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Abstract

The Active Flux (AF) method is a compact, high-order finite volume scheme
that enhances flexibility by introducing point values at cell interfaces as additional
degrees of freedom alongside cell averages. The method of lines is employed here
for temporal discretization. A common approach for updating point values relies on
the Jacobian Splitting (JS) method, which incorporates upwinding. A key advantage
of the AF method over standard finite volume schemes is its structure-preserving
property, motivating the investigation of its asymptotic-preserving (AP) behavior in
the diffusive scaling. We show that the JS-based AF method without any modification
is AP for solving the hyperbolic heat equation, in the sense that the limit scheme is a
discretization of the limit heat equation. We use formal asymptotic analysis, discrete
Fourier analysis, and numerical experiments to illustrate our findings.
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1 Introduction
Particle systems in physics, such as rarefied gases and neutron transport, can be modeled
at different scales. At a microscopic level, particles move and collide individually, and
the system is often described by kinetic models, which provide a statistical description
using probability distributions. At a macroscopic level, the mean free path, or the average
distance between collisions, is small compared to a macroscopic length, and the particles
behave like fluids. In this case, macroscopic models such as fluid or diffusion equations offer
accurate and computationally efficient approximations. The passage from microscopic to
macroscopic descriptions can be formally derived via asymptotic analysis.

Numerically, multiscale problems where the mean free path varies across several orders
of magnitude pose significant challenges. Traditional kinetic solvers require grid resolutions
smaller than the mean free path, making computations prohibitively expensive. To address
this, asymptotic preserving (AP) schemes have been developed to seamlessly transition be-
tween kinetic and macroscopic models. Their stability and convergence are independent of
the mean free path, and allow coarse grids, which are crucial for applications such as iner-
tial confinement fusion. The AP schemes were first proposed in [33, 32] for the steady-state
solutions to neutron transport equation in the diffusive regime and have been extended to a
broad range of kinetic models. Some AP finite volume schemes were constructed based on
careful modification of numerical flux [26] and/or upwinding treatment of source term [20].
Different reformulations were proposed for designing AP schemes, e.g., even-odd decompo-
sition by rewriting linear transport equations as parity equations [30, 27]. Another popular
way is micro-macro decomposition by decomposing the density distribution function into
the local Maxwellian plus the deviation, e.g., for the radiative heat transfer equations [31],
linear kinetic equations [34], nonlinear Boltzmann equation [10], and so on. High-order AP
discontinuous Galerkin (DG) schemes were developed using micro-macro decomposition
and several different numerical fluxes [24, 35]. For a more comprehensive review, we refer
readers to [25] and references therein.

The active flux (AF) method is a new compact finite volume method [16, 15, 17, 36],
inspired by [37]. It simultaneously evolves cell averages and additional degrees of freedom,
chosen as point values located at cell interfaces. Thanks to these point values, the AF
method does not need Riemann solvers (unlike Godunov methods), as the numerical solu-
tion is continuous across the cell interface. The AF methods can be roughly divided into
two classes based on the evolution of the point value. The original ones evolve the cell
average through Simpson’s rule for flux quadrature in time, and employ exact or approxi-
mate evolution operators to evolve the point values and to obtain the numerical solutions
at the flux quadrature points. Examples are exact evolution operators for linear equations
[9, 19, 17, 37], p-system [18], and approximate evolution operators for Burgers’ equation
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[16, 15, 36, 6], the compressible Euler equations in one spatial dimension [16, 23, 6], mul-
tidimensional Euler equations [18], and hyperbolic balance laws [8, 7], etc. The method
of bicharacteristics was used for the derivation of truly multidimensional approximative
evolution operators [12]. The other so-called generalized, or semi-discrete AF methods
adopt a method of lines, where the evolution of the cell average and point value is written
in semi-discrete form and integrated in time by using Runge-Kutta methods. Examples of
this approach are [1, 2, 3, 4] based on Jacobian splitting (JS) and [13, 14] based on flux
vector splitting.

The AF method is superior to standard finite volume methods due to its structure-
preserving property. For multi-dimensional acoustic equations, it preserves the vorticity
and stationary states [9], and for acoustics with gravity, it is naturally well-balanced [8].
These encouraging results lead us to the central question of this paper: Does the AF
method also possess the AP property in the diffusive scaling? To start, we examine the
hyperbolic heat equation, the lowest-order angular discretization of the transport equation.
This equation is also known as the P1 model, the first-order formulation of the telegraph
equation, or the damped wave equation [11]. We present formal asymptotic analysis and
discrete Fourier analysis for the JS-based AF scheme for solving the hyperbolic heat equa-
tion, and show that it is AP. Several 1D and 2D numerical results verify our theoretical
findings. The key feature of such JS-based AF method is that it is automatically AP
without any modification.

The remainder of this paper is structured as follows. Section 2 introduces the hyperbolic
heat equation and its limit heat equation by using formal asymptotic analysis. Section 3
gives the 1D AF scheme based on the JS for the point value update, and Section 4 derives
the limit scheme via formal asymptotic analysis. As we observe order degradation for the
JS-based AF scheme in the limit, an alternative point value update is discussed in Section 5.
A discrete Fourier analysis is adopted to study the convergence order of the scheme and
its limit in Section 6. Section 7 discusses the 2D case. Numerical tests are conducted
in Section 8 to experimentally demonstrate the accuracy and AP property. Section 9
concludes the paper with final remarks.

2 Hyperbolic heat equation and its limit in the diffusive
scaling

The hyperbolic heat equation in the diffusive scaling reads
pt +

1

ϵ
∇ · u = 0,

ut +
1

ϵ
∇p+

σ

ϵ2
u = 0,

(1)

where 0 < ϵ < 1 and σ > 0.
To study the asymptotic limit of (1) as ϵ → 0, we assume sufficient regularity of the

solutions and perform a formal analysis by expanding them as a power series in ϵ,

p = p(0) + ϵp(1) + ϵ2p(2) + . . . , u = u(0) + ϵu(1) + ϵ2u(2) + . . . . (2)

The asymptotic behavior is determined by inserting (2) into (1). Matching the terms of
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the same order, we have

ϵ−2 : u(0) = 0,

ϵ−1 : ∇p(0) + σu(1) = 0,

ϵ0 : p
(0)
t +∇ · u(1) = 0.

Thus, the leading order solutions satisfy

p
(0)
t = ∇ ·

(
1

σ
∇p(0)

)
, u(0) = 0,

i.e., p(0) is the solution to the limit heat equation.

3 1D active flux scheme
This section presents the 1D semi-discrete AF methods for the 1D hyperbolic heat equation,

pt +
1

ϵ
ux = 0,

ut +
1

ϵ
px +

σ

ϵ2
u = 0.

(3)

As the advection and source term are both stiff as ϵ ≪ 1, the fully-discrete methods are
obtained using the 3rd-order four-stage Diagonally Implicit Runge-Kutta (DIRK) method
from [28, 29], which is stiffly accurate.

3.1 Update of cell average

Assume that a 1D computational domain is divided into N uniform cells Ii = [xi− 1
2
, xi+ 1

2
]

with the cell size ∆x = xi+ 1
2
− xi− 1

2
and cell centers xi = (xi− 1

2
+ xi+ 1

2
)/2. The degrees of

freedom consist of the cell averages and point values at the cell interfaces,

p̄i(t) =
1

∆x

∫
Ii

ph(x, t)dx, ūi(t) =
1

∆x

∫
Ii

uh(x, t)dx,

pi+ 1
2
(t) = ph(xi+ 1

2
, t), ui+ 1

2
(t) = uh(xi+ 1

2
, t),

where ph(x, t) and uh(x, t) are numerical approximations. As for finite volume methods,
the update of the cell average is found upon integrating (3) over Ii,

d

dt
p̄i = − 1

ϵ∆x

(
ui+ 1

2
− ui− 1

2

)
, (4)

d

dt
ūi = − 1

ϵ∆x

(
pi+ 1

2
− pi− 1

2

)
− σ

ϵ2
ūi. (5)

Note that the flux at the cell interface is available directly, without the need for a Riemann
solver.
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3.2 Update of point value

For the point value evolution, the Jacobian splitting (JS) [2] is adopted. The Jacobian
matrix of (3) can be diagonalized,

J =
1

ϵ

(
0 1
1 0

)
=

(
1 −1
1 1

)(
1
ϵ

0
0 −1

ϵ

)(
1
2

1
2

−1
2

1
2

)
=: RΛR−1,

and split into positive and negative parts as

J+ = RΛ+R−1 =
1

ϵ

1
2

1
2

1
2

1
2

 , J− = RΛ−R−1 =
1

ϵ

−1
2

1
2

1
2

−1
2

 ,

such that Λ± = 1
2
(Λ± |Λ|). Then the point value update can be written as

d

dt

(
pi+ 1

2

ui+ 1
2

)
= −

[
J+D+

i+ 1
2

(
p
u

)
+ J−D−

i+ 1
2

(
p
u

)]
− σ

ϵ2

(
0

ui+ 1
2

)
,

where D+
i+ 1

2

and D−
i+ 1

2

are component-wise upwind finite difference operators. These are
obtained by first reconstructing a parabola upara(x) in the cell Ii satisfying

1

∆x

∫
Ii

upara(x)dx = ūi, upara(xi± 1
2
) = ui± 1

2
,

whose derivative at xi+ 1
2

yields a high-order accurate upwind finite difference

D+
i+ 1

2

(u) = u′
para(xi+ 1

2
) =

1

∆x

(
2ui− 1

2
− 6ūi + 4ui+ 1

2

)
.

For negative eigenvalues, the reconstruction in cell Ii+1 is differentiated at xi+ 1
2

instead,
yielding

D−
i+ 1

2

(u) =
1

∆x

(
−4ui+ 1

2
+ 6ūi+1 − 2ui+ 3

2

)
.

Therefore, the point value update can be rewritten as

d

dt
pi+ 1

2
= − 1

2ϵ

[
(D+

i+ 1
2

−D−
i+ 1

2

)p+ (D+
i+ 1

2

+D−
i+ 1

2

)u
]
, (6)

d

dt
ui+ 1

2
= − 1

2ϵ

[
(D+

i+ 1
2

+D−
i+ 1

2

)p+ (D+
i+ 1

2

−D−
i+ 1

2

)u
]
− σ

ϵ2
ui+ 1

2
. (7)

4 Formal asymptotic analysis
Expand sufficiently smooth numerical solutions as a power series in ϵ,

p̄i = p̄
(0)
i + ϵp̄

(1)
i + ϵ2p̄

(2)
i + . . . , ūi = ū

(0)
i + ϵū

(1)
i + ϵ2ū

(2)
i + . . . ,

pi+ 1
2
= p

(0)

i+ 1
2

+ ϵp
(1)

i+ 1
2

+ ϵ2p
(2)

i+ 1
2

+ . . . , ui+ 1
2
= u

(0)

i+ 1
2

+ ϵu
(1)

i+ 1
2

+ ϵ2u
(2)

i+ 1
2

+ . . . ,
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and substitute them into the schemes (4)-(7). After equating the coefficients of equal
powers of ϵ, one has

ϵ−2 : ū
(0)
i = u

(0)

i+ 1
2

= 0,

ϵ−1 : ū
(1)
i = − 1

σ∆x

(
p
(0)

i+ 1
2

− p
(0)

i− 1
2

)
,

u
(1)

i+ 1
2

= − 1

2σ

[
(D+

i+ 1
2

+D−
i+ 1

2

)p(0) + (D+
i+ 1

2

−D−
i+ 1

2

)u(0)
]

= − 1

2σ

(
D+

i+ 1
2

+D−
i+ 1

2

)
p(0),

ϵ0 :
d

dt
p̄
(0)
i = − 1

∆x

(
u
(1)

i+ 1
2

− u
(1)

i− 1
2

)
,

d

dt
p
(0)

i+ 1
2

= −1

2

[
(D+

i+ 1
2

−D−
i+ 1

2

)p(1) + (D+
i+ 1

2

+D−
i+ 1

2

)u(1)
]
.

The second equation at order ϵ−1 implies

−u
(1)

i+ 1
2

=
1

2σ
(D+

i+ 1
2

+D−
i+ 1

2

)p(0) =
1

σ∆x

(
p
(0)

i− 1
2

− 3p̄
(0)
i + 3p̄

(0)
i+1 − p

(0)

i+ 3
2

)
=

1

σ

(
p(0)x

∣∣∣
x
i+1

2

− ∆x2

12
p(0)xxx

∣∣∣
x
i+1

2

+O(∆x4)

)
,

thus the first equation at order ϵ0 can be simplified as

d

dt
p̄
(0)
i =

1

σ∆x
p(0)x

∣∣∣xi+1
2

x
i− 1

2

− ∆x

12σ
p(0)xxx

∣∣∣xi+1
2

x
i− 1

2

+O(∆x3)

=
1

σ∆x
p(0)x

∣∣∣xi+1
2

x
i− 1

2

+O(∆x2),

which is a finite volume approximation of p(0)t = 1
σ
p
(0)
xx with the truncation error O(∆x2).

Note that the last equality uses the Lipschitz continuity of p(0)xxx if p(0) is sufficiently smooth.
The second equation of the order ϵ0 can be simplified as

d

dt
p
(0)

i+ 1
2

=− 1

2

[
(D+

i+ 1
2

−D−
i+ 1

2

)p(1) + (D+
i+ 1

2

+D−
i+ 1

2

)u(1)
]

=− 1

σ∆x

[
u
(1)

i− 1
2

− 3ū
(1)
i + 3ū

(1)
i+1 − u

(1)

i+ 3
2

]
+

1

2

[
(D−

i+ 1
2

−D+
i+ 1

2

)p(1)
]

=
1

σ∆x

[1
2
(D+

i− 1
2

+D−
i− 1

2

)p(0) − 3
(
p
(0)

i+ 1
2

− p
(0)

i− 1
2

)
+ 3

(
p
(0)

i+ 3
2

− p
(0)

i+ 1
2

)
− 1

2
(D+

i+ 3
2

+D−
i+ 3

2

)p(0)
]
+

1

2

[
(D−

i+ 1
2

−D+
i+ 1

2

)p(1)
]

=
1

σ∆x2

(
p
(0)

i− 3
2

− 3p̄
(0)
i−1 + 3p

(0)

i− 1
2

+ 3p̄
(0)
i − 8p

(0)

i+ 1
2

+ 3p̄
(0)
i+1 + 3p

(0)

i+ 3
2

− 3p̄
(0)
i+2 + p

(0)

i+ 5
2

)
+

1

∆x

(
−p

(1)

i− 1
2

+ 3p̄
(1)
i − 4p

(1)

i+ 1
2

+ 3p̄
(1)
i+1 − p

(1)

i+ 3
2

)
=

1

σ

(
p(0)xx

∣∣∣
x
i+1

2

+
1

12
p(0)xxxx

∣∣∣
x
i+1

2

∆x2

)
− 1

30
p(1)xxxx

∣∣∣
x
i+1

2

∆x3 +O(∆x4),

whose right-hand side recovers an approximation of 1
σ
p
(0)
xx with the truncation error O(∆x2).
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Proposition 4.1. Assuming sufficient regularity of the solutions, as ϵ → 0, the leading
order solutions of the 1D JS-based AF schemes (4)-(7) satisfy

ū
(0)
i = u

(0)

i+ 1
2

= 0,

d

dt
p̄
(0)
i =

1

2σ∆x

[
(D+

i+ 1
2

+D−
i+ 1

2

)p(0) − (D+
i− 1

2

+D−
i− 1

2

)p(0)
]
, (8)

d

dt
p
(0)

i+ 1
2

=
1

σ∆x

[1
2
(D+

i− 1
2

+D−
i− 1

2

)p(0) − 3
(
p
(0)

i+ 1
2

− p
(0)

i− 1
2

)
+ 3

(
p
(0)

i+ 3
2

− p
(0)

i+ 1
2

)
− 1

2
(D+

i+ 3
2

+D−
i+ 3

2

)p(0)
]
+O(∆x3), (9)

where (8)-(9) are approximations of p(0)t = 1
σ
p
(0)
xx with the truncation errors O(∆x2). To be

specific,
d

dt
p̄
(0)
i =

1

σ∆x
p(0)x

∣∣∣xi+1
2

x
i− 1

2

+O(∆x2),
d

dt
p
(0)

i+ 1
2

=
1

σ
p(0)xx

∣∣∣
x
i+1

2

+O(∆x2).

The truncation error may not fully explain the convergence order of the AF scheme
(or other compact schemes, such as Discontinuous Galerkin, see [39]). Indeed, if one
considers the most classical AF scheme for the linear advection equation, the truncation
error apparently is 2nd order while the overall accuracy is actually 3rd order (see e.g.
[2, 22, 38]). To examine more precisely the accuracy of the limit schemes, a Fourier analysis
is performed in Section 6, after discussing an alternative point value update next.

5 An alternative point value update
The following is another way to update the point values:

d

dt
pi+ 1

2
= −1

ϵ
D+

i+ 1
2

u,

d

dt
ui+ 1

2
= −1

ϵ
D−

i+ 1
2

p− σ

ϵ2
ui+ 1

2
.

It is inspired by the “alternating flux” in [24]. This choice of upwinding is very different from
how stable methods are usually achieved for hyperbolic systems of PDEs: Characteristics
are not considered and instead, a left bias is chosen on one variable and a right bias on
another. We do not find this prescription to yield a stable method in two space dimensions.
The reason for discussing it are its theoretical properties that will be of importance in the
subsequent analysis of Section 6.

Using the formal asymptotic analysis, we have

ϵ−2 : ū
(0)
i = u

(0)

i+ 1
2

= 0,

ϵ−1 : ū
(1)
i = − 1

σ∆x

(
p
(0)

i+ 1
2

− p
(0)

i− 1
2

)
,

u
(1)

i+ 1
2

= − 1

σ
D−

i+ 1
2

p(0),

ϵ0 :
d

dt
p̄
(0)
i = − 1

∆x

(
u
(1)

i+ 1
2

− u
(1)

i− 1
2

)
,

d

dt
p
(0)

i+ 1
2

= −D+
i+ 1

2

u(1).
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Thus the limit scheme is

d

dt
p̄
(0)
i =

1

σ∆x2

(
D−

i+ 1
2

p(0) −D−
i− 1

2

p(0)
)
,

d

dt
p
(0)

i+ 1
2

= − 1

∆x

(
2u

(1)

i− 1
2

− 6ū
(1)
i + 4u

(1)

i+ 1
2

)
=

1

σ∆x2

[
2D−

i− 1
2

p(0) − 6
(
p
(0)

i+ 1
2

− p
(0)

i− 1
2

)
+ 4D−

i+ 1
2

p(0)
]
.

6 Fourier analysis

6.1 Fourier analysis of the PDEs

We first perform a Fourier analysis for the hyperbolic heat equation (3). Make the following
Fourier ansatz of the solutions

p(x, t) = p̂(t) exp(iωx), u(x, t) = û(t) exp(iωx),

and substitute them into (3), then we have the following evolution equation

d

dt

[
p̂
û

]
= −1

ϵ

[
0 iω
iω ϵ−1σ

]
︸ ︷︷ ︸

=:E

[
p̂
û

]
. (10)

The eigenvalues of the evolution matrix E are

λ1,2 =
−σ ± s

2ϵ2

with s :=
√
σ2 − 4ϵ2ω2, which leads to

λ1 = −ω2

σ
− ω4ϵ2

σ3
+O(ϵ4), λ2 = − σ

ϵ2
+

ω2

σ
+

ω4ϵ2

σ3
+O(ϵ4), (11)

Given the initial condition

p0 = p̂0 exp(iωx), u0 = û0 exp(iωx), (12)

one can decompose [p̂0, û0]
⊤ = V1 + V2 in the eigenvectors of E as follows

V1 = [p̂0 +O(ϵ), O(ϵ)]⊤ , V2 = [O(ϵ), û0 +O(ϵ)]⊤ .

The solution of (10) is

[p̂, û]⊤ = exp(λ1t)V1 + exp(λ2t)V2.

In the limit ϵ → 0, the first eigenvalue λ1 tends to − 1
σ
ω2, which corresponds to the solution

of the limit heat equation for p, as can be seen from V1. The second eigenvalue diverges
as ϵ → 0 and corresponds to the initial layer, occurring if the initial data are not well-
prepared, i.e., if û0 ̸= 0 as is obvious from the nature of V2. The corresponding evolution
exp(λ2t) = exp

(
−σt

ϵ2

)
decays rapidly with time if ϵ is small. Seen as a function of ϵ, this
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term has a Taylor series uniformly zero, and hence escapes the formal analysis presented
in Section 2. For later reference, we state here the eigenvectors

V1 =
1

2s

[
p̂0(s+ σ)− 2iϵωû0, û0(s− σ)− 2iϵωp̂0

]
, (13)

V2 =
1

2s

[
p̂0(s− σ) + 2iϵωû0, û0(s+ σ) + 2iϵωp̂0

]
, (14)

where s− σ = O(ϵ2).

Remark 6.1. Note that s may be complex. In fact, for ϵ = 0 it is real corresponding to the
parabolic limit, while for σ = 0, one has s = ±2iϵω and λ1,2 = ±iω/ϵ, i.e., the imaginary
eigenvalues expected in the hyperbolic regime.

6.2 Fourier analysis of the numerical scheme

Inspired by [39, 21], we now perform a similar4 Fourier analysis for the AF scheme by
taking the following Fourier ansatz of the numerical solutions

p̄i(t) = p̂1(t) exp(iωxi), pi+ 1
2
(t) = p̂2(t) exp(iωxi), (15)

ūi(t) = û1(t) exp(iωxi), ui+ 1
2
(t) = û2(t) exp(iωxi), (16)

where ω is the wave number5. Let also tx = exp(iω∆x).
The coefficient ŵ0 = [p̂1(0), û1(0), p̂2(0), û2(0)]

⊤ of the initial data ŵ0 exp(iωxi) for the
numerical solution in the cell Ii = [xi− 1

2
, xi+ 1

2
] is obtained based on (12),

ŵ0 = exp(−iωxi)

[
1

∆x

∫
Ii

p0(x)dx,
1

∆x

∫
Ii

u0(x)dx, p0(xi+ 1
2
), u0(xi+ 1

2
)

]⊤
=

[
p̂0
2 sin

(
ω∆x
2

)
ω∆x

, û0

2 sin
(
ω∆x
2

)
ω∆x

, p̂0 exp
(
iω∆x

2

)
, û0 exp

(
iω∆x

2

)]⊤
. (17)

6.2.1 Point value update using Jacobian splitting

Substitute the ansatz (15)–(16) into the AF schemes (4)-(7):

d

dt
[p̂1, û1, p̂2, û2]

⊤ = G[p̂1, û1, p̂2, û2]
⊤,

where the evolution matrix is

G =
1

ϵ∆x


0 0 0 t−1

x − 1
0 −ϵ−1σ∆x t−1

x − 1 0
3(1 + tx) 3(1− tx) −(t−1

x + 4 + tx) tx − t−1
x

3(1− tx) 3(1 + tx) tx − t−1
x −ϵ−1σ∆x− (t−1

x + 4 + tx)

 .

4The calculations are performed using Mathematica.
5It is of no relevance whether we associate the point values with xi or xi+ 1

2
, as the latter would amount

to an extra overall factor exp(iω∆x/2) and hence only a redefinition of p̂2 or û2.

9



It is difficult to calculate the eigenvalues of G, and we thus construct them as a power
series in ∆x

λ̃ = ∆x−1λ̃(−1) + λ̃(0) +∆xλ̃(1) +∆x2λ̃(2) +∆x3λ̃(3) + h.o.t.,

and solve the characteristic equation

det(λ̃I4 −G) = 0

by matching the coefficients of the same order in ∆x. The eigenvalues are

λ̃1 = λ1 −
∆x3ω4

72ϵ
+O(∆x4),

λ̃2 = λ2 −
∆x3ω4

72ϵ
+O(∆x4),

λ̃3 = − 6

ϵ∆x
− s̃+ σ

2ϵ2
+

ω2∆x

ϵ
− 2∆x2ω4

s̃
− 5∆x3ω4

72ϵ
+O(∆x4),

λ̃4 = − 6

ϵ∆x
+

s̃− σ

2ϵ2
+

ω2∆x

ϵ
+

2∆x2ω4

s̃
− 5∆x3ω4

72ϵ
+O(∆x4),

where s̃ :=
√
σ2 − 36ϵ2ω2. The first and second eigenvalues are physical (i.e., converging

to (11) as ∆x → 0), with the other two spurious modes decaying exponentially as ∆x → 0.
Note that the second physical eigenvalue corresponds to the initial layer. Observe also the
presence of a singularity in the physical eigenvalues as ϵ → 0; we will come back to this
aspect in Section 6.2.3 after presenting the rest of the analysis.

Similarly, we calculate a set of eigenvectors ṽ1, . . . , ṽ4 of G by assuming that they are
power series of ∆x. Then the discrete initial data ŵ0 can be decomposed in the basis of
the eigenvectors of G as ŵ0 = ŵ

(1)
0 ṽ1 + ŵ

(2)
0 ṽ2 + ŵ

(3)
0 ṽ3 + ŵ

(4)
0 ṽ4 =: Ṽ1 + Ṽ2 + Ṽ3 + Ṽ4 with,

ignoring terms O(∆x4),

Ṽ1 =
[
− ωϵ(2p0ωϵ+ iu0(s− σ))

s(s− σ)
+

∆x2ω3ϵ(2p0ωϵ+ iu0(s− σ))

24s(s− σ)
,

− (s− σ)(ip0ωϵ+ σu0) + 2u0ω
2ϵ2

s(s− σ)
+

∆x2ω2((s− σ)(ip0ωϵ+ σu0) + 2u0ω
2ϵ2)

24s(s− σ)
,

− ω(288p0ωϵ
2 + 144iu0ϵ(s− σ))

144s(s− σ)
− ∆xω(−72u0ωϵ(s− σ) + 144ip0ω2ϵ2)

144s(s− σ)

− ∆x2ω(−36p0ω
3ϵ2 − 18iu0ω

2ϵ(s− σ))

144s(s− σ)

− 1

144s(s− σ)

(
∆x3ω(2p0ω

3ϵ(s− σ)− 6ip0ω
4ϵ2 − 2iσu0ω

2(s− σ)

+ 3u0ω
3ϵ(s− σ)− 4iu0ω

4ϵ2)
)
,

−288ip0ωϵ+ 144(s− σ)u0

288s
+

∆x(144p0ω
2ϵ+ 72i(s− σ)u0ω)

288s

+
∆x2(36ip0ω3ϵ− 18(s− σ)u0ω

2)

288s

+
∆x3(−2ip0ω3(s+ σ)− 6p0ω

4ϵ− u0ω
3(4ωϵ+ 3is) + 3iσu0ω

3)

288s

]⊤
, (18)
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Ṽ2 =
[ iϵω(2ip0ϵω + u0(s+ σ))

s(s+ σ)
− i∆x2ϵω3(2ip0ϵω + u0(s+ σ))

24s(s+ σ)
,

u0σ + ip0ϵω + 1
2
u0(s− σ)

s
−

∆x2ω2(u0σ + ip0ϵω + 1
2
u0(s− σ))

24s
,

ω (−2p0sωϵ
2 + iσu0ϵ(s+ σ)− 4iu0ω

2ϵ3)

s2(s+ σ)
+

∆xω (−2ip0sω2ϵ2 − σu0ωϵ(s+ σ) + 4u0ω
3ϵ3)

2s2(s+ σ)

+
∆x2ω (2p0sω

3ϵ2 − iσu0ω
2ϵ(s+ σ) + 4iu0ω

4ϵ3)

8s2(s+ σ)

+
1

144s2(s+ σ)

(
∆x3ω(2p0ω

3ϵ(σ2 + sσ + ωϵ(−4ωϵ+ 3is))− 2iσ2u0ω
2(s+ σ)

+ 4iu0ω
4ϵ2(s+ 2σ) + 3σu0ω

3ϵ(s+ σ)− 12u0ω
5ϵ3)
)
,

2ip0ωϵ+ (s+ σ)u0

2s
+

∆x(−2p0ω
2ϵ+ i(s+ σ)u0ω)

4s

− ∆x2(2ip0ω3ϵ+ (s+ σ)u0ω
2)

16s

+
∆x3(−2ip0ω3(s− σ) + 6p0ω

4ϵ+ u0ω
3(4ωϵ− 3is)− 3iσu0ω

3)

288s

]⊤
, (19)

Ṽ3 =

[
0, 0,

(6ϵωp̂0 + i(s̃− σ)û0)ω
3∆x3

144s̃
,
(6ϵωû0 + i(s̃+ σ)p̂0)ω

3∆x3

144s̃

]⊤
,

Ṽ4 =

[
0, 0,

(−6ϵωp̂0 + i(s̃+ σ)û0)ω
3∆x3

144s̃
,
(−6ϵωû0 + i(s̃− σ)p̂0)ω

3∆x3

144s̃

]⊤
.

In this decomposition, consider first the contribution of the spurious eigenvectors Ṽ3, Ṽ4.
It is of order O(∆x3), i.e., of the order of accuracy of the method, uniformly in ϵ: expanding
the stated terms in Ṽ3 and Ṽ4 as a power series in ϵ, one finds[

0, 0, O(ϵ),
1

72
i∆x3ω3p̂0 +O(ϵ)

]
,

[
0, 0,

1

72
i∆x3ω3û0 +O(ϵ), O(ϵ)

]
,

up to terms O(∆x4). The decomposition along the two physical modes Ṽ1, Ṽ2 quantifies
which part of the data is evolving according to the first (physical) eigenvalue λ̃1 ≃ λ1, and
which - according to the second. In order to determine the error, one needs to compare
(18)-(19) to the averages and point values of the same decomposition at the PDE level.
These latter are obtained by replacing p̂0 and û0 in (17) by the respective components of
V1 and V2 from (13)–(14). After subtraction, the error of Ṽ1 (the mode corresponding to
the limit heat equation) reads[

0, 0,
(2ϵωp̂0 + i(s− σ)û0)ω

3∆x3

144s
,
(2ϵωû0 + i(s+ σ)p̂0)ω

3∆x3

144s

]
,

where O(∆x4) terms are omitted. The third entry is a term O(ϵ), while the fourth is
1
72

i∆x3ω3p̂0 +O(ϵ). The error of Ṽ2 is[
0, 0,

(−2ϵωp̂0 + i(s+ σ)û0)ω
3∆x3

144s
,
(−2ϵωû0 + i(s− σ)p̂0)ω

3∆x3

144s

]
,
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where the third entry is 1
72

i∆x3ω3û0 + O(ϵ), and the fourth entry is O(ϵ). Thus, these
errors are of third order uniformly in ϵ.

The analysis thus shows that, in principle, the relevant errors of the Fourier decompo-
sition are O(∆x3). For the eigenvectors, this is uniformly in ϵ. Before condensing these
results into a statement on the error of the method, we perform analogous computations
for the point value update based on the alternating flux. With the two sets of results in
place, in Section 6.2.3 we present the remainder of the error analysis based on the Fourier
decomposition.

6.2.2 Point value update using the alternating flux

The same computations are now performed for the AF method with the point update
based on the prescription from Section 5. As mentioned there, this kind of upwinding
does not correspond to the usual way of achieving stability. However, it is stable in one
spatial dimension and the comparison between the two kinds of point value updates helps
elucidating the behavior of the numerical methods in the limit ϵ → 0.

When the point values are updated with the “alternating flux” prescription, the scheme
is

d

dt
[p̂1, û1, p̂2, û2]

⊤ = G[p̂1, û1, p̂2, û2]
⊤,

with the evolution matrix

G =
1

ϵ∆x


0 0 0 t−1

x − 1
0 −ϵ−1σ∆x t−1

x − 1 0
0 6 0 −4− 2t−1

x

−6tx 0 4 + 2tx −ϵ−1σ∆x

 .

It can be diagonalized explicitly. The eigenvalues are

λ̃1 = λ1 +
ω6∆x4

540s
+O(∆x5),

λ̃2 = λ2 −
ω6∆x4

540s
+O(∆x5),

λ̃3 = − 6i
ϵ∆x

− σ

2ϵ2
+ i∆x

12ϵ2ω2 + σ2

48ϵ3
+O(∆x3),

λ̃4 =
6i

ϵ∆x
− σ

2ϵ2
− i∆x

12ϵ2ω2 + σ2

48ϵ3
+O(∆x3).

Observe first of all that this time, the physical eigenvalues λ̃1, λ̃2 are 4th-order accurate,
and that the error is uniform in ϵ. This is a difference from the results with the JS obtained
above. We refrain from stating the entire expansion of the spurious eigenvalues λ̃3, λ̃4, since
the contribution of the spurious modes is again negligible: Upon decomposing the initial
data ŵ0 in the eigenvectors, the terms Ṽ3 and Ṽ4 are, neglecting contributions O(∆x4),

Ṽ3 =

[
0, 0,

1

144
∆x3ω3(û0 − ip̂0),

1

144
∆x3ω3(p̂0 + iû0)

]
,

Ṽ4 =

[
0, 0,− 1

144
i∆x3ω3(p̂0 − iû0),−

1

144
∆x3ω3(p̂0 − iû0)

]
.
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Observe that these are independent of ϵ. Finally, we compute the difference between the
projection of the exact mode corresponding to λ1 onto the degrees of freedom and the
corresponding discrete mode Ṽ1, finding[

ϵω4û0∆x3

72s
,−ϵω4p̂0∆x3

72s
,− 1

144
iω3
(
1 +

σ

s

)
p̂0∆x3,

1

144
iω3
(
1− σ

s

)
û0∆x3

]
up to terms O(∆x4). The error of the mode corresponding to the initial layer is[

−ϵω4û0∆x3

72s
,
ϵω4p̂0∆x3

72s
,− 1

144
iω3
(
1− σ

s

)
p̂0∆x3,

1

144
iω3
(
1 +

σ

s

)
û0∆x3

]
up to terms O(∆x4). All terms are of the order of accuracy of the method and also O(ϵ).

6.2.3 Discussion

Following [21] we observe that the error of the method can be related to the errors of the
eigendecomposition of G as performed in the previous Sections in the following way:

∥πq̂(t)− q̂h(t)∥L2 =

∥∥∥∥∥
2∑

k=1

(πVk exp(λkt)− Ṽk exp(λ̃kt)) +
4∑

k=3

Ṽk exp(λ̃kt))

∥∥∥∥∥
L2

≤
2∑

k=1

∥πVk − Ṽk∥| exp(λkt)|+
2∑

k=1

∥Ṽk∥| exp(λkt)− exp(λ̃kt)|

+
4∑

k=3

∥Ṽk∥| exp(λ̃kt)|.

Here π denotes the projection (17) of a mode [p̂0, û0] associated to the PDE (a vector in
C2) onto a Fourier mode associated to the degrees of freedom of the scheme (a vector in
C4).

For both the JS and the alternating flux, we have seen that the contribution of the
spurious modes is negligible, i.e., ∥Ṽk∥ ∈ O(∆x3) for k = 3, 4. Similarly, the error ∥πVk −
Ṽk∥, k = 1, 2 of the physical modes is O(∆x3) as well.

Finally,
| exp(λkt)− exp(λ̃kt)| ≤ Ct|λk − λ̃k|.

This value is O(∆x4) for the alternating flux, and O
(

∆x3

ϵ

)
for the JS. We conclude that

in the limit, the scheme based on JS suffers a loss of accuracy, while the one based on
the “alternating flux” prescription does not. The loss of accuracy can be alleviated by
choosing ∆x sufficiently small in relation to ϵ. This is confirmed in Example 8.1. The
formal analysis presented here, however, is insufficient to obtain theoretical convergence
rates, which is beyond the scope of the paper. Below, we present detailed numerical studies
of the order of accuracy for various values of ϵ.
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7 2D active flux scheme
This section presents the 2D semi-discrete AF methods for the hyperbolic heat equation

pt +
1

ϵ
ux +

1

ϵ
vy = 0,

ut +
1

ϵ
px +

σ

ϵ2
u = 0,

vt +
1

ϵ
py +

σ

ϵ2
v = 0.

Consider a 2D uniform Cartesian mesh with N1×N2 cells Iij = [xi− 1
2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
]

with cell centers ((xi− 1
2
+ xi+ 1

2
)/2, (yj− 1

2
+ yj+ 1

2
)/2) and cell sizes ∆x,∆y. The degrees of

freedom contain the cell averages, face-centered point values, and nodal values at corners.
The cell average is updated following the finite volume manner

dp̄ij
dt

=− 1

ϵ∆x

(
ûi+ 1

2
,j − ûi− 1

2
,j

)
− 1

ϵ∆y

(
v̂i,j+ 1

2
− v̂i,j− 1

2

)
,

dūij

dt
=− 1

ϵ∆x

(
p̂i+ 1

2
,j − p̂i− 1

2
,j

)
− σ

ϵ2
ūij,

dv̄ij
dt

=− 1

ϵ∆y

(
p̂i,j+ 1

2
− p̂i,j− 1

2

)
− σ

ϵ2
v̄ij,

(20)

where the numerical fluxes are

q̂i+ 1
2
,j =

1

6

(
qi+ 1

2
,j− 1

2
+ 4qi+ 1

2
,j + qi+ 1

2
,j+ 1

2

)
,

q̂i,j+ 1
2
=

1

6

(
qi− 1

2
,j+ 1

2
+ 4qi,j+ 1

2
+ qi+ 1

2
,j+ 1

2

)
, q = p, u, v.

For the point value update, the Jacobian in the x- and y-directions are split as

J+
x =

1

ϵ

1
2

1
2

0
1
2

1
2

0
0 0 0

 , J−
x =

1

ϵ

−1
2

1
2

0
1
2

−1
2

0
0 0 0

 ,

J+
y =

1

ϵ

1
2

0 1
2

0 0 0
1
2

0 1
2

 , J−
y =

1

ϵ

−1
2

0 1
2

0 0 0
1
2

0 −1
2

 .

Then using the JS-based discretizations in [13, 3], the point value update at the corner is

dpi+ 1
2
,j+ 1

2

dt
=− 1

2ϵ

[
(D+

x )i+ 1
2
,j+ 1

2
(p+ u)− (D−

x )i+ 1
2
,j+ 1

2
(p− u)

]
− 1

2ϵ

[
(D+

y )i+ 1
2
,j+ 1

2
(p+ v)− (D−

y )i+ 1
2
,j+ 1

2
(p− v)

]
,

dui+ 1
2
,j+ 1

2

dt
=− 1

2ϵ

[
(D+

x )i+ 1
2
,j+ 1

2
(p+ u) + (D−

x )i+ 1
2
,j+ 1

2
(p− u)

]
− σ

ϵ2
ui+ 1

2
,j+ 1

2
,

dvi+ 1
2
,j+ 1

2

dt
=− 1

2ϵ

[
(D+

y )i+ 1
2
,j+ 1

2
(p+ v) + (D−

y )i+ 1
2
,j+ 1

2
(p− v)

]
− σ

ϵ2
vi+ 1

2
,j+ 1

2
,

(21)
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where

(D+
x )i+ 1

2
,j+ 1

2
(a) = ai− 1

2
,j+ 1

2
− 4ai,j+ 1

2
+ 3ai+ 1

2
,j+ 1

2
,

(D−
x )i+ 1

2
,j+ 1

2
(a) = −3ai+ 1

2
,j+ 1

2
+ 4ai+1,j+ 1

2
− ai+ 3

2
,j+ 1

2
.

The point value update at the face center (xi+ 1
2
, yj) is

dpi+ 1
2
,j

dt
=− 1

2ϵ

[
(D+

x )i+ 1
2
,j(p+ u)− (D−

x )i+ 1
2
,j(p− u)

]
− 1

ϵ
(Dy)i+ 1

2
,jv,

dui+ 1
2
,j

dt
=− 1

2ϵ

[
(D+

x )i+ 1
2
,j(p+ u) + (D−

x )i+ 1
2
,j(p− u)

]
− σ

ϵ2
ui+ 1

2
,j,

dvi+ 1
2
,j

dt
=− 1

ϵ
(Dy)i+ 1

2
,jp−

σ

ϵ2
vi+ 1

2
,j,

(22)

where

(D+
x )i+ 1

2
,j(a) = ai− 1

2
,j − 4ai,j + 3ai+ 1

2
,j,

(D−
x )i+ 1

2
,j(a) = −3ai+ 1

2
,j + 4ai+1,j − ai+ 3

2
,j,

(Dy)i+ 1
2
,j(a) = ai+ 1

2
,j+ 1

2
− ai+ 1

2
,j− 1

2
,

and the cell center value is obtained by

ai,j =
1

16

[
36āi,j − 4

(
ai− 1

2
,j + ai+ 1

2
,j + ai,j− 1

2
+ ai,j+ 1

2

)
−
(
ai− 1

2
,j− 1

2
+ ai+ 1

2
,j− 1

2
+ ai− 1

2
,j+ 1

2
+ ai+ 1

2
,j+ 1

2

) ]
. (23)

The point value update at the face center (xi, yj+ 1
2
) is

dpi,j+ 1
2

dt
=− 1

ϵ
(Dx)i,j+ 1

2
u− 1

2ϵ

[
(D+

y )i,j+ 1
2
(p+ v)− (D−

y )i,j+ 1
2
(p− v)

]
,

dui,j+ 1
2

dt
=− 1

ϵ
(Dx)i,j+ 1

2
p− σ

ϵ2
ui,j+ 1

2
,

dvi,j+ 1
2

dt
=− 1

2ϵ

[
(D+

y )i,j+ 1
2
(p+ v) + (D−

y )i,j+ 1
2
(p− v)

]
− σ

ϵ2
vi,j+ 1

2
.

(24)

7.1 Formal asymptotic analysis

Similar to the analysis in Section 4, under the assumption of sufficient regularity of numer-
ical solutions, one can first match the terms of order ϵ−2 in (20)-(24) and obtain

ū
(0)
ij = v̄

(0)
ij = u

(0)
ζ = v

(0)
ζ = 0, (25)

where ζ denotes the point values at face centers or corners.
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For the terms of order ϵ−1, one has

ū
(1)
ij = − 1

σ∆x

(
p̂
(0)

i+ 1
2
,j
− p̂

(0)

i− 1
2
,j

)
, v̄

(1)
ij = − 1

σ∆y

(
p̂
(0)

i,j+ 1
2

− p̂
(0)

i,j− 1
2

)
,

u
(1)

i+ 1
2
,j+ 1

2

= − 1

2σ

[
(D+

x )i+ 1
2
,j+ 1

2
+ (D−

x )i+ 1
2
,j+ 1

2

]
p(0),

v
(1)

i+ 1
2
,j+ 1

2

= − 1

2σ

[
(D+

y )i+ 1
2
,j+ 1

2
+ (D−

y )i+ 1
2
,j+ 1

2

]
p(0),

u
(1)

i+ 1
2
,j
= − 1

2σ

[
(D+

x )i+ 1
2
,j + (D−

x )i+ 1
2
,j

]
p(0),

v
(1)

i+ 1
2
,j
= − 1

σ
(Dy)i+ 1

2
,jp

(0),

u
(1)

i,j+ 1
2

= − 1

σ
(Dx)i,j+ 1

2
p(0),

v
(1)

i,j+ 1
2

= − 1

2σ

[
(D+

y )i,j+ 1
2
+ (D−

y )i,j+ 1
2

]
p(0),

(26)

which are generally some approximations of u(1) = − 1
σ
p
(0)
x , v(1) = − 1

σ
p
(0)
y . Take the terms

related to u(1) as examples while those of v(1) can be treated similarly. The Simpson’s rule
is 4th order,

p̂
(0)

i+ 1
2
,j
=

1

6

(
p
(0)

i+ 1
2
,j− 1

2

+ 4p
(0)

i+ 1
2
,j
+ p

(0)

i+ 1
2
,j+ 1

2

)
=

 1

∆y

∫ y
j+1

2

y
j− 1

2

p(0)dy

∣∣∣∣∣
x
i+1

2

+O(∆y4),

thus

ū
(1)
ij =− 1

σ∆x

 1

∆y

∫ y
j+1

2

y
j− 1

2

p(0)dy

∣∣∣∣∣
x
i+1

2

x
i− 1

2

+O(∆y4),

which is a finite volume approximation of u(1) = − 1
σ
p
(0)
x . By using the Taylor expansion,

u
(1)

i+ 1
2
,j+ 1

2

=− 1

2σ

[
(D+

x )i+ 1
2
,j+ 1

2
+ (D−

x )i+ 1
2
,j+ 1

2

]
p(0) = − 1

σ
p(0)x

∣∣∣
x
i+1

2
,y

j+1
2

+O(∆x2),

u
(1)

i+ 1
2
,j
=− 1

2σ

[
(D+

x )i+ 1
2
,j + (D−

x )i+ 1
2
,j

]
p(0) = − 1

σ
p(0)x

∣∣∣
x
i+1

2
,yj

+O(∆x2),

u
(1)

i,j+ 1
2

=− 1

σ
(Dx)i,j+ 1

2
p(0) = − 1

σ
p(0)x

∣∣∣
xi,yj+1

2

+O(∆x2),

so that they are approximations of u(1) = − 1
σ
p
(0)
x at corresponding points.
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Collecting the terms of order ϵ0 in (20)-(24) gives

d

dt
p̄
(0)
ij =− 1

∆x

(
û
(1)

i+ 1
2
,j
− û

(1)

i− 1
2
,j

)
− 1

∆y

(
v̂
(1)

i,j+ 1
2

− v̂
(1)

i,j− 1
2

)
, (27)

dp
(0)

i+ 1
2
,j+ 1

2

dt
=− 1

2

[
(D+

x )i+ 1
2
,j+ 1

2
(p(1) + u(1))− (D−

x )i+ 1
2
,j+ 1

2
(p(1) − u(1))

]
− 1

2

[
(D+

y )i+ 1
2
,j+ 1

2
(p(1) + v(1))− (D−

y )i+ 1
2
,j+ 1

2
(p(1) − v(1))

]
,

dp
(0)

i+ 1
2
,j

dt
=− 1

2

[
(D+

x )i+ 1
2
,j(p

(1) + u(1))− (D−
x )i+ 1

2
,j(p

(1) − u(1))
]
− (Dy)i+ 1

2
,j(v

(1)),

dp
(0)

i,j+ 1
2

dt
=− (Dx)i,j+ 1

2
u(1) − 1

2

[
(D+

y )i,j+ 1
2
(p(1) + v(1))− (D−

y )i,j+ 1
2
(p(1) − v(1))

]
,

where the last three can be simplified based on the smoothness of p(1) and the Taylor
expansion as

dp
(0)

i+ 1
2
,j+ 1

2

dt
=− 1

2

[
(D+

x )i+ 1
2
,j+ 1

2
+ (D−

x )i+ 1
2
,j+ 1

2

]
u(1) − 1

2

[
(D+

y )i+ 1
2
,j+ 1

2
+ (D−

y )i+ 1
2
,j+ 1

2

]
v(1)

+O(∆x3 +∆y3),

dp
(0)

i+ 1
2
,j

dt
=− 1

2

[
(D+

x )i+ 1
2
,j + (D−

x )i+ 1
2
,j

]
u(1) − (Dy)i+ 1

2
,jv

(1) +O(∆x3),

dp
(0)

i,j+ 1
2

dt
=− (Dx)i,j+ 1

2
u(1) − 1

2

[
(D+

y )i,j+ 1
2
+ (D−

y )i,j+ 1
2

]
v(1) +O(∆y3).

(28)
Note that ū(1)

ij , u
(1)
ζ , v̄

(1)
ij , v

(1)
ζ appeared in (28) are given in (26), and the cell center value is

given by (23).
One can further examine the accuracy of (27). Since

−û
(1)

i+ 1
2
,j
=− 1

6

(
u
(1)

i+ 1
2
,j− 1

2

+ 4u
(1)

i+ 1
2
,j
+ u

(1)

i+ 1
2
,j+ 1

2

)
=

1

12σ

[
(D+

x )i+ 1
2
,j− 1

2
+ (D−

x )i+ 1
2
,j− 1

2
+ 4(D+

x )i+ 1
2
,j

+ 4(D−
x )i+ 1

2
,j + (D+

x )i+ 1
2
,j+ 1

2
+ (D−

x )i+ 1
2
,j+ 1

2

]
p(0)

=
1

σ

 1

∆y

∫ y
j+1

2

y
j− 1

2

p(0)x dy

∣∣∣∣∣
x
i+1

2

+O(∆x2 +∆y4),

treating other numerical fluxes similarly, then (27) becomes

d

dt
p̄
(0)
ij =

1

σ∆x

 1

∆y

∫ y
j+1

2

y
j− 1

2

p(0)x dy

∣∣∣∣∣
x
i+1

2

x
i− 1

2

+
1

σ∆y

 1

∆x

∫ x
i− 1

2

x
i− 1

2

p(0)y dx

∣∣∣∣∣
y
j+1

2

y
j− 1

2

+O(∆x2+∆y2).

(29)
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Thus it is a finite volume approximation of p(0)t = 1
σ
p
(0)
xx + 1

σ
p
(0)
yy with the truncation error

O(∆x2 +∆y2). By the Taylor expansion, the other equations in (28) can be written as

dp
(0)
ζ

dt
=

(
1

σ
p(0)xx +

1

σ
p(0)yy

) ∣∣∣∣∣
ζ

+O(∆x2 +∆y2), (30)

for all the point values at face centers or corners.

Proposition 7.1. Assuming sufficient regularity of the solutions, as ϵ → 0, the leading
order solutions of the 2D AF schemes (20)-(24) satisfy (25)-(28), which are approximations
of p(0)t = 1

σ
p
(0)
xx + 1

σ
p
(0)
yy with truncation errors O(∆x2 +∆y2) in the sense of (29)-(30).

8 Numerical results
This section conducts some numerical experiments to verify the convergence rates and AP
property of the AF schemes. Unless otherwise stated, periodic boundary conditions and
the 3rd-order DIRK [5] are used and the time step size is chosen as

∆t = CCFLmin{∆x,∆y},

with the CFL number CCFL = 1.0. The linear system is solved by using GMRES with an
incomplete LU factorization preconditioner [5].

Example 8.1 (1D accuracy test). Consider the following exact solution [24],

p =
1

r
exp(rt) sin(x), u = ϵ exp(rt) cos(x), r =

−2

1 +
√
1− 4ϵ2

,

on the domain [0, 2π] with periodic boundary conditions and σ = 1. The test is solved
until T = 1 and the time step size is 0.2∆x4/3 to make the spatial error dominant.

The errors and convergence rates are plotted in Figure 1 for ϵ = 0.5, 10−2, 10−6, which
shows that the JS-based AF scheme is 3rd-order accurate for ϵ = 0.5, while as ϵ → 0 the
convergence rates reduce to 2 except for the 4th-order convergence of the point value in
u. When ϵ = 10−2, it is verified that the scheme recovers the 3rd-order accuracy when
the mesh size decreases to the magnitude of ϵ. The errors and convergence rates with the
alternating flux are shown in Figure 2. For ϵ = 0.5, one observes 3rd-order accuracy, while
for ϵ = 10−2 and ϵ = 10−6, the convergence order is 4 for the cell average of p and point
value of u, and 3 for the other degrees of freedom. The appearance of the super-convergence
(4th order instead of 3rd order) needs further study.

Example 8.2 (Square wave). The initial p of this test is a square wave, adapted from [24],

p =

{
2, if |x| < 0.5,

1, otherwise,

and u = 0 in the whole domain [−1, 1]. Two cases are considered: the transport regime
ϵ = 0.7 and the diffusive regime ϵ = 10−6, with σ = 1, and the final time is 0.25 and 0.04,
respectively.

The results obtained by the JS-based AF scheme on a coarse mesh of 40 cells are shown
in Figure 3. It is observed that the scheme can capture shock waves for ϵ = 0.7 correctly,
and can also capture the diffusive solution for ϵ = 10−6 well.
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Figure 1: Example 8.1. The errors and convergence rates obtained by the JS-based AF
scheme and ϵ = 0.5, 10−2, 10−6 from left to right.
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Figure 2: Example 8.1. The errors and convergence rates obtained with the alternating
flux and ϵ = 0.5, 10−2, 10−6 from left to right.
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Figure 3: Example 8.2. The results obtained by the JS-based AF scheme. Top row: ϵ = 0.7,
bottom row: ϵ = 10−6. Left: p, right: u.
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Example 8.3 (Variable σ). This test is used to show that the JS-based AF scheme also
works for variable σ. This test problem takes the same initial condition and computational
domain as Example 8.2, except for ϵ = 1, and σ = 1+(10x)2. Note that the solution tends
to be in the diffusive regime for large σ.

Figure 4 shows the results obtained by the JS-based AF scheme on a coarse mesh of 40
cells. It is seen that the scheme can capture both transport and diffusive regimes well in
the domain, which verifies the AP property of the scheme.
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Figure 4: Example 8.3. The results obtained by the JS-based AF scheme. Left: p, right:
u.

Example 8.4 (2D accuracy test). We construct the following exact solution similar to
Example 8.1,

p =
2

r
exp(rt) sin(x) sin(y), u = ϵ exp(rt) cos(x) sin(y),

v = ϵ exp(rt) sin(x) cos(y), r =
−4

1 +
√
1− 8ϵ2

,

in the domain [0, 2π]× [0, 2π] with periodic boundary conditions and σ = 1. The final time
is T = 0.1 and the CFL number is 0.2 to make the spatial error dominant.

The errors and convergence orders are shown in Figure 5. For ϵ = 0.3, the AF gets
the 3rd-order accuracy for all the cell averages, also the 3rd order for the point value in p,
while the 2nd order for the point value in u, v, which is due to the mesh alignment issue
(using the LLF FVS [13] recovers the 3rd order). For ε = 10−6, all the convergence rates
are 2.

Example 8.5 (Fundamental solution in transport regime). This test simulates wave prop-
agation in the domain [−1, 1]× [−1, 1] with σ = ϵ = 1 from an initial Dirac function of p
[11], i.e., p0 = 1

∆x∆y
for the centered cell average otherwise p0 = 0, and u0 = v0 = 0 in the

whole domain.
Figure 6 shows the results obtained by using the JS-based AF scheme with 101 × 101

cells. One can observe that the scheme can capture the transport phenomenon and preserve
the circular shape of the wave front well.
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Figure 5: Example 8.4. The errors and convergence rates obtained by the JS-based AF
scheme and ϵ = 0.3, 10−2, 10−6 from left to right.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−10

0

10

20

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−20

−10

0

10

20

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−20

−10

0

10

20

Figure 6: Example 8.5. The results obtained by the JS-based AF scheme. From left to
right: p, u, v.

Example 8.6 (Radiation). This is a test problem motivated by radiation simulations,
where σ depends on the fluid temperature. We follow the setup in [11]. The domain is a
square [−1, 1]× [−1, 1], and the initial condition is

p0 = 10−3 + 100 exp(−(x2 + y2)/0.01), u0 = v0 = 0.

In this test, ϵ = 1, and the coefficient σ is chosen as 1 in the domain except for 104 in
eight box regions, see Figure 7. For example, in the first quadrant, the two boxes are
[ 3
16
, 7
16
] × [ 9

16
, 13
16
], and [ 9

16
, 13
16
] × [ 3

16
, 7
16
], and the other boxes are mirror symmetric with

respect to the axes.
The results are obtained by using the 200×200 mesh, shown in Figure 8. The diffusion

coefficient 1/σ is very small in box regions, thus the diffusion behavior is much slower, which
can be clearly observed. Our results are comparable to those in [11] (using comparable
mesh size), with better resolution near the box regions.

9 Conclusion
In the active flux (AF) methods, the way how point values at cell interfaces are updated
is essential to achieve stability, high-order accuracy, and other nice properties. The point
value update based on Jacobian splitting (JS) has been used in many existing works. This
paper investigates the JS-based AF scheme for solving the hyperbolic heat equation. It is
shown that the scheme without any modification is AP in the diffusive scaling by using the
formal asymptotic analysis, discrete Fourier analysis, and numerical tests. The convergence
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Figure 7: Example 8.6. σ = 1 in the domain except for σ = 104 in the black box regions.
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Figure 8: Example 8.6. The results obtained by the JS-based AF scheme. From left to
right: p, u, v.

rates are also studied for the scheme and its limit, and the order degradation is observed
in the limit.
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A Example 8.1 with non-well-prepared data
We also compute Example 8.1 with non-well-prepared data u = 0.1, and p is kept the same.
The reference solution is obtained by the same scheme on a fine mesh. Figure 9 shows the
errors and convergence rates. The 3rd-order convergence is observed for ϵ = 10−2 when
∆x is small enough, while for ϵ = 10−6, the convergence rate is the 1st order except for
the 2nd-order accuracy in the cell average of u.
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Figure 9: Example 8.1. The errors and convergence rates obtained with the non-well-
prepared initial data u(0) = 0.1 and the same p(0), where ϵ = 10−2 (upper) and ϵ = 10−6

(lower).
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