
A Well-Balanced Method for an Unstaggered Central Scheme, the

Two-dimensional Case

Yu-Chen Cheng1, Christian Klingenberg2, Rony Touma3

Abstract

We develop a second-order accurate central scheme for the two-dimensional hyper-
bolic system of inhomogeneous conservation laws. The main idea behind the scheme
is that we combine the well-balanced deviation method with the Kurganov-Tadmor
(KT) scheme. The approach satisfies the well-balanced property and retains the ad-
vantages of KT scheme: Riemann-solver-free and the avoidance of oversampling on
the regions between Riemann-fans. The scheme is implemented and applied to a
number of numerical experiments for the Euler equations with gravitational source
term and the results are non-oscillatory. Based on the same idea, we construct a
semi-discrete scheme where we combine the above two methods and illustrate the
maximum principle.
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1 Introduction

The numerical methods for conservation laws is widely studied in recent years. In 1990,
Nessyahu and Tadmor (NT) proposed the central scheme in [NT90] which focuses on the
average between two staggered grids. The feature of the NT scheme is to approximate
the solutions by integrating over the Riemann fans to avoid solve the Riemann problem at
interfaces. After that, authors in [JLLOT98] developed an unstaggered version of the NT
scheme. A modification of the NT scheme was introduced in [KT00] (KT scheme). Com-
pared to the NT scheme which approximate the solution over Riemann fans by integrating
on the full-cell size, the KT scheme considers a narrower interval over Riemann fans by
the use of the maximal local wave speeds. The idea of the one-dimensional KT scheme
is to split the original cell into two intervals. One is the unsmooth region over the whole
Riemann fans, and the other is the smooth region between Riemann fans in the original
interval. By this approach, the solution is not oversampled at smooth region and can have
higher precision. The concept of two dimensional (2-d) extension of the KT scheme is
mentioned in [KP01]. Later, a modified 2-d KT scheme was introduced in [KPW17], which
considers the maximal local wave speed on the each side of x and y direction. The benefit
of this scheme is that the more precise information is used for the solution of unsmooth
region.
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The set-up of the 2-d KT scheme can be separated into two approaches: one considers
the quadrilateral subdomains over the Riemann fans; the other considers the rectangular
subdomains. Using rectangular subdomains is easier to formulize and compute for the
construction of semi-discrete scheme. There is a list of the 2-d semi-discrete type KT
scheme by adopting the rectangular subdomains from the original 2-d KT schemes: [KT02],
[KP01], [KNP01], and [KL07].

In this paper, we focus on inhomogeneous conservation laws, which is given by

∂tq(x, t) +∇xf(q(x, t)) = S(q(x, t)), (1)

where q(x, t) = (q1(x, t), q2(x, t), ..., qN(x, t))T is an N-vector of conserved quantities in
the d-spatial variables x = (x1, x2, ..., xd), and f(q) = (f 1, f 2, ..., fd) is a nonlinear flux.
S(q) = (s1, s2, ..., sd) is a source term. Eq.(1) is also known as the balance laws. To solve
this equation, a suitable discretization of the source term is needed for construction. There
are some attempts for the so-called well-balanced scheme: [KTK20], [TKK16], [BCK21],
[ABBKP04], [BKLL04], [BEKP11], [CP20], [DK03], [T16], [TK12], [XS06].

Inspired by the modified KT scheme and the so-called Deviation method in [BCK21],
we construct a well-balanced scheme for the Eq.(1) with a linear source term in the next
section.The deviaton method allows is to transform the modified KT scheme into a well-
balanced modified KT scheme, without sacrificing any of the good properties of the original
modified KT scheme. In section 3, considering the rectangle subdomains, we derive a
semi-discrete scheme by combining the KT scheme and the Deviation method, and we also
show the non-oscillation property of this semi-discrete scheme. A number of numerical
experiments has been tested by our fully-discrete scheme in section 4. Finally, we end with
a conclusion in section 5.

2 A new two-dimensional scheme for inhomogeneous

conservation laws

In this section, we introduce a new two-dimensional scheme by using the combination of
the Deviation method and the KT-type scheme. As in [KTK20] we begin by deriving
the Deviation method at the continuum level for 2-d balance laws with gravity. Then,
at the discrete level, we use the the 2-d KT-type scheme in [KPW17] to construct a new
well-balanced two-dimensional fully-discrete scheme.

2.1 Framework of the two-dimensional Deviation method

Consider the 2-d balance laws{
qt + f(q)x + g(q)y = S(q, x, y), (x, y) ∈ Ω ⊂ R2, t > 0

q(x, y, 0) = q0(x, y),
(2)

where f(q) and g(q) are the fluxes in x- and y directions and S is the source term.
Assume that q̃ is a given stationary solution of (2). Then it satisfies

f(q̃)x + g(q̃)y = S(q̃, x, y). (3)
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Define the deviation ∆q = q − q̃. Applying q = ∆q + q̃ to (2), we obtain

(∆q + q̃)t + f(∆q + q̃)x + g(∆q + q̃)y = S(∆q + q̃). (4)

Since q̃ is a stationary solution, (4) reduces to

(∆q)t + f(∆q + q̃)x + g(∆q + q̃)y = S(∆q + q̃). (5)

Then, we subtract (3) from (5), and assume that the source term S(∆q + q̃) in (2) is a
linear functional in terms of the conserved variables, we obtain

(∆q)t + [f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y = S(∆q + q̃, x, y)− S(q̃, x, y)

= S(∆q, x, y).
(6)

Lemma 2.1. Consider the balance law (2) and a given hydrostatic solution q̃. The devi-
ation quantity ∆q satisfying the modified balance law (6) maintains the same local speeds
as those in the original balance system (2).

Proof. The proof is the extension of 1D case. We refer reader to [CKT].

2.2 Application of the two-dimensional Kurganov-Tadmor-type
scheme

Now we apply the idea of KT scheme. The derivation can be separated into three steps:
Reconstruction, Evolution, and Projection. The first two steps are loosely based on the
setup in [KPW17].

2.2.1 Reconstruction

Consider the control cell Cj,k = [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] for all j, k. To avoid oscillation,

we define a piecewise-linear reconstruction Q,

Qj,k(x, y, t
n) = (∆q)nj,k + (x− xj)((∆q)x)nj,k + (y − yk)((∆q)y)nj,k, ∀(x, y) ∈ Cj,k, (7)

where (∆q)x and (∆q)y are the x- and y derivatives of ∆q, and apply the MC-ϑ limiter to
estimate the numerical gradient of the solution. The MC-ϑ limiter is defined as follows,

((∆q)x)
n
j,k = minmod

(
ϑ∆+

x (∆q)nj,k, ∆0
x(∆q)

n
j,k, ϑ∆−x (∆q)nj,k

)
,

((∆q)y)
n
j,k = minmod

(
ϑ∆+

y (∆q)nj,k, ∆0
y(∆q)

n
j,k, ϑ∆−y (∆q)nj,k

)
, 1 ≤ ϑ ≤ 2,

(8)

where the differences ∆±x , ∆0
x, ∆±y , and ∆0

y are defined as

∆+
x (·)j,k :=

(·)j+1,k − (·)j,k
∆x

,∆0
x(·)j,k :=

(·)j+1,k − (·)j−1,k

2∆x
,∆−x (·)j,k :=

(·)j,k − (·)j−1,k

∆x
,

∆+
y (·)j,k :=

(·)j,k+1 − (·)j,k
∆y

,∆0
y(·)j,k :=

(·)j,k+1 − (·)j,k−1

2∆y
,∆−y (·)j,k :=

(·)j,k − (·)j,k−1

∆y
.

(9)

We will adopt this (MC − ϑ) limiter to evaluate the values of the slopes (∆q)x and (∆q)y
in the numerical experiments in section 4.
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2.2.2 Evolution

Before evolving the solution from tn to the next time step tn+1, we need to find the maximal
local wave speeds on each side of cell interfaces, which is the most important key of the
KT scheme and used to decide the region of the cell over Riemann fans. The local wave
speeds at interfaces denoted by a±

j+ 1
2
,k

and b±
j,k+ 1

2

in x- and y directions, respectively, are

determined by the eigenvalues of flux Jacobian:

a+
j+ 1

2
,k

:= max

{
λN

(
∂

∂q
f(q+

j+ 1
2
,k

)

)
, λN

(
∂

∂q
f(q−

j+ 1
2
,k

)

)
, ε

}
,

a−
j+ 1

2
,k

:= min

{
λ1

(
∂

∂q
f(q+

j+ 1
2
,k

)

)
, λ1

(
∂

∂q
f(q−

j+ 1
2
,k

)

)
, −ε

}
,

b+
j,k+ 1

2

:= max

{
λN

(
∂

∂q
g(q+

j,k+ 1
2

)

)
, λN

(
∂

∂q
g(q−

j,k+ 1
2

)

)
, ε

}
,

b−
j,k+ 1

2

:= min

{
λ1

(
∂

∂q
g(q+

j,k+ 1
2

)

)
, λ1

(
∂

∂q
g(q−

j,k+ 1
2

)

)
, −ε

}
,

(10)

where λ1 < λ2 < · · · < λN are the eigenvalues of the corresponding Jacobians, and ε is a
small positive number and

q−
j+ 1

2
,k

:= qnj,k +
∆x

2
(qx)

n
j,k, q+

j+ 1
2
,k

:= qnj+1,k −
∆x

2
(qx)

n
j+1,k,

q−
j,k+ 1

2

:= qnj,k +
∆y

2
(qy)

n
j,k, q+

j,k+ 1
2

:= qnj,k+1 −
∆y

2
(qy)

n
j,k+1.

(11)

These local speeds split the control domain Cj,k into nine non-uniform subdomains in-
cluding the unsmooth side subdomains Dj,k+ 1

2
and Dj+ 1

2
,k, unsmooth corner subdomain

Dj+ 1
2
,k+ 1

2
, and the smooth central subdomain Dj,k, (see figure 1).

The vertices zj± 1
4
,k± 1

4
of these subdomains are estimated by

zj+ 1
4
,k+ 1

4
:= (xj+ 1

2
+ ∆tn min(a−

j+ 1
2
,k
, a−

j+ 1
2
,k+1

), yk+ 1
2

+ ∆tn min(b−
j,k+ 1

2

, b−
j+1,k+ 1

2

)),

zj− 1
4
,k+ 1

4
:= (xj− 1

2
+ ∆tn max(a+

j− 1
2
,k
, a+

j− 1
2
,k+1

), yk+ 1
2

+ ∆tn min(b−
j,k+ 1

2

, b−
j−1,k+ 1

2

)),

zj− 1
4
,k− 1

4
:= (xj− 1

2
+ ∆tn max(a+

j− 1
2
,k
, a+

j− 1
2
,k−1

), yk− 1
2

+ ∆tn max(b+
j,k− 1

2

, b+
j−1,k− 1

2

)),

zj+ 1
4
,k− 1

4
:= (xj+ 1

2
+ ∆tn min(a−

j+ 1
2
,k
, a−

j+ 1
2
,k−1

), yk− 1
2

+ ∆tn max(b+
j,k− 1

2

, b+
j+1,k− 1

2

)).

(12)

Now we integrate the modified balance law (6) over nine subdomains, respectively, to
estimate the intermediate cell-averages at time tn+1.

Consider a general quadrilateral D. The integration of (6) over D × [tn, tn+1],∫ tn+1

tn

∫∫
D

(∆q(x, y, t))t + [f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y dxdydt

=

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt.

(13)
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Figure 1: Computational cells are split into smooth and unsmooth non-uniform quadrilat-
eral subdomains by the maximal local wave speeds.

can be written as∫∫
D

∆q(x, y, tn+1) dxdy −
∫∫

D

∆q(x, y, tn) dxdy

+

∫ tn+1

tn

∫∫
D

[f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y dxdydt

=

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt.

(14)

Moving the second and third integrals on the left-hand-side of (14) to the right-hand-side,
and dividing the area |D| in (14), we obtain

wn+1
D :=

1

|D|

∫∫
D

∆q(x, y, tn+1) dxdy

=
1

|D|

∫∫
D

∆q(x, y, tn) dxdy

− 1

|D|

∫ tn+1

tn

∫∫
D

[f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y dxdydt

+
1

|D|

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt.

(15)

where wn+1
D denotes the new cell-average over D at tn+1. Applying the divergence theorem
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to the flux integration, we rewrite the (15) in the form of

wn+1
D =∆q

n

D

− 1

|D|

∫ tn+1

tn

∮
∂D

ηx[f(∆q + q̃)− f(q̃)] + ηy[g(∆q + q̃)− g(q̃)] dxdydt

+
1

|D|

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt,

(16)

where ηx and ηy are the outward unit normal vectors, and ∆q
n

D define the cell-average over
D at tn. Then, we discuss the approximations of ∆q

n

D, the flux integral, and the source
integral on the right-hand-side of (16) separately.

Due to the conservation property of the reconstruction Q, the cell-average ∆q
n

D satisfies
the following relation

∆q
n

D :=
1

|D|

∫∫
D

∆q(x, y, tn) dxdy =
1

|D|

∫∫
D

Q(x, y, tn) dxdy. (17)

We approximate (17) by the following steps:

1) Apply the second order reconstruction (7) to Q.

2) Consider the values over the related subdomains CI
j,k,

I = {E,N,W, S,NE,NW,SE, SW,C}, where CI
j,k represent the unions of the subdo-

main D and the control cell Cj,k (see figure 2).

3) Use the fact that the cell-average over CI
j,k can be regarded as the values at the centers

of mass of CI
j,k denoted by zIj,k (see figure 2).

4) Calculate the weighted averages with the areas of corresponding CI
j,k and their values

at the centers of mass, ∆q(zIj,k, t), and the total area |D| as well.

The approach here we use for ∆q
n

D is inspired by [KPW17], we refer the reader to pages
A951-A952 for more specific details.

The evaluation of the flux integral on (16) is also similar to the way in [KPW17] that we
integrate the fluxes along the four edges of D, and in order to present formula for different
directions, we separate them into two cases. As shown in figure 3, in case 1, we consider
the flux integral over the right and left edges, and on the other hand, we consider the flux
integral over top and bottom edges in case 2.

Case 1.
Consider the edge connecting the nodes zα,β− 1

4
and zα,β+ 1

4
, where α = j + 1

4
or j − 1

4
and

β = k or k + 1
2
. The flux integration across the edge is defined by

Hα,β :=
1

∆t

∫ tn+1

tn

∫ z
α,β+1

4

z
α,β− 1

4

[
ηxα,β (f(∆q + q̃)− f(q̃))

+ ηyα,β (g(∆q + q̃)− g(q̃))
]
dsdt.

(18)
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Figure 2: Nine subdomains CI
j,k of the original control cell Cj,k and their centers of mass.

Figure 3: A general quadrilateral with normal η split into two cases.
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Applying the midpoint rule in time and the trapezoidal rule in space to (18), we obtain

Hα,β =

∫ z
α,β+1

4

z
α,β− 1

4

[
ηxα,β

(
f(∆qn+ 1

2 + q̃)− f(q̃)
)

+ ηyα,β

(
g(∆qn+ 1

2 + q̃)− g(q̃)
)]
ds

=
|zα,β+ 1

4
− zα,β− 1

4
|

2

{
ηxα,β

[
f(∆q

n+ 1
2

α,β− 1
4

+ q̃α,β− 1
4
)− f(q̃α,β− 1

4
)

+f(∆q
n+ 1

2

α,β+ 1
4

+ q̃α,β+ 1
4
)− f(q̃α,β+ 1

4
)
]

+ ηyα,β

[
g(∆q

n+ 1
2

α,β− 1
4

+ q̃α,β− 1
4
)− g(q̃α,β− 1

4
)

+g(∆q
n+ 1

2

α,β+ 1
4

+ q̃α,β+ 1
4
)− g(q̃α,β+ 1

4
)
]}

,

(19)

where the unit normal vectors ηα,β are

ηα,k =
(yα,k+ 1

4
− yα,k− 1

4
, xα,k+ 1

4
− xα,k− 1

4
)

|zα,β+ 1
4
− zα,β− 1

4
|

and ηα,k+ 1
2

= (1, 0), (20)

while xα,β and yα,β denote the coordinates of zα,β.

Case 2.
Consider the edge connecting the nodes zα− 1

4
,β and zα+ 1

4
,β, where α = j or j + 1

2
and

β = k + 1
4

or k − 1
4
. The flux integration across the edge is defined by

Hα,β :=
1

∆t

∫ tn+1

tn

∫ z
α+1

4 ,β

z
α− 1

4 ,β

[
ηxα,β (f(∆q + q̃)− f(q̃))

+ ηyα,β (g(∆q + q̃)− g(q̃))
]
dsdt.

(21)

Likewise, applying the midpoint rule in time and the trapezoidal rule in space to (21)
results in

Hα,β =

∫ z
α+1

4 ,β

z
α− 1

4 ,β

[
ηxα,β

(
f(∆qn+ 1

2 + q̃)− f(q̃)
)

+ ηyα,β

(
g(∆qn+ 1

2 + q̃)− g(q̃)
)]
ds

=
|zα+ 1

4
,β − zα− 1

4
,β|

2

{
ηxα,β

[
f(∆q

n+ 1
2

α− 1
4
,β

+ q̃α− 1
4
,β)− f(q̃α− 1

4
,β)

+f(∆q
n+ 1

2

α+ 1
4
,β

+ q̃α+ 1
4
,β)− f(q̃α+ 1

4
,β)
]

+ ηyα,β

[
g(∆q

n+ 1
2

α− 1
4
,β

+ q̃α− 1
4
,β)− g(q̃α− 1

4
,β)

+g(∆q
n+ 1

2

α+ 1
4
,β

+ q̃α+ 1
4
,β)− g(q̃α+ 1

4
,β)
]}

,

(22)

where the unit normal vectors ηα,β are

ηj,β =
(yj− 1

4
,β − yj+ 1

4
,β, xj+ 1

4
,β − xj− 1

4
,β)

|zα+ 1
4
,β − zα− 1

4
,β|

and ηj+ 1
2
,β = (0, 1). (23)
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To obtain the solution at the nodes zj± 1
4
,k± 1

4
, we apply the Taylor expansion twice (once

in time and once in space), and then get the second-order approximation

∆q
n+ 1

2

j± 1
4
,k± 1

4

:= ∆qn
j± 1

4
,k± 1

4
+

∆t

2
((∆q)t)

n
j± 1

4
,k± 1

4

= ∆qn
j± 1

4
,k± 1

4
−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
j± 1

4
,k± 1

4

+ [(g(∆q + q̃)− g(q̃))y]
n
j± 1

4
,k± 1

4

]
+

∆t

2
S(∆q)n

j± 1
4
,k± 1

4

:= ∆qn
j± 1

4
,k± 1

4
−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
j,k + [(g(∆q + q̃)− g(q̃))y]

n
j,k

]
+

∆t

2
S(∆q)n

j± 1
4
,k± 1

4
,

(24)

where the values of ∆qn
j± 1

4
,k± 1

4

are also estimated by the Taylor expansion:

∆qn
j± 1

4
,k± 1

4
:= ∆qnj,k + (xj± 1

4
,k± 1

4
− xj)(∆qx)nj,k + (yj± 1

4
,k± 1

4
− yk)(∆qy)nj,k, (25)

and the slopes (F (∆q)x)
n
j,k := ((f(∆q + q̃) − f(q̃))x)

n
j,k and (G(∆q)y)

n
j,k := ((g(∆q + q̃) −

g(q̃))y)
n
j,k which can be obtained by using the (MC − ϑ) limiter:

(F (∆q)x)
n
j,k = minmod

(
ϑ∆+

x

(
F (∆qnj,k)

)
, ∆0

x

(
F (∆qnj,k)

)
, ϑ∆−x

(
F (∆qnj,k)

))
,

(G(∆q)y)
n
j,k = minmod

(
ϑ∆+

y

(
G(∆qnj,k)

)
, ∆0

y

(
G(∆qnj,k)

)
, ϑ∆−y

(
G(∆qnj,k)

))
,

ϑ ∈ [1, 2].

(26)

By the approximations (19) and (22), the sum of the flux along the edges yields the result
of the flux integral on (16),

1

|Dα,β|

∫ tn+1

tn

∮
∂Dα,β

ηx[f(∆q+q̃)− f(q̃)] + ηy[g(∆q + q̃)− g(q̃)]dxdydt

=
∆tn

|Dα,β|

[
Hα+ 1

4
,β −Hα− 1

4
,β +Hα,β+ 1

4
−Hα,β− 1

4

]
,

(27)

where α = j or j ± 1
2

and β = k or k ± 1
2
.

Finally, we consider the last integral in (16). To evaluate the average of the source
term, we use the midpoint rule in time and consider the value at center of mass ∆q(zIj,k, t)

(which is defined in the page A951-A952 of [KPW17] and used for approximating ∆q
n

D).
The approximation of the source term over the central subdomain Dj,k is then defined by

1

|Dj,k|

∫ tn+1

tn

∫∫
Dj,k

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj,k|

∫∫
Dj,k

S(∆q(x, y, tn+ 1
2 ))dxdy

=
∆t

|Dj,k|
|Dj,k|S(∆q(zCj,k, t

n+ 1
2 )) =: ∆tSDj,k(∆q),

(28)

The approximations of the side subdomain Dj+ 1
2
,k and Dj,k+ 1

2
, and the corner Dj+ 1

2
,k+ 1

2

are similar to (17), and the detailed calculations can be found in A.
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To summarize this evolution step, we substitute the results of the cell-average (∆q)nD,
the flux integral (27), and the source integral (28), (61)-(63) for (16),

wn+1
Dα,β

= ∆qnDα,β −
∆t

|Dα,β|

[
Hα+ 1

4
,β −Hα− 1

4
,β +Hα,β+ 1

4
− Hα,β− 1

4

]
+ ∆tSDα,β(∆q),

(29)

where α = j or j ± 1
2

and β = k or k ± 1
2
.

2.2.3 Projection

At the final procedure, we project the intermediate solutions wn+1
D in (29) back onto the

original uniform cell Cj,k. As stated in the reconstruction step above, to smooth the

solution, we need to define a piecewise-linear reconstruction W̃ n+1(x, y) for wn+1
D .

We firstly consider the central smooth subdomain Dj,k. Since Dj,k ⊂ Cj,k, the interme-
diate solution wn+1

Dj,k
is smooth enough and does not need a reconstruction. Thus,

W̃ n+1(x, y) = wn+1
Dj,k

for (x, y) ∈ Dj,k. (30)

Next, we consider the unsmooth subdomains Dα,β with (α, β) = (j+ 1
2
, k), (j+ 1

2
, k+ 1

2
),

and (j, k + 1
2
), and define the reconstruction of the intermediate solutions over Dα,β by

W̃ n+1
Dα,β

= wn+1
Dα,β

+ (x− zn,xDα,β)(wx)
n+1
Dα,β

+ (y − zn,yDα,β)(wy)
n+1
Dα,β

(31)

where z
n,x(y)
Dα,β

denotes the coordinates of the centers of mass of the domain Dα,β, and the
spatial derivatives are determined by

(wx)
n+1
Dα,β

= minmod(ϑ
wn+1
Dα,β
− wn+1

D
α− 1

2 ,β

zn,xDα,β − z
n,x
D
α− 1

2 ,β

,
wn+1
D
α+1

2 ,β
− wn+1

D
α− 1

2 ,β

zn,xD
α+1

2 ,β
− zn,xD

α− 1
2 ,β

, ϑ
wn+1
D
α+1

2 ,β
− wn+1

Dα,β

zn,xD
α+1

2 ,β
− zn,xDα,β

)

(wy)
n+1
Dα,β

= minmod(ϑ
wn+1
Dα,β
− wn+1

D
α,β− 1

2

zn,yDα,β − z
n,y
D
α,β− 1

2

,
wn+1
D
α,β+1

2

− wn+1
D
α,β− 1

2

zn,yD
α,β+1

2

− zn,yD
α,β− 1

2

, ϑ
wn+1
D
α,β+1

2

− wn+1
Dα,β

zn,yD
α,β+1

2

− zn,yDα,β
),

1 ≤ ϑ ≤ 2.

(32)

The computation of the centers of mass of domain Dα,β are similar to zIj,k, which can be
found in Appendix A of [KPW17].

Then, with the defined reconstruction W̃ n+1(x, y), we obtain the new cell-average over
the original cell Cj,k at time tn+1 by

(∆q)n+1
j,k =

1

∆x∆y

∫∫
Cj,k

W̃ n+1(x, y) dxdy

=
1

∆x∆y

[
|Dj,k|wn+1

Dj,k
+ |CE

j,k|W̃ n+1
D
j+1

2 ,k
+ |CNE

j,k |W̃ n+1
D
j+1

2 ,k+
1
2

+ |CN
j,k|W̃ n+1

D
j,k+1

2

+ |CNW
j,k |W̃ n+1

D
j− 1

2 ,k+
1
2

+ |CW
j,k|W̃ n+1

D
j− 1

2 ,k

+ |CSW
j,k |W̃ n+1

D
j− 1

2 ,k−
1
2

+ |CS
j,k|W̃ n+1

D
j,k− 1

2

+ |CSE
j,k |W̃ n+1

D
j+1

2 ,k−
1
2

]
.

(33)
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Finally, adding the hydrostatic solution q̃j,k to the computed solution (∆q)n+1
j,k , we get

the desired solution qn+1
j,k ,

qn+1
j,k = (∆q)n+1

j,k + q̃j,k. (34)

3 2D Semi-discrete scheme

In this section, we aim to construct a semi-discrete scheme which preserves the character-
istics of both the Deviation method and the KT scheme. In the evolution step above in
section 2, we split the control cell to nine subdomains by using the values of local wave
speeds and then approximate the cell-average over each subdomain. Likewise, the wave
speeds are again used to decide the ranges of the subdomains in this section. Compared
to the set-up in section 2, instead of trapezoid subdomains, we consider the rectangle
subdomains in the following construction, which are easier to be formalized and computed.

In order to construct the semi-discrete scheme, we first follow the three-steps structure
in section 2.2 to build the fully-discrete scheme. Then we derive the semi-discrete scheme.
In this section we extend ideas from [KP01], [KNP01] and [KL07].

3.1 Construction of the fully-discrete scheme

3.1.1 Reconstruction

In this step, we use the same piecewise linear interpolant as in (7), and the same approxi-
mations of the derivatives in the x- and y directions as in (8)-(9).

3.1.2 Evolution

We adopt the same approximation in (11) to compute the reconstructed values at the
interfaces, and set ε = 0 in (10) to define the local wave speeds.

As we mentioned earlier, to estimate the values over the Riemann fans, we split the
control cell to nine non-uniform rectangle subdomains, outlined in figure 4.

The specific definitions of ranges of the subdomains are given in page 716 of [KNP01].
Next, we apply (15) to the subdomains Dj+ 1

2
,k-, Dj,k+ 1

2
-, Dj+ 1

2
,k+ 1

2
- and Dj,k × [tn, tn+1]

to compute the intermediate values at time tn+1 denoted by wn+1
j+ 1

2
,k

, wn+1
j,k+ 1

2

, wn+1
j+ 1

2
,k+ 1

2

and

wn+1
j,k respectively. The resultant integration can be found in B.

3.1.3 Projection

Finally, we project the intermediate cell-average wn+1
D back onto the uniform cell Cj,k =

[xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] with a suitable reconstruction W̃ n+1(x, y) for unsmooth subdo-

mains. For the subdomain Dj+ 1
2
,k, the reconstruction is defined by

W̃ n+1
j+ 1

2
,k

= wn+1
j+ 1

2
,k

+ (x− xn+1
j+ 1

2
,k

)(wx)
n+1
j+ 1

2
,k

+ (y − yn+1
j+ 1

2
,k

)(wy)
n+1
j+ 1

2
,k
, (35)
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Figure 4: Computational cells are split into smooth and unsmooth non-uniform rectangular
subdomains by the maximal local wave speeds

where

xn+1
j+ 1

2
,k

:= xj+ 1
2

+
a−
j+ 1

2
,k

+ a+
j+ 1

2
,k

2
∆t,

yn+1
j+ 1

2
,k

:= yk +
B+
j+ 1

2
,k− 1

2

+B−
j+ 1

2
,k+ 1

2

2
∆t,

(36)

are the coordinates of the center of Dj+ 1
2
,k, and (wx)

n+1
j+ 1

2
,k

and (wy)
n+1
j+ 1

2
,k

are the x and y

numerical derivatives. The reconstructions W̃ n+1
j,k+ 1

2

and W̃ n+1
j+ 1

2
,k+ 1

2

are defined in the similar
way.

Then, the solution (∆qn+1
j,k ) reduces to

(∆q)n+1
j,k =

1

∆x∆y
×

×

(∑
E,W

∫∫
C
E(W )
j,k

W̃ n+1
j± 1

2
,k

(x, y)dxdy +
∑
N,S

∫∫
C
N(S)
j,k

W̃ n+1
j,k± 1

2

(x, y)dxdy

+
∑

NE,NW,SW,SE

∫∫
C
NE(NW )(SW )(SE)
j,k

W̃ n+1
j± 1

2
,k± 1

2

(x, y)dxdy

+

∫∫
Dj,k

wn+1
j,k (x, y)dxdy

)
,

(37)

where subdomains CI
j,k, I = {E,W,N, S,NE,NW,SW,SE} denote the union of subdo-

mains D and control cell Cj,k.
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Next, we proceed to the construction of semi-discrete scheme.

3.2 New semi-discrete scheme

With the formula (37), to obtain the semi-discrete scheme we consider the following deriva-
tive,

d(∆q)j,k(t)

dt

= lim
∆t→0

(∆q)n+1
j,k − (∆q)nj,k

∆t

= lim
∆t→0

1

∆t
×

×

[
1

∆x∆y

(∑
E,W

∫∫
C
E(W )
j,k

W̃ n+1
j± 1

2
,k

(x, y)dxdy +
∑
N,S

∫∫
C
N(S)
j,k

W̃ n+1
j,k± 1

2

(x, y)dxdy

+
∑

NE,NW,SE,SW

∫∫
C
NE(NW )(SE)(SW )
j,k

W̃ n+1
j± 1

2
,k± 1

2

(x, y)dxdy

+

∫∫
Dj,k

wn+1
j,k (x, y)dxdy

)
−∆qn

]
.

(38)

By using the conservation property and some technical derivations (shown in C), the semi-
discrete scheme then take the form that

d

dt
(∆q)j,k(t) = −

Hx
j+ 1

2
,k

(t)−Hx
j− 1

2
,k

(t)

∆x
−
Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
+ S((∆q)j,k(t)), (39)

with the numerical fluxes

Hx
j+ 1

2
,k

=
a+
j+ 1

2
,k
F ((∆q)Ej,k)− a−j+ 1

2
,k
F ((∆q)Wj+1,k)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]
,

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

G((∆q)Nj,k)− b−j,k+ 1
2

G((∆q)Sj,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
,

(40)

where

F ((∆q)Wj+1,k) = f((∆q)Wj+1,k + q̃j+ 1
2
,k)− f(q̃j+ 1

2
,k),

F ((∆q)Ej,k) = f((∆q)Ej,k + q̃j+ 1
2
,k)− f(q̃j+ 1

2
,k),

G((∆q)Sj,k+1) = g((∆q)Sj,k+1 + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
),

G((∆q)Nj,k) = g((∆q)Nj,k + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
).

(41)
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3.3 Maximum Principle

Having derived the semi-discrete version of our scheme in (39), we next show a stability
property of our scheme in the following sense. Applying our scheme to a homogeneous
scalar conservation law we can illustrate the maximum principle.

We consider the maximum principle of the 2-d semi-discrete scheme (39) applied to
homogeneous scalar conservation laws,

d

dt
(∆q)j,k(t) = −

Hx
j+ 1

2
,k

(t)−Hx
j− 1

2
,k

(t)

∆x
−
Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
, (42)

with the numerical fluxes (40). We begin by proving the maximum principle for the
deviation.

Theorem 3.1 (Maximum principle). Consider the modified scalar conservation law

(∆q)t + [f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y = 0. (43)

and the forward Euler time discretization of the 2-d scheme (42)

(∆q)n+1
j,k = (∆q)nj,k −

∆tn

∆x

[
Hx
j+ 1

2
,k

(t)−Hx
j− 1

2
,k

(t)
]
− ∆tn

∆y

[
Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)
]

(44)

with the numerical fluxes (40) and the minmod limiter (79).
Assume the following CFL condition holds:

max

(
∆tn

∆x
max

∆q
|F ′(∆q)| , ∆tn

∆y
max

∆q
|G′(∆q)|

)
≤ 1

8
, (45)

then the fully-discrete scheme (44) satisfies the maximum principle

max
j,k
{(∆q)n+1

j,k } ≤ max
j,k
{(∆q)nj,k}. (46)

Proof. The proof is an extension of theorem 3.1 in [KNP01]. We refer the reader to D.

With the help of Corollary 5.1 and Corollary 5.2 in [KT00], we can prove the semi-
discrete scheme (42) satisfies the maximum principle.

Remark. Consider a general 2-d Deviation method

d(∆q)j,k
dt

=− 1

∆x

[(
F̂ (qL

j+ 1
2
,k
, qR
j+ 1

2
,k

)− F̂ (q̃L
j+ 1

2
,k
, q̃R
j+ 1

2
,k

)
)

−
(
F̂ (qL

j− 1
2
,k
, qR
j− 1

2
,k

)− F̂ (q̃L
j− 1

2
,k
, q̃R
j− 1

2
,k

)
)]

− 1

∆y

[(
Ĝ(qL

j,k+ 1
2
, qR
j,k+ 1

2
)− Ĝ(q̃L

j,k+ 1
2
, q̃R
j,k+ 1

2
)
)

−
(
Ĝ(qL

j,k− 1
2
, qR
j,k− 1

2
)− Ĝ(q̃L

j,k− 1
2
, q̃R
j,k− 1

2
)
)]
,

(47)

where F̂ and Ĝ are numerical flux functions and

q
L(R)

j± 1
2
,k

= (∆q)
L(R)

j± 1
2
,k

+ q̃
L(R)

j± 1
2
,k
. (48)
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We find the local truncation error of the finite volume (FV) method (47) evaluated at the
stationary solution q̃:

Res(q̃j,k) :=− 1

∆x

[
F̂ (q̃L

j+ 1
2
,k
, q̃R
j+ 1

2
,k

)− F̂ (q̃L
j− 1

2
,k
, q̃R
j− 1

2
,k

)
]

− 1

∆y

[
Ĝ(q̃L

j,k+ 1
2
, q̃R
j,k+ 1

2
)− Ĝ(q̃L

j,k− 1
2
, q̃R
j,k− 1

2
)
]

= O((∆x)a + (∆y)b).
(49)

N := min{a, b} represents the order of accuracy of the method.
Then, applying the forward Euler method in time to (47) and adding the stationary

solution both to the left and to the right hand side of (47), and using (49) we obtain the
solution qj,k by

qn+1
j,k = qnj,k −

∆t

∆x
[F̂ (qL

j+ 1
2
,k
, qR
j+ 1

2
,k

)− F̂ (qL
j− 1

2
,k
, qR
j− 1

2
,k

)]

− ∆t

∆y
[Ĝ(qL

j,k+ 1
2
, qR
j,k+ 1

2
)− Ĝ(qL

j,k− 1
2
, qR
j,k− 1

2
)]−∆tRes(q̃j,k).

(50)

Set Q̂ is the solution of the FV method, which satisfies the following scheme

Q̂n+1
j,k = qnj,k −

∆t

∆x
[F̂ (qL

j+ 1
2
,k
, qR
j+ 1

2
,k

)− F̂ (qL
j− 1

2
,k
, qR
j− 1

2
,k

)]

− ∆t

∆y
[Ĝ(qL

j,k+ 1
2
, qR
j,k+ 1

2
)− Ĝ(qL

j,k− 1
2
, qR
j,k− 1

2
)].

(51)

Then, combining (51) and (50) yields

qn+1
j,k = Q̂n+1

j,k −∆tRes(q̃j,k). (52)

Now, we assume Q̂ satisfies the maximum principle under some CFL conditions; i.e.,

max
j,k
{Q̂n+1

j,k } ≤ max
j,k
{Q̂n

j,k}. (53)

According to (53) and the relation (52), we can derive that

max
j,k
{qn+1

j,k } = max
j,k
{Q̂n+1

j,k −∆tRes(q̃j,k)}

≤ max
j,k
{Q̂n+1

j,k }+ max
j,k
{∆tRes(q̃j,k)}

≤ max
j,k
{Q̂n

j,k}+ max
j,k
{∆tRes(q̃j,k)}

≤ max
j,k
{q̂nj,k + ∆tRes(q̃j,k)}+ max

j,k
{∆tRes(q̃j,k)}

≤ max
j,k
{q̂nj,k}+O

(
∆t((∆x)a + (∆y)b)

)
.

(54)

For a large number of grid points, the error term in (54) is small, in fact it is of order
N + 1. Hence, the solution q in (54) satisfies the maximum principle up to at most one
order higher than the order of the scheme.

Since the KT-type scheme has been proved in [KNP01] to satisfy the maximum princi-
ple, the semi-discrete scheme constructed in section 3.2 (essentially) does not violate the
maximum principle.
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4 Numerical experiments and validations

In this section, we present the results of a number of numerical experiments in the Euler sys-
tem with gravitational source term by employing our designed well-balanced fully-discrete
scheme in section 2. In all the tests, the parameter of the (MC − ϑ) limiter is set as
ϑ = 1.5. With the help of the CFL condition, the computation of the time-step is defined
by

∆t = CFL ·min

{
∆x

max
j,k

(a+
j+ 1

2
,k
,−a−

j+ 1
2
,k

)
,

∆y

max
j,k

(b+
j,k+ 1

2

,−b−
j,k+ 1

2

)

}
, (55)

with CFL (number) = 0.45 and ε in the definition of local wave speeds (10) is given by
10−8.

Consider the 2-d Euler system with the gravitational source term as follows,{
qt + f(q)x + g(q)y = S(q, x), x, y ∈ Ω ⊂ R, t > 0

q(x, y, 0) = q0(x, y),
(56)

where

q =


ρ
ρu1

ρu2

E

 , f(q) =


ρu1

ρu2
1 + p

ρu1u2

(E + p)u1

 , g(q) =


ρu2

ρu1u2

ρu2
2 + p

(E + p)u2

 ,

and

S(u) =


0
−ρϕx
−ρϕy

−ρu1ϕx − ρu2ϕy

 .

The given function ϕ = ϕ(x, y) is the gravitational field and the ratio of specific heats γ is
set to be 1.4 for an ideal gas.

4.1 Isothermal Equilibrium

The first numerical experiment we consider is isothermal equilibrium presented in [TKK16].
The 2-d isothermal equilibrium state is given by

ρ(x, y) = ρ0 exp(−ρ0

p0

(ϕxx+ ϕyy)),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = p0 exp(−ρ0

p0

(ϕxx+ ϕyy)).

(57)

Here, we set ρ0 = 1.21 and p0 = 1. The linear gravitational potential is given by ϕx = 1
and ϕy = 1. The chosen stationary solution q̃ is the isothermal equilibrium state and the
outflow boundary condition is considered in this experiment. The solution is computed on
the 200 × 200 grid points in the square [0, 1]2 until the final time t = 0.25 and presented
in the top of the figure 5. Compared to the exact solution shown in the lower part of
the figure 5, both of the graphics of the density and the energy are as same as the exact
solutions.

16



New scheme: Density New scheme: Energy

Exact solution: Density Exact solution: Energy

Figure 5: Results of 2-d isothermal equilibrium: the top two figures are the results from
our new scheme; the two below are the exact solutions.
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4.2 Isothermal Equilibrium with Perturbation

This example is an extension of the previous experiment by adding a small perturbation
along the x- or the y-axis to the initial pressure. For the case along x-axis, the initial state
is set as

ρ(x, y) = exp(−x),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = exp(−x) + η exp(−100(x− 0.5)2).

(58)

For the case along y axis, the initial data is defined similarly. Figure 6 shows the pertur-
bation along the x- and y- axes, respectively on 200 × 200 grid points at the initial time
t = 0 and the final time t = 0.25. The comparison of the cross sections of the perturbation
between the initial time and the final time is presented in figure 7.

To test the order of convergence, we use the solution on a finer grid consisting of
640× 640 as the reference solution, and we set the CFL number to be 0.485. The results
are reported in table 1.

Initially along x at t = 0.25 along x

Initially along y at t = 0.25 along y

Figure 6: Results of 2-d unidirectional equilibrium perturbation.
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along x-axis along y-axis.

Figure 7: Results of 2-d unidirectional equilibrium perturbation: Initial perturbation at
t = 0 and the later perturbation at the final time t = 0.25.

N ρ L1-error rate p L1-error rate E L1-error rate
402 1.87E-05 - 1.67E-05 - 4.19E-05 -
802 8.93E-06 1.06 1.05E-05 0.67 2.62E-05 0.67
1602 3.42E-06 1.38 3.89E-06 1.43 9.72E-06 1.43
3202 1.06E-06 1.69 9.64E-07 2.01 2.41E-06 2.01

Table 1: 2-d isothermal equilibrium with perturbation: L1-errors and convergence rates.

4.3 Moving Equilibrium

Next, we test our scheme if it is capable of preserving moving equilibrium states. On the
basis of the discussion in [V19], we set the initial state of this experiment by

ρ(x, y) = ρ0 exp(−ρ0g

p0

(x+ y)),

u1(x, y) = exp(x+ y),

u2(x, y) = exp(x+ y),

p(x, y) = exp(−ρ0g

p0

(x+ y))γ,

(59)

with ρ0 = 1, p0 = 1, and g = 1. The considered nonlinear gravitational potential is
ϕ(x, y) = exp(x + y)(− exp(x + y) + γ(exp(−γ(x + y)))). We consider the experiments
along the x- and y- axes separately as in the previous test case. The stationary solution
used here is the equilibrium state itself and the chosen boundary condition is also the
outflow boundary condition. We compute the solution on 60 × 10 grid points along the
x-axis and on 10 × 60 grid points along the y-axis until the final time t = 0.25. Figure
8 shows the results of cross sections along the x- and along the y- axes and we compare
them to the exact solution.
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along x-axis along y-axis.

Figure 8: Results of 2-d moving equilibrium at the final time t = 0.25 compared to the
exact solution.

4.4 Shock Tube Problem

The fourth experiment we consider is the shock tube problem along x-axis (see [KTK20]).
The initial data for this test is given by

ρ(x, y) =

{
1, if x ≤ 0.5,

0.125, otherwise,

u1(x, y) = 0 = u2(x, y),

p(x, y) =

{
1, if x ≤ 0.5,

0.1, otherwise.

(60)

We adopt the isothermal equilibrium to be the stationary solution and choose reflecting
boundary conditions for this experiment. In figures 9 and 10, we show the solutions on
400× 10 and 800× 10 grid points obtained at the final time t = 0.2; the reference solution
on 800×10 grid points is obtained following the method presented in [KTK20]. Comparing
our method with that of [KTK20], we see in the Zooms in Fig. 9 that with our method
one obtains a sharper resolution of the corners of rarefaction and shock waves.

In figure 11, we compare the profile of the density on 200×10 grid points obtained using
the reconstruction technique (31) at the projection step with the solution on 200× 10 grid
points obtained without reconstruction, i.e., we consider the reconstruction on non-smooth
subdomains as

W̃ n+1
Dα,β

= wn+1
Dα,β

, (x, y) ∈ Dα,β,

where Dα,β = {Dj+ 1
2
,k, Dj+ 1

2
,k+ 1

2
, Dj,k+ 1

2
}. According to this figure, our reconstructed

polynomial in projection step help to gain the higher resolution at the shocks.

5 Conclusion

We constructed a new fully-discrete, well-balanced, central scheme by blending the ideas
of the KT scheme and the Deviation method and this preserves the advantages of the
mentioned two approaches. The simulations of the Euler equations with gravitational
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Density

Zoom in on the first block Zoom in on the second block

Zoom in on the third block Zoom in on the fourth block

Figure 9: Results of 2-d shock tube problem along the x-axis: density and zoom in on the
shocks.
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(a) Velocity (b) Zoom in on the block in the figure (a)

(c) Energy (d) Pressure.

Figure 10: Results of 2D shock tube problem along the x-axis: velocity, zoom in on the
figure of velocity, energy and pressure.

Figure 11: Results of 2D shock tube problem along the x-axis: profile of the density
obtained with and without reconstruction.
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source term are closed to the reference solution and achieve the second order accuracy.
For our semi-discrete scheme in section 3, it is essentially non-oscillatory from the proof
of the maximum principle. Our work demonstrates that the blend of the KT scheme and
the Deviation method makes a success on solving the Euler equations with gravity. In
our future work, we plan to apply our scheme to other systems to examine its further
practicality.
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A Approximation of source term

Based on the two facts used to approximate (17), we estimate the source term on the side
subdomain Dj+ 1

2
,k at time tn+1 by

1

|Dj+ 1
2
,k|

∫ tn+1

tn

∫∫
D
j+1

2 ,k

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj+ 1
2
,k|

∫∫
D
j+1

2 ,k

S(∆q(x, y, tn+ 1
2 ))dxdy

=
∆t

|Dj+ 1
2
,k|

[∫∫
CEj,k

S(∆q(x, y, tn+ 1
2 ))dxdy

+

∫∫
CWj+1,k

S(∆q(x, y, tn+ 1
2 ))dxdy

]
=

∆t

|Dj+ 1
2
,k|

[
|CE

j,k|S(∆q(zEj,k, t
n+ 1

2 )) + |CW
j+1,k|S(∆q(zWj+1,k, t

n+ 1
2 ))
]

=: ∆tSD
j+1

2 ,k
(∆q).

(61)

By using the same way, the approximation on the side subdomain Dj,k+ 1
2

and the corner
subdomain Dj+ 1

2
,k+ 1

2
can be calculated as follows,

1

|Dj,k+ 1
2
|

∫ tn+1

tn

∫∫
D
j,k+1

2

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj,k+ 1
2
|

∫∫
D
j,k+1

2

S(∆q(x, y, tn+ 1
2 ))dxdy

=
∆t

|Dj,k+ 1
2
|

[∫∫
CNj,k

S(∆q(x, y, tn+ 1
2 ))dxdy

+

∫∫
CSj,k+1

S(∆q(x, y, tn+ 1
2 ))dxdy

]

:=
∆t

|Dj,k+ 1
2
|

[
|CN

j,k|S(∆q(zNj,k, t
n+ 1

2 )) + |CS
j,k+1|S(∆q(zSj,k+1, t

n+ 1
2 ))

]
=: ∆tSD

j,k+1
2

(∆q),

(62)

and

1

|Dj+ 1
2
,k+ 1

2
|

∫ tn+1

tn

∫∫
D
j+1

2 ,k+
1
2

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj+ 1
2
,k+ 1

2
|

[
|CNE

j,k |S(∆q(zNEj,k , t
n+ 1

2 )) + |CNW
j+1,k|S(∆q(zNWj+1,k, t

n+ 1
2 ))

+ |CSE
j,k+1|S(∆q(zSEj,k+1, t

n+ 1
2 )) + |CSW

j+1,k+1|S(∆q(zSWj+1,k+1, t
n+ 1

2 ))

]
=: ∆tSD

j+1
2 ,k+

1
2

(∆q)

(63)
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Similar to the approximation (24), the value at the center of mass, ∆q(zIj,k, t
n+ 1

2 ), is given
by the Taylor expansion,

∆q
n+ 1

2

zIj,k
:= ∆qnzIj,k

+
∆t

2
(∆qt)

n
zIj,k

= ∆qnzIj,k
−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
zIj,k

+ [(g(∆q + q̃)− g(q̃))y]
n
zIj,k

]
+

∆t

2
S(∆q)nzIj,k

:= ∆qnzIj,k
−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
j,k + [(g(∆q + q̃)− g(q̃))y]

n
j,k

]
+

∆t

2
S(∆q)nzIj,k

.

(64)

B Intermediate values at the evolution step in section

3.1.2

Applying (15) to the rectangle subdomains in figure 4 yield the intermediate values on
these subdomains at time tn+1,

wn+1
j+ 1

2
,k

=
1

|Dj+ 1
2
,k|

∫∫
D
j+1

2 ,k

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫ y
k+1

2
+B−

j+1
2 ,k+

1
2

∆t

y
k− 1

2
+B+

j+1
2 ,k−

1
2

∆t

[
f(∆q + q̃)− f(q̃)

]x
j+1

2
+a+

j+1
2 ,k

∆t

x=x
j+1

2
+a−

j+1
2 ,k

∆t
dydt

−
∫ tn+1

tn

∫ x
j+1

2
+a+

j+1
2 ,k

∆t

x
j+1

2
+a−

j+1
2 ,k

∆t

[
g(∆q + q̃)− g(q̃)

]y
j+1

2
+B−

j+1
2 ,k+

1
2

∆t

y=y
k− 1

2
+B+

j+1
2 ,k+

1
2

∆t
dxdt

+

∫ tn+1

tn

∫∫
D
j+1

2 ,k

S(∆q) dxdydt

 ,

(65)

wn+1
j,k+ 1

2

=
1

|Dj,k+ 1
2
|

∫∫
D
j,k+1

2

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫ y
k+1

2
+b+

j,k+1
2

∆t

y
k+1

2
+b−

j,k+1
2

∆t

[
f(∆q + q̃)− f(q̃)

]x
j+1

2
+A−

j+1
2 ,k+

1
2

∆t

x=x
j− 1

2
+A+

j− 1
2 ,k+

1
2

∆t
dydt

−
∫ tn+1

tn

∫ x
j+1

2
+A−

j+1
2 ,k+

1
2

∆t

x
j− 1

2
+A+

j− 1
2 ,k+

1
2

∆t

[
g(∆q + q̃)− g(q̃)

]y
k+1

2
+b+

j,k+1
2

∆t

y=y
k+1

2
+b−

j,k+1
2

∆t
dxdt

+

∫ tn+1

tn

∫∫
D
j,k+1

2

S(∆q) dxdydt

 ,

(66)
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wn+1
j+ 1

2
,k+ 1

2

=
1

|Dj+ 1
2
,k+ 1

2
|

∫∫
D
j+1

2 ,k+
1
2

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫∫
D
j+1

2 ,k+
1
2

[
f(∆q + q̃)− f(q̃)

]
x
dxdydt

−
∫ tn+1

tn

∫∫
D
j+1

2 ,k+
1
2

[
g(∆q + q̃)− g(q̃)

]
y
dxdydt

+

∫ tn+1

tn

∫∫
D
j+1

2 ,k+
1
2

S(∆q) dxdydt

 ,

(67)

and

wn+1
j,k =

1

|Dj,k|

[∫∫
Dj,k

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫∫
Dj,k

[f(∆q + q̃)− f(q̃)]x dxdydt

−
∫ tn+1

tn

∫∫
Dj,k

[g(∆q + q̃)− g(q̃)]y dxdydt

+

∫ tn+1

tn

∫∫
Dj,k

S(∆q) dxdydt

]
.

(68)

C Derivation of the semi-discrete scheme

Due to the conservation property, the last integral on the right-hand-side of (38) has the
relation that ∫∫

Dj,k

wn+1
j,k (x, y)dxdy = |Dj,k|wn+1

j,k . (69)

For S = (j ± 1
2
, k), (j, k ± 1

2
), (j ± 1

2
, k ± 1

2
), according to the approximation of W̃ n+1

S (x, y)

in (35), we have the relation between W̃ n+1
S and wn+1

S :

W̃ n+1
S (x, y) = wn+1

S +O(∆t). (70)

Since the areas of the domain C
E(W )
j,k , C

N(S)
j,k , and C

NE(NW )(SE)(SW )
j,k are evaluated by

|CE(W )
j,k | = ∆t∆y(∓a∓

j± 1
2
,k

) +O((∆t)2),

|CN(S)
j,k | = ∆t∆x(∓b∓

j,k± 1
2

) +O((∆t)2),

|CNE(NW )(SE)(SW )
j,k | = O((∆t)2),

(71)
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the relation between W̃ n+1
S and wn+1

S can be written as∫∫
C
E(W )
j,k

W̃j± 1
2
,kdxdy = |CE(W )

j,k |wn+1
j± 1

2
,k

+O((∆t)2),∫∫
C
N(S)
j,k

W̃j,k± 1
2
dxdy = |CN(S)

j,k |w
n+1
j,k± 1

2

+O((∆t)2),∫∫
C
NE(NW )(SE)(SW )
j,k

W̃ n+1
j± 1

2
,k± 1

2

dxdy = O((∆t)2).

(72)

As ∆t → 0, the values at the corner vanish, because the area are proportional to (∆t)2.
Thus, (38) reduces to

d(∆q)j,k(t)

dt
= lim

∆t→0

1

∆t

[
1

∆x∆y

(
|CE(W )

j,k |wn+1
j± 1

2
,k

+ |CN(S)
j,k |w

n+1
j,k± 1

2

+|Dj,k|wn+1
j,k

)
−∆qnj,k

] (73)

Applying the areas of C
E(W )
j,k and C

N(S)
j,k to the first and the second term on the right-hand-

side of (73) respectively, we obtain that

lim
∆t→0

|CE(W )
j,k |

∆t∆x∆y
wn+1
j± 1

2
,k

= −
a∓
j± 1

2
,k

∆x
lim

∆t→0
wn+1
j± 1

2
,k
,

lim
∆t→0

|CN(S)
j,k |

∆t∆x∆y
wn+1
j,k± 1

2

= −
b∓
j,k± 1

2

∆y
lim

∆t→0
wn+1
j,k± 1

2

.

(74)

Then using the approximations of wn+1
j+ 1

2
,k

and wn+1
j,k+ 1

2

in (65) and (66) to substitute the

values in (74) results in

lim
∆t→0

|CE(W )
j,k |

∆t∆x∆y
wn+1
j± 1

2
,k

=− 1

(a+
j± 1

2
,k
− a−

j± 1
2
,k

)∆x
×[

a−
j± 1

2
,k
a+
j± 1

2
,k

(∆q)
W (E)
j±1,k − (a∓

j± 1
2
,k

)2(∆q)
E(W )
j,k

]
+

a∓
j± 1

2
,k

(a+
j± 1

2
,k
− a−

j± 1
2
,k

)∆x

[
F ((∆q)

W (E)
j±1,k )− F ((∆q)

E(W )
j,k )

]
,

lim
∆t→0

|CN(S)
j,k |

∆t∆x∆y
wn+1
j,k± 1

2

=− 1

(b+
j,k± 1

2

− b−
j,k± 1

2

)∆y
×[

b−
j,k± 1

2

b+
j,k± 1

2

(∆q)
S(N)
j,k±1 − (b∓

j,k± 1
2

)2(∆q)
N(S)
j,k

]
+

b∓
j,k± 1

2

(b+
j,k± 1

2

− b−
j,k± 1

2

)∆y

[
G((∆q)

S(N)
j,k±1)−G((∆q)

N(S)
j,k )

]
,

(75)

where

F ((∆q)Wj+1,k) = f((∆q)Wj+1,k + q̃j+ 1
2
,k)− f(q̃j+ 1

2
,k),

F ((∆q)Ej,k) = f((∆q)Ej,k + q̃j+ 1
2
,k)− f(q̃j+ 1

2
,k),

(76)
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and

G((∆q)Sj,k+1) = g((∆q)Sj,k+1 + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
),

G((∆q)Nj,k) = g((∆q)Nj,k + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
).

(77)

Here, the notation (∆q)I with I = {E,W,N, S} is defined similarly to (11) by

(∆q)Ej,k := (∆q)nj,k +
∆x

2
((∆q)x)

n
j,k, (∆q)Wj,k := (∆q)nj,k −

∆x

2
((∆q)x)

n
j,k,

(∆q)Nj,k := (∆q)nj,k +
∆y

2
((∆q)y)

n
j,k, (∆q)Sj,k := (∆q)nj,k −

∆y

2
((∆q)y)

n
j,k,

(78)

with the MC − ϑ limiter

((∆q)x)
n
j,k :=

minmod

(
ϑ

(∆q)nj,k − (∆q)nj−1,k

∆x
,
(∆q)nj+1,k − (∆q)nj−1,k

2∆x
, ϑ

(∆q)nj+1,k − (∆q)nj,k
∆x

)
,

((∆q)x)
n
j,k :=

minmod

(
ϑ

(∆q)nj,k − (∆q)nj,k−1

∆y
,
(∆q)nj,k+1 − (∆q)nj,k−1

2∆y
, ϑ

(∆q)nj,k+1 − (∆q)nj,k
∆y

)
,

(79)

and 1 ≤ ϑ ≤ 2. The detailed computation of (75) is similar to the derivation in section 3.3
of [KP01].

Next, we consider the rest terms on the right-hand-side of (73). The subdomain Dj,k

can be regarded as a rectangle when ∆t → 0, up to small corners of a negligible size
O((∆t)2). Applying (68) to the rest terms yields that

lim
∆t→0

1

∆t

[
1

∆x∆y
|Dj,k|wn+1

j,k −∆qnj,k

]
=[

a−
j+ 1

2
,k

∆x
(∆q)Ej,k +

b−
j,k+ 1

2

∆y
(∆q)Nj,k −

a+
j− 1

2
,k

∆x
(∆q)Wj,k −

b+
j,k− 1

2

∆y
(∆q)Sj,k

]
− 1

∆x

[
F ((∆q)Ej,k)− F ((∆q)Wj,k)

]
− 1

∆y

[
G((∆q)Nj,k)−G((∆q)Sj,k)

]
+ S((∆q)j,k)]

(80)

Finally, combining (75) and (80), the semi-discrete scheme takes the form

d

dt
(∆q)j,k(t) = −

Hx
j+ 1

2
,k

(t)−Hx
j− 1

2
,k

(t)

∆x
−
Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
+ S((∆q)j,k(t)) (81)
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with the numerical fluxes
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j+ 1

2
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2
,k
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2
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(∆q)Wj+1,k − (∆q)Ej,k

]
,

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

G((∆q)Nj,k)− b−j,k+ 1
2

G((∆q)Sj,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
.

(82)

D Maximum Principle

We begin with the explicit form of (44),

(∆q)n+1
j,k = (∆q)nj,k −

λn

(a+
j+ 1

2
,k
− a−

j+ 1
2
,k

)

[
a+
j+ 1

2
,k
F ((∆q)Ej,k)− a−j+ 1

2
,k
F ((∆q)Wj+1,k)

]
+

λn

(a+
j− 1

2
,k
− a−

j− 1
2
,k

)

[
a+
j− 1

2
,k
F ((∆q)Ej−1,k)− a−j− 1

2
,k
F ((∆q)Wj,k)

]

−
λn(a+

j+ 1
2
,k
a−
j+ 1

2
,k

)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]
+
λn(a+

j− 1
2
,k
a−
j− 1

2
,k

)

a+
j− 1

2
,k
− a−

j− 1
2
,k

[
(∆q)Wj,k − (∆q)Ej−1,k

]
− µn

(b+
j,k+ 1

2

− b−
j,k+ 1

2

)

[
b+
j,k+ 1

2

G((∆q)Nj,k)− b−j,k+ 1
2

G((∆q)Sj,k+1)
]

+
µn

(b+
j,k− 1

2

− b−
j,k− 1

2

)

[
b+
j,k− 1

2

G((∆q)Nj,k−1)− b−
j,k− 1

2

G((∆q)Sj,k)
]

−
µn(b+

j,k+ 1
2

b−
j,k+ 1

2

)

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
+
µn(b+

j,k− 1
2

b−
j,k− 1

2

)

b+
j,k− 1

2

− b−
j,k− 1

2

[
(∆q)Sj,k − (∆q)Nj,k−1

]
.

(83)

All the terms on the right-hand of (83) are taken at the time step tn. By the definition
(78), we have the equality

(∆q)nj,k =
(∆q)Ej,k + (∆q)Wj,k + (∆q)Nj,k + (∆q)Sj,k

4
. (84)
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Then we substitute (84) for (∆q)nj,k and adjust the other terms in (83),

(∆q)n+1
j,k =

(∆q)Ej,k + (∆q)Wj,k + (∆q)Nj,k + (∆q)Sj,k
4

+ λn

[
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
F ((∆q)Wj+1,k)− F ((∆q)Ej,k)

]
− F ((∆q)Ej,k)

]

− λn
[

a+
j− 1

2
,k

a+
j− 1

2
,k
− a−

j− 1
2
,k

[
F ((∆q)Wj,k)− F ((∆q)Ej−1,k)

]
− F ((∆q)Wj,k)

]

− λn
(a+
j+ 1

2
,k
a−
j+ 1

2
,k

)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]

+ λn
(a+
j− 1

2
,k
a−
j− 1

2
,k

)

a+
j− 1

2
,k
− a−

j− 1
2
,k

[
(∆q)Wj,k − (∆q)Ej−1,k

]

+ µn

[
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
G((∆q)Sj,k+1)−G((∆q)Nj,k)

]
−G((∆q)Nj,k)

]

− µn
[

b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

[
G((∆q)Sj,k) +G((∆q)Nj,k−1)

]
−G((∆q)Sj,k)

]

− µn
(b+
j,k+ 1

2

b−
j,k+ 1

2

)

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]

+ µn
(b+
j,k− 1

2

b−
j,k− 1

2

)

b+
j,k− 1

2

− b−
j,k− 1

2

[
(∆q)Sj,k − (∆q)Nj,k−1

]
. (85)

To simplify notations, we use the abbreviations used in [KT00]

∆x
j+ 1

2
,k

(∆q) := (∆q)Wj+1,k(t
n)− (∆q)Ej,k(t

n),

∆x
j,kF := F ((∆q)Ej,k)− F ((∆q)Wj,k)

∆x
j,kG := G((∆q)Nj,k)−G((∆q)Sj,k).

(86)
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Then we rewrite the (85) as

(∆q)n+1
j,k =

(∆q)Ej,k + (∆q)Wj,k + (∆q)Nj,k + (∆q)Sj,k
4

+ λn

[
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

∆x
j+ 1

2
,k
F

∆x
j+ 1

2
,k

(∆q)

[
(∆q)Wj+1,k − (∆q)Ej,k

]
−

∆x
j,kF

∆x
j,k(∆q)

[
(∆q)Ej,k − (∆q)Wj,k

]
−

a+
j− 1

2
,k

a+
j− 1

2
,k
− a−

j− 1
2
,k

∆x
j− 1

2
,k
F

∆x
j− 1

2
,k

(∆q)

[
(∆q)Wj,k − (∆q)Ej−1,k

]]

− λn
(a+
j+ 1

2
,k
a−
j+ 1

2
,k

)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]

+ λn
(a+
j− 1

2
,k
a−
j− 1

2
,k

)

a+
j− 1

2
,k
− a−

j− 1
2
,k

[
(∆q)Wj,k − (∆q)Ej−1,k

]

+ µn

[
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

∆y

j,k+ 1
2

G

∆y

j,k+ 1
2

(∆q)

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
−

∆y
j,kG

∆y
j,k(∆q)

[
(∆q)Nj,k − (∆q)Sj,k

]
−

b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

∆y

j,k− 1
2

G

∆y

j,k− 1
2

(∆q)

[
(∆q)Sj,k − (∆q)Nj,k−1

]]

− µn
(b+
j,k+ 1

2

b−
j,k+ 1

2

)

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]

+ µn
(b+
j,k− 1

2

b−
j,k− 1

2

)

b+
j,k− 1

2

− b−
j,k− 1

2

[
(∆q)Sj,k − (∆q)Nj,k−1

]
(87)
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Collecting the coefficients of (∆q)Wj+1,k, (∆q)
E(W )
j,k , (∆q)Ej−1,k, and (∆q)Sj,k+1, (∆q)

N(S)
j,k , (∆q)Nj,k−1,

(∆q)n+1
j,k =λn

(
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

∆x
j+ 1

2
,k
F

∆x
j+ 1

2
,k

(∆q)
−

a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

)
(∆q)Wj+1,k

+

[
1

4
− λn

(
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

∆x
j+ 1

2
,k
F

∆x
j+ 1

2
,k

(∆q)
+

∆x
j,kF

∆x
j,k(∆q)

−
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

)]
(∆q)Ej,k

+

[
1

4
+ λn

(
∆x
j,kF

∆x
j,k(∆q)

−
a+
j− 1

2
,k

a+
j− 1

2
,k
− a−

j− 1
2
,k

∆x
j− 1

2
,k
F

∆x
j− 1

2
,k

(∆q)

+
a+
j− 1

2
,k
a−
j− 1

2
,k

a+
j− 1

2
,k
− a−

j− 1
2
,k

)]
(∆q)Wj,k

+ λn

(
a+
j− 1

2
,k

a+
j− 1

2
,k
− a−

j− 1
2
,k

∆x
j− 1

2
,k
F

∆x
j− 1

2
,k

(∆q)
−

a+
j− 1

2
,k
a−
j− 1

2
,k

a+
j− 1

2
,k
− a−

j− 1
2
,k

)
(∆q)Ej−1,k

+ µn

(
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

∆y

j,k+ 1
2

G

∆y

j,k+ 1
2

(∆q)
−

b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

)
(∆q)Sj,k+1

+

[
1

4
− µn

(
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

∆y

j,k+ 1
2

G

∆y

j,k+ 1
2

(∆q)
+

∆y
j,kG

∆y
j,k(∆q)

−
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

)]
(∆q)Nj,k

+

[
1

4
+ µn

(
∆y
j,kG

∆y
j,k(∆q)

−
b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

∆y

j,k− 1
2

G

∆y

j,k− 1
2

(∆q)

+
b+
j,k− 1

2

b−
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

)]
(∆q)Sj,k

+ µn

(
b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

∆y

j,k− 1
2

G

∆y

j,k− 1
2

(∆q)
−

b+
j,k− 1

2

b−
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

)
(∆q)Nj,k−1.

(88)

Next, we discuss the coefficients. Due to the fact that F ′(∆q) = f ′(q) (see lemma 2.1) and
the fact that a±

j+ 1
2
,k

is the maximal speed on its direction, which is determined from the

flux derivatives, (consult the definition (10)), we obtain the following inequalities:

a+
j+ 1

2
,k
≥ 0 and |

∆x
j+ 1

2
,k
F

∆x
j+ 1

2
,k

(∆q)
| ≤ a+

j+ 1
2
,k
,

a−
j+ 1

2
,k
≤ 0, and |

∆x
j+ 1

2
,k
F

∆x
j+ 1

2
,k

(∆q)
| ≤ −a−

j+ 1
2
,k
.

(89)
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Hence, the rearranged coefficients of (∆q)Wj+1,k and (∆q)Ej−1,k are non-negative,

λn
(−a−

j+ 1
2
,k

)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k︸ ︷︷ ︸

≥0

[
a+
j+ 1

2
,k
−

∆x
j+ 1

2
,k
F

∆x
j+ 1

2
,k

(∆q)

]
︸ ︷︷ ︸

≥0

≥ 0

λn
a+
j− 1

2
,k

a+
j− 1

2
,k
− a−

j− 1
2
,k︸ ︷︷ ︸

≥0

[
∆x
j− 1

2
,k
F

∆x
j− 1

2
,k

(∆q)
− a−

j− 1
2
,k

]
︸ ︷︷ ︸

≥0

≥ 0.

(90)

The coefficients of (∆q)Ej,k and (∆q)Wj,k are also non-negative due to the CFL assumption
(45). By the assumption (45), we have

λna+
j+ 1

2
,k
≤ 1

8
and − 1

8
≤ λna−

j+ 1
2
,k
. (91)

The above inequalities imply

λna+
j+ 1

2
,k
− λna−

j+ 1
2
,k
≤ 1

4

⇒ 4 ≤ 1

λna+
j+ 1

2
,k
− λna−

j+ 1
2
,k

⇒ − 1

2
≤

λna−
j+ 1

2
,k

λna+
j+ 1

2
,k
− λna−

j+ 1
2
,k

⇒
−λna−

j+ 1
2
,k

λna+
j+ 1

2
,k
− λna−

j+ 1
2
,k

≤ 1

2

(92)

Hence, the coefficient of (∆q)Ej,k is non-negative because of

1

4
+

(−a−
j+ 1

2
,k

)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k︸ ︷︷ ︸

≤ 1
2

(
λn

∆x
j+ 1

2
,k
F

∆x
j+ 1

2
,k

(∆q)︸ ︷︷ ︸
≥− 1

8

−λna+
j+ 1

2
,k︸ ︷︷ ︸

≥− 1
8

)
−λn

∆x
j,kF

∆x
j,k(∆q)︸ ︷︷ ︸
≥− 1

8

≥ 0.
(93)

By the same way, the coefficient of (∆q)Wj,k can be proved to be non-negative, and the
other four coefficients as well. Since all the coefficients are non-negative and the sum of
the coefficients are equal to 1, the combination on the right-hand-side of (88) is a convex
combination. Hence,

(∆q)n+1
j,k ≤ max

(
(∆q)Wj+1,k, (∆q)

E(W )
j,k , (∆q)Ej−1,k, (∆q)

S
j,k+1, (∆q)

N(S)
j,k , (∆q)Nj,k−1

)
.

Because of the definition of the intermediate values (∆q)E,W,S,N and the choice of the
derivative in (78), these intermediate values satisfy the local maximum principle, (consult
Theorem 1 of [JT98]),

max
j,k

(
(∆q)Wj+1,k, (∆q)

E(W )
j,k , (∆q)Ej−1,k, (∆q)

S
j,k+1, (∆q)

N(S)
j,k ,(∆q)Nj,k−1

)
≤ max

j,k
((∆q)nj,k).

Then the maximum principle: maxj,k(∆q)
n+1
j,k ≤ maxj,k(∆q)

n
j,k holds. �
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