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A discontinuous Galerkin scheme was implemented in the DUNE framework to solve the compressible, inviscid Euler equa-
tions in a multi-dimensional Cartesian grid. It uses a HLLC Riemann solver for the numerical fluxes in the interfaces, a total
variation bounded limiter to handle discontinuities, a positivity preserving limiter for near vacuum conditions, and adaptive
mesh refinement (AMR).
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1 Discontinuous Galerkin method scheme

The spatial discretization of the Euler equations of inviscid compressible flow is achieved by using a cartesian grid in one,
two or three space dimensions, and by choosing a set of piecewise polynomials to be used as test and trial functions. Then the
weak formulation of the system of conservation law is given by:∫

τk

utvdx−
∫
τk

f (u) · ∇xvdx +

∫
∂τk

f (u) · ~nvdΓ = 0 (1)

Since the solution is not continuous on the interfaces between the cells, the surface integral in the scheme is calculated by
solving a Riemann problem to "communicate" between the cells. For more details see [1], [2], [4], [5], [6].

2 Limiters

In order to control spurious oscillation in the numerical solution, due to possible discontinuities, a Total Variation Bounded
(TVB) limiter has been implemented based on the minmod function. When the linear component of the approximation is
greater than the limit criteria M · h2 (where M is a parameter to be chosen) the solution in the cell is reduced to a first order
polynomial. The slope umxi

of this polynomial in the i−direction is calculated comparing ûxi
(which is the difference between

the mean values of the conserved variable along the interfaces xi−1/2 and xi+1/2) and the forward and backward differences
(defined as ∆+u = ūxi+1

− ūxi
and ∆−u = ūxi

− ūxi−1
), where ūxi

is the mean value in the cell Ii (see Fig. 1).

umxi
= minmod (ûxi

,∆+u,∆−u) (2)

Then the limited solution will be computed by multiplying the scalar functions φi to the linear components in each direction,
and adding them together with the average value ūxi

of the conserved variable in the specific cell.

uh = ūxi
+
∑

umxi
· φi . (3)

Additionally a positivity preserving limiter has been implemented in order to take account of near-vacuum conditions. Its
implementation, which is well known for scalar equations, needed to be extended to our system of equations. Special care has
to been taken for the values of both density and pressure, thus the mean values of these quantities (ρ̄ and P̄ ) are controlled
after each stage of the time integration is computed. If ρ̄ or P̄ are below a certain ε−value in any cell, the whole time step
must be restarted and the CFL condition is reduced by a factor of two. If it is not the case, then the minimum value of the
density ρmin is verified. In case ρmin is below ε, it must be limited (see Fig. 2, and [3] for more information) and the energy
is recomputed with the data of momentum and density. Then the minimum value of the pressure Pmin is verified. If it is
below ε, it is fixed to ε and then the energy is recalculated out of the values of density, pressure and momentum. The positivity
preserving limiting procedure does not affect the momentum.
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Fig. 1: Slope comparison for the TVB limiter in each
dimension

Fig. 2: Positivity preserving limiter, the solution is
shrank around the mean value so the minimum is fixed
to ε

Fig. 3: Forward facing step problem with contour lines
of density after 1.5 seconds for Mach 3.

Fig. 4: Forward facing step problem mesh refinement
from a maximum ∆x = 1/40 to a minimum ∆x =
1/120.

3 DUNE framework

The Distributed and Unified Numerics Environment (DUNE) is a C++ toolbox for solving PDE with grid based methods. It
is divided in modules depending on their functionality, such as a grid managing (dune-grid), linear algebra operations (dune-
istl) and function space discretization (dune-localfunctions). Our code is based on the the external module dune-pdelab. It
provides a general scheme in which the basic functionality of DUNE is combined in order to both, generate implementations
in a faster way, and provide additional helpful features, like for example the automatic looping on the different entities of the
grid, parallelization, load balancing. The grid was implemented using ALUGrid external module, which allows the use of
adaptive mesh refinement.

4 Implementation features

The code uses a nodal Lagrangian basis (see [6]), where the expansion coefficients are exactly the point-wise values of the
functions in the nodes of the element. These values are used to calculate the flux functions of the conservation laws in each
node. The numerical fluxes are computed through a HLLC Riemann solver. A multi-stage strong stability preserving scheme
(Shu’s third order SSP scheme, see [3]) was implemented for the time integration. The TVB and the positivity preserving
limiters are used as post-processing procedures which modify the solution after each stage of the time integration. The codes
includes adaptive mesh refinement triggered by the limiting criteria. In Fig. 3 we show a simulation of supersonic flow past a
forward facing step, see [7], using our code. Fig. 4 shows the performance of the AMR implemented.
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