning rate for x1 = x(2)1 in this case to
observe the effect of the gradient.

In the first, third and fourth panel of Figure 5, we observe that the cost function
as well as the parameter reconstructions for K9 and K15 nevertheless converge,but
convergence rates that slow down significantly comparing purple (for x(0)1 ), blue
(for x(1)1 ), green (for x(2)1 ) and orange (for x(3)1 ) due to smaller learning rates. The
overlap of the parameter reconstructions for x1 ∈ {x(2)1 , x

(3)
1 } is due to the coinciding

choice of the learning rate and a very similar gradient for parameters K9,K15 whose
information is not reflected in the measurement in x1.

As parameter K1 directly affects the measurement at x1, Panel 2 showcases the
degenerating effect of the different choices of x1 on the reconstruction. Whereas
convergence is still obtained in the blue curve (for x(1)1 ), the reconstructions of K1
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from measurements at x(2)1 (green) and x(3)1 (orange) clearly fail to converge to the
true parameter value in black. This offset seems to grow with stronger degeneracy
in the measurements.
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Figure 5. Cost function and reconstructions of Kr(+1,−1) (solid
lines) and Kr(−1,+1) (dotted lines) for r = 1,9,15 and R = 20
under different measurement locations for x1. x1 takes the values
of {x(0)1 = c1 − T ,x(1)1 = c1 + T

2
, x
(2)
1 = c1 + 4

5
T ,x

(3)
1 = c1 + T} with

x
(3)
1 = x2.

6. Discussion

In this paper we present an optimization framework for the reconstruction of
the velocity jump parameter K in the chemotaxis equation (2.1) using velocity
averaged measurements (2.5) from the interior domain. In the numerical setting
when PDE-constrained optimization is deployed, depending on the experimental
setup, the problem is can be either locally well-posedness or ill-conditioned. We
further propose a specific experimental design that is adaptive to the discretization
of K. This design decouples the reconstruction of local values of the parameter K
using the corresponding measurements. The design thus opens up opportunities to
parallelization. As a proof of concept, numerical evidence were presented. They
are in good agreement with the theoretical predictions

A natural extension of the results presented in the current paper is the algo-
rithmic performance in higher dimensions. The theoretical findings seem to apply
in a straightforward manner, but details need to be evaluated. Numerically one
can certainly also refine the solver implementation. For example, it is possible that
higher order numerical PDE solvers that preserve structures bring extra benefit.
More sophisticated optimization methods such as the (Quasi-)Newton method or
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Sequential Quadratic Programming are possible alternatives for conducting the in-
version [7, 24, 39, 45]. Furthermore, we adopted a first optimize, then discretize
approach in this article. Suggested in [3, 23, 33], a first discretize, then optimize
framework could be bring automatic compatibility of forward and adjoint solvers,
but extra difficulties [26] need to be resolved.

Our ultimate goal is to form a collaboration between practitioners to solve the
real-world problem relalted to bacteria motion reconstruction [30]. To that end, ex-
perimental design is non avoidable. A class of criteria proposed under the Bayesian
shed light, see [2] and references therein. In our context, it translates to whether
the design proposed in Section 4 satisfies these established optimality criteria.
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Appendix A. Derivation of the gradient (2.9)

This section justifies formula (2.9) for the gradient of the cost function C with
respect to K. Let us first introduce some notation: Denote by

J (f) ∶= 1

2L

L

∑
l=1
(∫

R
∫
V
f(T,x, v)dv µl(x)dx − yl)

2

the loss for f ∈ Y = {h ∣ h, ∂th + v ⋅ ∇h ∈ C0([0, T ];L∞(R × V ))}. Note that
mild solutions of (2.1) are contained in Y , since K(f) ∈ C0([0, T ];L∞(R × V )) by
regularity of f from Lemma B.1. Then C(K) ∶= J (fK) in the notation of (2.5).
The Lagrangian function for the PDE constrained optimization problem (2.7) reads

L(K,f, g, λ) = J (f) + ⟨g, ∂tf + v ⋅ ∇f −K(f)⟩x,v,t + ⟨λ, f(t = 0) − ϕ⟩x,v,

for f ∈ Y and g ∈ Z = {h ∣ h, ∂th + v ⋅ ∇h ∈ C0([0, T ];L∞(V ;L1(R)))}. For f = fK ,
our cost function C(K) = J (fK) = L(K,fK , g, λ) and

dC(K̂)
dK

= ∂L
∂K
∣
K=K̂,
f=fK̂

+ ∂L
∂f
∣
K=K̂,
f=fK̂

∂fK
∂K
∣
K=K̂

To avoid the calculation of ∂fK
∂K

, choose the Lagrange multipliers g, λ such that
∂L
∂f
∣K=K̂,
f=fK̂

= 0. Then

dC(K̂)
dKr

= ∂L
∂Kr
∣
K=K̂,
f=fK̂

= −
∂⟨g,KK(f)⟩x,t,v

∂Kr
∣
K=K̂,
f=fK̂

= ∫
T

0
∫
Ir
fK̂(x, t, v

′)(g(x, t, v′) − g(x, t, v))dxdt.

To compute the gradient, g has to be specified. Recall the requirement

0 = ∂L
∂f
∣
K=K̂,
f=fK̂

= 1

L

L

∑
l=1
(∫

R
∫
V
f(T )dv µl dx − yl)

∂

∂f
⟨µl, f(T )⟩x,v

RRRRRRRRRRRK=K̂,
f=fK̂

(A.1)

+ ∂

∂f

⎡⎢⎢⎢⎢⎣
⟨g, ∂tf + v ⋅ ∇f −KK(f)⟩x,t,v + ⟨λ, f(t = 0)⟩x,v

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRK=K̂,
f=fK̂

We will motivate the choice of g such that the derivatives cancel out each other.
Because we are dealing with mild solutions where integration by parts in time and
space cannot be used right away, we approximate f and g by sequences of functions

● (fn)n ⊂ C1([0, T ];L∞(R×V ))∩C0([0, T ];W 1,∞(R;L∞(V ))) that converge
fn → f with ∂tfn + v ⋅ ∇fn → ∂tf + v ⋅ ∇f in C0([0, T ];L∞(R × V )) and
● (gn)n ⊂ C1([0, T ];L∞(V ;L1(R)))∩C0([0, T ];L∞(V ;W 1,1(R))) with gn →
g with −∂tgn − v ⋅ ∇gn → −∂tg − v ⋅ ∇g in C0([0, T ];L∞(V ;L1(R))).
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This is possible, because the respective spaces for fn and gn are dense in Y and Z.
Replacing f by fn and g by gn in ⟨g, ∂tf + v ⋅ ∇f −K(f)⟩x,t,v, we obtain
⟨g, ∂tf + v ⋅ ∇f −K(f)⟩x,t,v = lim

n
⟨gn, ∂tfn + v ⋅ ∇fn −K(fn)⟩x,t,v

= lim
n
(⟨−∂tgn − v ⋅ ∇gn − K̃(gn), fn⟩x,t,v + ⟨fn(t = T ), gn(t = T )⟩x,v − ⟨fn(t = 0), gn(t = 0)⟩x,v)

= ⟨−∂tg − v ⋅ ∇g − K̃(g), f⟩x,t,v + ⟨f(t = T ), g(t = T )⟩x,v − ⟨f(t = 0), g(t = 0)⟩x,v,

where

K̃K(g) ∶= ∫
V
K(x, v′, v)(g(x, t, v′) − g(x, t, v))dv′.

Now, collect all terms in (A.1) with the same integration domain and equate
them to 0. This leads to
− ∂tg − v ⋅ ∇g − K̃K(g) = 0 in x ∈ R, v ∈ V, t ∈ (0, T )

g(x, t = T, v) = − 1
L

L

∑
l=1
(∫

R
∫
V
f(T,x, v)dv µl(x)dx − yl)µl(x) in x ∈ R, (v ∈ V )

λ = g(t = 0) in x ∈ R, v ∈ V.

Note that since g reflects the measurement procedure, it makes sense that g(t = T )
is isotropic in v. For computation of dC(K̂)

dKr
, use the solution g to the first two

equations with kernel K = K̂ and f = fK̂ .

Appendix B. Some a-priori estimates

By Assumption 1, semigroup theory yields the existence of a mild solution to
(2.1)–(2.2).

Lemma B.1. Let Assumption 1 hold and assume h ∈ L1((0, T );L∞(R×V )). Then
there exists a mild solution

f ∈ C0 ([0, T ];L∞(R×V ))(B.1)
to

∂tf + v ⋅ ∇xf = K(f) + h,
f(t = 0, x, v) = ϕ(x, v) ∈ L∞+(R × V )

that is bounded

max
v
∥f(t)∥L∞(R) ≤ e2∣V ∣CKtCϕ +∫

t

0
e2∣V ∣CK(t−s)∥h(s)∥L∞(R×V ) ds.

We carry out the proof once to make clear, how the constant in the bound is
derived.

Proof. Rewrite (2.1) as
∂tf = Af +Bf + h

with operators A ∶ D(A) → X , f ↦ −v ⋅ ∇xf and B ∶ X → X , f ↦ K(f), where
the function spaces D(A) ∶= W 1,∞(R;L∞(V )) and X ∶= L∞(R × V ) are used.
The transport operator A generates a strongly continuous semigroup T (t)u(x) =
u(x − vt) with operator norm ∥T (t)∥ ≤ 1. Clearly, B is bounded in operator norm
by 2∣V ∣CK . The bounded perturbation theorem, see e.g. [17], shows that A + B
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generates a strongly continuous semigroup S with ∥S(t)∥ ≤ e2∣V ∣CKt. As ϕ ∈ X ,
(2.1) admits a mild solution

f(t) = S(t)ϕ +∫
t

0
S(t − s)h(s)ds.

□

The regularity of the solution of (2.1)–(2.2) is improved by more regular initial
data. This is exploited in the proof of ill-conditioning for pointwise measurement
closeness in Theorem 3.2.

Corollary B.1. Let Assumption 1 hold.
a) Equation (2.1) has a mild solution f is bounded

(B.2) max
v
∥f(t)∥L∞(R) ≤ e2∣V ∣CKtCϕ ≤ e2∣V ∣CKTCϕ =∶ Cf .

b) If, additionally, the initial data ϕ is uniformly continuous in x, uniformly in
v, then f is uniformly continuous in x, uniformly in v, t, i.e. maxv ∣f(t, x, v) −
f(t, y, v)∣ < ε for all t ∈ [0, T ], if ∣x − y∣ < δ(ε).

Proof. Assertion a) is a direct consequence of lemma B.1. We focus on proving
assertion b). Let ε > 0. By uniform continuity of ϕ in x, one can choose δ′ such
that

ess sup
∣x−y∣<δ′,v

∣ϕ(x, v) − ϕ(y, v)∣ < e−2CK ∣V ∣T ε/2.(B.3)

Now consider δ ∶=min (δ′, εe−2CK ∣V ∣T

8Cf ∣V ∣CK(R−1)). Integration along characteristics yields

ess sup
∣x−y∣<δ,v

∣f(t, x, v) − f(t, y, v)∣

≤ ess sup
∣x−y∣<δ,v

∣ϕ(x − vt, v) − ϕ(y − vt, v)∣

+ ess sup
∣x−y∣<δ,v

∣∫
t

0
K(f)(t − s, x − vs, v) −K(f)(t − s, y − vs, v)ds∣

≤ ess sup
∣x−y∣<δ,v

∣ϕ(x, v) − ϕ(y, v)∣

+ 2CK ∣V ∣∫
t

0
ess sup
∣x−y∣<δ,v′

∣f(s, x, v′) − f(s, y, v′)∣ds

+ 2Cf ∣V ∣ ess sup
∣x−y∣<δ,v

∫
t

0
max
v′,v′′
∣K(x − vs, v′, v′′) −K(y − vs, v′, v′′)∣ds

=∶ (i) + (ii) + (iii),

where (i) ≤ ε
2
e−2CK ∣V ∣T by (B.3). By symmetry, (iii) = 2 ⋅ (iv) where (iv) coincides

with (iii), but x ≥ y. As K is a step function in space (2.3), its difference can only
be non zero if a jump occurred between x − vs and y − vs. Boundedness of K in
(2.12) then lead to the estimate

(iii) = 2 ⋅ (iv) ≤ 2 ⋅ 2Cf ∣V ∣ ess sup
∣x−y∣<δ,v

∫
t

0
CK

R−1
∑
r=1

1(x−vs,y−vs](ar)ds(B.4)

≤ 4Cf ∣V ∣CK(R − 1)δ ≤
ε

2
e−2CK ∣V ∣T .
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In summary, Gronwall’s lemma yields

ess sup
∣x−y∣<δ,v

∣f(t, x, v) − f(t, y, v)∣ ≤ εe−2CK ∣V ∣(T−t) ≤ ε.

□

Again, semigroup theory shows existence of the adjoint equation (2.10) with
corresponding bounds.

Lemma B.2. Let h ∈ L1((0, T );L∞(V ;L1(R))), ψ ∈ L1(R) and let (2.12) hold.
Then the equation

−∂tg − v ⋅ ∇xg = αL̃(g) − σg + h,(B.5)
g(t = T ) = ψ(x)

with α ∈ {0,1} and L̃(g) ∶= ∫ K(x, v′, v)g(x, t, v′)dv′ and σ(x, v) ∶= ∫ K(x, v′, v)dv′
has a mild solution

g ∈ C0 ([0, T ];L∞(V ;L1(R)))(B.6)

that satisfies

∥g(t)∥L∞(V ;L1(R)) ≤ e(1+α)∣V ∣CK(T−t) (∥ψ∥L1(R) +∫
T−t

0
max

v
∥h(T − s, v)∥L1(R) ds) .

(B.7)

If, additionally, h ∈ L∞([0, T ] × V ;L1(R)), then

∥g(t)∥L∞(V ;L1(R))(B.8)

≤ e(1+α)∣V ∣CK(T−t)∥ψ∥L1(R) +
e(1+α)∣V ∣CK(T−t) − 1
(1 + α)∣V ∣CK

ess sup
t,v

∥h(t, v)∥L1(R).

Proof. Repeating the arguments in the proof of Lemma B.1, semigroup theory
yields the existence of a mild solution

g(t) = S(T − t)ψ +∫
T−t

0
S(T − t − s)h(T − s)ds

for the semigroup S(t) generated by the operator v ⋅ ∇x + αL̃ − σ with ∥S(t)∥ ≤
e(1+α)∣V ∣CKt. This yields (B.7) and (B.8). □

Appendix C. Proof of Lemma 3.7-3.8

In this section, we provide the proof for the two Lemmas in section 3.2. In
particular, Lemma 3.7 discusses the smallness of the first term in (3.16).

Proof for Lemma 3.7. By the assumption on the initial data and Corollary B.1 b),
f is uniformly continuous in x, uniformly in v, t. For n = 0, the boundedness (3.17)
is a consequence of the explicit representation

ḡ0(t, x, v0) = e− ∫
T−t
0 σ(x+v0τ,v0)dτ(µη

2 − µ
η
1)(x + v0(T − t))(C.1)

together with the step function shape (2.3) of K, the continuity of f and our as-
sumptions: Write p0(t, x, v0, v′) ∶= f(x, t, v′)e− ∫

T−t
0 σ(x+v0τ,v0)dτ and assume without
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loss of generality x1 ≥ x2, then

∫
Ir
f ′ḡ0 dx

= ∫
Ir
p0(t, x, v0, v′)(µη

2 − µ
η
1)(x + v0(T − t))dx

= −∫
ar−1

ar−1−(x1−x2)
p0(t, x + (x1 − x2), v0, v′)µη

2(x + v0(T − t))dx

+∫
ar

ar−(x1−x2)
p0(t, x, v0, v′)µη

2(x + v0(T − t))dx

+∫
ar−(x1−x2)

ar−1
(p0(t, x, v0, v′) − p0(t, x + (x1 − x2), v0, v′))µη

2(x + v0(T − t))dx,

where we used the substitution x→ x− (x1 −x2) for the integration domain of test
function µη

1(x) = µ
η
2(x − (x1 − x2)). By uniform continuity and boundedness of f a

similar argumentation as in (B.4) shows that p0(t, x, v0, v′) is uniformly continuous
in x, uniformly in t, v0, v

′, as well. The corresponding threshold from the epsilon-
delta criterion is denoted by δp0(ε). Then, for 0 ≤ ∣x1 −x2∣ < δ0(ε) ∶=min(minr ∣ar −
x2∣−T − η0, δp0(ε)), the first two integrals vanish, because µη

2(x+ v0(T − t)) = 0 for
all x in the integration domain. We are left with

∣∫
Ir
f ′ḡ0 dx∣ ≤

ar−(x1−x2)

∫
ar−1

∣p0(t, x, v0, v′) − p0(t, x + (x1 − x2), v0, v′)∣µη
2(x + v0(T − t))dx

≤ ε∫
R
µη
2(x + v0(T − t))dx = ε.

For n ≥ 1, source iteration shows that the solution to (3.14) has the form

ḡn(t, x, v0) =
T−t

∫
0

∫
V
...

T−t−∑n−2
j=0 sj

∫
0

∫
V
pn(t, x, (vi)i=0,...,n, (sj)j=0,...,n−1)⋅

(µ2 − µ1)(x +
n−1
∑
l=0

vlsl + vn (T − t −
n−1
∑
l=0

sl)) dvn dsn−1...dv1 ds0 .

The function pn is bounded 0 ≤ pn ≤ Cn
K and satisfies

∫
T

0
∣pn(t, x + vnt, (vi)i, (sj)j) − pn(t, y + vnt, (vi)i, (sj)j)∣dt < ε

for ∣x − y∣ < δpn(ε), uniformly in (vi)i, (sj)j . The assertion then follows in analogy
to the case n = 0. □

Lemma 3.8 argues the smallness of the second term in (3.16). We provide the
proof below. It is a consequence of the smallness of ḡ>N by Lemma B.2 and the
boundedness of f .

Proof for Lemma 3.8. Application of lemma B.2 to g = ḡ>N , h = L̃ḡN , α = 1 and
ψ = 0 yields

max
v
∫
R
∣ḡ>N(t)∣dx ≤ e2CK ∣V ∣(T−t) ∫

T−t

0
sup
v
∥L̃(ḡN)(T − s, v)∥L1(R) ds

≤ ∣V ∣CK(T − t)e2CK ∣V ∣(T−t) ess sup
s,v

∥ḡN(s, x, v)∥L1(R).
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Now, application of the same lemma to the evolution equation (3.14) for gn, n =
1, ...,N , shows

ess sup
t,v

∫
R
∣ḡn∣dx ≤ (eCK ∣V ∣T − 1) ess sup

s,v
∫
R
∣ḡn−1(s, x, v)∣dx.

The boundedness of f in (B.2) and repeated application of the above estimate lead
to

∣∫
T

0
max

v
∫
R
f ′ḡ>N dxdt∣

≤ T
2

2
∣V ∣CKCϕe

2∣V ∣CKT (eCK ∣V ∣T − 1)N ess sup
s,v

∫
R
∣ḡ0(s, x, v)∣dx

≤ T
2

2
∣V ∣CKCϕe

2∣V ∣CKT (eCK ∣V ∣T − 1)
N
ess sup

s,v
∫
R
∣(µη

2 − µ
η
1)(x + vs)∣dx

≤ T 2∣V ∣CKCϕe
2∣V ∣CKT (eCK ∣V ∣T − 1)NCµ,

where ∣ḡ0(s, x, v)∣ ≤ ∣(µη
2 −µ

η
1)(x+vs)∣ can be observed from the explicit formula for

ḡ0 in (C.1). □

Appendix D. Proof of Lemmas in Section 4

We provide proofs for Lemma 4.5-4.6 in this section.

Proof of Lemma 4.5. Use the explicit representations

g
(0)
1 (t, x, v) = e

−(T−t)σ1(v)µ1(x + v(T − t)),(D.1)
f (0)(t, x, v) = e−tσ1(v)ϕ(x − vt)(D.2)

with σ1(v) = ∫V K1(v′, v)dv′ and set without loss of generality c1 = 0. Since f (0)∣I1 =
f
(0)
1 in the notation of the proof of Proposition 4.1, one obtains for (v, v′) = (+1,−1)

∫
T

0
∫
I1
f (0)(v′)(g(0)1 (v

′) − g(0)1 (v))dxdt

= ∫
T

0
∫
I1
e−tσ1(v′)ϕ1(x − v′t)(e−(T−t)σ1(v′)µ1(x + v′(T − t))

− e−(T−t)σ1(v)µ1(x + v(T − t)))dxdt

≥ e−Tσ1(−1)T ∫
a1

a0+T
ϕ1(x)µ1(−T + x)dx −∫

T

T− dµ+d
2

∫
I1
ϕ1(x)µ1(−T + x)dxdt

≥ e−TCK ∣V ∣TCϕµ −
dµ + d

2
Cϕµ,

where the first inequality is due to the fact that ϕ1(x − v′t)µ1(x + v(T − t)) =
ϕ1(x+t)µ1(x+(T −t)) ≠ 0 only for x ∈ [−t−d,−t+d]∩[−2T +t−dµ,−2T +t+dµ] ⊂ I1
which is empty for t ≤ T − dµ+d

2
.
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For (v′, v) = (−1,+1), instead, we obtain

∣∫
T

0
∫
I1
f (0)(v)(g(0)1 (v) − g

(0)
1 (v

′))dxdt∣

= ∣∫
T

0
∫
I1
e−tσ1(v)ϕ1(x − vt)(e−(T−t)σ1(v)µ1(x + v(T − t))

− e−(T−t)σ1(v′)µ1(x + v′(T − t)))dxdt∣

≤ Cϕµ
d + dµ

2

since
● ϕ1(x − vt)µ1(x + v(T − t)) = ϕ1(x − t)µ1(x + T − t) vanishes, as its support
[t − d, t + d] ∩ [−2T + t − dµ,−2T + t + dµ] = ∅ is empty by construction of
T > d ≥ dµ and
● the support [t − d, t + d] ∩ [−t − dµ,−t + dµ] of ϕ1(x − vt)µ1(x + v′(T − t)) =
ϕ1(x − t)µ1(x − (T − t)) is non-empty only for t ≤ d+dµ

2
.

Since e−TCK ∣V ∣ − dµ+d
T
> 0 by assumption, this proves the assertion. □

To show inequality (4.8) in Lemma 4.6, decompose for some N ∈ N to be deter-
mined later

S =
N

∑
n,k=0
n+k≥1

∫
T

0
∫
I1
f (k)(v′)(g(n)1 (v

′) − g(n)1 (v))dxdt

+∫
T

0
∫
I1
f(v′)(g(>N)1 (v′) − g(>N)1 (v))dxdt(D.3)

+
N

∑
n=0
∫

T

0
∫
I1
f (>N)(v′)(g(n)1 (v

′) − g(n)1 (v))dxdt ,

where g(n)1 and g
(>N)
1 solve (3.14) and (3.15) respectively and f (k) are solutions to

∂tf
(k) − v ⋅ ∇xf

(k) = L(f (k−1)) − σf (k),

f (k)(t = 0, x, v) = 0,

with L(h) ∶= ∫V K(v, v′)h(t, x, v′)dv′, and f (>N) satisfies

∂tf
(>N) − v ⋅ ∇xf

(>N) = L(f (N) + f (>N)) − σf (>N),

f (>N)(t = 0, x, v) = 0.

Each part of S in representation (D.3) is estimated separately in the subsequent
three lemmas.

Lemma D.1. In the setting of proposition 4.2,

∣∫
T

0
∫
I1
f (k)(v′)(g(n)1 (v

′) − g(n)1 (v))dxdt∣ ≤ 2max
v,v′
∫

T

0
∫
I1
f (k)(v′)g(n)1 (v)dxdt

≤ 2 (CK ∣V ∣)n+k Tn+k+1Cϕµ



30 KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG, QIN LI, AND MIN TANG

Proof. Source iteration

g
(n)
1 (t, x, v0) = ∫

T−t

0
∫
V
e−s0σ(v0)K1(v̂1, v0)g(n−1)1 (t + s0, x + v0s0, v̂1)dv̂1 ds0

≤ ∣V ∣∫
T−t

0
e−s0σ(v0)K1(v1, v0)g(n−1)1 (t + s0, x + v0s0, v1)ds0,

f (k)(t, x, v0) = ∫
t

0
∫
V
e−s0σ(v0)K(v0, v̂1)f (k−1)(t − s0, x − v0s0, v̂1)dv̂1 ds0

≤ ∣V ∣∫
t

0
e−s0σ(v0)K(v0, v1)f (k−1)(t − s0, x − v0s0, v1)ds0,

where v1 = −v0, together with the explicit formulas (D.1)–(D.2) leads to estimates

0 ≤ g(n)1 (x, t, v0) ≤ (CK ∣V ∣)n
T−t

∫
0

...

T−t−∑n−2
i=0 si

∫
0

µ1 (x +
n−1
∑
i=0

visi + vn (T − t −
n−1
∑
i=0

si))

(D.4)

dsn−1...ds0,

0 ≤ f (k)(x, t, v0) ≤ (CK ∣V ∣)k
t

∫
0

...

t−∑k−2
i=0 si

∫
0

ϕ(x −
k−1
∑
i=0

visi + vk (t −
k−1
∑
i=0

si)) dsk−1...ds0.

Using again f (k)∣I1 = f
(k)
1 with initial condition ϕ1 in the notation of the proof of

Porposition 4.1, this proves

∣∫
T

0
∫
I1
f (k)(v′)(g(n)1 (v

′) − g(n)1 (v))dxdt∣ ≤ 2max
v,v′
∫

T

0
∫
I1
f
(k)
1 (v

′)g(n)1 (v)dxdt

≤ 2 (CK ∣V ∣)n+k Tn+k+1Cϕµ.

□

The following bound for the second summand in (D.3) is obtained in analogy to
Lemma 3.8.

Lemma D.2. In the setting of Proposition 4.2,

max
v
∣∬ f(v′)(g(>N)1 (v′) − g(>N)1 (v))dxdt∣

≤ 4T 2∣V ∣CKCϕe
2∣V ∣CKT (eCK ∣V ∣T − 1)N C̄µdµ =∶ C ′(T )(eCK ∣V ∣T − 1)N

For the third term in (D.3), one establishes the following bound.

Lemma D.3. In the setting of Proposition 4.2,

max
v
∣∬ f (>N)(v′)(g(n)(v′) − g(n)(v))dxdt∣

≤ 4∣V ∣CKT
2e2∣V ∣CKT (eCK ∣V ∣T − 1)NCϕ (CK ∣V ∣T )n C̄µdµ

=∶ C ′′(T )(eCK ∣V ∣T − 1)N (CK ∣V ∣T )n

Proof. An estimate for f (>N) can be derived analogously as the estimate for ḡ>N
in Lemma 3.8 from Lemma B.1

∥f (>N)∥L∞([0,T ]×R×V ) ≤ ∣V ∣CKTe
2∣V ∣CKT (eCK ∣V ∣T − 1)NCϕ.

Together with (D.4), this proves the lemma. □
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Lemma 4.6 can now be assembled from the previous lemmas.

Proof of Lemma 4.6. Lemmas D.1, D.2 and D.3 yield the (v, v′) independent bound

∣S∣ ≤ 2CϕµT
N

∑
n,k=0
n+k≥1

(CK ∣V ∣T )n+k + (eCK ∣V ∣T − 1)N (C ′(T ) +C ′′(T )
N

∑
n=0
(CK ∣V ∣T )n)

≤ 4CϕµT
CK ∣V ∣T

(1 −CK ∣V ∣T )2
+ (eCK ∣V ∣T − 1)N (C ′(T ) +C ′′(T ) 1

1 −CK ∣V ∣T
)

=∶ 4CϕµT
CK ∣V ∣T

(1 −CK ∣V ∣T )2
+ (eCK ∣V ∣T − 1)NC(T ).

Because eCK ∣V ∣T − 1 < 1 due to the assumption T < (1 − δ) 0.09
CK ∣V ∣ , the second term

in the last line becomes arbitrarily small for large N ∈ N, which shows that ∣S∣ is in
fact bounded by the first term. □
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