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1 Introduction

We nse the methods of compensated compactness and Young measures to show
that solutions of the equations for 1-D clasticity with a physical state law and
physical viscosity converge strongly to global weak solutions of the inviscid
equations. More precisely. we consider the Cauchy problem for the following

degenerate system of parabolic equations

y — ')y = €y, {1)

0 (2)

£ ¢
0 — iy,

with initiai data ug. g € H'. The associated inviscid equations (3). (4) are

assumed to be hyperbolic.

up —ofe), = 0 (3)
vy —u, = 0 (4)

We show a subsequence of solutions of (1}, (2) converges strongly to a global
weak solution of (3). (4) (and. assuming unigueness. the entire sequence con-
verges) under the hvpotheses of striet hyperbolicity (o' > ¢ = 0), loss of
genuine nonlinearity at one point (a”(Ag) = 0. o”(A) # 0 for A # Ay), and
where o is thrice differentiable and has polynomial-like growth near infinity.
We will consider later the exact growth hypotheses in more detail.
Previously. DiPerna [5] [6] [7] proved existence of global weak L™ solutions

cof (3). (4) by using artificial viscosity (5). (6). energy estimates and uniform LZ>




bounds. Using the methods of compensated compactness {developed by Murart
and Tartar (12, 13]. [18]} and Lax’s generalized entropies and L*-Young
wmeasures. DiPerna showed that a subsequence of the viscosity approximations

converges strongly to giobal weak solutions of the inviseid equartions {3). (4).

iy = afet), = fiu,, (5)
P E o e
vy =, = €, {6}

The lirst equation {5) is balance of momentum. and the second equation rep-
resents conservation of mass with artificial viscosity: i.e.. unlike the first equa-
tion. the diffusion termn here is nonphysical. As introduced. the compensated
compactness and Young measure method requires uniform L bounds on the
approximating schitions (in addition to energy estimates). The only general
method to obtain uniform L£> bounds for svstems of parabolic equations uses
a version of the maximum principle to obtain invariant regl'oﬁs and is given by
Chueh, Conley and Smoller in 3] (however. see Dafermos {4] for an alternate
method). In the above case. one must use artificial viscosity exactly as in (5),
{6) to obtain L™ bounds. These bounds are not available for (3). (4).

Subseqguently, the method has been” generalized to make nse of only uni-
form L'-like bounds which are available from energy estimates. Shearer [15]
proves global existence of weak solutions in L? for (3). (4) in the case of strict
hyperbolicity, genuine nonlinearity (¢” # (), the same growth constraints on
 used here, and using only the energy estimates (which are available in cases
where L> bounds are not). Lin [11] also considers a similar system and uses a
combination of energy estimates and the method of invariant regions to obtain
weak global solutions of (3), (4). However. his use of invariant regions forces
him to use artificial viscosity exactly as in (5). (6).

We end this section with the precise statements of the hypotheses and
the main theorem. In section 2 we derive energy estimates for the viscosity

_solutions; in sections 3 and 4 we discuss Young measures, compensated com-
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pactness and prove Tartar's equation hoids tor two classes of entropy-entropy
~ fux pairs. In section 5. we use these entropies in Tartar’s equation to show
that the support of an arbitrary Young measure is a point.

To prove the main theorem. we adapr the methods of Serre (14] and Shearer
15| to the present case. Deline E(¢) = [ is)ds (we can assume o{0) = 0).

We use the tollowing hypotheses.
H1 Strict Hyperbolicity: o'{¢) = 7y = 0 with oy =constant
H?2 Genuine Nonlinearity Except at a Point:
a'(Ao) = 0 and ”(A) # 0 for X # Xy

Growth Constraints:

) n.!l ﬂm o rr” (1”’ )
B o oyn S8 e €
a(r)

— 0 as j¢} — oc and there are constants ¢. g

BL g

with ¢ > 1/2 such that {o"(¢))¥ < (1 + E(v))

Hypotheses H3: Hd are somewhat messy but are required for technical reasons.
Roughly, they require that higher derivatives of o must grow more slowly than
lower derivatives. For example. a flux function o with exponential growth is
not allowed. On the other hand. if & behaves like a polynomial. then the extra
derivatives in the numerators in hypotheses H3. H4 imply that the terms are
appropriately bounded or decay to zero sufficiently fast for the hvpotheses to
hold. For example. it is casy to check that if o', [o”], |6™| grow like [¢j¢, |v]*~!.
{v[*=2 then H3. H4 hold for any « > 0. H3 and H4 also hold if 6* € L* and
o', |o”| grow like |o|*, Joj*~" with a > 2/7 or if 6”. 0" € L™ and o' grows like

le|*, @ > 2/5. Other, more general behavior for o is also possible.

Theorem 1 Global Existence and Convergence We assume hypotheses
H1-H{. Let u' v be viscosity solutions of (1), (2) with initial data uf, vy €
.H'(R), satisfying | 5{up)* + T(vg)dr < C' = a constant and with uy—7y and
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vh—To such that e [ (v, )*dr — 0 as e — 0. Then there is a subsequence u's. ¢*
which converges strongly in Ly, (R*). p < 2 to global weak solutions T.T of (3).
(4} with initial data @y, Ty. 1| f\_’}—’:) — O as A — x. then o' converges strongly
in L}.. If the viscosity approximations converge to a unique solution of (3).

4

(4}, then the entire sequence ' .o converyes strongly to . 7.

Remarks We can. of course. choose for the viscosity solutions of (1). {2}
initial data in H' independent of €. However. to obtain the most general
existence theorem. we assume that the initial data converges weakly to @,. T,
in the sense of distributions. From Shearer 115]. it follows that . Ty also has
finite energy: ie.. [ %(ﬁu)z + Y(Tg)de < C. and so we have global existence
of solutions with arbitrary finite energy initial data. Also from [15] we have
7.7 € LR LM N Lip(Re: WH(R); ) where L7 is the space of functions
{u.v) € L},(R) with finite energy (i.c.. n{u.v) = 2u?+(v) and [ plu. v)dz <
x) and W*>*(R)" denotes the dual of 1¥"!>(R).

Proof: We collect the results from the rest of the paper to give the proot. In
section 2 we obtain uniform LP-like bounds from the first energy estimate (7).
From lemma 2 in section 3. there is a family of L7-Young measures v = v,
associated with a subsequence of the viscosity solutions a**. ¢, The latter
converge weakly to candidate solutions 7. 7. To prove the theorem. we need to
show that the weak limits #. T are actually strong limits and that theyv satisty

the weak formulation of the inviscid equation:
N 7
- -/R o(a. OYup({x)dr — ’ /0 . /R o — opr{v)drdt = 0
N T p
=, /R olx. 0)vg(x)de — - /0 ‘ /R O — ozudrdt = 0

2

for all smooth. compactly supported test functions ¢ € C*(R*). To do this.
we start by writing the degenerate parabolic equation in the weak form and

take the limit along the subsequence €.

” ”
- ]R o, O)ug(x)dr — /0 ./R o’ — oo Mdrdt = /0 /R EOpptt dzdt
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' ol
= /RU(‘.l‘.Uh',',(.r)(l:r —/ / ot — o drdt = 0

Joo 4R

The linear terms clearly converge to the correet weak limits. The diffieulty is
with the noniinear composition oie' ). [n section 5 we show that the support
of the L Young measures associated with the subsequence u*. % is a point
for ace. .7 So from lemma 2 concerning Young measures we have strong
convergence in L), (R*} of g{a's. %) to (7. 7T) when %:—; — ) as juj + juvj —
x. Since T{e) 2 gy /2 we can choose glu. ¢) = u” + |¢|? for any p < 2 and
50 we have strong convergence in L (R?). Similarly. ¢* — 7 in L{ (R?) if
[e|*/Z{e) — 0 as jel — . Finally, by hvpothesis Hd. 7/E — 0 as j¢] — x.
s0 we also have o(0'%)—a{#) and consequently 7.7 are global weak solutions
to the inviscid equations.

We expect that solutions of the inviscid equations are unique when entropy
is appropriately dissipated (i.e.. when an entropy inequality such as n(u, v), —
{ua(v)), < 0 is weakly satisfied). Furthermore, the viscosity solutions satisfy
the above entropy inequality. so we expect the strong limit of the subsequence
to converge to the nuique entropy dissipating weak solution of the inviseid
equations. From the same argument as in the above paragraph, it follows that
any subsequence of the viscosity solutions has a further subsequence which
converges strongly to a global weak solution of the inviscid cquations. If this
limit is unique (i.., independent of the choice of the initial subsequence),

then it follows that the entire sequence o' . o* converges stronely to the unique
{ A 213 q

limit.0

2 Viscosity Solutions and Energy Estimates

We assume that there exists global classical (smooth) solutions of (1), (2) for
any initial data wy, vy € H'(R). We also assume that the solutions and their

. lirst few derivatives decay to zero as || — x for any £ > ().
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Lemma 1 Energy Estimates The wmscosity solutions of (1). (2) satisfy for

any 17 = 1)

)y EIT) < E{0) (1)

T .
) 2 ! 2 ‘ r 12 e
(i1 s +a{vhesdrdt < 2E{0) +¢ | (v fr b
() './u ./R = + i)t drdt < 25(0) .,'/R""” - )

where E(t) = [g yule.t)? + S(e(x.t))dr.
Proof: Multiplying {1) by « and {2) by o(¢) and adding we get (we have
dropped the superseript €)

(3 + S(0)) — (uov))s = eb(ud)e — eul.

Integrating in  and £. we obtain (i) and the inequality € J) [q u2dzdt < E(0)
{one should really integrate lirst ou the interval [6. T]. & > (. since we may only
have appropriate smoothness and decav for ¢ > 0. and then let 6 — 0). To
show the second inequality (i} we use an argument of Greenburg, MacCamy,
Mizel [9]. See also DiPerna [5].

Multiply (1! by ¢, and use ¢, = u,, and integrate to get

T r o
A /;)\l','u,d:rdt—[i ‘/;{a’(t-')‘t-‘fd:rdt = ';./Rri{(l]dm (9)

Integrate the first term by parts twice. lirst in ¢ then in z after the substitution

Upt = Uap L0 get
' T Al 2 A Yy Lol g
./R el dr -+ /0 /R wpdzdt = EjR vplpdr +_/0 '/Ra (v)oidzdt. (10)
Use Cauchy-Schwarz on the first term cvaluated at # = T to get
. €[ . 1/,
/R-u,.-u.‘I’)d:n < 5.[R V(T + o /R «*(T)dz (11)

and do the same for the first term at ¢ = 0 and we are done. O



3 Young Measures and Compensated Com-
pactness

In [18]. Tarrar introduces Young measures and compensated compactness in
the context of hvperbolic conservation laws to give a new proof of global ex-
istence for the scalar conservation law. Subsequent generalizations (starting
with DiPerna’s) have led to many uew existence results in conservation laws.
Tartar used the Young measures to represent limiting oscillations in subse-
quences of uniformly bounded L functions. o ¢ R* — R™. [l = < M.
Ronghly, there is a subsequence o'* such that each Young measure v.(A) is
the density measure for the probability distribution of the tail of the sequence
of values {u*{x)} as ¢ — 0. These L*-Young measures are a weakly mea-
surable family of probability measures. compactly supported inside a single
set: namely the cube in R™ centered at the origin with sides of length 2M. If
the sequence {u**{r)} converges pointwise to @(x) for a.e. z, then the Young
measures are Dirac masses. Vz(A) = S {A) for a.e. x and the convergence is
strong in Lf (R"}, p < oc. If the sequence continually bounces around (limit-
ing oscillations are present). then the Young measures are spread out and the
convergence is only weak. Stated another way. it v, is supported on a single
point for a.c. . then there are no oscillations and the associated subsequence
converges strongly in Lj _(R") for anv p < .

It is possible to associate Young measures with more general sequences of
measurable functions. such as those with uniform L7 bounds. p < oc. Such
functions can take on arbitrarily large values, so LP-Young measures need not
be compactly supported and may have mass less than one. However, the
fundamental correspondence of Young measures supported on points iff there
are no oscillations iff the subsequence couvcfges strongly still holds. Le., if v,

is supported at a point for a.e. ». then the subsequence converges strongly in
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LY. for any ¢ < p.

We will state only the results needed for onr application. For proofs and a
more complere discussion of this and related martters see Ball [1] and Shearer
171, 151, For other more general Young measures capable of representing
concentrations and for related issues. see DiPerna and Majda (8], Ball and
Murat 2] and Shearer {16].

Defining p(u. ¢} = Ju* + (e} we can rewrite the first energy estimate as
/R m{u (£). e (#))dr < Ar;(u,‘,. eh)de < C. (12)

By assumption in theorem 1. the right hand side is bounded by a constant ¢

independent of ¢. With this uniform L?-like control we have

Lemma 2 Young Measures and Convergence Properties If {12) holds,
then there 1s a subsequence u'*. v** and a weakly measurable family of nonneg-

ative measures {Vyys}, ep2 with mass equal to one for a.c. x.t such that

()  For any continuous g(u.v) with f"‘('ﬁ{ O as [u| + |v| = x

we cen define

Gz.t) = l/R___,,(,\,.,\g)du_,_,(,\l.,\?).

Then § € L},.. and g(u**.v'*)—7 in the weak topology of L} (R?) induced by

Co(R®). the space of continuous. compactly supported functions on R2.

(¢i) 1If g{u.v) is continuous. 3}:::; — 0 as luj + |v| — > and if the

support of vy, is a point for a.c. wx.t, then glu*, ¢*) — (W.T) strongly
in L (R®) and ve M. Xe) = Saen(N) @ Oiry{A2) u*—T = [Mdv and
kT = [ dodv.

Remarks. We will call these Young measures L”-Young measures to empha-

size the dependence of the representation and convergence properties on the

function 7.
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As mentioned above. L"-Yonung measures may not be probability measures.
since some mass may leak off ro infinity. But the nniform bound (12} and the
arowth of 5 imply that v, has mass equal to one tor a.e. .. Also. this bound
auel the growth rate of 5 bound the strength of possible concentrations. Thus.
to avoid problems with concenrrations. one must nse functions with sub-g
growth. In particular. in Tartar's equation below. we are restricted to using
entropy. entropy flux pairs o. ¢ with sub » growrh: Le. jo/nl + |/ — 0 as
tie] o] — >c. This hvpothesis of sub-n growth which appears throughout the
above lemma can be weakened slightly. but for simplicity we do not consider
this further. For more information and proof of the lemma see the references

in the penultimate paragraph preceding lemma (2).

4 Compensated Compactness and Tartar’s Equa-
tion

In this section we obtain estimates for two classes of entropy, entropy flux pairs
and then show via the div-curl lemma that they satisty Tartar’s equation.

As introduced by Lax {10]. a pair of functions @. ¢ is an entropy, entropy
flux pair for a system of hyperbolic conservation laws U, + F{U), = 0 if all
smooth solutions U also satisty o(U); +w (L), = 0. It is sullicient if @, & satisfy
the linear hyperbolic partial differential equation VoV F = V. In our case

we have

Op = Uy (13)
o, = U, (14)
We gain information about the viscosity approximations by composing them

with entropy, entropy flux pairs (solutions of (13). {(14)). Let o = o(u®, v¢)

cand vf = w(u.¢*). To use the div-curl lemma. we must show that {¢f +4%} 0
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lies in a compact subset of H;.'| R?). Multiplyving (1). (2) by Vo. it suifices
to show that eu 0l = flu,0), ), — €lo), 17 — o pty) Is D a compact subset
of HZ/(R*). If u'. ¢* are uniformly bounded. then so are . o, and o), and
the desired compactness follows from Murac's lemma and the second energy
estimate. In this case. however. the diffusion matrix is not diagonal and a priori
L estimates are not available. In parricular. we cannot use Lax's asvmprotic
form for the entropies. as DiPerna did. since the standard growth estimates for
solutions of linear hyperbolic probiems grow exponentially as (u) or ¢ tend
to infinity and we have only L7-like bounds on « and ¢.

Instead, we show the existence of two classes of entropy. entropy flux pairs
with slow growth near infinity: i.e.. we obtain growth bounds (which depend on
7’} tor o and « and the first two derivatives of ¢. This turns out to be sufficient
since the second energy estimate bounds eu; and eo'(v)vi. The first class of
entropy, entropy flux pairs consists of half-plane supported entropies which
were [irst introduced and successtully used by Serre [14] to generalize DiPerna’s
weak™® trace lemma and subsequently used by Shearer [15] with slow growth
bounds to prove L7 existence for (3}, {(4) {assmming genuine nonlinearity and
using artificial viscosity). The second class consists of roughly cross quadrant
supported entropies and are introduced here to assist in the case of loss of
genuine nonlinearity at a single point (unlike half plane supported entropies
which are supported in a pair of adjacent quadrants. these are supported
mostly in a pair of alternating quadrants).

We now derive the necessary estimates. Since o' > () we can define z(v) =
I \/aj(r)ds‘ a smooth. monotonically increasing function with a smooth in-
verse v(z). We change to a Riemann coordinate svstem by defining w;, =
u+ z(v) and ws = u — z(v). Asin [15] we also make a change of dependent

variables
O = %(a')""“’ (P + V] (15)
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o= ;l;{n")""‘ t(I) — (16)
and obtain

'I’.‘.i = a¥ (17)
W, = =—ap (18)

Il

where « = alwy — ws} = o"{e{=F2)) /80" (e(L592))*2. To get half plane
supported entropies (in the w. @y plane). we choose a point (@7, @3} and solve
(17). (18) with Goursat data given on the lines vy = @7 and wy = T3 Le.. we
set O(. wy) = glws) and Wiw,. @) = Alw, ). For example. set & = () and let
¢ be supported in w» > @>. Then solving the Goursat problem for ® and ¥

we can use (13), (16) to get

3

o(wy.wa) = o)™ i_!l('"‘z) + /__”2 G(‘url.u.rz.ur)g(uf)d'u:J (19)

vy, we) = %(n"]- [g(uz-_,)* H('w..-wg,u.')_q('u:}dw] (20)

i
where the kernels G. [T depend on (w7, @3 ). Clearly, o, v are also supported in
the half plane ws > » whenever the initial data g is. We will also make use
of an integral operator which can be used to derive a solution of (17). (18) and
the representations (19). (20). The integral operator A acting on a function

f e Ll (R?*) is defined as
(AN = = [ [ ale —wa)alg ~migmdndg.  (21)

We are also interested in a second class of entropies obtained by solving
the linear hyperbolic problem for . ¥ with continuous, compactly supported
initial data on a noncharacteristic line of the form w, — ws = & = a constant
(ie.. (& +w.w) = g{w) and (& +w, w) = h{w)) and rewriting the solution

in terms of ¢ and ¢ as before.

Lemma 3 We assume the hypotheses H1-Hj. Then the entropy, entropy flux
pairs ¢ vy given by (15), (16) satisfy Tartar’s equation (22) where .V satisfy
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(17). {18) and have either continuous. compactly supported Goursat data g;. h;

or continuous. compactly supported Cuuchy data on the line wy — wy = &.
VO~ > = < Vv ><Vla>—< V.03 >< ey > (22)

The measwre v = vy, is an L -Youny measure associated with « subsequence

of the viscosity solutions and < v.o >= [ odv.

Proof. The proof for the class of entropies with Goursat cata is the same as
in lemmas 2 and 3 in {15]. This is because we have rhe same energy estimates
and the same hypotheses H1-H4 except for hypothesis H2. the loss of genuine
nonlinearity at one point. But this is not a problem as noted in the remark
after lemma 2 in [15].

We prove the result for the other entropy pairs by reducing to the Goursat
data case. Namely. compactly supported Cauchy data produces two quarter
planes on which the solution is identically zero. In each of the other quarter
planes we show that the solution agrees with a solution with continuous, com-
pactly supported Goursat data. Hence it will satisfv slow growth estimates
and consequently also Tartar's equation.

Assume that the support of the Cauchy data on rhe line w;, —wy = &
lies between the poiuts (). Ws) and (. W) where W) — Wy = & = Wy — o
and W, < w, and @y < wy. Clearly the characteristics for the hyperbolic
problem (17}, (18) are u, = constant. w» = constant. Hence the solution ®. ¥
is identically zero in the quadrants w) > . wy > ws and wy < Wy, we < Wa.
We use this solution to get initial data for a Goursat problem in the quadrant
wy < 1wy, we > irs: consider continuous, compactly supported Goursat initial
data ¢, h satistving g(w,) = $(uy, wy) for wy > Wy and h{uw,) = ¥(w,,w3)
for wy < 4iy. Then the solution ®. ¥ to ( 17): (18) with this Goursat data g, h
has slow growth. By uniqueness of the Goursat problem. ® = & and ¥ = ¥

.in the quadrant w, < @,. wy > W and so €. ¥ also have slow growth in this

12



(uadrant. The same argument works in rhe other quadrant and consequently

the associated . ¢ satisty Tartar's equation. =

5 Half Plane Supported Entropy Pairs and
Reduction

Half plane supported entropy pairs were lirst introduced and used in Serre [{14]
to generalize DiPerna’s weak™ trace lemma which is the kev lemma used to
show the support of a Young measure reduces to a point.

Half plane supported entropies were designed to exploit the structure in
Tartar's equation. If the entropy pairs (0).4), (02, ws) are supported on
opposite halves of the plane. then cither their supports don’t intersect and
the left hand side of Tartar’s equation is zero {(which has consequences for the
right hand side). or the supports intersect in a (possibly narrow) band which
then can be used to get a weak™ trace of the Young measure.

In general, a measure on the plane does not have a well defined restriction to
a line (its trace is not well defined). However. if u(x, y) is a non-negative, finite
measure on the x.y plane one can define a (possibly nonunique) weak* trace.
For example, let o,(x) = Llo(x/e) be a nonnegative family of approximate
delta functions on R. Multiplying bv . one gets ¢, which localizes i to
a band containing the y-axis. Furthermore. either p is identically zero in
some band containing the y-axis. or < p.o, > is never zero. and one can
normalize the product to obtain a family of probability measures ji, defined
by < ., f >= };7‘?5-%2 where f is a bounded. continuous function with limit
zero at infinity. By Alaoglu’s theorem. there is a subsequence converging
weak™ to a measure p* which is a weak™ trace of p along the y-axis. Different
subsequences may converge to different measures; hence the weak* trace may

not be unique. If u is compactly supported. then p* has mass one; if not. then
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it may have mass anywhere between 00 and 1. as some mass may “leak”™ off to
infinity as € — {). Observe that because of the normalization. j° contains only
information abour the most singular part ot g living near the y-axis.

We now show in a series of lemmas thar for a given arbirrary point r. 1.
the L' Young measure at r.t (v = v, is supported in a rectangle. In the
present case. the L7-Young measures are not necessarily compactly supported
and genuine nonlinearity is not assumed. so the following lemmas from [14]
have been modified in [15] and here to account for this. In parricular. in the
case when a Young measure is compactly supported. the minimal rectangle
containing the support plays an important role in showing the support reduces
to a point. In the noncompactly supported case. the four lines defined below
plav a somewhat analogous role.

Deline supp(o. «) =support{e) Usupport(e’) and let

wy, = inf {ws € R: there is an entropy pair (0. ¢} with supp(e. ) in
R x {—a¢.w,] and not both < v.o >. < v.¢ > are zero}
wy = sup {w» € R: there is an entropy pair {¢. ¢'} with supp(e.y) in

R x [un. +oc) and not both < v.o >, < v, ¢ > are zero}

Note that wy and wi may take the values —>c or +x. We also define w{, wy
analogously. The four lines of interest are wy; = w". wy = wy . w2 = wf and
Ws = 105 .

If the supporting half planes of two entropy pairs don't intersect. then their
products are zero and the left hand side of Tartar’s equation is zero. It is useful
that this is often still true when the supporrting half planes intersect in a band.

Let c ¢ {wy . w5 } and choose 0 < eg < Fdistance (ao. {wy . w3 }). Define

the interval I = {(an — €g. (g + €9).
Lemma 4 For any @y. @ € I and any entropy puirs with
supp(é.¢n) C R x (=x.a@]
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supplon. i) < R X iy +)
we haee
V.n iy = Ol » = {

Remark. For the proof. see 150 lemma 4.
To apply this lemma we deline ay; = ay — 6. ng = ag — € with 0 < € < €.
Then let gy and g be continuous. compactly supported functions with {g;] < 2¢

i = 1.2 and satistving:

Mlws) = wy = for vy < Wy < 0y

0 for wo <y O wo = vg+€
golas) = gy —wn for I TR s O

() for wy = an or wo <y — €

We derive two pairs of entropies by using two pairs of Goursat axes defined by
the points (@7. <y ), (7. a2} and using ¢y, h and ¢, i with £ = 0 as respective
Goursat initial data. The two entropy pairs ¢;.+; are given by the formulas
(19). {20) where T, is replaced by «; and the kernels G = G;, H = H; depend
on a;. These pairs are supported on halt planes which overlap in a narrow
band. Thus the quadratic form oy¢s — o3 1s nonzero only for w, in the
interval [@;. . Define A, = A, (ap. w2) = yi{w2)ga(u2) and note that A, =0

when jun — gl = €.

Lemma 5 We assume a.a’ € L™ and a € L* (it suffices to assume H3). For
the entropy pairs ;. v;. i = 1.2, defined above we have

1 2
Oy — Ogtr] = 'A_SFA‘a(ur, — ) + A E(wy . wa, o)

where the errvor term E s supported in the strip o < we < oy and F s

bounded by a constant independent of wy. us. (v, € < €.



Proof: By integrating the differential equations (17). {18) with a) < w, <

try. we have
'I’,: =¥ = 4, =8B ~-0,=D (2\”

where A; = o By = [[7 alw) — w)giiw)dw. C; = Ay and D; = 2 a{wy -
w) A ®i{wy. w)dwe. Then there is a constant C such that (B, +|Ci| < Celuy —
oy and [ Dy] < C'e*lws — ). for any ey, s, g and € < & (see [15]. lemma 5).
Then Dty — 1) = f.‘hB;g = .-13.81 );_) - A. (.)(62]‘

Using a{w, — w) = a{u) —oxg) +a'{n){ag — w) in B; we get A, By — AaB) =
—eAa{w, — ag) + A O(2). Since @' € L>. the error term is uniform in

Wy Wy, . 3

Lemma 6 [f f = f(u3) is any continuous. compactly supported function such

that its support does not contain either ws or ws . then
< v . fax= = 1)
where < v, fa == [ fluws)alw, — wo)dviy. wy).

Remark. The same result holds for any continuons compactly supported
function f{w,) with support not containing w; or wy .

Proof: Note that & (us — ay) = 3A(ws, ay)/4€’ is an approximate delta
function. Using lemmas 4 and 5 and integrating f(og }doy against 0, we get

St — Oay
) = <v.—3—-= : p

2e!

. . "; . - .
- /f(rn,)j aty — wg)d, (ws — o jdvdeog — E—/f(a(,)’/ A E [ dvday

// floag)o (un — ap)day a{wy, — wy)dy — é/ / fleg) A, E’/F2 doody.

i

For fixed ¢ > 0 all terms are in L> and f is compactly supported so Fubini
can be applied to both integrals. Now et e — 0. Since | | fé,dog] < || fllL=.

.we can use dominated convergence to bring the limit inside the first integral in
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¢ portion of rhe line wy — wy = Ay lving above and to
1.ws ). We show thar the support of v intersected with

o do this. we sofve rhe Cauchy problem

(1) s = 1 \_[l

\!I - — —fl ll.)

“supported arbitrary initial data given on P. Since the
constant. it follows that the entropies are well defined
mion of the half planes wy = wy. w» = w3, Since the
101 is confined to . we can choose initial data so that
Tartar's equation becomes < v. oy >=< v.¢ ><
» arbitrarv on . Hence the support of v is at most a

*

« of the quadrant ) < wy. wy < w5

shows that the support of v in the complement of

at most a point. where wi™ < wp. w;® < wy, and

Hining these results. we see that v is supported in a

mass.

nimal rectangle with edges parallel to the coordinate
support of . We show that the support of v is a point
le is nondegenerate and arrive at a contradiction. The
the weak” trace introduced and used by DiPerna in
trace of ¥ along an edge of R and show this trace is

ss near one of the boundary, contradicting minimality

¢y — e = Ay where a = (). If £ does not intersect

# () on R and we can use slowly growing entropies
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and the argnments in [14] chapter 5 or {15] to show that v is supported on a
point. It £ intersects R then either it passes through the two opposite vertices
or there is at least one edge which £ does nor intersect. We consider the two
cases separately,

Suppose £ does not interseet the rop edge wuich is included in the line
wy = wd . Since v is supported in a minimal rectangle. lemmas 4 and 6 can be
- proved withont the assumptions concerning wy .oy {see [L4}). If & is defined
is in the proof of lemma 6. then by the minimality of R. < 1.8, ># 0 for
all siall e. Taking au appropriate subsequence e, we can define a probability
measure ! (2 weak* trace of v) along the top edge of R by

T . <vo, f>
<pl f> = lim —‘f——
k= < V.8 >

where [ = f(w) is anv continuous function. Setting f"{w,) = a(uy ~ ws )

and noting that [ < v. 8, (f¥ —a) | < clia’ll~ < v. &, >, we have

g -7 < v, F =
<p' "> = lim - e (24)
. k—oe < 10, > < V.o, > '
=3 2
2 < U ——((D] I;’,’r_) -_ (_‘)2'{};‘1) >
= lim —2¢ = = . (25)

h—x <V, =

However, f' is contimous and nonzero on the top edge since £ does not
intersect that edge; this contradicts < p'. f*' >= 0. Thus the rectangle must
be a line and at least one end point of R is not on £. The same argument as
above shows that the trace of v on that endpoint is zero, again contradicting
minimality and we conclude the rectangle is a point.

We now consider the case when £ intersects opposite vertices of the rect-
angle R which we denote as w* = (wf, wl) and w? = (w?. w?). The above
argument shows that any weak" traces ' and ;i of v along the top and bot-
tom edges of R satisty < pl. f7 >=< p?. 8 >= 0. Since a is continuous and
nonzero on the two edges except at the endpoints w!' and w, we conclude

. that ¢ and 1 are Dirac point masses supported at the respective endpoints.

19



Similarly. we ean take weak® traces of v along rthe left and right edges of R
and denote them as g% and g, They are also Dirac point masses supported
respectively on the endpoints w? and wt,

We construct four families of haif plane supported entropy pairs. one family
for each direction. north. south. east. west. which indicate the tvpe of support-
ing half plane. We label them as Ev. Fy. Es. Fs. Ep. F and Ew. Fy. We
will use a sequence of approximate delta fumetions as Goursat initial data. For
example. let i = 0 and let ¢ (uy) be a family of approximate delta func-
tions svmmetrically centered at wi and supported on (1w — e wl + €) with
gV () = (wy — wl +€)/e for wy € (w) — c.wd). Then from (19). {20) we
have (for notational convenience we suppress the dependence of the entropy

pairs on €}

Ex(wi,wy) = (o)™ [!lé\("“z}+ /{ . Gy;"d'w] (26)
A (W —c} i

Fy(wy.wy) = 5l [y:"(::--z)+ / . )H!J.f"fl'w]- (27)
FA Sy — |

Observe that Ey. Fy are supported in the upper half plane or “north™ half
plane. The other three families are defined analogously with approximate delta
S

initial data ¢”, b=, A,

Note that G is bounded by a constant for all (w;, us) € R. Thus.

!1 £ w2 4 f
S [T G| < ceg(un)
1 & . (w._, i

when ws € {(wd — e,wl) and (w|.u3) € R. Thus, we can take an appropriate

subsequence as ¢ — () to obtain a weak™ trace of v:

| <v.Exf>
1 =174 —_ AL
< N -2°(0') f> = llﬂlm.

For brevity we will suppress v and write < Ey > in place of < v. Ey > in the
next series of equations which follow by using Tartar's equation successively,

lirst to expand and allow terms to cancel, then to contract into a single product
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which is zero since the supports of the entropies do not intersect.
< E\'F[.;‘ - E;-;F,\' < E,:Fu' == E\\'F_s' >
— < ExFiy — EwFy »>< EcFp - EpFs >
= —<fEvo<Fpr<Ew><F >=<Ep><Fy><Es><Fy>
+<Ex><Fy><Epr<Fs> —<EBw><Fy><Eq><Fp>

= < EyFg—EgFy >< EgFiy — EwFg >

0

Sending € — 0 (and normalizing by dividing by < v i* = and < v. AV =)
in the cast and west entropy pairs in the equation above and noting that

< ut Eg »=< p'. Fg >=0 (recall " is supported on the point w?), we get
<uf (V' By — (o) Fy =<yt (o)) ' Es = (o) Es >=0 (28)

Note that integration against 1% is just evaluation at w?.
Now let the initial data defining the north entropies be given as A = 0 and

gelw) = w — {wg — ¢) when w € (w —e.wl) with ig,| < 2e. continuous and

supported on {4 — e.wj + €. Using the representations (15). (16) and (23)

we have < p® (V' Ex — (¢’ '"Fy > /2=-B - D =

cnd rs 3
‘Ih(wr.u{) = —il+ ()(F)]/ ) u(uf,’ ) (u‘ - (-m.:,’ 'ﬁ)) duw  (29)

o llfg.—-r

To see that the error term above is correct note that |®,| < ¢f|g.||lz= when

wy € (wl —e.wl) (see [15], lemma 5). Then
wy wa
AD, (. un) = —-[_ /1 (€ — wy)a(€E — n)®, (E.n)dndE

which we can estimate by using (@, | < ¢|lg.i| .~ and integrating first in &, using

Cauchy-Schwarz. then integrating in 7 to get
t 1 |

red -~ 7
et = w) AR (wf w)du

wh —»

D]

il

l '/'\

"~'§i"~“i2i !]¢i|L=°

wl L o
‘/; r' u(‘u.‘,’ — ) (ur — {m_f — s;) (['w! (30)

4 —F
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Since the integrand in (30) above is nonzero and continuous on the interval

. . " - -
—e.wd ). we can reseale g, by dividing by _!”'f;-_' alw! —w) (o — (w] - e‘}) .

\

(w]
Then ‘I’.(u.';' 5 u'._{') converges to rie nonzero constant —1 as € — . A similar
argument shows that the other rerm in the produet in (28) is also nonzero
which is a contradiction. Thus the minimal rectangle is at most a line: but as

seen betore. this is also not possible. The support of v is a point.
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