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A substantial improvement in resolution has been achieved for the computation 
of jump discontinuities in gas dynamics using the method of front tracking. The 
essential feature of this method is that a lower dimensional grid is fitted to and 
follows the discontinuous waves. At the intersection points of these discontinuities, 
two-dimensional Riemann problems occur. In this paper we study such two-dimen- 
sional Riemann problems from both numerical and theoretical points of view. 
Specifically included is a numerical solution for the Mach reflection, a general 
classification scheme for two-dimensional elementary waves, and a discussion of 
problems and conjectures in this area. i 1985 Academic PKSS, 1~. 

1. INTRODUCTION 

Many phenomena in nature are modeled by nonlinear hyperbolic systems 
of conservation laws: 

u, + v .7((u) = 0. 0 .I> 
The example considered here is the system of Euler equations for a 
compressible, inviscid, polytropic gas. The equation (1.1) represents an 
idealization. Its solutions are the limits, as viscosity parameters tend to zero, 
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of the solutions of more complete equations such as the Navier-Stokes 
equations. The solutions of interest for the system (1.1) are frequently found 
to be piecewise smooth. For the Euler equations in one space dimension the 
jump discontinuities between the smooth pieces are contact discontinuities 
and shock waves. In two space dimensions these same wave modes give rise 
to surface singularities of codimension one. The Rankine-Hugoniot condi- 
tions, as derived from the integral form of the Euler equations, hold across 
these jumps. 

When solving the system (1.1) numerically, the discontinuities that may 
occur in its solution may be resolved on coarser grids by the method of 
front tracking than by conventional finite difference methods. For two space 
dimensions, front tracking may be described as follows. A one-dimensional 
grid is placed onto the discontinuity. Its evolution in time is given by a two 
step procedure, using first the Rankine-Hugoniot relations to propagate the 
front normally and then using tangential equations to propagate surface 
waves. This approach works away from the points where the discontinuity 
curves meet. At such intersection points the geometry does not in general 
allow an operator splitting into normal and tangential directions, so the 
evolution of intersection points must be determined as the solution of a 
two-dimensional Riemann problem. To solve two-dimensional Riemann 
problems it is crucial to classify the coherent waves, which are defined to be 
dynamically stable intersection points of one-dimensional coherent waves. 
The region between the fronts is treated as an initial/boundary-value 
problem and is solved using (almost) standard finite difference methods. 
The front and interior schemes are connected in a strip I in width 
about the front. For a detailed description see [3]. 

The front tracking method appears to allow an increase of linear resolu- 
tion by a factor of 3 or better, i.e., an improvement in the number of 
space-time computational grid units by a factor of 27 or better. The method 
has been tested on various problems. In Sections 2 and 3 we compare the 
results of our numerical calculation to experimental results for two specific 
test problems. An example of how the motion of a two-dimensional coher- 
ent wave is determined numerically is given in Section 3. In Section 4 we 
show that in two-dimensional compressible gas dynamics there are only a 
small number of such two-dimensional coherent waves, and in Section 5 we 
conclude with a discussion of outstanding questions related to Riemann 
problems. 

2. REGULAR REFLECTION OF SHOCK WAVES 

The front tracking scheme for two-dimensional gas dynamics has been 
tested on several problems that admit solution by other means. These 
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FIG. 2.1. Regular reflection of a shock wave by a wedge. A vertical shock 1 has struck a 
63O wedge from the left, causing a reflected shock R, which forms a bowshock in front of the 
wedge. 

problems are: an expanding or contracting circular shock followed by a 
contact discontinuity, the steady-state supersonic flow past a wedge, the 
Kelvin-Helmholtz instability, regular reflection of a shock wave, and Mach 
reflection of a shock wave. For details on the first five see [3]. 

In this section the numerical solution for nonsteady regular reflection of a 
shock wave is compared with experimental results [5]. The experiment 
consists of a planar shock (I) moving down a shock tube and impinging on 
a wedge with a sufficiently large angle. When the incident shock strikes the 
wedge corner a reflected shock (R) is formed, which extends from the 
reflection point to the shock tube wall, where it forms a bow wave in front 
of the wedge, as shown in Fig. 2.1. We will refer to the region enclosed by 
the reflected shock as the “bubble.” As with Riemann problems in general, 
the solution is self-similar, i.e., u(t, x’) = u(at, a.?) for every u > 0. In the 
computation presented here, the Mach number of the incident shock is 2.05 
and the angle of the wedge is 63.4”. 

The numerical calculation was initialized just after the reflected shock had 
formed and enclosed only a small region about one-quarter of a mesh 
interval in height. Data at the two ends of the reflected shock were obtained 
using a shock polar analysis. At the wedge comer, the two velocity compo- 
nents vanish. The remaining solution components at the comer and the full 
solution in the interior are determined by interpolation. One arbitrary 
parameter is used in the initialization, which is the oblateness of the bubble, 
defined as the ratio of the distance of the reflection point from the comer to 
the distance of the bow shock to the comer (the ratio of the lengths of the 
segments BC and AB in Fig. 2.1). The initial oblateness was taken from 
experimental data, but it can be determined approximately by a preliminary 
calculation because it is constrained to lie in a bounded interval by 
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FIG. 2.2. The numerical simulation of a regular reflection, where the incident shock has 
Mach number 2.05 and the wedge angle is 63.4O. The calculation was performed on a 80 by 20 
grid. The top picture shows the lines of constant density inside the bubble formed by the 
reflected shock. The bottom picture shows the lines of constant entropy. They should coincide 
with the integral curves for the self-similar velocity field. Theoretical arguments in the text 
suggest that these integral curves all terminate at a common point, 

theoretical considerations. In fact the computational results are quite insen- 
sitive to its value. The initialization algorithm can be regarded as an 
approximate solution of the two-dimensional Riemann problem in a special 
case. 

In Fig. 2.2 the contours of constant density and constant entropy that 
were obtained numerically are shown. In Fig. 2.3 the density distribution 
along the wall obtained from the calculation is superimposed on the 
experimental data. 

Further analysis of the solution is possible. Self-similar solutions of the 
Euler equations in two dimensions satisfy 

v .(pV) + $ = 0, 

TX0 +,q2++ ( 1 =TVXVS 

j7.v ;,q2+52 
i 1 + +, q2 = 0, 

and 

kvs=o. 

- 

(2-l) 

pq2v x v, (2.2) 

(2.3) 

(2.4) 

Here p is the density, e is the internal energy density, p is the pressure, T is 
the temperature, S is the entropy, and V = 4’ - Z/t is the self-similar 
velocity, with 4’ being the fluid velocity, x’ the position relative to the corner, 
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FIG. 2.3. The computed (solid line) density distribution along the wall for the regular 
reflection run compared to the data obtained in the experiments of Deschambault and Glass 
(dots). 

and t the time elapsed since collision of the shock with the comer. The 
system is hyperbolic for a flow for which the self-similar velocity is super- 
sonic. For a subsonic self-similar flow, Eqs. (2.1) and (2.2) are elliptic, while 
Eqs. (2.3) and (2.4) remain hyperbolic. The characteristics for the hyperbolic 
modes, viz., the entropy S and the Bernoulli “constant” f 191’ + (e + p)/p, 
follow the streamlines (integral curves) of the self-similar velocity ?, which 
in the weak wave limit can be presumed to vanish at a single point on the 
wedge wall. The entropy is constant along the streamlines of v, in particular 
along the walls. Since the entropies behind the reflection point and behind 
the bow shock differ, the entropy is discontinuous at the V = 0 singular 
point. Assuming the pressure to be continuous, it follows that the density is 
discontinuous there also. 

We regard the mathematical existence theory for the solution of the 
regular reflection to be a special case of the Riemann problems discussed in 
Section 5. By the above discussion, we can eliminate the special features of 
gas dynamics and of the regular reflection geometry to reduce the question 
to a problem in nonlinear partial differential equations. In fact an existence 
proof could be organized along the following lines. 

For most of its available parameter range, the regular reflection is 
transonic. The locus of points inside the bubble for which this self-similar 
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velocity is sonic is an arc of a circle that can be determined. The reflected 
shock is straight where it bounds the supersonic portion of the bubble, and 
the state in this portion can be computed using shock polars. This is related 
to, but more elementary than the material discussed in Section 3. Thus we 
take the bubble cut off by the sonic line rather than the full bubble up to the 
reflection point as the domain under consideration. On the sonic line the full 
solution is known, and within the cut off bubble, the solution is subsonic as 
defined above. The ellipticity is not uniform, however, as the elliptic 
characteristics become real on the sonic line. There are three portions of the 
solution: the location of reflected shock bounding the subsonic region, the 
hyperbolic modes, and the elliptic modes, For the constructive portion of 
the proof, we propose an iteration on these three portions. During each step, 
one portion of the solution will be solved, using the other two as data. The 
estimates on the iteration, which are the key to convergence, are outside the 
scope of the present discussion. 

3. MACH REFLECTION OF SHOCK WAVES 

The intersection point of discontinuity curves will be called a node. In a 
neighborhood of a node the curves are approximated by straight lines 
separating wedge-shaped regions. In analogy with the one-dimensional 
Riemann problem, we define a two-dimensional Riemann problem to be an 
initial value problem for a two-dimensional conservation law having data 
that is either a constant state or a simple rarefaction wave in each of a finite 
number of wedges. Such problems have been studied for scalar conservation 
laws [lo, 6-81, but only special solutions are known for systems of conserva- 
tion laws. As with the solution of a one-dimensional Riemann problem, the 
solution of a two-dimensional Riemann problem will evolve into a more 
complicated configuration containing several elementary waves. Thus in 
front tracking we must solve a subcase of the full Riemann problem: 
determining the velocity and states associated with the one specific elemen- 
tary wave (node) being tracked. We shall report in this section on a method 
for tracking the Mach node, also called the Mach triple point. Its propa- 
gation is a fully two-dimensional problem that cannot be reduced to 
one-dimensional problems by spatial operator splitting. In fact successive 
solutions to one-dimensional problems still play a key role in solution of the 
Mach triple point, but their composition is governed by the geometry of the 
waves entering the triple point and not by an orthogonal set of coordinate 
axes. 

Consider a planar shock moving down a shock tube and incident on a 
wedge with a small angle (see Fig. 3.1). In contrast with the regular 
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FIG. 3.1. Mach reflection of a shock wave by a wedge. A vertical shock I has struck a 27O 
wedge from the left. The point where the incident shock I and reflected shock R meet is 
connected to the wall by a shock called a Mach stem (M). Behind the triple point, where the 
three shocks meet, a contact discontinuity C is formed between the reflected shock and the 
Mach stem. 

reflection case we obtain a Mach reflection. The point where the incident 
(I) and the reflected shock (R) meet (the “Mach triple point”) has lifted off 
the wall and is connected to the wall by a nearly straight shock called the 
Mach stem (M). Behind the Mach triple point a contact discontinuity (C) 
is formed between the reflected shock and the Mach stem. 

The corresponding two-dimensional Riemann problem is shown in Fig. 
3.2. Because of the Galilean covariance of gas dynamics, any Mach triple 
point is related by a Galilean transformation to a configuration in which the 
triple point is stationary, located at the origin, and such that the flow enters 
the triple point along the positive x axis. In this rest frame each state is 
given by the density p, the pressure p, and two components of velocity i, 

FIG. 3.2. The Riemarm problem corresponding to the triple point obtained in a Mach 
reflection. We assume the shocks and contact discontinuities are straight lines (labeled as in 
Fig. 3.1) with constant states 0 through 3 in the wedges. 
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excepting that there is only the x-component of velocity for state 0. The 
angles at which the waves are oriented in this frame can be determined from 
the rest-frame states, so the Mach triple point configuration is completely 
specified once the rest-frame states and the Galilean transformation relating 
the rest frame and the laboratory frame are known. Given the state in one 
sector, the Rankine-Hugoniot conditions determine a one-parameter family 
of states that can occur in a neighboring sector if the two sectors are to be 
separated by a stationary shock or contact discontinuity. These conditions 
may be written as follows [4, pp. 301-302 and 3291: 

Pi - Pj 
- = q; .(q, - q) 

Pj 

for 

(Li) E {(0,1),(1,0),(1,2),(2,1),(0,3),(3,0)}, 

Pi P2 - PJPj 

pi = F2(Pi/Pj) - ’ 

(3.1) 

for 

and 

(Ld E {(LO),(3,0),(2J)}, (3.2) 

4’2 x & = 0, (3.3) 

P2 = P3. (3.4) 

Here p2 = (y - l)/(y + l), where y is the polytropic gas constant. Rela- 
tions (3.1) and (3.2) are the Rankine-Hugoniot conditions for a shock, 
while relations (3.3) and (3.4) express the existence of a contact discontinu- 
ity. 

There are 11 equations for the 15 rest-frame state variables, and thus 4 
frame-independent or intrinsic parameters needed to specify a Mach triple 
point in its rest frame. From the point of view of an experimentalist, the 
initial conditions in a shock tube experiment, viz., three frame independent 
parameters specifying the density and pressure scales and the strength of the 
incident shock, are not sufficient to determine the solution. For this reason it 
could be stated that there is a missing equation for the Mach triple point. 
However, this missing equation is only an absence of an analytic or closed 
form solution to give the triple point trajectory on the basis of Eqs. 
(3.1)-(3.4), and does not indicate an incompleteness of the Cauchy problem 
for the Euler equations. From a mathematical point of view there is no 
missing equation, since the solution from the previous time step provides 
complete Cauchy data. 
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The front tracking problem is to obtain a complete Riemann problem 
solution for given Cauchy data and to select the Mach triple point out of 
that solution. As formulated this problem is too difficult. Hence we proceed 
with Eqs. (3.1)-(3.4). With 15 state variables and 11 equations at the triple 
point, we see that the Mach triple point lies in a four-dimensional manifold 
within the space of states z+,, ui, u2, and ug. In lieu of solving a full 
two-dimensional Riemann problem to select a point in this manifold, 4 of 
the above 15 parameters are selected to specify the triple point. Using 
physical intuition, we selected four parameters from the complete set of 
Cauchy data. Based on numerical evidence, we believe this method does a 
satisfactory job of picking out the Mach triple point from the waves 
emanating from the complete solution of a two-dimensional Riemann 
problem that is close to a Mach triple point. There are two reasons why the 
input to the Mach triple point computation may differ from the exact 
constraints given by Eqs. (3.1)-(3.4) that this elementary wave must satisfy. 
One is numerical roundoff error, and the other is that signals from the 
interior influence the states located exactly at the Mach triple point. In the 
current code, account for this latter aspect is incompletely implemented; 
future improvements should upgrade both the coupling of the triple point to 
the interior scheme as well as the selection of the specific triple point out of 
a general Riemann problem. In the computations presented here the signals 
propagating from the interior into the Mach triple point are small, as one 
can see from the experimental data and setup. In particular the experimen- 
tal Mach configuration is propagating into an undisturbed ambient region. 
See also [3] where the same issues are discussed and have been resolved for 
the propagation of one-dimensional waves (shocks and contacts). 

We select the following four parameters: p,,, p,,, pi, p3. Equations (3.2) 
give p and p in all four sectors at the triple point. Then we solve for the 
speed q. = Il+oll. 

The algorithm for finding q. is as follows: The jump conditions across 
each of the three shocks may be reformulated as [4, p. 3471: 

tan28, = l (Pi/Pj) - ’ 

I 

2 C1 + p2)( M,2 - ‘) -((Pi/P,) - l) 

Y”,2 -( PJPj) + ’ ( P;/Pj) + p2 

for 

(id) E {(o,I),(I,2),(0,3)), (3.5) 

where ej is the angle that the velocity turns (across a shock) when entering 
region j and M = q/c is the Mach number, with c, the speed of sound, 
defined by c* = yp/p. Equations (3.1) may be combined to give 

(3.6) 
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By inserting these relations into (3.5) one obtains expressions for the turning 
angles in terms of the known densities and pressures and the unknown qo. 
Since the flow is parallel to the slip line in states 2 and 3, the following 
relationship holds between the turning angles: 

8, + 9, = 8,. (3.7) 

Solving (3.5) for fij = Oj(q,), j = 1,2,3, and inserting it into (3.7) we obtain 
an equation with four possible branches, depending on the signs of the fij, 
j = 2,3, or in other words, the sign of the square root coming from (3.5). 
Without loss of generality, we assume that the turning angle 0t across the 
incident shock is always positive. These four branches are reduced to two 
branches for the unknown q. by squaring: 

e,2 -(e, + le,1)2 = 0, 8, < 0; (3.8) 

e-j -(e, - 1e31)2 = 0, e3 > 0. (3.9) 

A solution of Eq. (3.8) corresponds to negative 8, or an inverted Mach triple 
point [4, p. 3351, while a solution of (3.9) corresponds to positive e3 or a 
direct Mach triple point. 

Using numerical experiments we found that Eqs. (3.8) and (3.9) have two 
roots. For small ratios of p/pi, the two roots are solutions of Eqs. (3.9) 
while (3.8) has no roots. For larger values of pJpl, the larger root is a 
solution of Eq. (3.9) and the smaller root is a solution of Eq. (3.8). Based on 
numerical evidence, the larger root always corresponds to a positive turning 
angle 8,. However for a positive e,, the node is actually a degenerate case of 
the overtake node, as defined in Section 4, and probably should not be 
regarded as a Mach triple point. In the physical experiments we have 
analyzed [l, 2, 51 the smaller root represents the physical data. On these two 
grounds, we selected the smaller root, which is calculated numerically and 
set equal to qo. 

We define the laboratory frame to be the frame in which the velocity 
ahead of the incident shock is zero. This frame is further fixed by specifying 
an angle, for example the direction of propagation of the triple point. We 
note that the triple point speed in the lab frame equals the rest-frame speed 
q,, just determined. Thus the direction of propagation of the triple point can 
be found geometrically by propagating the incident shock normally in the 
lab frame for a time At (using the Rankine-Hugoniot conditions across the 
incident shock and the incident shock angle) and intersecting it with a circle 
of radius q. At centered at the location of the unpropagated triple point. In 
this way the Galilean transformation from the rest frame to the lab frame is 
specified, completing the determination of the Mach triple point. 



FRONT TRACKING 269 

b C d 

FIG. 3.3. The numerical simulation of a Mach reflection, where the incident shock has 
Mach number 2.03 and the wedge angle is 27O. Inside the bubble formed by the reflected shock 
we show the calculated lines of constant density. The calculations were performed on a 60 by 
40 grid. 
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FIG. 3.4. The density distribution along the wall of the Mach reflection run (solid line) 
shown superimposed on the data found experimentally by Deschambault and Glass (dots). 

We compared the numerical solution for the nonsteady Mach reflection 
with experiments in [5]. In the experiment an incident shock with a Mach 
number 2.03 impinges on a wedge with angle 27O. The calculations were 
initialized just after the Mach configuration has appeared. The reflected 
shock and the Mach stem then enclose a region of about one mesh interval 
in height. After the bubble enclosed a region several mesh intervals in height 
the solution had settled down to its self-similar form as seen in the 
experiment. In Fig. 3.3 the constant density contours are shown. In Fig. 3.4 
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the wall density distribution obtained in our calculation is superimposed on 
the experimental data. However the calculation is preliminary in two 
respects. The present form of the algorithm for the propagation of the Mach 
triple point seems to be stable only when the initial oblateness is chosen 
near the experimentally determined value. Moreover the algorithm for the 
propagation of the point of intersection of the contact discontinuity with the 
wall is discernibly unstable: the fluid velocity at this point is very sensitive 
to the pressure upstream, so the end of the contact tends to curl up. The 
causes of these instabilities have not yet been determined. 

4. THE CLASSIFICATION OF TWO-DIMENSIONAL ELEMENTARY 
WAVES 

In this section we classify the elementary waves for two-dimensional gas 
dynamics. Front tracking employs a normal and a tangential operator 
splitting at jump surfaces and a solution of two-dimensional Riemann 
problems at the point singularities formed by the intersection of jump 
surfaces (“nodes”). An example of such a two-dimensional Riemann prob- 
lem was described in the previous section. In this section we shall show that 
for two-dimensional compressible gas dynamics there are only a small 
number of such nodes. 

We make some general assumptions that idealize the problem, but which 
we believe apply to a generic set of possible point singularities formed by 
the meeting of jump surfaces and centered rarefaction waves. Then we refine 
these general assumptions into a precise mathematical formulation, and 
using the latter, derive a classification scheme for the allowed point singular- 
ities. 

Excluded from this classification scheme are point singularities formed by 
centered waves (implosions) and points in a neighborhood of which the 
solution is not piecewise smooth. 

DEFINITION 4.1. A pressure waue is a shock wave or a centered rarefac- 
tion wave. A waue is either a pressure wave or a contact discontinuity. A 
node is the point singularity formed by the intersection of waves. A 
rarefaction wave centered at a node is called an incoming (forward facing) 
rarefuction waue if its straight line C+ or C- characteristics, in the frame in 
which the node is stationary, point toward the node. A shock wave emanat- 
ing from a node is said to be an incoming shock waue if, in the stationary 
frame, it turns the flow toward the node. Similarly we define an outgoing 
rarefaction waue and an outgoing shock wave. We observe that every 
pressure wave at a node is either incoming or outgoing. 
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Assumption 4.2. We assume our solution u to be an elementary wave, 
which, in general terms, satisfies the following: 

(4.2.1) u is a sta$onary solution of the Euler equations for a polytropic 
gas: u, = 0 and v . f(u) = 0; 

(4.2.2) u has the form 

u = uj for @,-r < B < 0,, j= l,...,n 

where 0, = 0, + 2a and each uj is constant or a centered rarefaction wave; 

(4.2.3) the only jumps allowed in tl are shock waves and contact 
discontinuities; 

(4.2.4) u is generic; 

(4.2.5) u is an entropy increasing solution, with 

u = lim ii, 
v-0 

where ii is a solution of the Navier-Stokes equations with viscosity Y. 

First consider all possible elementary waves containing only contact 
discontinuities. If one of the sectors has a 180° opening, there can be a 
nonzero discontinuity in the tangential velocity across its boundary. All 
other contact discontinuities contain only temperature jumps. It is possible 
for any number of them to occur, and at any set of angles. 

From now on assume that the elementary wave contains at least one 
pressure wave. Assumptions 4.2.4 and 4.2.5 are not written in mathematical 
terms, so we formulate the ideas that they express in a manner that we can 
use in our analysis. 

(4.2.4a) No incoming rarefaction waves are allowed. There can be at 
most two incoming pressure waves, which are necessarily shock waves. If the 
flow on the ahead side (the side with the lower pressure) of an incoming 
shock wave is adjacent to a contact discontinuity that is within 90” of the 
incoming shock, only this one incoming shock wave is allowed. 

(4.2.5a) No sectors of zero velocity bounded by contact discontinuities 
(“embedded wedges”) are allowed. 

Observe that the elementary waves that satisfy 4.2.1 through 4.2.4 but fail 
to satisfy 4.2.5a can be interpreted as solutions of an initial/boundary-value 
problem if the contact discontinuities bounding the embedded wedge are 
replaced with reflecting walls. 

THEOREM 4.3. There exists a unique streamline through the node. 

The proof follows from Propositions 4.6, 4.10, and 4.13 below, in which 
we show (a) the existence of a streamline entering the node, (b) its 
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uniqueness, and (c) the existence and uniqueness of a streamline leaving the 
node. We assume that the node is located at the origin. 

LEMMA 4.4. On each circle centered at the node there exists an open set of 
points x’ at which the velocity qpoints inward. 

Proof. Since the flow is constant in sectors separated by waves, the flow 
may not be tangential to the circle everywhere. By conservation of mass, 
velocities pointing out of the circle at some points must be balanced by 
velocities elsewhere that point inward. 

LEMMA 4.5. Suppose a circle centered at the origin is rotated so that an 
inward-pointing velocity vector 4’ from Lemma 4.4 is parallel to the x axis. 
Then the fluid particles passing through the point x’ of Lemma 4.4 either have 
passed through an incoming shock (case a) or no wave at all (case b). 

Proof Consider the open sector S that is the smaller of the two sectors 
bounded by the ray through x’ and the two rays forming the x axis. 
Consider the wave w  in S closest to x’. The wave w  may not be a rarefaction 
wave for the following reason: the C+ or C- characteristics of a rarefaction 
wave in S would form an angle less than 90” with the velocity vector q, so 
the rarefaction wave w  would be forward facing, which contradicts Assump- 
tion 4.2.4a. Neither may w  be a contact discontinuity because the flow 
would not be parallel to it. If w  is a shock, it must be an incoming shock 
since it is oriented at an angle less than 90” with q. 

PROPOSITION 4.6. There exists a streamline entering the node. 

Proof: Consider a circle centered at the node together with the velocity 
vectors based on this circle. Since our solutions are constant along rays, we 
need only show that there is a vector on this circle that points toward the 
origin. By Lemma 4.4 there exists a vector pointing into the circle. By 
Lemma 4.5 there exists either a streamline entering the node (the x axis in 
case b) or there exists a neighboring sector closer to the x axis with another 
vector pointing into the circle (case a). In the latter case we use this new 
vector pointing inward to repeat the above argument. Since there are only 
finitely many sectors, we can find a vector pointing to the origin. 

LEMMA 4.7. Let S be the smaller of the two open sectors between two 
streamlines s, and s2 entering the node. There must be at least one wave in S. 

Proof. Suppose there were no waves in S. By Assumption 4.2.2, u is 
constant between waves, so only a constant state with zero velocity would 
be possible in S. This is ruled out by Assumption 4.2.5a. Thus there must be 
at least one wave in S. 
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LEMMA 4.8. There cannot be a rarefaction wave in any sector S for which 
the velocity points toward the node. 

Prooj Suppose there were a rarefaction wave w  in such a sector S. Since 
the velocity adjacent to w  points into the circle and since the angle between 
a velocity vector and its C+ and C- characteristics is less than 90”, the 
straight line C+ or C- characteristics of w  would point toward to origin. 
Then w  would be a forward facing rarefaction, which is ruled out by 
assumption. 

LEMMA 4.9. There can be no rarefaction wave or contact within an open 
90 o sector from a streamline s entering a node. The only possible waves in this 
region are incoming shocks. 

Proof. Up to the first wave wi, from s and within 90” from s, the 
velocity 4’ must be parallel to s and point into the circle. Hence by Lemma 
4.8, w1 may not be a rarefaction wave. Neither can it be a contact 
discontinuity. It is therefore an incoming shock wave. Since wi must turn 
the flow toward the node, the velocity vectors 4’ past wl, within 90” from s 
and up to the next wave w2, also point into the circle and toward s. 
Repeating the above argument, w2 must be an incoming shock wave. Thus 
all of the finitely many waves in an open 90” sector starting at s are 
incoming shock waves. 

PROPOSITION 4.10. The streamline entering the node is unique. 

Proof. Suppose there were two streamlines si and s2 entering the node. 
Consider the smaller of the two open sectors S bounded by si and sz. By 
Lemma 4.7 there must be at least one wave w1 in S. Since w1 is within 90” 
from either s1 or s2, wi is an incoming shock wave by Lemma 4.9. It is not 
possible to have constant states with nonzero velocities between si and w1 
and between wi and s2 because the flow directions would be inconsistent 
along wi. Thus a second wave w, in S is needed, which by Lemma 4.9 must 
be an incoming shock. Again such a two wave configuration in S is ruled 
out, which forces a third incoming shock wave. By Assumption 4.2.4a this is 
ruled out. 

We now rotate our coordinates so that the incoming streamline is the 
positive x axis. 

DEFINITION 4.11. We divide the flow through the two-dimensional ele- 
mentary wave into two components using the unique streamline that enters 
the node, placed on the positive x axis as follows. Let S+ be the open set 
formed by the streamlines starting from y > 0, x = + cc and let S- be 
formed from the streamlines starting from y < 0, x = + co. 

LEMMA 4.12. The closure of S+U S- equals the whole plane. 
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Proof. Suppose this were false. The boundaries of S’ and S- are 
streamlines that are half lines directed into and out of the origin because the 
solution is constant along rays. Since we know by Propositions 4.6 and 4.10 
that there exists a unique streamline entering the node, the two boundaries 
of S- and S+ ahead of the node coincide with the positive x axis. Behind 
the node they bound an open sector R. Place a circle C around the node. 
Since the velocity is parallel to the boundaries of S+ and S- there is no 
mass flux through the sides of R. Hence the total flux across R n C equals 
zero. It is not possible that all states within R have zero velocity because of 
Assumption 4.2.5a. Thus suppose some state within R has nonzero velocity. 
Since the total flux across R n C is zero, the velocity must enter the circle C 
at some point in R. By Lemma 4.5 and the proof of Proposition 4.6, this 
implies that there is a streamline in R that enters the node. This is not 
possible by Proposition 4.10. Consequently R is empty. 

PROPOSITION 4.13. The streamline leaving the node is unique. 

Proof. By Lemma 4.12 the streamline entering and leaving the node is 
contained in the boundary between S+ or S- and thus exists and is unique. 

LEMMA 4.14. It is not possible for a single streamline to pass through two 
consecutive outgoing pressure waves. 

Proof. This is based on the following facts: in the coordinates normal 
and tangential to a stationary shock, the normal component of the velocity 
is greater than the sound speed in front of a shock and less than the sound 
speed behind. In the coordinates normal and tangential to the straight line 
Ct or C- characteristics of a stationary rarefaction wave, the normal 
component of the velocity is equal to the sound speed. We now rule out two 
successive shocks; the other cases are similar. Suppose a streamline passes 
through two outgoing shocks. Then behind the first shock the normal 
component of velocity with respect to this first shock is less than the sound 
speed in that sector. Now consider the same velocity vector with respect to 
the second shock (see Fig. 4.1). Since both shocks are outgoing and the flow 
passes through them consecutively, the normal component with respect to 
the second shock is smaller than that component with respect to the first 
shock. Hence the normal component of velocity is less than the sound speed 
in front of the second shock, contradicting the above mentioned fact of gas 
dynamics. 

COROLLARY 4.15. There is at most one rarefaction wave. 

Proof. Assume that there are two rarefaction waves. By Assumption 
4.2.4a a rarefaction wave may not be incoming and thus by the Lemma 4.14 
there is at most one rarefaction wave in S+ and at most one in S. A 
rarefaction turns the flow counterclockwise if it lies in S+ and clockwise if it 
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FIG. 4.1. A streamline passing consecutively through two outgoing shocks s1 and s2. Both 
shocks turn the flow away from the intersection point of S, and s2. This is an impossible 
configuration, as shown in Lemma 4.14. Here 4’ is the velocity vector in the sector between S, 
and s2 and ii, is the normal component of i with respect to s,, i = 1,2. 

lies in S-. Since the flow is already turned in these directions by incoming 
shock waves, if there are any, and since there are no other pressure waves 
that might turn the flow in the reverse direction, this flow configuration is 
not possible. 

COROLLARY 4.16. There must be at least one incoming shock wave in the 
region x > 0. 

Prooj Suppose there are no incoming shock waves in x > 0. Then there 
are no pressure waves at all in this region. The region x < 0 is divided into 
two sectors by the outgoing streamline. In each of these sectors there may be 
at most one pressure wave. Thus we have the following possibilities: 

(a) Two shocks, Fig. 4.2. This configuration forces us to introduce an 
embedded wedge, which is ruled out by hypothesis. 

(b) One shock, one rarefaction, Fig. 4.3. Here the pressure increases 
through the shock but decreases through the rarefaction wave, leaving a 
pressure jump that cannot be maintained across a contact discontinuity 
along the outgoing streamline. 

(c) A single rarefaction wave or shock is clearly not possible. 

To recapitulate, we have determined that an elementary wave is restricted 
by the following. There is a unique streamline through the node. There is 
either one or two incoming shock waves. There is no more than one 
outgoing pressure wave on each side of the streamline leaving the node, only 
one of which may be a rarefaction. The streamline is a contact discontinuity 
if there are two outgoing pressure waves. This then leaves us with only a 
small number of possible elementary waves, which we shall determine 
presently. 



276 GLIMM ET AL. 

FIG. 4.2. Excluded. A configuration with only two shocks leaving the intersection point is 
impossible. The smaller of the two sectors between them contains a wedge of zero velocity 
bounded by contact discontinuities, which is ruled out by Assumption 4.2.5a. 

THEOREM 4.17. Under Assumptions 4.2 an elementaly wave containing at 
least one pressure wave is one of the following types, as specijed in detail 
below: cross, overtake, Mach, diffraction, or transmission. 

Proof. Case 1. (Diffraction or transmission.) Suppose the streamline 
entering the node is a contact discontinuity. Then by Assumption 4.2.4a 
there may be at most one entering shock; all the other waves must be 
outgoing. By Corollary 4.16 there must be exactly one incoming shock. We 
say that this incoming shock impinges or is incident on the contact discon- 
tinuity. Any additional waves lie only in the region that allows for outgoing 
shocks or rarefaction waves. Consider the shaded region in Fig. 4.4. This 
shaded region is divided into two sectors (“outgoing sectors”) by the 

FIG. 4.3. Excluded. It is not possible to have only one shock and one rarefaction wave 
leaving their point of intersection because the pressures would not match. 
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FIG. 4.4. An incident shock I impinging on a contact discontinuity C. Two particle paths 
P are shown. Outgoing shock and rarefaction waves are allowed only in the shaded region. 

outgoing streamline. By Lemma 4.16 there may be at most one pressure 
wave in each of the outgoing sectors. This then allows for the following 
possible combination of waves in the outgoing sectors: 

(a) Two shocks, Fig. 4.5.a. This is a possible solution. It is the 
diffraction of a shock impinging on a contact discontinuity, causing a 
reflected and a transmitted shock. We show in Fig. 4.5.b how the solution 
may be constructed by drawing the appropriate shock polars in the 9, p 
plane. 

(b) One shock, one rarefaction wave. The configuration in Fig. 4.6.a is 
an elementary wave. It is as in Fig. 4.5.a, but with a rarefaction wave in 
place of a reflected shock. The solution is constructed using shock polars, as 
indicated in Fig. 4.6.b. On the other hand, the configuration in Fig. 4.7 is 
not possible since the pressure increases across the two shocks but decreases 
across the rarefaction wave, so that the pressures cannot match. 

(c) A single shock. A shock incident on a contact discontinuity causing 
a reflected shock with no transmitted wave (see Fig. 4.8) is not allowed since 
the pressures do not match. A shock impinging on a contact discontinuity 
and causing a transmitted shock but no reflected wave (see Fig. 4.9.a) is a 
possible elementary wave; see the corresponding shock polar in Fig. 4.9.b. 

(d) A single rarefaction wave. A shock incident on a contact discon- 
tinuity causing a reflected rarefaction wave but no transmitted wave, as in 
Fig. 4.10, is not allowed. Since a rarefaction wave turns the flow further in 
the same direction as the shock does, one would obtain a sector smaller than 
180” of zero velocity that would be bounded by contact discontinuities. This 
is ruled out by Assumption 4.2.5a. A shock incident on a contact discon- 
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FIG. 4.5.a. Diffraction. A shock I can diffract through a contact discontinuity C to cause a 
reflected shock R and a transmitted shock 7’. 

FIG. 4.5.b. The shock polars corresponding to Fig. 4.5.a. The Mach number of state 0 is 2.7 
and that of state 0’ is 3. The shock strength of I is 3. 

tinuity causing a transmitted rarefaction wave but no reflected wave (see 
Fig. 4.11) is not possible since the pressures would not match behind the 
waves. 

Case 2. (Mach node.) Suppose the incoming streamline is not a contact 
discontinuity. Then by Corollary 4.16 there must be at least one incoming 
shock and by Assumption 4.2.4a there may be at most two. Suppose there is 
only one incoming shock. Then there may be only one pressure wave in each 
of the two outgoing sectors, which allows for the following possibilities. 
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FIG. 4.6.a. Diffraction. The diffraction of a shock I by a contact discontinuity C can cause 
a reflected rarefaction wave R and a transmitted shock T. 
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FIG. 4.6.b. The shock polars corresponding to Fig. 4.6.a. The math number of state 0 is 3 
and that of state 0’ is 2. The image of a r-characteristic in this p, tJ plane is drawn, connecting 
the states p = 3 on one shock polar to p = 2.8 on the other. 

(a) Two shocks. A direct Mach reflection, where the incident shock 
breaks into two shocks, the reflected shock and the Mach stem, is a possible 
elementary wave; see Fig. 4.12.a. The solution is found using shock polars 
as in Fig. 4.12.b. 

The parameter space here, consisting of the state at x = + cc and the 
shock strength of the incident shock, is on the boundary of the parameter 
space of the case to be considered in Fig. 4.18 where two incident shocks 
collide. Thus setting the strength of the second incident shock to zero gives 
this elementary wave. 
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FIG. 4.7. Excluded. A shock incident on a contact discontinuity causing a reflected shock 
and a transmitted rarefaction wave is not possible since the pressures would not match. 

(b) One shock, one rarefaction. The configuration in Fig. 4.13, where 
an incoming shock breaks up into a reflected rarefaction wave and a “Mach 
stem,” is not possible, as can be seen by setting the shock polar 0 equal to 
the shock polar 0’ in Fig. 4.6.b. It is not possible to connect two points in 
the supersonic region on the right branch of a shock polar by the image of a 
I-characteristic that decreases pressure and increases the turning angle. The 
configuration shown in Fig. 4.14, where an incoming shock breaks up into a 
reflected shock and a rarefaction wave, is not possible, for the pressures 
cannot match behind the node. 

(c) A single outgoing shock or rarefaction is not possible. 

Case 3. Now consider the case of two incoming shocks. There are two 
possibilities: 

Case 3A. (Overtake.) The flow passes through both incoming shocks 
consecutively. We have the following possible configurations in the outgoing 
sectors: 

(a) Two shocks. It is possible to have two incoming shocks overtake 
each other and give rise to two outgoing shocks separated by a contact 

\\\i//- ------- 
/M’ 
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FIG. 4.8. Excluded. A shock incident on a contact discontinuity causing a reflected shock 
but no transmitted wave is ruled out since the pressures would not match. 
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FIG. 4.9.a. Transmission. A shock I incident on a contact discontinuity C causing a 
transmitted shock T but no reflected wave is possible. 

FIG. 4.9.b. The shock polars corresponding to Fig. 4.9.a. The Mach number of state 0 is 3 
and that of state 0’ is 2.7. 

discontinuity (see Fig. 4.15.a). The solution may be constructed using shock 
polars as in Fig. 4.15.b. The special case where one of the two incoming 
shocks has zero strength coincides with the Mach node (case 2a). Also the 
special case where the reflected shock behind the two incoming waves has 
zero strength is possible; it is similar to a Mach node, except that the 
reflected shock is replaced by a second incident shock. 

(b) One shock, one reflected rarefaction wave. One shock may overtake 
the other, resulting in a reflected rarefaction and a transmitted shock (see 
Fig. 4.16.a). This possibility is a solution. The solution is found using shock 
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w ____--_--- /’ 
FIG. 4.10. Excluded. A shock incident on a contact discontinuity causing only a reflected 

rarefaction wave and no transmitted wave is not possible. The rarefaction wave would turn the 
flow in the same direction as the shock does, thus causing a sector smaller than 180’ of zero 
velocity bounded by contact discontinuities. This is ruled out by Assumption 4.2.5a. 

polars as in Fig. 4.16.b. Note that for the same parameters of the two 
incident shocks, both this case and the previous case are possible. The 
configuration of Fig. 4.17, in which the flow in S+ passes through three 
shocks, and the flow in S- passes only through a simple rarefaction wave, is 
not possible, since the pressures do not match. 

(c) A single outgoing shock or rarefaction wave is not possible. 

Case 3B. (Cross or Mach node.) It is also possible for the two incoming 
shocks to be on opposite sides of the incoming streamline. Then the possible 
nodes are: 

(a) Two incident shocks colliding to form two reflected shocks sep- 
arated by a streamline (see Fig. 4.18.a) is a possible elementary wave. The 
solution is found using shock polars as in Fig. 4.18.b. The special case 
of one incident shock having zero strength gives the direct Mach node of 
case 2a. 

FIG. 4.11. Excluded. A shock incident on a contact discontinuity causing a transmitted 
rarefaction wave but no reflected wave is not possible since the pressures would not match. 
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FIG. 4.12.a. Mach node. Direct Mach reflection is shown, with the incident shock I 
breaking into a reflected shock R and a Mach stem M separated by a contact discontinuity C. 
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FIG. 4.12.b. The shock polars corresponding to Fig. 4.12.a. The Mach number of state 0 is 
2.2 and the shock strength of I is 3.2. 

(b) We did not determine theoretically whether it is possible for two 
shocks to cross and to form a reflected rarefaction wave together with a 
reflected shock, as shown in Fig. 4.19, but on the basis of numerical 
evidence it appears that this node is not possible. 

(c) One rarefaction wave in the outgoing sector is not possible. A single 
shock wave in the outgoing sector defines the inverted Mach node; this 
interaction is a limit of case a above, where the shock between regions 2 and 
3 in Fig. 4.18.a reduces to zero. 
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FIG. 4.13. Excluded. It is not possible to have a rarefaction wave in place of the reflected 
shock in the Mach configuration of Fig. 4.12.a. Behind the two outgoing waves the flow would 
be inconsistent. 

FIG. 4.14. Excluded. It is not possible to substitute a rarefaction wave for the Mach stem in 
Fig. 4.12.a. The pressures would not match. 

5. SOME PROBLEMS AND CONJECTURES CONCERNING RIEMANN 
PROBLEMS 

In this section we drop the restriction to two dimensions and to gas 
dynamics, but we retain the terminology of Section 4. Recall that in steady 
supersonic two-dimensional gas dynamics, where the direction of the flow 
defines a timelike direction, the equations can be reduced to the form of a 
one-dimensional time-dependent system of conservation laws. Then the 
two-dimensional elementary waves viewed in the stationary frame are 
Riemann problems for a distinct but related one-dimensional system. Simi- 
larly Riemann problem solutions in n - 1 space dimensions are qualita- 
tively similar to elementary waves in n dimensions. 

We list some problems of general interest in this area. 

1. The possible n-dimensional elementary waves for a system of con- 
servation laws could be classified. The elementary waves in two-dimensional 
polytropic gas dynamics were classified in the previous section. 
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FIG. 4.15.a. Overtake. It is possible to have one incoming shock J, overtake another I, to 
cause a reflected shock R and a transmitted shock T with a contact discontinuity C between 
them. 

FIG. 4.15.b. The shock polars corresponding to Fig. 4.15.a. The Mach number of state 0 is 
7, the shock strength of the incident shock J, is 9.5, and the shock strength of I, is 3.9. 

2. Let the incoming wave operator be the solution operator bringing 
two or more elementary waves to a single point and thereby defining a 
Riemann problem. The incoming wave operator also acts on single elemen- 
tary waves by mapping to the configuration at a time of bifurcation, or 
dynamic instability; this also defines a Riemann problem. The range of this 
operator is limited to the possible mergers or bifurcations of the elementary 
waves found in the classification above. Can this range be categorized? 

3. The outgoing wave operator gives the possible elementary waves 
that may occur in the solution of the Riemann problems in the range of the 
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FIG. 4.16.a. Overtake, It is possible for one incoming shock I, to overtake another I, to 
cause a reflected rarefaction wave and a transmitted shock wave separated by a contact 
discontinuity. 

b ---_ 
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FIG. 4.16.b. The shock polars corresponding to Fig. 4.16.a. The Mach number of state 0 is 
7, the shock strength of the incident shock I, is 9.5, and the shock strength of I, is 3.9. 

incoming wave operator. We pose the question of existence of solutions for 
this restricted set of data. Are solutions piecewise smooth, so that there is a 
finite number of outgoing elementary waves? The answer depends on the 
order of the system, the dimension of space, and the convexity or number of 
inflection points in the flux function, as examples [7] indicate and analogies 
[9] suggest. 
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FIG. 4.17. Excluded. It is impossible to have one-half of the flow cross only shocks and the 
other half cross only a rarefaction wave because the pressures would not match. 

4. A logical scattering matrix S is a map from sets of incoming wave 
types to sets of outgoing wave types as labeled by the solutions to problem 
1. It decides which types of incoming waves produce which types of 
outgoing waves. In the language of quantum mechanics, the problem here is 
to classify the possible S matrix graphs. Let us consider this problem from 
the point of view of two-dimensional gas dynamics. We restrict attention to 
Riemann data contained in the range of the incoming wave operator as 
defined in 2 above. Under such restriction, the waves will be said to be in 
incoming order. The allowed nodes of Section 4 provide interchange of 
wave order to an outgoing order. In general, however, the interchange of 
wave order produces three outgoing waves from two incoming waves and 
need not reduce the total number of wave pairs that fail to be in outgoing 
order. On this basis, we expect that even simple incoming configurations 
could produce complicated outgoing wave interactions. It is possible that 
the complication (e.g., the number of nodes), while not bounded a priori, is 
still finite. In fact the wave interactions typically decrease the Mach number 
of the flow, and may give rise to a subsonic region, inside of which no 
pressure waves can occur. Related to this possibility is the occurrence of 
nodes with only two outgoing waves. Such nodes allow the interchange 
of wave order with a reduction in the total number of pairs that are out of 
order. 

5. Uniqueness is an open problem. Well known problems of non- 
uniqueness are not understood on a fundamental level. For example, 
consider an incident shock hitting a wedge, resulting in either a regular 
reflection or Mach reflection. There are regions where a shock polar analysis 
in a neighborhood of the regular reflection or Mach triple point indicates 
that either solution might be possible. 
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FIG. 4.18.a. Cross. Two shocks can collide and cause two reflected shocks separated by a 
contact discontinuity. 

I t 
.5 0 

FIG. 4.18.b. The shock polars corresponding to Fig. 4.18.a. The Mach number of state 0 is 
2.7 and the shock strengths of the incident shocks are 1.6 and 1.9. 

6. Extended or nonlocal Riemann problems may be considered, where 
the restriction of constancy in sectors between the waves is replaced by 
linear or higher order data. This has been implemented for one dimension in 
the normal propagation of the front [3]. 

7. Lower order terms in the equations and new waves in the Riemann 
solution may be caused by geometrical effects and by external sources. 

8. The geometry in the large defined on the state space by the flux 
function needs to be understood. For gas dynamics the qualitative behavior 
of solutions may be studied by considering the acoustic waves of the 
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FIG. 4.19. Undecided. Based on numerical evidence it appears to be impossible to sub- 
stitute a rarefaction wave for the reflected shock in Fig. 4.18.a. 

linearized problem. But this is not the case for all hyperbolic conservation 
laws, and new families of waves may be possible in the large. The topology 
defined by the critical points of the flux function 7 in (1.1) is important 
here. A critical point is a point in state space where the gradient A = 01 
has coinciding eigenvalues. At the critical points Eq. (1.1) is no longer 
strictly hyperbolic; moreover A can fail to have a complete set of eigenvec- 
tors. Such a loss of strict hyperbolicity is not pathological in applications, 
and the mathematical consequences of this fact have not been developed. 
An extension of this phenomena are the problems for which the equations 
in different regions of state space change type. The applications are of 
general interest: oil reservoir simulation, transonic flow in gas dynamics, 
chemically reacting flows, and nonlinear elasticity. 
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