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ABSTRACT

A substantial impravement in resolution has been achieved for the
computation of jump discontinuitics in gas dynamics using the method of
front tracking. The essential feature of this method is that a lower
dimensional grid is fiteed to and follows the discontinucus waves. At the
intersection points of these discontinuities, two-dimensional! Ricmann
problems occur. In this paper we study such two-dimensional kiemann
problems from both numerical and theoretical points of view. Specifically
included is a nuracrical solution far the Mach reflection. a geneml
cassifiation scheme for two-dimensional elementary vaves, ond a
discussion of problems und conjectures in this area.

1. Introduction

Many phenomena is aature are modeled by nonlincar hyperbolic systems of
conwrvation laws:

6 +V-fu)=0. L1

The example considered here is the sysicro of Euler cquations for a compressible, inviscid,
polytropic gas. The cquation (1.1) represents an idealization. Its soluticns are the limits,
as viscosity parameters tend to zcro. of the salutions of more complete equations such as
the Navicr-Stokes equations. The solutions of intercst for the system (1.1} are frequently
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found to be plecewise smooth. For the Euler equations in ane space dimension the jump
discontinuitics between the smooth pleces are contact discontinuities and shock waves. In
two space dimensicns these samne wave modes give rise to surface singularities of
codimensicn one. The Rankine-Huganiot conditions, as derived from the integral form of
the Euler equations, bald across these jumps.

When salving the system (1.1) numerically, the discontinuities that maay occur in its
solution may be reso.ved oo coarser grids by the method of front tracking than by
conventional finite difference methods. For two space dimensions, front tracking may b=
described as follows. A onc-dimensional grid is placed onto the discontinuity. Its
evolution in time is given by a two step procedure, using first the Rankine-Hugoniot
relations to propagate the fremt normally and then using tangential equations to propagate
surface waves. This approach works away from the points where the discontinuity curves
moet. At such intersection points the geometry does not in gencral allow an operator
splitting into normal and tangential directions, so the evolution of intersection points must
be deicrmined as the solution of a two-dimensional Riemann problem. To solve two-
dimensiont] Riemann problems it is crucal to clasaify the coberent waves, which arc
defined to be dynamically stabl: intersection polnts of cne~-dimensional coherent waves.
The region between the fronts is treated as an initisVboundary-value problem and is
solved using (almost) standard finite difference methods. The front and interior schemes
arc connected in a strip O(Ax) in width sbout the front. For a detajled description see
1.

The front tracking method appeans to allow an increasc of lincar resolution by a
facto: of taree or better, i.c. an improvement in the number of space-time computational
grid units by & factor of 27 or betier. The method bas been tested an various problems.
In Sec. 2 and 3 we compare the results of cur numerical calculation to experimental
results for (wo specific test problems. An example of how the motion of a two-
dimensional coberent wave is determined numerically is given in Sec. 3. In Sec. 4 we give
a classification of the two-dimensional coherent waves for compressible gas dynamics and

indicaic its derivation. In Sec. 5 we conclude with a discussion of outstending questions
related to Ricmann problems.

2. Regular Reflection: of Shock Waves

The front tracking scheme for two-dimensional gas dynarnics has been teswed on
scveral problems that admit solution by othcr mcans. These problems arc: sn expamding
or contracting drcular shock followed by a coutact discontinuity, the stcady-state
supcrsoulc flow past & wedge, the Kelvin-Helmholtz instability, regular refloction of »
shock wave, and Mach reficcdon of » shock wave. For detadls oo the first five sec [1).

In this section the vumerical soludoo for nomstcady regular reflection of a shock

wave is compurcd with cxperimental results [3]. The experiment consists of a planar
shock (I) moving down a slorl tube and impinging on a wedge with a sufficicntly large
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angle. Whean the incident shock strikes the wedge corner o reflected shock (R) is formed,
which extends from the reflection point to the shock tube wall, where it forms a bow
wave in fror.i of the wedge, as shown in Fig. 2.1. We will refer to the reglon enclosed by
the reflected shock as the “bubble”. As with Riemann problemns in general, the solution
13 selfsimilar, Le u(s,X) =~ u(o1,0%) for every ¢>0C. In the computation presentsé bere,
the Mach number of the incident shock is 2.05 and the angle of the wedge is 63.4°.

The numerical calculation was initialized just afier the reflected shock had formed
and enclosed only a small region about one quarter of 2 mesh interval in height. Data at
the two ciids of the reflected shock were obtained using a shock palar analysia. At the
wedge corner, the two velocity componens vanish. The remaining sclution components
at the corner and the full solution in the interior are determined by interpoladon. One
arbitaary parsmcter is used in tac initialization, which is the oblatencss of the bubble,
defined as the ratio of the distance of the reflection point from the corner to tae distance
of the bow shock to the comner (the matio of the lengths of the segments BC and AB in
Fig. 2.1). The initial oblatencss was taken from experimental date, but it can be
determined approximately by a preliminary calculation because it is constrained to lic in a
bounded intcrval by theoretical considerations. In fact the computational results are quite
. insensitive to its valuc. The initializaticn algorithm can be regarded as an spproximate
solution of the two-dimensional Ricmann problem in & special case.

In Fig. 2.2 the coatours of constant density and constant entropy that were obtained
numcrically are shown. In Fiz. 2.3 the density disiribution along the wall obtained from
the calculation is superimposed on the experimental dats.

3. Mach Reflection of Shock Waves

The intcrsection point of discontinuity curves will be called a node. In a
neighborbood of & code the curves arc approximated by straight lines scparating wedge
shaped regions. In analogy with the onc-dimensiopal Ricmann problem, we define a
two-dimensional Ricmann problem to0 be an initial value problem for a two-dimensional
conservation law haviog data that is elther # comstant state or a simple rarcfaction wave in
cach of a fin : rumber of wedges. Such problems have been studicd for scalar
conscrvation laws [8,5,6], but only special solutions arc known for systems of
oconscrvation laws. As with the solution of n coc-&imensions! Piemann problem, the
solution of a two-dmensional Ricmann problem will cvalve into a more complicated
configuration containing several clemcatary waves. Thus In freat tracking we must solve
u suboase of the full Riemann problem: determining the velocity and states associated
wil the onc specific ckmentary wave (node) being tracked. We shall report in this
soction on o method for tracking the Mach node. Jis propagation (s a fully two-
dimensional probiles that canpot b be wduwsd w onc-dlocasknal probiems Ty spatial
operator aplisting. In fact sucocss've solutions to ouc~-dimensional problems still play a key
role In solution of the Mach node, but their compoaltion Is governed by the goometry of
the wuves enterl-ig the node and nof by an erthogonal set of coordinate axes.
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Consider & planar shock moving down a shock tube and incident on a wedge with a
small angle (sec Fig. 3.1). In coatras: with the regular reflection case we olaain a Mach
reflection. The point where the incident (T) and the reflected shock (R) mect (the “Mach
pode™) bas lifted off the wall and is connected to the wall by a nearly straight shock

called the Mach stem (M). Behind the Mach node a contact discondnuity (C) is formed
between the reflected thock and the Mach stem.

The comesponding two-dimensional Riemann problem is shown ic Fig. 3.2. We
move to a frame where the node is at rest and denote the states as indicated. The contact
discontinuity has a jump i density and tangential velocity across it. Each smte is given
by the two compouents of velocity #, the density p, and ithe pressure p. Given the state
in onc sector, the Rankine-Hugoniot conditions determine a one perumeter family of
statcs that can occur across a shock or contact discontinuity in a nejgaboring sector.
These conditions may be written as fallows [2, pp. 301-302 and 329):

P~ p
—“;;_L-“['(qj-‘l)

for
(1) €{(0.1), (1,0), (1,2), 2.1), (03), 3,9)}, @1
2 [
- —
LR
pj L
® y 1
for
() € {(1,9), 3,0), @.1)}, (3.2)
PR Rl 3.3)
and
P2 = p3. G.4)

Here p is the pressure, § is the fluid velocity, and p? = —::—;—:— where vy is the palytropic
gas constant. Relations (3.1) and (3.2) arc the Rankine-Hugoniot conditions .or a shock,
while reistioas (3.3) and (3.4) express the existenoe of a contact Giscontinulty.

There are cleven cquations in sixicers unkpowns. From the paint of view of an
experimenialist, the initial conditions in a shock tube experiment, viz. four parameters
spocifying the density &nd pressure scales and the strength and oricntation of the ip-ident
shack, are not sufficlent to determine the soludon. For this reason it e 1d be statod that
there is a missing cquation for the Mach interaction. Howcver, this mising equation is
ouly an abscnce of an analytic or dosed form solution to give the node srajoctory on the
besis of equations (3.1)—(3.4), and docs not indicate an incompletencss of the Cauchy
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problem for the Euler equations. From a mathematic:! paint of view there is no missing
equation, since the solution from the previous time sxep provides comgiete Cauchy data.
The front tracking problem is to obtain a complete Riemann problem solution for
given Cauchy data and to select the Mach node out of thet solution. As formulated this
problem is too difficult. Hence we procced with equations (3.1)—(3.4). With sixteen state
variables and eleven equations at the node, we see that the Mach node lies in a five-
Mﬂlﬂlm‘fddﬂmﬂ!motﬂtﬂho,ll,lz,lﬁla. thﬂm.
full two-dimensaionai Riemann problem to select a point in this manifcld, five of the above
sixteen parameters are selected o specify the node. Using physical intuition, we selected
five parameters from the complete set of Cauchy data [4]. Based on numerical evidence,
we believe this method does a satisfactory job of picking out the Mach node frem the

waves emanating from the complete solution of a two-dimensionsal Riemann problem that
is close to a Mach node.

We compared the numerical solution for the ronstcady Mach reflection with
.xperiments in {3]. In the experiment an incdent shock with a Mach number 2.03
impinges on a wedge with angle 27°. The calculations were initialized just after the Mach
configuration has appeared. The reflected shock and the Mach stem then encloac a region
of about on: mesh interval in height. After the bubble enclosed a region several mesh
intervals in height the solution bad scttled down to its sclf-similar form as seen in the
experiment. In Fig. 3.3 the constant density contours are shown. In Fig. 3.4 the wall
density distribution obtained in our calculation is supcrimposed on the experimental data.
However the calculation is preliminary in two respects. The present form of the algorithm
for the propagation of the Mach triple point scems to be steble only when the initial
oblatencss is cboscn near the experimentally deicrmined valuc. Moreover ihe algorithm
for the propagation of the point of intersection of the contact discoatinuity with the wall is
disccrnably unstable: the fluid velocity at this point is very somitive to the pressuic
upstream, so the end of the contaci tenda to curl up. The causes «f these instabilitics have
not yer been determined.

4. The Clamification of Two Dimensional Elemenutary Waves

In this section we classify the elementary waves for two-dimensional gas dynamics.
Front tracking cmploys a normal and a tangential operator splitting at jump surfaccs and
a solution of two-dimensional Ricmann problems at the point singularities formaed by the
intcrsection of jump surfaces (“nodes™). An example of such a two-dimensional Riensnn
problem was described in the previous section. For two-dimensional compresaible gas
dynamics there arc caly a small number of such podes.

We make some gencraj assumprtions hat idealize the probiem, but which we belicve
apply 1 & gencric set of possible point singularitics formed by the mecting of jump
surfaces and eentereC marcfaction waves. Then we refine these general assumgiions into a
procise mathematical formulation, und using the latter, derive a damificadon scheine for



the allowed point singularities.

Escluded from this dassification scheme are point singularities formed by centered
waves (implosions) and pointy. in a neighborhood of which the solution is not plocewise
amooth.

Definition 4.1 A pressuwre wave is a shock wave or 8 centered sarefaction wave. A
wave is cither a pressure wave or a coniact discontinuity. A xode is the point singularity
formed by the intersection of waves. A rarefsction wave centered at a node is called an
incoming (forward facing) rarsfaction wave if its straight line C* or C~ chammc cristics, in
the frame in which the node is stationary, paint towards the node. A shock wave
emanating from a node is said to be an lacoming shock wave if, in the stationary frame, it
turns the flow towards the node. Similarly we define an oufzoing rarefaction wave and an
outgoing shock wave. We observe that every pressure wave at 8 node is either incoming
or outgaing.

Assumption 4.2. We assume our solution » t0 be an elementary wave, which, in

general terins, satisfies the fallowing:
4.2.1 u is a stationary salu.on of the Eulcr cquations for a polytropic gas: u, = 0

and V-f(u) = 0;
422 » has the form

u=u for 0, <6<0, f=1,...,8

where 0, = 6y + 27 and cach «; is constant or a cent .red rarefaction wave;
423 the only jumps allowed in » are shock waves and co: act discontinuitics;
42.4 u is generic;
4.25 u 13 an entropy increasing salution, with

= lim s,
v
where i is a % luton of the Navier-Stokes equaticns with viscosity v.

First cousiJder all possible clementary waves oontaining only contact discontinuities.
If one of the sectore has a 1800 onenine  them con Lo 2 GGiS

180° opening, therw can U & moifcro Gisconiinuity in the
tangential velodty across its boundary. All other contact discontinuitics contain anly
temperature jumpe. It is possible for any nsumber of them to ococur, and at any st of
angles.

From now on assume that he clemeniary wave contains at least one pressure wave.
Assumptions 4.2.4 and 4.2.5 arc not wriiten in mathcmatical terms, so we formulate the
idcas thut they express in 8 manner that we can uae {n our analysis.
42.4a No incoming rarcfactionr waves arc allowed. There can be st mwst two

incomiug pressire waves, which arc noocssarily shock waves. If the flow on
the ahead sde (the side with the lower pressure) of an incoming shock wave is
adjmcent to a contact discontinuity that Is within 90° of the incomlug shock,
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ouly this one incoming shock wave is allowed.

425s No sectors of zero velocity bounded by onntact discontinuities (“embedded
wedges™) are allowed.

Obacrve that the clementary waves that satisfy 4.2.1 through 4.2.4 but fail to satisfy
4.2.5a can be interpreted as solutions of an initisl/boundary-value problem if the contact
discontinuities bounding the embedded wedge are repiaced with reflecting walls.

In {4] we bave determined that an clementary wave containing a pressure wave is
restricted by the following. There is a unique streamline through the node. There is
either one or two incoming shock waves. There is no more than one outgaing pressure
wave on cach side of the streamline leaving the node, only one of which may be a
rarefaction. The streamline is & contact discontinuity if there are two outgoing pressure

waves. This then leaves us with only a xmall number of possible elemeniary waves, which
we zhall determine presently.

Theorem 4.3. Under Assumptions 4.2 an clementary wave containing at least one
pressure wave is one of the following types, as specificd in detail below: crois, overtake,
Mach, diffraction, nnd transmission.

What follows is an explanation of the types together with figures. For a proof of the
theorem see [4].

Diffraction. Tic diffraction of a shock impinging on a conact discontinuity, causing
a reflected and a transmitted shock is a possible solutica, s=¢ Fig 4.1.a. We show in Fig.

4.1.b bow the solution may be constructed by drawing the appropriate shock polars in the
0.p planc.
Diffraction. The configuration in Fig. 4.2.a is an clementary wave. It is as in Fig.

4.1.a, but with a rerefaction wave in place of a reflecied shock. The solution is
constructed using shock polars, as indicat=d in Fig. 4.2.b.

Tranmnisslon. A shock impinging o0 a coatact discontinuity and causing a
transmiited shock but no reflectet wave (sec Flg. 4.3.2) is a posaible clementary wave; se
the corresponding shock palar in Fig. 4.3.b.

Mach node. A direc: Mach reflection, where the incident shock breaks into two
shocks, the reflected shock and the Mach stem, is a possible clementary wave; sec Fig
4.4.a. The solution i found using shock palars =s in Fig 4.4.b.

Overts .. It is possible to bave two incoming shocks overtake cach other and give
risc to twc outgaing shocks scparated by a oontact discontinuity (see Fig- 4.5.2). The
salutic.s m .y be constructed using shock pclars s in Fig. 4.5.b. The spoecial case where
ooe of the two incoming sbocks has zero strength colncides with the Mach node casc.

OCveriske. Onc shack may overtaiee the other, resulting in a reflocied rawfaction
and a tranumitted shock (scc Fig 4.6.a). The solution is found using ahock polars as in
Fig. 4.6.b. Note that for the same parameters of the two incident shocks, both this casc
and the previous case ave possibie.



Crow, o Mach mode. Two incident abocks enlliding to Zorm two reflected shocks
scparated by a streamline (sce Fig. 4.7.a) is 1 poasible elcmentery wave. The solutioe is
found using shock polars as in Fig. 4.7.b. The special case of onc incident shock having
zero strength gives the direct Mach node. A single ahock wave in the outgaing sector
defines the inverted Mach node; this interaction is a limit of the cross case above, where
the shock between region 2 and 3 in Fig. 4.7.a reduces to zero.

5. Some Problems and Conjectures Concerning Rierzann Problems

In this section we drop the restriction to two dimensions and to gas dynamics, but we
retain the terminology of Sec. 4. Recall that in steady supersonic two-dimensional gas
dynamics, where the direction of the flow defines & timelike direction, the equations can
e reduced to the form of 2 ane-dimensional time-dependent system of conservation laws.
Then the two-dimensional elcmentary waves viewed in the statiozary frame are Riemann
problems for a distinct but relsied one-dimensionai system. Similarly Riemann problem
talutions in n~1 space dimonsions are qualitatively similar to elementary waves in n
dimensions.

We list some probiems of general interest in this area.

1. The postible n-dimensional clementary svaves for a system of conservation laws
could be classified. The elementary waves in two-dimcosional polytropic ges dynamics
were classified in the previous section.

2. Let the incoming wave operator be the salution operator bringing two or more
clementary waves to a singie point and thereby defining a Riemann problem. The

-.uing wave operator also acts on single clementary waves by mapping to the
configuration at a time of bifurcation, or dypamic instability; this also defines a Ricmann
preblem. The range of this operator is limited to the possible merpers or bifurcations of
the clementary waves found in the classification above. Can this range be categorized?

3. The outgoing wave operator gives the possible elementary waves that may occur
in the solution of the Riemans problems in the range of the incoming wave operator. We
pusc the question of existence of solutions for this restricted sct of data. Are solutons
pleccwise smooth, so that there is a finite number of outgoing clementary waves? The
answer depends on the order of the systcm, the dimension of space, and the convexity or
number of inflection points in the dlux function, as txamples [6] show and analogies [7]
suggest.

4. A logical scaticring matrix § is a map from scts of incoming wave types to sets of
outgoing wave types as labeled by the salutions to problem 1. It decides which types of
incoming waves produce: which types of outgaing waves. In the langusge of quantum
mcchanics, ide probiem here is to classify the positle § matrix graphs. Let vs consider
this problern from the point of view of two-dimensional gas dynamics. We restrict
atiention to Ricmann data cootained in the range of the incoming wave operaior as
defined iu 2 ubove. Under such restriction, the waves will be said to be in incoming
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order. The allowed nodes of Sec. 4 provide interchange of weve order to an outgoing
order. In general, Bowever, the interchange of wave arder produces three outgoing waves
from two incoming waves and need not reduce the total number of wave pairs that fail to
be in outgoing order. On this besis, we expect that even simple incoming configurations
could produce complicated outgoing wave interactions. It is possible tha: ihe complication
(e.g. the number of nodes), while not bousded a priori, Is still finite. In fact the wave
interactions typically decreasc the Mach number of the flow, and may give rise to a
subsonic region, inside of which no pressure waves can occur. Related to this possibility
is the occurrence of nodes with only two outgoing waves. Such nodes aliow the

interchange of weve order with a reduction in the total number of pairs that are out of
arder.

5. Uniqueness is an open problem. Well known probiems of nonuniquencss are not
understood on a fundamental level. For example, consider an incident shock hitting a
wedge, resulting in cither a regular reflection or Mach reflecticn. There are regions
where both sclutions are possible. By introducing additional physical effects such as
viscosity, with a resulting boundary layer, or surface roughness on a certain length scale,
this overlapping region of nonuniquencas might disappear.

6. Extended of nonlocal Riemann problems may be counsidered, where the
restriction of constancy in sectors betweezn the waves is repleced by L--ar ar higher order
data. This has been implemented for cne dimension in the norma’ propagation of the
front {1].

7. Lower order terms in the equations and new waves in the Ricann sclution may
be caused by geometrical effects and by external sources.

8. Th=: geomerry in the large defined on the state space by the flux function aceds
to be understood. For gas dynamics the qualitative bebavior of solutions may be studied
by considering the acoustic waves of the linearized problem. But this is not the case for
all hyperbolic conservatior: laws, and ncw familics of waves may be possible in the large.
The topology defined by the critical points of the flux function f in (1.1) is important

bere. A critical point is a point in state space where the gradient A = V f bas colnciding
dl_tcnvaluu. At the critical pgj!_\g “.!}‘.2."......"" (1.1} fs oo domecr ecdetly BvncrSol

SUGRTT ®aITUY avpiuiwuc,
morcover A can fail to have a complete st of eigenvectors. Such a loss of strict
hyperbolicity is sot pathological in applications, and the mathematical consequences of
this fact have not been developed. An extension ar this phenomena are the problems for
which the equations in different regions of statc speor change type. The applications arc
of general intcrest: all reservonr sixwlation, tramaonic flow in gas dynamics, chemically
reacting flows, and nonlinear clasticity.
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Fig. 2.1. Regular reflection of a shock wavc by & wedge. A vertical shock f has struck &
63° wedge from the left, causing a reflected shoc R, which forms a bowshnck in front of
the wedge.

FPig. 2.2. The numerical simuluiion of a sogalar refloction, where the inddent shock has
Mach pumber 2.05 and the wedge angle is 63.4°. The csiculadon wus ywrformed on a 80
by 20 grid. The top picture shows the lines of constunt density Lwide the bubble formed
by ioc ..flocied shock. The bottom piciure shows the lines of consiant entropy. They
ubould coinclde with the ‘oiegral curves for the sclf-similar velodty ficld. Theoirtical

arguments in the text suggest that these integral curves all terminate at the onrer.
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Fig. 2.3. The computed (solid linc) density distribution along the wall for the repular
reflection run compared to the data obtained in the experimenis of Deschambaul: and
Glass (dots).

wWi- a1 - S [ TN P IS I T P )
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27° wedge from the Jeft. The point where the incident shock I and reflected shock & mect
is connocted 1o the wall by a shack calied a Mach stem (M). Behind the riple poing,
where the throe shocks moet, a contact discontinulty € i formesd betwoen the reflocted
shock and the Mach sicm.
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Fig. 3.2. The Ricmann problem corresponding to the triple point obtalned in 8 Mxch
reflection. We assume the shocks and coatact discontinuiiies are siraight lines (labeled ns

in Fig. 3.1) with constant states 0 through 3 in the wedges.
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Fig. 3.3. Th: numcrical simulation of a Mach reflection, where the incident shock has
Mach pumber 2.03 and the wedge sngle fs 27°. Inside the bubble formed by the reflocted

sbock we show the calculated lines
on a 60 by 40 grid.

of constant denity. The calculations were performed
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Fig. 3.4. The density distribution along the wall of the Mach reflection run (salid linc)
shown superimposed on the data found experimentally by Deschambault and Glass (dots).



Fig. 4.1.a. Diffraction. A shock J can diffract throngt e contact discontinulty C to
causc & meflected shock R and a transmitted shock 7.

Fig. 4.1.b. The shock polars corresponding 1o Fig. 4.1.a. The Mach numbes of statc 6 i
2.7 anG that of siate 0" is 3. Thc shock strength of 7 s 3.



Fig. 4.2.a. Diffraction. The diffraction of a shock 7 by a contact discontinuity C can
cause a reflected rarefaction wave R and & transmitied shock 7.
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Fig. 4.2.b. The shock palars corresponding 1o Fig. 4.2.a. The Mech number of staic 0
is 3 and that of siaic 0" is 2. The image of a I'—chanacicristic fa this p , @ plane is drawa,

omnecting the statca p = 3 ¢m onc sbock paler 1o

p = 2.8 on the other,



Fig. 4.3.a. Transmission. A shock 7 incident on a contact discontinuity C causing a
transmitted shock 7' but no reflected wave is passible. ’
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Fig. 4.3.b. The shock palan omresponding 10 Fig. 4.3.a sre shown. The Mach number
of state 0 is 3 and that of siaic 0" is 2.7.



Fig. 4.4.a. Mach node. Direct Mach reflection is shown, with the incident shock 7
breaking into a reflected shock R and a Mach stem M scparated by a contact discontinuity
C.
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Fig. 4.4.b. The shock poiars corresparafing to Fig. 4.4a. The Mach sumber of state 9 is
2.2 and the shock sirengih of 1 s 3.2,



¥ig. 4.5.a. Overtake. It is possible to have onz inc..nlng sbock I, overta..c another J; to
causc a reflected shock R and a transmitted shock T with a contact discorticuity C
between them.
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Fig. 4.55. Tic shock polars comresponding to Fig. 4.5.a. The Mach number of statc 0 is
7, the shock strength of the incdent shock 1 is 9.5, and the shock strengith of 7, 183.9.



Fig. 4.6.a. Overike. It is possible for one incoming shock J; to overtake another 7, to
aus: a reflected rarcfaction wave and a transmitted shock wave scparated by a ooatact
discontinuity.
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Fig. 4.6.b. The shock polars corresponding to Tig. 4.6.a. The Mach numbcr of statc 0
is 7, the shack strength of the incident shock 7, 5 9.5, ~nd the shock strength of 1, is 3.9.



Fig. 4.7.a. Cross. Two may shocks collide and cause two reflected shocks scpurated by
a contact discontinuity.

Fig. 4.7.b. The sbock poiars corresponding i Fig. 4.7.a. The Mach suwber of sisic O

is 2.7 and she shack strengths of the incident shocks are 1.6 and 1.9,



