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Abstract. We present an implementation of discontinuous Galerkin method for 2-D
Euler equations on Cartesian meshes using tensor product Lagrange polynomials based
on Gauss nodes. The scheme is stabilized by a version of the slope limiter which is
adapted for tensor product basis functions together with a positivity preserving limiter.
We also incorporate and test shock indicators to determine which cells need limiting.
Several numerical results are presented to demonstrate that the proposed approach is
capable of computing complex discontinuous flows in a stable and accurate fashion.
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1 Introduction

A high order implementation of the Runge-Kutta discontinuousGalerkin method
(RKDG) applied to the compressible hydrodynamical model (Euler equations of
gas dynamics) is presented. It is well known that systems of conservation laws
admit non-smooth solutions. Therefore high order approximations may gener-
ate unphysical oscillations around discontinuities. A way to control these os-
cillations needs to be devised without affecting the accuracy in smooth regions.
A common technique used for this purpose consists in applying a post-processing
slope limiter [1]. Another approach is to identify cells in which shocks may be
present [2, 3] and to apply the slope limiter only in those cells, thus also improving
the efficiency of the scheme. For stability reasons, it is also necessary to ensure
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the positivity of variables like density and pressure during the simulation. This
can be achieved through the implementation of a positivitypreserving limiter [4].
In this work we develop a RKDG code using tensor product Lagrange polynomi-
als and modify the usual slope limiter for this case. We also implement and test
shock indicators and positivity limiters for tensor product polynomials. Numer-
ical simulations show that the schemes selected have a satisfactory performance
when implemented over different two-dimensional test cases, and the shock in-
dicator is able to reliably identify shock regions thus leading to a stable scheme.

2 Compressible Euler equations

Consider the Euler equations as the two dimensional compressible hydro-dy-
namical model of conservation laws given by

(ρ)t + ∇x · (ρu) = 0

(ρu)t + ∇x · (ρu ⊗ u + P) = 0

(E)t + ∇x · ((E + P) u) = 0

(1)

where a closure condition between pressure and energy is given by ideal gas
model as E = P

γ−1 + 1
2ρ|u|2. For the state vector w = [ρ, ρu1, ρu2, E]T , the

admissible set of solutionsUad is given by

Uad = {w ∈ R4 : ρ(w) > 0, P(w) > 0} (2)

3 Discontinuous Galerkin discretization

For the finite element discretization space Qk a tensorial product polynomial
basis will be used. In this case the number of terms of the polynomial basis is
given by dim(Qk) = (k + 1)d , where k is the order of the one dimensional poly-
nomial and d is the dimension of the space domain. Then any two dimensional
polynomial p ∈ Qk is of the form

p(x , y) =
∑

0≤i, j≤k

pi j x
i y j . (3)

Calling τ� as a single cell in the domain, a disjoint domain decomposition is
defined as � = ⋃N

�=1 τ� with N the total number of cells. Then the test function
space can be defined as

V k
h = {v ∈ L p(�) : v|τ�

∈ Qk(τ�), ∀τ�}, (4)
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where Qk(τ�) is the space of tensor product Lagrange polynomials of degree k
defined using Gauss points. The discontinuous Galerkin semi-discrete scheme
for the Euler equations (1) in each cell τ� is given by∫

τ�

∂twhvdV −
∫

τ�

f (wh) · ∇xvdV +
∫

∂τ�

f̂
(
w−

h , w+
h

) · �nvd S = 0, ∀v ∈ V k
h . (5)

Since the scheme has to be in conservation form, the boundary terms resulting
from the integration by parts need to be computed using a consistent numerical
flux f̂, which can be calculated from an exact or approximate solution of a gener-
alized Riemann problem. Additionally the approximated solution wh is written
as a linear combination of functions φ j (x , y) from the spaceV k

h

wh =
(k+1)2∑

j=1

w̃ j (t)φ j (x , y)

where w̃ j (t) are time dependent coefficients. For the full discretization of the
problem a time integration strategy has to be selected, thus an explicit strong
stability preserving (SSP) Runge-Kutta will be used.

4 Limiting procedures

A limiter procedure is implemented in this paper in order to avoid unphysical
oscillations and maintain higher order accuracy in smooth regions. It can be
seen as a modification of the slope limiter introduced by Cockburn and Shu [1],
which eliminates the oscillations by reducing the order of the polynomial up
to a linear function. When Pk polynomial basis functions are used, the linear
approximation is calculated just by eliminating the higher order terms of the
polynomial. However, for a tensorial product polynomial basis one must follow
a different procedure.

The main difference of the limiting procedure proposed in this work is that
the average gradients of the states, calculated as

∇wn = 1

|τ�|
∫

τ�

∇wndV

are compared component wise with the averaged values of the state variables wn

in each element. The modified average gradient

∇w(m)
n = [

∂xw
(m)
n , ∂xw

(m)
n

]T

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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is computed as

∂xw
(m)
n = m̃

(
∂xwn, β


−wn


xn
, β


+wn


xn

)

∂yw
(m)
n = m̃

(
∂ywn, β


−wn


yn
, β


+wn


yn

)

where β ∈ [1, 2], and

m̃(a1, ..., ad) =
{

a1, if |a1| ≤ Mh2

minmod(a1, ..., ad), otherwise

is the modified minmod function introduced by Cockburn and Shu [1]. If
∂xw

(m)
n �= ∂xwn or ∂yw

(m)
n �= ∂ywn , then the solution wh must be reduced to

the following linear polynomial

��h(wh)(x , y) = wn + (x − xn)∂xw
(m)
n + (y − yn)∂yw

(m)
n (6)

4.1 Characteristic limiter

The limiter can be applied on characteristic variables which gives more accurate
solutions. Compute the right eigenvector matrices Rx ,Ry and left eigenvector
matrices Lx ,Ly of the corresponding flux Jacobian based on the cell average
value w̄n. Define c2 = Lx∂xwn and c3 = Ly∂ywn. Compute limited quantities
by applying the modified minmod function component-wise

c̃2 = m̃

(
c2, βLx


−wn


xn
, βLx


+wn


xn

)
,

c̃3 = m̃

(
c3, βLy


−wn


yn
, βLy


+wn


yn

)

If c̃2 = c2 and c̃3 = c3 then ��h(wh) = wh or else the solution is reduced to a
linear polynomial as in (6) where ∂xw

(m)
n = Rx c̃2 and ∂yw

(m)
n = Ry c̃3. Figure 1

shows the solution of a 1-D shock tube problem using limiter on conserved
and characteristic variables. We notice that characteristic limiter gives better
resolution of discontinuities and also avoids unphysical oscillations.

4.2 Shock indicator

Krivodonova et al. [2, 3] introduced a way to detect trouble cells where disconti-
nuities may occur. It is known as the KXRCF indicator and is based on the fact

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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(a) (b)

Figure 1: Sod’s problem, k = 1, 100 cells. (a) Limiting characteristic variables,
(b) limiting conserved variables.

Figure 2: Density of the one-dimensional Sedov blast test problem (left) with
shock indicator (right).

that the DG solution shows strong super convergence at the outflow boundary of
each element for smooth solutions. To construct such indicator, the cell bound-
aries are divided into inflow (∂τ−

� ) and outflow (∂τ+
� ) portions. Then, the cell τ�

is believe to contain a discontinuity if∣∣∣∫∂τ−
�

(
w−

h − w+
h

)
dS

∣∣∣
h

k+1
2

∣∣∂τ−
�

∣∣ ‖wh‖τ�

> 1,

where wh is a component of the DGM solutionwh . Common choices are density,
energy and entropy. Some experiments where carried out in one-dimensional
problems in order to test the performance of the shock indicator and then verify
whether it can be applicable to multi-dimensional problems. Figure 2 shows the
case of the Sedov blast wave in one-dimension, and how the shock indicator
follows the shock front along the time.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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4.3 Positivity preserving limiter

We are interested in physically relevant solution, meaning solution that belongs
to the admissible set Uε

ad, where the values of the pressure and density are
non negative. Then the numerical solution wh(x) is to be modified such that
wh(q) ∈ Uε

ad, ∀q ∈ Q, where Q is a set of quadrature nodes inside the cell and

Uε
ad = {w ∈ R4 : ρ(w) ≥ ε, P (w) ≥ ε} .

Therefore the positivity preserving limiting procedure by Zhang and Shu [4]
is implemented. In order to do so, one has to ensure that the mean value of the
density has to be non negative. This is done by setting the CFL condition to a
suitable value. Then, ρh → ρ̂h has to be modified such that ρ̂h(q) ≥ ε ∀q ∈ Q,
by using the limiter

ρ̂h = θ1(ρh − ρn) + ρn, θ1 = min

{ |ρn − ε|
|ρn − ρm| , 1

}
, ρm = min

q∈Q
ρh(q)

which basically shrinks the solution around the mean value, ensuring that every
value of the density at the quadrature points is over the ε−tolerance. After en-
suring the positivity of the density, it is necessary to control the values of the
pressure. Denote ŵh , the new state vector such that the density is already posi-
tive. If P(ŵh(q)) < ε,∀q ∈ Q, a state between wn and ŵh(q) has to be found
such that

P((1 − tq)wn + tqŵh(q)) = ε,

where tq is the unique solution tq ∈ (0, 1) of a quadratic equation. Then the
modified solution is given by

w̃h = θ2(ŵh(x) − wn) + wn, θ2 = min
q

tq .

5 Numerical examples

An explicit DG scheme for the Euler system of conservation laws together
with the schemes described above was implemented in C++ using the deal.II
libraries [5]. It works on a Cartesian grid and uses a third order of accuracy
strong stability preserving (SSP) Runge-Kutta scheme.

5.1 Double Mach reflection

This test problem was presented by Woodward and Colella [6] and consists of
a Mach 10 planar shock wave in air (γ = 1, 4) which meets a reflecting wall

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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with an angle of 60◦. This test case was simulated both without shock indicator
(Fig. 3) and also with using the KXRCF shock indicator (Fig. 4). For this
indicator we use the density and the energy as measure variables. In Figure 5
a zoom around the double Mach reflection is shown for three cases (no indica-
tor and using an indicator) together with one of the results from [1]. The shock
indicator is able to identify shock regions and apply the limiter only in those
regions. The solutions using indicator are of comparable accuracy as in the case
of applying slope limiter everywhere, and also compare favorably with the ref-
erence solution.

Figure 3: Double Mach reflection test case, polynomial order k = 2, 
x =

y = 1

360 , without shock indicator.

Figure 4: Double Mach reflection test case, polynomial order k = 2, 
x =

y = 1

360 , with density (left) and energy (right) as shock indicator.

It should be noted that the numerical results presented in this paper have less
resolution than the reference case (showed in the lower right corner of Fig. 5).
Nevertheless, the results are comparable.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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KXRCF Density indicator KXRCF Energy indicator

Without indicator Cockburn and Shu’s paper

Figure 5: Double Mach reflection zoomed comparison, polynomial order k = 2,

x = 1

360 . For the Shu’s case the grid size is 
x = 1
480 .

5.2 Forward facing step

It is a classical test case described in [1]. A right moving Mach 3 fluid enters a
wind tunnel, which in turn has a reduction of its height due to a step opposing
the direction of the fluid. Figures 6 and 7 show the results after 4 seconds of
simulation, without shock indicator, and using density and energy as measure
variables for the KXRCF shock indicator respectively. Finally, Figure 8 shows
a comparison of the level curves from the three cases cited before together with
the results shown in [1]. Again we notice that indicator is able to identify shock
regions reliably. Moreover it does not identify the slip line which means that
limiter is not applied there, leading to good resolution of contact discontinuity.

In this test case, as in the previous one, the numerical results have a lower
resolution than the reference solution (showed on the lower right corner of
Fig. 8), however they are competitive results and even present a better behavior
at the bottom reflection point of the shock wave.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Figure 6: Forward facing step test case, polynomial order k = 2, 
x =

y = 1

100 , without shock indicator.

Figure 7: Forward facing step test case, polynomial order k = 2, 
x =

y = 1

100 , with density (left) and energy (right) as shock indicator.

Figure 8: Forward facing step test case comparison, polynomial order k = 2,

x = 1

100 . For the result present in Shu’s paper the grid size is 
x = 1
160 .

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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5.3 Sedov blast wave

This test case is described in [4]. The initial density is ρ = 1, velocity is zero
and the total energy is equal to 10−12 everywhere but in the center of the domain,
where it is the constant 0.979264

|τ�| . γ = 1.4. The energy concentrated generates
a shock wave that propagates radially with time. Because of its nearly-vacuum
conditions, it is used to test whether the positivity of variables is preserved with
the scheme. Figures 9 and 10 show the profiles of the density and the energy
after 1 second of simulation,without shock indicator and using energy as measure
variable for the KXRCF shock indicator respectively. When the density is used
as measured variable in the shock indicator, due to its constant initial value, the
code crashes after one time step failing to detect the shock. The energy which
involves all variables is a better choice in this case.

Figure 9: Sedov blast wave 2D test case, polynomial order k = 2, 
x =

y = 1

160 , without shock indicator.

Figure 10: Sedov blast wave 2D test case, polynomial order k = 2, 
x =

y = 1

160 , with energy as shock indicator.

6 Conclusions

We have built an algorithm and a C++ implementation to solve numerically
the compressible Euler equations, using a discontinuous Galerkin method. An
adaptation of the slope limiter was proposed for tensorial product polynomial
basis in order to control oscillations for discontinuous solutions, and in order

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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to preserve positivity of the variables (density and pressure) a bound preserving
limiter was implemented. The KXRCF shock indicator seems to detect well the
locations of the shocks in the 2D examples, however special care has to be taken
in the selection of the measured variable as it was shown in the Sedov blast
wave test case. The implementation of the shock indicator can be justified as
it avoids the usage of limiters all over the domain, which in turn may lead to
an improvement in the performance of the algorithm. These numerical algo-
rithms are useful for astrophysical applications where high accuracy is required
in problems where density or pressure may become very low in some regions
which is part of our future work.

Acknowledgments. PC thanks the Airbus Foundation Chair at TIFR-CAM,
Bangalore, for support in carrying out this work. JP G-V thanks the GRK 1147
for its support. CK thanks the SPPEXA priority program of the German Science
Foundation (DFG).

References

[1] B. Cockburn and C.W. Shu. J. Comput. Phys., 141 (1998), 199–224.

[2] J.E. Flaherty, L. Krivodonova, J.-F. Remacle and M.S. Shephard. Finite Element
Anal. Design, 38 (2002), 889–908.

[3] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon and J.E. Flaherty. Apl.
Num. Math., 48 (2004), 323–338.

[4] X. Zhang, and C.W. Shu. J. Comput. Phys., 229 (2010), 8918–8934.

[5] W. Bangerth and R. Hartmann and G. Kanschat. ACM Trans. Math. Softw.,
33(4) (2007), 24/1–24/27.

[6] P.R. Woodward and P. Colella. J. Comput. Phys., 54 (1984), 115–173.

[7] J.P. Gallego-Valencia, J. Löbbert, S. Müthing, P. Bastian, C. Klingenberg and Y.
Xia. Proc. in App. Math. and Mech., 14 (2014), 953–954.

Juan Pablo Gallego-Valencia and Christian Klingenberg
Dept. of Mathematics
Würzburg University
GERMANY

E-mails: juan.gallego@mathematik.uni-wuerzburg.de;
klingenberg@mathematik.uni-wuerzburg.de

Praveen Chandrashekar
TIFR Center for Applicable Mathematics
Bangalore
INDIA

E-mail: praveen@tifrbng.res.in

Bull Braz Math Soc, Vol. 47, N. 1, 2016


