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ON THE LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE
EULER SYSTEM*

EDUARD FEIREISL, CHRISTIAN KLINGENBERG!, AND SIMON MARKFELDER/?

Abstract. In this paper, we propose a new approach to singular limits of inviscid fluid flows
based on the concept of dissipative measure-valued solutions. We show that dissipative measure-
valued solutions of the compressible Euler equations converge to the smooth solution of the incom-
pressible Euler system when the Mach number tends to zero. This holds both for well-prepared and
ill-prepared initial data, where in the latter case the presence of acoustic waves causes difficulties.
However this effect is eliminated on certain unbounded domains and, in particular, on the whole
space, thanks to dispersion.

Key words. low Mach number limit, compressible Euler system, measure-valued solution
AMS subject classifications. 35B25, 35D99, 35Q31

DOI. 10.1137/17M1131799

1. Introduction. We propose a new approach to singular limits for inviscid
fluid flows based on the concept of measure-valued solution for the primitive system.
Specifically, we consider the barotropic compressible inviscid Euler equations in two
and three space dimensions,

0r0 + divg(ou) =0,
d¢(pu) + div,(ou ® u) + Vzp(e) = 0,

where o = o(t, z) represents the mass density, u = u(¢,x) the velocity vector, and
p = p(p(x,t)) the pressure. To avoid technicalities, we focus on the iconic example
of the isentropic pressure-density state equation p = ao”, with v > 1, although more
general cases can be treated as well.

One may rescale these equations by nondimensionalization. After combining
terms appropriately (setting the so-called Strouhal number equal to one) one reaches
the following system:

(13) atQa + divz(@sue) = 07

1
(1'4) at(@sus) + diVm(QeU—e & us) + ?vxp(ge) =0,

where ¢ is called the Mach number. It represents the norm of the velocity divided
by the sound speed. For a more detailed derivation of this see the appendix in [3] or
Klainerman and Majda [14]. We consider the asymptotic limit of solutions (g.,u.)
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for € — 0. This process represents a bridge between compressible and incompressible
fluid flows. Indeed one can expand the dependent variables in terms of €. For example,
for the pressure we have

p=p9 +ep® + 2@ 4 0(?).

We now collect terms of the same order and find that the zeroth and first order term in
the pressure expansion are constant while the zeroth order term of the velocity (which
we shall call v) satisfies the incompressibility condition div,v = 0. The resulting
limiting equations are (setting the zeroth order term of density to be constant, and
now calling the second order term pressure p(®) = II):

(1.5) div,v =0,
ohv+v-Vyv+ V,II=0.

The initial data for the compressible equations for which the zeroth and first
order term of the pressure are constant and the initial velocity is solenoidal are called
well-prepared. If the the second order term of the pressure is present and the initial
velocity is not required to be solenoidal, the data are called ill-prepared. For the well-
prepared data the above formal derivation has been made rigorous by, e.g., [9], [2].
The ill-prepared data with the underlying spatial domain R? have been treated by
[14] and [22] and for the nonisentropic case in [17]. For a survey, see [20]. All of these
authors assume that the solutions of the compressible flow are smooth. However, as
it is well known, solutions of the compressible Euler system develop singularities in
a finite time no matter how smooth and/or small the initial data are. One of the
principal difficulties of this approach is therefore showing that the life span of the
classical solutions is in fact independent of the Mach number.

The hypothesis of smoothness of solutions is therefore quite restrictive and even
not appropriate in the context of compressible inviscid fluids. On the other hand,
the limit incompressible Euler system, at least if considered in two space dimensions,
admits global-in-time smooth solutions for smooth initial data. The existence of global
smooth solutions for the incompressible Fuler system in three space dimensions is an
outstanding open problem.

To achieve global results, it is more convenient to consider the weak solutions of
the compressible Euler system. Recently, the theory of convex integration produced
a large number of global-in-time weak solutions basically for any regular initial data,
however, most of them apparently violate the basic energy inequality associated to the
system; see, e.g., Chiodaroli [4] and DeLellis and Székelyhidi [8]. In addition, there
is also a nonvoid family of “wild” initial data that give rise to infinitely many weak
solutions satisfying many of the conventional admissibility criteria; see Chiodaroli
et al. [5], [7] and DeLellis and Székelyhidi [8]. In spite of these results, the existence
of global-in—time admissible weak solutions for arbitrary (possibly smooth) initial
data remains largely open for the compressible Euler system.

In this paper, we propose a new approach based on the concept of dissipative
measure-valued (DMV) solution recently developed by Gwiazda et al. [11], [10].
Roughly speaking, they are measure-valued solutions of the compressible Euler sys-
tem satisfying an appropriate form of energy inequality; see section 2.1. The energy
dissipation is expressed via a dissipation defect that in turn dominates the concentra-
tion measures that may develop in the field equations. The main advantage of this
approach can be summarized as follows:
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e The DMV solutions to the barotropic Euler system exist globally in time for
any finite energy initial data. Indeed they can be identified as cluster points
of solutions to the Navier—Stokes system in the regime of vanishing viscosity,
asymptotic limits of suitable numerical schemes, as well as limits of other
suitable approximate problems; cf. Mélek at al. [16].

e Although the DMV solutions are very general objects that are in general not
uniquely determined by the initial data, the convergence is unconditional as
soon as the limit system admits a smooth solution.

e Convergence holds for both well-prepared and ill-prepared initial data as long
as the spatial domains allows dispersion of acoustic waves in the latter case;
see sections 4 and 5, respectively.

Due to the low regularity of the DMV solutions, our method yields convergence in
a very weak sense, specifically, in the sense of the strong topology on the space of
probability measures.

The paper is organized as follows. After having introduced the necessary prelim-
inary material in section 2, we state our main result in section 3. Section 4 is devoted
to the incompressible limit for well-prepared initial data under periodic boundary
conditions. Section 5 contains the proof of convergence for the ill-prepared data for
the problem on the whole space R .

2. Preliminaries and main result. In this section, we collect some basic facts
about DMV solutions and state our main result. The symbol Q2 will denote the spatial
domain occupied by the fluid. We focus on two typical examples: periodic boundary
conditions, where §2 can be identified with the “flat” torus

Q= TN = ([*L 1]|{—1,1})N,

and Q= RN, N =2,3.

2.1. Measure-valued solutions to the compressible Euler system. Let
(2.1) Q= {lom] | o€ [0,), me RV}

be the natural phase space associated to solutions [p, m] = [p, pu] of the compressible
Euler system (1.1), (1.2).

A DMV solution to the compressible Euler system (1.1), (1.2) consists of a pa-
rameterized family of probability measures Y; ., t € (0,7, x € Q,

Yiw € Loy (0.7) x 5 P(Q))

weak— (*

and a nonnegative function D € L>(0,T') called dissipation defect satisfying:
e Equation of continuity.

T
22 [ [ (0 0+ Viaim) Vgl dedt

T
=—/ (Yo,23: 0) ¢(0, ) dx—/ /chp-du%
Q 0 JQ

for all p € C°([0,T) x Q) and a signed measure u$% € M([0,T] x €; RN)
called concentration defect.
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¢ Momentum equation.

(2.3)
T mm

/ / |:<}/t,:c; m> Oy + <Y;t,a:§ > Ve + <Y;t,:v;p(9)> divyp| dadt
0 Q

o
T
—— [ Gouim) (0. do— [ [ Vusduf
Q 0 Q

for all ¢ € C°([0,T) x Q; RN) and a signed measure u¥ € M([0,T] x
Q; RNXN),

e Energy balance.
The energy inequality

 1[m[? N
o /Q<Ym,2 . + P(o) — P'(2)(0 — D) p(g)> dz + D)

< [ (Vo324 P - P@)e - - P@)) o

holds for a.a. 7 € (0,7) and a certain constant ¢ > 0, where P(p) =

0 19 % dz is called the pressure potential.

e Compatibility condition.

(2.5)
/ / S|+ 1] de dt < / €Dt dt for aa. 7€ [0,T], € € L'(0,T).
0 Q 0

Remark 2.1. Strictly speaking, the expressions containing the concentration de-
fect in (2.2), (2.3) should be written

T T
<u%;Vx<p> instead of / /anp-d,ug, and <,u]\CJ;Vw<p> instead of / /Vpr cdud.
0.JQ 0.JQ

Similarly, we should have written

15 0,712 + 185 [0 7y <0 < / £(D(1) dt,

rather than
| [ S+ az ae < [ ewpi a
0 0

in (2.5).

Remark 2.2. In contrast with the original definition introduced in [11], we prefer
to work with the natural phase variable, namely, the density ¢ and the momentum
m = pu, similarly to [10].

Remark 2.3. The constant p in (2.4) can be taken arbitrary if Q = 7V and
becomes relevant only for @ = RY, where it represents the far field limit of the
density,

0 — 0 as |z| = oc.
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Remark 2.4. The functions

m ® m |m|?

[Qam]’_) ) [Qam]H7

are singular at the boundary of the phase space @, namely, on the vacuum zone g = 0.
We set

m|> [ 0if >0, m=0,
o | ©ifp=0 m#0

on the singular set. Accordingly, the function

2
lovm] s 12

is convex lower semi-continuous on Q. Now it follows from the energy inequality (2.4)
lm|?

that [0, m] — =

is integrable with respect to Y; , for a.a. ¢,z. In particular,

supplY; o] N {le.m] € Q| 0 =0, m# 0} = .

In applications, the parameterized family Y; , is the Young measure generated by
an oscillating sequence of approximate solutions [p, m = pu|, while the measure Yj is
determined by the initial conditions. Note, however, there are measure-valued solu-
tions to system (1.1), (1.2) that are not generated by any sequence of weak solutions;
see [6].

The measures ,ug, pM characterize the so-called concentration defect. There is
a more precise characterization of these terms as soon as a measure-valued solution
is identified as a suitable limit of a family of weak solutions; see Gwiazda et al. [11].
Then typically ,ug = 0, while u¥ is the Young measure associated to the so-called
recession function corresponding to the quantity ./ou;\/ou; + p(e)d; ; in the sense of
Alibert and Bouchitté [1]. In such a case, the concentration defect D can be equally
given in terms of the recession function associated to the energy 3|\/oul® + P(o).
These quantities satisfy the compatibility condition (2.5) as soon as

lim sup M < Poo < 00,

o—oo P(0)

which implies

(2.6) p(0) < ¢(8,ps0) [P(0) — P'(20)(0 —0) — P()]

for all g large enough. Accordingly, the function £ in (2.5) then can be taken constant
depending only on pso, 0.

Remark 2.5. In the low Mach number limit problem studied below, the pressure
takes the form 5%p(,g), while the associated pressure potential reads 6%P(g). In accor-
dance with (2.6), the measure-valued solutions introduced by Gwiazda et al. [11] will
satisfy the compatibility condition (2.5) uniformly for ¢ — 0. The same remains true
in the more general setting introduced in [10] and considered in the present paper
as long as the measure-valued solutions are generated by a suitable family of func-
tions, for which the concentration defect is characterized as the difference between the
weak-(*) limit in the sense of measures and the biting limit of nonlinear compositions;
cf. [10].
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Finally, we remark that the existence of the dissipative measure-valued solutions,
at least for the iconic pressure law p(9) = ap?, v > 1, can be easily established by
means of an artificial/physical viscosity approximation. Neustupa [19] constructed
a variant of the measure-valued solutions by considering a higher viscosity approx-
imation to the Euler system in the spirit of the general theory of multipolar fluids
developed by Necas and Silhavy [18]. In view of the nowadays available existence
theory for the barotropic Navier stokes system, the measure-valued solutions of the
compressible Euler can easily be identified with the cluster points for §6 — 0 of a
family of weak solutions [gs, ms]| of the Navier—Stokes system:

Oz0s + divy(0sus) = 0,
0¢(0sus) + divy (05us ® us) + Vaps(0s) = dAus + 0V, div,us,

/Q B&sluﬂ? + Ps(0s) — P5(2) (05 — 0) — Pg(g)] (r.) d+ /OT/Q(S _

+|div,us|?] do < /

[ |5l + Pie) - Pi@(e ~2) - Pi@)] d.

ps(0) = p(o) +da", 6 > 0.

Indeed the existence of the weak solutions [gs, 0sus] is guaranteed by the theory
of Lions [15] for N = 1,2,3, at least if I' > I'(N). In view of Remark 2.5, the
compatibility condition (2.5) will be satisfied for a suitable constant ¢ independent
of 4.

2.2. Relative energy inequality. For a parameterized family Y; , of prob-
ability measure defined on the phase space (2.1), we introduce the relative energy
functional

(2.7)
& (Q,m ‘ T, U)

1 m
= Yx;g‘—U t,x
/Q<t’ 27 ] o (&)

where U, r are continuously differentiable “test functions,” U, r — 9 compactly sup-
ported in €, r > 0.

For all DMV solutions g, m of the compressible Euler system, the following rela-
tion can be deduced from (2.2)—(2.4); see [11]:

2

+ P(o) = P'(r(t,x))(e — r(t, ) — P(r(t, w))> da,

[5 (Q,m ‘ T, U)TZT—FD( )

// (Vi 0U(t, ) — m) - ;U

(2.8) + <Yt,1‘; oU(t,z) —m) ® I;l> 1 Vo U = (Yiesp(0)) diva} dz dt

t [ [ [t~ o L) - 0y 1o ae

+/0/Q<V|U]2 VP’())-dug—/oT/QVindM%

)
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for any

(2.9) U,r e CY[0,T] x Q), r >0, supp[U], supp[r — 9] compact in [0, 7] x .
Remark 2.6. Note that compactness of the support of the test functions claimed

in (2.9) is irrelevant if Q = 7V—a compact set.

2.3. Solutions of the target system. It is expected that the low Mach number
limit velocity v is described by the incompressible Euler system (1.5), (1.6). Our
approach leans essentially on the fact that the limit field v is a smooth function.
Referring to the classical result of Kato [12], [13], we know that (1.5), (1.6) admits a
solution v, unique in the class

(2.10)
v € C([0, Tmax); WF2(Q; RN)), Opv, 0,01, V,II € C([0, Tax); WE12(; RN))

for some Ty, > 0, as soon as
k2 N N .
vp € WP2(Q; RY)), k> E—i-l, div,vg = 0.

Moreover, the solution exists globally in time, meaning T,.x = oo if N = 2.

3. Main results. Let gp = 0:(0,-), up,. = u-(0,-) be the initial data for the
rescaled system (1.3), (1.4). We suppose that

00,e — 0O

— S0, Uo,e — Ug

in a certain sense specified in the forthcoming section. We say that the initial data
are
e well-prepared if s = 0, ug = vy, div,vg = 0;
e ill-prepared otherwise.
In the context of DMV solutions, where the the distribution of the initial data is
determined by the measure Yy, well-prepared initial data translates to

(3.1)

1 |m
Ygx;gl—v x
A<Q2 >~ vo(a)

for certain constant g > 0 and a solenoidal function vy.
If the initial data are given in terms of the functions oo, up, meaning

S|

+ (Pl - P@e-0- P(g)>> dz — 0 as £ — 0

Y5.e = 0go..(2),l0.c (@)uo.c ()]

(3.1) follows as soon as

Q"0 bounded in L*°(2), Qoc— 0
€ €

— 0 in LY(Q), ug. — vo in L*(Q; RY),
dinVO =0.

Similarly, the initial data are ill-prepared if

(3.2) té@&é@?—m@

1 (P(g) - P’(@—l—éso) (g—@—as()) - P(Q+€so>)> dz — 0

2

Tz
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as € — 0, for certain constant o > 0, sp € L N LY(Q), and uy = vo + V. Py,
divyvp = 0. In terms of “deterministic” initial data pg ., ug . this can be rephrased
as

4

202 — 2 pounded in L>°(Q), Qo0
€

— 50 in LY(Q),
Ug,e — Up = Vo + Vl@o in L2(Q; RN)7 diVxVO =0.

3.1. Main result for the well-prepared data. We consider the rescaled com-
pressible Euler system with the periodic boundary conditions Q = 7% equipped with
the well-prepared initial data.

THEOREM 3.1. Let p € C1(0,00) N CI0, 00) satisfy p'(0) > 0 whenever o > 0. Let
Q=TN, N =23, and let {Yfr}te[o Tl TN D= be a family of DMV solutions of the
rescaled compressible Euler system (1.?;), (1.4), satisfying the compatibility condition
(2.5) with & independent of e. Let the initial data Yy, be well-prepared, meaning (3.1)
holds for o > 0 and vo € WF2(TN; RN), k > % + 1, divyvg = 0. Finally, suppose
that T' < Tinax, where Thax denotes the life span of the solution to the incompressible
Euler system (1.5), (1.6) endowed with the initial data vy.
Then

D° — 0 in L™(0,T),
. 1 |m 1 . _ _
ess sup Yisige|— —v(t,z)| + 7(P(9) - P'(e)(e—2) - P(@)) dz — 0
te(0,T) JTN 27| o €
as € — 0, where v is the solution of the incompressible Euler system (1.5), (1.6) with
the initial data vy.

2

Theorem 3.1 asserts that the probability measures Y; , shrink to their expected
value as ¢ — 0, where the latter are characterized by the constant value g for the
density and the solution v of the incompressible system. The result is restricted to
the life span of v if N = 3 and is global for N = 2. The required smoothness of
v could possibly be slightly relaxed. The proof of Theorem 3.1 is given in section 4
below.

3.2. Main result for the ill-prepared data. Convergence in the ill-prepared
case is “polluted” by the presence of acoustic waves generated by the component s,
V:®¢ of the limit data. To eliminate this effect, we consider the unbounded physical
space 0 = RY, where dispersion annihilates acoustic phenomena at least on compact
sets.

To simplify presentation, we also assume that the concentration defect u$ in the
equation of continuity (2.2) vanishes. This is not a very sever restriction as it is
always satisfied as long as the DMV solutions are obtained as a limit of a family of
approximate solutions satisfying a suitable form of the energy balance.

THEOREM 3.2. Let p € C1(0,00) N C[0,00) satisfy

(3.3) p'(0) >0 for all o > 0, limsup 2lo) = Py < 00,
000 P(0)
liminfM > Poo > 0 for some v > 1.
o—oo oY

Let Q = RN, N = 2,3, and let {Y’fﬂf}te[O,T];zeTN’ D¢ be a family of DMV solutions

of the rescaled compressible Euler system (1.3), (1.4), with p$§ = 0, satisfying the
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compatibility condition (2.5) with & independent of €. Let the initial data Y5, be
illprepared, meaning (3.2) holds for o > 0 and so € WF2 N WHL(RN), uy = vq €
wk2nWhkLYRN,RN), k > % + 2. Finally, suppose that T < Tyax, where Thax
denotes the life span of the solution to the incompressible Euler system (1.5), (1.6)
endowed with the initial data vo = Plug], where P denotes the standard Helmholtz
projection onto the space of solenoidal functions.
Then
D — 0 in L*(0,T),

1
ess sup / Yfm;Q’m—V(t,%)
te(s5,T) J B 270

as € — 0, for any compact B C RN and any 0 < § < T, where v is the solution of
the incompressible Euler system (1.5), (1.6) with the initial data vy.

2

+5(Pl0) - P@e-2) - P<g>)> dz =0

Note that the required regularity of the data sg, ug is higher than in Theorem
3.1. This is due to the required regularity properties of solutions of the corresponding
acoustic equations discussed in section 5.2.1. Moreover, strong decay of sg, ug is
necessary as |x| — oco. Convergence to the target system is only local, both in time
and space. This is inevitable due to the presence of acoustic waves. The proof of
Theorem 3.2 will be done in section 5.

4. Incompressible limit for well-prepared initial data. In this section, we
prove Theorem 3.1. For Y;?,—the DMV solution of the rescaled system—we denote

£, (o.mfz.v)

1 'm
= YS ;—o|— —v(t,
/TN< t,x 2Q 0 V( $)

the relative entropy associated to p, v.

2

93

+ 5 (Po) - P@e—2) - P<g>)> da

4.1. Relative energy inequality. As the quantities r = g, U = v enjoy the
regularity required in (2.9), they can be used as test functions in the relative entropy
inequality (2.8):

2

+ (Pl -P@e-2) - P<@>)> da

1 |m
S/ <Y0€,x%29‘Q—VO($)

TN
[ [t - m) o (Vs (ovtn) - m)
0o JTN

T 1 T
+/ / ~V.|v|? ~dug’6 - / Vv s dulhle.
0 JTN 0 JTN

As the initial data are well-prepared, we get

m :VIV] dx dt
0

(4.2)

1 |m
Y5 —o|— —vo(x
/TN<0’ 3215 o(z)

S|

+ 8—2<P(g) —P'(9)(0o—70) — P(g)>> dr — 0ase— 0.
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In addition, since the compatibility condition (2.5) is satisfied uniformly with respect
to e, we deduce

(4.3) / / V. |v|*- d,u —/ / va:du]\g’6 §c(||V0HWk,2)/ EDS dt.
TN 0 JTN 0

In view of (4.2), (4.3), the conclusion of Theorem 3.1 follows by Gronwall’s lemma
as soon as we show

(4.4)
/OT /TN [(Yt’fgj; ov(t,z) —m) - 9v + <fo; (ov(t,z) —m) ® m> : va} de dt

%
<w(5)+c/0 (1+§)( (Q,m’@, )—l—DE) dt, w(e) = 0 ase — 0.

4.2. Estimates. Our goal is to show (4.4).
4.2.1. Step 1—convective term. We start by writing

/ <Yfm; (ov(t,z) —m)® m> Vv dz
TN ’ 0

= / <Yt€x, (ov(t,z) —m) ® m- QV> Vv do
™ e

+/ <YfI, ov(t,z) — m> v - Vev dz,
TN
where, obviously,

m — ov

/ <m,<gv<m> m) @ >:vxv dz < c(|vollwea) & (em | 2,v).
TN e

Moreover, as v fulfills (1.6), we may go back to (4.4) to deduce that (4.4) reduces to
showing

(4.5) //7’N Y, m— ov(t,z)) - VoIl dzdt < w(e)

—|—c/OT(1+§) (55 (g,m ‘ @,v) —i—DE) dt.

4.2.2. Step 2—pressure estimates. To see (4.5), we deduce from (2.2) that

(4
/ M,m> V.II dxdt
0JTN
T t=7 T
—//(thm;@atn dxdt+[/ (Y0010 dx} —// VI - du$*
o JTN T~ t=0 Jo JTN
—// (Y 50— 2) 0l dzdt
U (Yai0— de] —/ VI - du$*
=0 0o JTN
— t=1
// <fx; >8tHd$dt—|—€|:/ <Yfm,g_ >de]
TN TN e t=0

—/ VIl d,uD
0o JTN
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Similarly, we may use the incompressibility condition div,v = 0 to obtain

(4.7)// (Yiov(t,a)) - VIl dmdtze// <Y;Z;Q_Q>V~Vmﬂ dz dt.
o Jrv o7 o JTy N\ T €

Now observe that the rightmost integral in (4.6) can be controlled by the dissipa-
tion defect D°. Consequently, as the pressure II belongs to the regularity class (2.10),
in particular II, 9,11 and V,II are bounded continuous in [0, 7] x 7% it is enough to
establish a uniform bound

(4.5) /(v

4.2.3. Step 3—energy estimates. As the DMV solutions satisfy the energy
inequality (2.4), we deduce from (3.1) that

H‘> dzr <ec.
€

1
(4.9) = (Y{,; P(0) — P'(0)(0 —0) — P(2)) da < c uniformly as ¢ — 0.
TN
Since

/
P"(p) = p;@) for o > 0,

the function P is strictly convex, and, consequently

(4.10)
o~ < c(d)(P(o) - P'(2)(0~8) ~ P(2)) whenever 0 <6 < 0,0< 5, 6> 0,
and
1+ |0~ + P(o) < c(6) (Plo) — P'(@)(0 — 2) -~ P(0))
(4.11)

1 1
if0<26<§<2—5, ge[O,é)U[g,oo), 6> 0.

Combining (4.10), (4.11) with (4.9) we obtain (4.8). Theorem 3.1 has been proved.
5. Incompressible limit for ill-prepared initial data. Our goal is to prove

Theorem 3.2. To begin, we introduce a function y = x(o) such that

x(0) € CF(0,00), 0 < x <1,x(0) =1if

N ||

< o< 2.
For a function H = H(p, m) we set

Hess(Q> m) = X(Q)H(Qa m)7 Hres(gv m) = (1 - X(Q))H(Qv m)

5.1. Energy bounds. As the initial distribution Y, is ill-prepared, meaning
satisfies (3.2), and the the functions sg, ug belong to L N LY(RYN), the initial energy

[ (5 S (P - P@le-0- P@) ) do< B

) g2

is bounded uniformly for € — 0. In accordance with the energy inequality we obtain

1m}2 1
G.0) e s [ <Ytz;"+2(P<g>—P’<g><g—g>—P<g>)> dx < B,
te(0,T) JRN 2 o €
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Thus, using estimates (4.10), (4.11), we may infer that

(5.2)
a2
- P 1
[M] dxz + ess sup / <Yfz; [(9)24—} > dz <.
€ Jess te(0,T) J RN 7 € res

ess sup / Y
te(0,7) JRN\ 7
2
€ess

Furthermore, we get

(5.3) / (ve: [[m?.) dxgc/ <Y§m;
RN RN

Seeing that

‘m
0|2
0

m|

[[m]res < % [\/E]resv

we deduce
2] <04 Lign
m|> cleo— + - :

res e % 9 € Jres
whence
(5.4) / <fo; [\m\%} > da < ey,

RN ’ res
Finally, we recall Jensen’s inequality

(5.5) (Yo [P < (YLIFI7), g> 1.

Consequently, the estimates (5.3)—(5.4) give rise to
(YZ.;m) bounded in |12+ L35 | (RY, RY),
(5.6) <Y:,; [H] > bounded in L2(RN),
7 € €ess

e (Y7 5 [0],0.) bounded in L7(RN).
5.2. Acoustic equation. Write
uy = vo + V. Py, vo = Plug].
The evolution of acoustic waves is described by the acoustic equation
(5.7) £0¢se + div, (oV,P.) = 0,
P'(2)

(5.8) e0 VP +

vxss = 07

5(07 ) = S0, vzq)e(oy ) = vazq)O
considered in the whole space RN, N = 2, 3.

5.2.1. Acoustic energy. Solutions of (5.7), (5.8) conserve the total (acoustic)
energy, specifically,
d
a RN
Differentiating the (linear) system (5.7), (5.8) we easily extend (5.9) to

(5.9) V(@) +2° Vo] dz=0.
(5:10)  [lse(r, ) Epecagrmy + 1Va®e(m, ) vy < € [lsoll e cany

T2 N R~

for any 7 > 0, k > 0.



1508 E. FEIREISL, C. KLINGENBERG, AND S. MARKFELDER

5.2.2. Dispersion. Finally, we report the dispersive estimates

(5.11)
ls< (7, W7o sy + [Va®@e (T, )70 (3,199

v-1(3-1)
<c (1 + g) [HSO”Wk a(r3) T 1Va @OHWk a(R3; RS)]

k>N(:—1),2<p<oo, 1+ 1 =1;sce Strichartz [21].
5.3. Relative energy 1nequahty. The first observation is that

r=p+es.,,U=v+V,P,,

where v is the solution of the incompressible Euler system (1.5), (1.6), and s., ®.
solve the acoustic system (5.7), (5.8) can be taken as test functions in the relative
energy inequality (2.8). Note that, strictly speaking, these functions do not belong to
the class (2.9) but decay sufficiently fast to their far field limit. Validity of (2.8) can
be verified by a density argument. Note the the most problematic term containing
the pressure can be handled as follows:

/ <fo;p(g)>disz dzx :/ <th,p(g >d1va dz
RN RN

— [ (Veino - p@) A o
RN
Writing

& (om | o+es.,v+7,0.)

:/RN<Y”’ ‘—v(t z) — V.1, $)2> dz
1

o [ (Y Plo) = P/@+ eselt, ) (0—D—eselt, )P (@ + es.(1,))) dar,

we obtain the relative energy inequality in the form

(5.12)
£ (om|otesevv.e )KiT-F'DE(T) <w(e)
/ / [<Y}5x79U (t,x) > 8tU+< Y, (eU(t,z) —m) ® IZ> . va} da dt

// Yiip(e (0)) A®, dzdt

/ /RN taw t z)*Q>PU 8t56 < t,zs M > P// )VISE] dx dt
—/ VwU.d,uD , wle) > 0ase—0.

0 JRN

In view of the dispersive estimates (5.11), the conclusion of Theorem 3.2 follows
as soon as we show that the expression on the right-hand side of (5.12) vanishes for
€ — 0. Similarly to the previous section, we use Gronwall type arguments proceeding
in several steps.
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5.3.1. Step 1—convective term I. Similarly to section 4, one may use the
compatibility condition (2.5) to control the error term

| [ v < v.Ule [ eopi a
0o JRN 0
Next, exactly as in the well-prepared case, we write
(Ve (@Uita) ~m) 0 2 ) s 9,0
— (Ve (@Ulta) ~m) e (B U) )i V.U (Vi gU(ra) < m) U V,U
to deduce that (5.12) reduces to
& (om | o+ ese, v+ V,0.) (1) + D(7) < wie)
+/ / [(Y¢;0U—m) - (8,U+U-V,U)| dzdt
0o JRrN
1 T
Gy - [ (Yo - s@)ae. ded
g 0 RN
1 T
+ / / [<Yfm; T — Q> P"(r)0;s.— <fo; m> . P/’(T)Vmsg] dz dt
g Jo RN ’ ’
+ c/ (1+£(t)) [55 (g, m ‘ B+ e80,v + ngg) n DE} at.
0
5.3.2. Step 2—convective term II. Next, we rewrite
/ / [(Yf,;0U —m) - (3,0 +U-V,U)] dedt
0o JRN
= / / (Y7 ,;0U—m) - (8yv+v-V,v)] dedt
0 JRN ’
(Y7, 0U —m) - (8;V,®.)] dxdt

(Y{,:0U—m)@v]: Vid, dxdt

S
0o JRN
+/ / [(Y7,;0U —m)-V,®.V,v| dadt
0 JRN ’
)
o JRN
1 T
+ - / / {(Yt‘ga,; oU—m) -V, \fobgﬂ dz dt.
2 0 RN ’
First observe that the last three integrals can be controlled in terms of

,
/ Va®ellyi.p(ps,psy dt  for some p > 2 sufficiently large,
0

and, consequently, in accordance with the dispersive estimates (5.11) vanish in the
asymptotic limit ¢ — 0. Indeed the desired estimates on (Y;p), (Y;m) follow
form (5.6), while v is bounded being a smooth solution of the incompressible Euler
System.
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Next, we have
/ / (Y 0U—m) - (9v+v-Vyv)| dedt
0 JRN

/ (Ye,;m vndmdt—// (Y5 0)U-V,II dedt,
RN

where the former term on the right-hand side may be handled exactly as in (4.6). As
for the latter, we get

i 0) U -V, II dx dt‘

//RN<tx; — >U Vdedt'+g

where the first term is small because of (5.6), while the second one vanishes for ¢ — 0
because of dispersive estimates. Indeed the pressure II may be computed by means
of (1.6) as

<e

/ V,®. - V,II dzdt|,
0 RN

I =—A,  div,div, (v ® v);

whence it is uniformly bounded in W14(RY) for any 1 < q < oo.
In accordance with (5.7),

Y 0U—m) - (0/V,P,)| dedt=— th,m 0tV @, dadt
0o JRN ’ 0

T 1 T
—I—/ / (Y 0)v-0,V, P, dxdt+ / / <wa, 0) - 0|V, @ |* dxdt,
o JrN =7 2J)o Jry ' 7

where, as v is solenoidal,
/ / <}/;€x7g>v : 8tvz®5 dl‘ dt
0 JRN ’

—E/ / < t,x — >V atV (P dx dt
RN
/ / < >V Vise dzxdt.
RN

The rightmost expression tends to zero because of the dispersive estimates for s..
Similarly,

;/ / <chca9>'at|va;q)g|2 dz dt
0

t=1

RN RN =0
_ t=1
// <m >V<I> Vs dodt+ £ U|v<1>|2dx] :
R t=0

where the first term on the right-hand side vanishes for e — 0 because of the dispersive
estimates.
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Consequently, the inequality (5.13) can be recast in the form

E. (g,m ‘ 0+es., v+ thbe) (1) +D%(7) <wl(e)

t=1
// (Yi,im) 0V, @, dodt+ U |V, ®.|? dx]
RN 2 RN t=0

su) -5 [ [ (e - s@) se. drar
13 0 RN
ST e o) P — (v m) PV dr
o JRN
+c/ (1+£&(1) [55 (g,m ‘ @+€sg,v+vx@g> +D5} dt,
0

where w(e) — 0 as € — 0.

5.3.3. Step 3—pressure estimates I. We have

—// Ve m) P (r) Vs, dzdt

P// — _ P// —
/ < tz; > (Q—I—ES;) (Q)szg dx dt
0

1
- // (Yiaim) - Vos. dedt
€ o0 Jo Jrv 7

T P// — _ P// —
RN

+// (Yi,im) - 0V, . dxdt,
0 RN

where the first integral on the right-hand side vanished for ¢ — 0 by virtue of the
dispersive estimates.
Next,

1// (Yyir —o0) P'(r)0s. dzdt
€ Jo RN ’
// P ()05 |2 da:dt—l—// <fz; >P”( )Ors. dadt
RN RN
o] G
/!
// P (Q)at‘55’ dz dt
RN
[lp )/ |se|? dx} / / <Yfm; >P”( )Orse dxdt
2 Q RN t—0 RN

!/ 1!
—g/ / Pi(r) — P"(e )35A<I>8 dz dt.
RN

Similarly to the above, the last integral is small in view of the dispersive estimates.
Summing up the previous observations with (5.14) and using the acoustic energy
balance (5.9), we deduce from (5.14) that
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(5.15)
Ee Q,m’g—i-asa,v—i-v @)( )+ D(1) <

//RN ip(0) — p(0) A2 dxdt+//RN<Ytam; >P,,( s, dodt

+c/0 (1+£(t) [88 (g,m ‘ §+ssg,v+vmcl>g) +D5] dt.

5.3.4. Step 4—pressure estimates II. We have

/ / < tac; — >P”( )0¢s. dxdt
RN
// <Yfgg7 >8t55 dzdt
RN
/! /! (—
—|—8/ / <tx; >P() P(Q)(?tsg dz dt
RN 9
/ / <Yfm, >A<I> dx dt
RN
_Q// <fo; >P<> P ng dvar
RN 9

where the last integral vanishes for € — 0. Thus we obtain that

£ (Q,m | D+ e5., v+ vche) (7) + DE(7) < wie)
3] e - v @e -0 - @) Ao drar
+c/0 (1+£())[ (g,m‘g+ssg,v+v¢)+zﬂ dt.

Consequently, using again the dispersive estimates (5.11), together with the energy
bounds, we obtain the desired conclusion
& (om | o+ ese, v+ V,0. ) (1) + D(r) < wle)

+c/OT(1+£(t)) [56 (Q,m ‘ @—l—esa,v—{—vgc‘l)g) +D€} dt.

(5.16)

where ¢ € L1(0,7T), and w(e) — 0 as € — 0. Thus a direct application of Gronwall’s
lemma completes the proof of Theorem 3.2.
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