
Chapter 1
Multi-scale PDE inverse problem in bacterial
movement

Kathrin Hellmuth, Christian Klingenberg and Qin Li

Abstract By their nature, biological systems evolve to complex structures, posing
challenges for mathematical modelling that involve partial differential equations
(PDEs). Experimental data is used to bridge the gap between simplified models
and real world applications. The models as well as the associated inverse problems
exhibit a multi-scale structure. In this article, we summarize recent studies on the
multi-scale behaviour of PDE inverse problems for models of bacterial movement.

1.1 Introduction

Biological systems are complex and seem to elude fundamental principles of op-
eration. As such, deriving general ab initio models for biological phenomena is
essentially impossible. One such example is the motion of organisms: even similar
species such as different bacteria can develop at least 6 different types of motility
[Hen72], each one operating according to its own mechanism. Under these circum-
stances, one not only has to rely on the physical intuition, but also on measurements
collected in the laboratories to fit free parameters in mathematical models, see dis-
cussions in [CZ15], and [DET18, LPS19]for some examples in various settings. In
all these examples, some mathematical models are formulated according to some
general principles, and experimental data is collected to fit the unknown parameters
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in the models. This procedure falls into the category of inverse problem. The problem
is becoming increasingly important in the whole study of mathematical biology, and
thanks to the fast advancement in mathematical inverse theory and the increasing
power of computation, these problems are also becoming more and more accessible.
The detailed inversion procedure heavily depends on the structure of the forward
model. In this article we will present this approach on a model called run-and-tumble
model that is used to characterize bacterial motion.

Bacteria such as Escherichia coli (E.coli) possess organs (e.g. flagella) that they
use to rotate the direction of motion so to perform a run-and-tumble movement. In
particular, counter-clockwise rotation of the flagella results in a ’running’ movement
along a straight line in a certain direction while clockwise rotation initiates a ’tumble’
movement so to search for a new direction to run in afterwards [LRK+74]. This
motion of tumbling is frequently induced by an external force such as a chemical
gradient, a light source, a food source etc. We consider the example of an attracting
chemical substance, in which case the phenomenon is referred to as chemotaxis.
The bacterium then steers towards the so called chemoattractant by changing the
frequency of its tumbling [BB72].

Albeit having this general principle, the precise response of the bacteria to the
chemoattractant is unknown. In particular, the value of the tumbling parameter
typically cannot be directly derived or measured. Different species [BB72], different
chemoattractant concentrations[CMPS04], and different environments [RLS+19] can
also alter the precise value of the parameters. Because the tumbling parameter cannot
directly be observed, biologists collect data on the density distribution of bacteria
in the lab. One then formulates the inverse problem to infer the tumbling parameter
from these data.

We will consider this problem for models in different space-time scales. For this
type of systems, the naturally emerging model scales are:

• The microscopic description focuses on the individual motion and models the
trajectories of single bacteria by stochastic differential equations [Ste00, XT21].

• On the mesoscopic level, the phenomenon is described from a statistical point of
view: models are formulated to evolve the distribution densities of bacteria on
the phase space and the bacteria’s motion in different directions are incorporated
[Alt80, EO04a].

• The macroscopic description is of fluid type. The models describe the evolution
of the bacteria density as a function of space and time [Pat53, KS70].

In a fixed experimental setup, the scale of the problem is roughly set fixed, and in
this fixed regime, some models might be more suitable and would be selected as the
fundamental model. However, these models are not completely independent of each
other. In particular, there are studies that reveal the relation between these models,
and it can be shown that models, in certain asymptotic regimes, are equivalent to
each other [CMPS04, OH02].

Associated to these models, one may have various options of the inverse prob-
lems. In this paper we review recent results on parameter inference for mesoscopic
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and macroscopic chemotaxis systems, where we are particularly interested scaling
behaviour of the inverse problem.

The article is structures as follows. At first the mesoscopic chemotaxis model is
introduced and the inverse problem is explained. Firstly, we show results that guar-
antee a unique reconstructability of the tumbling parameter in this case. Then we
present the macroscopic model (named Keller-Segel equation) and the associated in-
verse problem. The connection between the two inverse problems in mesoscopic and
the macroscopic scale is studied in the Bayesian framework. The article concludes
with an outlook on open problems.

1.2 Chemotaxis equation - forward and inverse

Mesoscopic, also called kinetic, descriptions of chemotaxis were first proposed
in [Str74, Alt80]. They model the propagation of the population density 𝑓 (𝑥, 𝑡, 𝑣)
of bacteria as a function of space 𝑥 ∈ R3, time 𝑡 ∈ [0, 𝑇] and velocity 𝑣 ∈ 𝑉

that these bacteria run into. We use a standard simplification that tumbling happens
instantaneously and bacteria run exactly at the same speed, without loss of generality
𝑉 = S2. Furthermore, we assume that the chemoattractant concentration is a fixed
function 𝑐(𝑥) independent of time and of the bacteria density (in particular bacteria
do not consume or produce it). For a given initial condition 𝜙 ∈ 𝐶∞

𝑐 (R3 × 𝑉), the
kinetic model reads

𝜕𝑡 𝑓 + 𝑣 · ∇ 𝑓 =
∫
𝑉

𝐾 (𝑥, 𝑣, 𝑣′) 𝑓 (𝑥, 𝑡, 𝑣′) − 𝐾 (𝑥, 𝑣′, 𝑣) 𝑓 (𝑥, 𝑡, 𝑣) d𝑣′, (1.1)

𝑓 (𝑥, 𝑡 = 0, 𝑣) = 𝜙(𝑥, 𝑣)

where 𝐾 (𝑥, 𝑣, 𝑣′), the so called tumbling kernel, encodes the probability of tum-
bling from velocity 𝑣′ to 𝑣 at location 𝑥. This kernel is implicitly affected by the
chemoattractant concentration.

The inverse problem amounts to reconstructing 𝐾 from measurements of 𝑓 . In
the lab experiment, we assume bacteria are placed in the environment in a controlled
fashion. After some time, the bacteria density is measured locally in time and space.
One problem arising in this context is that velocity dependent measurements 𝑓 (𝑥, 𝑡, 𝑣)
require specially designed equipment and are barely feasible. Instead, macroscopic
measurements of the velocity averaged bacteria density

𝜌(𝑥, 𝑡) := ⟨ 𝑓 ⟩(𝑥, 𝑡) :=
∫
𝑉

𝑓 (𝑥, 𝑡, 𝑣) d𝑣,

though more common, lose out on the velocity information. As such, one may
naturally not suspect the possibility of reconstruction the collision kernel 𝐾 (𝑥, 𝑣, 𝑣′).

To be more precise, we assume knowledge of the following measurement gener-
ating map
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Λ𝐾 : 𝐶∞
𝑐,+ (R3, 𝑉) × 𝐶∞

𝑐,+ (R3 × [0, 𝑇]) → R, (1.2)

(𝜙, `) ↦→ 𝑀` ( 𝑓 𝜙) = 𝑀` (𝜌𝜙) :=
∫ 𝑇

0

∫ 3

R
𝜌𝜙 (𝑥, 𝑡)`(𝑥, 𝑡) d𝑥 d𝑡,

where 𝜌𝜙 is the macroscopic bacteria density corresponding to the solution 𝑓 𝜙 of
(1.1) with initial condition 𝜙 and ` denotes a test function in space time. We abuse
the notation and allow 𝑀` to either act on 𝑓 𝜙 or 𝜌𝜙 directly. If clear from the
context, we sometimes omit 𝜙, ` in the notation. The map Λ𝐾 is influenced by 𝐾 ,
which determines the evolution of 𝑓 𝜙 .

The precise question is then: Can one reconstruct 𝐾 using the data coded in the
map Λ𝐾? In [HKLT22], we give it a positive answer when we restrict ourselves to
an a-prior defined admissible set

A𝐾 := {𝐾 ∈ 𝐶+ (R3 ×𝑊) | ∥𝐾 ∥∞ ≤ 𝐶𝐾 },

with𝑊 := {(𝑣, 𝑣′) ∈ 𝑉 ×𝑉 | 𝑣 ≠ 𝑣′}.

Theorem 1.1 (Unique reconstruction of𝐾; [HKLT22]) Let𝐾 ∈ A𝐾 . The mapΛ𝐾
uniquely determines 𝐾 (𝑥, 𝑣, 𝑣′). In particular, for any (𝑥, 𝑣, 𝑣′), by a proper choice
of 𝜙 and `, one can explicitly express 𝐾 (𝑥, 𝑣, 𝑣′) in terms of 𝑀` (𝜌𝜙), with 𝜌𝜙 being
the density associated with 𝑓𝜙 that solves (1.1).

The proof relies on the singular decomposition technique [LS20, CS96, Bal09].
We decompose

𝑓 = 𝑓0 + 𝑓1 + 𝑓≥2,

where the part 𝑓𝑖 (𝑥, 𝑡, 𝑣) collects all bacteria in 𝑓 (𝑥, 𝑡, 𝑣) that tumbled exactly 𝑖 times
up to time 𝑡 for 𝑖 ∈ {0, 1, ≥ 2}. The different 𝑓𝑖 attain different regularity and we
use this fact by explicitly constructing initial data 𝜙 and measurement test function
` with compatible singularities so to trigger this regularity. This helps us to extract
the part 𝑀 ( 𝑓1) from the full measurement

𝑀 ( 𝑓 ) = 𝑀 ( 𝑓0) + 𝑀 ( 𝑓1) + 𝑀 ( 𝑓≥2).

We then show that we can reconstruct 𝐾 from 𝑀 ( 𝑓1).
Intuitively speaking, 𝑓0 cannot contain any information about 𝐾 , because the

bacteria in there did not tumble. Those in 𝑓≥2 tumbled at least twice, so we cannot
distinguish the influence of the two tumblings. As a consequence, the only chance of
recovering𝐾 relies on whether 𝑓1 information can be singled out. To do so, we design
singular initial data that starts off the dynamics at a specific location with a specific
velocity, and take measurement also at a very specially designed time and location.
This designing is to make sure that there is only one trajectory for a bacterium to
start off from the initial location and velocity and end at a particular location at a
certain time. So we are ensuring the measured density reflect all bacteria that tumble
at an exact tumbling point, changing exactly from the initial velocity to the new
direction. In [HKLT22], we derived the explicit formula for the measurement 𝑀 ( 𝑓1)
and see that we can reconstruct 𝐾 (𝑥′, 𝑣′, 𝑣𝑖) from 𝑀 ( 𝑓1). We also proved that the
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contribution of 𝑓0 and 𝑓≥2 is negligible in this setting, so 𝑀 ( 𝑓 ) = 𝑀 ( 𝑓1). Altogether,
we are able to reconstruct 𝐾 from the measurements in this setting.

1.3 Keller-Segel equation - forward and inverse

Another classical description of chemotaxis is given by the Keller-Segel equation on
the macroscopic level [Pat53, KS70]. Denoting the macroscopic bacteria density by
𝜌(𝑥, 𝑡), for 𝑥 ∈ R3, 𝑡 ∈ [0, 𝑇],we have

𝜕𝑡 𝜌 − ∇ · (𝐷 · ∇𝜌) + ∇ · (𝜌Γ) = 0, (1.3)
𝜌(𝑥, 𝑡 = 0) = 𝜓(𝑥) ∈ 𝐶∞

𝑐,+.

The symmetric diffusion matrix 𝐷 (𝑥) and drift vector Γ(𝑥) are again influenced by
the fixed independent chemoattractant concentration 𝑐(𝑥).

The macroscopic inverse problem amounts in finding 𝐷 and Γ, given mea-
surements of 𝜌. We now assume that we have access to pointwise measurements
𝜌(𝑥𝑚, 𝑡𝑚) for all for measurement locations 𝑥𝑚 and small times 0 < 𝑡𝑚 < 𝑡★, i.e. we
have knowledge on the measurement generating mapping

Λ𝐷,Γ : 𝐶∞
𝑐,+ × R3 × [0, 𝑡★] ∋ (𝜓, 𝑥𝑚, 𝑡𝑚) ↦→ 𝜌𝜓 (𝑥𝑚, 𝑡𝑚),

where 𝜌𝜓 denotes the solution to (1.3) with initial condition 𝜌(𝑥, 𝑡 = 0) = 𝜓.
Compared to the kinetic description, it would be a much simpler strategy to show the
unique reconstruction of the quantities 𝐷 and Γ from the above measurements. Since
both the unknowns (𝐷 and Γ) and the data (𝜓 and 𝜌) are of macroscopic nature,
presented on the spatial domain (instead of the phase domain), the reconstruction
is expected to be feasible. To summarize we have the following theorem on the
uniqueness of the reconstruction of 𝐷, Γ in the admissible set

A𝐷,Γ = {(𝐷, Γ) | 𝐷 ∈ 𝐶2 (R3,R3×3) symmetric & positive definite, Γ ∈ 𝐶2 (R3,R3)}.

Theorem 1.2 (Unique reconstruction of 𝐷, Γ) Let (𝐷, Γ) ∈ A𝐷,Γ. The map Λ𝐷,Γ
uniquely determines 𝐷 (𝑥), Γ(𝑥). The pointwise reconstruction 𝐷 (𝑥), Γ(𝑥) can be
explicitly expressed by the measurements 𝜌𝜓 (𝑥, ·), the solutions to (1.3), as functions
of time, for specifically designed 𝜓.

The proof of the theorem is significantly simpler than that for the previous theorem.
We lay out the strategy below.

From knowledge of 𝜌 by Λ𝐷,Γ, we can derive the time derivative of 𝜌 at any
location. The linearity of (1.3) allows a simple reconstruction of 𝐷, Γ by a suitable
choice of initial data. Indeed, we construct the following algorithmic pipeline to
gradually reveal comments of 𝐷 and Γ at location 𝑎 ∈ R3

• Step 1 - Reconstruct ∇ · Γ(𝑎): We set the initial condition 𝜓1 (𝑥) ≡ 1 in a
neighbourhood of 𝑎. At 𝑡 = 0 we observe
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𝜕𝑡 𝜌
𝜓1 (𝑎, 𝑡 = 0) + ∇ · Γ(𝑎) = 0.

Since we retrieve 𝜕𝑡 𝜌𝜓1 (𝑎, 𝑡 = 0) from the measurements, we have a reconstruc-
tion of ∇ · Γ(𝑎).

• Step 2 - Determine the (𝑘, 𝑙)-th entry 𝐷𝑘𝑙 (𝑎) of 𝐷 (𝑎): Use the initial data
𝜓2 (𝑥) = (𝑥𝑘 − 𝑎𝑘) (𝑥𝑙 − 𝑎𝑙) + 1 in a neighbourhood of 𝑎, where 𝑣𝑖 denotes the 𝑖-th
entry of a vector 𝑣. Then

𝜕𝑡 𝜌
𝜓2 (𝑎, 𝑡 = 0)−𝐷𝑘𝑙 (𝑎)−𝐷𝑙𝑘 (𝑎)+∇·Γ(𝑎) = 𝜕𝑡 𝜌𝜓2 (𝑎, 𝑡 = 0)−2𝐷𝑘𝑙 (𝑎)+∇·Γ(𝑎) = 0,

where 𝜕𝑡 𝜌𝜓2 (𝑎, 𝑡 = 0) is known from the experiment and ∇ · Γ(𝑎) can be recon-
structed as above.

• Step 3 - Find the entries Γ𝑘 (𝑎) of Γ(𝑎): For a fixed 𝑘 , choose the initial data
𝜓3 (𝑥) = (𝑥𝑘 − 𝑎𝑘) + 1 in a neighbourhood of 𝑎, so

𝜕𝑡 𝜌
𝜓3 (𝑎, 𝑡 = 0) =

∑︁
𝑖

𝜕𝑥𝑖𝐷𝑖𝑘 (𝑎) − Γ𝑘 (𝑎) − ∇ · Γ(𝑎).

We can measure 𝜕𝑡 𝜌𝜓3 (𝑎, 𝑡 = 0) and reconstruct 𝜕𝑥𝑖𝐷𝑖𝑘 (𝑎) from the reconstruc-
tions on 𝐷𝑖𝑘 in a neighbourhood of 𝑎. Because ∇ · Γ(𝑎) is known from Step 1,
this gives Γ𝑘 (𝑎).

We should note that generally speaking 𝐷 and Γ are linearly reflected in the solution.
Like all other linear algebra problem 𝐴 · 𝑥 = 𝑏, there are many ways to design the
testing matrix 𝐴 to infer 𝑥, as long as 𝐴 has the full column rank. What was listed
above is simply one version that we can explicitly represent the unknown variables.
A more interesting question is how to design the ”testing matrix” 𝐴 so it is well-
conditioned and inversion is robust to error. We leave out that part of the discussion
from here.

1.4 Fluid limit for the inverse problem

In this section, we specifically focus on the limit-passing from chemotaxis equation
to the Keller-Segel equation, two fundamental models in math biology that simulate
bacteria motion. We discuss the connection between these two inverse problem.

In the forward setting, one can prove that under certain assumptions, these models
are asymptotically equivalent[CMPS04, OH02, Alt80], i.e. the Keller-Segel equation
(1.3) emerges as the diffusion limit Y → 0 of the chemotaxis equation (1.1) in a
parabolic scaling

Y2𝜕𝑡 𝑓Y + Y𝑣 · ∇ 𝑓Y =
∫
𝑉

𝐾Y (𝑥, 𝑣, 𝑣′) 𝑓Y (𝑥, 𝑡, 𝑣′) − 𝐾Y (𝑥, 𝑣′, 𝑣) 𝑓Y (𝑥, 𝑡, 𝑣) d𝑣′, (1.4)

𝑓Y (𝑥, 𝑡 = 0, 𝑣) = 𝜙(𝑥, 𝑣).
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To be specific, under mild continuity assumptions on 𝐾 , one can prove that 𝑓𝜖 → 𝜌𝐹

in 𝐿∞ ( [0, 𝑇]; 𝐿1
+ ∪ 𝐿∞ (R3 × 𝑉)) norm, where 𝐹 is an equilibrium distribution in

velocity and 𝜌 solves (1.3) with the initial condition 𝜓 = ⟨𝜙⟩. The diffusion matrix
𝐷 and drift vector Γ in (1.3) can be expressed in terms of the zeroth and first order
terms 𝐾0, 𝐾1 of the asymptotic expansion 𝐾Y = 𝐾0 + Y𝐾1 + 𝑂 (Y2) of the tumbling
kernel. We should stress that 𝜖 stands for the spatial and temporal scaling. Small 𝜖
means we are looking at a system for which the observation time/space scaling is
significantly larger than that of the chemotaxis scattering, i.e. we are in the frequent
scattering domain.

In [HKLT21], we investigate whether this relation holds true for the inverse
problems as well, i.e. if the reconstruction of the tumbling parameters, using the
scaled chemotaxis (Y, chem) equation (1.4) as an underlying model, converges to
the reconstruction with underlying macroscopic Keller-Segel (KS) model (1.3). A
similar question was studied in [NLS20] for the stationary radiative transfer equation
and the diffusion equation.

To exercise the comparison, it would be fair to set up the problem in two different
regimes using the same parameter configuration. For example, it would be meaning-
less to compare the reconstruction of 𝐾 in the kinetic regime to the reconstruction of
(𝐷, Γ) in the parabolic regime. To unify the notations, we assume we are looking to
reconstruct the parameters 𝐾0 and 𝐾1, the first two terms in the asymptotic expansion
of 𝐾 in the following admissible set:

A′
𝐾 = { 𝐾Y = 𝐾0 + Y𝐾1 ∀Y > 0 | 𝐾𝑖 ∈ 𝐶1 (R3 × [0,∞) ×𝑉 ×𝑉), ∥𝐾𝑖 ∥𝐶1 ≤ 𝐶,

(1.5)
𝑖 = 0, 1, and 0 < 𝛼 ≤ 𝐾0 symmetric and 𝐾1 antisymmetric in (𝑣, 𝑣′)}.

Together with further (mild) requirements it is guaranteed that the two forward mod-
els converge uniformly over this admissible set. Generalizations to other admissible
sets are possible, see also [HKLT21].

To characterize the limit-passing procedure of the two associated inverse prob-
lems, we take on the Bayesian perspective [DS15, Stu10]. It is a numerical strategy
to assign the probability measure of all possible configurations of the unknown pa-
rameter that may produce data that matches the measurement. Due to the flexibility
of this Bayesian framework, one also can relax the requirement of needing the entire
measurement map but rather utilize finite data set. This relaxation permits a much
practical use of the framework.

We once again restrict ourselves to macroscopic data, where this time, we assume
fixed time measurement. The data is thus given by

GY,chem
𝑖 𝑗

(𝐾Y) := M𝜒𝑖

(
⟨ 𝑓 𝜙 𝑗Y ⟩

)
=

∫
R3

∫
𝑉

𝑓
𝜙 𝑗
Y (𝑥, 𝑡𝑖 , 𝑣) d𝑣 𝜒𝑖 (𝑥) d𝑥 ,

GKS
𝑖 𝑗 (𝐾Y) := M𝜒𝑖

(
𝜌⟨𝜙 𝑗 ⟩

)
=

∫
R3
𝜌⟨𝜙 𝑗 ⟩ (𝑥, 𝑡𝑖) 𝜒𝑖 (𝑥) d𝑥, 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽,
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where 𝑓 𝜙 𝑗Y solves (1.4) with initial condition 𝜙 𝑗 ∈ 𝐶1
𝑐,+ (R3, 𝑉) and 𝜌⟨𝜙 𝑗 ⟩ solves (1.3)

with initial condition ⟨𝜙 𝑗⟩. We stipulate a 𝐿1 ∩ 𝐿∞ bound on the initial conditions
𝜙 𝑗 uniformly in 𝑗 . The measurement times 𝑡𝑖 are in [0, 𝑇] and the measurement
test functions 𝜒𝑖 ∈ 𝐶𝑐 (R3) are uniformly in 𝑖 bounded in 𝐿1 ∩ 𝐿2 ∩ 𝐿∞ with
uniformly bounded support volume. All measurements are collected in a matrix
G = (G𝑖 𝑗 )𝑖, 𝑗 ∈ R𝐼×𝐽 .

The available data is supposed to be the polluted version 𝑦 = G + [ of the
measurements, where [ ∈ R𝐼×𝐽 has independent and identically 𝑁 (0, 𝛾2) distributed
entries of known variance 𝛾2 > 0.

Bayes’ theorem states that if an a-priori guess on the distribution is known, termed
`0 and supported on A′

𝐾
, then given the measurements 𝑦 ∈ R𝐼 𝐽 , the posterior

distribution given this knowledge is:

`
𝑦
★(𝐾Y) =

1
𝑍★
𝑒
− 1

2𝛾2 ∥G★ (𝐾Y )−𝑦 ∥2
`0 (𝐾Y) , ★ ∈ {(chem, Y),KS} (1.6)

where 𝑍★ is a normalization constant to ensure that `𝑦★ is a probability distribution
again. The posterior distribution `

𝑦
★ is the solution to the Bayesian inverse prob-

lem with underlying model ★. The norm ∥G(𝑋) − 𝑦∥ should be understood in the
Frobenius manner.

The goal now becomes to precisely characterize the similarity and differences
between the posterior distributions produced by the two distinct forward models (1.4)
and (1.3). It would be natural to expect that as the two forward models asymptotically
approximate each other, the associated Bayesian inverse distribution would also get
close.

To measure the distance measures of two probability distributions `1, `2, we use
the Kullback-Leibler (KL) divergence 𝑑KL and the Hellinger metric 𝑑Hell, assuming
`1, `2 are absolutely continuous w.r.t. each other or w.r.t. a third probability measure
`0

𝑑KL (`1, `2) :=
∫
A′
𝐾

(
log

𝑑`1
𝑑`2

(𝑢)
)
𝑑`2 (𝑢),

𝑑Hell (`1, `2)2 :=
1
2

∫
A′
𝐾

(√︄
𝑑`1
𝑑`0

(𝑢) −

√︄
𝑑`2
𝑑`0

(𝑢)
)2

𝑑`0 (𝑢).

Finally, we could show the following theorem.

Theorem 1.3 (Bayesian Multiscale Convergence; [HKLT21]) In the above setting,
the Bayesian posterior distribution for the tumbling kernel derived from the scaled
kinetic chemotaxis equation (1.4) and the macroscopic Keller Segel equation (1.3)
as underlying models are well posed and asymptotically equivalent in the Kullback
Leibler divergence and the Hellinger metric

𝑑KL (`𝑦Y,chem, `
𝑦

KS)
Y→0−−−−→ 0, 𝑑Hell (`𝑦Y,chem, `

𝑦

KS)
Y→0−−−−→ 0.
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The proof can be summarized as follows:

• By boundedness of the initial data and the measurement test function, the conser-
vation of total mass establishes the boundedness of the measurements G★

𝑖 𝑗
.

• The measurability of the likelihoods 𝑒−
1

2𝛾2 ∥G★ (𝐾Y )−𝑦 ∥2
is a consequence of the

Lipschitz continuity of the measurements w.r.t. 𝐾Y , which can be shown by some
calculations. The well-definedness and continuity of the posterior distributions
w.r.t. each other and w.r.t. the prior distribution are mere consequences.

• Stability w.r.t. the data 𝑦 originates from the relaxation introduced by the Bayesian
posterior (1.6). In total, this gives well-posedness.

• For the convergence result, we additionally need uniform convergence 𝑓Y → 1
|𝑉 | 𝜌

over the admissible set. Together with the boundedness of initial data and measure-
ment test function, this gives uniform over A′

𝐾
convergence of the measurements

Gchem, Y → GKS.
• Together with the uniform boundedness of G on A′

𝐾
and in Y, we could follow the

steps in [NLS20] and show that the integrand of the Kullback-Leibler divergence
asymptotically vanishes, uniformly on A′

𝐾
.

• Convergence in KL divergence implies convergence in the Hellinger metric by
the bound 𝑑2

Hell ≤ 𝑑KL.

In summary, this shows that the Bayesian inverse problems are asymptotically close
in the KL divergence and the Hellinger metric.

1.5 Open problems (stabilize the inverse system)

So far, the stability of the inverse problems in sections 1.2 and 1.3 has not been
considered yet. Because of potential measurement errors, this is an important point
in inverse problems and a lack of stability can, as for the Calderon problem, lead to
severe problems. Tracing the stability in the scaling limit might lead to additional
insights. An example is presented in [CLW18, LLU19], where the authors show the
stability degradation in the diffusion limit for the stationary radiative transport equa-
tion, explaining the seemingly contrast of a well-posed inverse problem for stationary
radiative transport converging to an ill-posed one for the diffusion equation.

This poses another interesting question: Considering an instable macroscopic
inverse problem as a scaling limit of a corresponding stable kinetic inverse problem,
can we somehow hybridize the systems so to combine the computational efficiency
of macroscopic low dimensional model with the stability of the kinetic system? How
can we merge the information from both systems and which mechanisms can be used
to induce better stability? How could a corresponding experimental strategy look
like?

Sticking to the example of chemotaxis, new models have been developed im-
proving the modelling on different scalings, compare for instance [PVW18, EO04b,
STY14] just to mention some. Frequently, internal states of bacteria are incorporated
in the model as an additional free variable. These model can not only describe the
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diffusive motion as in the Keller-Segel equation (1.3), but also super-diffusive mo-
tion, which can under certain circumstances be experimentally observed. Adapting
these models to real experiments generates new inverse problems for which the same
well-posedness and multiscale convergence questions apply.

Besides these theoretical questions, numerical strategies should be developed
to efficiently solve the considered inverse problems and adapt corresponding the
models to reality. Typical approaches include PDE-constrained optimization or re-
laxation. For ill posed macroscopic problems, it could be particularly interesting to
study relaxation approaches based on the multiscale nature of the models. These
computationally more expensive methods are now more feasible than ever given
the increasing computational power at hand. Apart from that, the downside of high
dimensionality of a fully kinetic reconstruction may up to some extent be leveraged
by incorporating the macroscopic knowledge. A very easy example could be using a
macroscopic reconstruction as a starting point for an iterative kinetic reconstruction.

In summary, the fields of multiscale inverse problems and inverse problems for
biological systems pose many interesting opportunities to develop application driven
mathematical tools.
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