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We develop a second-order accurate central scheme for the two-dimensional hyperbolic

system of in-homogeneous conservation laws. The main idea behind the scheme is that we
combine the well-balanced Deviation method and Kurganov-Tadmor (KT) scheme. The

approach satisfies the well-balanced property and retains the advantages of KT scheme:

Riemann-solver-free and the avoidance of oversampling on the regions between Riemann-
fans. The scheme is implemented and applied to a number of numerical experiments for

the Euler equations with gravitational source term and the results are non-oscillatory.
Based on the same idea, we construct a semi-discrete scheme where we combine the
above two methods and illustrate the maximum principle.

Keywords: Euler Equations; Deviation method; 2-d semi-discrete methods; Well-
balanced scheme.

1. Introduction

The conservation law is widely studied in recent years. In 1990, Nessyahu and

Tadmor (NT) proposed the central scheme in [Nessyahu and Tadmor. (1990)] which

focus on the average between two staggered grids. The feature of the NT scheme is

to approximate the solutions by integrating over the Riemann fans to avoid solve the

Riemann problem at interfaces. After that, authors in [Jiang et al. (1998)] developed

an unstaggered version of the NT scheme. A modification of the NT scheme was

introduced in [Kurganov and Tadmor. (2000)] (KT scheme). Compared to the NT

scheme which approximate the solution over Riemann fans by integrating on the

full-cell size, the KT scheme consider a narrower interval over Riemann fans by the
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use of the maximal local wave speeds. The idea of the KT scheme is to split the

original cell into two interval. One is the unsmooth region over the whole Riemann

fans, and the other is the smooth region between Riemann fans in the original

interval. By this approach, the solution is not oversampled at smooth region and

can have higher precision. The concept of two dimensional (2-d) extension of the

KT scheme is mentioned in [Kurganov and Petrova. (2001)]. Later, a modified 2-d

KT scheme is introduced in [Kurganov et al. (2017)], which considering the maximal

local wave speed on the each side of x and y direction. The benefit of this scheme

is that the more precise information is used for the solution of unsmooth region.

The set-up of the 2-d KT scheme can be separated into two approaches: one

considers the quadrilateral subdomains over the Riemann fans; the other considers

the rectangular subdomains. Using rectangular subdomains is easier to formulize

and compute for the construction of semi-discrete scheme. There are a list of the

2-d semi-discrete type KT scheme by adopting the rectangular subdomains from the

original 2-d KT schemes: [Kurganov and Tadmor. (2002)], [Kurganov and Petrova.

(2001)], [Kurganov et al. (2001)], and [Kurganov and Lin. (2007)].

In this paper, we focus on in-homogeneous conservation laws, which is given by

∂tq(x, t) +∇xf(q(x, t)) = S(q(x, t)), (1)

where q(x, t) = (q1(x, t), q2(x, t), ..., qN (x, t))T is an N-vector of conserved quan-

tities in the d-spatial variables x = (x1, x2, ..., xd), and f(q) = (f1, f2, ..., fd) is

a nonlinear flux. S(q) = (s1, s2, ..., sd) is a source term. Eq.(1) is also known as

the balance laws. To solve this equation, a suitable discretization of the source

term is needed for construction. There are some attempts for the so-called well-

balanced scheme: [Kanbar et al. (2020)], [Touma et al. (2016)], [Berberich et al.

(2021)], [Audusse et al. (2004)], [Botta et al. (2004)], [Bryson et al. (2011)], [Castro

and Pares (2006)], [Delis and Katsaounis (2003)], [Touma (2009)], [Touma (2016)],

[Touma and Khankan (2012)], [Xing and Shu (2006)].

Inspired by the modified KT scheme and the so-called Deviation method in

[Berberich et al. (2021)], we construct a well-balanced scheme for the Eq.(1) with

a linear source term in next section. In section 3, considering the rectangle subdo-

mains, we derive a semi-discrete scheme by combining the KT scheme and the De-

viation method, and we also show the non-oscillation property of this semi-discrete

scheme. A number of numerical experiments has been tested by our fully-discrete

scheme in section 4. Finally, we end with a conclusion in section 5.

2. A new two-dimensional scheme for in-homogeneous

conservation laws

In this section, we introduce a new two-dimensional scheme by using the combina-

tion of the Deviation method and the KT-type scheme. As in [Kanbar et al. (2020)]

we begin by deriving the Deviation method at the continuum level for 2-d balance

laws with gravity. Then, at the discrete level, we use the the 2-d KT-type scheme
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in [Kurganov et al. (2017)] to construct a new well-balanced two-dimensional fully-

discrete scheme.

2.1. Framework of the two-dimensional Deviation method

Consider the 2-d balance laws{
qt + f(q)x + g(q)y = S(q, x, y), (x, y) ∈ Ω ⊂ R2, t > 0

q(x, y, 0) = q0(x, y),
(2)

where f(q) and g(q) are the fluxes in x- and y directions and S is the source term.

Assume q̃ is a given stationary solution of (2). Then it satisfies

f(q̃)x + g(q̃)y = S(q̃, x, y). (3)

Define the deviation ∆q = q − q̃. Applying q = ∆q + q̃ to (2), we obtain

(∆q + q̃)t + f(∆q + q̃)x + g(∆q + q̃)y = S(∆q + q̃). (4)

Since q̃ is a stationary solution, (4) reduces to

(∆q)t + f(∆q + q̃)x + g(∆q + q̃)y = S(∆q + q̃). (5)

Then, we subtract (3) from (5), and assume that the source term S(∆q + q̃) in (2)

is a linear functional in terms of the conserved variables, we obtain

(∆q)t + [f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y = S(∆q + q̃, x, y)− S(q̃, x, y)

= S(∆q, x, y).

(6)

Lemma 2.1. Consider the balance law (2) and a given hydrostatic solution q̃. The

deviation quantity ∆q satisfying the modified balance law (6) maintains the same

local speeds as those in the original balance system (2).

Proof. The proof is the extension of 1D case. We refer reader to [Cheng et al.

(2024)].

2.2. Application of the two-dimensional Kurganov-Tadmor-type

scheme

Now we apply the idea of KT scheme. The derivation can be separated into three

steps: Reconstruction, Evolution, and Projection. The first two steps are loosely

based on the set-up in [Kurganov et al. (2017)].

2.2.1. Reconstruction

Consider the control cell Cj,k = [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] for all j, k. To avoid

oscillation, we define a piecewise-linear reconstruction Q,

Qj,k(x, y, t
n) = (∆q)nj,k + (x− xj)((∆q)x)

n
j,k + (y − yk)((∆q)y)

n
j,k, ∀(x, y) ∈ Cj,k,

(7)
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where (∆q)x and (∆q)y are the x- and y derivatives of ∆q . One common choice of

the slope is the MC − θ limiter which is defined as

((∆q)x)
n
j,k = minmod

(
θ∆+

x (∆q)nj,k, ∆
0
x(∆q)nj,k, θ∆

−
x (∆q)nj,k

)
,

((∆q)y)
n
j,k = minmod

(
θ∆+

y (∆q)nj,k, ∆
0
y(∆q)nj,k, θ∆

−
y (∆q)nj,k

)
, 1 ≤ θ ≤ 2,

(8)

where the differences ∆±
x , ∆

0
x, ∆

±
y , and ∆0

y are defined as

∆+
x (·)j,k :=

(·)j+1,k − (·)j,k
∆x

,∆0
x(·)j,k :=

(·)j+1,k − (·)j−1,k

2∆x
,∆−

x (·)j,k :=
(·)j,k − (·)j−1,k

∆x
,

∆+
y (·)j,k :=

(·)j,k+1 − (·)j,k
∆y

,∆0
y(·)j,k :=

(·)j,k+1 − (·)j,k−1

2∆y
,∆−

y (·)j,k :=
(·)j,k − (·)j,k−1

∆y
.

(9)

We will adopt this (MC − θ) limiter to evaluate the values of the slopes (∆q)x and

(∆q)y in the numerical experiments in section 4.

2.2.2. Evolution

Before evolving the solution from tn to the next time step tn+1, we need to find

the maximal local wave speeds on each side of cell interfaces, which is the most

important key of the KT scheme and used to decide the region of the cell over

Riemann fans. The local wave speeds at interfaces denoted by a±
j+ 1

2 ,k
and b±

j,k+ 1
2

in

x- and y directions, respectively, are determined by the eigenvalues of flux Jacobian:

a+
j+ 1

2 ,k
:= max

{
λN

(
∂

∂q
f(q+

j+ 1
2 ,k

)

)
, λN

(
∂

∂q
f(q−

j+ 1
2 ,k

)

)
, ϵ

}
,

a−
j+ 1

2 ,k
:= min

{
λ1

(
∂

∂q
f(q+

j+ 1
2 ,k

)

)
, λ1

(
∂

∂q
f(q−

j+ 1
2 ,k

)

)
, −ϵ

}
,

b+
j,k+ 1

2

:= max

{
λN

(
∂

∂q
g(q+

j,k+ 1
2

)

)
, λN

(
∂

∂q
g(q−

j,k+ 1
2

)

)
, ϵ

}
,

b−
j,k+ 1

2

:= min

{
λ1

(
∂

∂q
g(q+

j,k+ 1
2

)

)
, λ1

(
∂

∂q
g(q−

j,k+ 1
2

)

)
, −ϵ

}
,

(10)

where λ1 < λ2 < · · · < λN are the eigenvalues of the corresponding Jacobians, and

ϵ is a small positive number and

q−
j+ 1

2 ,k
:= qnj,k +

∆x

2
(qx)

n
j,k, q+

j+ 1
2 ,k

:= qnj+1,k − ∆x

2
(qx)

n
j+1,k,

q−
j,k+ 1

2

:= qnj,k +
∆y

2
(qy)

n
j,k, q+

j,k+ 1
2

:= qnj,k+1 −
∆y

2
(qy)

n
j,k+1.

(11)

These local speeds split the control domain Cj,k into nine non-uniform subdomains

including the unsmooth side subdomains Dj,k+ 1
2

and Dj+ 1
2 ,k

, unsmooth corner

subdomain Dj+ 1
2 ,k+

1
2
, and the smooth central subdomain Dj,k, (see figure 1).
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Fig. 1. Computational cells are split into smooth and unsmooth non-uniform quadrilateral subdo-
mains by the maximal local wave speeds.

The vertices zj± 1
4 ,k±

1
4
of these subdomains are estimated by

zj+ 1
4 ,k+

1
4
:= (xj+ 1

2
+∆tn min(a−

j+ 1
2 ,k

, a−
j+ 1

2 ,k+1
), yk+ 1

2
+∆tn min(b−

j,k+ 1
2

, b−
j+1,k+ 1

2

)),

zj− 1
4 ,k+

1
4
:= (xj− 1

2
+∆tn max(a+

j− 1
2 ,k

, a+
j− 1

2 ,k+1
), yk+ 1

2
+∆tn min(b−

j,k+ 1
2

, b−
j−1,k+ 1

2

)),

zj− 1
4 ,k−

1
4
:= (xj− 1

2
+∆tn max(a+

j− 1
2 ,k

, a+
j− 1

2 ,k−1
), yk− 1

2
+∆tn max(b+

j,k− 1
2

, b+
j−1,k− 1

2

)),

zj+ 1
4 ,k−

1
4
:= (xj+ 1

2
+∆tn min(a−

j+ 1
2 ,k

, a−
j+ 1

2 ,k−1
), yk− 1

2
+∆tn max(b+

j,k− 1
2

, b+
j+1,k− 1

2

)).

(12)

Now we integrate the modified balance law (6) over nine subdomains, respec-

tively, to estimate the intermediate cell-averages at time tn+1.

Consider a general quadrilateral D. The integration of (6) over D × [tn, tn+1],

∫ tn+1

tn

∫∫
D

(∆q(x, y, t))t + [f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y dxdydt

=

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt.

(13)
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can be written as∫∫
D

∆q(x, y, tn+1) dxdy −
∫∫

D

∆q(x, y, tn) dxdy

+

∫ tn+1

tn

∫∫
D

[f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y dxdydt

=

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt.

(14)

Moving the second and third integration on the left-hand-side of (14) to the right-

hand-side, and dividing the area |D| into (14), we obtain

wn+1
D :=

1

|D|

∫∫
D

∆q(x, y, tn+1) dxdy

=
1

|D|

∫∫
D

∆q(x, y, tn) dxdy

− 1

|D|

∫ tn+1

tn

∫∫
D

[f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y dxdydt

+
1

|D|

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt.

(15)

where wn+1
D denotes the new cell-average over D at tn+1. Applying the divergence

theorem to the flux integration, we rewrite the (15) in the form of

wn+1
D =∆q

n

D

− 1

|D|

∫ tn+1

tn

∮
∂D

ηx[f(∆q + q̃)− f(q̃)] + ηy[g(∆q + q̃)− g(q̃)] dxdydt

+
1

|D|

∫ tn+1

tn

∫∫
D

S(∆q, x, y) dxdydt,

(16)

where ηx and ηy are the normal vectors, and ∆q
n

D define the cell-average over D at

tn. Then, we discuss the approximations of ∆q
n

D, the flux integral, and the source

integral on the right-hand-side of (16) separately.

Due to the conservation property of the reconstruction Q, the cell-average ∆q
n

D

satisfies the following relation

∆q
n

D :=
1

|D|

∫∫
D

∆q(x, y, tn) dxdy =
1

|D|

∫∫
D

Q(x, y, tn) dxdy. (17)

We use two facts to approximate (17):

(1) The cell-average over D is equal to the average of the sum of the values over the

corresponding subdomains CI
j,k, I = {E,N,W, S,NE,NW,SE, SW}, where CI

j,k

is the union of the subdomain D and the control cell Cj,k.

(2) The cell-average over CI
j,k can be regarded as the value at the centers of mass
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of CI
j,k, which is denoted by ∆q(zIj,k, t) (see figure 2).

The approach here we use for ∆q
n

D is inspired by [Kurganov et al. (2017)], we refer

the reader to pages A951-A952 for more specific details.

Fig. 2. Nine subdomains of the original control cell Cj,k and their center of mass.

The evaluation of the flux integral on (16) is also similar to the the way in

[Kurganov et al. (2017)] that we integrate the fluxes along the four edges of D, and

in order to present formula for different directions, we separate them into two cases.

As shown in figure 3, in case 1, we consider the flux integral over the right and left

edges, and on the other hand, we consider the flux integral over top and bottom

edges in case 2.

Case 1.

Consider the edge connecting the nodes zα,β− 1
4
and zα,β+ 1

4
, where α = j + 1

4 or

j − 1
4 and β = k or k + 1

2 . The flux integration across the edge is defined by

Hα,β :=
1

∆t

∫ tn+1

tn

∫ z
α,β+1

4

z
α,β− 1

4

[
ηxα,β (f(∆q + q̃)− f(q̃))

+ ηyα,β (g(∆q + q̃)− g(q̃))
]
dsdt.

(18)

Applying the midpoint rule in time and the trapezoidal rule in space to (18), we
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Fig. 3. A general quadrilateral with normal η split into two cases.

obtain

Hα,β =

∫ z
α,β+1

4

z
α,β− 1

4

[
ηxα,β

(
f(∆qn+

1
2 + q̃)− f(q̃)

)
+ ηyα,β

(
g(∆qn+

1
2 + q̃)− g(q̃)

)]
ds

=
|zα,β+ 1

4
− zα,β− 1

4
|

2

{
ηxα,β

[
f(∆q

n+ 1
2

α,β− 1
4

+ q̃α,β− 1
4
)− f(q̃α,β− 1

4
)

+f(∆q
n+ 1

2

α,β+ 1
4

+ q̃α,β+ 1
4
)− f(q̃α,β+ 1

4
)
]

+ ηyα,β

[
g(∆q

n+ 1
2

α,β− 1
4

+ q̃α,β− 1
4
)− g(q̃α,β− 1

4
)

+g(∆q
n+ 1

2

α,β+ 1
4

+ q̃α,β+ 1
4
)− g(q̃α,β+ 1

4
)
]}

,

(19)

where the unit normal vectors ηα,β are

ηα,k =
(yα,k+ 1

4
− yα,k− 1

4
, xα,k+ 1

4
− xα,k− 1

4
)

|zα,β+ 1
4
− zα,β− 1

4
|

and ηα,k+ 1
2
= (1, 0), (20)

while xα,β and yα,β denote the coordinates of zα,β .

Case 2.

Consider the edge connecting the nodes zα− 1
4 ,β

and zα+ 1
4 ,β

, where α = j or j + 1
2

and β = k + 1
4 or k − 1

4 . The flux integration across the edge is defined by

Hα,β :=
1

∆t

∫ tn+1

tn

∫ z
α+1

4
,β

z
α− 1

4
,β

[
ηxα,β (f(∆q + q̃)− f(q̃))

+ ηyα,β (g(∆q + q̃)− g(q̃))
]
dsdt.

(21)

Likewise, applying the midpoint rule in time and the trapezoidal rule in space to
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(21) results in

Hα,β =

∫ z
α+1

4
,β

z
α− 1

4
,β

[
ηxα,β

(
f(∆qn+

1
2 + q̃)− f(q̃)

)
+ ηyα,β

(
g(∆qn+

1
2 + q̃)− g(q̃)

)]
ds

=
|zα+ 1

4 ,β
− zα− 1

4 ,β
|

2

{
ηxα,β

[
f(∆q

n+ 1
2

α− 1
4 ,β

+ q̃α− 1
4 ,β

)− f(q̃α− 1
4 ,β

)

+f(∆q
n+ 1

2

α+ 1
4 ,β

+ q̃α+ 1
4 ,β

)− f(q̃α+ 1
4 ,β

)
]

+ ηyα,β

[
g(∆q

n+ 1
2

α− 1
4 ,β

+ q̃α− 1
4 ,β

)− g(q̃α− 1
4 ,β

)

+g(∆q
n+ 1

2

α+ 1
4 ,β

+ q̃α+ 1
4 ,β

)− g(q̃α+ 1
4 ,β

)
]}

,

(22)

where the unit normal vectors ηα,β are

ηj,β =
(yj− 1

4 ,β
− yj+ 1

4 ,β
, xj+ 1

4 ,β
− xj− 1

4 ,β
)

|zα+ 1
4 ,β

− zα− 1
4 ,β

|
and ηj+ 1

2 ,β
= (0, 1). (23)

To obtain the solution at the nodes zj± 1
4 ,k±

1
4
, we apply the Taylor expansion twice

(once in time and once in space), and then get the second-order approximation

∆q
n+ 1

2

j± 1
4 ,k±

1
4

:= ∆qnj± 1
4 ,k±

1
4
+
∆t

2
((∆q)t)

n
j± 1

4 ,k±
1
4

= ∆qnj± 1
4 ,k±

1
4
−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
j± 1

4 ,k±
1
4

+ [(g(∆q + q̃)− g(q̃))y]
n
j± 1

4 ,k±
1
4

]
+

∆t

2
S(∆q)nj± 1

4 ,k±
1
4

:= ∆qnj± 1
4 ,k±

1
4
−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
j,k + [(g(∆q + q̃)− g(q̃))y]

n
j,k

]
+

∆t

2
S(∆q)nj± 1

4 ,k±
1
4
,

(24)

where the values of ∆qn
j± 1

4 ,k±
1
4

are also estimated by the Taylor expansion:

∆qnj± 1
4 ,k±

1
4
:= ∆qnj,k + (xj± 1

4 ,k±
1
4
− xj)(∆qx)

n
j,k + (yj± 1

4 ,k±
1
4
− yk)(∆qy)

n
j,k, (25)

and the slopes (F (∆q)x)
n
j,k := ((f(∆q+ q̃)−f(q̃))x)

n
j,k and (G(∆q)y)

n
j,k := ((g(∆q+

q̃)− g(q̃))y)
n
j,k which can be obtained by using the (MC − θ) limiter:

(F (∆q)x)
n
j,k = minmod

(
θ∆+

x

(
F (∆qnj,k)

)
, ∆0

x

(
F (∆qnj,k)

)
, θ∆−

x

(
F (∆qnj,k)

))
,

(G(∆q)y)
n
j,k = minmod

(
θ∆+

y

(
G(∆qnj,k)

)
, ∆0

y

(
G(∆qnj,k)

)
, θ∆−

y

(
G(∆qnj,k)

))
,

θ ∈ [1, 2].

(26)
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By the approximations (19) and (22), the sum of the flux along the edges yields the

result of the flux integral on (16),

1

|Dα,β |

∫ tn+1

tn

∮
∂Dα,β

ηx[f(∆q+q̃)− f(q̃)] + ηy[g(∆q + q̃)− g(q̃)]dxdydt

=
∆tn

|Dα,β |

[
Hα+ 1

4 ,β
−Hα− 1

4 ,β
+Hα,β+ 1

4
−Hα,β− 1

4

]
,

(27)

where α = j or j ± 1
2 and β = k or k ± 1

2 .

Finally, we consider the last integral on (16). To evaluate the average of the

source term, we use the midpoint rule in time and consider the value at center of

mass ∆q(zIj,k, t) (which is defined in the page A951-A952 of [Kurganov et al. (2017)]

and used for approximating ∆q
n

D). The approximation of the source term over the

central subdomain Dj,k is then defined by

1

|Dj,k|

∫ tn+1

tn

∫∫
Dj,k

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj,k|

∫∫
Dj,k

S(∆q(x, y, tn+
1
2 ))dxdy

=
∆t

|Dj,k|
|Dj,k|S(∆q(zCj,k, t

n+ 1
2 )) =: ∆tSDj,k

(∆q),

(28)

The approximations of the side subdomain Dj+ 1
2 ,k

and Dj,k+ 1
2
, and the corner

Dj+ 1
2 ,k+

1
2
are similar to (17), and the detailed calculations can be found in Appendix

A.

To summarize this evolution step, we substitute the results of the cell-average

(∆q)nD, the flux integral (27), and the source integral (28), (A.1)-(A.3) for (16),

wn+1
Dα,β

= ∆qnDα,β
− ∆tn

|Dα,β |

[
Hα+ 1

4 ,β
−Hα− 1

4 ,β
+Hα,β+ 1

4
− Hα,β− 1

4

]
+∆tSDα,β

(∆q),

(29)

where α = j or j ± 1
2 and β = k or k ± 1

2 .

2.2.3. Projection

At the final procedure, we project the intermediate solutions wn+1
D in (29) back

onto the original uniform cell Cj,k. As stated in the reconstruction step above, to

smooth the solution, we need to define a piecewise-linear reconstruction W̃n+1(x, y)

for wn+1
D .

We firstly consider the central smooth subdomain Dj,k. Since Dj,k ⊂ Cj,k, the

intermediate solution wn+1
Dj,k

is smooth enough and does not need a reconstruction.

Thus,

W̃n+1(x, y) = wn+1
Dj,k

for (x, y) ∈ Dj,k. (30)
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Next, we consider the unsmooth subdomains Dα,β with (α, β) = (j + 1
2 , k),

(j + 1
2 , k + 1

2 ), and (j, k + 1
2 ), and define the reconstruction of the intermediate

solutions over Dα,β by

W̃n+1
Dα,β

= wn+1
Dα,β

+ (x− zn,xDα,β
)(wx)

n+1
Dα,β

+ (y − zn,yDα,β
)(wy)

n+1
Dα,β

(31)

where z
n,x(y)
Dα,β

denote the coordinates of the centers of the mass of domain Dα,β , and

the spatial derivatives are determined by

(wx)
n+1
Dα,β

= minmod(θ
wn+1

Dα,β
− wn+1

D
α− 1

2
,β

zn,xDα,β
− zn,xD

α− 1
2
,β

,
wn+1

D
α+1

2
,β
− wn+1

D
α− 1

2
,β

zn,xD
α+1

2
,β
− zn,xD

α− 1
2
,β

, θ
wn+1

D
α+1

2
,β
− wn+1

Dα,β

zn,xD
α+1

2
,β
− zn,xDα,β

)

(wy)
n+1
Dα,β

= minmod(θ
wn+1

Dα,β
− wn+1

D
α,β− 1

2

zn,yDα,β
− zn,yD

α,β− 1
2

,
wn+1

D
α,β+1

2

− wn+1
D

α,β− 1
2

zn,yD
α,β+1

2

− zn,yD
α,β− 1

2

, θ
wn+1

D
α,β+1

2

− wn+1
Dα,β

zn,yD
α,β+1

2

− zn,yDα,β

),

1 ≤ θ ≤ 2.

(32)

The computation of the centers of mass of domain Dα,β are similar to zIj,k, which

can be found in Appendix A of [Kurganov et al. (2017)].

Then, with the defined reconstruction W̃n+1(x, y), we obtain the new cell-

average over the original cell Cj,k at time tn+1 by

(∆q)n+1
j,k =

1

∆x∆y

∫∫
Cj,k

W̃n+1(x, y) dxdy

=
1

∆x∆y

[
|Dj,k|wn+1

Dj,k
+ |CE

j,k|W̃n+1
D

j+1
2
,k
+ |CNE

j,k |W̃n+1
D

j+1
2
,k+1

2

+ |CN
j,k|W̃n+1

D
j,k+1

2

+ |CNW
j,k |W̃n+1

D
j− 1

2
,k+1

2

+ |CW
j,k|W̃n+1

D
j− 1

2
,k

+ |CSW
j,k |W̃n+1

D
j− 1

2
,k− 1

2

+ |CS
j,k|W̃n+1

D
j,k− 1

2

+ |CSE
j,k |W̃n+1

D
j+1

2
,k− 1

2

]
.

(33)

Finally, adding the hydrostatic solution q̃j,k and the computated solution

(∆q)n+1
j,k , we get the desired solution qn+1

j,k ,

qn+1
j,k = (∆q)n+1

j,k + q̃j,k. (34)

3. 2D Semi-discrete scheme

In this section, we aim to construct a semi-discrete scheme which preserves the char-

acteristics of both the Deviation method and the KT scheme. In the evolution step

above in section 2, we split the control cell to nine subdomains by using the values

of local wave speeds and then approximate the cell-average over each subdomain.

Likewise, the wave speeds are again used to decide the ranges of the subdomains in

this section. Compared to the set-up in section 2, instead of trapezoid subdomains,

we consider the rectangle subdomains in the following construction, which are easier

to be formalized and computed.
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In order to construct the semi-discrete scheme, we first follow the three-steps

structure in section 2.2 to build the fully-discrete scheme. Then we derive the

semi-discrete scheme. In this section we extend ideas from [Kurganov and Petrova.

(2001)], [Kurganov et al. (2001)] and [Kurganov and Lin. (2007)].

3.1. Construction of the fully-discrete scheme

3.1.1. Reconstruction

In this step, we use the same piecewise linear interpolant as in (7), and the same

approximations of the derivatives in the x- and y directions as in (8)-(9).

3.1.2. Evolution

We adopt the same approximation in (11) to compute the reconstructed values at

the interfaces, and set ϵ = 0 in (10) to define the local wave speeds.

As we mentioned earlier, to estimate the values over the Riemann fans, we split

the control cell to nine non-uniform rectangle subdomains, outlined in figure 4.

The specific definitions of ranges of the subdomains are given in page 716 of

[Kurganov et al. (2001)]. Next, we apply (15) to the subdomains Dj+ 1
2 ,k

-, Dj,k+ 1
2
-,

Fig. 4. Computational cells are split into smooth and unsmooth non-uniform rectangular subdo-

mains by the maximal local wave speeds

Dj+ 1
2 ,k+

1
2
- and Dj,k × [tn, tn+1] to compute the intermediate values at time tn+1

denoted by wn+1
j+ 1

2 ,k
, wn+1

j,k+ 1
2

, wn+1
j+ 1

2 ,k+
1
2

and wn+1
j,k respectively. The resultant inte-
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gration can be found in Appendix B.

3.1.3. Projection

Finally, we project the intermediate cell-average wn+1
D back onto the uniform cell

Cj,k = [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] with a suitable reconstruction W̃n+1(x, y) for

unsmooth subdomains. For the subdomain Dj+ 1
2 ,k

, the reconstruction is defined by

W̃n+1
j+ 1

2 ,k
= wn+1

j+ 1
2 ,k

+ (x− xn+1
j+ 1

2 ,k
)(wx)

n+1
j+ 1

2 ,k
+ (y − yn+1

j+ 1
2 ,k

)(wy)
n+1
j+ 1

2 ,k
, (35)

where

xn+1
j+ 1

2 ,k
:= xj+ 1

2
+

a−
j+ 1

2 ,k
+ a+

j+ 1
2 ,k

2
∆t,

yn+1
j+ 1

2 ,k
:= yk +

B+
j+ 1

2 ,k−
1
2

+B−
j+ 1

2 ,k+
1
2

2
∆t,

(36)

are the coordinates of the center of Dj+ 1
2 ,k

, and (wx)
n+1
j+ 1

2 ,k
and (wy)

n+1
j+ 1

2 ,k
are the x

and y numerical derivatives. The reconstructions W̃n+1
j,k+ 1

2

and W̃n+1
j+ 1

2 ,k+
1
2

are defined

in the similar way.

Then, the solution (∆qn+1
j,k ) reduces to

(∆q)n+1
j,k =

1

∆x∆y
×

×

(∑
E,W

∫∫
C

E(W )
j,k

W̃n+1
j± 1

2 ,k
(x, y)dxdy +

∑
N,S

∫∫
C

N(S)
j,k

W̃n+1
j,k± 1

2

(x, y)dxdy

+
∑

NE,NW,SW,SE

∫∫
C

NE(NW )(SW )(SE)
j,k

W̃n+1
j± 1

2 ,k±
1
2

(x, y)dxdy

+

∫∫
Dj,k

wn+1
j,k (x, y)dxdy

)
,

(37)

where subdomains CI
j,k, I = {E,W,N, S,NE,NW,SW,SE} denote the union of

subdomains D and control cell Cj,k.

Next, we proceed to the construction of semi-discrete scheme.
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3.2. New semi-discrete scheme

With the formula (37), to obtain the semi-discrete scheme we consider the following

derivative,

d(∆q)j,k(t)

dt

= lim
∆t→0

(∆q)n+1
j,k − (∆q)nj,k

∆t

= lim
∆t→0

1

∆t
×

×

[
1

∆x∆y

(∑
E,W

∫∫
C

E(W )
j,k

W̃n+1
j± 1

2 ,k
(x, y)dxdy +

∑
N,S

∫∫
C

N(S)
j,k

W̃n+1
j,k± 1

2

(x, y)dxdy

+
∑

NE,NW,SE,SW

∫∫
C

NE(NW )(SE)(SW )
j,k

W̃n+1
j± 1

2 ,k±
1
2

(x, y)dxdy

+

∫∫
Dj,k

wn+1
j,k (x, y)dxdy

)
−∆qn

]
.

(38)

By using the conservation property and some technical derivations (shown in Ap-

pendix C), the semi-discrete scheme then take the form that

d

dt
(∆q)j,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
+ S((∆q)j,k(t)),

(39)

with the numerical fluxes

Hx
j+ 1

2 ,k
=
a+
j+ 1

2 ,k
F ((∆q)Ej,k)− a−

j+ 1
2 ,k

F ((∆q)Wj+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]
,

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

G((∆q)Nj,k)− b−
j,k+ 1

2

G((∆q)Sj,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
,

(40)

where

F ((∆q)Wj+1,k) = f((∆q)Wj+1,k + q̃j+ 1
2 ,k

)− f(q̃j+ 1
2 ,k

),

F ((∆q)Ej,k) = f((∆q)Ej,k + q̃j+ 1
2 ,k

)− f(q̃j+ 1
2 ,k

),

G((∆q)Sj,k+1) = g((∆q)Sj,k+1 + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
),

G((∆q)Nj,k) = g((∆q)Nj,k + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
).

(41)
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3.3. Maximum Principle

Having derived the semi-discrete version of our scheme in (39), we next show a

stability property of our scheme in the following sense. Applying our scheme to a

homogeneous scalar conservation law we can illustrate the maximum principle.

We consider the maximum principle of the 2-d semi-discrete scheme (39) applied

to homogeneous scalar conservation laws,

d

dt
(∆q)j,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
, (42)

with the numerical fluxes (40). We begin by proving the maximum principle for the

deviation.

Theorem 3.1 (Maximum principle) Consider the modified scalar conservation

law

(∆q)t + [f(∆q + q̃)− f(q̃)]x + [g(∆q + q̃)− g(q̃)]y = 0. (43)

and the forward Euler time discretization of the 2-d scheme (42)

(∆q)n+1
j,k = (∆q)nj,k − ∆tn

∆x

[
Hx

j+ 1
2 ,k

(t)−Hx
j− 1

2 ,k
(t)
]
− ∆tn

∆y

[
Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)
]

(44)

with the numerical fluxes (40) and the minmod limiter (C.11).

Assume the following CFL condition holds:

max

(
∆tn

∆x
max
∆q

|F ′(∆q)| , ∆tn

∆y
max
∆q

|G′(∆q)|
)

≤ 1

8
, (45)

then the fully-discrete scheme (44) satisfies the maximum principle

max
j,k

{(∆q)n+1
j,k } ≤ max

j,k
{(∆q)nj,k}. (46)

Proof. The proof is an extension of theorem 3.1 in [Kurganov et al. (2001)]. We

refer the reader to Appendix D.

With the help of Corollary 5.1 and Corollary 5.2 in [Kurganov and Tadmor.

(2000)], we can prove the semi-discrete (42) satisfies the maximum principle.

Remark. Consider a general 2-d Deviation method

d(∆q)j,k
dt

=− 1

∆x

[(
F̂ (qLj+ 1

2 ,k
, qRj+ 1

2 ,k
)− F̂ (q̃Lj+ 1

2 ,k
, q̃Rj+ 1

2 ,k
)
)

−
(
F̂ (qLj− 1

2 ,k
, qRj− 1

2 ,k
)− F̂ (q̃Lj− 1

2 ,k
, q̃Rj− 1

2 ,k
)
)]

− 1

∆y

[(
Ĝ(qLj,k+ 1

2
, qRj,k+ 1

2
)− Ĝ(q̃Lj,k+ 1

2
, q̃Rj,k+ 1

2
)
)

−
(
Ĝ(qLj,k− 1

2
, qRj,k− 1

2
)− Ĝ(q̃Lj,k− 1

2
, q̃Rj,k− 1

2
)
)]

,

(47)
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where F̂ and Ĝ are numerical flux functions and

q
L(R)

j± 1
2 ,k

= (∆q)
L(R)

j± 1
2 ,k

+ q̃
L(R)

j± 1
2 ,k

. (48)

We find the local truncation error of the finite volume (FV) method (47) evaluated

at the stationary solution q̃:

Res(q̃j,k) :=− 1

∆x

[
F̂ (q̃Lj+ 1

2 ,k
, q̃Rj+ 1

2 ,k
)− F̂ (q̃Lj− 1

2 ,k
, q̃Rj− 1

2 ,k
)
]

− 1

∆y

[
Ĝ(q̃Lj,k+ 1

2
, q̃Rj,k+ 1

2
)− Ĝ(q̃Lj,k− 1

2
, q̃Rj,k− 1

2
)
]
= O((∆x)a + (∆y)b),

(49)

where N := min{a, b} represents the order of accuracy of the method.

Then, applying the forward Euler method in time to (47) and adding the sta-

tionary solution both to the left and to the right hand side of (47), and using (49)

we obtain the solution qj,k by

qn+1
j,k = qnj,k − ∆t

∆x
[F̂ (qLj+ 1

2 ,k
, qRj+ 1

2 ,k
)− F̂ (qLj− 1

2 ,k
, qRj− 1

2 ,k
)]

− ∆t

∆y
[Ĝ(qLj,k+ 1

2
, qRj,k+ 1

2
)− Ĝ(qLj,k− 1

2
, qRj,k− 1

2
)]−∆tRes(q̃j,k).

(50)

Set Q̂ is the solution of the FV method, which satisfies the following scheme

Q̂n+1
j,k = qnj,k − ∆t

∆x
[F̂ (qLj+ 1

2 ,k
, qRj+ 1

2 ,k
)− F̂ (qLj− 1

2 ,k
, qRj− 1

2 ,k
)]

− ∆t

∆y
[Ĝ(qLj,k+ 1

2
, qRj,k+ 1

2
)− Ĝ(qLj,k− 1

2
, qRj,k− 1

2
)].

(51)

Then, combining (51) and (50) yields

qn+1
j,k = Q̂n+1

j,k −∆tRes(q̃j,k). (52)

Now, we assume Q̂ satisfies the maximum principle under some CFL conditions;

i.e.,

max
j,k

{Q̂n+1
j,k } ≤ max

j,k
{Q̂n

j,k}. (53)

According to (53) and the relation (52), we can derive that

max
j,k

{qn+1
j,k } = max

j,k
{Q̂n+1

j,k −∆tRes(q̃j,k)}

≤ max
j,k

{Q̂n+1
j,k }+max

j,k
{∆tRes(q̃j,k)}

≤ max
j,k

{Q̂n
j,k}+max

j,k
{∆tRes(q̃j,k)}

≤ max
j,k

{q̂nj,k +∆tRes(q̃j,k)}+max
j,k

{∆tRes(q̃j,k)}

≤ max
j,k

{q̂nj,k}+O
(
∆t((∆x)a + (∆y)b)

)
.

(54)



June 4, 2024 19:35 WSPC/INSTRUCTION FILE output

17

For a large number of grid points, the error term in (54) is small, in fact it is of

order N +1. Hence, the solution q in (54) satisfies the maximum principle up to at

most one order higher than the order of the scheme.

Since the KT-type scheme has been proved in [Kurganov et al. (2001)] that to

satisfy the maximum principle, the semi-discrete scheme constructed in section 3.2

(essentially) does not violate the maximum principle.

4. Numerical experiments and validations

In this section, we present the results of a number of numerical experiments in

the Euler system with gravitational source term by employing our designed well-

balanced fully-discrete scheme in section 2. In all the tests, the parameter of the

(MC − θ) limiter is set as θ = 1.5. With the help of the CFL condition, the

computation of the time-step is defined by

∆t = CFL ·min

{
∆x

max
j,k

(a+
j+ 1

2 ,k
,−a−

j+ 1
2 ,k

)
,

∆y

max
j,k

(b+
j,k+ 1

2

,−b−
j,k+ 1

2

)

}
, (55)

with CFL (number) = 0.45 and ϵ in the definition of local wave speeds (10) is given

by 10−8.

Consider the 2-d Euler system with the gravitational source term as follows,{
qt + f(q)x + g(q)y = S(q, x), x, y ∈ Ω ⊂ R, t > 0

q(x, y, 0) = q0(x, y),
(56)

where

q =


ρ

ρu1

ρu2

E

 , f(q) =


ρu1

ρu2
1 + p

ρu1u2

(E + p)u1

 , g(q) =


ρu2

ρu1u2

ρu2
2 + p

(E + p)u2

 ,

and

S(u) =


0

−ρϕx

−ρϕy

−ρu1ϕx − ρu2ϕy

 .

The given function ϕ = ϕ(x, y) is the gravitational field and the ratio of specific

heats γ is set to be 1.4 for an ideal gas.

4.1. Isothermal Equilibrium

The first numerical experiment we consider is isothermal equilibrium presented in

[Touma et al. (2016)].
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The 2-d isothermal equilibrium state is given by

ρ(x, y) = ρ0 exp(−
ρ0
p0

(ϕxx+ ϕyy)),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = p0 exp(−
ρ0
p0

(ϕxx+ ϕyy)).

(57)

Here, we set ρ0 = 1.21 and p0 = 1. The linear gravitational potential is given by

ϕx = 1 and ϕy = 1. The chosen stationary solution q̃ is the isothermal equilibrium

state and the outflow boundary condition is considered in this experiment. The

solution is computed on the 200 × 200 grid points in the square [0, 1]2 until the

final time t = 0.25 and presented in the top of the figure 5. Compared to the exact

solution shown in the lower part of the figure 5, both of the graphics of the density

and the energy are as same as the exact solutions.

New scheme: Density New scheme: Energy

Exact solution: Density Exact solution: Energy

Fig. 5. Results of 2-d isothermal equilibrium: the top two figures are the results from our new
scheme; the two below are the exact solutions.
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4.2. Isothermal Equilibrium with Perturbation

This example is an extension of the previous experiment by adding a small pertur-

bation along the x- or the y-axis to the initial pressure. For the case along x-axis,

the initial state is set as

ρ(x, y) = exp(−x),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = exp(−x) + η exp(−100(x− 0.5)2).

(58)

For the case along y axis, the initial data is defined similarly. Figure 6 shows the

perturbation along the x- and y- axes, respectively on 200× 200 grid points at the

initial time t = 0 and the final time t = 0.25. The comparison of the cross sections

of the perturbation between the initial time and the final time is presented in figure

7.

To test the order of convergence, we use the solution on a finer grid consisting

of 640× 640 as the reference solution, and we set the CFL number to be 0.485. The

results are reported in table 1.

N ρ L1-error rate p L1-error rate E L1-error rate

402 1.87E-05 - 1.67E-05 - 4.19E-05 -

802 8.93E-06 1.06 1.05E-05 0.67 2.62E-05 0.67

1602 3.42E-06 1.38 3.89E-06 1.43 9.72E-06 1.43

3202 1.06E-06 1.69 9.64E-07 2.01 2.41E-06 2.01

Table 1. 2-d isothermal equilibrium with perturbation: L1-errors and convergence rates.

4.3. Moving Equilibrium

Next, we test our scheme if it is capable of preserving moving equilibrium states.

On the basis of the discussion in [Veiga, M. H. (2019)], we set the initial state of

this experiment by

ρ(x, y) = ρ0 exp(−
ρ0g

p0
(x+ y)),

u1(x, y) = exp(x+ y),

u2(x, y) = exp(x+ y),

p(x, y) = exp(−ρ0g

p0
(x+ y))γ ,

(59)

with ρ0 = 1, p0 = 1, and g = 1. The considered nonlinear gravitational potential is

ϕ(x, y) = exp(x+y)(− exp(x+y)+γ(exp(−γ(x+y)))). We consider the experiments

along the x- and y- axes separately as in the previous test case. The stationary
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Initially along x at t=0.25 along x

Initially along y at t=0.25 along y

Fig. 6. Results of 2-d unidirectional equilibrium perturbation.

along x-axis along y-axis.

Fig. 7. Results of 2-d unidirectional equilibrium perturbation: Initial perturbation at t=0 and the

later perturbation at the final time t=0.25.

solution used here is the equilibrium state itself and the chosen boundary condition

is also the outflow boundary condition. We compute the solution on 60 × 10 grid
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points along the x-axis and on 10 × 60 grid points along the y-axis until the final

time t = 0.25. The figure 8 shows the results of cross sections along the x- and along

the y- axes and we compare them to the exact solution.

along x-axis along y-axis.

Fig. 8. Results of 2-d moving equilibrium at the final time t=0.25 compared to the exact solution.

4.4. Shock Tube Problem

The fourth experiment we consider is the shock tube problem along x-axis (see

[Kanbar et al. (2020)]. The initial data for this test is given by

ρ(x, y) =

{
1, if x ≤ 0.5,

0.125, otherwise,

u1(x, y) = 0 = u2(x, y),

p(x, y) =

{
1, if x ≤ 0.5,

0.1, otherwise.

(60)

We adopt the isothermal equilibrium to be the stationary solution and choose the

reflecting boundary condition for this experiment. In figures 9 and 10, we show

the solutions on 400 × 10 and 800 × 10 grid points until the final time t = 0.2;

the reference solution on 800 × 10 grid points is obtained following the method

presented in [Kanbar et al. (2020)]. The performed results demonstrate our scheme

can provide high resolution and the obtained solution is slightly better than the

compared solution.

In figure 11, we compare the profile of the density on 200 × 10 grid points

obtained using the reconstruction technique (31) at the projection step with the

solution on 200 × 10 grid points obtained without reconstruction, i.e., we consider

the reconstruction on non-smooth subdomains as

W̃n+1
Dα,β

= wn+1
Dα,β

, (x, y) ∈ Dα,β ,
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where Dα,β = {Dj+ 1
2 ,k

, Dj+ 1
2 ,k+

1
2
, Dj,k+ 1

2
}. According to this figure, our recon-

structed polynomial in projection step help to gain the higher resolution at the

shocks.

Density

Zoom in on the first block Zoom in on the second block

Zoom in on the third block Zoom in on the fourth block

Fig. 9. Results of 2-d shock tube problem along the x-axis: density and zoom in on the shocks.
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(a) Velocity (b) Zoom in on the block in the figure (a)

(c) Energy (d) Pressure.

Fig. 10. Results of 2D shock tube problem along the x-axis: velocity, zoom in on the figure of

velocity, energy and pressure.

Fig. 11. Results of 2D shock tube problem along the x-axis: profile of the density obtained with
and without reconstruction.

5. Conclusion

We constructed a new fully-discrete, well-balanced, central scheme by blending the

ideas of the KT scheme and the Deviation method and this preserves the advantages
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of the mentioned two approaches. The simulations of the Euler equations with

gravitational source term are closed to the reference solution and achieve the second

order accuracy. For our semi-discrete scheme in section 3, it is essentially non-

oscillatory from the proof of the maximum principle. Our work demonstrates that

the blend of the KT scheme and the Deviation method makes a success on solving

the Euler equations with gravity. In our future work, we plan to apply our scheme

to other systems to examine its further practicality.
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Appendix A. Approximation of source term

Based on the two facts used to approximate (17), we estimate the source term on

the side subdomain Dj+ 1
2 ,k

at time tn+1 by

1

|Dj+ 1
2 ,k

|

∫ tn+1

tn

∫∫
D

j+1
2
,k

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj+ 1
2 ,k

|

∫∫
D

j+1
2
,k

S(∆q(x, y, tn+
1
2 ))dxdy

=
∆t

|Dj+ 1
2 ,k

|

[∫∫
CE

j,k

S(∆q(x, y, tn+
1
2 ))dxdy +

∫∫
CW

j+1,k

S(∆q(x, y, tn+
1
2 ))dxdy

]

=
∆t

|Dj+ 1
2 ,k

|

[
|CE

j,k|S(∆q(zEj,k, t
n+ 1

2 )) + |CW
j+1,k|S(∆q(zWj+1,k, t

n+ 1
2 ))
]

=: ∆tSD
j+1

2
,k
(∆q).

(A.1)

By using the same way, the approximation on the side subdomain Dj,k+ 1
2
and the

corner subdomain Dj+ 1
2 ,k+

1
2
can be calculated as follows,

1

|Dj,k+ 1
2
|

∫ tn+1

tn

∫∫
D

j,k+1
2

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj,k+ 1
2
|

∫∫
D

j,k+1
2

S(∆q(x, y, tn+
1
2 ))dxdy

=
∆t

|Dj,k+ 1
2
|

[∫∫
CN

j,k

S(∆q(x, y, tn+
1
2 ))dxdy +

∫∫
CS

j,k+1

S(∆q(x, y, tn+
1
2 ))dxdy

]

:=
∆t

|Dj,k+ 1
2
|

[
|CN

j,k|S(∆q(zNj,k, t
n+ 1

2 )) + |CS
j,k+1|S(∆q(zSj,k+1, t

n+ 1
2 ))

]
=: ∆tSD

j,k+1
2

(∆q),

(A.2)

and

1

|Dj+ 1
2 ,k+

1
2
|

∫ tn+1

tn

∫∫
D

j+1
2
,k+1

2

S(∆q(x, y, t))dxdydt

:=
∆t

|Dj+ 1
2 ,k+

1
2
|

[
|CNE

j,k |S(∆q(zNE
j,k , tn+

1
2 )) + |CNW

j+1,k|S(∆q(zNW
j+1,k, t

n+ 1
2 ))

+ |CSE
j,k+1|S(∆q(zSE

j,k+1, t
n+ 1

2 )) + |CSW
j+1,k+1|S(∆q(zSW

j+1,k+1, t
n+ 1

2 ))

]
=: ∆tSD

j+1
2
,k+1

2

(∆q)

(A.3)
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Similar to the approximation (24), the value at the center of mass, ∆q(zIj,k, t
n+ 1

2 ),

is given by the Taylor expansion,

∆q
n+ 1

2

zI
j,k

:= ∆qnzI
j,k

+
∆t

2
(∆qt)

n
zI
j,k

= ∆qnzI
j,k

−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
zI
j,k

+ [(g(∆q + q̃)− g(q̃))y]
n
zI
j,k

]
+

∆t

2
S(∆q)nzI

j,k

:= ∆qnzI
j,k

−∆t

2

[
[(f(∆q + q̃)− f(q̃))x]

n
j,k + [(g(∆q + q̃)− g(q̃))y]

n
j,k

]
+

∆t

2
S(∆q)nzI

j,k
.

(A.4)

Appendix B. Intermediate values at the evolution step in section

3.1.2

Applying (15) to the rectangle subdomains in figure 4 yield the intermediate values

on these subdomains at time tn+1,

wn+1
j+ 1

2 ,k
=

1

|Dj+ 1
2 ,k

|

∫∫
D

j+1
2
,k

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫ y
k+1

2
+B−

j+1
2
,k+1

2

∆t

y
k− 1

2
+B+

j+1
2
,k− 1

2

∆t

[
f(∆q + q̃)− f(q̃)

]x
j+1

2
+a+

j+1
2
,k
∆t

x=x
j+1

2
+a−

j+1
2
,k
∆t

dydt

−
∫ tn+1

tn

∫ x
j+1

2
+a+

j+1
2
,k
∆t

x
j+1

2
+a−

j+1
2
,k
∆t

[
g(∆q + q̃)− g(q̃)

]y
j+1

2
+B−

j+1
2
,k+1

2

∆t

y=y
k− 1

2
+B+

j+1
2
,k+1

2

∆t
dxdt

+

∫ tn+1

tn

∫∫
D

j+1
2
,k

S(∆q) dxdydt

 ,

(B.1)
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wn+1
j,k+ 1

2

=
1

|Dj,k+ 1
2
|

∫∫
D

j,k+1
2

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫ y
k+1

2
+b+

j,k+1
2

∆t

y
k+1

2
+b−

j,k+1
2

∆t

[
f(∆q + q̃)− f(q̃)

]x
j+1

2
+A−

j+1
2
,k+1

2

∆t

x=x
j− 1

2
+A+

j− 1
2
,k+1

2

∆t
dydt

−
∫ tn+1

tn

∫ x
j+1

2
+A−

j+1
2
,k+1

2

∆t

x
j− 1

2
+A+

j− 1
2
,k+1

2

∆t

[
g(∆q + q̃)− g(q̃)

]y
k+1

2
+b+

j,k+1
2

∆t

y=y
k+1

2
+b−

j,k+1
2

∆t
dxdt

+

∫ tn+1

tn

∫∫
D

j,k+1
2

S(∆q) dxdydt

 ,

(B.2)

wn+1
j+ 1

2 ,k+
1
2

=
1

|Dj+ 1
2 ,k+

1
2
|

∫∫
D

j+1
2
,k+1

2

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫∫
D

j+1
2
,k+1

2

[
f(∆q + q̃)− f(q̃)

]
x
dxdydt

−
∫ tn+1

tn

∫∫
D

j+1
2
,k+1

2

[
g(∆q + q̃)− g(q̃)

]
y
dxdydt

+

∫ tn+1

tn

∫∫
D

j+1
2
,k+1

2

S(∆q) dxdydt

 ,

(B.3)

and

wn+1
j,k =

1

|Dj,k|

[∫∫
Dj,k

Q(x, y, tn) dxdy

−
∫ tn+1

tn

∫∫
Dj,k

[f(∆q + q̃)− f(q̃)]x dxdydt

−
∫ tn+1

tn

∫∫
Dj,k

[g(∆q + q̃)− g(q̃)]y dxdydt

+

∫ tn+1

tn

∫∫
Dj,k

S(∆q) dxdydt

]
.

(B.4)
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Appendix C. Derivation of the semi-discrete scheme

Due to the conservation property, the last integral on the right-hand-side of (38)

has the relation that ∫∫
Dj,k

wn+1
j,k (x, y)dxdy = |Dj,k|wn+1

j,k . (C.1)

For S = (j ± 1
2 , k), (j, k ± 1

2 ), (j ±
1
2 , k ± 1

2 ), according to the approximation of

W̃n+1
S (x, y) in (35), we have the relation between W̃n+1

S and wn+1
S :

W̃n+1
S (x, y) = wn+1

S +O(∆t). (C.2)

Since the areas of the domain C
E(W )
j,k , C

N(S)
j,k , and C

NE(NW )(SE)(SW )
j,k are evaluated

by

|CE(W )
j,k | = ∆t∆y(∓a∓

j± 1
2 ,k

) +O((∆t)2),

|CN(S)
j,k | = ∆t∆x(∓b∓

j,k± 1
2

) +O((∆t)2),

|CNE(NW )(SE)(SW )
j,k | = O((∆t)2),

(C.3)

the relation between W̃n+1
S and wn+1

S can be written as∫∫
C

E(W )
j,k

W̃j± 1
2 ,k

dxdy = |CE(W )
j,k |wn+1

j± 1
2 ,k

+O((∆t)2),∫∫
C

N(S)
j,k

W̃j,k± 1
2
dxdy = |CN(S)

j,k |wn+1
j,k± 1

2

+O((∆t)2),∫∫
C

NE(NW )(SE)(SW )
j,k

W̃n+1
j± 1

2 ,k±
1
2

dxdy = O((∆t)2).

(C.4)

As ∆t → 0, the values at the corner vanish, because the area are proportional to

(∆t)2. Thus, (38) reduces to

d(∆q)j,k(t)

dt
= lim

∆t→0

1

∆t

[
1

∆x∆y

(
|CE(W )

j,k |wn+1
j± 1

2 ,k
+ |CN(S)

j,k |wn+1
j,k± 1

2

+ |Dj,k|wn+1
j,k

)
−∆qnj,k

]
(C.5)

Applying the areas of C
E(W )
j,k and C

N(S)
j,k to the first and the second term on the

right-hand-side of (C.5) respectively, we obtain that

lim
∆t→0

|CE(W )
j,k |

∆t∆x∆y
wn+1

j± 1
2 ,k

= −
a∓
j± 1

2 ,k

∆x
lim

∆t→0
wn+1

j± 1
2 ,k

,

lim
∆t→0

|CN(S)
j,k |

∆t∆x∆y
wn+1

j,k± 1
2

= −
b∓
j,k± 1

2

∆y
lim

∆t→0
wn+1

j,k± 1
2

.

(C.6)
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Then using the approximations of wn+1
j+ 1

2 ,k
and wn+1

j,k+ 1
2

in (B.1) and (B.2) to substitute

the values in (C.6) results in

lim
∆t→0

|CE(W )
j,k |

∆t∆x∆y
wn+1

j± 1
2 ,k

=− 1

(a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)∆x
×[

a−
j± 1

2 ,k
a+
j± 1

2 ,k
(∆q)

W (E)
j±1,k − (a∓

j± 1
2 ,k

)2(∆q)
E(W )
j,k

]
+

a∓
j± 1

2 ,k

(a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)∆x

[
F ((∆q)

W (E)
j±1,k)− F ((∆q)

E(W )
j,k )

]
,

lim
∆t→0

|CN(S)
j,k |

∆t∆x∆y
wn+1

j,k± 1
2

=− 1

(b+
j,k± 1

2

− b−
j,k± 1

2

)∆y
×[

b−
j,k± 1

2

b+
j,k± 1

2

(∆q)
S(N)
j,k±1 − (b∓

j,k± 1
2

)2(∆q)
N(S)
j,k

]
+

b∓
j,k± 1

2

(b+
j,k± 1

2

− b−
j,k± 1

2

)∆y

[
G((∆q)

S(N)
j,k±1)−G((∆q)

N(S)
j,k )

]
,

(C.7)

where

F ((∆q)Wj+1,k) = f((∆q)Wj+1,k + q̃j+ 1
2 ,k

)− f(q̃j+ 1
2 ,k

),

F ((∆q)Ej,k) = f((∆q)Ej,k + q̃j+ 1
2 ,k

)− f(q̃j+ 1
2 ,k

),
(C.8)

and

G((∆q)Sj,k+1) = g((∆q)Sj,k+1 + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
),

G((∆q)Nj,k) = g((∆q)Nj,k + q̃j,k+ 1
2
)− g(q̃j,k+ 1

2
).

(C.9)

Here, the notation (∆q)I with I = {E,W,N, S} is defined similarly to (11) by

(∆q)Ej,k := (∆q)nj,k +
∆x

2
((∆q)x)

n
j,k, (∆q)Wj,k := (∆q)nj,k − ∆x

2
((∆q)x)

n
j,k,

(∆q)Nj,k := (∆q)nj,k +
∆y

2
((∆q)y)

n
j,k, (∆q)Sj,k := (∆q)nj,k − ∆y

2
((∆q)y)

n
j,k,

(C.10)

with the MC − θ limiter

((∆q)x)
n
j,k

:= minmod

(
θ
(∆q)nj,k − (∆q)nj−1,k

∆x
,
(∆q)nj+1,k − (∆q)nj−1,k

2∆x
, θ

(∆q)nj+1,k − (∆q)nj,k
∆x

)
,

((∆q)x)
n
j,k

:= minmod

(
θ
(∆q)nj,k − (∆q)nj,k−1

∆y
,
(∆q)nj,k+1 − (∆q)nj,k−1

2∆y
, θ

(∆q)nj,k+1 − (∆q)nj,k
∆y

)
,

(C.11)

and 1 ≤ θ ≤ 2. The detailed computation of (C.7) is similar to the derivation in

section 3.3 of [Kurganov and Petrova. (2001)].
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Next, we consider the rest terms on the right-hand-side of (C.5). The subdomain

Dj,k can be regarded as a rectangle when ∆t → 0, up to small corners of a negligible

size O((∆t)2). Applying (B.4) to the rest terms yields that

lim
∆t→0

1

∆t

[
1

∆x∆y
|Dj,k|wn+1

j,k −∆qnj,k

]
=[

a−
j+ 1

2 ,k

∆x
(∆q)Ej,k +

b−
j,k+ 1

2

∆y
(∆q)Nj,k −

a+
j− 1

2 ,k

∆x
(∆q)Wj,k −

b+
j,k− 1

2

∆y
(∆q)Sj,k

]

− 1

∆x

[
F ((∆q)Ej,k)− F ((∆q)Wj,k)

]
− 1

∆y

[
G((∆q)Nj,k)−G((∆q)Sj,k)

]
+ S((∆q)j,k)]

(C.12)

Finally, combining (C.7) and (C.12), the semi-discrete scheme takes the form

d

dt
(∆q)j,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
+ S((∆q)j,k(t))

(C.13)

with the numerical fluxes

Hx
j+ 1

2 ,k
=
a+
j+ 1

2 ,k
F ((∆q)Ej,k)− a−

j+ 1
2 ,k

F ((∆q)Wj+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]
,

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

G((∆q)Nj,k)− b−
j,k+ 1

2

G((∆q)Sj,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
.

(C.14)
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Appendix D. Maximum Principle

We begin with the explicit form of (44),

(∆q)n+1
j,k = (∆q)nj,k − λn

(a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)

[
a+
j+ 1

2 ,k
F ((∆q)Ej,k)− a−

j+ 1
2 ,k

F ((∆q)Wj+1,k)
]

+
λn

(a+
j− 1

2 ,k
− a−

j− 1
2 ,k

)

[
a+
j− 1

2 ,k
F ((∆q)Ej−1,k)− a−

j− 1
2 ,k

F ((∆q)Wj,k)
]

−
λn(a+

j+ 1
2 ,k

a−
j+ 1

2 ,k
)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]
+

λn(a+
j− 1

2 ,k
a−
j− 1

2 ,k
)

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

[
(∆q)Wj,k − (∆q)Ej−1,k

]
− µn

(b+
j,k+ 1

2

− b−
j,k+ 1

2

)

[
b+
j,k+ 1

2

G((∆q)Nj,k)− b−
j,k+ 1

2

G((∆q)Sj,k+1)
]

+
µn

(b+
j,k− 1

2

− b−
j,k− 1

2

)

[
b+
j,k− 1

2

G((∆q)Nj,k−1)− b−
j,k− 1

2

G((∆q)Sj,k)
]

−
µn(b+

j,k+ 1
2

b−
j,k+ 1

2

)

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
+

µn(b+
j,k− 1

2

b−
j,k− 1

2

)

b+
j,k− 1

2

− b−
j,k− 1

2

[
(∆q)Sj,k − (∆q)Nj,k−1

]
.

(D.1)

All the terms on the right-hand of (D.1) are taken at the time step tn. By the

definition (C.10), we have the equality

(∆q)nj,k =
(∆q)Ej,k + (∆q)Wj,k + (∆q)Nj,k + (∆q)Sj,k

4
. (D.2)
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Then we substitute (D.2) for (∆q)nj,k and adjust the other terms in (D.1),

(∆q)n+1
j,k =

(∆q)Ej,k + (∆q)Wj,k + (∆q)Nj,k + (∆q)Sj,k
4

+ λn

[
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
F ((∆q)Wj+1,k)− F ((∆q)Ej,k)

]
− F ((∆q)Ej,k)

]

− λn

[
a+
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

[
F ((∆q)Wj,k)− F ((∆q)Ej−1,k)

]
− F ((∆q)Wj,k)

]

− λn
(a+

j+ 1
2 ,k

a−
j+ 1

2 ,k
)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]

+ λn
(a+

j− 1
2 ,k

a−
j− 1

2 ,k
)

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

[
(∆q)Wj,k − (∆q)Ej−1,k

]

+ µn

[
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
G((∆q)Sj,k+1)−G((∆q)Nj,k)

]
−G((∆q)Nj,k)

]

− µn

[
b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

[
G((∆q)Sj,k) +G((∆q)Nj,k−1)

]
−G((∆q)Sj,k)

]

− µn
(b+

j,k+ 1
2

b−
j,k+ 1

2

)

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]

+ µn
(b+

j,k− 1
2

b−
j,k− 1

2

)

b+
j,k− 1

2

− b−
j,k− 1

2

[
(∆q)Sj,k − (∆q)Nj,k−1

]
. (D.3)

To simplify notations, we use the abbreviations used in [Kurganov and Tadmor.

(2000)]

∆x
j+ 1

2 ,k
(∆q) := (∆q)Wj+1,k(t

n)− (∆q)Ej,k(t
n),

∆x
j,kF := F ((∆q)Ej,k)− F ((∆q)Wj,k)

∆x
j,kG := G((∆q)Nj,k)−G((∆q)Sj,k).

(D.4)
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Then we rewrite the (D.3) as

(∆q)n+1
j,k =

(∆q)Ej,k + (∆q)Wj,k + (∆q)Nj,k + (∆q)Sj,k
4

+ λn

[
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

∆x
j+ 1

2 ,k
F

∆x
j+ 1

2 ,k
(∆q)

[
(∆q)Wj+1,k − (∆q)Ej,k

]
−

∆x
j,kF

∆x
j,k(∆q)

[
(∆q)Ej,k − (∆q)Wj,k

]
−

a+
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

∆x
j− 1

2 ,k
F

∆x
j− 1

2 ,k
(∆q)

[
(∆q)Wj,k − (∆q)Ej−1,k

]]

− λn
(a+

j+ 1
2 ,k

a−
j+ 1

2 ,k
)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(∆q)Wj+1,k − (∆q)Ej,k

]

+ λn
(a+

j− 1
2 ,k

a−
j− 1

2 ,k
)

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

[
(∆q)Wj,k − (∆q)Ej−1,k

]

+ µn

[
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

∆y

j,k+ 1
2

G

∆y

j,k+ 1
2

(∆q)

[
(∆q)Sj,k+1 − (∆q)Nj,k

]
−

∆y
j,kG

∆y
j,k(∆q)

[
(∆q)Nj,k − (∆q)Sj,k

]
−

b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

∆y

j,k− 1
2

G

∆y

j,k− 1
2

(∆q)

[
(∆q)Sj,k − (∆q)Nj,k−1

]]

− µn
(b+

j,k+ 1
2

b−
j,k+ 1

2

)

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
(∆q)Sj,k+1 − (∆q)Nj,k

]

+ µn
(b+

j,k− 1
2

b−
j,k− 1

2

)

b+
j,k− 1

2

− b−
j,k− 1

2

[
(∆q)Sj,k − (∆q)Nj,k−1

]
(D.5)
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Collecting the coefficients of (∆q)Wj+1,k, (∆q)
E(W )
j,k , (∆q)Ej−1,k, and (∆q)Sj,k+1,

(∆q)
N(S)
j,k , (∆q)Nj,k−1,

(∆q)n+1
j,k =λn

(
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

∆x
j+ 1

2 ,k
F

∆x
j+ 1

2 ,k
(∆q)

−
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)
(∆q)Wj+1,k

+

[
1

4
− λn

(
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

∆x
j+ 1

2 ,k
F

∆x
j+ 1

2 ,k
(∆q)

+
∆x

j,kF

∆x
j,k(∆q)

−
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)]
(∆q)Ej,k

+

[
1

4
+ λn

(
∆x

j,kF

∆x
j,k(∆q)

−
a+
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

∆x
j− 1

2 ,k
F

∆x
j− 1

2 ,k
(∆q)

+
a+
j− 1

2 ,k
a−
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

)]
(∆q)Wj,k

+ λn

(
a+
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

∆x
j− 1

2 ,k
F

∆x
j− 1

2 ,k
(∆q)

−
a+
j− 1

2 ,k
a−
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

)
(∆q)Ej−1,k

+ µn

(
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

∆y

j,k+ 1
2

G

∆y

j,k+ 1
2

(∆q)
−

b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

)
(∆q)Sj,k+1

+

[
1

4
− µn

(
b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

∆y

j,k+ 1
2

G

∆y

j,k+ 1
2

(∆q)
+

∆y
j,kG

∆y
j,k(∆q)

−
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

)]
(∆q)Nj,k

+

[
1

4
+ µn

(
∆y

j,kG

∆y
j,k(∆q)

−
b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

∆y

j,k− 1
2

G

∆y

j,k− 1
2

(∆q)

+
b+
j,k− 1

2

b−
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

)]
(∆q)Sj,k

+ µn

(
b+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

∆y

j,k− 1
2

G

∆y

j,k− 1
2

(∆q)
−

b+
j,k− 1

2

b−
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

)
(∆q)Nj,k−1.

(D.6)

Next, we discuss the coefficients. Due to the fact that F ′(∆q) = f ′(q) (see lemma

2.1) and the fact that a±
j+ 1

2 ,k
is the maximal speed on its direction, which is deter-

mined from the flux derivatives, (consult the definition (10)), we obtain the following
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inequalities:

a+
j+ 1

2 ,k
≥ 0 and |

∆x
j+ 1

2 ,k
F

∆x
j+ 1

2 ,k
(∆q)

| ≤ a+
j+ 1

2 ,k
,

a−
j+ 1

2 ,k
≤ 0, and |

∆x
j+ 1

2 ,k
F

∆x
j+ 1

2 ,k
(∆q)

| ≤ −a−
j+ 1

2 ,k
.

(D.7)

Hence, the rearranged coefficients of (∆q)Wj+1,k and (∆q)Ej−1,k are non-negative,

λn
(−a−

j+ 1
2 ,k

)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k︸ ︷︷ ︸

≥0

[
a+
j+ 1

2 ,k
−

∆x
j+ 1

2 ,k
F

∆x
j+ 1

2 ,k
(∆q)

]
︸ ︷︷ ︸

≥0

≥ 0

λn
a+
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k︸ ︷︷ ︸

≥0

[
∆x

j− 1
2 ,k

F

∆x
j− 1

2 ,k
(∆q)

− a−
j− 1

2 ,k

]
︸ ︷︷ ︸

≥0

≥ 0.

(D.8)

The coefficients of (∆q)Ej,k and (∆q)Wj,k are also non-negative due to the CFL as-

sumption (45). By the assumption (45), we have

λna+
j+ 1

2 ,k
≤ 1

8
and − 1

8
≤ λna−

j+ 1
2 ,k

. (D.9)

The above inequalities imply

λna+
j+ 1

2 ,k
− λna−

j+ 1
2 ,k

≤ 1

4

⇒ 4 ≤ 1

λna+
j+ 1

2 ,k
− λna−

j+ 1
2 ,k

⇒ − 1

2
≤

λna−
j+ 1

2 ,k

λna+
j+ 1

2 ,k
− λna−

j+ 1
2 ,k

⇒
−λna−

j+ 1
2 ,k

λna+
j+ 1

2 ,k
− λna−

j+ 1
2 ,k

≤ 1

2

(D.10)

Hence, the coefficient of (∆q)Ej,k is non-negative because of

1

4
+

(−a−
j+ 1

2 ,k
)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k︸ ︷︷ ︸

≤ 1
2

(
λn

∆x
j+ 1

2 ,k
F

∆x
j+ 1

2 ,k
(∆q)︸ ︷︷ ︸

≥− 1
8

−λna+
j+ 1

2 ,k︸ ︷︷ ︸
≥− 1

8

)
−λn

∆x
j,kF

∆x
j,k(∆q)︸ ︷︷ ︸

≥− 1
8

≥ 0.
(D.11)

By the same way, the coefficient of (∆q)Wj,k can be proved to be non-negative, and

the other four coefficients as well. Since all the coefficients are non-negative and
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the sum of the coefficients are equal to 1, the combination on the right-hand-side

of (D.6) is a convex combination. Hence,

(∆q)n+1
j,k ≤ max

(
(∆q)Wj+1,k, (∆q)

E(W )
j,k , (∆q)Ej−1,k, (∆q)Sj,k+1, (∆q)

N(S)
j,k , (∆q)Nj,k−1

)
.

Because of the definition of the intermediate values (∆q)E,W,S,N and the choice

of the derivative in (C.10), these intermediate values satisfy the local maximum

principle, (consult Theorem 1 of [Jiang and Tadmor. (1998)]),

max
j,k

(
(∆q)Wj+1,k, (∆q)

E(W )
j,k , (∆q)Ej−1,k, (∆q)Sj,k+1, (∆q)

N(S)
j,k ,(∆q)Nj,k−1

)
≤ max

j,k
((∆q)nj,k).

Then the maximum principle: maxj,k(∆q)n+1
j,k ≤ maxj,k(∆q)nj,k holds. ■


