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Active flux for ideal magnetohydrodynamics: A positivity-preserving
scheme with the Godunov-Powell source term

Junming Duan, Praveen Chandrashekar, Christian Klingenberg

• A third-order active flux (AF) scheme for one- and two-dimensional
ideal magnetohydrodynamics is constructed.

• The divergence-free constraint is dealt by using a suitable discretization
of the Godunov-Powell source term, based on the quadratic reconstruc-
tion in each cell, which maintains the compact stencil.

• A parametrized flux limiter and a scaling limiter are presented to pre-
serve the density and pressure positivity by blending the AF scheme
with the first-order local Lax-Friedrichs scheme with the source term.

• A new shock sensor considering the divergence error is proposed, which
is used to compute the blending coefficients for the cell average.

• The key role of the Godunov-Powell source term in controlling diver-
gence error is also validated.
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Abstract

The Active Flux (AF) is a compact, high-order finite volume scheme that
allows more flexibility by introducing additional point value degrees of free-
dom at cell interfaces. This paper proposes a positivity-preserving (PP) AF
scheme for solving the ideal magnetohydrodynamics, where the Godunov-
Powell source term is employed to deal with the divergence-free constraint.
For the evolution of the cell average, apart from the standard conservative
finite volume method for the flux derivative, the nonconservative source term
is discretized based on the quadratic reconstruction in each cell, which main-
tains the compact stencil in the AF scheme. For the point value update,
the local Lax-Friedrichs (LLF) flux vector splitting is adopted for the flux
derivative, originally proposed in [Duan, Barsukow, and Klingenberg, SIAM
J. Sci. Comput., 47(2), A811–A837, 2025], and a central difference is used
to discretize the divergence in the source term. A parametrized flux lim-
iter and a scaling limiter are presented to preserve the density and pressure
positivity by blending the AF scheme with the first-order PP LLF scheme
with the source term. To suppress oscillations, a new shock sensor consider-
ing the divergence error is proposed, which is used to compute the blending
coefficients for the cell average. Several numerical tests are conducted to
verify the third-order accuracy, PP property, and shock-capturing ability of
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the scheme. The key role of the Godunov-Powell source term in controlling
divergence error is also validated.

Keywords: Active flux, magnetohydrodynamics, high-order accuracy, finite
volume method, positivity-preserving

1. Introduction

This paper is concerned with solving the two-dimensional ideal magneto-
hydrodynamics (MHD), which in conservative form reads

Ut + F1(U)x + F2(U)y = 0, (1)

where U = (ρ, ρv⊤,B⊤, E)⊤ is the vector of conservative variables, with the
velocity vector v = (v1, v2, v3)

⊤ and magnetic field vector B = (B1, B2, B3)
⊤,

the total energy E = 1
2
ρ ∥v∥2 + ρe + 1

2
∥B∥2, and ρe is the internal energy.

The fluxes in the x- and y-directions are defined as

F1 =



ρv1
ρv21 −B2

1 + pt
ρv1v2 −B1B2

ρv1v3 −B1B3

0
v1B2 −B1v2
v1B3 −B1v3

(E + pt)v1 −B1(v ·B)


, F2 =



ρv2
ρv1v2 −B1B2

ρv22 −B2
2 + pt

ρv2v3 −B2B3

v2B1 −B2v1
0

v2B3 −B2v3
(E + pt)v2 −B2(v ·B)


.

Here the total pressure pt = p + pm consists of the fluid pressure p and
magnetic pressure pm = 1

2
∥B∥2. To close the system (1), this paper considers

the equation of state (EOS) for the perfect gas p = (γ − 1)ρe, with the
adiabatic index γ. The physical solutions should satisfy the divergence-free
constraint on the magnetic field

∇ ·B =
∂B1

∂x
+

∂B2

∂y
= 0.

For the numerical solutions of the MHD equations (1), one needs to care-
fully deal with the divergence-free constraint, otherwise, large divergence
errors may lead to nonphysical features or numerical instabilities [1, 2, 3].
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Many works have focused on this issue, e.g., the projection method men-
tioned in [1] while later implemented in [3], the constrained transport (CT)
method and its variants [4, 5, 6, 2, 7, 8], the eight-wave formulation of the
MHD equations [9, 10] based on the Godunov-Powell source term [11, 9], the
hyperbolic divergence cleaning method [12], the locally divergence-free dis-
continuous Galerkin (DG) method [13], the globally divergence-free central
DG method [14], etc. By adding the Godunov-Powell source term [11, 9] to
the conservative MHD equations (1), the modified system reads

Ut + F1(U)x + F2(U)y = −(∇ ·B)Ψ, (2)

where
Ψ = (0,B,v,v ·B)⊤. (3)

Such a source term makes the system nonconservative but introduces many
advantages, e.g., the modified system is Galilean invariant, and can be sym-
metrized by the entropy pair [11], which leads to the entropy stable schemes
for the MHD [15, 16, 17]. One can also verify that the divergence satisfies
the following transport equation,

∂

∂t

(
∇ ·B
ρ

)
+ v · ∇

(
∇ ·B
ρ

)
= 0,

which means divergence error may be advected away by the flow [9], instead
of accumulating and causing instabilities.

The design of so-called positivity-preserving (PP) numerical methods that
maintain the positivity of density and pressure is also very important for nu-
merical stability. To address this issue, several techniques have been proposed
[18, 19, 20]. The PP Riemann solver based on relaxation was constructed in
[21, 22], and PP schemes based on that were studied in [23, 24]. It was shown
in [22] that the Godunov-Powell source term is important in the design of
PP schemes for the multi-dimensional MHD. The PP DG and central DG
schemes based on the scaling limiter [25] were proposed in [26]. The PP finite
difference methods were developed in [27, 28] by using the parametrized flux
limiter [29]. Taking inspiration from transforming nonlinear constraints of
the admissible state set into linear ones by adding auxiliary variables [30],
the first-order Lax-Friedrichs scheme with suitable viscosity and a discrete
Godunov-Powell source term was rigorously proved to be PP by Wu in [31],
and based on that, the provably high-order PP DG schemes were proposed in
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[32] with a suitable high-order discretization of the Godunov-Powell source
term. It is also demonstrated in [32, 33] that the Godunov-Powell source
term helps to eliminate the effect of divergence error on the PP property.
Subsequently, more works on the design of high-order PP schemes for the
MHD equations were presented, including but not restricted to [33, 34, 35].

The active flux (AF) method is a compact finite volume method [36, 37,
38, 39], with inspiration from [40]. It simultaneously evolves cell averages
and additional degrees of freedom (DoFs), chosen as point values at cell in-
terfaces like the continuous finite element method. Thanks to this continuity
of the point values across the cell interface, the unlimited AF method does
not need Riemann solvers (unlike Godunov methods) for the evolution of the
cell average. The AF methods can be roughly divided into two classes based
on the evolution of the point value. The original ones evolve the cell aver-
age through Simpson’s rule for flux quadrature in time, and employ exact
or approximate evolution operators to evolve the point values and to obtain
the numerical solutions at the flux quadrature points. Examples are exact
evolution operators for linear equations [41, 42, 38, 40], p-system [43], and
approximate evolution operators for Burgers’ equation [36, 37, 39, 44], the
compressible Euler equations in one spatial dimension [36, 45, 44], multidi-
mensional Euler equations [43], and hyperbolic balance laws [46, 47], etc.
The method of bicharacteristics was used for the derivation of truly mul-
tidimensional approximative evolution operators [48]. The other so-called
generalized, or semi-discrete AF methods adopt a method of lines, where the
evolution of the cell average and point value is written in semi-discrete form
and integrated in time by using Runge-Kutta methods. Examples of this ap-
proach are [49, 50, 51, 52] based on Jacobian splitting and [53] based on flux
vector splitting (FVS). The AF method is superior to standard finite volume
methods due to its structure-preserving property. For example, it preserves
the vorticity and stationary states for multi-dimensional acoustic equations
[41], and it is naturally well-balanced for acoustics with gravity [46].

This paper proposes a PP AF scheme for solving the ideal MHD equa-
tions, where the Godunov-Powell source term is employed to deal with the
divergence-free constraint. For the discretization of the flux derivative in the
point value update, we use the local Lax-Friedrichs (LLF) FVS following the
previous work [53], which shows better performance for strong discontinu-
ities. Our main novelty and contributions in this paper are as follows.

• We construct suitable discretizations for the nonconservative source
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term to achieve a stable AF scheme. For the evolution of cell average,
the source term is discretized using the 3×3 Gauss-Lobatto quadrature
rule, where the discrete divergence is easily computed based on the
quadratic reconstruction in each cell, thus such a discretization only
depends on the DoFs in the current cell, and maintains the compactness
of the AF scheme. For the point value update, a central difference is
used to discretize the divergence in the source term, built on the same
spatial stencil as the original AF scheme [51]. Numerical tests will
show that the inclusion of the Godunov-Powell source term and our
discretization can control the divergence error.

• To design the PP AF scheme, we borrow the idea of blending the
high-order AF scheme and the first-order PP LLF scheme from [53],
and take advantage of the PP property of the first-order LLF scheme,
which was rigorously proved in [33]. Different from [53], a parametrized
flux limiter [29, 27] is adopted for the cell average as the intermediate
state defined in [53] may not be PP for the MHD. Our PP limiting for
the cell average consists of two steps: the source term is blended first
and then the numerical flux. A scaling limiter, as the one in [53], is
also presented to preserve the PP property for the point value update.
Thus, our AF scheme is PP for both the cell average and point value.

• To suppress oscillations, a new shock sensor is proposed to be used in
the blending for the cell average. We take into account the magnetic
pressure and also divergence error, where the latter indicates the non-
smooth regions in the magnetic field. Additionally, we also limit the
discretization for the source term based on the blending coefficients at
cell edges. Several numerical examples, including the rotor problem,
blast problem, and high Mach number jets in a strongly magnetized
medium, will be used to demonstrate the ability of the shock sensor-
based limiting.

The remainder of this paper is structured as follows. Section 2 con-
structs the 2D AF scheme based on the LLF FVS for the point value update,
and suitable discretizations for the Godunov-Powell source term. Section 3
presents the 2D PP limitings and also a limiting for suppressing oscillations
based on a new shock sensor. Numerical tests are conducted in Section 4 to
experimentally demonstrate the accuracy, PP property, and shock-capturing
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ability of the scheme, and also the control of the divergence error. Section 5
concludes the paper with final remarks.

2. Active flux scheme for the MHD

This section presents the 2D semi-discrete AF methods for the modified
MHD system (2). The SSP-RK3 method is used to obtain the fully-discrete
scheme. Without loss of generality, assume that a 2D computational domain
is divided into N1 × N2 uniform cells, Ii,j = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] with

cell centers (xi, yj) = (1
2
(xi− 1

2
+xi+ 1

2
), 1

2
(yj− 1

2
+yj+ 1

2
)) and mesh sizes ∆x,∆y.

The DoFs contain the cell averages and point values of the numerical solution
Uh(x, t), defined as

U i,j(t) =
1

∆x∆y

∫
Ii,j

Uh(x, t) dx, Uσ(t) = Uh(xσ, t),

with x = (x, y), σ = (i + 1
2
, j), (i, j + 1

2
), (i + 1

2
, j + 1

2
). Figure 1 shows the

locations of the DoFs for some variable u. Now, let us introduce some finite

u
i+1

2
,j+1

2

u
i+1

2
,j−1

2

u
i−1

2
,j−1

2

u
i−1

2
,j+1

2

u
i−1

2
,j

u
i+1

2
,j

u
i,j−1

2

u
i,j+1

2

ui,j

ūi,j

Figure 1: The DoFs for the third-order AF method: cell average (circle), face-centered
values (squares), values at corners (dots). Note that the cell-centered point value ui,j

(cross) is used in constructing the scheme, but does not belong to the DoFs.

difference operators, which will be used in the construction of our AF scheme.

2.1. Finite difference operators
Recall the quadrature points and weights of Simpson’s rule in the interval

[−1
2
, 1
2
],

ξ1 = −1

2
, ξ2 = 0, ξ3 =

1

2
, and ω1 =

1

6
, ω2 =

2

3
, ω3 =

1

6
,
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then the 3× 3 tensor product quadrature points in the cell Ii,j are

(xi + ξl∆x, yj + ξm∆y), l,m = 1, 2, 3. (4)

Denote the numerical solution at the (l,m)th quadrature points as U l,m
i,j . One

can retrieve them easily from the DoFs since their locations coincide except
for l = m = 2, i.e., the solution at the cell center. To obtain that, reconstruct
a bi-parabolic polynomial in the cell Ii,j using the cell average and 8 point
values on the edges [51], then the cell-centered solution is

U 2,2
i,j = Ui,j =

1

16

[
36U i,j − 4

(
Ui− 1

2
,j +Ui+ 1

2
,j +Ui,j− 1

2
+Ui,j+ 1

2

)
−
(
Ui− 1

2
,j− 1

2
+Ui+ 1

2
,j− 1

2
+Ui− 1

2
,j+ 1

2
+Ui+ 1

2
,j+ 1

2

) ]
.

The following finite difference operators for the first-order derivatives can be
obtained by differentiating the bi-parabolic reconstruction in the cell Ii,j,(

D+
1 u
)
i+ 1

2
,j1

=
1

∆x

(
ui− 1

2
,j1

− 4ui,j1 + 3ui+ 1
2
,j1

)
,(

D−
1 u
)
i− 1

2
,j1

=
1

∆x

(
−3ui− 1

2
,j1

+ 4ui,j1 − ui+ 1
2
,j1

)
,

(D1u)i,j1 =
1

∆x

(
ui+ 1

2
,j1

− ui− 1
2
,j1

)
,(

D+
2 u
)
i1,j+

1
2

=
1

∆y

(
ui1,j− 1

2
− 4ui1,j + 3ui1,j+

1
2

)
,(

D−
2 u
)
i1,j− 1

2

=
1

∆y

(
−3ui1,j− 1

2
+ 4ui1,j − ui1,j+

1
2

)
,

(D2u)i1,j =
1

∆y

(
ui1,j+

1
2
− ui1,j− 1

2

)
, (5)

where i1 = i− 1
2
, i, i+ 1

2
, j1 = j − 1

2
, j, j + 1

2
. Note that D±

ℓ , ℓ = 1, 2 are one-
sided finite difference operators, while Dℓ, ℓ = 1, 2 are central finite difference
operators, and they are exact for bi-parabolic polynomials, thus third-order
accurate.

2.2. Evolution of cell average
The cell average is evolved following the finite volume method

dU i,j

dt
= − 1

∆x

(
F̂1,i+ 1

2
,j − F̂1,i− 1

2
,j

)
− 1

∆y

(
F̂2,i,j+ 1

2
− F̂2,i,j− 1

2

)
− Si,j,
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where F̂1,i+ 1
2
,j and F̂2,i,j+ 1

2
are the numerical fluxes

F̂1,i+ 1
2
,j =

1

∆y

∫ y
j+1

2

y
j− 1

2

F1(Uh(xi+ 1
2
, y)) dy,

F̂2,i,j+ 1
2
=

1

∆x

∫ x
i+1

2

x
i− 1

2

F2(Uh(x, yj+ 1
2
)) dx,

and S is the discretization of the Godunov-Powell source term. Using Simp-
son’s rule, this paper uses the third-order numerical flux, which in the x-
direction reads

F̂1,i+ 1
2
,j =

1

6

[
F1(Ui+ 1

2
,j− 1

2
) + 4F1(Ui+ 1

2
,j) + F1(Ui+ 1

2
,j+ 1

2
)
]
.

We propose the following third-order discretization for the nonconservative
source term

Si,j =
3∑

l,m=1

ωlωm(∇ ·B)l,mi,j Ψ(U l,m
i,j ), (6)

where (∇ ·B)l,mi,j is the discrete divergence at the (l,m)th quadrature point
defined in (4). The derivatives in the discrete divergence are computed by
the finite difference (5), i.e.,

(∇ ·B)1,1i,j =
∂B1

∂x

∣∣∣
i− 1

2
,j− 1

2

+
∂B2

∂y

∣∣∣
i− 1

2
,j− 1

2

=
(
D−

1 B1

)
i− 1

2
,j− 1

2

+
(
D−

2 B2

)
i− 1

2
,j− 1

2

,

(∇ ·B)1,2i,j =
∂B1

∂x

∣∣∣
i− 1

2
,j
+

∂B2

∂y

∣∣∣
i− 1

2
,j
=
(
D−

1 B1

)
i− 1

2
,j
+ (D2B2)i− 1

2
,j ,

(∇ ·B)1,3i,j =
∂B1

∂x

∣∣∣
i− 1

2
,j+ 1

2

+
∂B2

∂y

∣∣∣
i− 1

2
,j+ 1

2

=
(
D−

1 B1

)
i− 1

2
,j+ 1

2

+
(
D+

2 B2

)
i− 1

2
,j+ 1

2

,

(∇ ·B)2,1i,j =
∂B1

∂x

∣∣∣
i,j− 1

2

+
∂B2

∂y

∣∣∣
i,j− 1

2

= (D1B1)i,j− 1
2
+
(
D−

2 B2

)
i,j− 1

2

,

(∇ ·B)2,2i,j =
∂B1

∂x

∣∣∣
i,j

+
∂B2

∂y

∣∣∣
i,j

= (D1B1)i,j + (D2B2)i,j ,

(∇ ·B)2,3i,j =
∂B1

∂x

∣∣∣
i,j+ 1

2

+
∂B2

∂y

∣∣∣
i,j+ 1

2

= (D1B1)i,j+ 1
2
+
(
D+

2 B2

)
i,j+ 1

2

,

(∇ ·B)3,1i,j =
∂B1

∂x

∣∣∣
i+ 1

2
,j− 1

2

+
∂B2

∂y

∣∣∣
i+ 1

2
,j− 1

2

=
(
D+

1 B1

)
i+ 1

2
,j− 1

2

+
(
D−

2 B2

)
i+ 1

2
,j− 1

2

,
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(∇ ·B)3,2i,j =
∂B1

∂x

∣∣∣
i+ 1

2
,j
+

∂B2

∂y

∣∣∣
i+ 1

2
,j
=
(
D+

1 B1

)
i+ 1

2
,j
+ (D2B2)i+ 1

2
,j ,

(∇ ·B)3,3i,j =
∂B1

∂x

∣∣∣
i+ 1

2
,j+ 1

2

+
∂B2

∂y

∣∣∣
i+ 1

2
,j+ 1

2

=
(
D+

1 B1

)
i+ 1

2
,j+ 1

2

+
(
D+

2 B2

)
i+ 1

2
,j+ 1

2

.

2.3. Evolution of point value
This paper adopts the LLF FVS proposed in [53] for the discretization of

the flux derivative, which was shown to be superior to the Jacobian splitting
[51] for strong discontinuities. For the point value at the corner (xi+ 1

2
, yj+ 1

2
),

the discretization is

dUi+ 1
2
,j+ 1

2

dt
= −

2∑
ℓ=1

[
D+

ℓ F
+
ℓ (U) +D−

ℓ F
−
ℓ (U)

]
i+ 1

2
,j+ 1

2

−(∇·B)i+ 1
2
,j+ 1

2
Ψ(Ui+ 1

2
,j+ 1

2
),

where

(∇ ·B)i+ 1
2
,j+ 1

2
=

2∑
ℓ=1

1

2

[
(D+

ℓ Bℓ)i+ 1
2
,j+ 1

2
+ (D−

ℓ Bℓ)i+ 1
2
,j+ 1

2

]
,

and the finite difference operator is performed on each component. Here
F±

ℓ = 1
2
(Fℓ(U )± αℓU ) is obtained from the LLF FVS, and the coefficient is

chosen as
(αℓ)i+ 1

2
,j+ 1

2
= max ϱℓ(U) for all U ∈ U ℓ,i+ 1

2
,j+ 1

2
,

where

U1,i+ 1
2
,j+ 1

2
= {Ui− 1

2
,j+ 1

2
,Ui,j+ 1

2
,Ui+ 1

2
,j+ 1

2
,Ui+1,j+ 1

2
,Ui+ 3

2
,j+ 1

2
},

U2,i+ 1
2
,j+ 1

2
= {Ui+ 1

2
,j− 1

2
,Ui+ 1

2
,j,Ui+ 1

2
,j+ 1

2
,Ui+ 1

2
,j+1,Ui+ 1

2
,j+ 3

2
},

i.e., the maximal spectral radius ϱℓ of ∂Fℓ/∂U across the spatial stencil.
Note that we use upwind finite difference here. One can verify that, see e.g.
[9], ϱℓ = |vℓ|+ cf,ℓ, ℓ = 1, 2, with

cf,ℓ =

√√√√√√1

2

c2 +
∥B∥2

ρ
+

√√√√(c2 + ∥B∥2

ρ

)2

− 4
c2B2

ℓ

ρ

, c =

√
γp

ρ
. (7)

For the face-centered point values at (xi+ 1
2
, yj) and (xi, yj+ 1

2
), their dis-

cretizations are
dUi+ 1

2
,j

dt
= −

(
D+

1 F
+
1 +D−

1 F
−
1

)
i+ 1

2
,j
− (D2F2)i+ 1

2
,j − (∇ ·B)i+ 1

2
,jΨ(Ui+ 1

2
,j),
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dUi,j+ 1
2

dt
= − (D1F1)i,j+ 1

2
−
(
D+

2 F
+
2 +D−

2 F
−
2

)
i,j+ 1

2

− (∇ ·B)i,j+ 1
2
Ψ(Ui,j+ 1

2
),

where

(∇ ·B)i+ 1
2
,j =

1

2

[
(D+

1 B1)i+ 1
2
,j + (D−

1 B1)i+ 1
2
,j

]
+ (D2B2)i+ 1

2
,j,

(∇ ·B)i,j+ 1
2
= (D1B1)i,j+ 1

2
+

1

2

[
(D+

2 B2)i,j+ 1
2
+ (D−

2 B2)i,j+ 1
2

]
,

and the coefficients in the FVS can be obtained similarly.

Remark 2.1. Note that 1
2

(
D+

ℓ Bℓ +D−
ℓ Bℓ

)
is a central finite difference for

the derivative of Bℓ. We will show in Example 4.3 that such an approximation
is stable, while the upwind discretization based on the velocity direction leads
to instability.

Remark 2.2. The discretization of the source term for the cell average only
depends on the DoFs in the cell Ii,j, and the discretization for the source
term in the point value does not enlarge the spatial stencil, thus our scheme
keeps the compactness of the original AF scheme [51] on the Cartesian mesh.

3. Limitings for the active flux scheme

This section is devoted to developing suitable limitings for the AF scheme.
The first one is used to suppress oscillations and the second is employed
to guarantee the positivity of density and pressure. For the ideal MHD
equations, the physically admissible state set is

G =

{
U = (ρ, ρv,B, E)

∣∣∣ ρ > 0, p = (γ − 1)

(
E − ∥ρv∥2

2ρ
− ∥B∥2

2

)
> 0

}
,

which is convex, see e.g. [26].

Definition 3.1. An AF scheme is called positivity-preserving (PP) if start-
ing from admissible cell averages and point values in G, the cell averages and
point values stay in G at the next time step.

The underlying principle of two limitings are the same, i.e., blending the
high-order AF scheme with a low-order PP scheme. Thus let us review the
following first-order PP LLF scheme with the Godunov-Powell source term.

10



3.1. First-order positivity-preserving LLF scheme
Consider the following scheme for (2),

U
LLF
i,j = U

n

i,j −
∆tn

∆x

[
F̂ LLF

1,i+ 1
2
,j
(U

n

i,j,U
n

i+1,j)− F̂ LLF
1,i− 1

2
,j
(U

n

i−1,j,U
n

i,j)
]

− ∆tn

∆y

[
F̂ LLF

2,i,j+ 1
2
(U

n

i,j,U
n

i,j+1)− F̂ LLF
2,i,j− 1

2
(U

n

i,j−1,U
n

i,j)
]
−∆tnSLLF

i,j ,

(8)

with the LLF flux

F̂ LLF
ℓ (U , Ũ ) =

1

2

[
Fℓ(U) + Fℓ(Ũ)− αLLF

ℓ (Ũ −U)
]
, (9)

and the discretized source term

SLLF
i,j = (∇ ·Bn

)i,jΨ(U
n

i,j),

where the discrete divergence is computed by the central finite difference

(∇ ·Bn
)i,j =

(B1)
n
i+1,j − (B1)

n
i−1,j

2∆x
+

(B2)
n
i,j+1 − (B2)

n
i,j−1

2∆y
.

Lemma 3.1 ([33]). Assume that the parameters in (9) satisfy for ℓ = 1, 2,

αLLF
ℓ ⩾ max{ϱℓ(U), ϱℓ(Ũ ), αℓ,∗(U , Ũ), αℓ,∗(Ũ ,U)},

with

αℓ,∗(U , Ũ) = max

{
|vℓ|,

|√ρvℓ +
√

ρ̃ṽℓ|
√
ρ+

√
ρ̃

}
+max{cf,ℓ, c̃f,ℓ}+

∥∥∥B − B̃
∥∥∥

√
ρ+

√
ρ̃
,

where cf,ℓ and c̃f,ℓ are evaluated based on U and Ũ according to (7), respec-
tively. Given U

n

i,j ∈ G,∀i, j, then the solution of the first-order scheme (8)
is PP, i.e., U LLF

i,j ∈ G under the CFL condition

∆tn

(
αLLF
1,i− 1

2
,j

∆x
+

αLLF
1,i+ 1

2
,j

∆x
+

αLLF
2,i,j− 1

2

∆y
+

αLLF
2,i,j+ 1

2

∆y
+

|(∇ ·Bn
)i,j|√

ρ̄ni,j

)
⩽ 1, ∀i, j.

(10)
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3.2. Shock sensor-based limiting
To suppress spurious oscillations, especially near strong shock waves, a

shock sensor is designed to detect discontinuities, which is further used to
determine the blending coefficients of the AF scheme and the LLF scheme.
This approach has been verified by the numerical results in [53]. Here we
present a new shock sensor for the MHD system. Consider

(φ1)i,j =
|(p̄t)i+1,j − 2(p̄t)i,j + (p̄t)i−1,j|
|(p̄t)i+1,j + 2(p̄t)i,j + (p̄t)i−1,j|

by replacing the fluid pressure as the total pressure pt = p + pm in the
Jameson’s shock sensor [54]. The second is the following modified Ducros’
shock sensor [55]

(φ2)i,j = max

 −(∇ · v̄)i,j√
(∇ · v̄)2i,j + (∇× v̄)2i,j + 10−13

, 0


already used in [53], where

(∇ · v̄)i,j ≈
(v̄1)i+1,j − (v̄1)i−1,j

2∆x
+

(v̄2)i,j+1 − (v̄2)i,j−1

2∆y
,

(∇× v̄)i,j ≈
(v̄2)i+1,j − (v̄2)i−1,j

2∆x
− (v̄1)i,j+1 − (v̄1)i,j−1

2∆y
.

Here, (φ2)i,j is only activated when the velocity divergence is negative. For
the MHD system, we propose to include the following discrete divergence

(φ3)i,j =
|(B̄1)i+1,j − (B̄1)i−1,j + (B̄2)i,j+1 − (B̄2)i,j−1|

|(B̄1)i,j + (B̄2)i,j|+ 10−13
,

which takes into account the divergence error. Note that the quantities āi,j
used above are recovered from the cell average U i,j. The final blending
coefficient is designed as

θs
i+ 1

2
,j
= exp

(
−κ
[
(φ1)i+ 1

2
,j(φ2)i+ 1

2
,j + (φ3)i+ 1

2
,j

])
∈ (0, 1],

(φs)i+ 1
2
,j = max {(φs)i,j, (φs)i+1,j} , s = 1, 2, 3,

where the parameter κ determines the limiting strength. The limited numer-
ical flux is

F̂ Lim
1,i+ 1

2
,j
= (1− θs

i+ 1
2
,j
)F̂ LLF

1,i+ 1
2
,j
+ θs

i+ 1
2
,j
F̂1,i+ 1

2
,j. (11)
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The high-order discretization of the Godunov-Powell source term may also
introduce oscillations, thus, we choose to limit the source term as

SLim
i,j = (1− θsi,j)S

LLF
i,j + θsi,jSi,j, (12)

where
θsi,j = min{θs

i− 1
2
,j
, θs

i+ 1
2
,j
, θs

i,j− 1
2
, θs

i,j+ 1
2
}.

Remark 3.1. The shock sensor-based limiting is only applied to the cell
average as it is enough to obtain the good results in Section 4.

3.3. Positivity-preserving limitings
As the DoFs in the AF scheme include cell averages and point values, one

must design suitable limitings for both of them to achieve the PP property.
If the high-order scheme equipped with the forward Euler scheme is PP, then
the high-order scheme using the SSP-RK3 is also PP since the SSP-RK3 is
a convex combination of forward-Euler stages. Thus, only the forward Euler
scheme is considered below. Note that to avoid the effect of the round-off
error, we need to choose desired lower bounds for the density and pressure,
denoted by ερ, εp to be defined later, such that ρ ⩾ ερ, p ⩾ εp. With an
abuse of notation, the limited numerical flux (11) and source term (12) are
still denoted by F̂1,i+ 1

2
,j and Si,j without the superscript.

3.3.1. Parametrized flux limiter for cell average
This section presents a flux limiting approach to enforce the PP property

of the cell average update by constraining individual numerical fluxes [29,
27, 28]. Different from [53], the parametrized flux limiter [29, 27] is adopted,
since the low-order PP scheme for the MHD cannot be rewritten as decoupled
intermediate states as the Euler equation in [53].

Let ερ = min{10−13, ρ(U
LLF
i,j )}, εp = min{10−13, p(U

LLF
i,j )}. As the first-

order solution satisfies ρ(U
LLF
i,j ) ⩾ ερ, p(U

LLF
i,j ) ⩾ εp, one can find limited

fluxes and source term by blending the high-order and first-order parts as

F̂ Lim
1,i± 1

2
,j
= θi± 1

2
,jF̂1,i± 1

2
,j + (1− θi± 1

2
,j)F̂

LLF
1,i± 1

2
,j
,

F̂ Lim
2,i,j± 1

2
= θi,j± 1

2
F̂2,i,j± 1

2
+ (1− θi,j± 1

2
)F̂ LLF

2,i,j± 1
2
,

SLim
i,j = θi,jSi,j + (1− θi,j)S

LLF
i,j ,
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such that the solution of the following limited scheme

U
Lim
i,j = U

n

i,j−
∆tn

∆x

(
F̂ Lim

1,i+ 1
2
,j
− F̂ Lim

1,i− 1
2
,j

)
−∆tn

∆y

(
F̂ Lim

2,i,j+ 1
2
− F̂ Lim

2,i,j− 1
2

)
−∆tnSLim

i,j

(13)
satisfies ρ(U Lim

i,j ) ⩾ ερ, p(U
Lim
i,j ) ⩾ εp. The coefficients θi± 1

2
,j, θi,j± 1

2
, θi,j should

stay in [0, 1], and be as close to 1 as possible, so that the high-order terms are
used as much as possible to maintain the accuracy. Our PP limiting consists
of the following three steps, and mainly follows the notations in [27, 28].
Note that their procedure is two steps, as the source term is not included.
(1) Limit the source term such that

U
Lim,1
i,j = U

n

i,j −
∆tn

∆x

(
F̂ LLF

1,i+ 1
2
,j
− F̂ LLF

1,i− 1
2
,j

)
− ∆tn

∆y

(
F̂ LLF

2,i,j+ 1
2
− F̂ LLF

2,i,j− 1
2

)
−∆tnSLim

i,j

= θi,jU
src
i,j + (1− θi,j)U

LLF
i,j

is PP, where

U
src
i,j = U

n

i,j−
∆tn

∆x

(
F̂ LLF

1,i+ 1
2
,j
− F̂ LLF

1,i− 1
2
,j

)
−∆tn

∆y

(
F̂ LLF

2,i,j+ 1
2
− F̂ LLF

2,i,j− 1
2

)
−∆tnSi,j.

Since the first component of the source term is zero as seen in (3), the den-
sity of U

Lim,1
i,j or U

src
i,j is the same as U

LLF
i,j , which automatically satisfies

ρ(U
Lim,1
i,j ) ⩾ ερ. Due to the concavity of the pressure [26], one has

p(U
Lim,1
i,j ) ⩾ θi,jp(U

src
i,j ) + (1− θi,j)p(U

LLF
i,j ). (14)

Define

θi,j =


p(U

LLF
i,j )−εp

p(U
LLF
i,j )−p(U

src
i,j )

, if p(U src
i,j ) < εp,

1, otherwise,
(15)

then it is easy to verify that p(U
Lim,1
i,j ) ⩾ εp, thus U

Lim,1
i,j ∈ G.

(2) Find candidate parameters ΛIi,j ,L, ΛIi,j ,R, ΛIi,j ,D, ΛIi,j ,U as close to 1 as
possible in each cell Ii,j such that for all

(θL, θR, θD, θU) ∈ [0,ΛIi,j ,L]× [0,ΛIi,j ,R]× [0,ΛIi,j ,D]× [0,ΛIi,j ,U],

the limited solution

U
Lim,2
i,j (θL, θR, θD, θU) = U

Lim,1
i,j + θLHL + θRHR + θDHD + θUHU

14



is PP, where the anti-diffusive fluxes are given by

HL =
∆tn

∆x

(
F̂1,i− 1

2
,j − F̂ LLF

1,i− 1
2
,j

)
, HR = −∆tn

∆x

(
F̂1,i+ 1

2
,j − F̂ LLF

1,i+ 1
2
,j

)
,

HD =
∆tn

∆y

(
F̂2,i,j− 1

2
− F̂ LLF

2,i,j− 1
2

)
, HU = −∆tn

∆y

(
F̂2,i,j+ 1

2
− F̂ LLF

2,i,j+ 1
2

)
.

Because the following two sets

Sρ =
{
(θL, θR, θD, θU) ∈ [0, 1]4 | ρ(U Lim,2

i,j (θL, θR, θD, θU)) ⩾ ερ
}

and

Sp =
{
(θL, θR, θD, θU) ∈ [0, 1]4 | ρ(U Lim,2

i,j (θL, θR, θD, θU)) ⩾ ερ and

p(U
Lim,2
i,j (θL, θR, θD, θU)) ⩾ εp

}
are convex [27, 28], one can determine the parameters ΛIi,j ,L, ΛIi,j ,R, ΛIi,j ,D,
ΛIi,j ,U in the following two steps.
• Find a rectangular subset Rρ = [0,Λρ

L]× [0,Λρ
R]× [0,Λρ

D]× [0,Λρ
U] of Sρ. To

be specific,

Λρ
I =


min

1,
ρ(U

Lim,1
i,j )− ερ

10−12 −
∑

J,ρ(HJ)<0

ρ(HJ)

 , if ρ(HI) < 0,

1, otherwise,

where I and J take values in L, R, D, U.
• Shrink the rectangle Rρ to make it stay within Sp. Let the vertices of Rρ be
AkL,kR,kD,kU with kI = 0 or 1, such that the Ith component of AkL,kR,kD,kU is Λρ

I
for kI = 1 otherwise 0. For each (kL, kR, kD, kU), if p(AkL,kR,kD,kU) ⩾ εp, set the
new vertex as BkL,kR,kD,kU = AkL,kR,kD,kU . Otherwise, by solving a cubic equation
to get the smallest positive value r satisfying p(rAkL,kR,kD,kU) ⩾ εp, set the new
vertex as BkL,kR,kD,kU = rAkL,kR,kD,kU . Here we use the Newton method which
converges within 4 iterations in the numerical tests. Finally, let us find a
rectangular subset inside the convex polygon with vertices BkL,kR,kD,kU by

ΛIi,j ,I = min
(kL,kR,kD,kU),kI=1

BkL,kR,kD,kU
I ,

where BkL,kR,kD,kU
I denotes the Ith component of BkL,kR,kD,kU .

(3) Compute the unique blending coefficients at cell interfaces by

θi+ 1
2
,j = min{ΛIi,j ,R,ΛIi+1,j ,L}, θi,j+ 1

2
= min{ΛIi,j ,U,ΛIi,j+1,D}.
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Remark 3.2. The limited scheme (13) keeps mass conservation as the fluxes
at the cell interfaces are unique. The conservation of momentum or total
energy is not guaranteed due to the Godunov-Powell source term.

3.3.2. Scaling limiter for point value
The PP limiting for the point value is borrowed from [53], i.e., blending

the whole state of conservative variables directly by using the simple scaling
limiter [56], as there is no conservation requirement on the point value update.

The first step is to define suitable first-order LLF schemes. For the point
value at the corner, one can choose

U LLF
i+ 1

2
,j+ 1

2
= Un

i+ 1
2
,j+ 1

2
− ∆tn

∆x

(
F̂ LLF

1,i+1,j+ 1
2
− F̂ LLF

1,i,j+ 1
2

)
− ∆tn

∆y

(
F̂ LLF

2,i+ 1
2
,j+1

− F̂ LLF
2,i+ 1

2
,j

)
−∆tn

[
(B1)i+ 3

2
,j+ 1

2
− (B1)i− 1

2
,j+ 1

2

2∆x

+
(B2)i+ 1

2
,j+ 3

2
− (B2)i+ 1

2
,j− 1

2

2∆y

]
Ψ(Un

i+ 1
2
,j+ 1

2
),

with the LLF numerical fluxes

F̂ LLF
1,i+1,j+ 1

2
:= F̂ LLF

1 (Un
i+ 1

2
,j+ 1

2
,Un

i+ 3
2
,j+ 1

2
), F̂ LLF

2,i+ 1
2
,j+1

:= F̂ LLF
2 (Un

i+ 1
2
,j+ 1

2
,Un

i+ 1
2
,j+ 3

2
),

which are defined in (9).
For the vertical face-centered point value, we choose the first-order LLF

scheme as

U LLF
i+ 1

2
,j
= Un

i+ 1
2
,j
− ∆tn

∆x

(
F̂ LLF

1,i+1,j − F̂ LLF
1,i,j

)
− ∆tn

∆y

(
F̂ LLF

2,i+ 1
2
,j+ 1

2
− F̂ LLF

2,i+ 1
2
,j− 1

2

)
−∆tn

[
(B1)i+ 3

2
,j − (B1)i− 1

2
,j

2∆x
+

(B2)i+ 1
2
,j+ 1

2
− (B2)i+ 1

2
,j− 1

2

2∆y

]
Ψ(Un

i+ 1
2
,j
),

with the LLF numerical fluxes

F̂ LLF
1,i+1,j := F̂ LLF

1 (Un
i+ 1

2
,j
,Un

i+ 3
2
,j
), F̂ LLF

2,i+ 1
2
,j+ 1

2
:= F̂ LLF

2 (Un
i+ 1

2
,j
,Un

i+ 1
2
,j+ 1

2
).
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The LLF scheme for the face-centered value on the horizontal face can be
chosen as

U LLF
i,j+ 1

2
= Un

i,j+ 1
2
− ∆tn

∆x

(
F̂ LLF

1,i+ 1
2
,j+ 1

2
− F̂ LLF

1,i− 1
2
,j+ 1

2

)
− ∆tn

∆y

(
F̂ LLF

2,i,j+1 − F̂ LLF
2,i,j

)
−∆tn

[
(B1)i+ 1

2
,j+ 1

2
− (B1)i− 1

2
,j+ 1

2

2∆x
+

(B2)i,j+ 3
2
− (B2)i,j− 1

2

2∆y

]
Ψ(Un

i,j+ 1
2
),

with the LLF numerical fluxes

F̂ LLF
1,i+ 1

2
,j+ 1

2
:= F̂ LLF

1 (Un
i,j+ 1

2
,Un

i+ 1
2
,j+ 1

2
), F̂ LLF

2,i,j+1 := F̂ LLF
2 (Un

i,j+ 1
2
,Un

i,j+ 3
2
).

The above three first-order LLF schemes for the point values are PP accord-
ing to Lemma 3.1. Next, we present the PP limitings for the point value by
blending the high-order AF scheme using the forward Euler stage and the
LLF schemes as

U Lim
σ = θσU

H
σ + (1− θσ)U

LLF
σ ,

such that ρ(U Lim
σ ) ⩾ ερ, p(U Lim

σ ) ⩾ εp, where σ denotes the locations of the
point value, i.e., (i + 1

2
, j + 1

2
), (i + 1

2
, j), (i, j + 1

2
), and U H

σ is the high-order
AF solution. The lower bounds are chosen as ερ = min{10−13, ρ(U LLF

σ )},
εp = min{10−13, p(U LLF

σ )}.
(1) Enforce density positivity. Choose the parameter

θ∗σ =


ρ(U LLF

σ )− ερ
ρ(U L

σ)− ρ(U H
σ)
, if ρ(U H

σ) < ερ,

1, otherwise,

and modify the density component of the limited solution as ρ(U Lim,∗
σ ) =

θ∗σρ(U
H
σ) + (1 − θ∗σ)ρ(U

LLF
i+ 1

2

) ⩾ ερ, with the other components remaining the
same as U H

σ .
(2) Enforce pressure positivity. Modify the solution U Lim,∗

σ as U Lim
σ , such

that p(U Lim
σ ) ⩾ εp. Let the limited solution be

U Lim
σ = θ∗∗σ U Lim,∗

σ + (1− θ∗∗σ )U LLF
σ .

Using the concavity of pressure, we can choose the parameter as

θ∗∗σ =


p(U LLF

σ )− εp

p(U LLF
σ )− p(U Lim,∗

σ )
, if p(U Lim,∗

σ ) < εp,

1, otherwise.
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Remark 3.3. To compute the high-order FVS-based point value update,
we should limit the cell-centered value Ui,j at the beginning of each Runge-
Kutta stage. For example, we modify Ui,j as U Lim

i,j = θ̃i,jUi,j + (1− θ̃i,j)U i,j

such that

ρ(U Lim
i,j ) ⩾ min{10−13, ρ(U i,j)}, p(U Lim

i,j ) ⩾ min{10−13, p(U i,j)}.

The computation of θ̃i,j is similar to the procedure in this section.

4. Numerical results

This section conducts some numerical tests to verify the accuracy, PP
property, and shock-capturing ability of our AF scheme. The 1D tests are
computed by using the 1D AF scheme based on the LLF FVS without the
Godunov-Powell source term, since the divergence-free condition holds auto-
matically. More details on the 1D AF scheme can also be found in [53], and
the CFL number is taken as 0.4. In the 2D tests, the time step size defined
in (10) is used, which corresponds to the following CFL condition

∆tn ⩽
CCFL

max
i,j

{
α1,i,j

∆x
,
α2,i,j

∆y

} ,

with αℓ,i,j the spectral radius αℓ = |vℓ| + cf evaluated at U i,j, and a CFL
number CCFL ⩽ 0.25. The 2D visualization is based on a refined mesh with
half the mesh size, where the values at the grid points are the cell averages
or point values on the original mesh.

Example 4.1 (1D Riemann problems). The computational domain is [0, 1],
and two cases are considered. The initial data of the first case [57] are

(ρ,v,B, p) =

{
(1, 0, 0, 0, 0.75, 1, 0, 1), if x < 0.5,

(0.125, 0, 0, 0, 0.75, −1, 0, 0.1), otherwise,

and the adiabatic index is γ = 2. The initial data of the second case [58] are

(ρ,v,B, p) =

{
(1.08, 1.2, 0.01, 0.5, 2/

√
4π, 3.6/

√
4π, 2/

√
4π, 0.95), if x < 0.5,

(1, 0, 0, 0, 2/
√
4π, 4/

√
4π, 2/

√
4π, 1), otherwise,
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with the adiabatic index 5/3. The final time is T = 0.2 for both cases. The
reference solution is obtained by a second-order HLLD finite volume scheme
[59] on a fine mesh with 5000 cells.

The results obtained with our AF scheme and 800 cells are shown in Fig-
ures 2-3. The parameter κ in the shock sensor is chosen as 10 and 50 for the
two cases. One observes that our AF scheme can capture the discontinuities
with high resolution and only a few overshoots or undershoots.
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0.4

0.6

0.8

1.0 reference

ρ average

ρ point
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Figure 2: The first Riemann problem in Example 4.1, using 800 cells and κ = 10.

Example 4.2 (1D Leblanc problem). To examine the PP property of our
scheme, the test case in [35] is used. The computational domain is [0, 1] with
the initial condition

(ρ,v,B, p) =

{
(2, 0, 0, 0, 0, 5000, 5000, 109), if x < 0.5,

(10−3, 0, 0, 0, 0, 5000, 5000, 1), otherwise,

and the adiabatic index is γ = 1.4. The final time is T = 1.5× 10−6.
Figure 4 shows the density logarithm and magnetic pressure obtained

with 2000 cells and κ = 1, where the reference solution is obtained with 104

cells. It is seen that the strong shock wave can be well captured without
obvious oscillations. If the PP limitings are not activated, the simulation
stops at the first time step due to negative pressure in point value, even if a
small time step size 10−13 is used, which demonstrates the necessity of our
PP limitings.
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Figure 3: The second Riemann problem in Example 4.1, using 800 cells and κ = 50.

0.0 0.2 0.4 0.6 0.8 1.0

x

−6

−4

−2

0

reference

ρ average

ρ point

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4
×10

7

reference

pm average

pm point

Figure 4: Example 4.2. The density logarithm (left) and magnetic pressure (right).

Example 4.3 (2D accuracy tests). The adiabatic index is γ = 5/3 for both
cases. The first case is about a smooth sine wave propagating in the periodic
domain [0, 1]× [0, 1] with the exact solution [32],

(ρ,v,B, p) = (1 + 0.99 sin(2π(x+ y − 2t)), 1, 1, 0, 0.1, 0.1, 0, 1).

The errors in the ℓ1 norm at T = 0.1 are shown in Figure 5. The 3rd-order
accuracy is obtained.

In the second case, the MHD vortex problem [60] is solved. The back-
ground flow (ρ,v,B, p) = (1, 1, 1, 0, 0, 0, 0, 1) is initialized in the periodic
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domain [−10, 10]× [−10, 10]. The following perturbation is added,

(δv1, δv2) = ξ exp(0.5(1− r2))(−y, x),

(δB1, δB2) = µ exp(0.5(1− r2))(−y, x),

δp = 0.5(µ2(1− r2)− ξ2) exp(1− r2),

where r =
√
x2 + y2. The parameters are chosen as µ = 5.389489439, ξ =√

2µ such that the lowest pressure at the vortex center is about 5.3× 10−12

[27]. The PP limitings are necessary in this test, otherwise, the simulation
stops due to negative pressure. The errors in the ℓ1 norm at T = 0.1 are
shown in Figure 5, from which one observes almost 3rd-order accuracy.
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Figure 5: Example 4.3. The errors and convergence rates of the smooth sine wave (left)
and vortex (right).

Example 4.4 (Orszag-Tang problem). In this test, turbulent behavior will
develop from smooth initial data [61]. The domain is [0, 1] × [0, 1] with
periodic boundary conditions, and the initial condition is

(ρ,v,B, p) =

(
25

36π
, − sin(2πy), sin(2πx), 0, −sin(2πy)√

4π
,
sin(4πx)√

4π
, 0,

5

12π

)
,

with the adiabatic index γ = 5/3.
The density plot at T = 0.5 obtained by using 400× 400 cells with κ = 1

is shown in Figure 6 with the blending coefficients used in the shock sensor-
based limiting. Our AF scheme can accurately capture the discontinuities
and smooth structures, and the result is comparable to those in the literature.
It is also seen that the shock sensor performs well. To examine the control
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of the divergence error, the following discrete divergence is recorded, which
is computed based on the integration of the divergence in each cell, defined
as

˜(∇ ·B)(t) =
∑
i,j

3∑
l,m=1

∣∣∣(∇ ·B)l,mi,j

∣∣∣ωlωm∆x∆y
/
max
i,j

∥∥Bi,j

∥∥, (16)

where (∇·B)l,mi,j is obtained in the same way as (6). Figure 7 shows the evo-

lution of the discrete divergence error ˜(∇ ·B)(t)− ˜(∇ ·B)(0). The discrete
divergence is controlled in the sense that it increases very slowly over a long
time, and almost arrives at a plateau.
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Figure 6: Example 4.4. From left to right: 30 equally spaced contour lines of ρ obtained
by our PP AF scheme, the blending coefficients θs
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Figure 7: Example 4.4. The evolution of the discrete divergence error.

Example 4.5 (Rotor problem). This is the second rotor problem in [2],
which describes a rotating dense fluid disk centered at a static background
in the periodic domain [0, 1] × [0, 1]. The magnetic field is initialized in the
x-direction as B1 = 2.5/

√
4π and the pressure is p = 0.5. The other initial
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data are

(ρ, v1, v2) =


(10, −(y − 0.5)/r0, (x− 0.5)/r0), if r < r0,

(1 + 9f, −f(y − 0.5)/r, f(x− 0.5)/r), if r0 < r < r1,

(1, 0, 0), if r > r1,

where r =
√

(x− 0.5)2 + (y − 0.5)2, r0 = 0.1, r1 = 0.115, and f = (r1 −
r)/(r1−r0) is a tapper function. The adiabatic index is γ = 5/3 and the test
is solved until T = 0.295.

The numerical solutions obtained by using 400× 400 cells and κ = 2 are
shown in Figure 8, which are in good agreement with those in the literature.
The shock sensor-based limiting is only activated near the central rotor and
the circular shock wave. Note that if the PP limitings are not used, negative
pressure appears at T = 7.6× 10−2. Figure 9 plots the enlarged view of the
Mach number in the domain center. The left one with the Godunov-Powell
source terms activated for both the cell average and point value preserves the
circular rotation pattern well, while large distortions can be observed when
the source terms are not used at the same time. This indicates that the
divergence error is controlled in our AF scheme, as large divergence errors
may cause distortion in the contour lines [2, 13, 3].

Example 4.6 (Blast wave). This is a test problem with a strongly magne-
tized medium with low plasma. Following the setup in [62], the computa-
tional domain is [−0.5, 0.5] × [−0.5, 0.5] with outflow boundary conditions,
and the initial condition is

(ρ,v,B, p) = (1, 0, 0, 0, 1/
√
2, 1/

√
2, 0, 0.1),

except for a larger pressure p = 10 in the central circular part
√

x2 + y2 <
0.1. The adiabatic index is γ = 5/3, and the problem is solved until T = 0.2.

The results obtained by using our PP AF scheme with 400×400 cells and
κ = 1 are shown in Figure 10. The flow structures, including the outward-
going circular blast wave, are captured with high resolution, which agree
well with those in [62, 35]. The simulation stops due to negative pressure
if the PP limitings are not activated. One can also observe that the shock
sensor-based limiting is activated locally.

Example 4.7 (Shock-cloud interaction). It is about a strong shock wave
interacting with a dense cloud [63, 3]. A planar shock wave moves from
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Figure 8: Example 4.5. 30 equally spaced contour lines of the numerical solutions obtained
by our PP AF scheme, and the blending coefficients in the shock sensor with κ = 2.
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Figure 9: Example 4.5. 40 equally spaced contour lines of the Mach number in the domain
[0.25, 0.75] × [0.3, 0.7]. From left to right: the source term is activated for both the cell
average and point value, only for point value, only for cell average, neither.

x = 0.6 to the right, with the left and right states

(ρ,v,B, p) =

{
(3.86859, 0, 0, 0, 0, 2.1826182, −2.1826182, 167.345), if x < 0.6,

(1, −11.2536, 0, 0, 0, 0.56418958, 0.56418958, 1), otherwise.

There is a circular cloud with ρ = 10 centered at (0.8, 0.5) with a radius of
0.15. The adiabatic index is γ = 5/3 and the final time is T = 0.06.

The numerical solutions obtained by our PP AF scheme with 400 × 400
cells and κ = 1 are shown in Figure 11. The complex structures due to the
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Figure 10: Example 4.6. 30 equally spaced contour lines of the numerical solutions ob-
tained by our PP AF scheme, and the blending coefficients in the shock sensor with κ = 1.

interaction are captured well without obvious oscillations and they match
those in [63, 3, 32, 35]. Note that our limiting based on the shock sensor is
locally activated. The PP limitings are important in running this test. The
simulation stops due to negative pressure if they are not used.

Example 4.8 (MHD jets). This is a test problem involving high Mach num-
ber jets in a highly magnetized medium [32], by adding a magnetic field in
the gas dynamical jet in [20]. Following the setup in [32], the computational
domain is [−0.5, 0.5] × [0, 1.5] and the adiabatic index is γ = 1.4. The ini-
tial ambient fluid is static with ρ = 0.1γ, p = 1, and the magnetic field is
initialized in the y-direction B2 = Ba. A jet is injected into the domain
with (ρ, v1, v2, p) = (γ, 0, 800, 1) at the lower boundary when |x| < 0.05. The
outflow boundary conditions are applied at other boundaries. Here, only the
left half is simulated by using a reflective boundary condition at x = 0. The
final time is T = 0.002.

This test problem cannot be simulated without the PP limitings as the
solution contains strong discontinuities, low density, and low pressure. The
logarithm of density log10 ρ and pressure log10 p obtained by our PP AF

25



0.0 0.5 1.0
0.0

0.5

1.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

(a) ρ

0.0 0.5 1.0
0.0

0.5

1.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

(b) p

0.0 0.5 1.0
0.0

0.5

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) θs
i+ 1

2
,j

0.0 0.5 1.0
0.0

0.5

1.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

(d) ∥v∥
0.0 0.5 1.0

0.0

0.5

1.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(e) Magnetic lines

0.0 0.5 1.0
0.0

0.5

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) θs
i,j+ 1

2

Figure 11: Example 4.7. The numerical solutions obtained by our PP AF scheme and
blending coefficients in the shock sensor-based limiting with κ = 1.

scheme on a 200 × 600 mesh are shown in Figure 12. The parameter in the
shock sensor is κ = 2 for all the three cases Ba =

√
200,

√
2000,

√
20000. The

main flow structures and small-scale features are captured well, comparable
to those in [32].

Remark 4.1. Due to round-off errors, the limited state may not be PP after
the limitings when the scales of the variables differ a lot. In this case, the
blending coefficients are gradually shrunk by 2m10−8 with m = 0, 1, . . . , 9
until the limited state is PP. This case happens rarely, e.g., only 8 times
during 6607 time steps in the third jet problem with Ba =

√
20000 and

401× 1201 DoFs.

5. Conclusion

This paper has developed the third-order PP AF scheme for solving the
ideal MHD equations, with the help of the Godunov-Powell source term
to deal with the divergence-free constraint. The cell average was evolved
following the standard finite volume method with the suitable discretization
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Figure 12: Example 4.8 with Ba =
√
200,

√
2000,

√
20000 (from left to right). The loga-

rithm of density (top) and pressure (bottom) obtained by our PP AF scheme with κ = 2.

for the nonconservative source term. This part was free from any Riemann
solver due to the continuous representation of the numerical solution at the
cell interfaces. The point value update was built on the LLF FVS and a
central difference for the source term. The scheme maintained the compact
spatial stencil of the original AF scheme. The PP limitings for both the
cell average and point value were presented to improve robustness for flows
containing low density or pressure, where the parametrized flux limiter and
scaling limiter were used to blend the high-order AF scheme and first-order
PP LLF scheme, respectively. To further suppress oscillations, the new shock
sensor was employed in the flux limiting. Several numerical tests verified
the third-order accuracy, PP property, and shock-capturing ability of our
scheme. It was also shown that the Godunov-Powell source term and its
suitable discretization played an important role in the control of divergence
error and improved stability. Finally, the current approach can be extended
to the three-dimensional case.
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