
Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations 269 (2020) 1521–1543
www.elsevier.com/locate/jde

On oscillatory solutions to the complete Euler system

Eduard Feireisl a, Christian Klingenberg b, Ondřej Kreml a, 
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Abstract

The Euler system in fluid dynamics is a model of a compressible inviscid fluid incorporating the three 
basic physical principles: Conservation of mass, momentum, and energy. We show that the Cauchy problem 
is basically ill-posed for the L∞-initial data in the class of weak entropy solutions. As a consequence, there 
are infinitely many measure-valued solutions for a vast set of initial data. Finally, using the concept of 
relative energy, we discuss a singular limit problem for the measure-valued solutions, where the Mach and 
Froude number are proportional to a small parameter.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

The Euler system is a model describing the time evolution of an inviscid fluid, the state of 
which is characterized by the mass density ϱ, the (absolute) temperature ϑ , and the macroscopic 
velocity field u. The problem can be written in the Eulerian coordinate system in the form:
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∂tϱ + divx(ϱu) = 0, (1)

∂t (ϱu) + divx(ϱu ⊗ u) + ∇xp(ϱ,ϑ) = ϱ∇x$, (2)

∂t

(
1
2
ϱ|u|2 + ϱe(ϱ,ϑ)

)
+ divx

[(
1
2
ϱ|u|2 + ϱe(ϱ,ϑ) + p(ϱ,ϑ)

)
u
]

= ϱ∇x$ · u, (3)

where p is the pressure and e the (specific) internal energy interrelated by Gibbs’ equation

ϑDs = De + pD

(
1
ϱ

)
. (4)

The quantity s = s(ϱ, ϑ) in (4) is the (specific) entropy. Any smooth solution of (1)–(4) satisfies 
the entropy balance

∂t (ϱs(ϱ,ϑ)) + divx(ϱs(ϱ,ϑ)u) = 0. (5)

The potential $ describes the external force. In the absence of external forces, i.e. if $ = 0, we 
call the Euler system (1)–(3) homogeneous. The non-homogeneous case was studied numerically 
e.g. in [1,2].

Sometimes it is more convenient to rewrite the system (1)–(3) in the conservative variables

ϱ, m ≡ ϱu, E ≡ Ekin + Eint, Ekin ≡ 1
2
ϱ|u|2 = 1

2
|m|2
ϱ

, Eint ≡ ϱe(ϱ,ϑ);

∂tϱ + divxm = 0, (6)

∂tm + divx

(
m ⊗ m

ϱ

)
+ ∇xp(ϱ,E) = ϱ∇x$, (7)

∂tE + divx

[(
E + p(ϱ,E)

)m
ϱ

]
= ∇x$ · m. (8)

In the real world applications, the fluid occupies a physical domain % ⊂ RN , N = 1, 2, 3. For 
the sake of simplicity, we consider only the natural impermeability boundary conditions

u · n|∂% = 0. (9)

The original state of the fluid is determined by the initial conditions

ϱ(0, ·) = ϱ0, ϑ(0, ·) = ϑ0, u(0, ·) = u0. (10)

Solutions of (1)–(3), (9), (10) are known to develop singularities (shock waves) in a finite time 
for a rather generic class of the initial data, see the classical monograph by Smoller [3] or the 
more recent treatment by Benzoni–Gavage and Serre [4]. To study the problem in the long run, 
the weak solutions must be considered. Unlike their classical counterparts, the weak solution 
may not satisfy the entropy balance (5) that must be relaxed to the inequality

∂t (ϱs) + divx(ϱsu) ≥ 0. (11)
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The weak solutions satisfying (11) are called entropy solutions whereas relation (11) plays the 
role of a selection principle to identify the physically relevant solution, cf. Dafermos [5,6].

The entropy inequality (11) and its analogues for general hyperbolic systems proved to be ef-
ficient admissibility criterion in the simple 1-D setting. In particular, Chen and Frid [7,8] showed 
well-posedness of the 1-D Riemann problem for the system (1)–(3) in the class of entropy so-
lutions. The situation in the physically relevant multidimensional case N = 2, 3 turned out to 
be more delicate. In a series of papers, De Lellis and Székelyhidi [9–11] adapted the method of 
convex integration to problems in fluid dynamics. Their effort culminated by the complete proof 
of the celebrated Onsager’s conjecture by Isett [12] and Buckmaster et al. [13]. As a byproduct, 
new unfortunately mostly negative results have been obtained concerning well-posedness of the 
isentropic Euler system describing the motion of a compressible fluid with constant entropy, see 
De Lellis and Székelyhidi [14]. Finally, Chiodaroli, De Lellis and Kreml [15] (see also [16] for 
a more sophisticated example) showed that the isentropic Euler system is essentially ill-posed 
in the class of entropy (weak) solutions for Lipschitz initial data. Note that the isentropic Euler 
system, where p = p(ϱ), contains only two unknowns, namely the density ϱ and the velocity u, 
whereas the entropy balance (11) is replaced by the energy inequality

∂t

(
1
2
ϱ|u|2 + P(ϱ)

)
+ divx

[(
1
2
ϱ|u|2+P(ϱ) + p(ϱ)

)
u
]

≤ 0,

where P(ϱ) = ϱ

ϱ∫

1

p(z)

z2 dz.

This paper studies system (1)–(3) in the context of weak and more general measure-valued 
solutions. Combining a simple idea by Luo, Xie, and Xin [17] with a general framework devel-
oped in [18] we show that the Euler system (1)–(3), (9), (10), supplemented with the entropy 
inequality (11), admits infinitely many weak solutions for a large class of bounded initial data, 
see Section 2. This observation implies that the same problem admits genuine measure-valued 
solutions, meaning measure-valued solutions that do not coincide with a Dirac mass supported by 
a weak solution, see Section 3. This kind of measure-valued solutions fits in the class dissipative 
measure-valued solutions introduced in [19], but they are also the “standard” measure-valued 
solutions in the sense of Fjordholm, Mishra and Tadmor [20].

Finally, in Section 4, using the relative energy inequality for the measure-valued solutions 
[19], we study the singular limit problem for strongly stratified driven fluids described via the 
scaled system:

∂tϱ + divx(ϱu) = 0, (12)

∂t (ϱu) + divx(ϱu ⊗ u) + 1
ε2 ∇xp(ϱ,ϑ) = 1

ε2 ϱ∇x%,

(13)

∂t

(
1
2
ϱ|u|2 + 1

ε2 ϱe(ϱ,ϑ)

)
+ divx

[(
1
2
ϱ|u|2 + 1

ε2 ϱe(ϱ,ϑ) + 1
ε2 p(ϱ,ϑ)

)
u
]

= 1
ε2 ϱ∇x% · u.

(14)

We consider the well-prepared initial data, where the density and the temperature are small per-
turbations of the isothermal equilibrium state
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ϱs = ϱs(x), " > 0 − a positive constant, ∇xp(ϱs ,") = ϱs∇x#.

We identify the limit system and show convergence of the dissipative measure-valued solutions 
of (12)–(14) for ε → 0.

2. Well/ill-posedness

We start by a definition of a weak solution to problem (1)–(3), (9), (10). To this end, it is more 
convenient to use the formulation (6)–(8) based on conservative variables.

Definition 2.1. [Entropy (weak) solution]
Let % ⊂ RN , N = 1, 2, 3 be a bounded domain. We say that a trio [ϱ, m, E] is an entropy 

(weak) solution of problem (6)–(10) if

• ϱ ≥ 0 a.e. and the integral identity

T∫

0

∫

%

[
ϱ∂tϕ + m · ∇xϕ

]
dx dt = −

∫

%

ϱ0ϕ(0, ·)dx (15)

holds for any ϕ ∈ C∞
c ([0, T ) × RN);

• m = 0 whenever ϱ = 0, and the integral identity

T∫

0

∫

%

[
m · ∂tϕ + m ⊗ m

ϱ
: ∇xϕ + p(ϱ,E)divxϕ

]
dx dt

= −
∫

%

m0 · ϕ(0, ·)dx −
T∫

0

∫

%

ϱ∇x# · ϕ dx dt

(16)

holds for any ϕ ∈ C∞
c ([0, T ) × %; RN), ϕ · n|∂% = 0;

• the integral identity

T∫

0

∫

%

[
E∂tϕ + (E + p(ϱ,E))

m
ϱ

· ∇xϕ

]
dx dt

= −
∫

%

E0ϕ(0, ·)dx −
T∫

0

∫

%

∇x# · mϕ dx dt

(17)

holds for any ϕ ∈ C∞
c ([0, T ) × RN);
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• the entropy inequality

T∫

0

∫

!

[
ϱZ (s(ϱ,E)) ∂tϕ + Z (s(ϱ,E))m · ∇xϕ

]
dx dt

≤ −
∫

!

ϱ0Z(s(ϱ0,E0))ϕ(0, ·)dx

(18)

holds for any ϕ ∈ C∞
c ([0, T ) × RN), ϕ ≥ 0, and any Z ∈ C2(R), Z′(s) ≥ 0, Z′′(s) ≤ 0, 

Z(s) ≤ Z∞ for any s ∈ R.

Remark 2.2. Here we have tacitly assumed that all integrals are well defined.

Remark 2.3. The entropy inequality is satisfied in the renormalized sense, similarly to Chen and 
Frid [8].

2.1. Homogeneous Euler system

In this section we consider the case % = 0. Furthermore, let Q ⊂ RN , N = 2, 3 be a 
bounded domain, and ϱ > 0, p > 0 positive constants. The nowadays standard result based 
on convex integration (Chiodaroli [21], Feireisl [18, Theorem 13.6.1]) asserts that there exists 
m0 ∈ L∞(Q; RN) and a positive constant & > 0 such that the problem

divxm = 0, (19)

∂tm + divx

(
m ⊗ m

ϱ
− 1

N

|m|2
ϱ

I
)

= 0, (20)

m(0, ·) = m0 (21)

supplemented with the “no-flux” boundary conditions admits infinitely many weak solutions m. 
In addition, these solutions satisfy

Ekin = 1
2

|m|2
ϱ

= & − N

2
p a.e. in (0, T ) × Q, E0,kin = 1

2
|m0|2

ϱ
= & − N

2
p. (22)

By a weak solution with no-flux boundary conditions we mean a function

m ∈ L∞((0, T ) × Q;RN) ∩ Cweak([0, T ];L2(Q;RN)) (23)

satisfying

T∫

0

∫

Q

m · ∇xϕ dx dt = 0 (24)

for any ϕ ∈C∞
c ([0, T ] × RN)
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T∫

0

∫

Q

[
m · ∂tϕ +

(
m ⊗ m

ϱ
− 1

N

|m|2
ϱ

I
)

: ∇xϕ

]
dx dt = −

∫

Q

m0 · ϕ(0)dx (25)

for any ϕ ∈C∞
c ([0, T ) × RN ;RN).

Remark 2.4. As a matter of fact, the method of convex integration provides infinitely many weak 
solutions for any bounded initial momentum m0 that may, and do in many cases, experience an 
initial jump of the kinetic energy. Here, the momentum m0 gives rise to infinitely many weak 
solutions for which the initial energy is conserved.

Remark 2.5. It is important that the momentum balance in (25) holds for any smooth test func-
tion ϕ, in particular, the normal trace of ϕ need not vanish on ∂Q. In particular, as observed 
by Luo, Xie, and Xin [17], solutions may be defined piecewise on any finite union of mutually 
disjoint domains Qi .

As ϱ > 0 we can define a velocity field u = m/ϱ. Moreover, we may assume p = p(ϱ, ϑ) for 
another positive constant ϑ . Furthermore, using (22), (24), (25) we easily deduce

T∫

0

∫

Q

[
ϱ∂tϕ + ϱu · ∇xϕ

]
dx dt = −

∫

Q

ϱϕ(0)dx (26)

for any ϕ ∈C∞
c ([0, T ) × RN)

T∫

0

∫

Q

[
ϱu · ∂tϕ +

(
ϱu ⊗ u + p(ϱ,ϑ)I − 2

N
%I

)
: ∇xϕ

]
dx dt = −

∫

Q

m0 · ϕ(0)dx (27)

for any ϕ ∈C∞
c ([0, T ) × RN ;RN).

Finally, we introduce the total energy,

E = 1
2
ϱ|u|2 + ϱe(ϱ,ϑ) = Ekin + ϱe(ϱ,ϑ),

where, in accordance with (22), Ekin is a positive constant as long as % > N/2 p. The quantities 
E and p being constant in (0, T ) × Q, we easily deduce from (24) the energy balance

T∫

0

∫

Q

[(
1
2
ϱ|u|2 + ϱe(ϱ,ϑ)

)
∂tϕ +

[(
1
2
ϱ|u|2 + ϱe(ϱ,ϑ) + p(ϱ,ϑ)

)
u · ∇xϕ

]]
dx dt

= −
∫

Q

Eϕ(0)dx for any ϕ ∈ C∞
c ([0, T ) × RN),

(28)

together with the entropy balance
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T∫

0

∫

Q

[
ϱZ(s(ϱ,ϑ))∂tϕ + ϱZ(s(ϱ,ϑ))u · ∇xϕ

]
dx dt = −

∫

Q

ϱZ (s(ϱ,ϑ))ϕ(0)dx

for any Z as in (18) and any ϕ ∈ C∞
c ([0, T ) × RN).

(29)

Finally, restricting the class of test functions ϕ in the momentum equation to those satisfying 
the boundary condition ϕ · n|∂Q = 0 we may eliminate the % dependent term in (27). Thus we 
have shown that for any constant initial data ϱ = ϱ0 > 0, ϑ = ϑ0 > 0, there exists u0 ∈ L∞ such 
that the complete Euler system, supplemented with the impermeability condition u · n|∂Q = 0, 
admits infinitely many weak entropy solutions.

As observed by Luo, Xie and Xin [17], the previous argument can be localized and the result 
extended to piecewise-constant initial data ϱ0, ϑ0. It is also easy to observe that the parameter %
can be taken the same on the whole domain &. We say that a function v ∈ L∞(&) is piece-wise 
constant if

& = ∪I
i=1Qi, Qi ⊂ RN domains, |∂Qi | = 0, Qi ∩ Qj = ∅ for i ≠ j, v|Qi = vi - a constant.

Theorem 2.6. Let & ⊂ RN , N = 2, 3 be a bounded domain. Let the initial data ϱ0 > 0, ϑ0 > 0
be given piecewise constant functions in L∞(&).

Then there exists u0 ∈ L∞(&; RN) such that the complete Euler system (15)–(18), with ' = 0, 
admits infinitely many weak solutions originating from [ϱ0, m0, E0],

m0 = ϱ0u0, E0 = 1
2
ϱ0|u0|2 + ϱ0e(ϱ0,ϑ0).

In addition the renormalized entropy balance (18) holds as equality, meaning the test functions 
need not be non-negative.

We easily deduce from Theorem 2.6 that the set of initial densities and temperatures that gives 
rise to infinitely many solutions for certain u0 is dense in, say, L2(&). Regularity properties of the 
corresponding momentum m0 are not obvious. Note that the recent results concerning Onsager’s 
conjecture do not apply directly to problem (19)–(21) as the pressure term in (20) must be taken 
in a very particular form.

On the other hand, we report the following result proved by S. Markfelder and C. Klingen-
berg [22]: There exists Lipschitz initial data for the isentropic Euler system which gives rise 
to infinitely many weak solutions that conserve energy. It is an easy observation that these en-
ergy conserving solutions are entropy solutions to the full Euler system, too (set ϑ such that 
s = const.). In other words there is Lipschitz data for the full Euler system (1)–(3) such that 
the Cauchy problem (1)–(3), (10) has infinitely many entropy solutions. These entropy solutions 
are similar to those in Definition 2.1 with the only difference that the impermeability boundary 
conditions are not fulfilled.

2.2. Driven fluids

Next we consider driven fluids, i.e. ' ̸= 0. Now we restrict ourselves to a 2-d bounded domain 
& ⊂ R2. Let again ϱ > 0, p > 0 positive constants. As in the homogeneous case, the starting 
point is the convex integration result for the incompressible Euler equations described above: 
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There exists m0 ∈ L∞(!; R2) and a positive constant " > 0 such that there are infinitely many 
solutions m like in (23) fulfilling (24), (25) and

Ekin = 1
2

|m|2
ϱ

= " − p + ϱ$ a.e. in (0, T ) × !, E0,kin = 1
2

|m0|2
ϱ

= " − p + ϱ$. (30)

Note that this is a difference to (22) in the homogeneous case. Hence we deduce for the velocity 
field u = m/ϱ from (24), (25) and (30)

T∫

0

∫

!

[
ϱ∂tϕ + ϱu · ∇xϕ

]
dx dt = −

∫

!

ϱϕ(0)dx (31)

for any ϕ ∈C∞
c ([0, T ) × R2)

T∫

0

∫

!

[
ϱu · ∂tϕ + (ϱu ⊗ u + p(ϱ,ϑ)I − "I − ϱ$I) : ∇xϕ

]
dx dt = −

∫

!

m0 · ϕ(0)dx (32)

for any ϕ ∈C∞
c ([0, T ) × R2;R2),

where again ϑ > 0 is such that p = p(ϱ, ϑ).
Finally, we introduce the total energy,

E = 1
2
ϱ|u|2 + ϱe(ϱ,ϑ) − ϱ$ = Ekin + ϱe(ϱ,ϑ) − ϱ$,

where, in accordance with (30), Ekin is positive as long as " > p − ϱ$. The quantities E and p
being constant in (0, T ) × !, we deduce from (24)

T∫

0

∫

!

[(
1
2
ϱ|u|2 + ϱe(ϱ,ϑ) − ϱ$

)
∂tϕ

+
(

1
2
ϱ|u|2 + ϱe(ϱ,ϑ) + p(ϱ,ϑ) − ϱ$

)
u · ∇xϕ

]
dx dt

= −
∫

!

(
1
2
ϱ|u|2 + ϱe(ϱ,ϑ) − ϱ$

)
ϕ(0)dx for any ϕ ∈ C∞

c ([0, T ) × R2),

(33)

together with the entropy balance

T∫

0

∫

!

[
ϱZ(s(ϱ,ϑ))∂tϕ + ϱZ(s(ϱ,ϑ))u · ∇xϕ

]
dx dt = −

∫

!

ϱZ (s(ϱ,ϑ))ϕ(0)dx

for any Z as in (18) and any ϕ ∈ C∞
c ([0, T ) × R2).

(34)
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Restricting to test functions ϕ in (32) satisfying ϕ · n|∂", we get rid of the term depending on 
# and we can apply integration by parts in the term containing the potential $. This procedure 
yields the correct momentum equation of Definition 2.1.

Remark 2.7. If we tried to consider piece-wise constant instead of constant densities as in the 
homogeneous case, we would get a problem. As above we can eliminate the term containing #
if we choose it the same on the whole domain. But the integration by parts of the term containing 
the potential $ yields a boundary term that makes problems.

In addition it is easy to derive the energy equation of Definition 2.1 from (33) if we apply 
integration by parts to the term containing $ and if we notice that ϱ$ does not depend on the 
time t .

Hence we proved the following:

Theorem 2.8. Let " ⊂ R2 be a bounded domain. Let the initial data ϱ0 > 0, ϑ0 > 0 be given 
constants.

Then there exists u0 ∈ L∞("; R2) such that the complete Euler system (15)–(18) admits in-
finitely many weak solutions originating from [ϱ0, m0, E0],

m0 = ϱ0u0, E0 = 1
2
ϱ0|u0|2 + ϱ0e(ϱ0,ϑ0).

In addition the renormalized entropy balance (18) holds as equality, meaning the test functions 
need not be non-negative.

Remark 2.9. Theorem 2.8 can be extended to 3-d cylindrical domains in a quite simple way 
as long as $ = $(y, z). Let " ⊂ R2 be bounded and consider the domain (0, 1) × ". For any 
constants ρ0, ϑ0 > 0 - according to Theorem 2.8 - one can find u0,h ∈ L∞(", R2) such that 
the corresponding 2-d initial value problem has infinitely many entropy solutions [ϱ, mh, E]. 
Setting m = (0, mh) and keeping in mind that the first component of ∇x$ is zero, it is easy 
to show that [ϱ, m, E] is an entropy solution to the 3-d initial value problem with initial data 
ϱ0, ϑ0, u0 := (0, u0,h).

Remark 2.10. The results of Section 2, i.e. Theorems 2.6 and 2.8, extend to unbounded domains 
with obvious modifications.

3. Measure-valued solutions

The so-called measure-valued solutions have been introduced in fluid dynamics in the pio-
neering paper by DiPerna and Majda [23], and revisited recently in the context of numerical 
analysis by Fjordholm, Mishra, and Tadmor [24,20]. The measure-valued solutions capture pos-
sible oscillations and concentrations that may appear in families of (approximate) solutions to 
the Euler system. Roughly speaking, the exact values of non-linear compositions are replaced by 
their expectations with respect to a probability measure (Young measure). Theorem 2.6 above in-
dicates that the measure-valued solutions may be indeed relevant in the context of inviscid fluids. 
Indeed any weak solution [ϱ, ϑ, u] of problem (15)–(18) can be interpreted as a measure-valued 
solution represented by the Dirac measure
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δϱ(t,x),ϑ(t,x),u(t,x)

supported by the weak solution. In view of Theorem 2.6, the Euler system (15)–(18) admits 
infinitely many solutions [ϱi , ϑi , ui], i ∈ I for certain initial data. In particular, the family of 
parameterized measures

I0∑

i=1

λiδϱi (t,x),ϑi (t,x),ui (t,x),

I0∑

i=1

λi = 1

represents a (genuine) measure-valued solution of the same problem (cf. Definition 3.1 below).
A proper definition of measure-valued solution to the full Euler system is a delicate issue. 

As uniform L∞ a priori bounds are not known and possibly not available, the effect of possible 
concentrations must be taken into account. Unfortunately, the Lp-framework developed in [20]
does not apply either as the fluxes are not dominated by the conserved quantities. To avoid this 
difficulty, we follow the approach [19], where the energy equation (17) is “integrated” with re-
spect to the space variable and the entropy balance kept in its renormalized form (18). In such a 
way, we eliminate the difficulties connected with the lack of a priori bounds that would control 
the convective terms in (17), (18).

3.1. Dissipative measure-valued solutions

Following [19] we define the measure-valued solutions to the Euler system in terms of vari-
ables

ϱ, m, and Eint = ϱe(ϱ,ϑ)

assuming that ∂ϑe(ϱ, ϑ) > 0. Accordingly, we consider the phase space

F =
{
[ϱ,m,Eint]

∣∣∣ ϱ ≥ 0, m ∈ RN, Eint ≥ 0
}

.

Definition 3.1. [Dissipative measure-valued solution]
A parameterized family of probability measures {Yt,x}(t,x)∈(0,T )×&,

(t, x) %→ Yt,x ∈ L∞
weak−(∗)((0, T ) × &;P(F)),

and a non-negative function D ∈ L∞(0, T ) called dissipation defect represent a dissipative 
measure-valued solution of the Euler system (1)–(3), (9), (11) with the initial data Y0,x if:

•
⎡

⎣
∫

&

〈
Yt,x;ϱ

〉
ϕ dx

⎤

⎦
t=τ

t=0

=
τ∫

0

∫

&

[〈
Yt,x;ϱ

〉
∂tϕ +

〈
Yt,x;m

〉
· ∇xϕ

]
dx dt (35)

for a.a. τ ∈ (0, T ) and for any ϕ ∈ C1([0, T ] × RN);
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•
⎡

⎣
∫

!

〈
Yt,x;m

〉
· ϕ dx

⎤

⎦
t=τ

t=0

=
τ∫

0

∫

!

[ 〈
Yt,x;m

〉
· ϕ +

〈
Yt,x;

m ⊗ m
ϱ

〉
: ∇xϕ +

〈
Yt,x;p(ϱ,Eint)

〉
divxϕ

]
dx dt

+
τ∫

0

∫

!

∇xϕ : dµR +
τ∫

0

∫

!

〈
Yt,x;ϱ

〉
∇x$ · ϕ dx dt

(36)

for a.a. τ ∈ (0, T ) and for any ϕ ∈ C1([0, T ] × !; RN), ϕ · n|∂! = 0, where

µR ∈ M
(
[0, T ] × !;RN×N

)

is a signed (tensor-valued) Radon measure on [0, T ] × !;
•

⎡

⎣
∫

!

〈
Yt,x;ϱZ (s)

〉
ϕ dx

⎤

⎦
t=τ

t=0

≥
τ∫

0

∫

!

[ 〈
Yt,x;ϱZ (s)

〉
∂tϕ +

〈
Yt,x;Z (s)m

〉
· ∇xϕ

]
dx dt

(37)

for a.a. τ ∈ (0, T ), any ϕ ∈ C∞([0, T ] × RN), ϕ ≥ 0, Z′ ≥ 0, Z′′ ≤ 0, Z ≤ Z∞ < ∞;
•

⎡

⎣
∫

!

〈
Yt,x;

1
2

|m|2
ϱ

+ Eint

〉
dx

⎤

⎦
t=τ

t=0

+ D(τ ) =
τ∫

0

∫

!

〈
Yt,x;m

〉
· ∇x$dx dt (38)

where the dissipation defect D dominates the measure µR,

∥µR∥M([0,τ )×!;RN×N ) ≤ c

τ∫

0

D(t) dt (39)

for a.a. τ ∈ (0, T ).

The existence of measure-valued solutions for given initial data and global in time can be 
easily shown, for instance by the method of artificial viscosity. They can be also identified as 
limits of certain numerical schemes, cf. [24,20].



1532 E. Feireisl et al. / J. Differential Equations 269 (2020) 1521–1543

3.2. Relative energy

The dissipative measure-valued solutions enjoy certain stability properties, in particular 
within the class of smooth solutions - the weak-strong uniqueness property shown in [19]. The 
key tool is the relative energy inequality.

We start by introducing the relative energy written in the variables [ϱ, Eint, m] as

EZ

(
ϱ,Eint,m

∣∣∣r,",U
)

= 1
2
ϱ

∣∣∣∣
m
ϱ

− U
∣∣∣∣
2

+ Eint − "ϱZ(s(ϱ,Eint)) − ∂H"(r,")

∂ϱ
(ϱ − r) − H"(r,"),

(40)

where H" is the ballistic free energy,

H"(ϱ,ϑ) = ϱe(ϱ,ϑ) − "ϱs(ϱ,ϑ).

It is worth noting that the relative energy (with Z(s) = s) coincides, up to a multiplicative factor 
", with the relative entropy functional introduced by Dafermos [25], see [26].

The important tool in the analysis of the Euler system is the relative energy inequality proved 
in [19]:

⎡

⎣
∫

%

〈
Yt,x;EZ

(
ϱ,Eint,m

∣∣∣r,",U
)〉

dx

⎤

⎦
t=τ

t=0

+ D(τ )

≤ −
τ∫

0

∫

%

[〈
Yt,x;ϱZ (s(ϱ,Eint))

〉
∂t" +

〈
Yt,x;Z (s(ϱ,Eint))m

〉
· ∇x"

]
dx dt

+
τ∫

0

∫

%

[〈
Yt,x;ϱ

〉
s(r,")∂t" +

〈
Yt,x;m

〉
· s(r,")∇x"

]
dx dt

+
τ∫

0

∫

%

[〈
Yt,x;ϱU − m

〉
· ∂tU +

〈
Yt,x; (ϱU − m) ⊗ m

ϱ

〉
: ∇xU −

〈
Yt,x;p(ϱ,Eint)

〉
divxU

]
dx dt

+
τ∫

0

∫

%

[〈
Yt,x; r − ϱ

〉 1
r
∂tp(r,") −

〈
Yt,x;m

〉
· 1
r
∇xp(r,")

]
dx dt

+
τ∫

0

∫

%

∇x' ·
〈
Yt,x;m − ϱU

〉
dx dt −

τ∫

0

∇xU : dµR

(41)

for any trio of test functions [r, ", U] belonging to the class

r > 0, " > 0, r," ∈ C1([0, T ] × %), U ∈ C1([0, T ] × %;RN), U · n|∂% = 0.
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Remark 3.2. As a matter of fact, relation (41) was proved in [19] for the periodic boundary con-
ditions and for the homogeneous case ! = 0. Adaptation to other kinds of boundary conditions 
like impermeable boundary and to driven fluids, i.e. ! ̸= 0, is straightforward.

4. A singular limit problem

We illustrate the strength of the theory considering a singular limit problem for strongly strat-
ified fluids arising in meteorology or astrophysics, see Majda [27].

4.1. Scaled system

We consider a scaled system driven by an external gradient type force:

∂tϱ + divxm = 0, (42)

∂tm + divx

(
m ⊗ m

ϱ

)
+ 1

ε2 ∇xp(ϱ,Eint) = 1
ε2 ϱ∇x!, (43)

∂t

(
1
2

|m|2
ϱ

+ 1
ε2 Eint

)
+ divx

[(
1
2

|m|2
ϱ

+ 1
ε2 Eint +

1
ε2 p(ϱ,Eint)

)
m
ϱ

]
= 1

ε2 ∇x! · m (44)

where ! = !(x) is a given potential.
For the sake of simplicity, we focus on the physically relevant case, where the thermodynamic 

functions correspond to the perfect gas,

Eint = cvϱϑ, p = ϱϑ, s = log
(

ϑcv

ϱ

)
, cv > 0 − specific heat at constant volume.

We consider the spatial domain to be an infinite slab,

& = T 2 × (0,1), T 2 = [0,1]|{0,1} − the two dimensional torus,

meaning the all quantities are space-periodic (with period 1) with respect to the horizontal vari-
able xh = (x, y). The differential operators acting only on the horizontal variables will be denoted 
∇h, divh, etc. We denote z the vertical variable. We impose the impermeability condition on the 
lateral boundary,

m(xh, z) · n = m3(xh, z) = 0 for z = 0,1.

Finally, we assume

! = !(z) = −z, ∇x! = [0,0,−1]. (45)

Our goal is to study the singular limit for ε → 0 in the isothermal regime characterized by 
constant temperature. More specifically, we consider solutions close to the static state [ϱs, '],

∇x(ϱs') = ϱs∇x!, ' > 0 a given constant. (46)
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In view of the ansatz (45), the static problem (46) admits a solution determined uniquely by its 
total mass. Accordingly, there exists a constant c0 > 0 such that

ϱs = c0 exp
(

− z

"

)
.

4.2. Identifying the asymptotic limit, the main result

Plugging ϱ = ϱs , ϑ = " in (42) and the entropy inequality (11) we obtain

divxm = 0, divx(s(ϱs ,")m) ≥ 0.

In addition, in view of the boundary conditions satisfied by m, the second inequality reduces to 
equality. Using the specific form of ϱs we easily deduce

∇xs(ϱs ,") · m = −∇x$(z) · m
"

= m3

"
= 0,

meaning the limit momentum (velocity) possesses only the horizontal component, while

divhm = 0.

Accordingly, the limit velocity field U = [U1, U2, 0] =: [Uh, 0] can be taken as the unique 
solution of the 2-d incompressible Euler system

∂tUh + Uh · ∇hUh + ∇h& = 0, divhUh = 0, xh ∈ T 2, (47)

supplemented be the initial data

U(0,x) = U0(xh, z) = [U1
0 (xh, z),U

2
0 (xh, z),0] = [Uh,0(xh, z),0]. (48)

The following result is standard, see e.g. Kato [28].

Proposition 4.1. Let Uh,0 = Uh,0(xh) be given,

Uh,0 ∈ Wk,2(T 2;R2), divhUh,0 = 0, k > 2.

Then problem (47), (48) admits a (strong) solution [Uh, &] unique in the class

Uh ∈ C([0, T ];Wk,2(T 2;R2)), ∂tUh, ∂t&,∇h& ∈ C([0, T ];Wk−1(T 2;R2)),

∫

T 2

& dxh = 0.

We are ready to formulate the main result concerning the singular limit in the system 
(42)–(44).
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Theorem 4.2. Let the initial data be given such that

ϱ0,ε = ϱs + εϱ
(1)
0,ε, ϑ0,ε = $ + εϑ

(1)
0,ε , u0,ε,

where

∥ϱ(1)
0,ε∥L∞(%) + ∥ϑ (1)

0,ε∥L∞(%) + ∥u0,ε∥L∞(%;RN) ≤ c,

ϱ
(1)
0,ε → 0, ϑ

(1)
0,ε → 0, u0,ε → U0 in L1(%) as ε → 0,

and where

U0 ∈ Wk,2(%;R3), k > 3, U0 = [U1
0 ,U2

0 ,0], divhU0 = 0.

Let {Y ε
t,x}(t,x)∈(0,T )×%, Dε be a family of dissipative measure-valued solutions to the scaled 

system (42)–(44), with the initial data

Y ε
0,x = δϱ0,ε,ϱ0,εu0,ε,cvϱ0,εϑ0,ε ,

and satisfying the compatibility condition (39) with a constant c independent of ε.
Then

Dε → 0 in L∞(0, T ),

and

Y ε → δϱs ,ϱsU,cvϱs$
in L∞(0, T ;M+(F)weak−(∗)),

where [ϱs , $] is the static state and U is the unique solution to the Euler system (47), (48).

The rest of the section is devoted to the proof of Theorem 4.2. The initial data considered in 
Theorem 4.2 are well-prepared, meaning adapted to the limit system. In particular, the effect of 
acoustic waves is eliminated. Note that the limit problem is rather different from the isentropic 
case studied in [29].

4.3. Rescaled relative energy

Definition 3.1 can be easily adapted to the scaled driven system (42)–(44). The relevant rela-
tive energy functional reads

Eε,Z

(
ϱ,Eint,m

∣∣∣r,$,U
)

= 1
2
ϱ

∣∣∣∣
m
ϱ

− U
∣∣∣∣
2

+ 1
ε2

[
Eint − $ϱZ(s(ϱ,Eint)) − ∂H$(r,$)

∂ϱ
(ϱ − r) − H$(r,$)

]
.

(49)

along with the relative energy inequality
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⎡

⎣
∫

!

〈
Yt,x;Eε,Z

(
ϱ,Eint,m

∣∣∣r,$,U
)〉

dx

⎤

⎦
t=τ

t=0

+ Dε(τ )

≤ − 1
ε2

τ∫

0

∫

!

[〈
Yt,x;ϱZ (s(ϱ,Eint))

〉
∂t$ +

〈
Yt,x;Z (s(ϱ,Eint))m

〉
· ∇x$

]
dx dt

+ 1
ε2

τ∫

0

∫

!

[〈
Yt,x;ϱ

〉
s(r,$)∂t$ +

〈
Yt,x;m

〉
· s(r,$)∇x$

]
dx dt

+
τ∫

0

∫

!

[〈
Yt,x;ϱU − m

〉
· ∂tU+

〈
Yt,x; (ϱU − m)⊗m

ϱ

〉
: ∇xU− 1

ε2

〈
Yt,x;p(ϱ,Eint)

〉
divxU

]
dx dt

+ 1
ε2

τ∫

0

∫

!

[〈
Yt,x; r − ϱ

〉 1
r
∂tp(r,$) −

〈
Yt,x;m

〉
· 1
r
∇xp(r,$)

]
dx dt

+ 1
ε2

τ∫

0

∫

!

∇x' ·
〈
Yt,x;m − ϱU

〉
dx dt −

τ∫

0

∇xU : dµRε
. (50)

4.4. Uniform bounds

Our goal is to establish uniform bounds for the family Y ε , Dε of measure-valued solutions 
satisfying the hypotheses of Theorem 4.2. For $ = $ > 0, r = ϱs the solution of the stationary 
problem (46), the relative energy inequality simplifies to

∫

!

〈
Y ε

τ,x;Eε,Z

(
ϱ,Eint,m

∣∣∣ϱs ,$,U
)〉

dx + Dε(τ )

≤
τ∫

0

∫

!

[〈
Y ε

t,x;ϱU − m
〉
· ∂tU +

〈
Y ε

t,x; (ϱU − m) ⊗ m
ϱ

〉
: ∇xU − 1

ε2

〈
Y ε

t,x;p(ϱ,Eint)
〉
divxU

]
dx dt

− 1
ε2

τ∫

0

∫

!

〈
Y ε

t,x;ϱ
〉
∇x' · U dx dt −

τ∫

0

∇xU : dµRε

+
∫

!

Eε,Z

(
ϱ0,ε, cvϱ0,εϑ0,ε,ϱ0,εu0,ε

∣∣∣ ϱs ,$,U(0, ·)
)

dx .

Thanks to our choice of the initial data, the right-hand side of the above inequality is bounded 
independently of the cut-off function Z, and we get

∫

!

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,$,U
)〉

dx + Dε(τ )
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≤
τ∫

0

∫

"

[〈
Y ε

t,x;ϱU − m
〉
· ∂tU +

〈
Y ε

t,x; (ϱU − m) ⊗ m
ϱ

〉
: ∇xU − 1

ε2

〈
Y ε

t,x;p(ϱ,Eint)
〉
divxU

]
dx dt

− 1
ε2

τ∫

0

∫

"

〈
Y ε

t,x;ϱ
〉
∇x& · U dx dt −

τ∫

0

∇xU : dµRε

+
∫

"

Eε

(
ϱ0,ε, cvϱ0,εϑ0,ε,ϱ0,εu0,ε

∣∣∣ ϱs ,(,U(0, ·)
)

dx . (51)

where

Eε

(
ϱ,Eint,m

∣∣∣r,(,U
)

= 1
2
ϱ

∣∣∣∣
m
ϱ

− U
∣∣∣∣
2

+ 1
ε2

[
Eint − (ϱs(ϱ,Eint) − ∂H((r,()

∂ϱ
(ϱ − r) − H((r,()

]
.

4.4.1. Entropy estimates
As the initial data are well-prepared, we have

s(ϱ0,ε,ϑ0,ε) ≥ s0 > −∞ uniformly for ε → 0.

Taking the cut-off function Z,

Z′(s) ≥ 0, Z′′(s) ≤ 0,Z(s) < 0 for all s < s0, Z(s) = 0 whenever s ≥ s0.

we deduce from the entropy inequality (37) that

∫

"

〈
Y ε

τ,x;ϱZ(s)
〉

dx ≥ 0 for τ ≥ 0.

Consequently,

supp[Y ε
τ,x] ⊂

{
[ϱ,Eint,m]

∣∣∣ ϱ ≥ 0, Eint ≥ 0, s(ϱ,Eint) ≥ s0

}
,

or, equivalently,

supp[Y ε
τ,x] ⊂

{
[ϱ,Eint,m]

∣∣∣ 0 ≤ ϱ1+ 1
cv ≤ c(s0)Eint

}
for a.a. (τ, x). (52)
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4.4.2. Energy estimates
For U = 0 relation (51) gives rise to

∫

!

〈
Y ε

τ,x;
1
2

|m|2
ϱ

+ 1
ε2

[
Eint − %ϱs(ϱ,Eint)

− ∂H%(ϱs ,%)

∂ϱ
(ϱs − r) − H%(ϱs ,%)

]〉
dx ≤ c

(53)

uniformly for ε → 0.
Following [19] we fix a compact set K ⊂ (0, ∞)2 containing all points [ϱs(x), %], x ∈ ! and 

denote by K̃ ⊂ (0, ∞)2 its image in the new phase variables

(ϱ,ϑ) '→ [ϱ, cvϱϑ] : (0,∞)2 → (0,∞)2.

Next, we consider a function ( = ((ϱ, Eint),

( ∈ C∞
c (0,∞)2, 0 ≤ ( ≤ 1,(|U = 1, where U is an open neighborhood of K̃ in (0,∞)2.

Finally, for a measurable function G(ϱ, Eint, m), we set

G = Gess + Gres, Gess = ((ϱ,Eint)G(ϱ,Eint,m), Gres = (1 − ((ϱ,Eint))G(ϱ,Eint,m).

We report the estimate [30, Chapter 3, Proposition 3.2]

1
2

|m|2
ϱ

+ 1
ε2

[

Eint − %ϱs(ϱ,Eint) − ∂H%(ϱs ,%)

∂ϱ
(ϱs − r) − H%(ϱs ,%)

]

≥ c

⎛

⎝
∣∣∣∣
m
ϱ

∣∣∣∣
2

+

⎡

⎣
∣∣∣∣
ϱ − ϱs

ε

∣∣∣∣
2

+
∣∣∣∣∣
Eint − cvϱs%

ε

∣∣∣∣∣

2
⎤

⎦

ess

+
[

1 + ϱ + ϱ|s(ϱ,Eint)| + Eint

ε2

]

res

⎞

⎠ ,

(54)

where c is a structural constant independent of ε.
Thus relation (53) gives rise to

∫

!

〈
Y ε

τ,x;
|m|2
ϱ

〉
dx ≤ c (55)

and
∫

!

〈
Y ε

τ,x;
[
ϱ − ϱs

]2
ess +

∣∣[ϱ − ϱs

]
res

∣∣
〉

dx ≤ ε2c, (56)

∫

!

〈
Y ε

τ,x;
[
Eint − cvϱs%

]2
ess +

∣∣[Eint − cvϱs%
]

res

∣∣
〉

dx ≤ ε2c, (57)
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uniformly in τ ∈ [0, T ], ε → 0.

4.4.3. Momentum estimates
In view of the estimates established in Section 4.4.2, we may suppose that

ξε =
〈
Y ε

t,x;m
〉
→ ξ weakly-(*) in L∞(0, T ;Lα(%)), for some α > 1, (58)

passing to a subsequence as the case may be.
Indeed we have

〈
Y ε

t,x;m
〉
=

〈
Y ε

t,x;
√

ϱ
|m|√

ϱ

〉
.

By Jensen’s inequality

∣∣〈Y ε
t,x;m

〉∣∣α ≤
〈
Y ε

t,x;ϱα/2
( |m|√

ϱ

)α〉
!

〈
Y ε

t,x;
|m|2
ϱ

〉
+

〈
Y ε

t,x;ϱα/(2−α)
〉
.

Thus taking α > 1 close to 1 we may use (52), (55) to obtain the desired conclusion.

4.5. The limit for ε → 0

Let Y ε
t,x , Dε be a family of measure-valued solutions satisfying the hypotheses of Theo-

rem 4.2. In view of the coercivity properties (54), the conclusion of Theorem 4.2 follows as 
soon as we show that

∫

%

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,',U
)〉

dx + Dε(τ ) → 0

as ε → 0 uniformly for a.a. τ ∈ (0, T ).

To see this, we apply a Gronwall type argument to inequality (51), where we take U the solution 
of the limit problem (47), (48).

4.5.1. Momentum limit
With (58) in mind, we look at (35), which is equivalent to

⎡

⎣
∫

%

〈
Y ε

t,x;ϱ − ϱs

〉
ϕ dx

⎤

⎦
t=τ

t=0

=
τ∫

0

∫

%

[〈
Y ε

t,x;ϱ − ϱs

〉
∂tϕ +

〈
Y ε

t,x;m
〉
· ∇xϕ

]
dx dt

because

⎡

⎣
∫

%

ϱsϕ dx

⎤

⎦
t=τ

t=0

=
τ∫

0

∫

%

ϱs∂tϕ dx dt.

Using the uniform estimates (56) we obtain in the limit ε → 0:
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τ∫

0

∫

"

ξ · ∇xϕ dx dt = 0

or, equivalently,

divxξ = 0, ξ · n|∂" = 0 in the sense of distributions. (59)

Similarly, using (56), (57), we may pass to the limit in the entropy balance (37):

divx

(
s(ϱs ,')ξ

)
≥ 0

but since ξ has zero normal trace, this reduces to

divx

(
s(ϱs ,')ξ

)
= 0. (60)

Of course all these relations are understood in the sense of distributions.
Relations (59), (60) are compatible only if

divxξ = 0, ∇xϱs · ξ = 0 a.e. in (0, T ) × ",

in other words,

ξ3 = 0, divhξ = 0 a.e. in (0, T ) × ". (61)

4.5.2. Geometry and the limit problem
For U - the solution of the limit problem - inequality (51) simplifies considerably yielding

∫

"

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,',U
)〉

dx + Dε(τ )

≤
τ∫

0

∫

"

[〈
Y ε

t,x;ϱU − m
〉
· ∂tU +

〈
Y ε

t,x; (ϱU − m) ⊗ m
ϱ

〉
: ∇xU

]
dx dt

+ c

τ∫

0

⎡

⎣
∫

"

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,',U
)〉

dx + Dε(τ )

⎤

⎦ dt + ω(ε),

(62)

where ω = ω(ε) denotes a generic function enjoying the property ω(ε) → 0 as ε → 0.
Next, we may replace m

ϱ by U keeping (62) still valid. Moreover, in accordance with (56), we 
may also replace ϱ by ϱs thus obtaining
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∫

!

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,%,U
)〉

dx + Dε(τ )

≤
τ∫

0

∫

!

(
ϱsU −

〈
Y ε

t,x;m
〉)

(∂tU + U · ∇xU) dx dt

+ c

τ∫

0

⎡

⎣
∫

!

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,%,U
)〉

dx + Dε(τ )

⎤

⎦ dt + ω(ε).

(63)

As U satisfies (47), relation (63) reduces to
∫

!

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,%,U
)〉

dx + Dε(τ )

!
τ∫

0

∫

!

(ξ − ϱsU) · ∇h)dx dt

+
τ∫

0

⎡

⎣
∫

!

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,%,U
)〉

dx + Dε(τ )

⎤

⎦ dt + ω(ε).

(64)

Finally, thanks to (47), (61),

∫

!

(ξ − ϱsU) · ∇h)dx = 0.

Thus the desired convergence

∫

!

〈
Y ε

τ,x;Eε

(
ϱ,Eint,m

∣∣∣ϱs ,%,U
)〉

dx + Dε(τ ) → 0 as ε → 0 uniformly in τ ∈ (0, T )

follows from Gronwall’s lemma. We have proved Theorem 4.2.

Remark 4.3. With only minor modifications in the proof, it is also possible to show the same 
convergence result as in Theorem 4.2 for the homogeneous Euler system in two space dimen-
sions. In this case - since * = 0 - the limit system is the 2-d incompressible Euler system, too.
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