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Abstract
Westudy theBathnagar-Gross-Krook (BGK) equation in a smooth bounded domain featuring
a diffusive reflection boundary condition with general collision frequency. We prove that the
BGK equation admits a unique global solution with an exponential convergence rate if the
initial condition is a small perturbation around the global Maxwellian in the L∞ space. For
the proof, we utilize the dissipative nature from the linearized BGK operator and establish
an L2 coercive estimate. Next, we derive the a priori estimate by obtaining an L∞ bound
on the nonlinear operator; this requires a delicate analysis to manage its intrinsic nonlinear
structure. Finally, we establish the L∞ stability estimate and introduce sequential arguments
for the nonlinear BGK operator, thereby concluding both well-posedness and positivity.

Keywords Boltzmann-BGK equation · Diffuse reflection boundary · Global in time
solutions · Large time behavior

1 Introduction

The dynamics of a monatomic gas without chemical reactions is known to be described by
the celebrated Boltzmann equation. But the complicated structure of the collision operator
has long been a major obstacle in developing efficient numerical methods [15]. Under certain
assumptions, the complicated interaction terms of the Boltzmann equation can be simplified
by a so called BGK approximation, consisting of a collision frequency multiplied by the
deviation of the distributions from local Maxwellians. This approximation is constructed in a
way such that it has the samemain properties of the Boltzmann equation namely conservation
of mass, momentum and energy. In addition, it has an H-theorem with an entropy inequality
leading to an equilibrium which is a Maxwellian. Our interest in this kind of models comes
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from the fact that it is used a lot by engineers, chemists and physicists and in numerical
applications, see for example [45, 49, 54]. BGK models give rise to efficient numerical
computations,which are asymptotic preserving, that is they remain efficient even approaching
the hydrodynamic regime [8, 9, 20, 22–24, 28, 46].

It is used in many applications and there exist many extensions to deal with gas mixtures,
ellipsoid statistical (ES-BGK)models, polyatomicmolecules, chemical reactions or quantum
gases; see for example [3, 4, 11–13, 29, 31, 32, 34, 38, 39, 43, 44, 50, 53, 55].

In this paper, we consider the initial-boundary value problem of the BGK equation in a
smooth bounded domain � in R

3:

∂t F + v · ∇x F = ν(M(F) − F), (1.1)

where F = F(t, x, v) ≥ 0 stands for the velocity distribution function of gas particles with
velocity v = (v1, v2, v3) ∈ R

3 at time t ≥ 0 and position x = (x1, x2, x3) ∈ � ⊂ R
3. M(F)

is the local Maxwellian defined as

M(F)(t, x, v) = ρ(t, x)

(2πT (t, x))3/2
exp
(

− |v −U (t, x)|2
2T (t, x)

)
, (1.2)

where ρ,U and T correspond to the macroscopic quantities given by the moments of F :

ρ(t, x) =
ˆ
R3

F(t, x, v)dv,

ρ(t, x)U (t, x) =
ˆ
R3

F(t, x, v)vdv,

3ρ(t, x)T (t, x) =
ˆ
R3

F(t, x, v)|v −U (t, x)|2dv.

The collision frequency ν takes the following form: for some constants η, ω:

ν(x) := ρηT ω.

From the numerical point of view, the BGK model considerably simplifies the situation.
But mathematical analysis is not necessarily easier, because the relaxation operator involves
more non-linearity compared to the bilinear collision operator of the Boltzmann equation. In
[47], Perthame established the global existence of weak solutions in whole space for the BGK
model with constant collision frequency. Regularity and uniqueness were considered in [48]
under the local existence framework in the torus. In a near-a-global-Maxwellian regime, the
global existence in the whole space in R3 and a polynomial convergence to equilibrium was
established in [7]. In [56], for a wide class of non-trivial collision frequencies, the existence
of a unique global smooth solution is established in the torus under a close-to-equilibrium
assumption on the initial data and an exponential decay estimate is established in a high order
energy norm. There are also various extensions of the previous result to more complicated
BGK-type equations as the BGK equation for gas mixtures in [5], the ellipsoidal BGK
model [57], relativistic and quantum BGK models [6, 40]. Moreover, a method to construct
sharp convergence rates for the BGK equation is given in [1, 2]. All results here, concerning
exponential convergence to equilibrium are in the torus and use a high order energy method
to show exponential convergence for the non-linear BGK equation in a close-to-equilibrium
regime. On the other hand, there are very few studies on the boundary value problem of the
BGK problem.

Reflective boundary conditions play a role inmany applications. Therefore, several numer-
ical methods for the BGK equation with reflective boundary conditions have been proposed
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in the literature, e.g. [9, 33, 51], also focusing on approaches preserving at the discrete level
the asymptotic limit towards Euler equations up to the wall, thus ensuring a smooth transition
towards the hydrodynamic regime [9]. Therefore, in this article, we aim to provide a theoret-
ical foundation for the boundary value problem and construct a unique global solution to the
BGK equation with the diffusive reflection boundary condition. We note that the diffusive
boundary condition is one of the most important reflection-type boundary conditions, and it
corresponds to the no-slip boundary condition in the hydrodynamic limit, cf. [52].

In the presence of the boundary, due to the characteristic nature, the kinetic equation
exhibits singularities near the boundary [17, 18, 21, 36, 37, 41], the high order energymethod
and Fourier transformmethod(cf. [25]) become unavailable. To address the challenges posed
by the nonlinear BGK operator, in the paper we focus on constructing a low-regularity
solution, specifically achieving L∞

x,v control without relying on the embedding H2
x ⊂ L∞

x .
The linear BGK operator possesses a dissipative property for the microscopic components
in the L2

v energy estimate, which allows us to manage the additional nonlinearity introduced
by the BGK operator by seeking a solution in the space L2

x,v ∩ L∞
x,v . Guo proposed this

L2
x,v ∩ L∞

x,v framework in [35], which established global well-posedness and exponential
convergence to the global Maxwellian for the Boltzmann equation including diffuse and
specular boundary condition. This breakthrough has significantly advanced the study of the
boundary value problemof theBoltzmann equation,we refer to [42] for the specular boundary
and [10, 14, 16, 19] for intermediate status between pure diffuse reflection and pure specular
reflection. Our main purpose in this paper is to propose an effective method to construct the
BGK solution in the low regularity space L2

x,v ∩ L∞
x,v . Thus we only focus on the classical

diffuse reflection boundary condition as mentioned earlier. We expect that our methodology
can be applied to investigate the relevant problems, such as the well-posedness theory under
other boundary conditions, the stationary problem, the regularity issues, the hydrodynamic
limits, etc.

To the end, we denote the boundary of the phase space as

γ := {(x, v) ∈ ∂� × R
3}.

Let n = n(x) be the outward normal direction at x ∈ ∂�. We decompose γ as

γ− = {(x, v) ∈ ∂� × R
3 : n(x) · v < 0},

γ+ = {(x, v) ∈ ∂� × R
3 : n(x) · v > 0},

γ0 = {(x, v) ∈ ∂� × R
3 : n(x) · v = 0}.

The diffusive reflection boundary condition is prescribed for the incoming phase space:

F(t, x, v)|γ− = cμμ(v)

ˆ
n(x)·u>0

F(t, x, u)(n(x) · u)du,

where μ corresponds to the normalized global Maxwellian:

μ(v) := 1

(2π)3/2
e− |v|2

2 .

The constant cμ = √
2π is chosen to satisfy

´
n(x)·v<0 cμμ(v)|n(x) · v|dv = 1 so that

cμμ(v)|n(x) ·v| is a probability measure on the half velocity space {R3 : n(x) ·v < 0}. Note
that the mass flux is vanishing at the boundaries, namelyˆ

R3
(n(x) · v)F(t, x, v)dv = 0, x ∈ ∂�.
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We seek the solution around the global Maxwellian, which takes the form F = μ+√
μ f .

Then, the following equation for f can be derived
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t f + v · ∇x f + L f = 
( f ) in (0,∞) × � × R
3,

f (t, x, v)|γ− = cμ

√
μ(v)

ˆ
n(x)·u>0

f (t, x, u)
√

μ(u)|n(x) · u|du for x ∈ ∂�,

f (0, x, v) = f0(x, v).

(1.3)

Here,L is a linearized collision operator, and
 a nonlinear collision operator. To define these
operators, we first denote the orthonormal basis

χ0(v) := √μ(v), χi (v) := vi
√

μ(v), i = 1, 2, 3, χ4(v) := |v|2 − 3

2

√
μ(v).

We denote P f as the macroscopic quantities, which is defined as the L2
v projection of f onto

the subspace spanned by χi :

P f :=
4∑

i=0

〈 f , χi 〉χi = a(x)χ0 +
3∑

i=1

bi (x)χi + c(x)χ4,

with

a(t, x) := 〈 f , χ0〉, b(t, x) = (b1(t, x), b2(t, x), b3(t, x)),

bi (t, x) := 〈 f , χi 〉 for i = 1, 2, 3; c(t, x) := 〈 f , χ4〉,
where we have taken the usual inner product on L2(R3

v):

〈 f , g〉 =
ˆ
R3

f (v)g(v) dv.

The linear operator L is then defined as L f = (I − P) f . The nonlinear operator 
( f ) is
defined as the remaining term in the BGK operator (1.1):


( f ) := ν
(
M
(
μ + √

μ f
)− μ − √

μ f
)

√
μ

− (I − P) f . (1.4)

Here we highlight that 
( f ) is a nonlinear operator of f , which exhibits a higher degree
of nonlinearity compared to the bilinear Boltzmann operator. The derivation of L f and
the explicit expression of 
( f ) can be obtained by performing a Taylor expansion around
the equilibrium state (ρ, u, T ) = (1, 0, 1). For the detailed derivation and the associated
properties, we refer to the next section ((2.6) and (2.7) in Lemma 1).

We denote a velocity weight as

w(v) := (1 + |v|)βeθ |v|2 ,
{

β ≥ 0 for 0 < θ < 1
4 ,

β > 3
2 for θ = 0.

(1.5)

Such choice of weight guarantee w−2(v) ∈ L1
v and w(v)

√
μ � 1.

Now we state our main result.

Theorem 1 Assume � is bounded and smooth. There exists a constant 0 < δ � 1 such that
if the initial condition F0(x, v) = μ+√

μ f0(x, v) ≥ 0 satisfies
´
�

´
R3

√
μ f0(x, v) dvdx =

0 and
‖w f0‖L∞

x,v
< δ,
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then there exists a unique solution F(t, x, v) = μ + √
μ f (t, x, v) ≥ 0 to the problem (1.3)

such that
´
�

´
R3

√
μ f (t, x, v) dvdx ≡ 0, and the following estimate holds true:

‖w f (t)‖L∞
x,v

≤ Ce−λtδ.

Here C > 1, 0 < λ < 1 are constants.

Remark 1 The linearized BGK operator L f = (I − P) f corresponds to the microscopic
component of f . Here, the first component f serves as a damping factor, while the second
component P f is a compact operator on L2

v .
For the Boltzmann operator Q(F, F), the linearized operator is given by LQ( f ) :=

− Q(μ,
√

μ f )+Q(
√

μ f ,μ)√
μ

. By the Grad estimate in [30], this operator can be decomposed into

LQ f = ν(v) f − K f , K f =
ˆ
R3

k(v, u) f (u)du, k(v, u) � e−C |v−u|2

|v − u| .

Comparedwith the linear BGK operator, the damping factor is given by ν(v) ∼ (1+|v|)γ .
In the case of hard sphere γ = 1, it provides extra damping. In the case of Maxwell molecule
γ = 0, this coincides with the damping factor in the BGK operator.

The integral operator K f is also a compact operator on L2
v . Under a polynomial or expo-

nential weight w from (1.5), the kernel k(v, u) enjoys(hard sphere potential)

k(v, u)
w(v)

w(u)
� e−C |v−u|2

|v − u| ,

w(v)K f = w(v)

ˆ
R3

k(v, u) f (u)du � ‖w f ‖L∞
x,v

ˆ
R3

e−C |v−u|2

|v − u| du � ‖w f ‖L∞
x,v

.

The linearized BGK operator exhibits a similar but more regular property. Since P is an
L2

v-projection onto its kernel, and given the constraint θ < 1
4 in (1.5), we have:

w(v)P f � w(v)

4∑
i=0

χi (v)

ˆ
R3

χi (u) f (u)du (1.6)

� ‖w f ‖L∞
x,v

4∑
i=0

ˆ
R3

χi (u)w−1(u) � ‖w f ‖L∞
x,v

. (1.7)

The integral kernel of the linearized BGK operator does not exhibit a singularity in |v−u|.
We expect this smoother structure to enhance the regularity of solutions to the BGK equation
in boundary value problems, compared with the regularity of the Boltzmann equation studied
in [37]. This will be left for future study.

Remark 2 While the linearized BGK operator has a simpler structure than its Boltzmann
counterpart, its nonlinear term 
( f ) is more complex. The nonlinear Boltzmann operator


Q( f , f ) = Q(
√

μ f ,
√

μ f )√
μ

has a bilinear form. This structure yields the key weighted esti-

mate: ‖ν−1w
Q( f , f )‖L∞
x,v

� ‖w f ‖2L∞
x,v

in the L2
x,v − L∞

x,v argument. Furthermore, the
sequential argument and uniqueness proof follow directly, as the bilinearity implies:

‖ν−1w[
Q( f1 − f2, f1) + 
( f2, f1 − f2)]‖L∞
x,v

� ‖w( f1 − f2)‖L∞
x,v

[‖w f1‖L∞
x,v

+ ‖w f2‖L∞
x,v

].
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In contrast, the nonlinearBGKoperator
( f ) is defined in (2.7) via aTaylor expansion, and
exhibits a more intricate nonlinearity. Although the last term in (2.7) appears to be trilinear,
the coefficients Qi j in (2.5) depend nonlinearly on the macroscopic quantities (ρ,U , T ) of
F , which again depend on the perturbed solution f . This nonlinear dependency poses amajor
challenge for deriving the necessary L∞

x,v estimate for ‖w
( f )‖L∞
x,v
. We refer to Lemma 5

for details.
Moreover, to establish the solution’s existence, uniqueness, and positivity, we must

introduce a new iterative scheme and a corresponding stability estimate of the nonlinear
operator‖w
( f1)−
( f2)‖L∞

x,v
. We refer to the stability estimate in Sect. 2.3 and the sequen-

tial argument in Sect. 4.1.

As explained in Remark 2, our main contribution in this paper can be summarized as
follows:

(1) Nonlinear estimates:We derive the L∞
x,v estimate for the nonlinear BGK operator 
( f )

and establish the a priori estimate in the L2-L∞ framework,
(2) Well-posedness: We derive the L∞

x,v stability estimate for 
( f ) and establish a new
iterative scheme to prove the existence and uniqueness of the solution.

(3) Positivity:We establish the positivity of the solution through a new sequential argument.

Outline. In Sect. 2, we will derive the expressions of the BGK operator L and 
, and
establish their fundamental properties. In Sect. 3, we will derive the L2 estimate for the linear
BGK equation by leveraging the coercive property ofL. Finally, in Sect. 4, we conclude The-
orem 1 by constructing the L∞ estimate through themethod of characteristics and employing
an iterative argument for the existence and uniqueness of the solution.

2 Preliminaries

2.1 Derivation ofL and 0

In this section, we derive the explicit expressions of L and 
.

Lemma 1 ([56]) (i) The collision frequency ν = ρηT ω in (1.1) can be linearized around the
global equilibrium state (ρ, T ) = (1, 1) as

ν = 1 + νp,

νp =
∑
i

〈 f , χi 〉
ˆ 1

0
D(ρϑ ,ρϑUϑ ,Gϑ )(ρ

η
ϑT

ω
ϑ )dϑ =

∑
i

〈 f , χi 〉
ˆ 1

0
Qidϑ, (2.1)

where the notation in (2.1) is defined as

Qi := {D(ρϑ ,ρϑUϑ ,Gϑ )(ρ
η
ϑT

ω
ϑ )}i , (2.2)

ρϑ = ϑρ + (1 − ϑ)1, ρϑUϑ = ϑρU ,

ρϑ |Uϑ |2 + 3ρϑTϑ

2
− 3

2
ρϑ = ϑ

{ρ|U |2 + 3ρT

2
− 3

2
ρ
}
,

G = ρ|U |2 + 3ρT√
6

− 3ρ√
6
, Gϑ = ϑG. (2.3)
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(ii) The local Maxwellian M(F) in (1.1) can be linearized around μ as

M(F) = μ + P f
√

μ +
∑

0≤i, j≤4

〈 f , χi 〉〈 f , χ j 〉
ˆ 1

0
Qi j (1 − ϑ)dϑ. (2.4)

Here Qi j is defined as

Qi j = {D2
(ρϑ ,ρϑUϑ ,Gϑ )M(ϑ)}i j , (2.5)

M(ϑ) = ρϑ

(2πTϑ)3/2
e
− |v−Uϑ |2

2Tϑ .

(iii) Plugging the perturbation F = μ + √
μ f and the expansion of M(F), ν given by

(2.4), (2.1) into the equation (1.1), we derive the expression of L( f ) and 
( f ) as

L f =(I − P) f , (2.6)


( f ) =νpP f − νp f +
∑

0≤i, j≤4

ˆ 1

0
Qi j (1 − ϑ)dϑ〈 f , χi 〉〈 f , χ j 〉μ−1/2

+ νp

∑
0≤i, j≤4

ˆ 1

0
Qi j (1 − ϑ)dϑ〈 f , χi 〉〈 f , χ j 〉μ−1/2

:=
1( f ) + 
2( f ) + 
3( f ) + 
4( f ). (2.7)

To fully state the expression of 
 in (2.7), we derive the explicit expression of Qi andQi j

in the following lemma.

Lemma 2 (i) Qi in (2.2) takes the following form:

Qi = Pi (ρϑ ,Uϑ , Tϑ)

Ri (ρϑ , Tϑ)
. (2.8)

Here Ri (ρϑ , Tϑ) = r1,i (ρϑ)r2,i (Tϑ)r3,i is monomial, r1,i > 0 is a positive constant and
r2,i , r3,i ≥ 0 are non-negative constants. Pi is a polynomial

Pi (ρϑ ,Uϑ,1,Uϑ,2,Uϑ,3, Tϑ) =
∑
m∈Si

am(ρϑ)m1(Uϑ,1)
m2(Uϑ,2)

m3(Uϑ,3)
m4(Tϑ)m5 .

Here am is a constant, m = (m1, · · · ,m5), where mi ≥ 0 are non-negative constants, and
Si corresponds to a collection of finitely many m.

(ii) Qi j in (2.5) takes the following form:

Qi j :=
[
D2

(ρϑ ,ρϑUϑ ,Gϑ )M(ϑ)
]
i j

= Pi j (ρϑ , v −Uϑ ,Uϑ , Tϑ)

Ri j (ρϑ , Tϑ)
M(ϑ). (2.9)

Here Ri j (ρϑ , Tϑ) = r1,i j (ρϑ)r2,i j (Tϑ)r3,i j is a monomial, r1,i j > 0 is a positive constant and
r2,i j , r3,i j ≥ 0 are powers of non-negative integers. Pi j is a polynomial

Pi j (ρϑ , v1 −Uϑ,1, v2 −Uϑ,2, v3 −Uϑ,3,Uϑ,1,Uϑ,2,Uϑ,3, Tϑ)

=
∑
m∈Si j

am(ρϑ)m1(v1 −Uϑ,1)
m2(v2 −Uϑ,2)

m3(v3 −Uϑ,3)
m4

(Uϑ,1)
m5(Uϑ,2)

m6(Uϑ,3)
m7(Tϑ)m8 ,

here am is a constant, m = (m1, · · · ,m8), where mi ≥ 0 are non-negative integers, and Si j
corresponds to a collection of finitely many m = (m1, · · · ,m8).
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Proof We can compute the derivative in Qi as

D(ρ,ρU ,G)ρ
ηT ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −U1
ρ

−U2
ρ

−U3
ρ

−3T+|U |2+3
3ρ

0 1
ρ

0 0 − 2U1
3ρ

0 0 1
ρ

0 − 2U2
3ρ

0 0 0 1
ρ

− 2U3
3ρ

0 0 0 0

√
2
3

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηρη−1T ω

0

0

0

ωT ω−1ρη

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here the first matrix corresponds to (D(ρ,ρU ,G)(ρ,U , T ))−1. This concludes (2.8).
Next we compute the derivative in Qi j as

D(ρ,ρU ,G)

ρ

(2πT )3/2
e− |v−U |2

2T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −U1
ρ

−U2
ρ

−U3
ρ

−3T+|U |2+3
3ρ

0 1
ρ

0 0 − 2U1
3ρ

0 0 1
ρ

0 − 2U2
3ρ

0 0 0 1
ρ

− 2U3
3ρ

0 0 0 0

√
2
3

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρ

−U1−v1
T

−U2−v2
T

−U3−v3
T

|v−U |2−3T
2T 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M(F).

The second derivative becomes

D2
(ρ,ρU ,G)M(F) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −U1
ρ

−U2
ρ

−U3
ρ

−3T+|U |2+3
3ρ

0 1
ρ

0 0 − 2U1
3ρ

0 0 1
ρ

0 − 2U2
3ρ

0 0 0 1
ρ

− 2U3
3ρ

0 0 0 0

√
2
3

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D(ρ,U ,T )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −U1
ρ

−U2
ρ

−U3
ρ

−3T+|U |2+3
3ρ

0 1
ρ

0 0 − 2U1
3ρ

0 0 1
ρ

0 − 2U2
3ρ

0 0 0 1
ρ

− 2U3
3ρ

0 0 0 0

√
2
3

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρ

−U1−v1
T

−U2−v2
T

−U3−v3
T

|v−U |2−3T
2T 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M(F)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This concludes (2.9).
��

Lemma 3 The nonlinear operator 
 in (2.7) satisfies

P(
( f )) = 0.

Proof We use the definition of 
( f ) in (1.4) and have

P(
( f )) = P
(ν(M(F) − F)√

μ

)
− P((I − P) f ) = νP

( (M(F) − F)√
μ

)
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=
4∑

i=0

νχi

ˆ
R3

(M(F) − F)
χi√
μ
dv = 0.

In the second line, we used χ0√
μ

= 1, χi√
μ

= vi , i ∈ {1, 2, 3}, χ4√
μ

= |v|2−3
2 and the

conservation of mass, momentum and energy. ��

2.2 L∞ estimate of 0

As discussed in the introduction, we aim to control the nonlinear operator 
 in L∞ space.
In this section, we establish the L∞ control of 
 in Lemma 5. This result will play a crucial
role in proving the a priori estimate.

Lemma 4 We can control the macroscopic quantities using the L∞ estimate of f as follows:
If ‖w f ‖L∞

x,v
� δ, then it holds:

‖ρ − 1,U , T − 1‖L∞
x

� δ. (2.10)

This further leads to
ˆ 1

0
|Qi |dϑ � 1, (2.11)

(1 + |v|)βeθ |v|2
ˆ 1

0
|Qi j |(1 − ϑ)dϑμ−1/2 � 1 for θ <

1

4
. (2.12)

Proof We can estimate the density as

|ρ(t, x) − 1| =
∣∣∣
ˆ
R3

[μ + √
μ f ]dv − 1

∣∣∣ ≤ ‖w f ‖L∞
x,v

ˆ
R3

√
μw−1dv ≤ Cδ.

Then we estimate the momentum as

|ρ(t, x)U (t, x)| =
∣∣∣
ˆ
R3

[μ + √
μ f ]vdv

∣∣∣ ≤ ‖w f ‖L∞
x,v

ˆ
R3

√
μ(v)w−1(v)|v|dv ≤ Cδ.

Thus

|U (t, x)| ≤ Cδ

inf{ρ(t, x)} ≤ Cδ

1 − Cδ
≤ 2Cδ.

Last we compute the energy as

|3ρ(t, x)T (t, x) − 3| =
∣∣∣
ˆ
R3

(μ + √
μ f )|v −U (t, x)|2dv − 3

∣∣∣

≤ |U (t, x)|2 + ‖w f ‖L∞
x,v

ˆ
R3

√
μ(v)w−1(v)|v −U (t, x)|2dv

� δ2 + ‖w f ‖L∞
x,v

ˆ
R3

√
μ(v)w−1(v)[|v|2 + |U (t, x)|2]dv

≤ δ2 + Cδ(C + (2Cδ)2) � δ.

With

T (t, x) − 1 = ρ(t, x)T (t, x) − 1

ρ(t, x)
− ρ(t, x) − 1

ρ(t, x)
,
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we derive that,

|T (t, x) − 1| � δ

1 − Cδ
+ δ

1 − Cδ
� δ.

We conclude (2.10).
Next we prove (2.11). Recall the definition of ρϑ,Uϑ , Tϑ in Lemma 1, from (2.10) it is

straightforward to verify that for some C

|ρϑ − 1,Uϑ , Tϑ − 1| ≤ Cδ. (2.13)

By the property of Qi in (2.8), we apply (2.13) to control the denominator as

1 � r1,i (1 − Cδ)r2,i (1 − Cδ)r3,i ≤ Ri (ρϑ , Tϑ).

We control the numerator as

Pi (ρϑ ,Uϑ , Tϑ) �
∑
m∈Si

|am |(1 + Cδ)m1(Cδ)m2+m3+m4(1 + Cδ)m5 � 1.

This concludes (2.11).
Last we prove (2.12). From the property of Qi j in (2.9), we apply (2.13) to control the

denominator as

1 � r1,i j (1 − Cδ)r2,i j (1 − Cδ)r3,i j ≤ Ri j (ρϑ , Tϑ)

We control the numerator as

Pi j (ρϑ , v1 −Uϑ,1, v2 −Uϑ,2, v3 −Uϑ,3,Uϑ,1,Uϑ,2,Uϑ,3, Tϑ)

�
∑
m∈Si j

|am |(1 + Cδ)m1(v1 −Uϑ,1)
m2(v2 −Uϑ,2)

m3(v3 −Uϑ,3)
m4

(Cδ)m5+m6+m7(1 + Cδ)m9M(ϑ)

�
∑
m∈Si j

|v −Uϑ |m2+m3+m4
1 + Cδ

(2π(1 − Cδ))3/2
e− |v−Uϑ |2

2(1+Cδ) � e− |v|2
2(1+Cδ+C(θ)) .

In the last line, we first bound the polynomial by an exponential as |v − Uϑ |m2+m3+m4

� e−c|v−Uϑ |2 for some small c that depends on θ to achieve

|v −Uϑ |m2+m3+m4e− |v−Uϑ |2
2(1+Cδ) � e− |v−Uϑ |2

2(1+Cδ+C(θ)) .

Here C(θ) is a small constant that depends on θ .
Then we bound

e− |v−Uϑ |2
2(1+Cδ+C(θ)) = e

−|v|2+2v·Uϑ −|Uϑ |2
2(1+Cδ+C(θ)) � e

−|v|2+|v|2 |Uϑ |2+2
2(1+Cδ+C(θ))

� e
−(1−C2δ2)|v|2
2(1+Cδ+C(θ)) � e− |v|2

2(1+Cδ+2C(θ)) .

Since δ � 1 and θ < 1
4 , we can choose C(θ) and δ to be small enough such that

(1 + |v|)βeθ |v|2e− |v|2
2(1+Cδ+2C(θ)) e|v|2/4 � 1.

Here the inequality does not depend on δ. We conclude the lemma. ��
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Lemma 5 When ‖w f ‖L∞
x,v

≤ ‖eλtw f ‖L∞
x,v

� δ, the following L∞ control holds for the
nonlinear operator given in (2.7):

‖w
i ( f )‖L∞
x,v

� ‖w f ‖2L∞
x,v

, ‖e2λtw
i ( f )‖L∞
x,v

� ‖eλtw f ‖2L∞
x,v

, i = 1, 2, 3, (2.14)

‖w
4( f )‖L∞
x,v

� ‖w f ‖3L∞
x,v

, ‖e2λtw
4( f )‖L∞
x,v

� ‖eλtw f ‖3L∞
x,v

. (2.15)

Proof We first prove (2.14). From (2.7), we apply (2.11) and compute

|w
1( f )| � |wP f |
∑
i

∣∣∣〈 f , χi 〉
ˆ 1

0
Qidϑ

∣∣∣ � |
∑
i

wχi 〈 f , χi 〉|
∑
i

|〈 f , χi 〉|

� ‖w f ‖2L∞
x,v

∑
i

〈w−1, χi 〉2 � ‖w f ‖2L∞
x,v

.

Here we used θ < 1
4 so that (1 + |v|)βeθ |v|2χi � 1. The second inequality in (2.14) follows

in the same computation:

|e2λtw
1( f )| � |
∑
i

wχi 〈eλt f , χi 〉|
∑
i

|〈eλt f , χi 〉| � ‖eλtw f ‖2L∞
x,v

.

Then for 
2( f ) we apply (2.11) and have

|w
2( f )| � |w f |
∑
i

∣∣∣〈 f , χi 〉
ˆ 1

0
Qidϑ

∣∣∣ � ‖w f ‖2L∞
x,v

∑
i

〈w−1, χi 〉 � ‖w f ‖2L∞
x,v

,

eλt |w
2( f )| � |eλtw f |
∑
i

〈w−1, χi 〉 � ‖eλtw f ‖2L∞
x,v

.

For 
3( f ), we apply (2.12) to have

|w
3( f )| � w
∑

0≤i, j≤4

∣∣∣
ˆ 1

0
Qi j (1 − ϑ)dϑ

∣∣∣μ−1/2‖w f ‖2L∞
x,v

� ‖w f ‖2L∞
x,v

e2λt |w
3( f )| � w
∑

0≤i, j≤4

∣∣∣
ˆ 1

0
Qi j (1 − ϑ)dϑ

∣∣∣μ−1/2‖eλtw f ‖2L∞
x,v

� ‖eλtw f ‖2L∞
x,v

.

This concludes (2.14).
Next, we prove (2.15). We apply (2.11) and (2.12) to have

|w
4( f )| �
∑
i

〈| f |, χi 〉
∣∣∣
ˆ 1

0
Qidϑ

∣∣∣
∑

0≤ j,k≤4

w

∣∣∣
ˆ 1

0
Qi j (1 − ϑ)dϑ

∣∣∣μ−1/2〈| f |, χ j 〉〈| f |, χk〉

� ‖w f ‖3L∞
x,v

.

Similarly, we have

|e2λtw
4( f )| � ‖eλtw f ‖3L∞
x,v

.

This concludes (2.15).
��
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2.3 Stability estimate of 0

To prove the existence and uniqueness of solutions, we will employ a sequential argument.
In this section, we derive the L∞ stability estimate of 
 in Lemma 7.

Lemma 6 Let F1 = μ+√
μ f1, F2 = μ+√

μ f2 and assume that ‖w fk‖L∞
x,v

� δ, k = 1, 2.
We denote (ρk,Uk, Tk) as the macroscopic quantities of Fk defined in (1.2), then it holds thatˆ 1

0
|Qi (ρ1,ϑ ,U1,ϑ , T1,ϑ ) − Qi (ρ2,ϑ ,U2,ϑ , T2,ϑ )|dϑ � ‖w( f1 − f2)‖L∞

x,v
, (2.16)

(1 + |v|)βeθ |v|2
ˆ 1

0
|Qi j (ρ1,ϑ , v −U1,ϑ ,U1,ϑ , T1,ϑ ) − Qi j (ρ2,ϑ , v −U2,ϑ ,U2,ϑ , T2,ϑ )|

(1 − ϑ)dϑμ−1/2 � ‖w( f1 − f2)‖L∞
x,v

. (2.17)

Proof From (2.10) we have

‖ρk − 1,Uk, Tk − 1‖L∞
x

� δ, k = 1, 2. (2.18)

We compute the difference of the macroscopic quantities ρ,U , T as

|ρ1 − ρ2| =
∣∣∣
ˆ
R3

(F1 − F2)dv
∣∣∣ =
∣∣∣
ˆ
R3

( f1 − f2)
√

μdv
∣∣∣ � ‖w( f1 − f2)‖L∞

x,v
,

|U1 −U2| =
∣∣∣ 1
ρ1

ˆ
R3

F1vdv − 1

ρ2

ˆ
R3

F2vdv
∣∣∣

=
∣∣∣ 1
ρ1

ˆ
R3

(F1 − F2)vdv +
ˆ
R3

F2vdv
( 1

ρ1
− 1

ρ2

)∣∣∣

=
∣∣∣ 1
ρ1

ˆ
R3

( f1 − f2)v
√

μdv +
ˆ
R3

f2v
√

μdv
( 1

ρ1
− 1

ρ2

)∣∣∣

� ‖w( f1 − f2)‖L∞
x,v

+ ‖w f2‖L∞
x,v

|ρ1 − ρ2|
ρ1ρ2

� ‖w( f1 − f2)‖L∞
x,v

,

|T1 − T2| = 1

3

∣∣∣ 1
ρ1

ˆ
R3

F1|v −U1|2dv − 1

ρ2

ˆ
R3

F2|v −U2|2dv
∣∣∣

= 1

3

∣∣∣ 1
ρ1

ˆ
R3

F1|v −U1|2 − F2|v −U2|2dv +
ˆ
R3

F2|v −U2|2dv
( 1

ρ1
− 1

ρ2

)∣∣∣

�
ˆ
R3

|F1 − F2||v −U1|2dv +
ˆ
R3

F2
∣∣∣|v −U1|2 − |v −U2|2

∣∣∣dv

+ |ρ1 − ρ2|
ˆ
R3

f2|v −U2|2√μdv

�
ˆ
R3

| f1 − f2||v −U1|2√μdv +
ˆ
R3

f2[(|U1|2 − |U2|2)
+ (U1 −U2) · v]√μdv + ‖w( f1 − f2)‖L∞

x,v

� ‖w( f1 − f2)‖L∞
x,v

+ |U1 −U2| � ‖w( f1 − f2)‖L∞
x,v

.

These estimates imply the following control: for integer powerm ≥ 1, due to (2.18), we have

|(ρm
1 − ρm

2 ,Um
1 −Um

2 , Tm
1 − Tm

2 )|

123



BGK model in bounded domain Page 13 of 38    61 

� |(ρ1 − ρ2,U1 −U2, T1 − T2)||ρm−1
1 + ρm−1

2 +Um−1
1 +Um−1

2 + Tm−1
1 + Tm−1

2 |
� |(ρ1 − ρ2,U1 −U2, T1 − T2)| � ‖w( f1 − f2)‖L∞

x,v
. (2.19)

For positive power m > 0,

|(ρm
1 − ρm

2 , Tm
1 − Tm

2 )| � |ρ1 − ρ2||ρm−1
1 + ρm−1

2 + Tm−1
1 + Tm−1

2 |
� |(ρm

1 − ρm
2 , Tm

1 − Tm
2 )| � ‖w( f1 − f2)‖L∞

x,v
. (2.20)

Here ρm−1
k , Tm−1

k � 1 for finite m due to (2.18).
For positive power m > 0, again due to (2.18),

∣∣∣
( 1

ρm
1

− 1

ρm
2

,
1

Tm
1

− 1

Tm
2

)∣∣∣ =
∣∣∣
(ρm

1 − ρm
2

ρm
1 ρm

2
,
Tm
1 − Tm

2

Tm
1 Tm

2

)∣∣∣
� |(ρm

1 − ρm
2 , Tm

1 − Tm
2 )| � ‖w( f1 − f2)‖L∞

x,v
. (2.21)

We compute the difference of ρk,ϑ ,Uk,ϑ , Tk,ϑ using the definition in (2.3) and the com-
putation (2.19), (2.20), (2.21):

|ρ1,ϑ − ρ2,ϑ ,U1,ϑ −U2,ϑ | =
∣∣∣ϑ(ρ1 − ρ2),

ϑ(ρ1U1 − ρ2U2) − ϑU2,ϑ (ρ1 − ρ2)

ρ1,ϑ

∣∣∣
� ‖w( f1 − f2)‖L∞

x,v
,

|T1,ϑ − T2,ϑ | = 2

3ρ1,ϑ

∣∣∣− ρ1,ϑ |U1,ϑ |2 − ρ2,ϑ |U2,ϑ |2
2

− 3

2
T2,ϑ (ρ1,ϑ − ρ2,ϑ )

+ ϑ
{ρ1|U1|2 + 3ρ1T1

2
− 3

2
ρ1 − ρ2|U2|2 + 3ρ2T2

2
+ 3

2
ρ2

}∣∣∣
� ‖w( f1 − f2)‖L∞

x,v
.

It is straightforward to verify that we can achieve the same estimate for ρk,ϑ ,Uk,ϑ , Tk,ϑ
as (2.19), (2.20), (2.21):

|(ρm
1,ϑ − ρm

2,ϑ ,Um
1,ϑ −Um

2,ϑ , Tm
1,ϑ − Tm

2,ϑ )| � ‖w( f1 − f2)‖L∞
x,v

, m is a positive integer.

|(ρm
1,ϑ − ρm

2,ϑ , Tm
1,ϑ − Tm

2,ϑ )| � ‖w( f1 − f2)‖L∞
x,v

, m is a positive constant. (2.22)
∣∣∣
( 1

ρm
1,ϑ

− 1

ρm
2,ϑ

,
1

Tm
1,ϑ

− 1

Tm
2,ϑ

)∣∣∣ � ‖w( f1 − f2)‖L∞
x,v

, m is a positive constant.

From (2.8) and (2.9), the denominator of Qi and Qi j contain monomial of ρϑ, Tϑ , while
the numerator contain polynomial of ρϑ,Uϑ , Tϑ , v −Uϑ with integer powers. Then we can
apply the computation (2.22) for the subtraction in (2.16) and (2.17). Then the lemma follows
by a rather tedious but straightforward computation. ��
Lemma 7 Given f1 and f2 such that ‖eλtw f1‖L∞

x,v
+ ‖eλtw f2‖L∞

x,v
� δ, it holds that

‖e2λtw(
( f1) − 
( f2))‖L∞
x,v

� δ‖eλtw( f1 − f2)‖L∞
x,v

. (2.23)

Proof We will derive the lemma by estimating every term in (2.7).
We start with 
1( f ) = νp( f )P f1. From the definition of νp in (2.1), we compute that

νp( f1)P f1 − νp( f2)P f2 = (νp( f1) − νp( f2))P f1 + νp( f2)P( f1 − f2).

The second term is bounded using (2.1) and (2.11):

e2λt |wνp( f2)P( f1 − f2)| � ‖eλtw( f1 − f2)‖L∞
x,v

‖eλtw f2‖L∞
x,v

� δ‖eλtw( f1 − f2)‖L∞
x,v

123
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For the first term, we use the property of Qi (2.8) to have

eλt |νp( f1) − νp( f2)|

�
∑
i

〈eλt | f1 − f2|, χi 〉
ˆ 1

0
|Qi ( f1)|dϑ +

∑
i

〈eλt | f2|, χi 〉
ˆ 1

0
|Qi ( f1) − Qi ( f2)|dϑ

� ‖eλtw( f1 − f2)‖L∞
x,v

+ ‖eλtw f2‖L∞
x,v

‖w( f1 − f2)‖L∞
x,v

� ‖eλtw( f1 − f2)‖L∞
x,v

.

(2.24)

Here we have used (2.11) and (2.16).
This leads to

|e2λtw(νp( f1) − νp( f2))P f1| � ‖eλtw f1‖L∞
x,v

‖eλtw( f1 − f2)‖L∞
x,v

� δ‖eλtw( f1 − f2)‖L∞
x,v

.

Thus (2.23) holds for 
1.
Next we estimate 
2( f ) = −νp( f ) f . We compute that

νp( f1) f1 − νp( f2) f2 = (νp( f1) − νp( f2)) f1 + νp( f2)( f1 − f2).

The second term is bounded using (2.1) and (2.11):

|e2λtw( f1 − f2)νp( f2)| � ‖eλtw( f1 − f2)‖L∞
x,v

‖eλtw f2‖L∞
x,v

� δ‖eλtw( f1 − f2)‖L∞
x,v

.

For the first term, using the same computation as (2.24), we obtain

|e2λtw(νp( f1) − νp( f2)) f1| � ‖eλtw( f1 − f2)‖L∞
x,v

‖eλtw f1‖L∞
x,v

� δ‖eλtw( f1 − f2)‖L∞
x,v

.

Thus (2.23) holds for 
2.
Nextwe estimate
3( f ) =∑0≤i, j≤4

´ 1
0 Qi j ( f )(1−ϑ)dϑ〈 f , χi 〉〈 f , χ j 〉μ−1/2.We com-

pute that

e2λt |w
3( f1) − w
3( f2)|

≤ w
∑

0≤i, j≤4

ˆ 1

0
[Qi j ( f1) − Qi j ( f2)](1 − ϑ)dϑ〈eλt f1, χi 〉〈eλt f1, χ j 〉μ−1/2

+ w
∑

0≤i, j≤4

ˆ 1

0
|Qi j ( f2)|(1 − ϑ)dϑ[〈eλt ( f1 − f2), χi 〉〈eλt f1, χ j 〉

+ 〈eλt f2, χi 〉〈eλt ( f1 − f2), χ j 〉]μ1/2

� ‖eλtw f1‖2L∞
x,v

‖w( f1 − f2)‖L∞
x,v

+ ‖eλtw( f1 − f2)‖L∞
x,v

[‖eλtw f1‖L∞
x,v

+ ‖eλtw f2‖L∞
x,v

]
� δ‖eλtw( f1 − f2)‖L∞

x,v
. (2.25)

Here we have applied (2.12) and (2.17). Thus (2.23) holds for 
3.
Last we estimate 
4( f ) = νp( f )

∑
0≤i, j≤4

´ 1
0 Qi j ( f )(1 − ϑ)dϑ〈 f , χi 〉〈 f , χ j 〉μ−1/2.

We compute that

e2λt |w
4( f1) − w
4( f2)| ≤ e2λt |νp( f1) − νp( f2)|wˆ 1

0
|Qi j ( f1)|(1 − ϑ)dϑ〈 f1, χi 〉〈 f1, χ j 〉μ−1/2

+ |νp( f2)|eλt |w
3( f1) − w
3( f2)| � ‖eλtw( f1 − f2)‖L∞
x,v

‖eλtw f1‖2L∞
x,v

+ δ‖eλtw f2‖L∞
x,v

‖eλtw( f1 − f2)‖L∞
x,v

� δ‖eλtw( f1 − f2)‖L∞
x,v

.
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In the RHS of the first line, we have applied (2.24), (2.12). In the last line, we have applied
(2.1), (2.11), and (2.25).

We conclude the lemma.
��

3 L2 dissipation estimate

In this section, we consider the solution to the linearized BGK equation

∂t f + v · ∇x f + L f = g, (3.1)

with the source term g = g(t, x, v) satisfying

Pg = 0. (3.2)

The boundary condition of f is given by

f (t, x, v)|γ− = cμ

√
μ(v)

ˆ
n(x)·u>0

(n(x) · u) f (t, x, u)
√

μ(u)du. (3.3)

We denote

Pγ f := cμ

√
μ(v)

ˆ
n(x)·u>0

(n(x) · u) f (t, x, u)
√

μ(u)du.

We will prove the following L2-dissipation result.

Proposition 2 Let � be an arbitrary bounded and C1 domain. There exists 0 < λ � 1 such
that if the initial data f0 and source data g satisfy (3.2) and

‖ f0‖2L2
x,v

+
ˆ t

0
‖eλs g(s)‖2L2

x,v
ds < ∞,

then there exists a unique solution to the problem
{

∂t f + v · ∇x f + L f = g,

f (0, x, v) = f0(x, v), f |γ− = Pγ f .
(3.4)

Moreover, it holds that

‖ f (t)‖2L2
x,v

� e−2λt
{
‖ f0‖2L2

x,v
+

ˆ t

0
‖eλs g(s)‖2L2

x,v
ds
}
, ∀ t ≥ 0. (3.5)

To prove Proposition 2, we need to have the following L2 dissipation estimate of the
macroscopic quantities. Denote

| f |22,+ :=
ˆ

∂�

ˆ
n(x)·v>0

| f (t, x, v)|2(n(x) · v)dvdSx , dSx is the surface integral.

Lemma 8 Suppose f solves the following equation,

∂t f + v · ∇x f + L f = g, (3.6)
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with boundary condition (3.3). Here g does not need to satisfy the condition (3.2). It holds
that

ˆ t

0
‖P f (s)‖2L2

x,v
ds � G(t) − G(0) +

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds +

ˆ t

0
‖g(s)‖2L2

x,v
ds

+
ˆ t

0
|(I − Pγ ) f (s)|22,+ ds,

where G(t) is a functional of f (t, x, v) such that |G(t)| � ‖ f (t)‖2
L2
x,v

holds true for any

t ≥ 0.

The proof of the macroscopic dissipation estimate is standard. For completeness, we refer to
the proof provided in the appendix.

Proof of Proposition 2 We prove the decay estimate (3.5). Multiplying (3.4) with eλt we get

[∂t + v · ∇x + L](eλt f ) = λeλt f + eλt g. (3.7)

Applying Green’s identity to (3.7), we have

‖eλt f (t)‖2L2
x,v

+
ˆ t

0
‖(I − P)eλs f (s)‖2L2

x,v
ds +

ˆ t

0
|(I − Pγ )eλs f (s)|22,+ds

� λ

ˆ t

0
‖eλs f (s)‖2L2

x,v
ds + ‖ f (0)‖2L2

x,v
+

ˆ t

0
‖eλs g(s)‖2L2

x,v
ds. (3.8)

Here, we have applied P(eλt g) = 0. We have also applied the following coercive property
of the diffuse reflection boundary condition:

ˆ
∂�

ˆ
R3

| f (t, x, v)|2(n(x) · v)dvdSx

=
ˆ

∂�

ˆ
n(x)·v>0

|(I − Pγ ) f + Pγ f |2(n(x) · v)dvdSx

+
ˆ

∂�

ˆ
n(x)·v<0

|Pγ f |2(n(x) · v)dvdSx

=
ˆ

∂�

ˆ
n(x)·v>0

|(I − Pγ ) f |2(n(x) · v)dvdSx

+ 2
ˆ

∂�

ˆ
n(x)·v>0

f Pγ f (n(x) · v)dvdSx

− 2
ˆ

∂�

ˆ
n(x)·v>0

|Pγ f |2(n(x) · v)dvdSx

+
ˆ

∂�

ˆ
R3

|Pγ f |2(n(x) · v)dvdSx

= |(I − Pγ ) f |22,+ +
(ˆ

∂�

ˆ
n(x)·u>0

(n(x) · u) f (u)
√

μ(u)dudSx
)2

× [(2 − 2)
ˆ
n(x)·v>0

cμμ(v)(n(x) · v)dv +
ˆ
R3

cμμ(v)(n(x) · v)dv]

= |(I − Pγ ) f |22,+.
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Next, we apply Lemma 8 to (3.7), then we obtainˆ t

0
‖eλsP f (s)‖2L2

x,v
ds � G(t) − G(0) +

ˆ t

0
‖eλs(I − P) f (s)‖2L2

x,v
ds +

ˆ t

0
‖λeλs f ‖2L2

x,v
ds

+
ˆ t

0
‖eλs g(s)‖2L2

x,v
ds +

ˆ t

0
|eλs(I − Pγ ) f (s)|22,+ds, (3.9)

where |G(t)| � ‖eλt f (t)‖2
L2
x,v
. Therefore, multiplying (3.9) by a small constant ε and adding

the resultant to (3.8), we obtain that for some C > 0,

(1 − Cε)‖eλt f (t)‖2L2
x,v

+
{
(1 − Cε)

ˆ t

0
‖eλs(I − P) f (s)‖2L2

x,v
ds + ε

ˆ t

0
‖eλsP f (s)‖2L2

x,v
ds
}

+ (1 − Cε)

ˆ t

0
|eλs(I − Pγ ) f (s)|22,+ds

≤ C(λ + λ2)

ˆ t

0
‖eλs f (s)‖2L2

x,v
ds + C‖ f (0)‖2L2

x,v
+

ˆ t

0
‖eλs g(s)‖2L2

x,v
ds.

Since ‖eλs(I − P) f (s)‖2
L2
x,v

+ ‖eλsP f (s)‖2
L2
x,v

= ‖eλs f (s)‖2
L2
x,v
, we further obtain that for

ε � 1:

‖eλt f (t)‖2L2
x,v

+ ε

ˆ t

0
‖eλs f (s)‖2L2

x,v
ds

≤ C(λ + λ2)

ˆ t

0
‖eλs f (s)‖2L2

x,v
ds + C‖ f (0)‖2L2

x,v
+

ˆ t

0
‖eλs g(s)‖2L2

x,v
ds.

Last we let λ � 1 be such that C(λ + λ2) ≤ ε, then the above estimate gives the desired
decay estimate (3.5). We conclude the proof of Proposition 2. ��

4 L∞ estimate bymethod of characteristic

In this section, we are devoted to the proof of Theorem 1. We will control the nonlinear
operator 
( f ) in (1.3) using L∞ norm. For this purpose, we start with the L∞ estimate of
the linear problem (3.1) in the following proposition.

Proposition 3 Suppose the initial condition and source term in (3.1) satisfy

‖w f0‖L∞
x,v

< ∞, sup
0≤s≤t

eλs‖wg(s)‖L∞
x,v

< ∞, P(g) = 0, (4.1)

then there exists C > 0 such that the unique solution in Proposition 2 satisfies

‖w f (t)‖L∞
x,v

≤ Ce−λt
{
‖w f0‖L∞

x,v
+ sup

0≤s≤t
eλs‖wg(s)‖L∞

x,v

}
,

for any t ≥ 0.

We will derive the L∞ control using the method of characteristics. We use standard
notations for the backward exit time and backward exit position:

tb(x, v) := sup{s ≥ 0, x − sv ∈ �}, xb(x, v) := x − tb(x, v)v.

We denote t0 = T0, a fixed starting time. Since the backward trajectory may have multiple
interactions with the boundary, we define the following stochastic cycle:
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Definition 1 We define a stochastic cycles as (x0, v0) = (x, v) ∈ �̄ × R
3 and inductively

x1 := xb(x, v), v1 ∈ {v1 ∈ R
3 : n(x1) · v1 > 0},

vk ∈ Vk := {vk ∈ R
3 : n(xk) · vk > 0}, for k ≥ 1, (4.2)

xk+1 := xb(xk, vk), tkb := tb(xk, vk) for n(xk) · vk ≥ 0,

tk = t0 − {tb + t1b + · · · + tk−1
b }, for k ≥ 1.

With the stochastic cycles defined, suppose f satisfies the linear equation (3.1), with L f
defined in (2.6) in Lemma 1, we apply the method of characteristic to get

w(v) f (T0, x, v)

= 1t1≤0w(v)e−T0 f (0, x − tv, v) (4.3)

+ 1t1≤0

ˆ T0

0
e−(T0−s)w(v)

4∑
i=0

χi (v)

ˆ
R3

f (s, x − (t − s)v, u)χi (u)duds (4.4)

+ 1t1>0

ˆ T0

t1
e−(T0−s)w(v)

4∑
i=0

χi (v)

ˆ
R3

f (s, x − (t − s)v, u)χi (u)duds (4.5)

+ 1t1≤0

ˆ T0

0
e−(T0−s)w(v)g(s, x − (t − s)v, v)ds (4.6)

+ 1t1>0

ˆ T0

t1
e−(T0−s)w(v)g(s, x − (t − s)v, v)ds (4.7)

+ 1t1>0e
−(T0−t1)w(v) f (t1, x1, v). (4.8)

The boundary term (4.8) is represented using the diffuse reflection boundary condition (1.3)
and the stochastic cycle Definition 1:

f (t1, x1, v) = cμ

√
μ(v)

ˆ
n(x1)·v1>0

f (t1, x1, v1)
√

μ(v1)|n(x1) · v1|dv1.

Applying the method of characteristic again to f (t1, x1, v1), with the stochastic cycle defined
in Definition 1, it is standard to derive the following bound for the boundary term (4.8):

|(4.8)| ≤ e−(T0−t1)w(v)

×
ˆ
∏k−1

j=1 V j

{ k−1∑
i=1

1ti+1≤0<ti e
−ti w(vi )| f (0, xi − tivi , vi )|d�i (4.9)

+ 1tk>0w(vk−1)| f (tk, xk, vk−1)|d�k−1 (4.10)

+
k−1∑
i=1

1ti+1≤0<ti

ˆ ti

0
e−(ti−s)

4∑
�=0

w(vi )χ�(vi )

ˆ
R3

χ�(u) f (s, xi − (ti − s)vi , u)dudsd�i

(4.11)

+
k−1∑
i=1

1ti+1>0

ˆ ti

ti+1

e−(ti−s)
4∑

�=0

w(vi )χ�(vi )

ˆ
R3

χ�(u) f (s, xi − (ti − s)vi , u)dudsd�i

(4.12)

+
k−1∑
i=1

1ti+1≤0<ti

ˆ ti

0
e−(ti−s)w(vi )g(s, xi − (ti − s)vi , vi )d�i (4.13)
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+
k−1∑
i=1

1ti+1>0

ˆ ti

ti+1

e−(ti−s)w(vi )g(s, xi − (ti − s)vi , vi )d�i

}
. (4.14)

Here d�i is defined as

d�i =
{ k−1∏

j=i+1

dσ j

}
×
{ 1

w(vi )
√

μ(vi )
dσi
}

×
{ i−1∏

j=1

e−(t j−t j+1)dσ j

}
, (4.15)

where dσi is a probability measure in Vi (4.2) given by

dσi = cμμ(vi )(n(xi ) · vi )dvi . (4.16)

The term (4.10) corresponds to the scenario that the backward trajectory interacts with the
diffuse boundary for more than k times, while the other terms involve finite-time interaction.
This uncontrolled interaction times is estimated by the following lemma.

Lemma 9 For T0 > 0 sufficiently large, there exists constants C1,C2 > 0 independent of T0
such that for k = C1T

5/4
0 , and (t0, x0, v0) = (t, x, v) ∈ [0, T0] × �̄ × R

3,

ˆ
∏k−1

j=1 V j

1tk>0

k−1∏
j=1

dσ j ≤
(1
2

)C2T
5/4
0

.

Proof Since the characteristic in Definition 1 with repeated interaction with the boundary is
fully determined by the diffuse reflection boundary condition, this statement is independent
of the equation. We refer to the proof in Lemma 23 of [35] for the Boltzmann equation. ��

To prove Proposition 3, among the characteristic formula (4.3) - (4.8), first we estimate
the boundary term (4.8) in the following lemma.

Lemma 10 For the boundary term (4.8), with λ given in Proposition 2, it holds that

w(v)| f (t1, x1, v)| ≤ 4e−t1‖w f0‖L∞
x,v

+ o(1)e−λt1 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ C(T0)e
−λt1 sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v

+ C(T0)e
−λt1 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v
.

Proof Since dσi in (4.16) is a probability measure, (4.9) is directly bounded as

(4.9) ≤ 4e−t1‖w f0‖L∞
x,v

, (4.17)

where the constant 4 comes fromˆ
Vi

|n(xi ) · vi |
√

μ(vi )w
−1(vi )dvi ≤

ˆ
Vi

|n(x) · vi |
√

μ(vi )dvi < 4.

The exponential decay factor e−t1 in (4.17) comes from the combinations of the decay factor
in (4.15):

e−ti e−(ti−1−ti ) ≤ e−ti−1 , e−ti−1e−(ti−2−ti−1) ≤ e−ti−2 · · · .
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For (4.10), with λ � 1 and k = C1T
5/4
0 , we apply Lemma 9 to have

(4.10) ≤
ˆ
∏k−1

j=1 V j

1tk>0e
−λtk |eλtkw(vk−1) f (tk, xk, vk−1)|d�k−1

≤ o(1)e−λt1 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

.

(4.18)

Here the exponential decay factor e−λt1 comes from the following computation:

e−λtk e−(tk−1−tk ) ≤ e−λtk−1 , e−λtk−1e−(tk−2−tk−1) ≤ e−λtk−2 · · · .

For (4.13) and (4.14), they are directly bounded as

|(4.13) + (4.14)| ≤ sup
0≤s≤T0

‖eλswg(s)‖L∞
x,v

k−1∑
i=1

ˆ
∏k−1

j=1 V j

ˆ ti

max{0,ti+1}
e−(t1−s)e−λsdsd�i

≤ Cke−λt1 sup
0≤s≤T0

eλs‖wg(s)‖L∞
x,v

ˆ T0

0
e−(T0−s)/2ds

≤ Cke−λt1 sup
0≤s≤T0

eλs‖wg(s)‖L∞
x,v

.

(4.19)

Then we estimate (4.12), which reads

ˆ
∏i

j=1 V j

1ti+1>0

i∏
j=1

dσ jμ
−1/2(vi )w

−1(vi )

×
ˆ ti

ti+1

e−(t1−s)
4∑

�=0

χ�(vi )

ˆ
R3

w(u) f (s, xi − (ti − s)vi , u)
χ�(u)

w(u)
duds.

(4.20)

First we decompose the ds integral into 1s≥ti−δ + 1s<ti−δ . The contribution of the first
term reads

(4.20)1s≥ti−δ ≤
ˆ
∏i

j=1 V j

i∏
j=1

dσ jμ
−1/2(vi )w

−1(vi )

×
ˆ ti

max{ti+1,ti−δ}
e−(t1−s)

4∑
�=0

w(vi )χ�(vi )

ˆ
R3

w(u) f (s, xi − (ti − s)vi , u)
χ�(u)

w(u)
duds

≤ o(1)e−λt1 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

. (4.21)

Then we decompose the du integral into 1|u|≥N + 1|u|<N . The contribution of the first
term reads

(4.20)1|u|≥N ≤
ˆ
∏i

j=1 V j

i∏
j=1

dσ jμ
−1/2(vi )w

−1(vi )

×
ˆ ti

ti+1

e−(t1−s)
4∑

�=0

χ�(u)

ˆ
R3

1|u|≥Nw(u) f (s, Xi (s), u)
χ�(u)

w(u)
ds
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≤ o(1)e−λt1 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

. (4.22)

Last, we consider the intersection of all other cases, where we have s < ti − δ, and
|u| < N . We compute

(4.20)1s<ti−δ1|u|<N ≤
ˆ
∏i−1

j=1 V j

i−1∏
j=1

dσ j

ˆ
Vi

√
μ(vi )|n(xi ) · vi |dvi

×
ˆ ti−δ

ti+1

e−(ti−s)
ˆ

|u|≤N
f (s, xi − (ti − s)vi , u)duds

≤ 1

δ3

ˆ
∏i−1

j=1 V j

i−1∏
j=1

dσ j

ˆ ti−δ

0
e−(t1−s)

ˆ
|u|≤N

ˆ
�

f (s, y, u)dudyds.

(4.23)

In the last line, we have applied the change of variable vi → y = xi − (ti − s)vi ∈ � with
Jacobian ∣∣∣ det

(∂xi − (ti − s)vi
∂vi

)∣∣∣ = (ti − s)3 ≥ δ3.

Then we leverage the L2 estimate by applying the Hölder inequality

(4.23) ≤ CN ,δ,�

ˆ
∏i−1

j=1 V j

i−1∏
j=1

dσ j ×
ˆ t1

0
e−(t1−s)‖ f (s)‖L2

x,v
ds

≤ CN ,δ,�e
−λt1 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v
. (4.24)

Collecting (4.21), (4.22) and (4.24), we conclude that

(4.12) � o(1)e−λt1 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ CN ,δ,k,�e
−λt1 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v
. (4.25)

By the same computation, we obtain the same bound for (4.11):

(4.11) � o(1)e−λt1 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ CN ,δ,k,�e
−λt1 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v
. (4.26)

Summarizing (4.17), (4.18), (4.19), (4.26) and (4.25), and using the fact that k is a function
of T0, we conclude the lemma with C(T0) = CN ,δ,�,k . ��

Now we are in a position to prove Proposition 3.

Proof of Proposition 3 We focus on the a priori estimate. We will discuss the construction of
solution using an approximating sequence at the end of the proof.

First of all, (4.3), (4.6) and (4.7) are bounded as

|(4.3)| + |(4.6)| + |(4.7)| ≤ e−T0‖w f0‖L∞
x,v

+ Ce−λT0 sup
0≤s≤T0

‖eλswg(s)‖L∞
x,v

. (4.27)

Moreover, (4.8) is bounded by Lemma 10 as

(4.8) ≤ 4e−T0‖w f0‖L∞
x,v

+ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ C(T0)

[
e−λT0 sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v
+ e−λT0 sup

0≤s≤T0
‖ f (s)‖L2

x,v

]
.

(4.28)
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Then we focus on (4.5). We expand f (s, x − (t − s)v, u) using (4.3) - (4.8) again along
the characteristic with velocity u.

Denote tu1 := s − tb(x − (t − s)v, u) and y := x − (t − s)v, we compute that

(4.5) = 1t1>0

ˆ T0

t1
dse−(T0−s)

4∑
i=0

w(v)χi (v)

ˆ
R3

du
χi (u)

w(u)

×
{
1tu1 ≤0e

−sw(u) f (0, y − su, u) (4.29)

+ 1tu1 ≤0

ˆ s

0
e−(s−s′)ds′

4∑
j=0

w(u)χ j (u)

ˆ
R3

w(u′) f (s′, y − (s − s′)u, u′)
χ j (u′)
w(u′)

du′

(4.30)

+ 1tu1 >0

ˆ s

tu1

e−(s−s′)ds′
4∑
j=0

w(u)χ j (u)

ˆ
R3

w(u′) f (s′, y − (s − s′)u, u′)
χ j (u′)
w(u′)

du′

(4.31)

+ 1tu1 ≤0

ˆ s

0
e−(s−s′)w(u)g(s′, y − (s − s′)u, u)ds′ (4.32)

+ 1tu1 >0

ˆ s

tu1

e−(s−s′)w(u)g(s′, y − (s − s′)u, u)ds′ (4.33)

+ 1tu1 >0e
−(s−tu1 )w(u) f (tu1 , y − tb(y, u)u, u)

}
. (4.34)

The contribution of (4.29) in (4.5) is bounded by

ˆ T0

t1
dse−(T0−s)

4∑
i=0

w(v)χi (v)

ˆ
R3

du
χi (u)

w(u)
e−s‖w f0‖L∞

x,v

≤ Cβ

ˆ T0

t1
dse−(T0−s)/2e− 1

2 T0‖w f0‖L∞
x,v

≤ Cβe
− T0

2 ‖w f0‖L∞
x,v

. (4.35)

Here the constant Cβ comes from (1 + |v|)βeθ |v|2χi (v) � Cβ .
The contribution of (4.32) and (4.33) in (4.5) are bounded by

ˆ T0

t1
dse−(T0−s)

4∑
i=0

w(v)χi (v)

ˆ
R3

du
χi (u)

w(u)

ˆ s

0
ds′e−(s−s′)e−λs′ sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v

≤ C sup
0≤s≤T0

‖eλswg(s)‖L∞
x,v

ˆ T0

t1
dse−(T0−s)e−λs

ˆ
R3

du
χi (u)

w(u)

≤ C sup
0≤s≤T0

‖eλswg(s)‖L∞
x,v

. (4.36)

The contribution of the boundary term in (4.34) can be bounded by applying Lemma 10:

|(4.34)| ≤
ˆ T0

t1
dse−(T0−s)

4∑
i=0

w(v)χi (v)

ˆ
R3

du
χi (u)

w(u)
e−(s−tu1 )

×
{
e−tu1 4‖w f0‖L∞

x,v
+ o(1)e−λtu1 sup

0≤s≤T0
‖eλsw f (s)‖L∞

x,v
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+ C(T0)
[
e−λtu1 sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v
+ e−λtu1 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v

]}

≤ Cβ

ˆ T0

t1
dse−(T0−s) ×

[
4e− s

2 ‖w f0‖L∞
x,v

+ o(1)e−λs sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ C(T0)
[
e−λs sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v
+ e−λs sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v

]]

≤ 4Cβe
− T0

2 ‖w f0‖L∞
x,v

+ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ C(T0)
[
e−λT0 sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v
+ e−λT0 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v

]
.

(4.37)

Again, the constant Cβ comes from w(v)χi (v) � Cβ .
Then we focus on the contribution of (4.31) in (4.5). First we decompose the ds′ integral

into 1s−s′<δ + 1s−s′≥δ . The contribution of the first term reads

|(4.31)1s−s′<δ|

≤
ˆ T0

t1
dse−(T0−s)

4∑
i=0

w(v)χi (v)

ˆ
R3

du
χi (u)

w(u)

ˆ s

max{s−δ,tu1 }
e−(s−s′)ds′

×
4∑
j=0

w(u)χ j (u)

ˆ
R3

du′ χ j (u′)
w(u′)

e−λs′ sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

≤ o(1)
ˆ T0

t1
dse−(T0−s)

4∑
i=0

w(v)χi (v)

ˆ
R3

du
χi (u)

w(u)
e−λs sup

0≤s≤T0
‖eλsw f (s)‖L∞

x,v

≤ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

. (4.38)

Next we decompose the du′ integral into 1|u′|≥N + 1|u′|≤N . The contribution of the first
term reads

|(4.31)1|u′ |≥N |

≤ o(1)
ˆ T0

t1
dse−(T0−s)

4∑
i=0

w(v)χi (v)

ˆ
R3

du
χi (u)

w(u)

ˆ s

tu1

e−(s−s′)e−λs′ds′ sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

≤ o(1)
ˆ T0

t1
dse−(T0−s)e−λs sup

0≤s≤T0
‖eλsw f (s)‖L∞

x,v

≤ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

. (4.39)

Now we consider the intersection of all other cases, where we have s′ < s − δ and
|u′| < N . In such case, we compute such contribution in (4.31) as

|(4.31)1s′<s−δ, |u′|<N |

≤
ˆ T0

t1
dse−(T0−s)

ˆ
R3

du
χi (u)

w(u)

ˆ s−δ

tu1

e−(s−s′)ds′
ˆ

|u′|<N
du′ f (s′, y − (s − s′)u, u′).

(4.40)
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We apply the change of variable u → y′ = y − (s − s′)u with Jacobian
∣∣∣ det

(∂[y − (s − s′)u]
∂u

)∣∣∣ = (s − s′)3 ≥ δ3

to derive that

|(4.40)| ≤
ˆ T0

t1
dse−(T0−s)

ˆ
�

dy′
ˆ s−δ

tu1

e−(s−s′)ds′
ˆ

|u′|<N
f (s′, y′, u′)du′

≤ CN ,�

ˆ T0

t1
dse−(T0−s)

ˆ s−δ

0
e−(s−s′)‖ f (s′)‖L2

x,v
ds′

≤ CN ,� sup
0≤s≤T0

eλs‖ f (s)‖L2
x,v

ˆ T0

t1
dse−(T0−s)e−λs

≤ CN ,�e
−λT0 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v
. (4.41)

Collecting (4.38), (4.39) and (4.41), we conclude

|(4.31)| ≤ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ C(T0)e
−λT0 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v
. (4.42)

By the same computation, we obtain that

|(4.30)| ≤ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

+ C(T0)e
−λT0 sup

0≤s≤T0
eλs‖ f (s)‖L2

x,v
. (4.43)

We combine (4.35), (4.36), (4.37), (4.43) and (4.42) to conclude the estimate for (4.5):

(4.5) ≤ (4 + 5Cβ)e− T0
2 ‖w f0‖L∞

x,v
+ o(1)e−λT0 sup

0≤s≤T0
‖eλsw f (s)‖L∞

x,v

+ C(T0)e
−λT0 sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v
+ C(T0)e

−λT0 sup
0≤s≤T0

eλs‖ f (s)‖L2
x,v

.

Similarly, we can have the same estimate for (4.4) as

|(4.4)| ≤ (4 + 5Cβ)e− T0
2 ‖w f0‖L∞

x,v
+ o(1)e−λT0 sup

0≤s≤T0
‖eλsw f (s)‖L∞

x,v

+ C(T0)e
−λT0 sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v
+ C(T0)e

−λT0 sup
0≤s≤T0

eλs‖ f (s)‖L2
x,v

.

(4.44)

Last we collect (4.27), (4.28), (4.44) and (4.44) to conclude that

w(v)| f (T0, x, v)|
≤ (5 + 5Cβ)e− T0

2 ‖w f0‖L∞
x,v

+ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f (s)‖L∞
x,v

(4.45)

+ C(T0)e
−λT0 sup

0≤s≤T0
‖eλswg(s)‖L∞

x,v
+ C(T0)e

−λT0 sup
0≤s≤T0

eλs‖ f (s)‖L2
x,v

.

Since the source term g and initial condition f0 satisfy (4.1), the conditions in Proposition
2 are satisfied.With theweightw(v) = (1+|v|)βeθ |v|2 , we control the L2 term by Proposition
2:

sup
0≤s≤T0

eλs‖ f (s)‖L2
x,v

� ‖ f0‖L2
x,v

+
(ˆ T0

0
e−2λs‖e2λsg(s)‖2L2

x,v
ds
)1/2
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� [‖w f0‖L∞
x,v

+ sup
0≤s≤T0

‖e2λswg(s)‖L∞
x,v

]‖w−1(v)‖L2
x,v

� ‖w f0‖L∞
x,v

+ sup
0≤s≤T0

‖e2λswg(s)‖L∞
x,v

. (4.46)

Here we have applied the definition of w(v) in (1.5) such that w−1(v) ∈ L2
v .

For given 0 ≤ t < ∞, we denote

Rt := ‖w f0‖L∞
x,v

+ sup
0≤s≤t

‖e2λswg(s)‖L∞
x,v

.

Recall that Cβ in (4.45) does not depend on T0. We choose T0 to be large enough such

that (5 + 5Cβ)e− T0
2 < e− T0

4 . Then we further have

‖w f (T0)‖L∞
x,v

≤ e− T0
4 ‖w f0‖L∞

x,v
+ o(1)e−λT0 sup

0≤s≤T0
‖eλsw f (s)‖L∞

x,v

+ C(T0)e
−λT0 sup

0≤s≤T0
‖e2λswg(s)‖L∞

x,v
+ C(T0)e

−λT0 sup
0≤s≤T0

eλs‖ f (s)‖L2
x,v

.

(4.47)

For 0 ≤ t ≤ T0, with the same choice of k = C1T
5/4
0 , it is straightforward to apply the

same argument for eλtw(v)| f (t, x, v)| to have:

‖w f (t)‖L∞
x,v

≤ (5 + 5Cβ)e− t
2 ‖w f0‖L∞

x,v
+ o(1)e−λt sup

0≤s≤t
‖eλsw f (s)‖L∞

x,v

+ C(T0)e
−λt sup

0≤s≤t
‖e2λswg(s)‖L∞

x,v
+ C(T0)e

−λt sup
0≤s≤t

eλs‖ f (s)‖L2
x,v

.

(4.48)

For t = mT0, we apply (4.47) to have

‖w f (mT0)‖L∞
x,v

≤ e−
T0
4 ‖w f ((m − 1)T0)‖L∞

x,v
+ C(T0)e

−λT0 sup
0≤s≤T0

‖eλs g((m − 1)T0 + s)‖L∞
x,v

+ o(1)e−λT0 sup
0≤s≤T0

‖eλsw f ((m − 1)T0 + s)‖L∞
x,v

+ C(T0)e
−λT0 sup

0≤s≤T0
eλs‖ f ((m − 1)T0 + s)‖L2

x,v

≤ e−
T0
4 ‖w f ((m − 1)T0)‖L∞

x,v
+ o(1)e−λmT0 sup

0≤s≤mT0
‖eλsw f (s)‖L∞

x,v
+ C(T0)e

−λmT0RmT0

≤ e−2 T0
4 ‖w f ((m − 2)T0)‖L∞

x,v

+ e−λmT0
[
o(1) sup

0≤s≤mT0
‖eλsw f (s)‖L∞

x,v
+ C(T0)RmT0

]
× [1 + e−

(1−4λ)T0
4
]

≤ · · · ≤ e−
mT0
4 ‖w f0‖L∞

x,v

+ e−λmT0
[
o(1) sup

0≤s≤mT0
‖eλsw f (s)‖L∞

x,v
+ C(T0)RmT0

]
×

m−1∑
i=0

e−
i(1−4λ)T0

4

≤ o(1)e−λmT0 sup
0≤s≤mT0

‖eλsw f (s)‖L∞
x,v

+ C(T0)e
−λmT0RmT0 . (4.49)
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In the fourth line, we have applied the same computation as (4.46) to the L2 term.
For any t > 0, we can choose m such that mT0 ≤ t ≤ (m + 1)T0. With t = mT0 + s,

0 ≤ s ≤ T0, we apply (4.48) to have

‖w f (t)‖L∞
x,v

= ‖w f (mT0 + s)‖L∞
x,v

≤ (5 + 5Cβ)e
−s
2 ‖w f (mT0)‖L∞

x,v

+ o(1)e−λs sup
0≤s′≤s

‖eλs′w f (mT0 + s′)‖L∞
x,v

+ C(T0)e
−λs sup

0≤s′≤s
‖e2λs′wg(mT0 + s′)‖L∞

x,v

+ C(T0)e
−λs sup

0≤s′≤s
eλs′ ‖ f (mT0 + s′)‖L2

x,v

≤ o(1)(5 + 5Cβ)e−λ(mT0+s) sup
0≤s≤mT0

‖eλsw f (s)‖L∞
x,v

+ C(T0)e
−λ(mT0+s)RmT0+s

≤ o(1)e−λt sup
0≤s≤t

‖eλsw f (s)‖L∞
x,v

+ C(T0)e
−λtRt . (4.50)

In the fourth line, we have applied (4.49) and (4.46) to the L2 term.
Since (4.50) holds for all t , we conclude that

eλt‖w f (t)‖L∞
x,v

≤ C(T0)e
−λt

[
‖w f0‖L∞

x,v
+ sup

0≤s≤t
‖e2λswg(s)‖L∞

x,v

]
. (4.51)

We conclude the a-priori estimate. To establish the existence of the solution, we will use
the following approximating sequence:

{
∂t f �+1 + v · ∇x f �+1 + f �+1 = P f � + g, f �+1(0, x, v) = f0(x, v)

f �+1|γ− =
(
1 − 1

j

)
cμ

√
μ(v)

´
n(x)·u>0 f �(u)

√
μ(u)(n(x) · u)du.

(4.52)

By employing a similar argument using the method of characteristic, one can show that f �

forms a Cauchy sequence in the L∞ space. This leads to the existence of a solution f that
satisfies (4.51). The uniqueness follows in a similar way. For conciseness, we do not present
the detail of such computation, we refer to a detailed argument in Proposition 7.1 of [26].

We conclude the proof of Proposition 3. ��

4.1 Proof of Theorem 1

We consider the following iteration sequence:
{

∂t f �+1 + v · ∇x f �+1 + L f �+1 = 
( f �), f �+1(0, x, v) = f0(x, v),

f �+1|γ− = cμ

√
μ(v)

´
n(x)·u>0 f �+1√μ(u)(n(x) · u)du.

The initial sequence is defined as f 0 = 0. With the assumption on the initial condition
‖w f0‖L∞

x,v
< δ, we apply Proposition 3 to conclude that for � = 0, there exists a unique

solution f 1 such that

sup
0≤s≤t

‖eλsw f 1‖L∞
x,v

≤ δ.
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Inductively, we assume sup0≤s≤t ‖eλsw f �‖L∞
x,v

≤ 2Cδ. Then the condition in Lemma 5 is

satisfied.Moreover, fromLemma 3, we haveP(
( f �)) = 0, thus the condition of Proposition
3 is also satisfied.

We apply Proposition 3 to conclude that there is a unique solution f �+1 such that

sup
0≤s≤t

‖eλsw f �+1‖L∞
x,v

≤ C‖w f0‖L∞
x,v

+ C

[
sup

0≤s≤t
‖eλsw f �‖2L∞

x,v
+ sup

0≤s≤t
‖eλsw f �‖3L∞

x,v

]
.

Here we have used Lemma 5 for 1 ≤ i ≤ 3 to obtain the following estimates:

sup
0≤s≤t

‖e2λsw
i

(
f �
)

‖L∞
x,v

� sup
0≤s≤t

‖eλsw f �‖2L∞
x,v

,

and

sup
0≤s≤t

‖e2λsw
4

(
f �
)

‖L∞
x,v

� sup
0≤s≤t

‖eλsw f �‖3L∞
x,v

.

We take ‖w f0‖L∞
x,v

< δ to be small enough such that 2Cδ � 1, then with ‖eλsw f �‖L∞
x,v

≤
2Cδ, we further derive that

sup
0≤s≤t

‖eλsw f �+1‖L∞
x,v

≤ Cδ + 4C2δ2 + 8C3δ3 ≤ 2Cδ.

Hence by induction argument, we conclude the uniform-in-� estimate:

sup
�

sup
0≤s≤t

‖eλsw f �‖L∞
x,v

≤ 2Cδ. (4.53)

Next, we take the difference f �+1 − f �. The equation of f �+1 − f � becomes
⎧
⎪⎨
⎪⎩

∂t
(
f �+1 − f �

)+ v · ∇x
(
f �+1 − f �

)+ L ( f �+1 − f �
) = 


(
f �
)− 


(
f �−1
)
,

f �+1(0, x, v) − f �(0, x, v) = 0,[
f �+1 − f �

] |γ− = cμ

√
μ(v)

´
n(x)·u>0

[
f �+1 − f �

]√
μ(u)(n(x) · u)du.

We apply Proposition 3 to have

sup
0≤s≤t

‖eλsw( f �+1 − f �)‖L∞
x,v

≤ C sup
0≤s≤t

‖e2λsw[
( f �) − 
( f �−1)]‖L∞
x,v

� δ sup
0≤s≤t

‖eλsw( f � − f �−1)‖L∞
x,v

.

In the second line, we have applied the estimate in Lemma 7 to 
( f �) − 
( f �−1). The
condition in Lemma 7 is satisfied due to the uniform-in-� estimate (4.53).

Thus for some constant C1, we have

sup
0≤s≤t

‖eλsw( f �+1 − f �)‖L∞
x,v

≤ C1δ sup
0≤s≤t

‖eλsw( f � − f �−1)‖L∞
x,v

.

We choose δ � 1 such that C1δ < 1. Then f � is a Cauchy sequence, and we construct a
solution f to (1.3) such that for all t > 0,

‖eλtw f (t)‖L∞
x,v

≤ 2Cδ. (4.54)
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To prove the uniqueness, we let f and g be two solutions to (1.3) such that
‖eλtw f (t)‖L∞

x,v
, ‖eλtwg(t)‖L∞

x,v
≤ 2Cδ. The equation of f − g satisfies

⎧⎪⎨
⎪⎩

∂t ( f − g) + v · ∇x ( f − g) + L( f − g) = 
( f ) − 
(g),

f (0, x, v) − g(0, x, v) = 0,

[ f − g]|γ− = cμ

√
μ(v)

´
n(x)·u>0[ f − g]√μ(u)(n(x) · u)du.

Applying Proposition 3, we have

sup
0≤s≤t

‖eλsw( f − g)‖L∞
x,v

≤ C1δ sup
0≤s≤t

‖eλsw( f − g)‖L∞
x,v

.

SinceC1δ < 1, we conclude that sup0≤s≤t ‖eλsw( f −g)‖L∞
x,v

= 0, thus f = g.We complete
the well-posedness.

Positivity. Finally, we prove that the unique solution f satisfies F = μ + √
μ f ≥ 0. We

use a different sequence
⎧⎪⎨
⎪⎩

∂t F�+1 + v · ∇x F�+1 = ν�(M(F�) − F�+1),

F�+1|γ− = cμμ(v)
´
n(x)·u>0 F

�(n(x) · u)du,

F�+1(0, x, v) = F0(x, v), F0 = F0(x, v).

Clearly, such an iteration preserves positivity. In the perturbation F� = μ + √
μ f �, the

equation of f �+1 reads
⎧
⎪⎨
⎪⎩

∂t f �+1 + v · ∇x f �+1 + ν� f �+1 = P f � + 
1
(
f �
)+ 
3

(
f �
)+ 
4

(
f �
)
,

f �+1|γ− = cμ

√
μ(v)

´
n(x)·u>0 f �(n(x) · u)

√
μ(u)du,

f �+1(0, x, v) = f0(x, v), f 0 = f0(x, v).

Weprove the following claim: there exists T ∗ � 1 such that if the initial condition satisfies
‖w f0‖L∞

x,v
< 2Cδ, and supi≤� supt≤T ∗ ‖w f i (t)‖L∞

x,v
< 4Cδ � 1, then it holds

sup
t≤T ∗

‖w f �+1(t)‖L∞
x,v

< 4Cδ � 1.

Here the constant C is constructed in (4.54).

Proof of claim When ‖w f �‖L∞
x,v

� 1, from (2.10), the damping factor satisfies ν� > 1
2 . With

the estimate of the nonlinear operator 
1, 
3, 
4 in Lemma 5, one can employ a similar
argument (proof of Proposition 3) and obtain

sup
t≤T ∗

‖w f �+1(t)‖L∞
x,v

≤ ‖w f0‖L∞
x,v

+ T ∗C1T
5/4
0 sup

i≤�

sup
t≤T ∗

{‖w f i‖L∞
x,v

+ ‖w f i‖2L∞
x,v

+ ‖w f i‖3L∞
x,v

}.

Here we emphasize that we do not derive the L2
x,v for P f �, and directly control such term in

the L∞
x,v estimate using the small time integration

´ T ∗
0 . The term C1T

5/4
0 corresponds to the

repeat interaction with the boundary in the application of Lemma 9.
By choosing T ∗ small enough such that

sup
t≤T ∗

‖w f �+1‖L∞
x,v

≤ ‖w f0‖L∞
x,v

+ 1

10
sup
i≤�

sup
t≤T ∗

{‖w f i‖L∞
x,v

+ ‖w f i‖2L∞
x,v

+ ‖w f i‖3L∞
x,v

} < 4Cδ,

we conclude the claim. ��
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Since the f 0 = f0 satisfies the assumption ‖w f 0‖L∞
x,v

< δ < 2Cδ, the above claim

implies the uniform in � estimate: sup�<∞ supt≤T ∗ ‖w f �(t)‖L∞
x,v

< 2Cδ � 1. The subtrac-

tion f �+1 − f � satisfies the equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t
(
f �+1 − f �

)+ v · ∇x
(
f �+1 − f �

)+ ν�
(
f �+1 − f �

) = (ν�−1 − ν�
)
f � + P

(
f � − f �−1

)

+
1
(
f �
)− 
1

(
f �−1
)+ 
3

(
f �
)− 
3

(
f �−1
)+ 
4

(
f �
)− 
4

(
f �−1
)
,[

f �+1 − f �
] |γ− = cμ

√
μ(v)

´
n(x)·u>0

[
f � − f �−1

]
(n(x) · u)

√
μ(u)du,[

f �+1 − f �
]
(0, x, v) = 0.

With the estimate to the difference of the nonlinear operator in Lemma 7, we apply a similar
argument as the claim above and conclude

sup
t≤T ∗

‖w( f �+1 − f �)‖L∞
x,v

≤ T ∗C1T
5/4
0 (1 + Cδ)max

i≤�
sup
t≤T ∗

‖w( f i − f i−1)‖L∞
x,v

≤ 1

5
max
i≤�

sup
t≤T ∗

‖w( f i − f i−1)‖L∞
x,v

.

Therefore, f � forms aCauchy sequence in the L∞
x,v space. By the uniqueness, we conclude the

positivity on [0, T ∗]. Since the unique solution is proved to satisfy ‖w f (t)‖L∞
x,v

≤ 2Ce−λtδ

in (4.54), for [T ∗, 2T ∗], [2T ∗, 3T ∗]..., we apply the same induction argument as in the proof
of claim. Here the only difference is that the initial condition becomes f �+1(nT ∗, x, v) =
f (nT ∗, x, v). Since the assumption on the initial condition is still satisfied, we conclude the
positivity for any [nT ∗, (n + 1)T ∗]. We complete the proof.

Appendix A Proof of Lemma 8

We derive the L2 dissipation estimate of the macroscopic quantities a(t, x),b(t, x), c(t, x)
using special test functions with the following weak formulation to (3.6), here we emphasize
that these variables only depend on t and x . This method was proposed by [26, 27] for the
Boltzmann equation.

−
ˆ t

0

¨
�×R3

v · ∇xψ f dxdvds

=
¨

�×R3
{−ψ f (t) + ψ f (0)}dxdv +

ˆ t

0

¨
�×R3

f ∂tψdxdvds −
ˆ t

0

ˆ
γ

ψ f dγ ds

−
ˆ t

0

¨
�×R3

L f ψdxdvds +
ˆ t

0

¨
�×R3

gψdxdvds

:= {Gψ(t) − Gψ(s)} + J1 + J2 + J3 + J4.
(A.1)

Step 1: estimate of c(t, x).
We choose a test function as ψc be a solution to the following problem

ψ := ψc = v · ∇xφc(|v|2 − 5)μ1/2,

− �φc = c in �, φc = 0 on ∂�. (A.2)

From a direct computation, the contribution of b vanishes from the oddness, and the
contribution of a vanishes from the orthogonality of v(|v|2 − 5)μ1/2 ⊥ kerL. The LHS
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of (A.1) becomes

LHS = 5
ˆ t

0

ˆ
�

c2dxds −
3∑

i, j=1

ˆ t

0

ˆ
�

∂2i jφc〈(I − P) f , viv j (|v|2 − 5)μ1/2〉dxds

= 5
ˆ t

0

ˆ
�

c2dxds + E1, (A.3)

where, for any δ1 > 0, from the elliptic estimate to (A.2),

|E1| � δ1

ˆ t

0
‖c‖2L2

x
ds + 1

δ1

ˆ t

0
‖μ1/4(I − P) f ‖2L2

x,v
ds.

For J1, we denote �c as the elliptic equation

− ��c = ∂t c in �, �c = 0 on ∂�.

Integration by part leads to
ˆ t

0

ˆ
�

|∇x�c|2dxds =
ˆ t

0

ˆ
�

∂t c(s, x)�cdxds. (A.4)

Denote � j ( f ) := 1
10 ((|v|2 − 5)v j

√
μ, f )v . From the conservation of energy, we have

∂t c + 1

3
∇x · b + 1

6
∇ · �((I − P) f ) = 0.

Then (A.4) becomes
ˆ t

0

ˆ
�

∂t c(s, x)�cdxds =
ˆ t

0

ˆ
�

[
− 1

3
b · ∇x�c − 1

6
�((I − P) f ) · ∇x�c

]
dxds

−
ˆ t

0

ˆ
∂�

(1
3
(b · n)�c + 1

6
(�((I − P) f ) · n)�c

)
dSxds. (A.5)

The boundary term vanishes from the boundary condition �c(x) = 0 on x ∈ ∂�. The other
term in (A.5) is controlled as

o(1)
ˆ t

0
‖∇x�c‖2L2

x
ds +

ˆ t

0
‖b‖2L2

x
ds +

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds.

Plugging the estimates to (A.4), we obtain
ˆ t

0
‖∇x�c‖2L2

x
ds �

ˆ t

0
‖b‖2L2

x
ds +

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds.

Thus we compute J1 as

|J1| � δ1

ˆ t

0
‖∇x�c‖2L2

x
ds + 1

δ1

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds

� δ1

ˆ t

0
‖b‖2L2

x
ds + 1

δ1

ˆ t

0
‖(I − P) f ‖2L2

x,v
. (A.6)

Next, we apply boundary condition of φc and f to compute J2:ˆ
γ

ψ f dγ =
ˆ

γ+
ψ f dγ +

ˆ
γ−

ψ f dγ.
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We haveˆ
∂�

[ ˆ
n(x)·v>0

+
ˆ
n(x)·v<0

](|v|2 − 5
)√

μ(v · ∇xφc)(n · v) f dvdSx

=
ˆ

∂�

ˆ
n(x)·v>0

(|v|2 − 5
)√

μ(v · ∇xφc)(n · v)( f − Pγ f )dvdSx

+ 2
ˆ

∂�

ˆ
n(x)·v>0

(|v|2 − 5
)√

μ|n(x) · v|2(n(x) · ∇x�c)Pγ f dvdSx

=
ˆ

∂�

ˆ
n(x)·v>0

(|v|2 − 5
)√

μ(v · ∇xφc)(n · v)( f − Pγ f )dvdSx

� δ1‖∇x�c‖2L2(∂�)
+ 1

δ1
|(I − Pγ ) f |22,+ � δ1‖c‖2L2

x
+ 1

δ1
|(I − Pγ ) f |22,+.

In the first equality, we have applied the change of variable v → v − 2(n · v)n. The third
line vanishes by

´
n(x)·v>0(|v|2 −5)(n ·v)2μdv = 0. In the last inequality, we applied elliptic

estimate to (A.2) with the trace theorem:

‖∇x�c‖2L2(∂�)
� ‖φc‖2H2

x
� ‖c‖2L2

x
.

We conclude the estimate for J2 as

|J2| � δ1

ˆ t

0
‖c‖2L2

x
ds + 1

δ1

ˆ t

0
|(I − Pγ ) f |22,+ds. (A.7)

For J3, due to the exponential decay factor μ1/2 in φc, we have

|J3| � δ1

ˆ t

0
‖c‖2L2

x
ds + 1

δ1

ˆ t

0
‖μ1/4L(I − P) f ‖2L2

x,v
ds

� δ1

ˆ t

0
‖c‖2L2

x
ds + 1

δ1

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds. (A.8)

Here we applied the elliptic estimate to ∇xφc.
For J4, similar to the computation in (A.8), we have

∣∣∣
ˆ t

0

¨
�×R3

gψcdxdvds
∣∣∣ � δ1

ˆ t

0
‖c‖2L2

x
ds + 1

δ1

ˆ t

0
‖g‖2L2

x,v
ds. (A.9)

Collecting (A.3), (A.6), (A.7), (A.8) and (A.9), we conclude the estimate of c as follows:
for some C1 > 0 and Gc(t) := ´

�

´
R3 ψc f (t)dxdv,ˆ t

0
‖c‖2L2

x
ds ≤ C1

[
Gc(t) − Gc(0) + δ1

ˆ t

0
‖b‖2L2

x
ds + 1

δ1

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds

+ 1

δ1

ˆ t

0
|(I − Pγ ) f |22,+ds + 1

δ1

ˆ t

0
‖g‖2L2

x,v
ds
]
. (A.10)

Step 2: estimate of b(t, x). We use the weak formulation in (A.1) for the estimate of b.
First, we estimate b1. We choose a test function as

ψ1 = 3

2

(
|v1|2 − |v|2

3

)√
μ∂x1φ1 + v1v2

√
μ∂x2φ1 + v1v3

√
μ∂x3φ1.

We let φ1 satisfy the elliptic system
{

−∂2x1φ1 − �φ1 = b1 in �,

φ1 = 0 on x ∈ ∂�.
(A.11)
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From a direct computation, the contribution of a and c vanish from the oddness, and the LHS
of (A.1) becomes

−
ˆ t

0

ˆ
R3

ˆ
�

[3
2
v21

(
|v1|2 − |v|2

3

)
μ∂11φ1b1 + v21v

2
2μ∂12φ1b2 + v21v

2
3μ∂13φ1b3

+ v21v
2
3μ∂33φ1b1 + v21v

2
2μ∂22φ1b1 + 3

2
v22

(
|v1|2 − |v|2

3

)
μ∂12φ1b2

+ 3

2
v23

(
|v1|2 − |v|2

3

)
μ∂13φ1b3

]
dxdvds + E2

= −
ˆ t

0

ˆ
R3

ˆ
�

[2∂11φ1b1 + ∂22φ1b1 + ∂33φ1b1 + ∂12φ1b2 − ∂12φ1b2

+ ∂13φ1b3 − ∂13φ1b3]dxdvds + E2

= −
ˆ t

0
(�φ1 + ∂11φ1)b1dxds + E2 =

ˆ t

0
‖b1‖2L2

x
ds + E2.

For E2, using the elliptic estimate, we obtain that for any δ2 � 1,

|E2| � δ2

ˆ t

0
‖b1‖2L2

x
ds + 1

δ2

ˆ t

0
‖μ1/4(I − P) f ‖2L2

x,v
ds.

For J1, we let �1 satisfy the elliptic equation

− ∂2x1�1 − ��1 = ∂t b1 in �, �1 = 0 on x ∈ ∂�.

Integration by part leads to
ˆ t

0

ˆ
�

[2|∂x1�1|2 + |∂x2�1|2 + |∂x3�1|2]dxds =
ˆ t

0

ˆ
�

∂t b1�1dxds. (A.12)

Denote �i j ( f ) := ((viv j − 1)
√

μ, f )v . From the conservation of momentum, we have

∂t b1 + ∂x1(a + 2c) + ∇x · �1((I − P) f ) = 0.

Then (A.12) becomes
ˆ t

0

ˆ
�

∂t b1�1dxds =
ˆ t

0

ˆ
�

[
(a + 2c)∂x1�1 + �1((I − P) f ) · ∇x�1

]
dxds

−
ˆ t

0

ˆ
∂�

�1(a + 2c)n1 + �1(�1((I − P) f ) · n)dSxds. (A.13)

The boundary term vanishes from the boundary condition �1(x) = 0, x ∈ ∂�.
The other term in (A.13) is controlled as

o(1)
ˆ t

0
‖∇x�1‖2L2

x
ds +

ˆ t

0
[‖a‖2L2

x
+ ‖c‖2L2

x
+ ‖(I − P) f ‖2L2

x,v
]ds.

Plugging this estimate to (A.12), we obtain
ˆ t

0
‖∇x�1‖2L2

x
ds �

ˆ t

0
[‖a‖2L2

x
+ ‖c‖2L2

x
+ ‖(I − P) f ‖2L2

x,v
]ds. (A.14)

J1 can be computed using the estimate (A.14):

|J1| � δ2

ˆ t

0
‖∇x�1‖2L2

x
ds +

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds
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� δ2

ˆ t

0
[‖a‖2L2

x
+ ‖c‖2L2

x
] +

ˆ t

0
‖c‖2L2

x
ds +

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds.

Next we compute the boundary integral J2 using the diffuse boundary condition:ˆ
R3

ˆ
∂�

f ψ1(n(x) · v)dSxdv =
ˆ
R3

ˆ
∂�

Pγ f ψ1(n(x) · v)dSxdv

+
ˆ

∂�

ˆ
n(x)·v>0

(I − Pγ ) f ψ1(n(x) · v)dvdSx

� |(I − Pγ ) f |2L2
γ+

+ o(1)|∇x�1|2L2(∂�)
� |(I − Pγ ) f |2L2

γ+
+ o(1)‖φ‖2H2

x
� |(I − Pγ ) f |2L2

γ+
+ o(1)‖b1‖2L2

x
.

In the second line, the contribution of Pγ f vanished due to oddness. In the third line, we
applied the trace theorem with the Poincare inequality.

J3 and J4 are bounded in a similar manner as (A.8) and (A.9):

|J3| � δ2

ˆ t

0
‖b1‖2L2

x
+ 1

δ2

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds,

|J4| � δ2

ˆ t

0
‖b1‖2L2

x
ds + 1

δ2

ˆ t

0
‖g‖2L2

x,v
ds.

For Gb1(t) := ´
�

´
R3 ψ1 f (t)dxdv, we conclude the following for b1:ˆ t

0
‖b1‖2L2

x
ds � Gb1(t) − Gb1(0) + δ2

ˆ t

0
‖(a, b1, c)‖2L2

x

+ 1

δ2

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds + 1

δ2

ˆ t

0
|(I − Pγ ) f |22,+ds.

The estimate to b2 and b3 are the same bymodifying the test function (A.11) to the following:

ψ2 = v1v2
√

μ∂x1φ2 + 3

2

(
|v2|2 − |v|2

3

)√
μ∂x2φ2 + v2v3

√
μ∂x3φ2,

− ∂2x2φ2 − �φ2 = b2,

ψ3 = v1v3
√

μ∂x1φ3 + v2v3
√

μ∂x2φ3 + 3

2

(
|v3|2 − |v|2

3

)√
μ∂x3φ3,

− ∂2x3φ3 − �φ3 = b3.

For Gb(t) := ´
�

´
R3(ψ1 + ψ2 + ψ3) f (t)dxdv, we conclude the estimate for b as follows:

for some C2 and any δ2 > 0,
ˆ t

0
‖b‖2L2

x
ds � C2

[
Gb(t) − Gb(0) + δ2

ˆ t

0
‖(a, c)‖2L2

x

+ 1

δ2

ˆ t

0
‖g‖L2

x,v
ds + 1

δ2

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds + 1

δ2

ˆ t

0
|(I − Pγ ) f |22,+ds

]
.

(A.15)

Step 3: estimate of a(t, x).
We choose the test function as

ψ = ψa :=
3∑

i=1

∂iφavi (|v|2 − 10)μ1/2,
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− �φa = a, in �, ∇xφa · n = 0 on ∂�. (A.16)

From direction computation, on LHS of (A.1), b vanished from oddness and c vanished
from

´
R3(|v|2 − 10)v2i (|v|2 − 3)dv = 0. Thus we obtain

LHS = 5
ˆ t

0
‖a‖2L2

x
ds −

3∑
i, j=1

ˆ t

0

ˆ
�

∂2i jφa〈viv j (|v|2 − 10)μ1/2, (I − P) f 〉dxds

= 5
ˆ t

0
‖a‖2L2

x
ds + E3, (A.17)

where, for any δ3 > 0,

|E3| � δ3

ˆ t

0
‖a‖2L2

x
ds + 1

δ3

ˆ t

0
‖μ1/4(I − P) f ‖2L2

x,v
ds.

For J1 in (A.1), we denote

− ��a = ∂t a(s), in �, ∇x�a · n = 0 on ∂�.

Integration by part leads toˆ t

0

ˆ
�

|∇x�a |2dxds =
ˆ t

0

ˆ
∂�

∂t a�adxds. (A.18)

From the conservation of mass ∂t a + ∇x · b = 0, it holdsˆ t

0

ˆ
�

∂t a�adxds =
ˆ t

0

ˆ
�

b · ∇x�adxds −
ˆ t

0

ˆ
∂�

(b · n)�adSxds. (A.19)

The boundary term can be computed asˆ t

0

ˆ
∂�

(b · n)�adSxds =
ˆ t

0

ˆ
∂�

�a

[ ˆ
n(x)·v>0

(n(x) · v)
√

μ(Pγ f + (I − Pγ ) f )dv

+
ˆ
n(x)·v<0

(n(x) · v)
√

μPγ f dv
]
dSxds

� o(1)
ˆ t

0
|�a |2L2(∂�)

ds +
ˆ t

0
|(I − Pγ ) f |22,+ds

� o(1)
ˆ t

0
‖∇x�a‖2L2

x
ds +

ˆ t

0
|(I − Pγ ) f |22,+ds.

In the third line, the contribution of Pγ f vanished from the oddness, and we applied the trace
theorem with the Poincaré inequality.

The other term in (A.19) is controlled as

o(1)
ˆ t

0
‖∇x�a‖2L2

x
ds +

ˆ t

0
‖b‖2L2

x
ds.

Plugging the estimates to (A.18), we obtainˆ t

0
‖∇x�a‖2L2

x
ds �

ˆ t

0
‖b‖2L2

x
ds +

ˆ t

0
|(I − Pγ ) f |22,+ds. (A.20)

We apply (A.20) to compute J1 as

|J1| �
ˆ t

0
‖∇x�a‖2L2

x
ds +

ˆ t

0
‖b‖2L2

x
ds +

ˆ t

0
‖μ1/4(I − P) f ‖2L2

x,v
ds
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�
ˆ t

0
‖b‖2L2

x
ds +

ˆ t

0
‖μ1/4(I − P) f ‖2L2

x,v
ds + |(I − Pγ ) f |22,+. (A.21)

Then we apply the boundary condition of φa and f to compute J2:ˆ
γ

ψ f dγ =
ˆ

γ+
ψ f dγ +

ˆ
γ−

ψ f dγ.

We compute that
ˆ

∂�

[ ˆ
n(x)·v>0

+
ˆ
n(x)·v<0

]
(|v|2 − 10)μ1/2(v · ∇xφa)(n · v) f dvdSx

=
ˆ

∂�

ˆ
n(x)·v>0

(|v|2 − 10)μ1/2(v · ∇xφa)(n · v)( f − Pγ f )dvdSx

+ 2
ˆ

∂�

ˆ
n(x)·v>0

(|v|2 − 10)μ1/2(n · ∇xφa)(n · v)2Pγ f dvdSx

=
ˆ

∂�

ˆ
n(x)·v>0

(|v|2 − 10)μ1/2(v · ∇xφa)(n · v)( f − Pγ f )dvdSx

� δ3‖∇x�a‖2L2(∂�)
+ 1

δ3
|(I − Pγ ) f |22,+ � δ3‖a‖2L2

x
+ 1

δ3
|(I − Pγ ) f |22,+.

In the first equality, we used the change of variable v → v − 2(n(x) · v)n(x). In the sec-
ond equality, the third line vanishes due to the boundary condition of φa in (A.16). In the
last inequality, we used the standard elliptic estimate of (A.16) with the trace theorem:
‖φa‖H1(∂�) � ‖φa‖H2

x
� ‖a‖L2

x
.

We derive the estimate for J2 as

|J2| � δ3

ˆ t

0
‖a‖2L2

x
ds + 1

δ3

ˆ t

0
|(I − Pγ ) f |22,+ds. (A.22)

J3 and J4 are estimated similarly as (A.8) and (A.9):

|J3| � δ3

ˆ t

0
‖a‖2L2

x
ds + 1

δ3

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds, (A.23)

|J4| � δ3

ˆ t

0
‖a‖2L2

x
ds + 1

δ3

ˆ t

0
‖g‖2L2

x,v
ds. (A.24)

Collecting (A.17), (A.21), (A.22), (A.23) and (A.24), we conclude the estimate a as
follows: for some C3 > 0 and Ga(t) := ´

�

´
R3 ψa f (t)dxdv

ˆ t

0
‖a‖2L2

x
ds ≤ C3

[
Ga(t) − Ga(0) +

ˆ t

0
‖b‖2L2

x
ds + 1

δ3

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds

+ 1

δ3

ˆ t

0
‖g‖2L2

x,v
ds + 1

δ3

ˆ t

0
|(I − Pγ ) f |22,+ds

]
. (A.25)

Step 4: conclusion
We summarize (A.25), (A.15) and (A.10). We let δ2 = √

δ1, and multiply (A.15) by δ
3/4
1

to have

δ
3/4
1

ˆ t

0
‖b‖2L2

x
ds ≤ C2δ

5/4
1

ˆ t

0
‖a‖2L2

x
ds + C2δ

1/4
1

ˆ t

0
‖c‖2L2

x
ds + C2δ

3/4
1

[
Gb(t) − Gb(0)
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+ 1√
δ1

ˆ t

0
‖(I − P) f ‖2L2

x,v
ds + 1√

δ1

ˆ t

0
‖g‖2L2

x,v
ds + 1√

δ1

ˆ t

0
|(I − Pγ ) f |22,+ds

]
.

(A.26)

Then we evaluate δ1 × (A.25) + (A.26) + (A.10) as

δ1

ˆ t

0
‖a‖2L2

x
ds + δ

3/4
1

ˆ t

0
‖b‖2L2

x
ds +

ˆ t

0
‖c‖2L2

x
ds

≤ (C3δ1 + C1δ1)

ˆ t

0
‖b‖2L2

x
ds + C2δ

5/4
1

ˆ t

0
‖a‖2L2

x
ds + C2δ

1/4
1

ˆ t

0
‖c‖2L2

x
ds

+ C
[
Ga(t) + Gb(t) + Gc(t) − Ga(0) − Gb(0) − Gc(0)

]

+ C
[ˆ t

0
‖(I − P) f ‖2L2

x,v
ds +

ˆ t

0
‖g‖2L2

x,v
ds +

ˆ t

0
|(I − Pγ ) f |22,+ds

]
.

Here the constant C in the last two lines depends on C1,C2,C3, δ1. We choose small enough
δ1 such that

C3δ1 + C1δ1 < δ
3/4
1 , C2δ

5/4
1 < δ1, C2δ

1/4
1 < 1.

Finally, we conclude the lemma with |G(t)| = |Ga(t) + Gb(t) + Gc(t)| = |˜
�×R3(ψa

+ ψb + ψc) f (t)dxdv| � ‖ f (t)‖2
L2
x,v
.
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