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Abstract AFokker–Planck control strategy for collectivemotion is investigated. This
strategy is formulated as the minimisation of an expectation objective with a bilinear
optimal control problem governed by the Fokker–Planck equation modelling the evo-
lution of the probability density function of the stochastic motion. Theoretical results
on existence and regularity of optimal controls are provided. The resulting optimal-
ity system is discretized using an alternate-direction implicit Chang–Cooper scheme
that guarantees conservativeness, positivity, L1 stability, and second-order accuracy
of the forward solution. A projected non-linear conjugate gradient scheme is used to
solve the optimality system. Results of numerical experiments validate the theoretical
accuracy estimates and demonstrate the efficiency of the proposed control framework.
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1 Introduction

In recent years, there has been a surge of interest in the modelling and control of
collective motion. Collective movements are observed in group of cells [35], colonies
of bacteria, herds of animals [36], birds, and fishes [40]; see, e.g., [10] for a review on
collectivemotion in biological systems.Moreover, collectivemotion appears in human
behaviour as pedestrian track patterns and traffic flows [5,28], or for the interaction
of dust particles including noise [18].

The successful application of differential models has motivated laboratory inves-
tigation suggesting that collective motion models could be augmented by including
stochastic terms; see, e.g., [17,40]. For this reason, very recently differential mod-
els have been proposed that include noise modelled by a Wiener process; see, e.g.,
[8,28,35,40], where the underlying idea is that the individual random dispersal results
from collision that can be described by a Brownian motion.

However, in deterministic models, an optimal control is obtained by determining a
control function u that optimizes a given objective given by a cost functional J . For this
purpose, many control strategies are available as, for example, the model predictive
control (MPC) strategy [21] and linear–quadratic–regulator controlmethodologies.On
the other hand, in stochastic models the state evolution X (t) is random and represents
an outcome of a probability space, therefore a direct insertion of X (t) into the objective
J results into a random variable. For this reason, in stochastic optimal control, the
following average of the cost functional is considered [15]

J (X, u) = E

[∫ T

0
L(t, X (t), u(t)) dt + �[X (T )]

]
, (1)

where L and � are continuous functions which satisfy the polynomial growth condi-
tions:

|L(t, X, u)| ≤ C(1 + |X | + |u|)k

|�(X)| ≤ D(1 + |X |)k .

for some suitable constants C, D, k, and T is the final time. In this setting, the method
of dynamic programming can be applied [15] in order to formulate the Hamilton–
Jacobi–Bellman (HJB) equation for minu J with u the control function.

However, an advantageous approach is to formulate the control problem in a deter-
ministic framework, considering the problem from a statistical point of view. For this
reason, we remark that the state of a stochastic process can be completely character-
ized in many cases by the shape of its statistical distribution, which is represented by
the probability density function (PDF). Furthermore, we recognize that the evolution
of the PDF associated to a stochastic process with Brownian noise is governed by a
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Fokker–Planck (FP) equation. This is a partial differential equation of parabolic type
with Cauchy data given by an initial PDF distribution. Therefore, a control method-
ology formulated in terms of the PDF and the use of the Fokker–Planck equation can
provide an efficient control framework that can accommodate a wide class of objec-
tives. This strategy has been investigated in [2] in the case of quadratic objectives of
the PDF of the stochastic process. More recently, it has been recognized that the HJB
control framework is related to the FP control strategy whenever expectation objec-
tives are considered [3]; for a more detailed discussion on this issue see the end of
Sect. 3 below.

The purpose of this work is to investigate the FP control strategy for collec-
tive motion. Such a control strategy was recently investigated for crowd motion in
[34], where an objective containing a tracking-trajectory error and a terminal cost
expectation functional is formulated in terms of a ‘valley’ potential V , such that the
minimization of this functional aims at driving the motion in the region of low poten-
tial; the terminal cost is defined in a similar way. In [34], a control function dependent
only on space and a H1 cost of the control in the objective are considered. In this
work, we generalize our control to be space–time dependent. Further, for the cost of
the control, we consider two different functionals. In the first case, we take a H1 cost
of the control as in [34], which is usually chosen in open-loop control problems [6]. In
the second case, we consider an expectation functional of the H1 cost, which results
in a control function of feedback type. In both cases, we consider the presence of
box-constraints on the controls. Corresponding to these two functionals, we formulate
optimal control problems governed by the FP equation related to stochasticmotion and
characterize the solutions to these problems as the solutions of the resulting optimality
systems. Further, we analyze existence and regularity of the controls that appear in
the FP bilinear control structure; see for e.g., [6].

To compute the optimal controls, we discuss the discretization of the optimal-
ity systems based on an alternate-direction implicit (ADI) scheme combined with a
second-order accurate and positive preservingChang–Cooper (CC) scheme, as in [34].
In this reference, the authors state the conservativeness, positivity, L2 stability and sec-
ond order accuracy for the ADI-CC scheme. In this work, we prove rigorously that
the ADI-CC scheme is conservative, positive preserving, L1 stable, and second-order
accurate in space and time. We also discuss the extension of this scheme to the adjoint
equations appearing in the optimality systems. The forward and adjoint FP equations
and the optimality condition are solved with a projected gradient-based optimization
procedure.

In the following section, we present the stochastic model for motion where the
velocity field has the role of the control function and a Wiener process represents
dispersal due to collision among individuals. In correspondence to this model, we
discuss the FP equation where the drift given by the velocity field plays the role
of a control coefficient in the convective term. Together with the FP equation, an
initial PDF distribution is given that also represents the density distribution of the
individuals at the start of the evolution. Also in the next section, we discuss two
different objectives and the corresponding optimality systems with box constraints. In
particular, in the case of an expectation functional, we show that the adjoint problem
and the optimality condition may not depend on the PDF function (i.e., the forward
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problem) and result in a feedback control strategy. Section 3 is devoted to the analysis of
our optimal control problems and of the corresponding optimality systems.We discuss
the regularity of the control-to-state map, and prove existence of optimal controls and
differentiability of the reduced objectives. In Sect. 4, we discuss a stable, second-order
accurate discretization of the FP equation that is able to accommodate the inequality
constraint given by the optimality condition. The challenge is to construct a scheme
that is conservative and guarantees positivity for any value of the control function. We
achieve this goal combining an ADI method with the CC scheme. Further, we prove
stability and second-order space–time accuracy in the L1 norm that appears to be the
natural choice in the framework of FP problems. In Sect. 5, we obtain the discretized
FP adjoint based on the discretize-before-optimize strategy. In Sect. 6, we discuss a
projected non-linear conjugate gradient (NCG) scheme with H1 gradient to solve our
optimization problems which is an extension of NCG to optimization problems with
box constraints on the controls. Section 7 is devoted to the validation of our control
strategies and of our numerical analysis estimates. A section of conclusion completes
the presentation of our work.

2 A Fokker–Planck control framework

We investigate a strategy for the control of the motion of an individual whose position
at time t is denoted with X (t) ∈ R

n, 1 ≤ n ≤ 3, and its velocity field, depending
on position x and time t , is given by u = u(x, t) ∈ R

n . Further, we assume that the
individual is subject to random collisions with other individuals, forcing our individual
to a Brownian motion. This dynamics is modelled by the following continuous-time
stochastic process [30]

dX(t) = u(X (t), t) dt + σ dW(t),

X (t0) = X0, (2)

where the state variable X (t) is subject to deterministic infinitesimal increments driven
by the vector valued drift function u = (u1, . . . , un), and to random infinitesimal
increments proportional to a multi-dimensional Wiener process dWt ∈ R

n , with
stochastically independent components and σ ∈ R is a positive constant.

We assume that the process (2) is constrained to stay in a bounded convex domain
with Lipschitz boundaries, thus X (t) ∈ � ⊂ R

n , by virtue of a reflecting barrier on
∂�.

Now, we introduce the Fokker–Planck (FP) equation that governs the evolution of
the probability density function (PDF) of the process modelled by (2). We have

∂t f (x, t) − σ 2

2

n∑
i=1

∂2xi xi
f (x, t) +

n∑
i=1

∂xi (ui (x, t) f (x, t)) = 0

f (x, 0) = f0(x) (3)
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where f = f (x, t) is the PDF of the individual to be in x at time t . The function f0(x)

represents the initial PDF distribution that satisfies the following

f0 ≥ 0,
∫

�

f0(x)dx = 1. (4)

The function f0(x) represents the distribution of the initial position X0 of the process
and the domain of definition of the FP problem is Q = � × (0, T ).

The reflecting barrier conditions assumed on the process correspond to flux zero
boundary conditions for the FP equation. For this purpose, notice that (3) can bewritten
in flux form as follows

∂t f (x, t) = ∇ · F, f (x, 0) = f0(x), (5)

where the flux F is given component-wise by

Fj (x, t; f ) = σ 2

2
∂x j f − u j (x, t) f. (6)

Flux zero boundary conditions are formulated as follows

F · n̂ = 0 on ∂� × (0, T ), (7)

where n̂ is the unit outward normal on ∂�.
We anticipate that the drift u represents our control function that is sought in the

following admissible set

Uad =
{

u ∈
(

L2(0, T ; H1
0 (�))

)n | ua ≤ ui (x) ≤ ub, i = 1, . . . , n

a.e. in �, ua, ub ∈ R, ua ≤ 0 ≤ ub

}
. (8)

We denote U = (L2(0, T ; H1
0 (�)))n .

Our purpose is to discuss a robust control strategy with the objective modelled by
the following functional

J ( f, u) = α

∫
Q

V (x − xt ) f (x, t)dxdt + β

∫
�

V (x − xT ) f (x, T )dx

+ ν

2

∫ T

0

∫
�

A(u(x, t))dxdt, α, β, ν > 0, (9)

where xt = (x1(t), . . . , xn(t)) represents a desired trajectory, t ∈ [0, T ], xT =
x̄(T ), α, β, ν > 0. The function V represents a given convex and smooth potential;
see Fig. 1.
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Fig. 1 Two types of potential functions V at time t = 0. a Square potential. b Quartic potential

We consider two choices of quantifying the cost of the control. Thus we consider
A(u) as follows

A(u(x, t)) = |u(x, t)|2 + |∇u(x, t)|2, (C1)

A(u(x, t)) = (|u(x, t)|2 + |∇u(x, t)|2) f (x, t), (C2)

where | · | represents the standard Euclidean norm in R
n,∇u is the Jacobian matrix

whose entries are defined by (∇u)i j = ∂ui

∂x j
and |∇u| is the Frobenius norm of ∇u.

With this latter choice of A(u), the cost functional J is linear in f .
Minimising J corresponds to the aim to drive the random process to follow the path

of minimum potential at all times and to reach a region of low potential at the terminal
time. In fact, we use x̄ to define the minimum of V . This minimum can be interpreted
as the risk-free zone for the individual.

Nowwe formulate the optimal control problem tofindu thatminimizes the objective
J , given by (9), subject to the FP differential constraints (3), (4), (7), as follows

min
u∈Uad

J ( f, u)

subject to (3, 4, 7). (10)

Aswe prove in the next section, for a given control function u ∈ Uad , the solution of the
Fokker–Planck model (3) and (7) is uniquely determined. We denote this dependence
by f = 	(u) and one can prove that this mapping is differentiable. We introduce the
reduced cost functional Ĵ given by

Ĵ (u) = J (	(u), u). (11)

Correspondingly, a localminimum u∗ of Ĵ can be characterized by 〈∇ Ĵ (u∗), v−u∗〉 ≥
0 for all v ∈ Uad , where 〈·, ·〉 represents the L2(Q) inner product defined as follows

〈u, v〉 =
∫ T

0

∫
�

u(x, t)v(x, t) dxdt =
∫ T

0

∫
�

(u(·, t)v(·, t))L2(�) dt,
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which induces the norm ‖u‖L2(0,T ;L2(�)). This local minimum can be characterized
by using the following Lagrange functional

L( f, u, p) = J ( f, u) + 〈∂t f − ∇ · F, p〉, (12)

whose stationary points establish the first-order necessary conditions to the solution
of the optimal control problem (10).

For the case (C1), the first-order necessary conditions are given by

∂t f (x, t) − σ 2

2

n∑
i=1

∂2xi xi
f (x, t) +

n∑
i=1

∂xi (ui (x, t) f (x, t)) = 0

f (x, 0) = f0(x) in �

F · n̂ = 0 on ∂� × (0, T ),

(13)

−∂t p(x, t) − σ 2

2

n∑
i=1

∂2xi xi
p(x, t) −

n∑
i=1

ui (x, t)∂xi p(x, t) + αV (x − xt ) = 0

p(x, T ) = −βV (x − xT ) in �

∂p

∂ n̂
= 0 on ∂� × (0, T ),

(14)

〈
νuk − ν
uk − ∂p

∂xk
f, v − uk

〉
≥ 0 ∀v ∈ Uad, k = 1, . . . , n. (15)

For the case (C2), the first-order necessary conditions are given by (13) along with

−∂t p(x, t) − σ 2

2

n∑
i=1

∂2xi xi
p(x, t) −

n∑
i=1

ui (x, t)∂xi p(x, t)

+αV (x − xt ) + ν

2
(|u(x, t)|2 + |∇u(x, t)|2 = 0

p(x, T ) = −βV (x − xT ) in �

∂p

∂ n̂
= 0 on ∂� × (0, T ), (16)

〈
νuk f − ν
uk f − ∂p

∂xk
f, v − uk

〉
≥ 0 ∀v ∈ Uad, k = 1, . . . , n. (17)

Notice that in the optimality system (15), the following reduced L2 gradient compo-
nents appear

∇uk Ĵ (u)(·, t) =
[
νuk − ν
uk − ∂p

∂xk
f

]
(·, t), k = 1, . . . , n, (18)
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and in the optimality system (17), the following reduced L2 gradient components
appear

∇uk Ĵ (u)(·, t) =
[(

νuk − ν
uk − ∂p

∂xk

)
f

]
(·, t), k = 1, . . . , n, (19)

for almost all t ∈ [0, T ], where 
 is the distributional Laplacian. Now, let us discuss
the control-unconstrained case. In this case optimality requires∇uk Ĵ (u) = 0. Because
of the H1 control costs, we have a setting that allows to include boundary conditions on
the control function.Byconsidering thederivationof the optimality systemaboveusing
the Lagrange formulation [38], we find that a convenient choice is to require u = 0
on ∂�. However, also homogeneous Neumann boundary conditions are appropriate.
We chose homogeneous Dirichlet boundary conditions because in this case the control
does not appear in the FP flux zero boundary conditions given by (7). Alternatively, we
could choose Neumann boundary conditions and the control function on the boundary
would result by application of the trace operator.

Notice that, assuming the last term in (18) being in H−1(�) and because � is a
Lipschitz convex domain, the solution of the gradient equation with homogeneous
Dirichlet boundary conditions results in u(·, t) ∈ H1

0 (�). However, we wish to apply
a gradient-based optimization scheme where the residual of (18) is used. For this
purpose, we cannot use this residual directly for updating the control, since it is in
H−1(�). Therefore, it is necessary to determine the reduced H1 gradient. This is done
based on the following fact

(
∇ Ĵ (u)H1(·, t), ϕ(·)

)
H1(�)

=
(
∇ Ĵ (u)(·, t), ϕ(·)

)
L2(�)

,

a.e., in (0, T ) and ϕ ∈ (H1
0 (�))n . Using the definition of the H1 inner product and

integrating by parts, we have that the H1 gradient is obtained by solving the following
boundary value problem for t ∈ (0, T )

− 

(
∇uk Ĵ (u)H1

)
+

(
∇uk Ĵ (u)H1

)
= ∇uk Ĵ (u) in � (20)(

∇uk Ĵ (u)H1

)
= 0 on ∂�, (21)

where k = 1, . . . , n,∇uk Ĵ (u)H1 denotes the kth component of ∇uk Ĵ (u)H1 and (20)–
(21) is defined in the weak sense. The solution to this problem provides the appropriate
gradient to be used in a gradient update of the control that includes projection to satisfy
the given control constraints.

3 Theory of the Fokker–Planck optimal control problem

In this section, we discuss the existence of solutions to the optimal control problem
(10) and its characterization by the optimality system (13)–(15). While we follow
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a ‘classical’ reasoning path to analyze our problems, we refer to, e.g., [32] for an
interesting alternative theoretical framework.

To simplify our analysis while addressing the essential issues, we consider β = 0
in the cost functional.

Consider the following FP control problem

min J ( f, u), s.t. E( f0, u) = 0, (22)

where the equation E( f0, u) = 0 denotes (13).
Our analysis of this problem starts with a discussion concerning existence of weak

solutions to E( f0, u) = 0. In the case of (13) in a bounded domain and with reflect-
ing boundary conditions, we refer to classical results in [9,33] for time-dependent
convection–diffusion equations with Robin boundary conditions; see also the recent
works [13,16]. Furthermore, to link our discussion to a more general framework, we
refer to [19,20,26]. We have the following proposition.

Proposition 1 Let f0 ∈ H1(�), f0 ≥ 0, and u ∈ Uad ⊂ U. Then E( f0, u) = 0
admits a unique non-negative solution f ∈ L2(0, T ; H1(�)) ∩ C([0, T ]; L2(�)).

Weremark that using classical bootstrapping techniques [37], one canget the H2(�)

regularity in space. Furthermore, because of (5) and (7), we can prove the following
theorem that states conservation of the total probability.

Proposition 2 The FP problem (13) with (4) is conservative.

To prove this proposition and a stability property of our FP model, we consider the
L2 scalar product with a test function ψ ∈ H1(�). Integrating by part the diffusion
operator and including the flux zero boundary conditions, we obtain the following

∫
�

∂ f

∂t
ψdx = −σ 2

2

∫
�

∇ f · ∇ψdx +
∫

�

(u f ) · ∇ψ dx. (23)

Notice that choosingψ = 1, we obtain
∫
�

f (x, t)dx = 1 for all t ∈ [0, T ]; this proves
Proposition 2. On the other hand, by choosing ψ = f (·, t), we have

∂

∂t
‖ f (t)‖2L2(�)

= −σ 2‖∇ f (t)‖2L2(�)
+ 2

∫
�

(u f (t)) · ∇ f (t) dx. (24)

Now, denote ū = max{|ua |, |ub|} and use the Cauchy inequality, 2bd ≤ b2/k + kd2,
to estimate the last term in (24). We choose k = σ 2/ū and obtain the following

∂

∂t
‖ f (t)‖2L2(�)

≤ ū2

σ 2 ‖ f (t)‖2L2(�)
.

Therefore we have

‖ f (t)‖L2(�) ≤ ‖ f0‖L2(�) exp

(
ū2

2σ 2 t

)
. (25)
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This result provides a useful bound of the L2 norm of the PDF.
Next, we state some further properties of the solution to (13), which we need in

order to analyse our FP optimal control problem. We have the following proposition.

Proposition 3 Let f0 ∈ H1(�), f0 ≥ 0, and u ∈ Uad ⊂ U. Then if f is a solution
to E( f0, u) = 0, the following inequalities hold

‖ f ‖L∞(0,T ;L2(�)) ≤ c1‖ f0‖L2(�), (26)

‖∂t f ‖L2(0,T ;H−1(�)) ≤ (
c2 + c3‖u‖L2(�;Rn)

) ‖ f0‖L2(�), (27)

where c1, c2, c3 are positive constants. Further, if σ 2 > ū then the following inequality
holds

‖ f ‖L2(0,T ;H1(�)) ≤ c4‖ f0‖L2(�), (28)

where c4 is a positive constant.

Proof The inequality (26) follows from (25), with

c1 = exp

(
ū2T

2σ 2

)
.

For proving inequality (27), we note that

‖∂t f ‖H−1(�) = sup
ψ∈H1

0 (�)

ψ �=0

〈∂t f, ψ〉L2(�)

‖ψ‖H1
0 (�)

.

From (23), using (25) we get

〈∂t f, ψ〉L2(�) ≤ (c2 + c3‖u‖L2(�;Rn)))‖ f0‖L2(�)‖ψ‖H1
0 (�),

where

c2 = c22σ
2

2
, c3 = c21.

To prove (28), we first integrate (24) in (0, T ) to obtain

‖ f (T )‖2L2(�)
− ‖ f0‖2L2(�)

= −σ 2
∫ T

0
‖∇ f (t)‖2L2(�)

dt

+ 2
∫ T

0

∫
�

(u f (t)) · ∇ f (t) dxdt.
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Using the Cauchy inequality, we have

σ 2
∫ T

0
‖∇ f (t)‖2L2(�)

dt ≤ ‖ f0‖2L2(�)
+ ū

∫ T

0

(
‖ f (t)‖2L2(�)

+ ‖∇ f (t)‖2L2(�)

)
dt.

This implies

(σ 2 − ū)

∫ T

0
‖∇ f (t)‖2L2(�)

dt ≤ ‖ f0‖2L2(�)
+ ū

∫ T

0
‖ f (t)‖2L2(�)

dt. (29)

Adding (σ 2 − ū)
∫ T
0 ‖ f (t)‖2

L2(�)
dt to (29) we have the following

(σ 2 − ū)

∫ T

0

(
‖ f (t)‖2L2(�)

+ ‖∇ f (t)‖2L2(�)

)
dt

≤ ‖ f0‖2L2(�)
+ σ 2

∫ T

0
‖ f (t)‖2L2(�)

dt. (30)

From (25), we have

∫ T

0
‖ f (t)‖2L2(�)

dt ≤ ‖ f0‖2L2(�)

∫ T

0
exp

(
ū2

2σ 2 t

)
dt

= 2σ 2

ū2

[
exp

(
ū2

2σ 2 T

)
− 1

]
‖ f0‖2L2(�)

. (31)

Therefore we obtain

(σ 2 − ū)

∫ T

0

(
‖ f (t)‖2L2(�)

+ ‖∇ f (t)‖2L2(�)

)
dt

≤ 2σ 4

ū2

[
exp

(
ū2

2σ 2 T

)
− 1 + ū2

2σ 4

]
‖ f0‖2L2(�)

. (32)

This proves (28) with c4 =
√

2σ 4

ū2(σ 2 − ū)

[
exp

(
ū2

2σ 2 T

)
− 1 + ū2

2σ 4

]
. ��

Using the results above, we obtain that the mapping 	 : U → C([0, T ]; H1(�)),

u → f = 	(u) is continuous. Following the arguments given in [2,38], we can prove
that this mapping is Fréchet differentiable. This is stated in the following theorem.

Proposition 4 LetA = −1

2

∑n
i=1 ∂2xi xi

(ai (x) ·) andB = −∑n
i=1 ∂xi (·) The mapping

	 : U → C([0, T ]; H1(�)), u → f = 	(u) is the solution to E( f0, u) = 0, is
Fréchet differentiable, and e = 	′

u∗ · h satisfies the equation

ė + Ae = B(u∗e) + B(h f ∗), e(0) = 0,
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where f ∗ = 	(u∗) and h ∈ U.

In the following proposition, we discuss the properties of the cost functional.

Proposition 5 The objective functional (9) is sequentially weakly lower semicontin-
uous (w.l.s.c.), bounded from below, coercive on U, and it is Fréchet differentiable.

The proof of this proposition is straightforward, once one recalls that the PDF is a
nonnegative function.

The next result states existence of an optimal control u∗.

Proposition 6 Assume that f0 ∈ H1(�) and it satisfies (4), and the objective is given
by (9). Then there exists a pair ( f ∗, u∗) ∈ C([0, T ]; H1(�)) × Uad such that f ∗ is a
solution to E( f0, u∗) = 0 and u∗ minimizes J in Uad.

Proof The proof follows standard arguments [38]. In fact, boundedness from below of
J guarantees the existence of aminimising sequence (um). SinceU is reflexive and J is
sequentially w.l.s.c. and coercive inU , this sequence is bounded. Therefore it contains
a weakly convergent subsequence (uml ) in H1

0 (�;Rn), uml ⇀ u∗. Correspondingly,
the sequence ( f ml ), where f ml = 	(uml ), is bounded in L2(0, T ; H1(�)), while the
sequence of the time derivatives, (∂t f ml ), is bounded in L2(0, T ; H−1(�)). Therefore
both sequences converge weakly to f ∗ and ∂t f ∗, respectively. Now, we invoke the
Theorem of Aubin–Lions [25] to state strong convergence of a subsequence ( f mk ) in
L2(0, T, L2(�)). At this point, it remains to address the bilinear state-control term
in the FP equation. For this purpose, notice that we need to consider the sequence
∇ · (umk f mk ) within the weak formulation of solutions to the FP problem. There-
fore we focus on 〈∇ · (umk f mk ), ψ〉L2(�) for any ψ ∈ H1(�) (we omit the time
dependence of f ). Since umk ∈ H1

0 (�;Rn), we have 〈∇ · (umk f mk ), ψ〉L2(�) =
−〈(umk f mk ),∇ψ〉L2(�;Rn). Now, from the previous discussion, we can state weak
convergence of the sequence of products (umk f mk ) in L2(0, T, L2(�;Rn)), that is,
〈(umk f mk ),∇ψ〉L2(�;Rn) → 〈(u∗ f ∗),∇ψ〉L2(�;Rn). With this preparation, and again
using the standard argument of considering the limiting sequences in the weak formu-
lation of solutions to the FP problem (13), it follows that f ∗ = 	(u∗), and the pair
( f ∗, u∗) minimizes the objective. ��

Finally, the following proposition shows the differentiability of the reduced func-
tional Ĵ defined in (11), which can be proved using similar arguments as in [38].
Notice that here 
 denotes the vector Laplacian.

Proposition 7 The reduced functional Ĵ (u) is differentiable and its derivative is given
by

d Ĵ (u) · v =
〈
νu − ν
u − f ∂x p, v

〉
∀v ∈ U,

for the case (C1) and

d Ĵ (u) · v =
〈
νu f − ν
u f − f ∂x p, v

〉
∀v ∈ U,
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for the case (C2), where p is the solution to the adjoint equation

−∂t p(x, t) − σ 2

2

n∑
i=1

∂2xi xi
p −

n∑
i=1

ui∂xi p = −αV (x − xt ),

∂p

∂n
= 0 on ∂� × (0, T ),

with p(x, T ) = −βV (x − xT ) for the case (C1), and

−∂t p(x, t) − σ 2

2

n∑
i=1

∂2xi xi
p −

n∑
i=1

ui∂xi p

= −αV (x − xt ) − ν

2
(|u(x, t)|2 + |∇u(x, t)|2),

with p(x, T ) = −βV (x − xT ) for the case (C2) and f is the solution to E( f0, u) = 0.

Similarly to the discussion above concerning the forward FP problem, we refer to
[9,33] for results on existence and regularity of solutions to the adjoint FP problem.

At this point, we are able to elucidate the connection of the present FP open-loop
approach with the feedback control strategy that results in the HJB framework. This
connection is established in the case (C2), where the objective J ( f, u) given in (9)
is linear in f and becomes an expectation cost functional. In fact, in this case the
optimality condition takes the following form

〈
f

(
νuk − ν
uk − ∂p

∂xk

)
, v − uk

〉
≥ 0 ∀v ∈ Uad, k = 1, . . . , n.

Now, it appears that, in the unconstrained-control case, the condition νuk − ν
uk −
∂xk p = 0 in � and u = 0 on ∂�, and a.e. in (0, T ), is a sufficient condition for
optimality. In this case, the control u is determined by this optimality condition and
the adjoint equation and thus this control can be regarded as closed-loop control for
our stochastic model.

We should further notice that the PDF of the stochastic process is everywhere non-
negative and it cannot be zero on an open set (for any t > 0). Therefore the boundary
value problem mentioned above constitutes also a necessary condition for optimality.
Moreover, the fact that the PDF is a.e. positive allows to extend the above consideration
to the constrained-control case, which then requires that the control u must satisfy an
elliptic variational inequality.

4 Discretization of the optimality system

In this section, we discuss the spatial discretization to the FP and adjoint FP equations
using the Chang–Cooper scheme that is a second-order accurate numerical scheme
for the FP equation. We restrict ourselves to the two-dimensional case and assume
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that the control function is Lipschitz continuous in space with Lipschitz constant �

independent of t , i.e.,

‖u(x1, y1, t) − u(x2, y2, t)‖ ≤ �‖(x1, y1) − (x2, y2)‖,
∀(x1, y1), (x2, y2) ∈ � ⊂ R

2, t ∈ [0, T ], (33)

where ‖ · ‖ represents the Euclidean norm in R
2 and � ≡ (−a, a) × (−a, a) is a

square domain. Then consider a sequence of uniform grids {�h}h>0 given by

�h = {(x, y) ∈ R
2 : (xi , y j ) = (−a + ih,−a + jh), (i, j) ∈ {0, . . . , Nx }2} ∩ �,

where Nx represents the number of cells in each direction and h is the spatial stepsize.
Moreover, h is chosen such that the boundaries of � coincide with the grid points. Let
δt be the time stepsize and Nt denotes the number of time steps. Define

Qh,δt = {(xi , y j , tm) : (xi , y j ) ∈ �h, tm = mδt, 0 ≤ m ≤ Nt }.

On the grid Qh,δt , f m
i, j represents the value of the grid function in �h at (xi , y j ) and

time tm .
For space discretization, we need a second-order scheme which guarantees posi-

tivity of the PDF together with the conservation of the total probability. These are the
essential features of the Chang–Cooper (CC) scheme. The first step in the formulation
of the CC scheme is to consider the flux form of the FP equation (13). The divergence
of the flux term, ∇ · F , at time tm can be discretized as follows

∇ · F = 1

h

{(
Fm

i+ 1
2 , j

− Fm
i− 1

2 , j

)
+

(
Fm

i, j+ 1
2

− Fm
i, j− 1

2

)}

where Fm
i+ 1

2 , j
and Fm

i, j+ 1
2
represents the flux in the i th and j th direction respectively

at the point (xi , x j ) and is given as

Fm
i+ 1

2 , j
=

[
−(1 − δm

i+ 1
2 , j

)u1
i+ 1

2 , j,m
+ σ 2

2h

]
f m
i+1, j −

[
σ 2

2h
+ δm

i+ 1
2 , j

u1
i+ 1

2 , j,m

]
f m
i, j ,

(34)

and

Fm
i, j+ 1

2
=

[
−(1 − δm

i, j+ 1
2
)u2

i, j+ 1
2 ,m

+ σ 2

2h

]
f m
i, j+1 −

[
σ 2

2h
+ δm

i, j+ 1
2
u2

i, j+ 1
2 ,m

]
f m
i, j ,

(35)

where

u1
i+ 1

2 , j,m
= −u1

(
xi+ 1

2
, y j , tm

)
,
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u2
i, j+ 1

2 ,m
= −u2

(
xi , y j+ 1

2
, tm

)
, (36)

and

δm
i+ 1

2 , j
= 1

wm
i+ 1

2 , j

− 1

exp

(
wm

i+ 1
2 , j

)
−1

, wm
i+ 1

2 , j
= −2hu1

i+ 1
2 , j,m

/σ 2,

δm
i, j+ 1

2
= 1

wm
i, j+ 1

2

− 1

exp

(
wm

i, j+ 1
2

)
−1

, wm
i, j+ 1

2
= −2hu2

i, j+ 1
2 ,m

/σ 2. (37)

This scheme is discussed in [2,7,27].

4.1 An ADI-CC scheme for solving the FP equation

For time discretizations, we use the alternate-direction implicit (ADI) method [11,12,
31]. We couple the ADI scheme with the CC scheme for space discretization to solve
the FP equation (13) and refer to the ADI-CC scheme. To formulate our ADI-CC
scheme, we introduce an intermediate half time step tm+ 1

2
between tm and tm+1. Thus

for the FP equation (13) in 2D, the scheme can be written as follows

f
m+ 1

2
i, j − f m

i, j

δt/2
= 1

h

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+ 1

h

(
Fm

i, j+ 1
2

− Fm
i, j− 1

2

)
,

f m+1
i, j − f

m+ 1
2

i, j

δt/2
= 1

h

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+ 1

h

(
Fm+1

i, j+ 1
2

− Fm+1
i, j− 1

2

)
,

(38)

for all (i, j) ∈ {1, . . . , Nx − 1}. The flux zero boundary condition at the discrete level
is given by

F(i, Nx − 1/2, tm) = 0, F(i, 1/2, tm) = 0 ∀i = 0, . . . Nx ,

F(Nx − 1/2, j, tm) = 0, F(1/2, j, tm) = 0 ∀ j = 0, . . . Nx ,
(39)

for all m = 0, 1/2, 1, 3/2, . . . , Nt . Both equation in (38) are implicit, but only with
respect to one of the two spatial dimension of the flux. The algorithm for implementing
the ADI-CC scheme (38)–(39) is given below.
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4.1.1 Analysis of the ADI-CC scheme

We now study the properties of the ADI-CC scheme (38)–(39). The following lemma
states the conservativeness of the ADI-CC scheme.

Lemma 4.1 The ADI-CC scheme (38)–(39) is conservative.

Proof To see this, we add both the equations in (38) to get

f m+1
i, j − f m

i, j

δt/2
= 2

h

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+ 1

h

(
Fm

i, j+ 1
2

− Fm
i, j− 1

2

)

+ 1

h

(
Fm+1

i, j+ 1
2

− Fm+1
i, j− 1

2

)
. (40)

Summing over all i, j , we have

∑
i, j

f m+1
i, j − f m

i, j

δt/2
=

∑
i, j

[
2

h

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+ 1

h

(
Fm

i, j+ 1
2

− Fm
i, j− 1

2

)

+ 1

h

(
Fm+1

i, j+ 1
2

− Fm+1
i, j− 1

2

)]
. (41)

The right hand side of (41) is a telescoping series. After summation we have

∑
i, j

f m+1
i, j − f m

i, j

δt/2
=

∑
j

2

h

(
F

m+ 1
2

Nx − 1
2 , j

− F
m+ 1

2
1/2, j

)
+

∑
i

1

h

(
Fm

i,Nx − 1
2

− Fm
i,1/2

)

+
∑

i

1

h

(
Fm+1

i,Nx − 1
2

− Fm+1
i,1/2

)

= 0 (using (39)). (42)

This gives

∑
i, j

f m+1
i, j =

∑
i, j

f m
i, j , ∀m = 0, . . . , Nt − 1, (43)

which proves conservativeness of the ADI-CC scheme. ��

To study the properties of positivity and error estimates for (38), we write the
numerical method in matrix–vector form for the unknown f̃ m

j = ( f m
1, j , . . . , f m

Nx −1, j )

to make the analysis easier. We do this for the first equation in (38). A similar analysis
follows for the second equation in (38).
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We define the following

α
m+ 1

2
i, j = σ 2

2h
+ δ

m+ 1
2

i+ 1
2 , j

u1
i+ 1

2 , j,m+ 1
2

= −
u1

i+ 1
2 , j,m+ 1

2(
w

m+ 1
2

i+ 1
2 , j

− 1

) , 1 ≤ i, j ≤ Nx − 1,

βm
i, j = σ 2

2h
+ δm

i, j+ 1
2
u2

i, j+ 1
2 ,m

= −
u2

i, j+ 1
2 ,m(

wm
i, j+ 1

2
− 1

) , 1 ≤ i, j ≤ Nx − 1,

α
m+ 1

2
0, j = 0, 1 ≤ j ≤ Nx − 1,

βm
i,0 = 0, 1 ≤ i ≤ Nx − 1,

(44)

where δ
m+ 1

2

i+ 1
2 , j

, δm
i, j+ 1

2
are defined in (37) and w

m+ 1
2

i+ 1
2 , j

= exp(w
m+ 1

2

i+ 1
2 , j

), wm
i, j+ 1

2
=

exp(wm
i, j+ 1

2
). We remark that α

m+ 1
2

i, j , βm
i, j are positive.

Using (44), the first equation in (38) reads as follows

M j f̃
m+ 1

2
j = D1 j f̃ m

j+1 + D2 j f̃ m
j + D3 j f̃ m

j−1, (45)

where

M j =
(

I − δt

2
Ā j

)
(46)

and Ā j is a tridiagonal matrix whose entries are given by

( Ā j )i,i−1 = α
m+ 1

2
i−1, j/h, 2 ≤ i ≤ Nx ,

( Ā j )i,i = −
(

α
m+ 1

2
i−1, jw

m+ 1
2

i− 1
2 , j

+ α
m+ 1

2
i, j

)
/h, 1 ≤ i ≤ Nx ,

( Ā j )i,i+1 = α
m+ 1

2
i, j w

m+ 1
2

i+ 1
2 , j

/h, 1 ≤ i ≤ Nx − 1,

(47)

D1 j , D2 j , D3 j are diagonal matrices of order Nx − 1, whose i th diagonal entries are
given by

(D1 j )i = δt

2h
βm

i j w
m
i, j+ 1

2
,

(D2 j )i = 1 − δt

2h

(
βm

i, j−1w
m
i, j− 1

2
+ βm

i, j

)
,

(D3 j )i = δt

2h
βm

i, j−1.

(48)
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For our forthcoming discussions, we define the logarithmic norm-1 of a matrix
μ1(A) = limτ→0(‖I + τ A‖1 − 1)/τ , that is μ1(A) = maxi (aii + ∑

l �=i |ali |). We

also introduce the following compatible vector norms ‖ f ‖1 = ∑n
i, j=0 | fi, j |, f ∈ R

n2

and ‖M‖1 = max j=1,...,n
∑n

i=1 |Mi j |, M ∈ R
n2×n2 .

Remark 4.1 The matricesM j defined in (46) and (47) are non singular. We recall the
following theorem [23]: let A be a matrix and μ1(A) the logarithmic norm-1, then

μ1(A) ≤ ω iff ‖(I − τ A)−1‖1 ≤ 1/(1 − τω) for τω < 1. Since α
m+ 1

2
i j > 0 it is

μ1( Ā j ) = 0, then from (46) follows that M−1
j exists and ‖M−1

j ‖1 ≤ 1.

Remark 4.2 We can show that ‖M j‖1 = 1. Similarly, as it has been shown in [27,34],
if the following condition is satisfied

δt <
2

�
, (49)

where � > 0 is the Lipschitz constant of the control u defined in (33), then M j is
an M-matrix. In fact, M j is an M-matrix if S j = I − diag(M j )M j is positive and
a convergent matrix [39], where diag(M j ) is the diagonal part of M j , that is from
(47)

diag(M j )i i = 1 + δt

2h

(
α

m+ 1
2

i−1, jw
m+ 1

2

i− 1
2 , j

+ α
m+ 1

2
i, j

)
1 ≤ i ≤ Nx .

Thus S has the following non-vanishing elements

(S j )i,i−1 = α
m+ 1

2
i−1, j

2h

δt
+

(
α

m+ 1
2

i−1, jw
m+ 1

2

i− 1
2 , j

+ α
m+ 1

2
i, j

) ,

(S j )i,i+1 =
α

m+ 1
2

i, j w
m+ 1

2

i+ 1
2 , j

2h

δt
+

(
α

m+ 1
2

i−1, jw
m+ 1

2

i− 1
2 , j

+ α
m+ 1

2
i, j

) .

It is immediate to see from (44) that all these elements are non-negative. Now S is a
convergent matrix if the spectral radius is less than 1. From the Gerschgorin theorem
this is verified when

∑Nx
j=1,
j �=i

|Si j | < 1, that is

α
m+ 1

2
i−1, j + α

m+ 1
2

i, j w
m+ 1

2

i+ 1
2 , j

2h

δt
+

(
α

m+ 1
2

i−1, jw
m+ 1

2

i− 1
2 , j

+ α
m+ 1

2
i, j

) < 1,

123



A Fokker–Planck approach to control collective motion

which is equivalent to the condition

α
m+ 1

2
i, j

(
w

m+ 1
2

i+ 1
2 , j

− 1

)
− α

m+ 1
2

i−1, j

(
w

m+ 1
2

i− 1
2 , j

− 1

)
<

2h

δt
.

By using the first equation of (44) we get u1
i− 1

2 , j,m+ 1
2

− u1
i+ 1

2 , j,m+ 1
2

< 2h/δt . Using

(33), we can show that |u1
i+ 1

2 , j,m+ 1
2

− u1
i− 1

2 , j,m+ 1
2
| < �h. Thus, the condition �h <

2h/δt implies S is a convergent matrix. Therefore, M−1
j exists with non-negative

entries under the condition δt < 2/�.

We now want to derive some numerical properties of our ADI-CC scheme. In view
of this,we consider theFPequations (13)with a source term g(x, t). The corresponding
ADI-CC scheme is given as follows

f
m+ 1

2
i, j − f m

i, j

δt/2
= 1

h

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+ 1

h

(
Fm

i, j+ 1
2

− Fm
i, j− 1

2

)
+ g

(
xi, j , tm)

f m+1
i, j − f

m+ 1
2

i, j

δt/2
= 1

h

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+ 1

h

(
Fm+1

i, j+ 1
2

− Fm+1
i, j− 1

2

)
+ g

(
xi, j , tm+1

)
.

(50)

Let f m=( f m
1,1, . . . , f m

Nx −1,1, . . . , f m
1,2, . . . f m

Nx −1,2, . . . , f m
1,Nx −1, . . . , f m

Nx −1,Nx −1),
then we can rewrite the first step of the ADI-CC scheme (45) or (50) as follows

M f m+ 1
2 = D f m + gm

i, j , m = 0, . . . Nt − 1, (51)

where g = δt

2
g. The matrixM is a block diagonal matrix with (Nx −1) blocks where

the j th diagonal block is given by

M j = I − δt

2
Ā j , j = 1 . . . Nx − 1,

and Ā j is defined as in (47). The matrix D is given by

⎛
⎜⎜⎜⎜⎜⎜⎝

(D1
2)1, . . . , (D1

2)Nx −1, (D1
1)1, . . . (D1

1)Nx −1, 0, . . . . . . , 0
(D2

3)1, . . . , (D2
3)Nx −1, (D2

2)1, . . . (D2
2)Nx −1, (D2

1)1, . . . (D2
1)Nx −1, 0, . . . . . . , 0

0, . . . . . . . . . . . . . . . . . . . . . 0, (D3
3)1, . . . (D3

3)Nx −1, (D3
2)1, . . . (D3

2)Nx −1, 0, . . . . . . , 0
.
.
.

.

.

.
.
.
.

.

.

.

0, . . . 0, . . . 0, . . . (DNx −1
2 )1, . . . (DNx −1

2 )Nx −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(52)

Remark 4.3 From (48), notice that the entries of the matrices D1 j and D3 j are
non-negative. Moreover, the entries of D2 j are also non-negative provided that

maxi, j,m
δt

2h
(βm

i, j−1w
m
i, j− 1

2
+ βm

i, j ) ≤ 1. In fact, since u is bounded, by using (44),
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we can show that maxi, j,m(βm
i, j−1w

m
i, j− 1

2
+ βm

i, j )h ≤ M with

M = h B

e2h B/σ 2 − 1
+ h B

1 − e−2h B/σ 2
, where

B = min
x,y,t

u2(x, y, t), B = max
x,y,t

u2(x, y, t). (53)

Thus the CFL-like condition

δt <
2h2

M
(54)

guarantees the non-negativity of D2 j . Finally, a direct calculation with (48) gives
‖D‖1 = 1. We also note that limh→0 M = σ 2 > 0.

Next, we show that the ADI-CC scheme is positivity preserving. This is important
because the solution of the continuous FP equation represents a probability density
function which is non-negative at all times. Thus it is necessary for the numerical
scheme to have the same property.

Theorem 4.1 There exist two positive constants M and � such that for δt <

min{ 2
�
, 2h2

M }, the ADI-CC scheme (38)–(39) applied to Eqs. (13) with (4) is positive
preserving.

Proof We note that the ADI-CC scheme is composed of two steps. We show positivity
of both the steps that implies positivity of the ADI-CC scheme. The first step of the
ADI-CC scheme is given by the first Eqs. (38)–(39).

Combining the statement of Remarks 4.2 and 4.3 we get the following condition
of positivity of the first step of the ADI-CC scheme (38)–(39).

δt < min

{
2

�
,
2h2

M

}
. (55)

In a similar way, (55) would ensure positivity of the second step of the ADI-CC
scheme. Thus the ADI-CC scheme in (38) is positive under the CFL condition (55). ��

We now show the stability of the ADI-CC scheme.

Theorem 4.2 The ADI-CC scheme (38)–(39), related to Eqs. (13)–(4), is discrete L1

stable under the CFL-like condition (55) i.e.,

‖ f m‖1 = ‖ f 0‖1, m = 0, . . . , Nt − 1.

Proof From Lemma 4.1, we get

n∑
i, j=0

f m
i, j =

n∑
i, j=0

f 0i, j , ∀m = 1, . . . , Nt , (56)
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Using Theorem 4.1, (56) can be written as

n∑
i, j=0

| f m
i, j | =

n∑
i, j=0

| f 0i, j |, ∀m = 1, . . . , Nt , (57)

which proves our result. ��
Theorem 4.3 The solution f m

i, j obtained from the ADI-CC scheme (38)–(39), related
to Eqs. (13)–(4) with a source g(x, t), under the CFL-like condition (55), satisfies the
following inequality

‖ f m‖1 ≤ ‖ f 0‖1 + δt
m∑

n=0

max
(
‖gn‖1, ‖gn−1/2‖1

)
, m = 0, . . . Nt − 1.

Proof SinceM j is invertible as shown in the Remarks 4.1 and 4.2, it follows thatM
is invertible. Thus, (51) can be written as follows

f m+ 1
2 = M−1D f m + M−1gm, m = 0, . . . Nt − 1. (58)

Taking discrete L1 norm on both sides of (58), we have

‖ f m+ 1
2 ‖1 ≤ ‖M−1‖1‖D‖1‖ f m‖1 + ‖M−1‖1‖gm‖1, m = 0, . . . Nt − 1. (59)

From Remarks 4.1 and 4.3, we know that both ‖M−1‖1 and ‖D‖1 are equal to 1
under the condition (55). The same analysis can be performed for the second half time
step of Eq. (50), and included in the previous inequality. Hence, by substituting the

value of g with
δt

2
g and calculating the summation, we get the required bound. ��

Next, we investigate the consistency of the ADI-CC scheme (38)–(39). We define
the following

D̄x f m
i, j = D+C

m+ 1
2

i− 1
2 , j

D− f m
i + D+B

m+ 1
2

i− 1
2 , j

Mδ f m
i ,

D̄y f m
i, j = D+Cm

i, j− 1
2

D− f m
j + D+Bm

i, j− 1
2

Mδ f m
j ,

(60)

where

D+ fi = ( fi+1, j − fi, j )/h,

D− fi = ( fi, j − fi−1, j )/h,

Mδ fi = (1 − δi−1) fi, j + δi−1 fi−1, j ,

D+ f j = ( fi, j+1 − fi, j )/h,

D− f j = ( fi, j − fi, j−1)/h,

Mδ f j = (1 − δ j−1) fi, j + δ j−1 fi, j−1.
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Therefore (38), with the fluxes given in (34) and (35), can be written as follows

f
m+ 1

2
i, j − f m

i, j

δt/2
= 1

h

(
D̄x f

m+ 1
2

i, j + D̄y f m
i, j

)

f m+1
i, j − f

m+ 1
2

i, j

δt/2
= 1

h

(
D̄x f

m+ 1
2

i, j + D̄y f m+1
i, j

)
.

(61)

Adding the two equations in (61), we get

f m+1
i, j − f m

i, j

δt
= 1

2h

[
2D̄x f

m+ 1
2

i, j + D̄y

(
f m
i, j + f m+1

i, j

)]
. (62)

Subtracting the two equations in (61), we get

f
m+ 1

2
i, j = f m

i, j + f m+1
i, j

2
− δt

4h

[
D̄y

(
f m+1
i, j − f m

i, j

)]
. (63)

Substituting the value of f
m+ 1

2
i, j from (63) in (62), we obtain

f m+1
i, j − f m

i, j

δt
= 1

2h

[(
D̄x + D̄y

) (
f m
i, j + f m+1

i, j

)]
− δt

4h2

[
D̄x D̄y

(
f m+1
i, j − f m

i, j

)]
.

(64)

We define the truncation error as follows

ϕϕϕm+1
i, j := f (xi , y j , tm+1) − f (xi , y j , tm)

δt

− 1

2h

[
(D̄x + D̄y)( f (xi , y j , tm) + f (xi , y j , tm+1)

]

+ δt

4h2

[
D̄x D̄y( f (xi , y j , tm+1) − f (xi , y j , tm)

]
.

(65)

Lemma 4.2 The truncation error (65) of the ADI-CC scheme (38)–(39) is of order
O(δt2 + h2) under the CFL-like condition (55).

Proof We can write the truncation error (65) as follows

ϕϕϕm+1
i, j = T1 + T2,

where

T1 = f (xi , y j , tm+1) − f (xi , y j , tm)

δt
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− 1

2h

[
(D̄x + D̄y)( f (xi , y j , tm) + f (xi , y j , tm+1)

]
,

and

T2 = δt

4h2

[
D̄x D̄y( f (xi , y j , tm+1) − f (xi , y j , tm)

]
.

The term T1 corresponds to the Crank–Nicholson method with CC discretization for
space operator. Using similar arguments as in [27, Lemma 3.2 and Theorem 3.6] for
D̄x and D̄y , and by Taylor series expansion, one can show that under the CFL condition
(55), the truncation error corresponding to the term T1 is ofO(δt2 + h2). In addition,
for the term T2, using similar arguments as in [27, Lemma 3.2 and Theorem 3.6], and
Taylor series expansion, we have

1

4h2

[
D̄x D̄y

(
f m+1
i, j − f m

i, j

)]

= δt

[
σ 4

4
· ∂5 f

∂t∂x2∂y2
+ σ 2

2

∂4(B2 f )

∂t∂x∂y2
+ σ 2

2

∂2

∂t∂x

(
B1

∂2 f

∂y2

)
+ ∂2

∂t∂x

(
B1

(
∂ B2 f

∂y

))]m

i, j

+ O(δt · h2).

This gives

1

4h2

[
D̄x D̄y

(
f m+1
i, j − f m

i, j

)]
≈ O(δt + δt · h2),

and therefore

δt

4h2

[
D̄x D̄y

(
f m+1
i, j − f m

i, j

)]
≈ O(δt2 + δt2h2).

Thus, the truncation error (65) of the ADI-CC scheme (38)–(39) is at least of order
O(δt2 + h2). ��

Next, we define the global error as follows

em
i, j = f (xi j , tm) − f m

i, j , i, j = 0, . . . , Nx , m = 1, . . . , Nt .

Using Lemma 4.3 and Theorem 4.2, the error estimates for our ADI-CC scheme can
be given as follows

Theorem 4.4 The ADI-CC scheme (38) converges with an error of order O(δt2+h2)

under the CFL condition (55) in the discrete L1 norm.

Proof By the definition of truncation error, we have

em+1
i, j − em

i, j

δt
= 1

2h

[(
D̄x + D̄y

) (
em

i, j + em+1
i, j

)]

− δt

4h2

[
D̄x D̄y

(
em+1

i, j − em
i, j

)]
+ ϕϕϕm+1

i, j .
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Thus, the solution error em
i, j satisfies the discretized FP equation discussed above with

the right hand side given by the truncation error function. Hence, using Theorem 4.3,
we have

‖em‖1 ≤ ‖e0‖1 + δt
m∑

n=0

‖ϕϕϕn‖1.

Therefore, from Lemma 4.2, the ADI-CC scheme converges with order O(δt2 + h2)

in the discrete L1 norm. ��

5 A numerical scheme for the adjoint equations

We build the numerical scheme for the adjoint equations (14) and (16) by performing
the variation on the discrete version of the Lagrangian (12), such as in the discretize-
before-optimize approach [6]. Details of the derivation of the discrete adjoint equations
with the boundary conditions using the discrete Lagrangian can be found in the
“Appendix”.

When the control cost A(u) is given by (C1), the numerical scheme for the adjoint
equation reads as follows

p
m+ 1

2
i, j − pm+1

i, j

δt/2
= 1

h

(
K m+1

i, j− 1
2

p
m+ 1

2
i, j−1 − Rm+1

i, j+ 1
2

p
m+ 1

2
i, j − K m+1

i, j− 1
2

p
m+ 1

2
i, j + Rm+1

i, j+ 1
2

p
m+ 1

2
i, j+1

)

+ 1

h

(
K m+1

i, j− 1
2

pm+1
i, j−1 − Rm+1

i, j+ 1
2

pm+1
i, j − K m+1

i, j− 1
2

pm+1
i, j + Rm+1

i, j+ 1
2

pm+1
i, j+1

)

− αV (xi, j − xm+1
t ),

pm
i, j − p

m+ 1
2

i, j

δt/2
= 1

h

(
K

m+ 1
2

i− 1
2 , j

pm
i−1, j − R

m+ 1
2

i+ 1
2 , j

pm
i, j − K

m+ 1
2

i− 1
2 , j

pm
i, j + R

m+ 1
2

i+ 1
2 , j

pm
i+1, j

)

+ 1

h

(
K

m+ 1
2

i− 1
2 , j

p
m+ 1

2
i−1, j − R

m+ 1
2

i+ 1
2 , j

p
m+ 1

2
i, j − K

m+ 1
2

i− 1
2 , j

p
m+ 1

2
i, j + R

m+ 1
2

i+ 1
2 , j

p
m+ 1

2
i+1, j

)

− αV (xi, j − x
m+ 1

2
t ),

(66)

for all (i, j) ∈ {1, . . . , Nx − 1} and m ∈ {0, . . . , Nt − 1}.
When the control cost A(u) is given by (C2), the numerical scheme for the adjoint

reads as follows

p
m+ 1

2
i, j − pm+1

i, j

δt/2
= 1

h

(
K m+1

i, j− 1
2

p
m+ 1

2
i, j−1 − Rm+1

i, j+ 1
2

p
m+ 1

2
i, j − K m+1

i, j− 1
2

p
m+ 1

2
i, j + Rm+1

i, j+ 1
2

p
m+ 1

2
i, j+1

)

+ 1

h

(
K m+1

i, j− 1
2

pm+1
i, j−1 − Rm+1

i, j+ 1
2

pm+1
i, j − K m+1

i, j− 1
2

pm+1
i, j + Rm+1

i, j+ 1
2

pm+1
i, j+1

)

−αV
(

xi, j − xm+1
t

)

−ν

2
|um+1

i, j |2 − ν

2

∣∣∣∣
um+1

i+1, j − um+1
i, j

h

∣∣∣∣
2

− ν

2

∣∣∣∣
um+1

i, j−1 − um+1
i, j

h

∣∣∣∣
2

, (67)

pm
i, j − p

m+ 1
2

i, j

δt/2
= 1

h
(K

m+ 1
2

i− 1
2 , j

pm
i−1, j − R

m+ 1
2

i+ 1
2 , j

pm
i, j − K

m+ 1
2

i− 1
2 , j

pm
i, j + R

m+ 1
2

i+ 1
2 , j

pm
i+1, j )
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+ 1

h

(
K

m+ 1
2

i− 1
2 , j

p
m+ 1

2
i−1, j − R

m+ 1
2

i+ 1
2 , j

p
m+ 1

2
i, j − K

m+ 1
2

i− 1
2 , j

p
m+ 1

2
i, j + R

m+ 1
2

i+ 1
2 , j

p
m+ 1

2
i+1, j

)

−αV

(
xi, j − x

m+ 1
2

t

)

−ν

2
|um+ 1

2
i, j |2 − ν

2

∣∣∣∣
u

m+ 1
2

i+1, j − u
m+ 1

2
i, j

h

∣∣∣∣
2

− ν

2

∣∣∣∣
u

m+ 1
2

i, j−1 − u
m+ 1

2
i, j

h

∣∣∣∣
2

, (68)

for all (i, j) ∈ {1, . . . , Nx − 1} and m ∈ {0, . . . , Nt − 1}. The terms K m
i, j and Rm

i, j are
defined in Appendix. In both cases, we have the following terminal condition

pNt
i, j = −βV (xi, j − xT ). (69)

The boundary conditions for the adjoint equations are implemented as follows

pm
Nx , j = pm

Nx −1, j ∀ j = 0, . . . , Nx ,

pm
i,Nx

= pm
i,Nx −1 ∀i = 0, . . . , Nx .

(70)

Next, we consider the discretization of the optimality conditions by direct use of
the five-point finite difference Laplacian 
h and the first order difference operators to
(15) and (17), corresponding to the control costs (C1) and (C2). Notice that in doing
this, we abandon the discretize-before-optimize approach for the sake of simplifying
the numerical implementation of the optimality conditions. In fact, by pursuing this
approach, the structure of the resulting reduced gradient appears much more compli-
cated.

In the case (15), we consider the following numerical evaluation of the reduced
gradient

(∇ Ĵ (u))1i jm = νu1i, j,m − ν
u1i+1, j,m − 2u1i, j,m + u1i−1, j,m

h2
− ν

u1i, j+1,m − 2u1i, j,m + u1i, j−1,m

h2

− f (i, j, m) · p(i + 1, j, m) − p(i, j, m)

h
,

(∇ Ĵ (u))2i jm = νu2i, j,m − ν
u2i+1, j,m − 2u2i, j,m + u2i−1, j,m

h2
− ν

u2i, j+1,m − 2u2i, j,m + u2i, j−1,m

h2

− f (i, j, m) · p(i, j + 1, m) − p(i, j, m)

h
.

(71)

For the optimality condition (17), we get

(∇ Ĵ (u))1i jm =
(

νu1i, j,m − ν
u1i+1, j,m − 2u1i, j,m + u1i−1, j,m

h2
− ν

u1i, j+1,m − 2u1i, j,m + u1i, j−1,m

h2

− · p(i + 1, j, m) − p(i, j, m)

h

)
f (i, j, m),

(∇ Ĵ (u))2i jm =
(

νu2i, j,m − ν
u2i+1, j,m − 2u2i, j,m + u2i−1, j,m

h2
− ν

u2i, j+1,m − 2u2i, j,m + u2i, j−1,m

h2

− · p(i, j + 1, m) − p(i, j, m)

h

)
f (i, j, m),

(72)

123



S. Roy et al.

where um
i, j = (u1

i, j,m, u2
i, j,m), 0 ≤ m ≤ Nt and 0 ≤ i, j ≤ Nx − 1.

As discussed in Sect. 2, the grid functions (∇ Ĵ (u))1 and (∇ Ĵ (u))2 provide the
right-hand sides of the following discretized elliptic problems

−
hvk + vk = (∇ Ĵ (u))k in �h, vk = 0 on ∂�h,

where k = 1, 2, and vk represents the kth component of the reduced H1 gradient,
(∇ Ĵ (u)H1)k = vk .

6 A projected NCG optimization scheme

Wesolve the optimization problem (10) by implementing a projected non-linear conju-
gate scheme (NCG); see [29]. Such a scheme is an extension of the conjugate gradient
method to constrained non-linear optimization problems. To describe this iterative
method, we start with an initial guess u0 for the control function and corresponding
search direction

d0 = g0 := ∇ Ĵ (u0)H1 ,

where∇ Ĵ corresponds to (71) in the (C1) case, and to (72) in the (C2) case. The search
directions are obtained recursively as

dk+1 = −gk+1 + βkdk, (73)

where gk = ∇ Ĵ (uk), k = 0, 1, . . . and the parameter βk is chosen according to the
formula of Hager–Zhang [22] given by

βH G
k = 1

dT
k yk

(
yk − 2dk

‖yk‖2
dT

k yk

)T

gk+1, (74)

where yk = gk+1 − gk and ‖ · ‖2 = 〈·, ·〉. We update the value of the control u with a
steepest descent scheme given as follows

uk+1 = uk + αk dk, (75)

where k is a index of the iteration step and αk > 0 is a steplength obtained using a line
search algorithm as in [2]. For this line search, we use the following Armijo condition
of sufficient decrease of Ĵ

Ĵ (uk + αkdk) ≤ Ĵ (uk) + δαk〈∇ Ĵ (uk)H1 , dk〉δt,h, (76)

where 0 < δ < 1/2 and the scalar product 〈u, v〉δt,h = δt
∑Nt

m=0〈u, v〉H1
h
. For the

definition of the discrete H1
h scalar product we refer to [24].

123



A Fokker–Planck approach to control collective motion

Notice that this gradient procedure should be combined with a projection step onto
Uad . Therefore, we consider the following

uk+1 = PU [uk + αk dk] , (77)

where

PU [u] = max{ua,min{ub, u}}.

The projected NCG scheme can be summarized as follows.

The convergence of the projected NCG scheme Algorithm 6.1 is discussed in [29,
Lemma 1.5, p. 235] and is stated as follows

Lemma 6.1 Let ∇ Ĵ be bounded in a neighbourhood Nu∗ of the optimal control u∗,
where Ĵ (u), given in (11), is locally strictly convex, and let αk ≥ α∗ > 0 for any k,
where αk is determined in Algorithm 6.1. If the sequence {uk} generated by Algorithm
6.1 satisfies

lim
k→∞ ‖uk+1 − uk‖ = 0,

in the Euclidean norm in Q, then {uk} is a minimizing sequence in the sense that

lim
k→∞ Ĵ (uk) = inf{ Ĵ (u) : u ∈ Nu∗}.

The numerical optimization procedure is summarized as follows. We start with an
initial guess for the control, uk . We then solve the discrete forward FP equation using
the ADI-CC scheme (38)–(39) and afterwards the associated discrete adjoint equation
with the discrete schemes (66) (resp. (67)) corresponding to the control costs (C1)
(resp. (C2).) Then, the gradient ∇u Ĵ (uk) is evaluated using (71) and (72), which is
then used in the projected NCG scheme Algorithm 6.1, iteratively, to obtain the update
uk+1 to the discrete optimal control.

Notice that, in the case (C2), the optimization procedure above is computation-
ally convenient but not necessary. In fact, one could decide to solve the adjoint
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Table 1 Convergence of the
ADI-CC scheme

Nx Nt Relative L1 Error Order

25 25 8.34e−5 –

50 50 2.01e−5 2.05

100 100 4.93e−6 2.02

200 200 1.22e−6 2.01

FP problem (backwards) together with the elliptic variational inequality of the con-
trol (at each time step). However, solving a system of a parabolic equation and an
elliptic variational inequality (or even equality) corresponds to solving a nonlinear
and nonsmooth evolution problem, which is very challenging with respect to the
solution of the FP optimality system by well-known numerical optimization tech-
niques.

In the next section, we validate our optimal control strategy and the corresponding
numerical setup with test cases.

7 Numerical results

In this section, we present results of numerical experiments to validate our control
strategies and the obtained numerical analysis estimates. Specifically, in the first part
of this section, we verify second-order accuracy of our ADI-CC scheme. In the second
part of this section, we consider the control of a two dimensional stochastic motion
model by computing the optimal controls for the given objectives.

To demonstrate the accuracy of the ADI-CC scheme as proved in Theorem 4.4,
we use the method of manufactured solutions to construct an exact solution for the
FP equation (13) with a non-zero source term g(x1, x2, t) on the right hand side. We
set u1(x1, x2, t) = −x1, u2(x1, x2, t) = −x2, σ = 1. Further, we choose T = 1
and � = (−6, 6) × (−6, 6). We assume zero-flux boundary condition. Choosing
g(x1, x2, t) = −1/ exp(x21+x22+t) and initial condition f0(x1, x2) = 1/ exp(x21+x22 ),
we have the exact solution as fex = 1/ exp(x21 + x22 + t). The size of the solution error
is evaluated based on the following discrete L1 norm

‖| f ‖|1 = h2δt
Nt∑

m=0

Nx∑
i, j=0

| f k
i, j |,

which we identify with L2
δt (0, T ; L1

h). The discrete relative L1 error is defined as
follows

‖| f − fex‖|1,r = ‖| f − fex‖|1
‖| fex‖|1 .

Table 1 shows the results of experiments that evaluate the accuracy of the ADI-CC
numerical scheme. We see that the resulting order of convergence is O(h2 + δt2).
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Fig. 2 Initial PDF centered at (0, 0). a The 3D view of the Gaussian PDF and b the 2D view of the same
Gaussian PDF

We now discuss results concerning our control framework. We assume that the
initial probability density function of the crowd is given, which is denoted with f0.
Our purpose is to determine an optimal drift that drives the crowd from a given initial
distribution, along a given trajectory, to a terminal distribution at final time T . We
consider two classes of trajectories: a single trajectory and a trajectory with obstacles.
We implement the optimization algorithms described in Sect. 6 to solve the minimiza-
tion problem (10) and thus determine the optimal control u(x, t). We set the values of
α = β = 1 in (9).

We consider a two-dimensional stochastic process as follows

d X1(t) = u1(X1(t), X2(t), t)dt + σdW1(t),

d X2(t) = u2(X1(t), X2(t), t)dt + σdW2(t),
(78)

where X1(t) and X2(t) represent the coordinates of the position of the individual at
time t; dW1(t) and dW2(t) represent random infinitesimal increments of twomutually
independent normalized Wiener processes. We take � = (−a, a) × (−a, a) with
a = 6.

We have that the drifts corresponds to u1 and u2, i.e., the control process, u1 and
u2 represents the velocity of the particles. The diffusion is given as σ = 1. The initial
PDF f0(x) is given by

f0(x) = Ĉe−{(x1−A1)
2−(x2−A2)

2}/0.5, (79)

where (A1, A2) = xt (0) is the starting point of the trajectory xt , Ĉ is a normalization
constant such that

∫
�

f0(x)dx = 1

and x = (x1, x2). A plot of the initial PDF is shown in Fig. 2.
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Fig. 3 Results of the numerical experiments with the controlled random process along sinusoidal trajec-
tory. a Desired trajectory. b Resulting/controlled PDF. c Convergence of NCG with control cost (C1). d
Convergence of NCG with control cost (C2)

We choose the control bounds ua = −5 and ub = 5. The total number of spatial
grid points is Nx = 60 and temporal grid points is Nt = 60. The parameters for
Algorithm 3 are: tol = 10−4, kmax = 30. The parameters for the Armijo condition
for Algorithm 4 are: δ = 0.1, kmax = 10. The value of ν is taken to be 10−2.

Our aim is to control the evolution of the PDF of (78) to follow a given trajectory
xt . We use the potential function V given by V (x, t) = (x − xt )

4. Our desired path is
given by the sinusoidal trajectory xt = (t, sin(2t)), t ∈ [0, π ]. In correspondence to
this setting, we solve the optimal control problem (10) to get the optimal control u.

From Fig. 3, we see that the control u drives the PDF along the desired path.
The projected NCG scheme converges in 12 iterations to minimum value of J =
2.80 corresponding to the control cost (C1) and to the minimum value of J = 1.29
corresponding to the control cost (C2). The corresponding convergence history is
shown in Fig. 3c, d. Figure 4 depicts the components of the control u(x, t) at different
times, showing that the constraints are active along the evolution.
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Fig. 4 Components of control u at time t = π for the controlled random process along sinusoidal trajectory
with the control costs (C1) and (C2).a With control cost (C1), u1 at time t = π . b With control cost (C1),
u2 at time t = π . c With control cost (C2), u1 at time t = π . d With control cost (C2), u2 at time t = π

Next, we discuss the case of motion in the presence of an obstacle. An obstacle is
represented by a high-valued concave potential function. In our framework, we use
the initial PDF as given in (79) starting at the point (0, 0). The desired trajectory is
given by xt = (1.5t, 0) and the potential V is given by

V (x, t) =
{
100, (x1 − 3)2 + x22 ≤ 0.22

(x1 − 1.5t)2 + x22 , otherwise,
(80)

where the obstacle is modelled by a cylinder centered at (3, 0) and radius 0.2. The
time interval is chosen as t ∈ [0, 2]. In correspondence to this setting, we solve the
optimal control problem (10) to get the optimal control u. Figure 5 shows that the
PDF evolves along the desired path while avoiding the obstacle. The projected NCG
scheme converges in 18 iterations to the minimum value of J = 1.61 with control
cost (C1) as compared to 12 iterations in the case without obstacles. The correspond-
ing convergence history is shown in Fig. 5b. Thus we observe faster convergence to
minimum in the case we do not have obstacles.
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Fig. 5 Results of the numerical experiments with the controlled random process along a desired trajectory
with an obstacle and the control cost (C1). a Controlled PDF. b Convergence of NCG

8 Conclusions

In this work, two Fokker–Planck control-constrained strategies for collective motion
were presented, which resulted in an open-loop and a closed-loop control schemes. For
these problems, existence and regularity of optimal control solutions were discussed,
and their computation by an alternate-direction implicit Chang–Cooper scheme was
illustrated. This scheme was proven to be conservative, positive preserving, L1 stable,
and second-order accurate in space and time. The discretized FP optimality system
was solved with a projected non-linear conjugate gradient scheme. The effectiveness
of the proposed control framework was demonstrated by considering trajectories with
and without obstacles.

Acknowledgements The authorswould like to gratefully acknowledge the comments by the refereeswhich
helped to improve this paper. S. Roywould like to thank A. S. VasudevaMurthy and Praveen Chandrashekar
for several fruitful discussions during the initial phases of this work. This work was supported in part by the
European Union under Grant Agreement No. 304617 Marie Curie Research Training Network “Multi-ITN
STRIKE—Novel Methods in Computational Finance” and the BMBF project “ROENOBIO”. S. Roy was
also supported by the DAAD Passage to India Program and the AIRBUS Group Corporate Foundation
Chair in Mathematics of Complex Systems established in TIFR/ICTS, Bangalore.

Appendix: Derivation of the numerical adjoint

We derive the numerical scheme for the adjoint equation (14) using the discretize-
before-optimize approach. The starting point of this derivation is the Lagrangian

L( f, u, p) = J ( f, u) + 〈∂t f − ∇ · F, p〉. (81)

In order to obtain the discrete version of the adjoint equation, we need to consider a
discrete version of the Lagrange function with the ADI-CC scheme for the time–space

derivatives of f . Since the ADI-CC scheme has an intermediate time step tm+ 1
2 , we
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define the Lagrangian on the following double grid

Qd
h,δt = {(x, tm) : x ∈ �h, tm = mδt, 0 ≤ m ≤ Nt }

∪ {(x, tm+ 1
2
) : x ∈ �h, tm+ 1

2
=

(
m + 1

2

)
δt, 0 ≤ m ≤ Nt − 1}. (82)

The discrete Lagrangian is given by

L̂( f, u, p) = α
∑

m

Nx −1∑
i, j=1

V
(
xi, j − xm

t

)
f m
i, j h2 dt

2

+ α
∑

m

Nx −1∑
i, j=1

V

(
xi, j − x

m+ 1
2

t

)
f

m+ 1
2

i, j h2 dt

2

+ β

Nx −1∑
i, j=1

V
(

xi, j − x Nt
t

)
f Nt
i, j h2 + ν

2

∑
m

Nx −1∑
i, j=1

A(um
i, j ) h2 dt

2

+ ν

2

∑
m

Nx −1∑
i, j=1

A

(
u

m+ 1
2

i, j

)
h2 dt

2

+
∑

m

Nx −1∑
i, j=1

f
m+ 1

2
i, j − f m

i, j

δt/2
pm

i, j h2 dt

2

+
∑

m

Nx −1∑
i, j=1

f m+1
i, j − f

m+ 1
2

i, j

δt/2
p

m+ 1
2

i, j h2 dt

2

−
∑

m

Nx −1∑
i, j=1

[(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+

(
Fm

i, j+ 1
2

− Fm
i, j− 1

2

)]
pm

i, j h
dt

2

−
∑

m

Nx −1∑
i, j=1

[(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
+

(
Fm+1

i, j+ 1
2

− Fm+1
i, j− 1

2

)]
p

m+ 1
2

i, j h
dt

2
.

(83)

We write the fluxes of the FP equation (13) in the following compact form

Fm
i+ 1

2 , j
= K m

i+ 1
2 , j

f m
i+1, j − Rm

i+ 1
2 , j

f m
i, j , (84)

where

K m
i+ 1

2 , j
= (1 − δi )Bm

i+ 1
2 , j

+ σ 2

h
,

Rm
i+ 1

2 , j
= σ 2

h
− δi Bm

i+ 1
2 , j

.

(85)
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Similarly, we have

Fm
i, j+ 1

2
= K m

i, j+ 1
2

f m
i, j+1 − Rm

i, j+ 1
2

f m
i, j . (86)

Therefore, we obtain

∑
m

Nx −1∑
i, j=1

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
pm

i, j =
∑

m

Nx −1∑
i, j=1

(
K

m+ 1
2

i+ 1
2 , j

f
m+ 1

2
i+1, j − R

m+ 1
2

i+ 1
2 , j

f
m+ 1

2
i, j

− K
m+ 1

2

i− 1
2 , j

f
m+ 1

2
i, j + R

m+ 1
2

i− 1
2 , j

f
m+ 1

2
i−1, j

)
pm

i, j .

(87)

Rearranging the summation on the right-hand side of (87) to collect the terms f
m+ 1

2
i, j

with same space index and using discrete flux zero (39), we have

∑
m

Nx −1∑
i, j=1

(
F

m+ 1
2

i+ 1
2 , j

− F
m+ 1

2

i− 1
2 , j

)
pm

i, j =
∑

m

Nx −1∑
i, j=1

(
K

m+ 1
2

i− 1
2 , j

pm
i−1, j − R

m+ 1
2

i+ 1
2 , j

pm
i, j

− K
m+ 1

2

i− 1
2 , j

pm
i, j + R

m+ 1
2

i+ 1
2 , j

pm
i+1, j

)
f

m+ 1
2

i, j .

(88)

In a similar way, we have

∑
m

Nx −1∑
i, j=1

(
Fm

i, j+ 1
2

− Fm
i, j− 1

2

)
pm

i, j =
∑

m
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(
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2
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2
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2
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(89)
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2
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)
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2
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∑
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p
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)
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(90)

and

∑
m

Nx −1∑
i, j=1

(
Fm+1

i, j+ 1
2

− Fm+1
i, j− 1

2

)
p
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2

i, j =
∑

m
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(
K m+1

i, j− 1
2

p
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2
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p
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2
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i, j+ 1

2
p
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2
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For our convenience, using (88)–(91) in (83), rearranging the time indices and

collecting the terms f
m+ 1

2
i, j and f m+1

i, j , we obtain the Lagrange function in a different
form as follows

L̂1( f, u, p)

= α
∑

m

Nx −1∑
i, j=1

V (xi, j − xm+1
t ) f m+1

i, j h2 dt

2
+ α

∑
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2
t ) f
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2

i, j h2 dt
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i, j=1
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2
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m
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(
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h2 dt

2
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2
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)
h2 dt
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+
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2
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2
+
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2
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δt/2
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i, j h2 dt

2

−
∑
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m+ 1
2

i+ 1
2 , j

pm
i+1, j

)
f

m+ 1
2

i, j h
dt
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2
.

(92)

When the control cost A(u) is given by (C1), taking derivative with respect to f m+1,
we obtain the following first integration step for the adjoint equation

p
m+ 1

2
i, j − pm+1

i, j

δt/2
= 1

h

(
K m+1

i, j− 1
2

p
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2
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p
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p
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p
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2

pm+1
i, j+1

)

− αV (xi, j − xm+1
t ).

Taking derivative with respect to f
m+ 1

2
i, j , we obtain the following second integration

step for the adjoint equation

pm
i, j − p

m+ 1
2

i, j
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,
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along with the terminal condition

pNt
i, j = −βV (xi, j − xT ).

When the control cost A(u) is given by (C2), taking derivative with respect to f m+1,
we obtain the following first integration step for the adjoint equation

p
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Taking derivative with respect to f
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2
i, j , we obtain the following second integration

step for the adjoint equation
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