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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL USING
MACROSCOPIC DATA: WELL-POSEDNESS AND ILL-POSEDNESS\rightarrow 

KATHRIN HELLMUTH†, CHRISTIAN KLINGENBERG†, QIN LI‡, AND MIN TANG§

Abstract. Bacterial motion is guided by external stimuli (chemotaxis), and the motion described
on the mesoscopic scale is uniquely determined by a parameter K that models velocity change
response from the bacteria. This parameter is termed a chemotaxis kernel. In a practical setting,
experimental data was collected to infer this kernel. In this article, a PDE-constrained optimization
framework is deployed to perform this reconstruction using velocity-averaged, localized data taken
in the interior of the domain. The problem can be well-posed or ill-posed depending on the data
preparation and the experimental setup. In particular, we propose one specific design that guarantees
numerical reconstructability and local convergence. This design is adapted to the discretization of
K in space and decouples the reconstruction of local values of K into smaller cell problems, opening
up parallelization opportunities. Numerical evidence supports the theoretical findings.
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1. Introduction. The kinetic chemotaxis equation is one of the classical equa-
tions that describes the collective behavior of bacteria motion. Presented on the phase
space, the equation describes the “run-and-tumble” bacteria motion [3, 18, 39, 40]

\omega tf + v ·\rightarrow xf =K(f) :=

\Biggr) 

V

K(x, v, v\rightarrow )f(x, t, v\rightarrow )\uparrow K(x, v\rightarrow , v)f(x, t, v)dv\rightarrow ,(1.1)

f(t= 0, x, v) = \varepsilon (x, v) .(1.2)

The solution f(t, x, v) represents the density of bacteria at any given time t for any
location x moving with velocity v\downarrow V . The two terms describe di!erent aspects of the
motion. The v·\rightarrow xf term characterizes the “run” part: bacteria move in a straight line
with velocity v; the terms on the right characterize the “tumble” part: bacteria change
from having velocity v

\rightarrow to v using the transitional rate K(x, v, v\rightarrow )\updownarrow 0. This transition
rate thus is termed the tumbling kernel. Initial data is given at t= 0 and is denoted
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614 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

by \omega (x, v). The equation contains phase-space information, and thus compared to the
macroscopic models, such as the Keller Segel model, it o!ers more details and has the
greater potential to capture the fine motion of the bacteria. Indeed, it is observed that
the dynamics predicted by the model is in high agreement with real measurements;
see [7, 17, 47, 48].

It is noteworthy that these comparisons are conducted in the forward-simulation
setting. Guesses are made about parameters, and simulations are run to be com-
pared with experimental measurements. To fully reveal the bacteria’s motion and its
interaction with the environment, inverse perspectives have to be taken. This is to
take measurements to infer K. The data can be collected at the individual level or
the population level: biophysicists can use a high-resolution camera and trace each
single bacterium for a long time to obtain single particle trajectory information, or
take photos and record the density changes on a cell cultural dish. Such data should
be used to unveil the true interaction between particles [35].

In this article, we frame this problem into a finite dimensional PDE-constrained
optimization and study the unique and stable reconstructability of the kernel. In
particular, we study di!erent types of initial condition and measurement schemes and
show that di!erent experimental setups provide di!erent stability of the reconstruc-
tion.

As more physics models derived from first principles get deployed in applications,
kinetic models are becoming more important in various scientific domains; see model-
ing of neutrons [14], photons or electrons [45], and rarefied gas [10]. The applications
on biological and social science have also been put forward in [39] for cell motion,
in [52] for animal (bird) migration, or in [1, 9, 13, 38, 54] for opinion formation. In
most of these models, parameters are included to characterize the interactions among
agents or those between agents and the media. It is typical that these interactions
cannot be measured directly, and it prompts the use of inverse solvers.

The most prominent application of inverse problems within the domain of kinetic
systems is optical tomography emerging from medical imaging, where nonintrusive
boundary data is deployed to map out the optical properties of the interior. Math-
ematically a technique called the singular decomposition is deployed to conduct the
inversion [6, 12, 33, 36, 51], and these studies have their numerical counterparts in
[5, 11, 16, 43, 44], just to mention a few references.

Back to our current model, we notice that tracing the trajectory of every single
bacterium is much more di""cult than measuring the evolution of the macroscopic
density [30, 57], so we are tasked to unveil the interaction between bacteria and the
environment using the density measurement. A series of new results by biophysicists
[32, 58] studies this experimental setting for a similar kinetic model and exhibits sig-
nificance for practitioners. Compared with the classical inverse problem originated
from optical tomography, we encounter some new mathematical challenges. In partic-
ular, in our setup, our measurements are taken in the interior of the domain instead
of on the boundary, and interior data is richer than boundary measurements. Mean-
while, our data is velocity independent, as compared to that in optical tomography
that contains velocity information, so we also lose some richness in data.

In [27] the authors examined the theoretical aspect of this reconstruction problem.
It was shown that trading o! the microscopic information for the interior data still
gives us su""cient information to recover the transition kernel, but the experiments
need to be carefully crafted. In this theoretical work we assumed that the transition
kernel is an unknown function, and thus an infinitely dimensional object, and the
available data is the full map (from initial condition to density for all time and space),
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 615

and thus an infinite dimensional object as well. This infinite-to-infinite setup is hard
to implement in a practical setting, rendering the theoretical results only a guidance
for direct use. The current paper can be seen as the practical counterpart of [27].
In particular, our goal is to study the same question on the discrete level: when
measurement data are finite in size, and the to-be-reconstructed transition kernel is
also represented by a finite dimensional vector, can one still successfully recover the
unknowns?

It turns out that the numerical issue is significantly more convoluted. In particu-
lar, when the dimension of K, the transition kernel, changes from infinite to finite, the
amount of data needed to recover this parameter is expected to be reduced. The way
of the reduction, however, is not clear. We will present below two di!erent scenarios
to argue

• when data is prepared well, a stable reconstruction is expected;
• when the data “degenerates,” it loses information, and the reconstruction

does not hold.
Such coexistence of well-posedness and ill-posedness is presented respectively in two
subsections of section 3. Then in section 5 we present the numerical evidence to
showcase the theoretical prediction.

It should be noted that it is well within anticipation that di!erent data prepara-
tion gives di!erent conditioning for parameter reconstruction. This further prompts
the study of experimental design. In the context of reconstructing the transition ker-
nel in the chemotaxis equation, in section 4 we will design a particular experimental
setup that guarantees a unique reconstruction. This verifies existence of the situation
of data being well-prepared.

We should further mention that reconstructing parameters for bacterial motion
using the inverse perspective is not entirely new. Until recently, existing literature
followed two di!erent approaches: the first involves the utilization of statistical infor-
mation at the individual level to extrapolate the microscopic transition kernel [41, 49],
whereas the second entails employing density data at a macroscopic scale to recon-
struct certain parameters associated with a macroscopic model through an optimiza-
tion framework [22, 23, 46, 55]. To our knowledge, these available studies focus on
a preset low-dimensional set of unknowns. The idea to infer parameters of kinetic
descriptions from macroscopic type data emerged more recently [27, 32, 58]. The
viewpoint we take in the current article significantly di!ers from those in the existing
literature: Similarly as was done in [15, 21] for a macroscopic model, we also re-
cover the discretized version of the kinetic parameter. This brings more flexibility in
application, at the cost of potentially high dimension of the unknown parameter. In
contrast to existing results, our focus lies on the study of identifiability of the parame-
ter in the proposed optimization setting, and thus its well- and ill-conditioning. Noise
would introduce an additional layer of parameter uncertainty that we specifically seek
to exclude from this stage of analysis. Numerical examples are thus presented in a
noise-free and nonregularized manner. This allows investigation of structural identi-
fiability as well as suitability of specific experimental setups to generate informative
data for reconstruction in the sense of practical identifiability.

2. Framing a PDE-constrained optimization problem. The problem is
framed as a PDE-constrained optimization, which is to reconstruct K that fits data
as much as possible, conditioned on the fact that the kinetic chemotaxis model is
satisfied.

We reduce the dimension of the original kinetic chemotaxis model (1.1)–(1.2) for
t > 0 from (x, v) \rightarrow R3 \uparrow S2 to (x, v) \rightarrow R1 \uparrow {±1} [23, 48, 47], i.e., the bacteria moves
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616 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

either to the left or to the right, and x is one-dimensional (1D) in space. This simple
setting reflects how experiments are conducted in the labs: bacteria are cultured in a
tube, and the motion is 1D. More details will be discussed in the subsequent part.

In a numerical setting, we first represent K as a finite dimensional parameter.
After prescribing a partition of the domain R1 =

\Biggr) 
r
Ir into intervals Ir = [ar\rightarrow 1, ar),

for r = 2, . . . ,R \rightarrow 1, and I1 = (\rightarrow \uparrow , a1), IR = [aR\rightarrow 1,\uparrow ), the function K(x, v, v\uparrow ) is
approximated within the cell Ir by the value Kr(v, v\uparrow ), constant in space:

K(x, v, v\uparrow ) =
R\Biggl[ 

r=1

Kr(v, v
\uparrow )1Ir (x) ,(2.1)

where 1I denotes the characteristic function of a subset I \downarrow R1, i.e., 1I(x) = 1 if x\updownarrow I

and 0 otherwise. For v= v
\uparrow , we set Kr(v, v) = 0 since these tumbling events cannot be

distinguished from running a straight line and do not e!ect the motion (1.1). Since
V = {±1}, then there are only two parameters: Kr(1,\rightarrow 1) and Kr(\rightarrow 1,1) for each
cell, so in total there are 2R free values to represent K. Throughout the paper we
abuse the notation and denote K \updownarrow R2R as the unknown vector to be reconstructed
and denote

Kr = [Kr,1,Kr,2] with Kr,i =Kr(vi, v
\uparrow 
i
) and (vi, v

\uparrow 
i
) =

\Biggr] 
(\rightarrow 1)i+1

, (\rightarrow 1)i
\Biggl\lfloor 

(2.2)

for i = 1,2. The dataset is also finite in size. In particular, we mathematically
represent each measurement as a reading of the bacteria density using a test function
µl \updownarrow L

1(R) for some l, so the measurement is

Ml(K) =

\Biggr\rfloor 

R

\Biggr\rfloor 

V

fK(x,T, v)dv µl(x)dx, l= 1, . . . ,L ,(2.3)

where fK denotes the solution to (1.1) with kernel K. Integration in velocity before
testing with µl means that only the macroscopic density can be accessed. Even though
integration amounts in a simple summation in our 1D setting with V = {±1}, we stick
to this notation for conciseness of the representation and set |V | :=

\Biggl\lceil 
V
dv. In case µl

is a characteristic function, this corresponds to the pixel reading of a photo.
For simplicity of the presentation, the ground-truth kernel K\omega is assumed to be of

form (2.1) as well. Consideration of continuous in space ground-truths would require
additional approximation error estimates, as presented in [31] for a di!usion coe""cient
reconstruction in elliptic and parabolic equations, which would go beyond the scope
of this article. Then the true data is

yl =Ml(K\omega ), l= 1, . . . ,L .(2.4)

Since K is represented by a finite dimensional vector, we expect the amount of data
needed to be finite as well. Given the nonlinear nature of the inverse problem, it is
unclear whether L = 2R leads to a unique reconstruction. One ought to dive in the
intricate dependence on the form of {µl}l=1,...,L.

To conduct such inversion, we deploy a PDE-constrained optimization formula-
tion. This is to minimize the square loss between the simulated data M(K) and the
data y:

min
K

C(K) =min
1

2L

L\Biggl[ 

l=1

(Ml(K)\rightarrow yl)
2

subject to (1.1) and (1.2).

(2.5)
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 617

Many algorithms can be deployed to solve this minimization problem, and we
are particularly interested in the application of gradient-based solvers. The simple
gradient descent (GD) method gives

K
(n+1) =K

(n) \rightarrow \omega n\uparrow KC(K(n))(2.6)

with a suitable step size \omega n \downarrow R+. It is a standard practice of calculus-of-variation to
derive the partial di!erentiation against the (r, i)th (i = 1,2, r = 1, . . . ,R) entry in
the gradient \uparrow KC:

\varepsilon C
\varepsilon Kr,i

=

\Biggr) 
T

0

\Biggr) 

Ir

f(t, x, v\rightarrow 
i
)(g(t, x, v\rightarrow 

i
)\rightarrow g(t, x, vi))dxdt .(2.7)

Details are given in section SM1 in the supplementary materials. In the formulation,
(vi, v\rightarrow i) is given in (2.2) and g is the adjoint state that solves the adjoint equation

\rightarrow \varepsilon tg\rightarrow v ·\uparrow g= K̃(g) :=

\Biggr) 

V

K(x, v\rightarrow , v)(g(x, t, v\rightarrow )\rightarrow g(x, t, v))dv\rightarrow ,(2.8)

g(x, t= T, v) =\rightarrow 1

L

L\Biggl[ 

l=1

µl(x) (Ml(K)\rightarrow yl) .(2.9)

The convergence of GD in (2.6) is guaranteed for a suitable step size if the objec-
tive function is convex. Denoting HKC the Hessian function of the loss function, we
need HKC > 0 at least in a small neighborhood around K\omega . In [56], a constant step
size \omega n = \omega = 2\varepsilon min

\varepsilon 2
max

is recommended with \vargamma min,\vargamma max denoting the smallest and largest
eigenvalues of HKC(K\omega ). More sophisticated methods including line search for the
step size or higher order methods are also possible; see, e.g., [44, 56].

To properly set up the problem, we make some general assumptions and fix some
notations.

Assumption 2.1. We make assumptions to ensure the well-posedness of the for-
ward problem in a feasible set:

• We will work locally in K, so we assume that in a neighborhood UK\omega of K\omega ,
there is a constant CK that uniformly bounds all K̂ \downarrow UK\omega :

0< \updownarrow K̂\updownarrow \uparrow \nearrow CK for all K̂ \downarrow UK\omega .(2.10)

• Assume that the initial data \varpi is in the space L
\uparrow 
+ (R\searrow V )\simeq L

1(R;L\uparrow (V )) of
nonnegative functions with essential bound

\updownarrow \varpi \updownarrow L\rightarrow (R\downarrow V ),\updownarrow \varpi \updownarrow L1(R;L\rightarrow (V )) \nearrow C\vargamma .

• The test functions {µl}Ll=1 are supposed to be selected from the space L
1(R)

with uniform L
1 bound

\Biggr) 

R
|µl|dx\nearrow Cµ, l= 1, . . . ,L .

These assumptions are satisfied in a realistic setting. They allow us to operate
f and g in the right spaces. In particular, we can establish existence of mild solutions
and upper bounds for both the forward and the adjoint solution; see Lemmas SM2.1
and SM2.3 in supplementary materials section SM2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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618 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

3. Well-posedness versus ill-posedness. As many optimization algorithms
are designed to produce minimizing sequences, we study well-posedness in the sense
of Tikhonov.

Definition 3.1 (Tikhonov well-posedness [53]). A minimization problem is

Tikhonov well-posed if a unique minimum point exists toward which every minimizing

sequence converges.

The well-posedness of the inversion heavily depends on the data preparation. If
a suitable experimental setting is arranged, the optimization problem is expected to
provide local well-posedness around the ground-truth parameter K\omega , so the classical
GD can reconstruct the ground-truth. However, if data becomes degenerate, we also
expect ill-conditioning and the GD will find it hard to converge to the global minimum.
We spell out the two scenarios in the two theorems below.

Theorem 3.2. Assume the Hessian matrix of the cost function is positive definite

at K\omega and let the remaining assumptions of Proposition 3.5 hold; then there exists a

neighborhood U of K\omega , in which the optimization problem (2.5) is Tikhonov well-posed.
In particular, the GD algorithm (2.6) with initial value K0 \rightarrow U converges.

This theorem provides the well-posedness of the problem. To be specific, it spells
out the su!cient condition for GD to find the global minimizer K\omega . The condition
of the Hessian being positive definite at K\omega may seem strong. In section 4, we will
carefully craft a setting, with L= 2R, for which we can ensure this to hold.

Contrary to the previous well-posedness discussion, we also provide a negative
result below on ill-conditioning.

Theorem 3.3. Let L= 2R and let Assumption 2.1 hold for all considered quanti-

ties. Consider a sequence (µ1,m)m of test functions for the first measurement M1(K)
that converges to the test function µ2 of the second measurement M2(K) as m\uparrow \downarrow ,

either

(1) µ1,m \uparrow µ2 strongly in L
1
, or

(2) µ1,m \omega µ2 weakly in L
1
. In this case, further assume that the measurement

time T is chosen small such that e
T |V |CK < 2.

Then, as m\uparrow \downarrow , i.e., as the measurement test functions become close in one of

the above senses, strong convexity of the loss function decays, and the convergence of

the GD algorithm (2.6) to K\omega cannot be guaranteed.

The two scenarios describe two di""erent qualities of convergence:
(1) strong convergence in the L

1 norm \updownarrow µ1,m \nearrow µ2\updownarrow L1 \uparrow 0, and
(2) weak convergence in L

1, a distributional property that requires a test function
h\rightarrow L

\rightarrow to observe convergence
\Biggr) 
µ1,m(x)h(x)dx\uparrow 

\Biggr) 
µ2(x)h(x)dx.

The two di""erent settings require di""erent proof techniques, and these technical con-
straints are the main reason for (2) to require additional assumptions on T .

Remark 3.4. In the case of pointwise measurement, the test functions µi are Dirac
delta measures. Since \varepsilon xi /\rightarrow L

1(R), the case is not covered in our setting. However, a
small modification to the proof lets us handle the situation where µi is a mollification
of Dirac. If the mollification parameters are independent of i, having x1,m \uparrow x2 puts
us back in the setting of the theorem, and the result still holds.

The two theorems, to be proved in detail in sections 3.1 and 3.2, respectively,
hold vast contrast to each other. The core di""erence between the two theorems is the
data selection. The former guarantees the convexity of the objective function, and
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 619

the latter shows degeneracy. The analysis comes down to evaluating the Hessian, a
2R\rightarrow 2R matrix:

HKC(K) =
1

L

L\Biggr) 

l=1

\Biggl[ 
\uparrow KMl(K)\downarrow \uparrow KMl(K) + (Ml(K)\updownarrow yl)HKMl(K)

\Biggr] 
.(3.1)

It is a well-known fact [42] that a positive definite Hessian provides the strong con-
vexity of the loss function and is a su!cient criterion that permits the convergence of
the parameter reconstruction. If HKC(K\omega ) is known to be positive and the Hessian
matrix does not change much under small perturbation of K, then convexity of the
cost function can be guaranteed in a small environment around K\omega . Such bounded-
ness of perturbation in the Hessian is spelled out in Proposition 3.5, and Theorem 3.2
naturally follows.

Theorem 3.3 orients the opposite side. In particular, it examines the degeneracy
when two data collection points get very close. The guiding principle for such degener-
acy is that when two measurements can get too close, they o""er no additional informa-
tion. Mathematically, this amounts to rank deficiency of the Hessian (3.1), prompting
the collapse of convexity in the landscape of the objective function. Propositions 3.10
and 3.11 consider the two di""erent notions of closeness, each of which entails its own
strategy to control the vanishing information gain from the first measurement.

3.1. Local well-posedness of the optimization problem. Generally speak-
ing, it would not be easy to characterize the full landscape of the loss function and
thus it is hard to prescribe conditions for obtaining global convergence. However,
suppose the data is prepared well enough to guarantee the positive definiteness for
the Hessian HKC(K\omega ) evaluated at the ground-truth K\omega ; then the following results
provide that in a small neighborhood of this ground-truth, positive definiteness per-
sists. Therefore, GD that starts within this neighborhood finds the global minimum
to (2.5). This gives us local well-posedness.

Proposition 3.5. Let Assumption 2.1 hold. Assume the Hessian HKC(K\omega ) is

positive definite at K\omega and that there exists a neighborhood UK\omega of K\omega in which the

Hessian of the measurements is uniformly bounded in the Frobenius norm, i.e., for all

l = 1, . . . ,L and K \nearrow UK\omega one has \searrow HKMl(K)(v, v\rightarrow )\searrow F \simeq CHKM . Then there exists a

(bounded) neighborhood U \Leftarrow UK\omega of K\omega in the L
\uparrow 

norm, where HKC(K) is positive

definite for all K \nearrow U . Moreover, the minimal eigenvalues \omega min(HKC) satisfy

|\omega min(HKC(K\omega ))\updownarrow \omega min(HKC(K))|\simeq \searrow K\omega \updownarrow K\searrow \uparrow C
\rightarrow 
,(3.2)

where the constant C
\rightarrow 
depends on the measurement time T , R, and the bounds Cµ,

C\varepsilon , CK in Assumption 2.1 and CHKM , but not on K. As a consequence, the radius

of U can be chosen as \omega min(HKC(K\omega ))/C \rightarrow 
.

The proposition is hardly surprising. Essentially it suggests the Hessian term is
Lipschitz continuous with respect to its argument. This is expected if the solution to
the equation is somewhat smooth. Such a strategy will be spelled out in detail in the
proof. Now Theorem 3.2 is immediate.

Proof for Theorem 3.2. By Proposition 3.5, there exists a neighborhood U of K\omega 

in which the Hessian is positive definite, HKC(K)> 0 for all K \nearrow U . Without loss of
generality, we can assume that U is a convex set. By the strong convexity of C in U ,
the minimizer K\omega \nearrow U of C is unique and thus the finite dimension of the parameter
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620 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

space K \rightarrow R2R guarantees Tikhonov well-posedness of the optimization problem (2.5)
[19, Prop. 3.1]. Convergence of GD follows from strong convexity of C in U .

Now we give the proof for Proposition 3.5. It mostly relies on the matrix pertur-
bation theory [29, Cor. 6.3.8] and continuity of (1.1) with respect to the parameter K.

Proof for Proposition 3.5. According to the matrix perturbation theory, the min-
imal eigenvalue is continuous with respect to a perturbation to the matrix; we have

|\omega min(HKC(K\omega ))\uparrow \omega min(HKC(K))|\downarrow \updownarrow HKC(K\omega )\uparrow HKC(K)\updownarrow F

\downarrow 1

L

\Biggr) 

l

\Biggl[ 
\updownarrow (\nearrow KMl \searrow \nearrow KMl)(K\omega )\uparrow (\nearrow KMl \searrow \nearrow KMl)(K)\updownarrow F

+ \updownarrow (Ml(K)\uparrow yl)HKMl(K)\updownarrow F
\Biggr] 

(3.3)

\downarrow 1

L

\Biggr) 

l

\Biggl[ 
\updownarrow \nearrow KMl(K\omega )\uparrow \nearrow KMl(K)\updownarrow F (\updownarrow \nearrow KMl(K\omega )\updownarrow F + \updownarrow \nearrow KMl(K)\updownarrow F )

+ |Ml(K)\uparrow yl|\updownarrow HKMl(K)\updownarrow F
\Biggr] 
,

where we used the Hessian form (3.1), triangle inequality, and submultiplicativity for
Frobenius norms. To obtain the bound (3.2) now amounts to quantifying each term
on the right-hand side of (3.3) and bounding them by \updownarrow K\omega \uparrow K\updownarrow \rightarrow . This is respectively
achieved in Lemmas 3.6, 3.8, and 3.9 that give controls to Ml(K)\uparrow yl, \updownarrow \nearrow KMl(K)\updownarrow F ,
and \updownarrow \nearrow KMl(K\omega )\uparrow \nearrow KMl(K)\updownarrow F . Putting these results together, we have

|\omega min(HKC(K\omega ))\uparrow \omega min(HKC(K))|
\downarrow \updownarrow HKC(K\omega )\uparrow HKC(K)\updownarrow F \downarrow 2\updownarrow K\omega \uparrow K\updownarrow \rightarrow CµC\varepsilon e

2CK |V |T
T

\simeq 
\Biggl\lfloor 
8RC\varepsilon Cµe

2|V |CKT

\Biggl[ 
|V |T 2 +

1

CK

\Biggl[ 
e
2CK |V |T \uparrow 1

2CK |V | \uparrow T

\Biggr] \Biggr] 
+ |V |2CHKM

\Biggr\rfloor 

=: \updownarrow K\omega \uparrow K\updownarrow \rightarrow C
\uparrow 
.

The positive definiteness in a small neighborhood of K\omega now follows: Given \updownarrow K\omega \uparrow 
K\updownarrow \rightarrow < \omega min(HKC(K\omega ))/C \uparrow , the triangle inequality shows

\omega min(HKC(K))\Leftarrow \omega min(HKC(K\omega ))\uparrow |\omega min(HKC(K\omega ))\uparrow \omega min(HKC(K))|> 0.

As can be seen from the proof, Proposition 3.5 strongly relies on the boundedness
of the terms in (3.3). We present the estimates below.

Lemma 3.6. Let Assumption 2.1 hold; then the measurement di!erence is upper

bounded by

|Ml(K)\uparrow yl|\downarrow |V |Cµ\updownarrow (fK\omega \uparrow fK)(T )\updownarrow L\rightarrow (R\downarrow V ) \downarrow \updownarrow K\omega \uparrow K\updownarrow \rightarrow 2|V |2CµC\varepsilon Te
2CK |V |T

.

Proof. Apply Lemma SM2.1 to the di!erence equation for f̄ := fK\omega \uparrow fK ,

\varepsilon tf̄ + v ·\nearrow xf̄ =KK(f̄) +K(K\omega \updownarrow K)(fK\omega )(3.4)

with initial condition 0 and source term h = K(K\omega \updownarrow K)(fK\omega ) \rightarrow L
1((0, T );L\rightarrow (R \simeq 

V )\Rightarrow L1(R;L\rightarrow (V ))) by the regularity (SM2.1) of fK\omega . This leads to

ess sup
v,x

|f̄ |(x, t, v)\downarrow 
\Biggl\lceil 

t

0
e
2|V |CK(t\updownarrow s)\updownarrow K(K\omega \updownarrow K)(fK\omega )(s)\updownarrow L\rightarrow (R\downarrow V )\nearrow L1(R;L\rightarrow (V )) ds

\downarrow 2|V |\updownarrow K\omega \uparrow K\updownarrow \rightarrow e
2|V |CKt

C\varepsilon t,(3.5)
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 621

where we used the estimate \rightarrow fK\omega (s)\rightarrow L\rightarrow (R\rightarrow V )\uparrow L1(R;L\rightarrow (V )) \uparrow e
2|V |CKs

C\omega from Lemma
SM2.1 in the last step.

To estimate the gradient \downarrow KMl(K) and its di!erence, we first recall the form in
(2.7) with C changed to Ml here. Analogously, we can use the adjoint equation to
explicitly represent the gradient.

Lemma 3.7. Let Assumption 2.1 hold. Denote by fK the mild solution of (1.1)
and by gl \updownarrow C

0([0, T ];L\downarrow (V ;L1(R))) the mild solution of

\nearrow \omega tgl \nearrow v ·\downarrow gl = K̃(gl) :=

\Biggr) 

V

K(x, v\updownarrow , v)(gl(x, t, v
\updownarrow )\nearrow gl(x, t, v))dv

\updownarrow 
,(3.6)

gl(t= T,x, v) =\nearrow µl(x) .

Then

\omega Ml(K)

\omega Kr,i

=

\Biggr) 
T

0

\Biggr) 

Ir

f
\updownarrow (g\updownarrow 

l
\nearrow gl)dxdt ,(3.7)

where we used the abbreviated notation h := h(t, x, vi) and h
\updownarrow := h(t, x, v\updownarrow 

i
) for h= f, gl

with (vi, v\updownarrow i) defined as in (2.7).

We omit explicitly writing down the x, t dependence when it is not controversial.
The proof for this lemma is the application of calculus-of-variation and will be omitted
from here. We are now in the position to derive the estimates of the gradient norms.

Lemma 3.8. Under Assumption 2.1, the gradient is uniformly bounded,

\rightarrow \downarrow KMl(K)\rightarrow F \uparrow 
\searrow 
2R2C\omega Cµe

2CK |V |T
T for all K \updownarrow UK\omega .

Proof. The Frobenius norm is bounded by the entries

\rightarrow \downarrow Ml(K)\rightarrow F \uparrow 
\searrow 
2Rmax

r,i

\Biggl[ \Biggl[ \Biggl[ \Biggl[ 
\omega Ml(K)

\omega Kr,i

\Biggl[ \Biggl[ \Biggl[ \Biggl[ .

Representation (3.7) together with (SM2.2) then gives the bound

\Biggl[ \Biggl[ \Biggl[ \Biggl[ 
\omega Ml

\omega Kr,i

\Biggl[ \Biggl[ \Biggl[ \Biggl[ \uparrow 2C\omega 

\Biggr) 
T

0
e
2|V |CKtmax

v

\Biggr] \Biggr) 

R
|gl| dx

\Biggl\lfloor 
dt.(3.8)

Application of Lemma SM2.3 to g= gl, with h= 0 and \varepsilon =\nearrow µl, yields

max
v

\Biggr) 

R
|gl| dx (t)\uparrow 

\Biggr) 

R
|\nearrow µl(x)|dx e

2CK |V |(T\nearrow t) \uparrow Cµe
2CK |V |(T\nearrow t)

,(3.9)

which, when plugged into (3.8), gives
\Biggl[ \Biggl[ \Biggl[ \Biggl[ 
\omega Ml

\omega Kr,i

\Biggl[ \Biggl[ \Biggl[ \Biggl[ \uparrow 2C\omega Cµe
2CK |V |T

T .

Lemma 3.9. In the setting of Theorem 3.2 and under Assumption 2.1, the gradient
di!erence is uniformly bounded in K \updownarrow UK\omega by

\rightarrow \downarrow Ml(K\varepsilon )\nearrow \downarrow Ml(K)\rightarrow F

\uparrow 
\searrow 
2R\rightarrow K\varepsilon \nearrow K\rightarrow \downarrow 2C\omega Cµe

2CK |V |T
\Biggr] 
|V |T 2 +

1

CK

\Biggr] 
e
2CK |V |T \nearrow 1

2CK |V | \nearrow T

\Biggl\lfloor \Biggl\lfloor 
.
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622 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Proof. Now consider the entries of \rightarrow Ml(K\omega ) \uparrow \rightarrow Ml(K) to show smallness of
\downarrow \rightarrow Ml(K\omega )\uparrow \rightarrow Ml(K)\downarrow F . Rewrite, using Lemma 3.7 and (SM2.2),

\Biggr) \Biggr) \Biggr) \Biggr) 
\omega Ml(K\omega )

\omega Kr,i

\uparrow \omega Ml(K)

\omega Kr,i

\Biggr) \Biggr) \Biggr) \Biggr) =

\Biggr) \Biggr) \Biggr) \Biggr) \Biggr) 

\Biggl[ 
T

0

\Biggl[ 

Ir

fK\omega (g
\rightarrow 
l,K\omega 

\uparrow gl,K\omega )\uparrow fK(g\rightarrow 
l,K

\uparrow gl,K)dxdt

\Biggr) \Biggr) \Biggr) \Biggr) \Biggr) 

\updownarrow 
\Biggl[ 

T

0
\downarrow (fK\omega \uparrow fK)(t)\downarrow L\rightarrow (R\uparrow V )2max

v

\Biggl[ 

R
|gl,K\omega (t)|dxdt

+ 2C\varepsilon 

\Biggl[ 
T

0
e
2|V |CKtmax

v

\Biggl[ 

R
|(gl,K\omega \uparrow gl,K)(t)|dxdt.

The first summand can be bounded by (3.5) and (3.9). To estimate the second
summand, apply Lemma SM2.3 to ḡ := gl,K\omega \uparrow gl,K with evolution equation

\uparrow \omega tḡ\uparrow v ·\rightarrow xḡ= K̃K\omega (ḡ) + K̃(K\omega \downarrow K)(gl,K),

ḡ(t= T ) = 0,

and h= K̃(K\omega \downarrow K)(gl,K)\nearrow L
1((0, T );L\updownarrow (V ;L1(R))) by the regularity (SM2.4) of gl,K \nearrow 

C
0
\Biggr] 
(0, T );L\updownarrow (V ;L1(R))

\Biggl\lfloor 
. This leads to

max
v

\Biggl[ 

R
|ḡ|dx\updownarrow e

2|V |CK(T\downarrow t)

\Biggl[ 
T\downarrow t

0
max

v

\downarrow K̃(K\omega \downarrow K)(gl,K)(T \uparrow s, v)\downarrow L1(R) ds

\updownarrow 2|V |\downarrow K\omega \uparrow K\downarrow \updownarrow e
2|V |CK(T\downarrow t)

\Biggl[ 
T\downarrow t

0
max

v

\downarrow gl,K(T \uparrow s, v)\downarrow L1(R) ds

\updownarrow \downarrow K\omega \uparrow K\downarrow \updownarrow 
Cµ

CK

e
2|V |CK(T\downarrow t)(e2CK |V |(T\downarrow t) \uparrow 1),

where we used (3.9) in the last line. In summary, one obtains
\Biggr) \Biggr) \Biggr) \Biggr) 
\omega Ml(K\omega )

\omega Kr,i

\uparrow \omega Ml(K)

\omega Kr,i

\Biggr) \Biggr) \Biggr) \Biggr) 

\updownarrow \downarrow K\omega \uparrow K\downarrow \updownarrow 
\Biggr\rfloor \Biggl[ 

T

0
2|V |C\varepsilon te

2CK |V |t · 2Cµe
2CK |V |(T\downarrow t) dt

+ 2C\varepsilon 

\Biggl[ 
T

0
e
2|V |CKt

Cµ

CK

e
2CK |V |(T\downarrow t)(e2CK |V |(T\downarrow t) \uparrow 1)dt

\Biggl\lceil 

\updownarrow \downarrow K\omega \uparrow K\downarrow \updownarrow 2C\varepsilon Cµe
2CK |V |T

\Biggr\rceil 
|V |T 2 +

1

CK

\Biggr\rceil 
e
2CK |V |T \uparrow 1

2CK |V | \uparrow T

\Biggl\{ \Biggl\{ 
.

Together with the boundedness of the gradient (3.8), this shows that the first
summands in (3.3) are Lipschitz continuous in K around K\omega which concludes the
proof of Proposition 3.5.

3.2. Ill-conditioning for close measurements. While the positive Hessian
at K\nearrow guarantees local convergence, such positive definiteness will disappear when
data are not prepared well. In particular, if L= 2R, meaning the number of measure-
ments equals the number of parameters to be recovered, and that two measurements,
M1(K) and M2(K) are close, we will show that the Hessian degenerates. Then strong
convexity is lost, and the convergence to K\omega is no longer guaranteed.

We will study how the Hessian degenerates in the two scenarios in Theorem 3.3.
This comes down to examining the two terms in (3.1). Applying Lemma 3.6, we
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 623

already see the second part in (3.1) is negligible when K is close to K\omega and the rank
structure of the Hessian is predominantly controlled by the first term. It is a summa-
tion of L rank 1 matrices \rightarrow KMl(K)\uparrow \rightarrow KMl(K). When two measurements (µ1 and
µ2) get close, we will argue that \rightarrow KM1(K) is almost parallel to \rightarrow KM2(K), making
the Hessian lacking at least one rank, and the strong convexity is lost. Mathematically,
this means we need to show \downarrow \rightarrow KM1(K)\updownarrow \rightarrow KM2(K)\downarrow F \nearrow 0 when µ1 \nearrow µ2.

Throughout the derivation, the following formula is important. Recalling (3.7),
we have for every r \searrow {1, . . . ,R} and i\searrow {1,2}

\omega M1(K)

\omega Kr,i

\updownarrow \omega M2(K)

\omega Kr,i

=

\Biggr) 
T

0

\Biggr) 

Ir

f
\rightarrow ((g1 \updownarrow g2)

\rightarrow \updownarrow (g1 \updownarrow g2))dxdt

=

\Biggr) 
T

0

\Biggr) 

Ir

f
\rightarrow (ḡ\rightarrow \updownarrow ḡ)dxdt ,(3.10)

where ḡ := g1 \updownarrow g2 solves (2.8) with final condition ḡ(t = T,x, v) = µ2(x) \updownarrow µ1(x).
The two subsections below serve to quantify the smallness of (3.10) in terms of the
smallness of µ1(x)\updownarrow µ2(x).

3.2.1. Closeness in the strong sense. The following proposition states the
loss of strong convexity as µ2 \updownarrow µ1,m \simeq 0 in L

1(R). In particular, the requirement
of Proposition 3.5 that HKC(K\omega ) is positive definite is no longer satisfied, so local
well-posedness of the optimization problem and thus the convergence of the algorithm
can no longer be guaranteed.

Proposition 3.10. Let Assumption 2.1 hold. Then, as µ1,m
m\uparrow \downarrow \updownarrow \updownarrow \updownarrow \updownarrow \simeq µ2 in L

1(R),
one eigenvalue of the Hessian HKC(K\omega ) vanishes.

This proposition immediately allows us to prove the assertion of Theorem 3.3 for
L
1 closeness.

Proof of Theorem 3.3. Proposition 3.10 establishes one eigenvalue of HKC(K\omega )
vanishes as m\simeq \Leftarrow . This lack of positive definiteness and thus strong convexity of C
around K\omega means that it cannot be guaranteed that the minimizing sequences of C
converge to K\omega .

Proof of Proposition 3.10. As argued above, our goal is to show \downarrow \rightarrow KM1,m(K)\updownarrow 
\rightarrow KM2(K)\downarrow F \simeq 0 as m\simeq \Leftarrow . Recalling (3.10), we need to show

\omega M1,m(K)

\omega Kr,i

\updownarrow \omega M2(K)

\omega Kr,i

m\uparrow \downarrow \updownarrow \updownarrow \updownarrow \updownarrow \simeq 0 for all (r, i)\searrow {1, . . . ,R}\Rightarrow {1,2} ,(3.11)

where ḡm := g1,m\updownarrow g2 solves (3.6) with final condition ḡm(t= T,x, v) = µ2(x)\updownarrow µ1,m(x).
Application of Lemma SM2.3 gives

\downarrow ḡm(t)\downarrow L\rightarrow (V ;L1(R)) \Uparrow e
2CK |V |(T\updownarrow t)\downarrow µ2 \updownarrow µ1,m\downarrow L1(R)(3.12)

by independence of µ1,m, µ2 with respect to v. Plug the above into (3.10) and estimate
f by (SM2.2) to obtain

\Biggl[ \Biggl[ \Biggl[ \Biggl[ 
\omega (M1,m \updownarrow M2)(K)

\omega Kr,i

\Biggl[ \Biggl[ \Biggl[ \Biggl[ \Uparrow 2C\varepsilon 

\Biggr) 
T

0
e
2CK |V |t\downarrow ḡm(t)\downarrow L\rightarrow (V ;L1(R)) dt

\Uparrow 2C\varepsilon e
2CK |V |T

T\downarrow µ2 \updownarrow µ1,m\downarrow L1(R).

Since every entry (r, i) converges, the gradient di!erence vanishes: \downarrow \rightarrow KM1,m(K)\updownarrow 
\rightarrow KM2(K)\downarrow F \simeq 0 as m\simeq \Leftarrow .
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624 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

We utilize this fact to show the degeneracy of the Hessian. Note

HKC(K\omega ) =

\Biggr) 
2R\Biggl[ 

l=3

\rightarrow Ml \uparrow \rightarrow Ml+2\rightarrow M2 \uparrow \rightarrow M2

\Biggr] 

\Biggl\lfloor \Biggr\rfloor \Biggl\lceil \Biggr\rceil 
A

+[\rightarrow M1,m \uparrow \rightarrow M1,m\downarrow \rightarrow M2 \uparrow \rightarrow M2]\Biggl\lfloor \Biggr\rfloor \Biggl\lceil \Biggr\rceil 
B(m)

.

It is straightforward that the rank of A is at most 2R\downarrow 1, so the jth largest eigen-
value \omega j(A) = 0 vanishes for some j. Moreover, since \updownarrow \rightarrow KM1,m(K)\downarrow \rightarrow KM2(K)\updownarrow F \nearrow 
0, we have \updownarrow B(m)\updownarrow F \nearrow 0. Using the continuity of the minimal eigenvalue with respect
to a perturbation of the matrix, the jth largest eigenvalue of HKC(K\omega ) vanishes,

|\omega j(HKC(K\omega ))|= |\omega j(HKC(K\omega ))\downarrow \omega j(A)|\searrow \updownarrow B(m)\updownarrow F \nearrow 0 as m\nearrow \simeq .

3.2.2. Closeness in the weak sense. We now study the more general scenario
of Theorem 3.3 where µ1,m converges weakly in L

1. Because we no longer obtain
smallness of ḡ in the strong sense as in (3.12), the additional assumption of small
measurement time is required to provide smallness in a weak sense.

Proposition 3.11. Let µ1,m \varepsilon µ2 weakly in L
1
. Consider a small neighborhood

of K\omega and let Assumption 2.1 hold. Additionally, let the measurement time T be

chosen such that (eT |V |CK \downarrow 1)< 1. Then

\rightarrow KM1,m(K)\nearrow \rightarrow KM2(K) as m\nearrow \simeq in the standard Euclidean norm.

This proposition explains the breakdown of well-posedness presented in Theo-
rem 3.3 for weakly convergent measurement test functions. Since the proof for the
theorem is rather similar to that of the first scenario, we omit it here.

Similar to the previous scenario, we need to show smallness of the gradient di!er-
ence (3.10). This time, we have to distinguish two sources of smallness: For singular
parts of the adjoint ḡm, the smallness of the corresponding gradient di!erence is gen-
erated by testing it on a su""ciently regular f at close measuring locations. So it is
small in the weak sense. The regular parts ḡ(>N)

m of ḡm represent the di!erence of ḡm
and its singular parts and evolve from the integral operator on the right-hand side of
(2.8), which exhibits a di!usive e!ect. Smallness is obtained by adjusting the cuto!
regularity N .

Let us mention, however, that the time constraint is mostly induced for a tech-
nical reason. In order to bound the size of the regular parts of the adjoint solution,
we use the plain Grönwall inequality which leads to an exponential growth that we
counterbalance by a small measuring time T .

To put the above considerations into a mathematical framework, we deploy the
singular decomposition approach, and we are to decompose

ḡm =
N\Biggl[ 

n=0

ḡ
(n)
m

+ ḡ
(>N)
m

,(3.13)

where the regularity of ḡ(n)m increases with n. Here, we define ḡ
(0)
m as the solution to

\downarrow \vargamma tḡ
(0)
m

\downarrow v ·\rightarrow xḡ
(0)
m

=\downarrow \varpi ḡ
(0)
m

,

ḡ
(0)
m

(t= T,x, v) = µ2(x)\downarrow µ1,m(x) ,
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 625

for \omega (x, v) :=
\Biggr) 
V
K(x, v\rightarrow , v)dv\rightarrow , and ḡ

(n)
m are inductively defined by

\rightarrow \varepsilon tḡ
(n)
m

\rightarrow v ·\uparrow xḡ
(n)
m

=\rightarrow \omega ḡ
(n)
m

+ L̃(ḡ(n\uparrow 1)
m

) ,(3.14)

ḡ
(n)
m

(t= T,x, v) = 0 ,

where we used the notation L̃(ḡm) :=
\Biggr) 
K(x, v\rightarrow , v)ḡm(x, t, v\rightarrow )dv\rightarrow . The remainder

ḡ
(>N)
m satisfies

\rightarrow \varepsilon tḡ
(>N)
m

\rightarrow v ·\uparrow xḡ
(>N)
m

=\rightarrow \omega ḡ
(>N)
m

+ L̃(ḡ(N)
m

+ ḡ
(>N)
m

) ,(3.15)

ḡ
(>N)
m

(t= T,x, v) = 0 .

It is a straightforward calculation that

(3.10) =
N\Biggl[ 

n=0

\Biggr] 
T

0

\Biggr] 

Ir

f
\rightarrow \Biggl\lfloor (ḡ(n)

m
)\rightarrow \rightarrow ḡ

(n)
m

\Biggr\rfloor 
dxdt+

\Biggr] 
T

0

\Biggr] 

Ir

f
\rightarrow \Biggl\lfloor (ḡ(>N)

m
)\rightarrow \rightarrow ḡ

(>N)
m

\Biggr\rfloor 
dxdt .

(3.16)

We are to show, in the two lemmas below, that both terms are small when µ1,m \vargamma µ2.

Lemma 3.12. Let the assumptions of Proposition 3.11 be satisfied. For any \varpi > 0,
and any n\downarrow N0, there exists a m̃n(\varpi )\downarrow N such that

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 

\Biggr] 
T

0

\Biggr] 

Ir

f
\rightarrow 
ḡ
(n)
m

dxdt

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \updownarrow \varpi if m\nearrow m̃n(\varpi ) .(3.17)

The remainder can be bounded similarly.

Lemma 3.13. Under the assumptions of Proposition 3.11, one has

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 

\Biggr] 
T

0

\Biggr] 

Ir

f
\rightarrow 
ḡ
(>N)
m

dxdt

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \updownarrow T
2|V |CKC\omega e

2|V |CKT (eCK |V |T \rightarrow 1)NCµ,

which becomes arbitrarily small for large N .

The proof for Lemma 3.12 exploits the smallness of ḡ(n)m in a weak sense which is
inherited from the final condition, whereas Lemma 3.13 is based on the smallness of
the higher regularity components of ḡm in the small time regime where tumbling is
not so frequent. Since it is not essential to the core of the paper, we leave the details
to section SM3 in the supplementary materials. The application of the two lemmas
gives Proposition 3.11.

Proof of Proposition 3.11. Let \varpi > 0. Because e
CK |V |T \rightarrow 1< 1 by assumption, we

can choose N \downarrow N large enough such that 2T 2|V |CKC\omega e
2|V |CKT (eCK |V |T \rightarrow 1)N <

\varepsilon 

2 .
Furthermore, let m \nearrow maxn=0,...,N{m̃n(

\varepsilon 

4(N+1) )}. Then with the triangle inequality
and Lemmas 3.12 and 3.13, we obtain from (3.16)

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 
\varepsilon (M1,m \rightarrow M2)(K)

\varepsilon Kr,i

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 

\updownarrow 
N\Biggl[ 

n=0

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 

\Biggr] 
T

0

\Biggr] 

Ir

f
\rightarrow ((ḡ(n)

m
)\rightarrow \rightarrow ḡ

(n)
m

)dxdt

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil +

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 

\Biggr] 
T

0

\Biggr] 

Ir

f
\rightarrow ((ḡ(>N)

m
)\rightarrow \rightarrow ḡ

(>N)
m

)dxdt

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 

\updownarrow 2(N + 1)
\varpi 

4(N + 1)
+ 2T 2|V |CKC\omega e

2|V |CKT (eCK |V |T \rightarrow 1)NCµ \updownarrow \varpi .
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626 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

4. Experimental design. We now provide an explicit experimental setup that
ensures well-posedness with a minimal number of measurements L = 2R. Recalling
that Proposition 3.5 requires the positive-definiteness of the Hessian term at K\omega , we
are to design a special experimental setup that validates this assumption. We propose
to use the following.

Design 4.1. We divide the experimental domain I = [a0, aR) into R intervals

I = ·\rightarrow R

r=1Ir with Ir = [ar\rightarrow 1, ar), and the center for each interval is denoted by ar\rightarrow 1/2 :=
ar\rightarrow 1+ar

2 . The spatial supports of the values Kr(v, v\uparrow ) take on the form of (2.1). The

design is as follows:

• initial condition \omega (x, v) =
\Biggr) 

R

r=1 \omega r(x) is a sum of R positive functions \omega r

that are compactly supported in ar\rightarrow 1/2 + [\uparrow d, d] with d<min(ar\rightarrow ar\rightarrow 1

4 ), sym-

metric and monotonously decreasing in |x\uparrow ar\rightarrow 1/2| (for instance, a centered

Gaussian with a cuto! tail);

• measurement test functions µl
r
i
=C̄µ1[xlri

\rightarrow dµ,xlri
+dµ], i=1,2, for some C̄µ>0,

centered around xl
r
i
:= ar\rightarrow 1/2 + (\uparrow 1)iT with dµ \downarrow d;

• measurement time T such that

T <min

\Biggl[ 
(1\uparrow \varepsilon )

0.09

CK |V | ,min
r

\Biggl[ 
ar \uparrow ar\rightarrow 1

4
\uparrow d

2

\Biggr] \Biggr] 
(4.1)

for \varepsilon = (d+ dµ)/T < e
\rightarrow TCK |V |

.(4.2)

Remark 4.2. Note that this design requires a delicate balancing between T and
d and dµ. Requirement (4.1) prescribes that T must not be too large. This places
the experiment in a regime where tumbling does not occur too frequently. Indeed,
when the system tumbles too often, one only obtains an accumulation of influence of
many tumbling events, making it di!cult to separate out each parameter. The same
strategy was deployed in our theoretical paper [27]. However, the specific bound for T
may not be optimal. In the proof of Theorem 4.4, only crude estimates were deployed.
It is possible to relax the bound for T .

This particular design of initial data and measurement is to respond to the fact
that the equation has a characteristic and particles move along the trajectories. The
measurement is set up to single out the information which we would like to reconstruct
along the propagation. A visualization of this design is plotted in Figure 1.

Under this design, we have the following proposition.

Proposition 4.3. Design 4.1 decouples the reconstruction of Kr. To be more

specific, recall (2.2)

K = [Kr] with Kr = [Kr,1,Kr,2] .

The Hessian HKC has a block diagonal structure where each of the blocks is a 2\updownarrow 2
matrix given by the Hessian HKrC.

Proof. By the linearity of (1.1), its solution f =
\Biggr) 

R

s=1 fs decomposes into solutions
fs of (1.1) with initial conditions \omega s. By construction of T and the constant speed
of propagation |v|= 1, the spatial supports of the fs are fully contained in Is for all
t \nearrow [0, T ], v \nearrow V . As such, only fr carries information about Kr, and no information
for other Ks with s \searrow = r. Because fr is only measured by measurements Ml

r
i
, i= 1,2,

only the gradients of these measurements can attain a nonzero value corresponding
to the partial derivative with respect to Kr.
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 627

a0 x1 a1 2 x2 a1 x

2dµ 2d

Fig. 1. Motion of the ballistic parts f
(0)(t = 0, v) (cyan, dashdotted) to f

(0)(t = T, v = +1)

(blue, dotted) and f
(0)(t = T, v = \rightarrow 1) (blue, dashed) and g

(0)
1 (t = 0, v = +1) (orange, dotted) and

g
(0)
1 (t = 0, v = \rightarrow 1) (orange, dashed) to g

(0)
1 (t = T, v) (red, dashdotted); compare also (4.5). (Color

figures are available online.)

This not only makes boundary conditions superfluous, but also translates the
problem of finding a 2R valued vector K into R individual smaller problems of finding
the two-constant pair (Kr,1,Kr,2) within Ir. This comes with the cost of prescribing
very detailed measurements depending on the experimental scales Ir and d, but opens
the door for parallelized computation.

Furthermore, under mild conditions, this design ensures the local reconstructabil-
ity of the inverse problem.

Theorem 4.4. Let Assumption 2.1 hold. Given the Hessian HKMl(K) is bounded
in Frobenius norm in a neighborhood of K\omega , then Design 4.1 generates a locally well-

posed optimization problem (2.5).

The proof is layed out in subsection 4.1. As it relies on a perturbative argument,
only local reconstructability can be proven. However, numerical experiments—such
as those displayed in Figures 2 and 4—exhibited reconstructability in a wide range of
parameters values, pointing toward global reconstructability with this design.

Remark 4.5. Design 4.1 shares similarities with the theoretical reconstruction
setting in [27]: local reconstructions are based on measurements close to the con-
sidered location and small time information is needed. In particular, the pointwise
reconstruction of K in [26] relies on a sequence of experiments where the measure-
ment time asymptotically vanishes and the measurement location gets close to the
initial location. The situation is also seen here. As we refine the discretization for
the underlying K-function using a higher dimensional vector, measurement time has
to be shortened to honor the refined discretization. However, we should also note the
di!erence. In [27], we studied the problem in higher dimension and thus explicitly
excluded the ballistic part of the data from the measurement, since it can only provide
information on \omega . Because there exist only two directions V = {±1} in one dimension,
there is a one-to-one correspondence of \omega and K and ballistic data is su""cient for the
reconstruction.

4.1. Proof of Theorem 4.4. According to Theorem 3.2, it is su""cient to show
HKC(K\omega ) > 0. As the Hessian attains a block diagonal structure (Proposition 4.3),
we study the 2\rightarrow 2-blocks
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628 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

HKrC(K\omega ) =\rightarrow KrMl
r
1
(K\omega )\uparrow \rightarrow KrMl

r
1
(K\omega ) +\rightarrow KrMl

r
2
(K\omega )\uparrow \rightarrow KrMl

r
2
(K\omega ).(4.3)

Here the two measurements Ml
r
1
, Ml

r
2
are inside Ir and \rightarrow Kr = [\omega Kr,1 ,\omega Kr,2 ]. The

positive definiteness of the full HKC(K\omega ) is equivalent to the positive definiteness of
each individual HKrC(K\omega ). This is established in the subsequent proposition.

Proposition 4.6. Let Assumption 2.1 hold. Then Design 4.1 produces a positive

definite Hessian block HK1
C(K\omega ).

According to (4.3), HK1
C(K\omega ) is positive definite if

\Biggr) \Biggr) \Biggr) \Biggr) 
\omega M1(K\omega )

\omega K1,1

\Biggr) \Biggr) \Biggr) \Biggr) >
\Biggr) \Biggr) \Biggr) \Biggr) 
\omega M1(K\omega )

\omega K1,2

\Biggr) \Biggr) \Biggr) \Biggr) and

\Biggr) \Biggr) \Biggr) \Biggr) 
\omega M2(K\omega )

\omega K1,1

\Biggr) \Biggr) \Biggr) \Biggr) <
\Biggr) \Biggr) \Biggr) \Biggr) 
\omega M2(K\omega )

\omega K1,2

\Biggr) \Biggr) \Biggr) \Biggr) (4.4)

hold true for the measurementsM1,M2 corresponding toK1. Due to design symmetry,
it is su!cient to study the first inequality. Consider the di""erence \varepsilon M1(K\omega )

\varepsilon K1,1
\downarrow \varepsilon M1(K\omega )

\varepsilon K1,2
.

Similar to (3.13) and (3.16), we are to decompose the equation for f and g ((1.1)
and (3.6), respectively, with K = K\omega ) into the ballistic parts g

(0)
1 and f

(0) and the
remainder terms. Namely, let g(0)1 and f

(0) satisfy

\Biggl[ 
\downarrow \omega tg

(0)
1 \downarrow v ·\rightarrow xg

(0)
1 =\downarrow \varepsilon g

(0)
1 ,

g
(0)
1 (t= T,x, v) = µ1(x)

and

\Biggl[ 
\omega tf

(0) \downarrow v ·\rightarrow xf
(0) =\downarrow \varepsilon f

(0)
,

f
(0)(t= 0, x, v) = \vargamma (x, v).

(4.5)

Then the following two lemmas are in place with µ1(x) and \vargamma (x, v) as in Design 4.1.

Lemma 4.7. In the setting of Proposition 4.6, for (v, v\rightarrow ) = (+1,\downarrow 1), the ballistic

part

B :=

\Biggr) \Biggr) \Biggr) \Biggr) \Biggr) 

\Biggr] 
T

0

\Biggr] 

I1

f
(0)(v\rightarrow )(g(0)1 (v\rightarrow )\downarrow g

(0)
1 (v))dxdt

\Biggr) \Biggr) \Biggr) \Biggr) \Biggr) (4.6)

\downarrow 

\Biggr) \Biggr) \Biggr) \Biggr) \Biggr) 

\Biggr] 
T

0

\Biggr] 

I1

f
(0)(v)(g(0)1 (v)\downarrow g

(0)
1 (v\rightarrow ))dxdt

\Biggr) \Biggr) \Biggr) \Biggr) \Biggr) 

satisfies

B \updownarrow C\vargamma µ

\Biggl\lfloor 
e
\uparrow TCK |V |

T \downarrow (dµ + d)
\Biggr\rfloor 
> 0,(4.7)

where C\vargamma µ =
\Biggl\lceil 
I1
\vargamma 1(x)µ1(\downarrow T + x)dx = maxa,b

\Biggl\lceil 
I1
\vargamma 1(x + a)µ1(\downarrow T + x + b)dx by

construction of \vargamma 1, µ1, and T .

At the same time, the remainder term is small.

Lemma 4.8. In the setting of Proposition 4.6, the remaining scattering term

S :=

\Biggr] 
T

0

\Biggr] 

I1

f (v\rightarrow )(g1(v
\rightarrow )\downarrow g1(v))dxdt\downarrow 

\Biggr] 
T

0

\Biggr] 

I1

f
(0)(v\rightarrow )(g(0)1 (v\rightarrow )\downarrow g

(0)
1 (v))dxdt

is bounded uniformly in (v, v\rightarrow ) by

|S|\nearrow 4C\vargamma µT
CK |V |T

(1\downarrow CK |V |T )2 .(4.8)

Proposition 4.6 is a corollary of Lemmas 4.7 and 4.8.
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 629

Proof of Proposition 4.6. By the bounds obtained in Lemmas 4.7 and 4.8, one
has

\Biggr) \Biggr) \Biggr) \Biggr) 
\omega M1(K\omega )

\omega K1,1

\Biggr) \Biggr) \Biggr) \Biggr) \rightarrow 
\Biggr) \Biggr) \Biggr) \Biggr) 
\omega M1(K\omega )

\omega K1,2

\Biggr) \Biggr) \Biggr) \Biggr) \uparrow B \rightarrow 2|S|

\uparrow C\varepsilon µ

\Biggl[ 
e
\rightarrow TCK |V |

T \rightarrow (dµ + d)
\Biggr] 
\rightarrow 8C\varepsilon µT

CK |V |T
(1\rightarrow CK |V |T )2

\uparrow C\varepsilon µT

\Biggl\lfloor 
1\rightarrow TCK |V |\rightarrow \varepsilon \rightarrow 8

0.09(1\rightarrow \varepsilon )

(1\rightarrow 0.09)2

\Biggr\rfloor 
,

where the estimate e
\rightarrow TCK |V | \downarrow 1 \rightarrow TCK |V | was used to derive the last line. This

holds due to smallness of TCK |V | < 0.09(1 \rightarrow \varepsilon ) < 1 by construction (4.1)–(4.2),
which also provides positivity of the emerging term. In total, this shows the first
part of inequality (4.4). As the second part can be treated in analogy, it follows that
HK1

C(K\omega ) is positive definite.

Finally, Theorem 4.4 is a direct consequence of Proposition 4.6.

Proof of Theorem 4.4. Repeated application of the arguments to all HKrC(K\omega ),
r = 1, . . . ,R, shows that HKC(K\omega ) > 0. By the assumption of boundedness of the
Hessian HKMl(K) in a neighborhood of K\omega , Theorem 3.2 proves local well-posedness
of the inverse problem.

The proofs for Lemmas 4.7 and 4.8 are rather technical and we leave them to sec-
tion SM4 in the supplementary materials. Here we only briefly present the intuition.
According to Figure 1, f (0)(v\uparrow =\rightarrow 1) and g

(0)
1 (v\uparrow =\rightarrow 1) have a fairly large overlapping

support, whereas g
(0)
1 (v = +1) overlaps with f

(0)(v\uparrow = \rightarrow 1) and g
(0)
1 (v\uparrow = \rightarrow 1) with

f
(0)(v = +1) only for a short time span T \updownarrow T and T \updownarrow 0, respectively. Recalling

(4.6), we see the negative components of the term B are small, making B positive
overall. The smallness of S is a result of small measurement time T .

5. Numerical experiments. As a proof of concept for the prediction given by
the theoretical results in section 3, we present some numerical evidence.

An explicit finite di!erence scheme is used for the discretization of (1.1) and (2.8).
In particular, the transport operator is discretized by the Lax–Wendro! method and
the operator K is treated explicitly in time. The scheme can be shown to be consistent
and stable when ""t \downarrow min(""x,C

\rightarrow 1
K

), and thus it converges according to the Lax
equivalence theorem. More sophisticated solvers for the forward model [20] can be
deployed when necessary. Also, when a compatible solver [4] for the adjoint equation
exists, these pairs of solvers can readily be incorporated in the inversion setting.

All subsequent experiments were conducted with noise-free synthetic data yl =
Ml(K\omega ) that was generated by a forward computation with the true underlying pa-
rameter K\omega .

5.1. Illustration of well-posedness. In section 4, it was suggested that a
specific design of initial data and measurement mechanism can provide a successful
reconstruction of the kernel K and that the loss function is expected to be locally
strongly convex. We observe it numerically as well. In particular, we set R= 20 and
use Gaussian initial data, and plot the (marginal) loss function in Figure 2. Figure 3
depicts the convergence of some parameter values Kr(v, v\uparrow ) in this scenario against
the corresponding loss function value. An exponential decay of the loss function, as
expected from theory [42, Thm. 3], can be observed.
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630 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Fig. 2. (Marginal) loss functions C(K) for R= 20: For a fixed r \rightarrow {2,9,13,15}, we plot C as a
function of Kr with all Ks \rightarrow =r set to be the ground-truth (K\omega )s.

Fig. 3. Convergence of the parameter values Kr(v, v\uparrow ) from (2.1) for r = 2,9,13,15 to the
ground-truth as the cost function converges.

The strictly positive definiteness feature persists in a small neighborhood of the
optimal solution K\omega . This means that by adding a small perturbation to K\omega , the
minimal eigenvalue of the Hessian matrix HKC(K) stays above zero. In Figure 4 we
present, for two distinct experimental setups, the minimum eigenvalue as a function
of the perturbation to Kr(v, v\rightarrow ). In both cases, the green spot (located at the ground-
truth) is positive, and it enjoys a small neighborhood where the minimum eigenvalue
is also positive, as predicted by Theorem 3.2. In the right panel, we do observe, as one
moves away from the ground-truth, the minimal eigenvalue takes on a negative value,
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 631

Fig. 4. Minimal eigenvalues of the Hessian HKC(K) around the true parameter K\omega for two
experimental designs. We perturb K by changing values in K1(1,\rightarrow 1) and K2(\rightarrow 1,1). The ground-
truth is marked green in both plots.

Fig. 5. Cost function and reconstructions of Kr(+1,\rightarrow 1) (solid lines) and Kr(\rightarrow 1,+1) (dotted
lines) for r = 1,9,15 and R = 20 under di!erent measurement locations for x1 given by {x1,0 =

a1/2 \rightarrow T ,x1,1 = a1/2 + T
2 , x1,2 = a1/2 + 4

5T ,x1,3 = a1/2 + T} with x1,3 = x2.

suggesting the loss of convexity. This numerically verifies that the well-posedness
result in Theorem 3.2 is local in nature. The panel on the left deploys the experiment
design provided by section 4. The simulation is run over the entire parameter domain
of [0,1]2 and the positive definiteness stays throughout the domain, hinting that the
proposed experimental design, Design 4.1, can potentially be globally well-posed. To
generate the plots, a simplified setup with R= 2 was considered.

5.2. Ill-conditioning for close measurement locations. We now provide
numerical evidence to reflect the assertion from section 3.2. In particular, the strong
convexity of the loss function would be lost if measurement location x1 becomes close
to x2.

We summarize the numerical evidence in Figure 5. Here we still use R= 20 and
fix the initial data as in Design 4.1, but vary the detector positions. To be specific,
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632 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

we assign values to x1 using {x1,0 = a1/2\rightarrow T ,x1,1 = a1/2+
T

2 , x1,2 = a1/2+
4
5T ,x1,3 =

x2 = a1/2 + T}. As the superindex grows, x1 \uparrow x2 with x1,3 = x2 when the two
measurements exactly coincide. For x1 = x2, the cost function is no longer strongly
convex around the ground-truth K\omega , as its Hessian is singular. The thus induced
vanishing learning rate \omega = 2\varepsilon min

\varepsilon 2
max

was exchanged by the learning rate for x1 = x1,2 in
this case to observe the e!ect of the gradient.

In the first, third, and fourth panels of Figure 5, we observe that the cost function
as well as the parameter reconstructions for K9 and K15 nevertheless converge, but
convergence rates slow down significantly comparing purple (for x1,0), blue (for x1,1),
green (for x1,2), and orange (for x1,3) due to smaller learning rates. The overlap of the
parameter reconstructions for x1 \downarrow {x1,2 , x1,3} is due to the coinciding choice of the
learning rate and a very similar gradient for parameters K9,K15 whose information
is not reflected in the measurement in x1.

As parameter K1 directly a!ects the measurement at x1, the second panel show-
cases the degenerating e!ect of the di!erent choices of x1 on the reconstruction.
Whereas convergence is still obtained in the blue curve (for x1,1), the reconstructions
of K1 from measurements at x1,2 (green) and x1,3 (orange) clearly fail to converge to
the true parameter value in black. This o!set seems to grow with stronger degeneracy
in the measurements.

6. Discussion. As discussed in [32, 58], to accurately extract tumbling statistics,
it is necessary to track single-cell trajectories, which necessitates a low cell concentra-
tion and is constrained to shorter trajectories. This will result in insu""cient statistical
accuracy for reliable extraction of velocity jump statistics. In this paper we present
an optimization framework for the reconstruction of the velocity jump parameter K
in the chemotaxis equation (1.1) using velocity-averaged measurements (2.3) from
the interior domain. The velocity-averaged measurements do not require tracking
single-cell trajectories, thus allowing for the measurement of higher cell density over
a longer period of time. This may provide a new and reliable way of determining the
microscopic statistics. In the numerical setting when PDE-constrained optimization
is deployed, depending on the experimental setup, the problem can be either locally
well-posedness or ill-conditioned. We further propose a specific experimental design
that is adaptive to the discretization of K. This design decouples the reconstruction
of local values of the parameter K using the corresponding measurements. The de-
sign thus opens up opportunities to parallelization. As a proof of concept, numerical
evidence was presented. It is in good agreement with the theoretical predictions.

A natural extension of the results presented in the current paper is the algorithmic
performance in higher space dimensions. The theoretical findings seem to apply in
a straightforward manner, and we are convinced that an adaptation of Design 4.1
in analogy to Remark 4.5 and [27] could provide well-posedness, but details need to
be evaluated. Numerically one can certainly also refine the solver implementation.
For example, it is possible that higher order numerical PDE solvers that preserve
structures bring extra benefit. More sophisticated optimization methods such as the
(quasi-)Newton method or sequential quadratic programming are possible alternatives
for conducting the inversion [8, 25, 44, 50]. Furthermore, we adopted a first optimize,
then discretize approach in this article. Suggested in [4, 24, 37], a first discretize,
then optimize framework could bring automatic compatibility of forward and adjoint
solvers, but extra di""culties [28] need to be resolved. Error estimates for continuous
in space ground-truth parameters as in [31] could help practitioners to select a suitable
space-discretization.
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Our ultimate goal is to form a collaboration between practitioners to solve the
real-world problem related to bacteria motion reconstruction [34]. To that end, ex-
perimental design is nonavoidable. A class of criteria proposed under the Bayesian
perspective sheds light on this topic; see [2] and references therein. In our context,
it translates to whether the design proposed in section 4 satisfies these established
optimality criteria.

REFERENCES

[1] G. Albi, E. Calzola, and G. Dimarco, A data-driven kinetic model for opinion dynamics
with social network contacts, European J. Appl. Math., (2024), pp. 1–27, https://doi.org/
10.1017/S0956792524000068.

[2] A. Alexanderian, Optimal experimental design for infinite-dimensional Bayesian inverse
problems governed by PDEs: A review , Inverse Problems, 37 (2021), 043001, https://
doi.org/10.1088/1361-6420/abe10c.

[3] W. Alt, Biased random walk models for chemotaxis and related di!usion approximations, J.
Math. Biol., 9 (1980), pp. 147–177, https://doi.org/10.1007/BF00275919.

[4] T. Apel and T. G. Flaig, Crank–Nicolson schemes for optimal control problems with evolution
equations, SIAM J. Numer. Anal., 50 (2012), pp. 1484–1512, https://doi.org/10.1137/
100819333.

[5] S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems,
Inverse Problems, 25 (2009), 123010, https://doi.org/10.1088/0266-5611/25/12/123010.

[6] G. Bal, I. Langmore, and F. Monard, Inverse transport with isotropic sources and angu-
larly averaged measurements, Inverse Probl. Imaging, 2 (2008), pp. 23–42, https://doi.org/
10.3934/ipi.2008.2.23.

[7] H. Berg, Random Walks in Biology, Princeton University Press, Princeton, NJ, 1993,
https://doi.org/10.1515/9781400820023.
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