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Abstract

In this paper, we propose a new MUSCL scheme by combining the ideas of
the Kurganov and Tadmor scheme and the so-called Deviation method which
results in a well-balanced finite volume method for the hyperbolic balance laws, by
evolving the difference between the exact solution and a given stationary solution.
After that, we derive a semi-discrete scheme from this new scheme and it can be
shown to be essentially TVD when applied to a scalar conservation law. In the
end, we apply and validate the developed methods by numerical experiments and
solve classical problems featuring Euler equations with gravitational source term.

Keywords: Euler equations, Deviation method, Unstaggered central methods,
Well-balanced discretizations

1 Introduction

In the past few decades, central schemes for the approximate solutions of hyperbolic
conservation laws were widely studied. One well-known Riemann-solver-free central
scheme is the Nessyahu and Tadmor (NT) scheme introduced in [1] which consid-
ers the approximate solutions on two staggered grids. An unstaggered version of the
NT scheme is developed later in [2]. After that, in [3], Kurganov and Tadmor pro-
posed a modified NT-type scheme (KT-scheme), which adopted narrower cells when
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considering the solutions over the Riemann fans; it can avoid to overestimate the val-
ues of smooth regions. Also, Authors in [3] created a semi-discrete scheme from the
previously mentioned scheme. There are some extensions based on this semi-discrete
scheme: [4]; [5]; [6]; [7].

In mechanics, the systems with outer forces have also received much attention. A
system with an outer force can be written as the in-homogeneous conservation laws,
which is also known as the balance laws,

∂tq(x, t) +∇xf(q(x, t)) = S(q(x, t)), (1)

where q(x, t) = (q1(x, t), q2(x, t), ..., qN (x, t))T is an N-vector of conserved quantities
in the d-spatial variables x = (x1, x2, ..., xd), and f(q) = (f1, f2, ..., fd) is a nonlinear
flux. S(q) = (s1, s2, ..., sd) is a source term. There are some common body forces, for
example, gravity, electric forces, magnetic forces. The so-called well-balanced schemes
are the numerical methods designed to preserve discrete steady states for these kinds of
systems. Well-balanced schemes can be derived from conventional numerical methods
for the conservation laws by adding an appropriate discretization of the source term.
There are some examples of the well-balanced scheme: [8]; [9]; [10]; [11]; [12]; [13]; [14];
[15]; [16]; [17].

In this paper, we begin by presenting a new second-order accurate unstaggered
central scheme that is well-balanced by combining the concepts of the so-called Devi-
ation method in [10] and the KT scheme in [3]. We firstly consider the deviation ∆q
between the vector of conserved variables q and a given steady state q̃, and then esti-
mate the solutions on narrower cells over Riemann fans. This new scheme retains the
advantage of being Riemann-solver-free and satisfies the well-balanced property.

On the basis of our new central scheme, we construct a corresponding semi-discrete
scheme in the following section. Here we prove that this semi-discrete scheme satis-
fies the total-variation diminishing (TVD) property when applying to the modified
homogeneous scalar conservation laws.

In the next section, we apply our fully-discrete schemes to some numerical tests
related to the Euler system with gravity, which can be applied to model the physical
phenomena, and show the results of the comparison between our numerical solutions
and the exact solutions (or compared solution from [8]). Finally, we end in the final
section with the conclusion.

2 A new central well-balanced strategy for
in-homogeneous hyperbolic conservation laws

Kurganov and Tadmor introduced in year 2000 a modification of the Nessyahu-Tadmor
scheme (NT scheme) [1] which was originally introduced in 1990. Similarly to the NT
scheme, the KT scheme evolves a piecewise linear numerical solution; the difference
between these two scheme is that in NT scheme, the fixed width control cell [xj , xj+1]
is considered to approximate the average over Riemann fans (see figure 1), while a
narrower control cell is adopted in the KT scheme (see figure 2). The width of the
control cell in KT scheme is determined by the local wave speed. Both the NT and KT
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schemes are suitable to approximate the solution of hyperbolic conservation laws and
cannot be used alone to solve balance laws as they fail to capture steady state solutions
or stationary solutions. In this work we will adopt the Deviation method from [10]
and [8] and rewrite the Euler with gravity system in a different, yet equivalent form
in terms of a target steady state solution and then we solve the resulting reformulated
system with the aid of the KT scheme. We show that the resulting finite volume
method preserves steady states and stationary equilibria at the discrete level while
benefiting from the main characteristics and properties of the KT scheme.

Fig. 1 Geometry of the NT Scheme: piecewise linear interpolants Ln(x) are evolved on two staggered
grids.

2.1 Framework of the Deviation method

To construct our new numerical scheme for hyperbolic balance laws we firstly follow the
steps in [8] and the guidelines of the Deviation method presented in [10] to construct
the modified balanced laws, and then apply the approach of the KT scheme in section
2.2 to evolve the numerical solution.
Consider the one-dimensional balance laws{

qt + f(q)x = S(q, x), x ∈ Ω ⊂ R, t > 0

q(x, 0) = q0(x).
(2)

Let q̃ be a given hydrostatic solution of (2). In other word, it satisfies

f(q̃)x = S(q̃, x). (3)

Next, subtracting (3) from (2) yields

qt + f(q)x − f(q̃)x = S(q, x)− S(q̃, x). (4)
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Define the deviation ∆q = q − q̃. Applying q = ∆q + q̃ to (4) leads to

(∆q + q̃)t + [f(∆q + q̃)− f(q̃)]x = S(∆q + q̃, x)− S(q̃, x). (5)

Since q̃ is the stationary solution; i.e., ∂q̃
∂t = 0, it implies

(∆q)t + [f(∆q + q̃)− f(q̃)]x = S(∆q + q̃, x)− S(q̃, x). (6)

If the source term S(q, x) in (2) is a linear functional in terms of the conserved
variables, then

S(∆q + q̃, x)− S(q̃, x) = S(∆q, x) (7)

holds and (6) can be rewritten as

(∆q)t + [f(∆q + q̃)− f(q̃)]x = S(∆q, x). (8)

This leads us to the following Lemma.
Lemma 1. Consider the balance law (2) and a given hydrostatic solution q̃. The
deviation quantity ∆q satisfying the modified balance law (8) maintains the same local
speed as the original balance law in system (2).

Proof. Define
F (∆q) = f(∆q + q̃)− f(q̃). (9)

We rewrite (8) as
(∆q)t + F (∆q)x = S(∆q, x). (10)

Consider the flux Jacobian of (10), ∂F (∆q)
∂∆q . According to the definition of ∆q,

∂∆q

∂q
=

∂

∂q
(q − q̃) = 1. (11)

Thus, the following equality

∂F (∆q)

∂q
=
∂F (∆q)

∂∆q

∂∆q

∂q
=
∂F (∆q)

∂∆q
(12)

holds. By the definition of F (∆q) in (9),

∂F (∆q)

∂q
=

∂

∂q

(
f(∆q + q̃)− f(q̃)

)
=

∂

∂q
f(∆q + q̃) =

∂f(q)

∂q
. (13)

holds. Hence, we obtain
∂F (∆q)

∂∆q
=
∂f(q)

∂q
. (14)

Since the local speeds are determined by the eigenvalues of the flux Jacobian, then
equation (14) shows that the local speeds are the same as those of system (2).
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2.2 Application of the Kurganov-Tadmor scheme

Now we proceed to apply the idea of the KT scheme to the modified balance law (8).
Following classical finite volume methods, we start by partitioning the computational
domain using the control cells Cj = [xj− 1

2
, xj+ 1

2
] and we assume that numerical solu-

tion of the balance law (8) is known at time tn with (∆q)nj denoting the cell-centered

average value. The numerical solution at the next time step tn+1 is obtained by the fol-
lowing three main steps: Reconstruction, Evolution, and Projection. Below we detail
each of these steps.

2.2.1 Reconstruction

The finite volume method we employ in this work evolves a piecewise linear numer-
ical solution and only the cell average values (∆q)nj are stored at the centers xj of
the control cells Cj . To avoid oscillations whenever a piecewise-linear reconstruction
∆q(x, tn) is needed over the cells Cj = [xj− 1

2
, xj+ 1

2
], we define Qj(x, t

n) = ∆q(x, tn)
for x ∈ Cj using

Qj(x, t
n) = (∆q)nj + ((∆q)x)nj (x− xj), (15)

where ((∆q)x)nj is the numerical spatial derivative.
The so-called MC−θ limiter is a common choice to compute the numerical derivatives
in (15) , and it is defined as follows,

((∆q)x)nj =

minmod

[
θ

(∆q)nj+1 − (∆q)nj
∆x

,
(∆q)nj+1 − (∆q)nj−1

2∆x
, θ

(∆q)nj − (∆q)nj−1

∆x

]
, (16)

with 1 ≤ θ ≤ 2, while the minmod function is defined as

minmod(a, b, c) :=

{
sign(a) min{|a|, |b|, |c|}, if sign(a) = sign(b) = sign(c)

0, otherwise.
(17)

This MC − θ will be adopted for the numerical tests in section 4.

2.2.2 Evolution

Next, we evolve the equation to the next time step tn+1 = tn + ∆t and approximate
the averages over the cells. Looking at the figure 2, the uniform cell is divided into
unsmooth and smooth regions separated by the points xn

j− 1
2 ,r

and xn
j+ 1

2 ,l
, defined by

xnj+ 1
2 ,l

:= xj+ 1
2
− anj+ 1

2
∆t and xnj+ 1

2 ,r
:= xj+ 1

2
+ anj+ 1

2
∆t, (18)

where the wave speed an
j+ 1

2

is as defined in [3]. In this scheme, we choose the easier

way to define the wave speed:

anj+ 1
2

:= max

{
Λ
(∂f
∂q

(q−
j+ 1

2

)
)
,Λ
(∂f
∂q

(q+
j+ 1

2

)
)}

, (19)
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Fig. 2 Geometry of the KT Scheme (displayed by using the deviation ∆q)

where q−
j+ 1

2

:= qnj + ∆x
2 (qx)nj and q+

j+ 1
2

:= qnj+1− ∆x
2 (qx)nj+1 are the corresponding left

and right intermediate values of qn
j+ 1

2

with the slope (qx)nj , and Λ(∂f∂q (q)) means the

eigenvalues of the flux Jacobian ∂f(q)
∂q .

For this reason, we consider two cases: in the first case, we discuss the average
over the unsmooth interval Un

j+ 1
2

= [xn
j+ 1

2 ,l
, xn
j+ 1

2 ,r
]; in the second case, we discuss the

average over the smooth interval Mn
j = [xn

j− 1
2 ,r
, xn
j+ 1

2 ,l
].

Case 1. Unsmooth region.

We firstly integrate (8) over Un
j+ 1

2

× [tn, tn+1],

∫ tn+1

tn

∫
Un

j+1
2

(∆q)t + [f(∆q + q̃)− f(q̃)]x dxdt =

∫ tn+1

tn

∫
Un

j+1
2

S(∆q, x) dxdt. (20)

Applying the Green’s theorem to the left-hand-side of (20) leads to

∮
∂(UT )n

j+1
2

{[f(∆q + q̃)− f(q̃)] dt−∆q dx} =

∫ tn+1

tn

∫ xn

j+1
2
,r

xn

j+1
2
,l

S(∆q, x) dxdt, (21)

where (UT )n
j+ 1

2

= Un
j+ 1

2

× [tn, tn+1].

Then after some calculations shown in Appendix, we obtain the intermediate value
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wn+1
j+ 1

2

, which represents the average over the interval Un
j+ 1

2

at tn+1,

wn+1
j+ 1

2

=
(∆q)nj + (∆q)nj+1

2
+

∆x−
∆xn

j+1
2

2

4

[
((∆q)x)nj − ((∆q)x)nj+1

]
+

1

∆xn
j+ 1

2

[FU + SU ] ,

(22)

where

FU =−
∫ tn+1

tn

[f((∆q + q̃)(xnj+ 1
2 ,r
, t))− f(q̃(xnj+ 1

2 ,r
, t))]dt

+

∫ tn+1

tn

[f(∆q + q̃)(xnj+ 1
2 ,l
, t))− f(q̃(xnj+ 1

2 ,l
, t))]dt,

(23)

and

SU =

∫ tn+1

tn

∫ xn

j+1
2
,r

xn

j+1
2
,l

S(∆q, x) dxdt. (24)

Next, we consider the integral of the flux function FU . Applying the midpoint rule
to FU , we get

FU = ∆t
[
−f((∆q)

n+ 1
2

j+ 1
2 ,r

+ q̃j+ 1
2 ,r

) + f((q̃)j+ 1
2 ,r

)

+f((∆q)
n+ 1

2

j+ 1
2 ,l

+ q̃j+ 1
2 ,l

)− f((q̃)j+ 1
2 ,l

)
]
.

(25)

The midpoint values (∆q)
n+ 1

2

j+ 1
2 ,l

and (∆q)
n+ 1

2

j+ 1
2 ,r

can be approximated by the Taylor

expansion in addition to the balance law:

(∆q)
n+ 1

2

j+ 1
2 ,l

= (∆q)nj+ 1
2 ,l

+
∆t

2
((∆q)t)

n
j+ 1

2 ,l

= (∆q)nj+ 1
2 ,l

+
∆t

2

[
−
[
(f(∆q + q̃)− f(q̃))x

]
(xn

j+1
2
,l
,tn)

+ S((∆q)j+ 1
2 ,l
, tn)

]
,

(26)

(∆q)
n+ 1

2

j+ 1
2 ,r

= (∆q)nj+ 1
2 ,r

+
∆t

2
((∆q)t)

n
j+ 1

2 ,r

= (∆q)nj+ 1
2 ,r

+
∆t

2

[
−
[
(f(∆q + q̃)− f(q̃))x

]
(xn

j+1
2
,r
,tn)

+ S((∆q)j+ 1
2 ,r
, tn)

]
,

(27)
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and where

(∆q)nj+ 1
2 ,l

= (∆q)nj + ∆x((∆q)x)nj

[
1

2
− λanj+ 1

2

]
,

(∆q)nj+ 1
2 ,r

= (∆q)nj+1 −∆x((∆q)x)nj+1

[
1

2
− λanj+ 1

2

]
,

(28)

with the mesh ratio λ = ∆t
∆x .

Lastly we approximate to second-order of accuracy the integral of the source term SU
using the midpoint rule in time and the trapezoidal rule in space, and obtain

SU = ∆t

∫ xn

j+1
2
,r

xn

j+1
2
,l

S(∆qn+ 1
2 , x)dx = ∆t∆xnj+ 1

2

Sn+ 1
2

j+ 1
2 ,l

+ S
n+ 1

2

j+ 1
2 ,r

2

 . (29)

Equipped with the approximation of the integral of the flux term (25), and the integral
of the source term (29), the intermediate average over the interval Un

j+ 1
2

reduces to

wn+1
j+ 1

2

=
(∆q)nj + (∆q)nj+1

2
+

∆x−
∆xn

j+1
2

2

4

[
((∆q)x)nj − ((∆q)x)nj+1

]
+

∆t

∆xn
j+ 1

2

[
− f((∆q)

n+ 1
2

j+ 1
2 ,r

+ q̃j+ 1
2 ,r

) + f((q̃)j+ 1
2 ,r

)

+ f((∆q)
n+ 1

2

j+ 1
2 ,l

+ q̃j+ 1
2 ,l

)− f((q̃)j+ 1
2 ,l

)
]

+ ∆t

[
S
n+ 1

2

j+ 1
2 ,l

+ S
n+ 1

2

j+ 1
2 ,r

2

]
.

(30)

Case 2. Smooth region.

We consider the interval Mn
j . In a similar way, integrating (8) over Mn

j × [tn, tn+1],
we obtain∮

∂Mn
j

{[f(∆q + q̃)− f(q̃)] dt−∆q dx} =

∫ tn+1

tn

∫ xn

j+1
2
,l

xn

j− 1
2
,r

S(∆q, x) dxdt, (31)

Define ∆xnj = xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

= ∆x − ∆t(an
j− 1

2

+ an
j+ 1

2

). Then using the same cal-

culation steps as in the appendix, the average over Mn
j at tn+1 denoted as wn+1

j is
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approximated by

wn+1
j :=

1

∆xnj

∫ xn

j+1
2
,l

xn

j− 1
2
,r

∆q(x, tn+1)dx

=
1

∆xnj

∫ xn

j+1
2
,l

xn

j− 1
2
,r

∆q(x, tn)dx+ FM + SM


=

1

∆xnj

[
∆xnjQj(x

n
j,m, t

n) + FM + SM
]

=
[
(∆q)nj + (xnj,m − xj)((∆q)x)nj

]
+

1

∆xnj
[FM + SM ]

= (∆q)nj +
∆xn

j− 1
2

−∆xn
j+ 1

2

4
((∆q)x)nj +

1

∆xnj
[FM + SM ] ,

(32)

where xnj,m denotes the midpoint of the interval [xn
j− 1

2 ,r
, xn
j+ 1

2 ,l
] , and where

FM =−
∫ tn+1

tn

[f((∆q + q̃)(xnj+ 1
2 ,l
, t))− f(q̃(xnj+ 1

2 ,l
, t))] dt

+

∫ tn+1

tn

[f(∆q + q̃)(xnj− 1
2 ,r
, t))− f(q̃(xnj− 1

2 ,r
, t))] dt,

(33)

and

SM =

∫ tn+1

tn

∫ xn

j+1
2
,l

xn

j− 1
2
,r

S(∆q, x) dxdt. (34)

As in case 1, the approximations of the integral of the flux term FM and the integral
of the source term SM are obtained with the help of the Taylor expansion, the balance
law, the midpoint rule, and the trapezoidal rule. Hence, we obtain,

FM = ∆t
[
−f((∆q)

n+ 1
2

j+ 1
2 ,l

+ q̃j+ 1
2 ,l

) + f(q̃j+ 1
2 ,l

)

+f((∆q)
n+ 1

2

j− 1
2 ,r

+ q̃j− 1
2 ,r

)− f(q̃j− 1
2 ,r

)
]
,

(35)

and

SM := ∆t

∫ xn

j+1
2
,l

xn

j− 1
2
,r

S(∆qn+ 1
2 , x)dx := ∆t∆xnj

Sn+ 1
2

j− 1
2 ,r

+ S
n+ 1

2

j+ 1
2 ,l

2

 . (36)
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Equipped with (32), (35) and (36), the intermediate average over the interval Mn
j is

equal to

wn+1
j = (∆q)nj +

∆xn
j− 1

2

−∆xn
j+ 1

2

4
((∆q)x)nj

+
∆t

∆xnj

[
− f((∆q)

n+ 1
2

j+ 1
2 ,l

+ q̃j+ 1
2 ,l

) + f(q̃j+ 1
2 ,l

)

+ f((∆q)
n+ 1

2

j− 1
2 ,r

+ q̃j− 1
2 ,r

)− f(q̃j− 1
2 ,r

)

]

+ ∆t

Sn+ 1
2

j− 1
2 ,r

+ S
n+ 1

2

j+ 1
2 ,l

2

 .
(37)

2.2.3 Projection

Finally, the last step is to project the updated solution back over the original uniform
cells Cj = [xj− 1

2
, xj+ 1

2
]. Due to the same reason that we want to avoid oscillations, an

appropriate piecewise reconstruction is needed for the unsmooth region, and it takes
the form that

W̃j+ 1
2
(x, tn+1) := wn+1

j+ 1
2

+ (x− xj+ 1
2
)(wx)n+1

j+ 1
2

, ∀x ∈ [xnj+ 1
2 ,l
, xnj+ 1

2 ,r
], (38)

where the slope wx is given by

(wx)n+1
j+ 1

2

= minmod

(
θ
wn+1
j+ 1

2

− wn+1
j

xj+ 1
2
− xnj,m

,
wn+1
j+1 − w

n+1
j

xnj+1,m − xnj,m
, θ

wn+1
j+1 − w

n+1
j+ 1

2

xnj+1,m − xj+ 1
2

)
, (39)

with 1 ≤ θ ≤ 2.
Consequently, the average over [xj− 1

2
, xj+ 1

2
] at time tn+1 denoted by (∆q)n+1

j is
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obtained after elementary calculations,

(∆q)n+1
j :=

1

∆x

∫ x
j+1

2

x
j− 1

2

w dx

=
1

∆x

∫ xn

j− 1
2
,r

x
j− 1

2

wn+1
j− 1

2

dx+

∫ xn

j+1
2
,l

xn

j− 1
2
,r

wnj dx+

∫ x
j+1

2

xn

j+1
2
,l

wn+1
j+ 1

2

dx


=

1

∆x

∫ xn

j− 1
2
,r

x
j− 1

2

W̃n+1
j− 1

2

dx+

∫ xn

j+1
2
,l

xn

j− 1
2
,r

wnj dx+

∫ x
j+1

2

xn

j+1
2
,l

W̃n+1
j+ 1

2

dx


=

1

∆x

[
∆xn

j− 1
2

2

(
wn+1
j− 1

2

+ (xnj− 1
2 ,rm

− xj− 1
2
)(wx)n+1

j− 1
2

)
+

(
∆x−

∆xn
j− 1

2

+ ∆xn
j+ 1

2

2

)
wn+1
j

+
∆xn

j+ 1
2

2

(
wn+1
j+ 1

2

+ (xnj+ 1
2 ,lm
− xj+ 1

2
)(wx)n+1

j+ 1
2

)]

=
1

∆x

[
∆xn

j− 1
2

2

(
wn+1
j− 1

2

+
∆xn

j− 1
2

4
(wx)n+1

j− 1
2

)

+

(
∆x−

∆xn
j− 1

2

+ ∆xn
j+ 1

2

2

)
wn+1
j

+
∆xn

j+ 1
2

2

(
wn+1
j+ 1

2

−
∆xn

j+ 1
2

4
(wx)n+1

j+ 1
2

)]

=
1

∆x

[
anj− 1

2
∆t

(
wn+1
j− 1

2

+
an
j− 1

2

∆t

2
(wx)n+1

j− 1
2

)
+
(

∆x− (anj− 1
2

+ anj+ 1
2
)∆t
)
wn+1
j

+anj+ 1
2
∆t

(
wn+1
j+ 1

2

−
an
j+ 1

2

∆t

2
(wx)n+1

j+ 1
2

)]
.

(40)

To get the desired numerical solution qn+1
j of the original conservation law (2), we

just need to add the given stationary solution q̃j as follows,

qn+1
j = (∆q)n+1

j + q̃j . (41)

Next, we demonstrate that the new scheme we presented satisfies the well-balanced
property, which means that the computed numerical solution qnj remains identical
to the stationary solution q̃j , ∀j, whenever the initial condition corresponds to the
stationary solution (q0

j = q̃j ).
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By the definition of the deviation quantity (∆q)nj , if the initial condition is such that

q0
j = q̃j , then this implies that (∆q)0

j = 0. Subsequently, both (∆q)0
j+ 1

2 ,r
and (∆q)0

j+ 1
2 ,l

in (28) are equal to zero. This leads to that (∆q)
0+ 1

2

j+ 1
2 ,r

= 0 and (∆q)
0+ 1

2

j+ 1
2 ,l

= 0.

Then the flux approximations in (25) and (35) reduce to

F 0
U = ∆t

[
−f(q̃j+ 1

2 ,r
) + f(q̃j+ 1

2 ,r
) + f(q̃j+ 1

2 ,l
)− f(q̃j+ 1

2 ,l
)
]

= 0, (42)

F 0
M = ∆t

[
−f(q̃j+ 1

2 ,l
) + f(q̃j+ 1

2 ,l
) + f(q̃j− 1

2 ,r
)− f(q̃j− 1

2 ,r
)
]

= 0, (43)

and the estimated values of the source term S0
U and S0

M both vanish as well. Hence,
the intermediate averages in (30) and (37) reduce to

∆w0+1
j+ 1

2

= 0, (44)

∆w0+1
j = 0. (45)

Then the deviation (∆q)1
j is identically zero at time t = t1. Following a similar rea-

soning, we can show that (∆q)2
j = 0, (∆q)3

j = 0, and so on. Therefore, we can deduce
that (∆q)nj is equal to zero at time t = tn of any subsequent iteration.
Finally, since (∆q)nj = 0,∀t = tn, this implies

qnj = (∆q)nj + q̃j = q̃j , ∀t = tn. (46)

Thus, we conclude that the computed numerical solution qnj remains stationary and
we proved that our scheme satisfies the well-balanced property.

3 Semi-discrete scheme

In this section, we construct a semi-discrete scheme from the fully-discrete scheme
(40), and then show the TVD property of the semi-discrete scheme. For the proof we
use a homogeneous scalar conservation law, which we discretize using the Deviation
method.

Inspired by [3], in order to construct a semi-discrete scheme, we firstly compute

the value of
(∆q)n+1

j −(∆q)nj
∆t , and then let ∆t→ 0, i.e.,

d

dt
(∆q)j(t) = lim

∆t→0

(∆q)n+1
j − (∆q)nj

∆t
. (47)
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Substituting the result in (40) for (∆q)n+1
j (the term O(∆t) denotes all terms that

are proportional to ∆t) yields

(∆q)n+1
j − (∆q)nj

∆t
=

=
an
j− 1

2

∆x
wn+1
j− 1

2

+

(
1

∆t
−
an
j− 1

2

+ an
j+ 1

2

∆x

)
wn+1
j +

an
j+ 1

2

∆x
wn+1
j+ 1

2

− 1

∆t
(∆q)nj +O(∆t)

= − 1

2∆x

[
f(q

n+ 1
2

j+ 1
2 ,r

+ q̃j+ 1
2 ,r

)− f(q̃j+ 1
2 ,r

) + f(q
n+ 1

2

j+ 1
2 ,l

+ q̃j+ 1
2 ,l

)− f(q̃j+ 1
2 ,l

)

−f(q
n+ 1

2

j− 1
2 ,r

+ q̃j− 1
2 ,r

) + f(q̃j− 1
2 ,r

)− f(q
n+ 1

2

j− 1
2 ,l

+ q̃j− 1
2 ,l

) + f(q̃j− 1
2 ,l

)
]

+
an
j+ 1

2

2∆x

[
((∆q)nj+1 −

∆x

2
((∆q)x)nj+1)− ((∆q)nj +

∆x

2
((∆q)x)nj )

]
−
an
j− 1

2

2∆x

[
((∆q)nj −

∆x

2
((∆q)x)nj )− ((∆q)nj−1 +

∆x

2
((∆q)x)nj−1)

]

+
S
n+ 1

2

j+ 1
2 ,l
− Sn+ 1

2

j− 1
2 ,r

2
+O(∆t).

(48)

By the definition of the midpoint values in (26), (27) and (28), we have

(∆q)
n+ 1

2

j+ 1
2 ,r

= (∆q)nj+1 −∆x((∆q)x)nj+1(
1

2
− λanj+ 1

2
)− ∆t

2
[f((∆q)nj+ 1

2 ,r
+ q̃j+ 1

2 ,r
)− f(q̃j+ 1

2 ,r
)]

(∆q)
n+ 1

2

j+ 1
2 ,l

= (∆q)nj + ∆x((∆q)x)nj (
1

2
− λanj+ 1

2
)− ∆t

2
[f((∆q)nj+ 1

2 ,l
+ q̃j+ 1

2 ,l
)− f(q̃j+ 1

2 ,l
)].

(49)

Applying the Taylor expansion to q̃j+ 1
2 ,r

and q̃j+ 1
2 ,l

, we obtain

q̃j+ 1
2 ,r

:= q̃j+ 1
2

+ anj+ 1
2
∆t(q̃x)j+ 1

2
, and q̃j+ 1

2 ,l
:= q̃j+ 1

2
− anj+ 1

2
∆t(q̃x)j+ 1

2
. (50)

As ∆t→ 0, the midvalues approach

(∆q)
n+ 1

2

j+ 1
2 ,r
→ (∆q)j+1(t)− ∆x

2
((∆q)x)nj+1 =: (∆q)+

j+ 1
2

(t),

(∆q)
n+ 1

2

j+ 1
2 ,l
→ (∆q)j(t) +

∆x

2
((∆q)x)nj =: (∆q)−

j+ 1
2

(t),

q̃j+ 1
2 ,r
→ q̃j+ 1

2
,

q̃j+ 1
2 ,l
→ q̃j+ 1

2
.

(51)
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Hence, letting ∆t→ 0 in (48), the semi-discrete scheme takes form as

d

dt
(∆q)j(t) = lim

∆t→0

(∆q)n+1
j − (∆q)nj

∆t

= − 1

2∆x

[(
f((∆q)−

j+ 1
2

(t) + q̃j+ 1
2
(t))− f(q̃j+ 1

2
(t))

+ f((∆q)+
j+ 1

2

(t) + q̃j+ 1
2
(t))− f(q̃j+ 1

2
(t))
)

−
(
f((∆q)−

j− 1
2

(t) + q̃j− 1
2
(t))− f(q̃j− 1

2
(t))

+ f((∆q)+
j− 1

2

(t) + q̃j− 1
2
(t))− f(q̃j− 1

2
(t))
)]

+
1

2∆x

[
anj+ 1

2
((∆q)+

j+ 1
2

(t)− (∆q)−
j+ 1

2

(t))

− anj− 1
2
((∆q)+

j− 1
2

(t)− (∆q)−
j− 1

2

(t))

]
+
S((∆q)−

j+ 1
2

) + S((∆q)+
j− 1

2

)

2
.

(52)

Then we reformulate (52) as

d

dt
(∆q)j(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t), (53)

with the numerical flux

Hj+ 1
2
(t) :=

1

2

[
F ((∆q)−

j+ 1
2

)(t) + F ((∆q)+
j+ 1

2

)(t)
]
−
aj+ 1

2
(t)

2

(
(∆q)+

j+ 1
2

(t)− (∆q)−
j+ 1

2

(t)
)
,

(54)

where
F ((∆q)∓

j+ 1
2

) := f((∆q)∓
j+ 1

2

+ q̃j+ 1
2
)− f(q̃j+ 1

2
), (55)

and the source term

Sj(t) :=
S((∆q)−

j+ 1
2

) + S((∆q)+
j− 1

2

)

2
. (56)

Theorem 1. (TVD of semi-discrete scheme for the modified homogeneous conserva-
tion laws) Consider the semi-discrete scheme (53) in conservation form

d

dt
(∆q)j(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
. (57)
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Assume that the numerical spatial derivatives (∆qx)j(t) are chosen as (16). Then the
scheme (57) satisfies the TVD property.

Proof. Consult the proof of Theorem 4.1 in [3], and example 2.4 in [18].

It has been shown that ∆q is TVD. With this property, we can broadly ensure
that the full solution q (= ∆q + q̃) is non-oscillatory.

Remark. For this remark the authors thank Praveen Chandrashekar (Tata Insitute,
Centre for Applicable Mathematics, Bangalore, India) for very helpful discussions.

In the following, we discuss that if a given finite volume method satisfies the TVD
property, to what extent the numerical method combining this finite volume method
with the Deviation method will also satisfy the TVD property.

In general, for a given stationary solution, the finite volume residual is

Res(q̃j) = − 1

∆x
[F (q̃Lj+ 1

2
, q̃Rj+ 1

2
)− F (q̃Lj− 1

2
, q̃Rj− 1

2
)] = O((∆x)N ), (58)

which expresses the local truncation error of the finite volume method evaluated on
the stationary solution. Here N denotes the order of accuracy of the method.

Consider the Deviation method with forward Euler method in time,

qn+1
j = qnj −

∆t

∆x
[F (qLj+ 1

2
, qRj+ 1

2
)− F (qLj− 1

2
, qRj− 1

2
)]−∆tRes(q̃j), (59)

where
q
L(R)

j+ 1
2

= ∆q
L(R)

j+ 1
2

+ q̃
L(R)

j+ 1
2

. (60)

Set Q̂ is the solution of a FV method as follows

Q̂n+1
j = qnj −

∆t

∆x
[F (qLj+ 1

2
, qRj+ 1

2
)− F (qLj− 1

2
, qRj− 1

2
)]. (61)

Then comparing (59) and (61), we obtain the relation

qn+1
j = Q̂n+1

j −∆tRes(q̃j). (62)

Assume Q̂ satisfies the TVD property; i.e.,

TV (Q̂n+1) ≤ TV (Q̂n). (63)
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By equation (62), we have

TV (qn+1)− TV (qn) =
∑
j

|qn+1
j+1 − q

n+1
j | −

∑
j

|qnj+1 − qnj |

=
∑
j

|(Q̂n+1
j+1 −∆tRes(q̃j+1))− (Q̂n+1

j −∆tRes(q̃j))|

−
∑
j

|(Q̂nj+1 −∆tRes(q̃j+1))− (Q̂nj −∆tRes(q̃j))|

=
∑
j

|Q̂n+1
j+1 − Q̂

n+1
j −∆t(Res(q̃j+1)−Res(q̃j))|

−
∑
j

|Q̂nj+1 − Q̂nj −∆t(Res(q̃)j+1 −Res(q̃j))|

≤
∑
j

|Q̂n+1
j+1 − Q̂

n+1
j | −

∑
j

|Q̂nj+1 − Q̂nj |︸ ︷︷ ︸
≤0,by(63)

+O(∆t∆xN ).

(64)

For a small grid size, the error term O(∆t∆xN ) is quite small. This implies that in
(64) the solution q satisfies the TVD property up to at most an order one higher
than the order of the underlying scheme. So it is essentially TVD. This is in the spirit
similar to [19].

In conclusion, since Theorem 4.1 in [3] has shown that the KT semi-discrete scheme
has the TVD property, we can implies that our semi-discrete scheme (essentially) has
this non-oscillatory property.

4 Numerical experiments and validations

In this section, we present the results of a number of numerical experiments in the
Euler system with gravitational source term by employing our designed well-balanced
scheme in section 2.
The one-dimensional Euler system with gravitational source term is given by{

qt + f(q)x = S(q, x), x ∈ Ω ⊂ R, t > 0

q(x, 0) = q0(x),
(65)

where

q =

 ρ
ρu
E

 , f(q) =

 ρu
ρu2 + p

(E + p)u

 , S(u) =

 0
−ρφx
−ρuφx

 . (66)

ρ, u, ρu, and p are used to denote the fluid’s density, velocity, momentum, and pressure,
respectively. E is the total energy. The given function φ = φ(x) is the gravitational
field and the ratio of the specific heats γ is suggested to be 1.4 for an ideal gas.
In all the tests, the parameter of the (MC− θ) limiter is set as θ = 1.5. With the help
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of the CFL condition, the computation of the time-step is defined by

∆t = CFL · ∆x

max(|λk|)
. (67)

Here, the λk’s denote the eigenvalues of the flux Jacobian ∂f(q)
∂q and the CFL number

is taken to be 0.485 for all test cases.
For some of the numerical experiments we consider here, we compare our solutions
with the solutions from [8]. The scheme considered in [8] is the combination of the NT
scheme and the Deviation method.

4.1 Isothermal Equilibrium

In the first numerical experiment, we consider the steady isothermal state with a linear
gravitational field φx = g = 1 (see [9]). The isothermal equilibrium state is given by

ρ(x) = ρ0exp(−ρ0g

p0
x),

u(x) = 0,

p(x) = p0exp(−ρ0g

p0
x).

(68)

We set ρ0 = 1 and p0 = 1. The chosen stationary solution q̃ is the isothermal equi-
librium state. The solution is computed on 200 grid points of the interval [0, 1] with
the outflow boundary condition until the final time t = 0.25 and we compared it with
the exact solution. Figure 3 depicts the obtained results of the density, momentum,
energy, and pressure which we compared with the exact equilibrium solution. The
depicted results show a perfect match, thus validating the well-balanced property of
the constructed finite volume method.

4.2 Isothermal Equilibrium with Perturbation

The second numerical experiment is a modification to the first one, which consists of
adding a small perturbation to the initial pressure given by

p(x) = p0exp(−ρ0g

p0
x) + ηexp(−100

ρ0g

p0
(x− 0.5)2), (69)

with η = 0.001. Figure 4 shows the comparison of the initial perturbation at t = 0,
with the final perturbation at t = 0.25 on 200 grid points obtained using the proposed
scheme, and also the final perturbation at t = 0.25 on 200 grid points obtained using
the numerical scheme developed in [8]. The obtained results show an excellent match.
In this test case we use L1-norm to compute the errors in the density, pressure and
the energy, and report these errors and the corresponding convergence rates in table 1.
The reported results in table 1 confirm the second-order of accuracy of the proposed
numerical scheme.
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Density Momentum

Energy Pressure

Fig. 3 Results of 1D isothermal equilibrium.

N ρ L1-error rate p L1-error rate E L1-error rate
200 3.3030E-06 - 4.4358E-06 - 1.1091E-05 -
400 1.4317E-06 1.21 1.9702E-06 1.17 4.9260E-0.6 1.17
800 5.2586E-07 1.44 7.3033E-07 1.43 1.8260E-06 1.43
1600 8.4609E-08 2.64 1.1739E-07 2.64 2.9351E-07 2.64

Table 1 1D isothermal equilibrium with perturbation: L1-errors and
convergence rates.

4.3 Moving Equilibrium

In this experiment, we are interested in preserving the following moving equilibrium
state with a nonlinear gravitational field φ(x) = exp(−exp(x) + γ(exp(−γx))),

ρ(x) = ρ0exp(−ρ0g

p0
x),

u(x) = exp(x),

p(x) = exp(−ρ0g

p0
x)γ .

(70)
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Fig. 4 Initial perturbation at t=0 compared to the perturbation at the final time t=0.25 and the
perturbation from compared solution.

with ρ0 = 1 and p0 = 1. The initial conditions are accordingly in the form:

ρ(x) = exp(−x),

u(x) = exp(x),

p(x) = exp(−γx).

(71)

The detailed introduction of the initial condition can be found in [20]. The station-
ary solution used here is the equilibrium state itself and we apply outflow boundary
conditions as in the first test case we presented earlier. We compute the solution in
the interval [0, 1] on 200 grid points until the final time t = 10 and compare it to the
exact solution. The obtained results are shown in figure 5. The displayed results show
excellent matching with the exact analytical solution, thus endorsing the well-balanced
characteristic of the developed numerical scheme.

4.4 The Shock Tube Problem

In this example, we consider the shock tube problem with the definition from [9], and
we compare the obtained results with the solution from [8]. The initial state of the
shock tube problem is given by

ρ(x) =

{
1, if x ≤ 0.5,

0.125, otherwise,

u(x) = 0,

p(x) =

{
1, if x ≤ 0.5,

0.1, otherwise,

(72)
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Moving Equilibrium: Density Moving Equilibrium: Velocity

Moving Equilibrium: Energy Moving Equilibrium: Pressure.

Fig. 5 Solution of one-dimensional moving equilibrium.

and the gravitational field is defined with φx = g = 1. The stationary solution q̃
considered in this case is the isothermal equilibrium.
We use the computational interval [0, 1] with the reflecting boundary condition and
we compute the solution on 100, 200, 400 grid points until the final time t = 0.2. The
reference solution is obtained from [8] and computed on 400 grid points. In figure 6,
we show the results of the density and zoom in on the shocks. In figure 7, we show
the results of velocity, energy and pressure. The reported results confirm the grid
convergence and show a good comparison with the reference solution.

5 Conclusion

In this paper, we presented a new numerical scheme for the approximating solution
of the in-homogeneous conservation laws. The numerical scheme we considered blends
the central Kurganov-Tadmor scheme with the Deviation method. Based on these
two methods, we constructed a new second-order well-balanced scheme for the in-
homogeneous Euler equations with gravity in one dimension. In addition, we showed
that for the semi-discrete scheme applied to a scalar conservation law the TVD prop-
erty holds in the regime of small deviations. We applied our new scheme to the Euler
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Density Zoom in on the first block

Zoom in on the second block Zoom in on the third block

Fig. 6 Results of 1D shock tube problem.

equations with gravitational source term and successfully solved several classical prob-
lems. The solutions of the problem we obtained using our well-balanced numerical
scheme are in excellent agreement with corresponding results from the literature. Still
we noticed in a shock tube problem that there are some small oscillations in the
vicinity of the shocks, especially when the grid is coarse. Increasing the number of
grid points eliminates these oscillations. Extensions of the proposed scheme to the
two-dimensional case are currently under investigations.
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Appendix A

In this section, we provide the detailed calculations of the intermediate value wn+1
j+ 1

2

at

evolution step in section 2.2.2.
Firstly, we compute the left-hand side (LHS) of equation (21),

LHS =∫ xn

j+1
2
,r

xn

j+1
2
,l

{[
f(∆q(x, tn) + q̃(x, tn))− f(q̃(x, tn))

]
dt−∆q(x, tn) dx

}
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+

∫ tn+1

tn

{[
f(∆q(xnj+ 1

2 ,r
, t) + q̃(xnj+ 1

2 ,r
, t))− f(q̃(xnj+ 1

2 ,r
, t))
]
dt

−∆q(xnj+ 1
2 ,r
, t) dx

}
+

∫ xn

j+1
2
,l

xn

j+1
2
,r

{[
f(∆q(x, tn+1) + q̃(x, tn+1))− f(q̃(x, tn+1))

]
dt

−∆q(x, tn+1) dx

}
+

∫ tn

tn+1

{[
f(∆q(xnj+ 1

2 ,l
, t) + q̃(xnj+ 1

2 ,l
, t))− f(q̃(xnj+ 1

2 ,l
, t))
]
dt

−∆q(xnj+ 1
2 ,l
, t) dx

}
Rearranging equation (21) and simplifying LHS we obtain:∫ xn

j+1
2
,r

xn

j+1
2
,l

∆q(x, tn+1)dx

=

∫ xn

j+1
2
,r

xn

j+1
2
,l

∆q(x, tn)dx

−
∫ tn+1

tn

[f(∆q(xnj+ 1
2 ,r
, t) + q̃(xnj+ 1

2 ,r
, t))− f(q̃(xnj+ 1

2 ,r
, t))]dt

+

∫ tn+1

tn

[f(∆q(xnj+ 1
2 ,l
, t) + q̃(xnj+ 1

2 ,l
, t))− f(q̃(xnj+ 1

2 ,l
, t))]dt

+

∫ tn+1

tn

∫ xn

j+1
2
,r

xn

j+1
2
,l

S(∆q, x) dxdt.

(A1)

Next, we define ∆xn
j+ 1

2

= xn
j+ 1

2 ,r
− xn

j+ 1
2 ,l

= 2an
j+ 1

2

∆t, and denote f(∆q(xn
j+ 1

2 ,r
, t) +

q̃(xn
j+ 1

2 ,r
, t)) by f((∆q + q̃)(xn

j+ 1
2 ,r
, t)). In order to get the average over the interval

Un
j+ 1

2

, which we denote by wn+1
j+ 1

2

, we divide on both sides of equation (A1) by the
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length ∆xn
j+ 1

2

of the interval Un
j+ 1

2

, to obtain

wn+1
j+ 1

2

:=
1

∆xn
j+ 1

2

∫ xn

j+1
2
,r

xn

j+1
2
,l

∆q(x, tn+1)dx

=
1

∆xn
j+ 1

2

∫ xn

j+1
2
,r

xn

j+1
2
,l

∆q(x, tn)dx

− 1

∆xn
j+ 1

2

∫ tn+1

tn

[f((∆q + q̃)(xnj+ 1
2 ,r
, t))− f(q̃(xnj+ 1

2 ,r
, t))]

+
1

∆xn
j+ 1

2

∫ tn+1

tn

[f((∆q + q̃)(xnj+ 1
2 ,l
, t))− f(q̃(xnj+ 1

2 ,l
, t))]dt

+
1

∆xn
j+ 1

2

∫ tn+1

tn

∫ xn

j+1
2
,r

xn

j+1
2
,l

S(∆q, x) dxdt

=
1

∆xn
j+ 1

2

∫ xn

j+1
2
,r

xn

j+1
2
,l

∆q(x, tn)dx+ FU + SU

 ,

(A2)

where

FU =−
∫ tn+1

tn

[f((∆q + q̃)(xnj+ 1
2 ,r
, t))− f(q̃(xnj+ 1

2 ,r
, t))]dt

+

∫ tn+1

tn

[f(∆q + q̃)(xnj+ 1
2 ,l
, t))− f(q̃(xnj+ 1

2 ,l
, t))]dt,

(A3)

and

SU =

∫ tn+1

tn

∫ xn

j+1
2
,r

xn

j+1
2
,l

S(∆q, x) dxdt (A4)

To evaluate the integral occurring in the last line of equation (A2), we apply the
midpoint quadrature rule and we use the piecewise linearity of the reconstructions,
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thus we obtain

1

∆xn
j+ 1

2

∫ xn

j+1
2
,r

xn

j+1
2
,l

∆q(x, tn)dx

=
1

∆xn
j+ 1

2

[∫ xn

j+1
2

xn

j+1
2
,l

∆q(x, tn)dx+

∫ xn

j+1
2
,r

xn

j+1
2

∆q(x, tn)dx

]

=
1

∆xn
j+ 1

2

[
∆xn

j+ 1
2

2
Qj(x

n
j+ 1

2 ,lm
, tn) +

∆xn
j+ 1

2

2
Qj+1(xnj+ 1

2 ,rm
, tn)

]

=
1

∆xn
j+ 1

2

[
∆xn

j+ 1
2

2

(
(∆q)nj + (xnj+ 1

2 ,lm
− xj)((∆q)x)nj )

+ (∆q)nj+1 + (xnj+ 1
2 ,rm

− xj+1)((∆q)x)nj+1)

)]

=
1

∆xn
j+ 1

2

[
∆xn

j+ 1
2

2

(
(∆q)nj + (

∆x

2
−

∆xn
j+ 1

2

4
)((∆q)x)nj )

+ (∆q)nj+1 − (
∆x

2
−

∆xn
j+ 1

2

4
)((∆q)x)nj+1)

)]

=
(∆q)nj + (∆q)nj+1

2
+

∆x−
∆xn

j+1
2

2

4

[
((∆q)x)nj − ((∆q)x)nj+1

]
,

(A5)

where xn
j+ 1

2 ,lm
denotes the midpoint of the interval [xn

j+ 1
2 ,l
, xn
j+ 1

2

]; similarly xn
j+ 1

2 ,rm

denotes the midpoint of the interval [xn
j+ 1

2

xn
j+ 1

2 ,r
].
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