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Multi-scale PDE Inverse Problem 
in Bacterial Movement 

Kathrin Hellmuth, Christian Klingenberg, and Qin Li 

Abstract By their nature, biological systems evolve to complex structures, posing 
challenges for mathematical modelling that involve partial differential equations 
(PDEs). Experimental data is used to bridge the gap between simplified models and 
real world applications. The models as well as the associated inverse problems exhibit 
a multi-scale structure. In this article, we summarize recent studies on the multi-scale 
behaviour of PDE inverse problems for models of bacterial movement. 

Keywords Inverse problems ·Multi-scale modelling · Kinetic chemotaxis 
model · Parameter reconstruction · Keller-Segel model · Diffusion scaling limit 

1 Introduction 

Biological systems are complex and fundamental principles of operation are fre-
quently not fully understood or extremely detailed as they incorporate influences of 
a vast number of external and internal stimuli. In both cases, deriving general ab 
initio models for biological phenomena is often not realizable. One such example is 
the motion of organisms: even similar species such as different bacteria can develop 
at least . 6 different types of motility [ 14], each one operating according to its own 
mechanism. Under these circumstances, one not only has to rely on the physical intu-
ition, but also on measurements collected in the laboratories to fit free parameters 
in mathematical models, see discussions in [ 7, 9, 19] for some examples in various 
settings. In all these examples, some mathematical models are formulated according 
to some general principles, and experimental data is collected to fit the unknown
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parameters in the models. This procedure falls into the category of inverse problems 
and is becoming increasingly important in the whole study of mathematical biology. 
Thanks to the fast advancement in mathematical inverse theory and the increasing 
power of computation, these problems are also becoming more and more accessible. 
The detailed inversion procedure heavily depends on the structure of the forward 
model. In this article we will present this approach on the so-called run-and-tumble 
model that is used to characterize bacterial motion. 

Bacteria such as Escherichia coli (E. coli) possess organs (e.g. flagella) that they 
use to rotate in different directions so to perform a run-and-tumble movement. In 
particular, counter-clockwise rotation of the flagella results in a ‘running’ movement 
along a straight line in a certain direction while clockwise rotation initiates a ‘tumble’ 
movement so to search for a new direction to run in afterwards [ 17]. This motion of 
tumbling is frequently induced by an external force such as a chemical gradient, a 
light source, a food source etc. We consider the example of an attracting chemical 
substance, in which case the phenomenon is referred to as chemotaxis. The bacterium 
then steers towards the so called chemoattractant by changing the frequency of its 
tumbling [ 3]. 

Albeit having this general principle, the precise response of the bacteria to the 
chemoattractant is unknown. In particular, the value of the tumbling parameter typi-
cally cannot be directly derived or measured. Different species [ 3], different chemoat-
tractant concentrations [ 4], and different environments [ 24] can also alter the precise 
value of the parameters. Because the tumbling parameter cannot directly be observed, 
biologists collect data on the density distribution of bacteria in the lab. One then for-
mulates the inverse problem to infer the tumbling parameter from these data. 

We will consider this problem for models in different space-time scales. For this 
type of systems, the naturally emerging model scales are: 

• The microscopic description focuses on the individual motion and models the 
trajectories of single bacteria by stochastic differential equations [ 26, 29]. 

• On the mesoscopic level, the phenomenon is described from a statistical point of 
view: models are formulated to evolve the distribution densities of bacteria on 
the phase space and the bacteria’s motion in different directions are incorporated 
[ 1, 10]. 

• The macroscopic description is of fluid type. The models describe the evolution 
of the bacteria density as a function of space and time [ 15, 22]. 

In a fixed experimental setup, the scale of the problem is roughly set fixed, and in 
this fixed regime, some models might be more suitable and would be selected as the 
fundamental model. However, these models are not completely independent of each 
other. In particular, there are studies that reveal the relation between these models, 
and it can be shown that models, in certain asymptotic regimes, are equivalent to 
each other [ 4, 21]. 

Associated to these models, one may have various options of the inverse problems. 
In this paper we review recent results on parameter inference for mesoscopic and 
macroscopic chemotaxis systems, where we are particularly interested in the scaling 
behaviour of the inverse problem.
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The article is structures as follows. At first, the mesoscopic chemotaxis model is 
introduced and the inverse problem is explained. We then present results that guar-
antee a unique reconstructability of the tumbling parameter in this case. Afterwards, 
the macroscopic model (named Keller-Segel equation) and the associated inverse 
problem are explained. The connection between the two inverse problems in meso-
scopic and the macroscopic scale is studied in the Bayesian framework. The article 
concludes with an outlook on open problems. 

2 Chemotaxis Equation—Forward and Inverse 

Mesoscopic, also called kinetic, descriptions of chemotaxis were first proposed in 
[ 1, 27]. They model the propagation of the population density . f (x, t, v) of bacteria 
as a function of space.x ∈ R3, time.t ∈ [0, T ] and velocity.v ∈ V that these bacteria 
run into. We use a standard simplification that tumbling happens instantaneously 
and bacteria run exactly at the same speed, without loss of generality .V = S2. Fur-
thermore, we assume that the chemoattractant concentration is a fixed function. c(x)
independent of time and of the bacteria density (in particular bacteria do not consume 
or produce it). For a given initial condition.φ ∈ C∞

c (R3 × V ), the kinetic model reads 

.∂t f + v · ∇ f =
∫

V
K (x, v, v′) f (x, t, v′) − K (x, v′, v) f (x, t, v) dv′, (1) 

f (x, t = 0, v)  = φ(x, v)  

where .K (x, v, v′), the so called tumbling kernel, encodes the probability of tum-
bling from velocity .v′ to . v at location . x . This kernel is implicitly affected by the 
chemoattractant concentration. 

The inverse problem amounts to reconstructing.K from measurements of. f . In the  
lab experiment, we assume bacteria are placed in the environment in a controlled fash-
ion. After some time, the bacteria density is measured locally in time and space. One 
problem arising in this context is that velocity dependent measurements . f (x, t, v)
require specially designed equipment and are barely feasible. Instead, macroscopic 
measurements of the velocity averaged bacteria density 

. ρ(x, t) := ⟨ f (x, t)⟨ f ⟩ :=
∫

V
f (x, t, v) dv,

though more common, lose out on the velocity information. As such, one may nat-
urally not suspect the possibility of reconstruction the collision kernel .K (x, v, v′). 

To be more precise, we assume knowledge of the following measurement gener-
ating map
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.$K : C∞
c,+(R3 × V ) × C∞

c,+(R3 × [0, T ]) → R, (2) 

(φ, µ) *→ Mµ( f φ ) = Mµ(ρ
φ ) := 

∫ T 

0 

∫ 3 

R 
ρφ (x, t)µ(x, t) dx dt, 

where.ρφ is the macroscopic bacteria density corresponding to the solution. f φ of (1) 
with initial condition . φ, and . µ denotes a test function in space time. We abuse the 
notation and allow .Mµ to either act on . f φ or .ρφ directly. If clear from the context, 
we sometimes omit .φ, µ in the notation. The map .$K is influenced by . K , which 
determines the evolution of . f φ . 

The precise question is then: Can one reconstruct .K using the data coded in the 
map.$K ? In [  13], we give it a positive answer when we restrict ourselves to an a-prior 
defined admissible set 

. AK := {K ∈ C+(R3 × W ) | ∥K∥∞ ≤ CK },

with .W := {(v, v′) ∈ V × V | v ̸= v′} and slightly abuse notation, by excluding v 

from integration domain in (1). 

Theorem 1 (Unique reconstruction of. K ; [  13]) Let.K ∈ AK . The map.$K uniquely 
determines.K (x, v, v′). In particular, for any.(x, v, v′) ∈ R3 × V , by a proper choice 
of . φ and . µ, one can explicitly express .K (x, v, v′) in terms of .Mµ(ρφ), with .ρφ being 
the density associated with . fφ that solves (1). 

The proof relies on the singular decomposition technique [ 2, 6, 18]. We decom-
pose 

. f = f0 + f1 + f≥2,

where the part . fi (x, t, v) collects all bacteria in . f (x, t, v) that tumbled exactly . i
times up to time . t for .i ∈ {0, 1,≥ 2}. The different . fi attain different regularity 
and we use this fact by explicitly constructing initial data . φ and measurement test 
function . µ with compatible singularities so to trigger this regularity. This helps us 
to extract the part .M( f1) from the full measurement 

. M( f ) = M( f0)+ M( f1)+ M( f≥2).

We then show that we can reconstruct .K from.M( f1). 
Intuitively speaking, . f0 cannot contain any information about . K , because the 

bacteria in there did not tumble. Those in . f≥2 tumbled at least twice, so we cannot 
distinguish the influence of the two tumblings. As a consequence, the only chance 
of recovering .K relies on whether . f1 information can be singled out. 

To do so, we design singular initial data that starts off the dynamics at a specific 
location with a specific velocity, and take measurement also at a very specially 
designed time and location. This designing is to make sure that there is only one 
trajectory for a bacterium to start off from the initial location and velocity and end 
at a particular location at a certain time. So we are ensuring the measured density
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reflect all bacteria that tumble at an exact tumbling point, changing exactly from the 
initial velocity to the new direction. 

In [ 13], we derived the explicit formula for the measurement .M( f1) and see that 
we can reconstruct.K (x ′, v′, vi ) from.M( f1). We also proved that the contribution of 
. f0 and . f≥2 is negligible in this setting, so .M( f ) = M( f1). Altogether, we are able 
to reconstruct .K from the measurements in this setting. 

3 Keller-Segel Equation—Forward and Inverse 

Another classical description of chemotaxis is given by the Keller-Segel equation 
on the macroscopic level [ 15, 22]. Denoting the macroscopic bacteria density by 
.ρ(x, t), for .x ∈ R3, t ∈ [0, T ], we have  

.∂tρ − ∇ · (D · ∇ρ)+ ∇ · (ρ%) = 0, (3) 

ρ(x, t = 0) = ψ(x) ∈ C∞ 

c,+(R3 ). 

The symmetric diffusion matrix .D(x) and drift vector .%(x) are again influenced by 
the fixed independent chemoattractant concentration .c(x). 

The macroscopic inverse problem amounts in finding .D and . %, given measure-
ments of. ρ. We now assume that we have access to pointwise measurements. ρ(xm , tm)
for all for measurement locations.xm and small times.0 < tm < t⋆, i.e. we have knowl-
edge on the measurement generating mapping 

. $D,% : C∞
c,+(R3) × R3 × [0, t⋆] ∋ (ψ, xm, tm) *→ ρψ (xm, tm),

where .ρψ denotes the solution to (3) with initial condition .ρ(x, t = 0) = ψ . Com-
pared to the kinetic description, it would be a much simpler strategy to show the 
unique reconstruction of the quantities .D and .% from the above measurements. 
Since both the unknowns (.D and . %) and the data (.ψ and . ρ) are of macroscopic 
nature, presented on the spatial domain (instead of the phase domain), the recon-
struction is expected to be feasible. To summarize we have the following theorem 
on the uniqueness of the reconstruction of .D,% in the admissible set 

. AD,% = {(D,%) | D ∈ C2(R3,R3×3) symmetric&positive definite,% ∈ C2(R3,R3)}.

Theorem 2 (Unique reconstruction of .D,%) Let .(D,%) ∈ AD,% . The map . $D,%

uniquely determines .D(x),%(x). The pointwise reconstruction .D(x), .%(x) can be 
explicitly expressed by the measurements.ρψ (xm, tm), the solutions to (3), as functions 
of time, for specifically designed . ψ . 

The proof of the theorem is significantly simpler than that for the previous theorem. 
We lay out the strategy below.
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From knowledge of . ρ by .$D,% , we can derive the time derivative of . ρ at any 
location. The linearity of (3) allows a simple reconstruction of . D, . % by a suitable 
choice of initial data. Indeed, we construct the following algorithmic pipeline to 
gradually reveal comments of .D and . % at location .a ∈ R3: 

• Step 1—Reconstruct .∇ · %(a): We set the initial condition .ψ1(x) ≡ 1 in a neigh-
bourhood of . a. At .t = 0 we observe 

. ∂tρ
ψ1(a, t = 0)+ ∇ · %(a) = 0.

Since we retrieve.∂tρψ1(a, t = 0) from the measurements, we have a reconstruction 
of .∇ · %(a). 

• Step 2—Determine the.(k, l)-th entry.Dkl(a) of.D(a): Use the initial data. ψ2(x) =
(xk − ak)(xl − al)+ 1 in a neighbourhood of . a, where .vi denotes the .i-th entry 
of a vector . v. Then 

. ∂tρ
ψ2 (a, t = 0) − Dkl (a) − Dlk(a)+ ∇ · %(a) = ∂tρ

ψ2 (a, t = 0) − 2Dkl (a)+ ∇ · %(a) = 0,

where .∂tρ
ψ2(a, t = 0) is known from the experiment and .∇ · %(a) can be recon-

structed as above. 
• Step 3—Find the entries .%k(a) of .%(a): For  a fixed  . k, choose the initial data 

.ψ3(x) = (xk − ak)+ 1 in a neighbourhood of . a, so  

. ∂tρ
ψ3(a, t = 0) =

∑

i

∂xi Dik(a) − %k(a) − ∇ · %(a).

We can measure .∂tρψ3(a, t = 0) and reconstruct .∂xi Dik(a) from the reconstruc-
tions on .Dik in a neighbourhood of . a. Because .∇ · %(a) is known from Step 1, 
this gives .%k(a). 

We should note that generally speaking.D and. % are linearly reflected in the solution. 
Like all other linear algebra problems .A · x = b, there are many ways to design 
the testing matrix .A to infer . x , as long as .A has the full column rank. What was 
listed above is simply one version in which we can explicitly represent the unknown 
variables. A more interesting question is how to design the “testing matrix” .A so 
it is well-conditioned and inversion is robust to error. We leave out that part of the 
discussion from here. 

4 Fluid Limit for the Inverse Problem 

In this section, we specifically focus on the limit-passing from chemotaxis equation 
to the Keller-Segel equation, two fundamental models in math biology that simulate 
bacteria motion. We discuss the connection between these two inverse problem.
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In the forward setting, one can prove that under certain assumptions, these models 
are asymptotically equivalent [ 1, 4, 21], i.e. the Keller-Segel equation (3) emerges 
as the diffusion limit .ε → 0 of the chemotaxis Eq. (1) in a parabolic scaling 

.ε2∂t fε + εv · ∇ fε =
∫

V
Kε(x, v, v′) fε(x, t, v′) − Kε(x, v′, v) fε(x, t, v) dv′, (4) 

fε(x, t = 0, v)  = φ(x, v).  

To be specific, under mild continuity assumptions on. K , one can prove that. fϵ → ρF
in .L∞([0, T ]; L1

+ ∪ L∞(R3 × V )) norm, where .F is an equilibrium distribution in 
velocity and . ρ solves (3) with the initial condition .ψ = ⟨φ⟩. The diffusion matrix 
.D and drift vector . % in (3) can be expressed in terms of the zeroth and first order 
terms.K0, K1 of the asymptotic expansion.Kε = K0 + εK1 + O(ε2) of the tumbling 
kernel. We should stress that . ε stands for the spatial and temporal scaling. Small . ε
means we are looking at a system for which the observation time/space scaling is 
significantly larger than that of the chemotaxis scattering, i.e. we are in the frequent 
scattering domain. 

In [ 12], we investigate whether this relation holds true for the inverse problems as 
well, i.e. if the reconstruction of the tumbling parameters, using the scaled chemotaxis 
(.ε, chem) Eq. (4) as an underlying model, converges to the reconstruction with 
underlying macroscopic Keller-Segel (KS) model (3). A similar question was studied 
in [ 20] for the stationary radiative transfer equation and the diffusion equation. 

To exercise the comparison, it would be fair to set up the problem in two different 
regimes using the same parameter configuration. For example, it would be meaning-
less to compare the reconstruction of.K in the kinetic regime to the reconstruction of 
.(D,%) in the parabolic regime. To unify the notations, we assume we are looking to 
reconstruct the parameters.K0 and.K1, the first two terms in the asymptotic expansion 
of .K in the following admissible set: 

.A′
K = { Kε = K0 + εK1 ∀ε > 0 | Ki ∈ C1(R3 × [0,∞) × V × V ), ∥Ki∥C1 ≤ C, (5) 

i = 0, 1, and 0 < α  ≤ K0 symmetric and K1 antisymmetric in (v, v′)}. 

Together with further (mild) requirements it is guaranteed that the two forward mod-
els converge uniformly over this admissible set. Generalizations to other admissible 
sets are possible, see also [ 12]. 

To characterize the limit-passing procedure of the two associated inverse prob-
lems, we take on the Bayesian perspective [ 8, 28]. It is a numerical strategy to assign 
the probability measure of all possible configurations of the unknown parameter 
that may produce data that matches the measurement. Due to the flexibility of this 
Bayesian framework, one also can relax the requirement of needing the entire mea-
surement map but rather utilize finite data set. This relaxation permits a much more 
practical use of the framework. 

We once again restrict ourselves to macroscopic data, where this time, we assume 
fixed time measurement. The data is thus given by
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. Gε,chem
i j (Kε) := Mχi

(
⟨ f φ

ε ⟩
)
=

∫

R3

∫

V
f φ j
ε (x, ti , v) dv χi (x) dx ,

GKS
i j (Kε) := Mχi

(
ρ⟨φ⟩) =

∫

R3
ρ⟨φ j ⟩ (x, ti )χi (x) dx, 1 ≤ i ≤ I, 1 ≤ j ≤ J,

where . f φ j
ε solves (4) with initial condition .φ j ∈ C1

c,+(R3, V ) and .ρ⟨φ⟩ solves (3) 
with initial condition .⟨φ j ⟩. We stipulate a .L1 ∩ L∞ bound on the initial conditions 
.φ j uniformly in . j . The measurement times. ti are in .[0, T ] and the measurement test 
functions.χi ∈ Cc(R3) are uniformly in . i bounded in .L1 ∩ L2 ∩ L∞ with uniformly 
bounded support volume. All measurements are collected in a matrix. G = (Gi j )i, j ∈
RI×J . 

The available data is supposed to be the polluted version .y = G + η of the mea-
surements, where .η ∈ RI×J has independent and identically .N (0, γ 2) distributed 
entries of known variance .γ 2 > 0. 

Bayes’ theorem states that if an a-priori guess on the distribution is known, termed 
.µ0 and supported on .A′

K , then given the measurements .y ∈ RI×J , the posterior 
distribution given this knowledge is: 

.µy
⋆(Kε) =

1
Z ⋆

e− 1
2γ 2

∥G⋆(Kε)−y∥2
µ0(Kε) , ⋆ ∈ {(chem, ε),KS} (6) 

where .Z ⋆ is a normalization constant to ensure that .µy
⋆ is a probability distribution 

again. The posterior distribution .µ
y
⋆ is the solution to the Bayesian inverse problem 

with underlying model . ⋆. The norm .∥G⋆(Kε) − y∥ should be understood in the 
Frobenius manner. 

The goal now becomes to precisely characterize the similarity and differences 
between the posterior distributions produced by the two distinct forward models (4) 
and (3). It would be natural to expect that as the two forward models asymptotically 
approximate each other, the associated Bayesian inverse distribution would also get 
close. 

To measure the distance of two probability distributions .µ1, µ2, we use  the  
Kullback-Leibler (KL) divergence .dKL and the Hellinger metric .dHell, assuming 
.µ1, µ2 are absolutely continuous w.r.t. each other or w.r.t. a third probability 
measure . µ0

. dKL(µ1, µ2) :=
∫

A′
K

(
log

dµ1

dµ2
(u)

)
dµ1(u),

dHell(µ1, µ2)
2 := 1

2

∫

A′
K

(√
dµ1

dµ0
(u) −

√
dµ2

dµ0
(u)

)2

dµ0(u).

Finally, we could show the following theorem. 

Theorem 3 (Bayesian Multiscale Convergence; [ 12]) In the above setting, the 
Bayesian posterior distribution for the tumbling kernel derived from the scaled kinetic
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chemotaxis Eq. (4) and the macroscopic Keller Segel equation (3) as underlying mod-
els are well posed and asymptotically equivalent in the Kullback Leibler divergence 
and the Hellinger metric 

. dKL(µ
y
ε,chem, µ

y
KS)

ε→0−−→ 0, dHell(µ
y
ε,chem, µ

y
KS)

ε→0−−→ 0.

The proof can be summarized as follows: 

• By boundedness of the initial data and the measurement test function, the conser-
vation of total mass establishes the boundedness of the measurements.G⋆

i j . 

• The measurability of the likelihoods.e− 1
2γ 2

∥G⋆(Kε)−y∥2 is a consequence of the Lips-
chitz continuity of the measurements w.r.t..Kε . The well-definedness and continuity 
of the posterior distributions w.r.t. each other and w.r.t. the prior distribution are 
mere consequences. 

• Stability w.r.t. the data. y originates from the relaxation introduced by the Bayesian 
posterior (6). In total, this gives well-posedness. 

• For the convergence result, we additionally need uniform convergence . fε → ρF
over the admissible set. Together with the boundedness of initial data and measure-
ment test function, this gives uniform over .A′

K convergence of the measurements 
.Gchem,ε → GKS. 

• Together with the uniform boundedness of .G on .A′
K and in . ε, we could follow 

the steps in [ 20] and show that the integrand of the Kullback-Leibler divergence 
asymptotically vanishes, uniformly on .A′

K . 
• Convergence in KL divergence implies convergence in the Hellinger metric by the 
bound .d2

Hell ≤ dKL. 

In summary, this shows that the Bayesian inverse problems are asymptotically close 
in the KL divergence and the Hellinger metric. 

5 Open Problems (Stabilize the Inverse System) 

So far, the stability of the inverse problems in Sects. 2 and 3 has not been considered 
yet. Because of potential measurement errors, this is an important point in inverse 
problems and a lack of stability can, as for the Calderon problem, lead to severe 
problems. Tracing the stability in the scaling limit might lead to additional insights. 
An example is presented in [ 5, 16], where the authors show the stability degradation 
in the diffusion limit for the stationary radiative transport equation, explaining the 
seemingly contrast of a well-posed inverse problem for stationary radiative transport 
converging to an ill-posed one for the diffusion equation. 

This poses another interesting question: Considering an instable macroscopic 
inverse problem as a scaling limit of a corresponding stable kinetic inverse problem, 
can we somehow hybridize the systems so to combine the computational efficiency 
of macroscopic low dimensional model with the stability of the kinetic system? How
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can we merge the information from both systems and which mechanisms can be 
used to induce better stability? How could a corresponding experimental strategy 
look like? 

These theoretical questions could help to develop efficient numerical strategies 
to solve the considered inverse problems and adapt the models to reality. Numerical 
inversion typically relies on PDE-constrained optimization or relaxation approaches, 
which might be adapted to exploit the multiscale nature of the models so to improve 
stability. These computationally more expensive methods are now more feasible than 
ever given the increasing computational power at hand. Apart from that, the downside 
of high dimensionality of a fully kinetic reconstruction may up to some extent be 
leveraged by incorporating the macroscopic knowledge. A very easy example could 
be using a macroscopic reconstruction as a starting point for an iterative kinetic 
reconstruction. 

Sticking to the example of chemotaxis, new models have been developed improv-
ing the modelling on different scalings, compare for instance [ 11, 23, 25] just to  
mention some. Frequently, internal states of bacteria are incorporated in the model 
as an additional free variable. These model can not only describe the diffusive motion 
as in the Keller-Segel equation (3), but also super-diffusive motion, which can under 
certain circumstances be experimentally observed. Adapting these models to real 
experiments generates new inverse problems for which the same well-posedness and 
multiscale convergence questions apply. 

In summary, the fields of multiscale inverse problems and inverse problems for 
biological systems pose many interesting opportunities to develop application driven 
mathematical tools. 
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