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Abstract

We study the Bathnagar-Gross-Krook (BGK) equation in a smooth bounded domain featuring
a diffusive reflection boundary condition with general collision frequency. We prove that the
BGK equation admits a unique global solution with an exponential convergence rate if the
initial condition is a small perturbation around the global Maxwellian in the L°° space. For
the proof, we utilize the dissipative nature from the linearized BGK operator and establish
an L? coercive estimate. Next, we derive the a priori estimate by obtaining an L> bound
on the nonlinear operator; this requires a delicate analysis to manage its intrinsic nonlinear
structure. Finally, we establish the L°° stability estimate and introduce sequential arguments
for the nonlinear BGK operator, thereby concluding both well-posedness and positivity.

Keywords Boltzmann-BGK equation - Diffuse reflection boundary - Global in time
solutions - Large time behavior

1 Introduction

The dynamics of a monatomic gas without chemical reactions is known to be described by
the celebrated Boltzmann equation. But the complicated structure of the collision operator
has long been a major obstacle in developing efficient numerical methods [15]. Under certain
assumptions, the complicated interaction terms of the Boltzmann equation can be simplified
by a so called BGK approximation, consisting of a collision frequency multiplied by the
deviation of the distributions from local Maxwellians. This approximation is constructed in a
way such that it has the same main properties of the Boltzmann equation namely conservation
of mass, momentum and energy. In addition, it has an H-theorem with an entropy inequality
leading to an equilibrium which is a Maxwellian. Our interest in this kind of models comes
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from the fact that it is used a lot by engineers, chemists and physicists and in numerical
applications, see for example [45, 49, 54]. BGK models give rise to efficient numerical
computations, which are asymptotic preserving, that is they remain efficient even approaching
the hydrodynamic regime [8, 9, 20, 22-24, 28, 46].

It is used in many applications and there exist many extensions to deal with gas mixtures,
ellipsoid statistical (ES-BGK) models, polyatomic molecules, chemical reactions or quantum
gases; see for example [3, 4, 11-13, 29, 31, 32, 34, 38, 39, 43, 44, 50, 53, 55].

In this paper, we consider the initial-boundary value problem of the BGK equation in a
smooth bounded domain € in R3:

hF +v - ViF =v(M(F)—F), (1.1

where F = F(t, x, v) > 0 stands for the velocity distribution function of gas particles with
velocity v = (v, v2, V3) € R3 attime r > 0 and position x = (x1, x2, x3) € 2 C R3. M(F)
is the local Maxwellian defined as

M(F)(t,x,v) =

_ 2
p(t, x) p(_ [v—U(z, x)| ) (12)

QrT (. 02 2T (1. x)

where p, U and T correspond to the macroscopic quantities given by the moments of F:
pt,x) = / F(t,x,v)dv,
R3
P, DU, %) =/ F(t, x, vyvdu,
R3

3p(t, x)T(t,x) = /3 F(t,x,v)|v-U(t, x)Izdv.
R

The collision frequency v takes the following form: for some constants 7, w:
v(x) = pTT?.

From the numerical point of view, the BGK model considerably simplifies the situation.
But mathematical analysis is not necessarily easier, because the relaxation operator involves
more non-linearity compared to the bilinear collision operator of the Boltzmann equation. In
[47], Perthame established the global existence of weak solutions in whole space for the BGK
model with constant collision frequency. Regularity and uniqueness were considered in [48]
under the local existence framework in the torus. In a near-a-global-Maxwellian regime, the
global existence in the whole space in R® and a polynomial convergence to equilibrium was
established in [7]. In [56], for a wide class of non-trivial collision frequencies, the existence
of a unique global smooth solution is established in the torus under a close-to-equilibrium
assumption on the initial data and an exponential decay estimate is established in a high order
energy norm. There are also various extensions of the previous result to more complicated
BGK-type equations as the BGK equation for gas mixtures in [5], the ellipsoidal BGK
model [57], relativistic and quantum BGK models [6, 40]. Moreover, a method to construct
sharp convergence rates for the BGK equation is given in [1, 2]. All results here, concerning
exponential convergence to equilibrium are in the torus and use a high order energy method
to show exponential convergence for the non-linear BGK equation in a close-to-equilibrium
regime. On the other hand, there are very few studies on the boundary value problem of the
BGK problem.

Reflective boundary conditions play a role in many applications. Therefore, several numer-
ical methods for the BGK equation with reflective boundary conditions have been proposed
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in the literature, e.g. [9, 33, 51], also focusing on approaches preserving at the discrete level
the asymptotic limit towards Euler equations up to the wall, thus ensuring a smooth transition
towards the hydrodynamic regime [9]. Therefore, in this article, we aim to provide a theoret-
ical foundation for the boundary value problem and construct a unique global solution to the
BGK equation with the diffusive reflection boundary condition. We note that the diffusive
boundary condition is one of the most important reflection-type boundary conditions, and it
corresponds to the no-slip boundary condition in the hydrodynamic limit, cf. [52].

In the presence of the boundary, due to the characteristic nature, the kinetic equation
exhibits singularities near the boundary [17, 18, 21, 36, 37, 41], the high order energy method
and Fourier transform method(cf. [25]) become unavailable. To address the challenges posed
by the nonlinear BGK operator, in the paper we focus on constructing a low-regularity
solution, specifically achieving L°, control without relying on the embedding H? C L.
The linear BGK operator possesses a dissipative property for the microscopic components
in the L% energy estimate, which allows us to manage the additional nonlinearity introduced
by the BGK operator by seeking a solution in the space Li,v N LS, Guo proposed this
L)z(’v N LY, framework in [35], which established global well-posedness and exponential
convergence to the global Maxwellian for the Boltzmann equation including diffuse and
specular boundary condition. This breakthrough has significantly advanced the study of the
boundary value problem of the Boltzmann equation, we refer to [42] for the specular boundary
and [10, 14, 16, 19] for intermediate status between pure diffuse reflection and pure specular
reflection. Our main purpose in this paper is to propose an effective method to construct the
BGK solution in the low regularity space L2 , N L%?,. Thus we only focus on the classical
diffuse reflection boundary condition as mentioned earlier. We expect that our methodology
can be applied to investigate the relevant problems, such as the well-posedness theory under
other boundary conditions, the stationary problem, the regularity issues, the hydrodynamic
limits, etc.

To the end, we denote the boundary of the phase space as

y = {(x,v) € 0Q x R3}.
Let n = n(x) be the outward normal direction at x € 2. We decompose y as
yo ={(x,v) € 32 x R? : n(x) - v < 0},
ye ={(x,v) €32 x R? : n(x) - v > 0},
vo = {(x,v) € 32 x R* : n(x) - v = 0}.

The diffusive reflection boundary condition is prescribed for the incoming phase space:

F(t, x,v)],_ = cup,(v)/ F(t,x,u)(n(x) - u)du,
n(x)-u>0
where p corresponds to the normalized global Maxwellian:
I _w?
n() = We

The constant ¢, = +/2m is chosen to satisfy fn(x)~v<0 cup(v)n(x) - vidv = 1 so that
¢ p(v)|n(x) - v| is a probability measure on the half velocity space {]R3 :n(x)-v < 0}. Note
that the mass flux is vanishing at the boundaries, namely

/3(n(x) ) F(t,x,v)dv =0, x € 092.
R
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We seek the solution around the global Maxwellian, which takes the form F = u+ /i f.
Then, the following equation for f can be derived

Wf+v-Vif +Lf =T(f) in(0,00) x 2 x R,
[, x,v)|,. = cuv/ () f, x,u)y/u@)|n(x) -uldu forx € 92, (1.3)

n(x)-u>0
SO, x,v) = folx,v).

Here, L is alinearized collision operator, and I" a nonlinear collision operator. To define these
operators, we first denote the orthonormal basis

2.3
x00) = VED), 70) = u/h®, =123, ) = " Ju,

We denote P f as the macroscopic quantities, which is defined as the L% projection of f onto
the subspace spanned by y;:

4 3
Pfo= > (f  xilxi =a)xo+ Y bi(X)xi +c(x)xa,

i=0 i=1

with

a(t,x) :={(f, xo0), bt,x) = (b1(t,x), ba(t, x), b3(t, x)),
bi(t,x) = (f,x) fori =1,2,3; c(t,x):=(f, x4),

where we have taken the usual inner product on LQ(RE):

(f,8) = /R3 f)g()dv.

The linear operator £ is then defined as £ f = (I — P) f. The nonlinear operator I'( f) is
defined as the remaining term in the BGK operator (1.1):

v (M (1 + yif) = 1= Jif)
NG

Here we highlight that I'(f) is a nonlinear operator of f, which exhibits a higher degree
of nonlinearity compared to the bilinear Boltzmann operator. The derivation of £f and
the explicit expression of I'(f) can be obtained by performing a Taylor expansion around
the equilibrium state (p, u, T) = (1,0, 1). For the detailed derivation and the associated
properties, we refer to the next section ((2.6) and (2.7) in Lemma 1).

We denote a velocity weight as

) = -I-Pf. (1.4)

B=0for0<6<i,

1.5
B> 3 for6 = 0. (1>

w(v) = (1 + [u)PeP, {

Such choice of weight guarantee w2(v) € L,'j and w(v)/m S 1.
Now we state our main result.

Theorem 1 Assume 2 is bounded and smooth. There exists a constant 0 < § < 1 such that

ifthe initial condition Fo(x, v) = u+ /1 fo(x, v) > Osatisfies [, [p3 /1t fo(x, v) dvdx =
0 and

lwfollg, <3,
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then there exists a unique solution F(t, x,v) =+ /u f(t, x,v) > 0 to the problem (1.3)
such that fQ f]R3 JIf(, x,v)dvdx = 0, and the following estimate holds true:

lwf Oz, < Ce™s.

Here C > 1,0 < A < 1 are constants.

Remark 1 The linearized BGK operator £Lf = (I — P) f corresponds to the microscopic
component of f. Here, the first component f serves as a damping factor, while the second
component P f is a compact operator on L%.

For the Boltzmann operator Q(F, F), the linearized operator is given by Lo (f) =
OO/ f )

N . By the Grad estimate in [30], this operator can be decomposed into
—Clv—ul?
Lof=vn)f—-Kf, Kf =/ k(v, u) f(w)du, k(v,u) < T
R3 V—Uu

Compared with the linear BGK operator, the damping factor is given by v(v) ~ (1+|v])Y.
In the case of hard sphere y = 1, it provides extra damping. In the case of Maxwell molecule
y = 0, this coincides with the damping factor in the BGK operator.
The integral operator K f is also a compact operator on L%. Under a polynomial or expo-
nential weight w from (1.5), the kernel k(v, u) enjoys(hard sphere potential)
w(v) _ e—Clo—ul?
ww) ™~ Jv—ul’

wW)Kf = w(v) /R (w0 fdu < T, /

R3 v —u|

k(v, u)

—Clv—ul?
du < llwflizge, -

The linearized BGK operator exhibits a similar but more regular property. Since P is an

L%-projection onto its kernel, and given the constraint 6 < % in (1.5), we have:

4
WP S Y 0w [ w0 fad (16
i=0 s
4
Stoflig, 3 [ now 6 < s, 17
i=0

The integral kernel of the linearized BGK operator does not exhibit a singularity in |v —u|.
We expect this smoother structure to enhance the regularity of solutions to the BGK equation
in boundary value problems, compared with the regularity of the Boltzmann equation studied
in [37]. This will be left for future study.

Remark 2 While the linearized BGK operator has a simpler structure than its Boltzmann
counterpart, its nonlinear term I"(f) is more complex. The nonlinear Boltzmann operator

Co(f, f) = W has a bilinear form. This structure yields the key weighted esti-
mate: ||v’1wFQ(f, Plire, S ||wf||%90v in the L)zw — L2 argument. Furthermore, the

X,V
sequential argument and uniqueness proof follow directly, as the bilinearity implies:

W wITo(fi = fo, 1) + T2 fi = )]l
S lw(fi = Pl wfills, + lwfllzg, .
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In contrast, the nonlinear BGK operator I' () is defined in (2.7) via a Taylor expansion, and
exhibits a more intricate nonlinearity. Although the last term in (2.7) appears to be trilinear,
the coefficients Q;; in (2.5) depend nonlinearly on the macroscopic quantities (o, U, T) of
F, which again depend on the perturbed solution f. This nonlinear dependency poses a major
challenge for deriving the necessary Lgf’v estimate for |wI'(f)|| L, . We refer to Lemma 5
for details. -

Moreover, to establish the solution’s existence, uniqueness, and positivity, we must
introduce a new iterative scheme and a corresponding stability estimate of the nonlinear
operator||[wI'(f1) — I'(f2)|l Lo, - We refer to the stability estimate in Sect. 2.3 and the sequen-
tial argument in Sect.4.1.

As explained in Remark 2, our main contribution in this paper can be summarized as
follows:

(1) Nonlinear estimates: We derive the L;’f’v estimate for the nonlinear BGK operator I"( f)
and establish the a priori estimate in the L2-L framework,
(2) Well-posedness: We derive the L2 stability estimate for I'( f) and establish a new

X,V
iterative scheme to prove the existence and uniqueness of the solution.

(3) Positivity: We establish the positivity of the solution through a new sequential argument.

Qutline. In Sect.2, we will derive the expressions of the BGK operator £ and I', and
establish their fundamental properties. In Sect. 3, we will derive the L? estimate for the linear
BGK equation by leveraging the coercive property of £. Finally, in Sect. 4, we conclude The-
orem 1 by constructing the L estimate through the method of characteristics and employing
an iterative argument for the existence and uniqueness of the solution.

2 Preliminaries
2.1 Derivationof Land I’

In this section, we derive the explicit expressions of £ and I'.

Lemma 1 ([56]) (i) The collision frequency v = p"T® in (1.1) can be linearized around the
global equilibrium state (p, T) = (1, 1) as

v=1+v,,

1 1
vp = Z(f,x»/o Dy .py Uy .Go) (P T§)AD =Z<f,x,->/0 Qidd, (2.1

1 1

where the notation in (2.1) is defined as

0i :={D(py.0yUy.G5) Ly T} (2.2)
py =Vp+ (1 =931, pyUp = VpU,
polUs|* +3p9Ty 3 plU* +3pT 3
VP +300T0 3, (PIUE 30T 3 )
2 2 2 2
UP+3pT 3
qu_i, Gy = 9G. (2.3)
NG NG
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(ii) The local Maxwellian M (F) in (1.1) can be linearized around i as

1
M(F)=u+Pfyi+ 3 <f,xi><f,x,->/0 o (l—v)ds. Q4
0<i,j<4
Here Q;; is defined as
Qij = D3y 0,05,y MDi 2.5)
Y bty
M) = Grryme

(iii) Plugging the perturbation F = pu + /i f and the expansion of M(F), v given by
(2.4), (2.1) into the equation (1.1), we derive the expression of L(f) and T'(f) as

Lf=0-P)f, (2.6)
1
P =0 Pf —upf+ 3 /O Qi (1 = DAV (f, i) f s i 2

0<i,j<4

1
v D] /0Qij(l—19)dl9<.f,xi><f,x,;>u*”2

0=i,j<4
=0 +T2(f) +T3(f) + Ta(f). 2.7

To fully state the expression of I" in (2.7), we derive the explicit expression of Q; and Q;;
in the following lemma.

Lemma 2 (i) Q; in (2.2) takes the following form:

- Pilpy, Uy, Ty)
' Ri(py, Ty)

Here Ri(py, Ty) = r1,i(py) > (Ty)?' is monomial, r1; > 0 is a positive constant and

r2,i.13,; > 0 are non-negative constants. P; is a polynomial

Pi(pg. Up1, Us 2, Up3. To) = D am(pp)™ Uy 1) (Ug.2)™ (U 3)™ (T5)"™.

meS;

2.8)

Here ay, is a constant, m = (my, --- , ms), where m; > 0 are non-negative constants, and
Si corresponds to a collection of finitely many m.
(ii) Q;j in (2.5) takes the following form:

Pij(py,v—Uy, Uy, Ty)
2 _ b
Qij = [D(pl"”wl”cl’)M(ﬁ)]ij - Rij(py, Ty)

Here R;j(py, Ty) = r1,ij(p9) > (Ty) > is a monomial, ry ;; > 0 is a positive constant and
r2,ij,13,ij = 0 are powers of non-negative integers. P;; is a polynomial

M®). 2.9)

Pij(py,vi — Up1,v2 — Uy, v3 — U3, Uy 1, Up2, Ups, Tyy)
= Y aw(pg)™ (W1 — Up,1)™ (v — Uy )™ (v3 — Uy 3)™

mES,'_,'
(Up, )" Uy, )" (Uy,3)" (Tp)™S,
here ay, is a constant, m = (my, - -- , mg), where m; > 0 are non-negative integers, and S;;
corresponds to a collection of finitely many m = (my, - - - , mg).

@ Springer



61 Page8of38

H. Chen et al.

Proof We can compute the derivative in Q; as

Dy, pu,6)p"T?” =

1
0
0
0

0

_u

0

=] S D=

0

o

S =

_U

o

0
0
1
P

0

=3T+|UPP43 ]

3p
_2u;
3p
_2Uy
3p
_2Us
3p
2

3

[np" 1T

wwalpn

P .

0
0
0

Here the first matrix corresponds to (D, ,v,6)(p, U, T))~!. This concludes (2.8).

Next we compute the derivative in Q;; as

_Us  _Us  —3THUPH3T
o o 3p
2U
o 1 0 0 -3
=U|? 1 20,
L V! 1 0 -2
Purov- o gyn® = C
o o o 1L -5
2
/3
0 0 e
The second derivative becomes
_l R Uy S3THUPH3T
P P 3p
1 _2U
0 > 0 &N
2U,
2 Y2
D} yoMF) =0 0 0 3
1 _2Us
0 0 - N
2
0 0 0 \/—;
L P _
[ _u _» SBTHUPHS |
P P 3p
1 _2U;
0 P 0 3p
1 _2Us
Deu,1) 0 0 I 3p
2U
0 0 0 —3—'03
_0 0 0 v L
This concludes (2.9).
Lemma 3 The nonlinear operator T in (2.7) satisfies
PI'(f)) =0.
Proof We use the definition of I'( f) in (1.4) and have
vIM(F)—F)

P((/) =P(

@ Springer
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) —P@-P)f) = vp(

_Uy—v
T

_Us—w3

lv—U]2=3T

P
_Ui—vy
T

_Uh—v
T

_Us—v3
T

lv—U|>=3T

(M(F

)= F)
i)

M(F).

272

M(F)
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4
Xi

= i M(F)—-F dv = 0.

lz(;vx/m( (F) = P P

. 2
In the second line, we used % =1, % =v;,i € {1,2,3}, % = % and the

conservation of mass, momentum and energy. O

2.2 L™ estimate of I

As discussed in the introduction, we aim to control the nonlinear operator I" in L space.
In this section, we establish the L> control of I' in Lemma 5. This result will play a crucial
role in proving the a priori estimate.

Lemma 4 We can control the macroscopic quantities using the L* estimate of f as follows:
Iflwfllres < 8, then it holds:

X N

lo—=1,U,T—1lrx <6. (2.10)
This further leads to
1

/ [Qild® S 1, (2.11)
0

0v)? ! 1/2 1
(1 + |v)Pell / 1011 —9)dou™' 2 <1 fore < e (2.12)
0

Proof We can estimate the density as

lo(t, x) — 1] = ‘/g[wm/ﬁf]dv—l‘ < ||wf||L§‘}v/%\/ljw_ldUSC5-
R R3
Then we estimate the momentum as
o001 =| [ ot V] < sz, [ Va@uT i < cs.

Thus
Cé

C
U, x)| < - < <
inf{p(t,x)} — 1—=C8

2C86.

Last we compute the energy as
3o T (1) ~ 3] =] /Rz(u+\/ﬁf)|v U 0Py 3|
< U@ )P+ lwf e, /R Vu@uw™ @) = U@, x)Pdy

S+l [ Vi@u il + 06 0P
R
<824 C8(C + (2C8)%) < 6.
With

pt,x)T(t,x)—1 B pt,x)—1

T —1=
(& %) p(t. %) Pt )
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we derive that,

8 8
<S8
1—C8+1—C5N

IT(t,x) =1 <

We conclude (2.10).
Next we prove (2.11). Recall the definition of py, Uy, Ty in Lemma 1, from (2.10) it is
straightforward to verify that for some C

lop —1,Up, Ty — 1| < C8. (2.13)
By the property of Q; in (2.8), we apply (2.13) to control the denominator as
1S ri(1 = C8™ (1= C8)™ < Ri(py, Tp).
We control the numerator as

Pi(py.Up. Ty) S Y lam|(1 + C8Y™ (CE"™Tm+ms (1 4 Co)™s < 1.

mES,'

This concludes (2.11).
Last we prove (2.12). From the property of Q;; in (2.9), we apply (2.13) to control the
denominator as

1 Srij(1—=C8)™2i (1 —C8) < Rij(py, Ty)
We control the numerator as
Pij(py,v1 — U1, v2 — Upo,v3 — Ups, Up 1, Ug2, Up3, Ty)
< D lanl(1+ C8)™ (v = Up )™ (v2 = Up 2)"™ (v3 — Up 3)™

meS,-j

(C(S)m5+m6+m7(1 + C6)m9M(l9)

< Z v — Uy "2 tmatms

~

v— 2 v 2
%e_ |2(l~l+/gf‘3) S, e‘2<|+c‘a‘+C(e)) .
(1l —

mES,'_,-

In the last line, we first bound the polynomial by an exponential as |[v — Uy|™2H"3Tm4
2 .

< e=“Iv=UsI” for some small ¢ that depends on 6 to achieve

magme —=Ulv=Up
|U—U19|m2 M3TM4 ,™ 2(1+Cs) S‘f 2(1+C5+CO)) |

Here C(0) is a small constant that depends on 6.
Then we bound

U o2 420Uy —Uy —lo2+ol? Uy P42
e AIFCHHCO) = ¢ 207CoH+CH) < @ 20+C5+C@)
N
—(1=C2)jv? ik

S e 2(0+C5+C0) 5 e 20+C5+2C0)) |
Since § < 1 and 0 < %, we can choose C(6) and § to be small enough such that
‘2

‘v
(1 + |o])Bef ! o~ amcizcmy oV/4 < 1.

Here the inequality does not depend on §. We conclude the lemma. O
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Lemma5 When |wf|re < |e* wf||L;>§“ < 8, the following L*° control holds for the

v =

nonlinear operator given in (2.7):

v~

Wl (Olleg, S lwflfe,. 1 wli(Hlleg, S le¥wfllfe,. i=1.23,  (2.14)

lwla(Plleg, S lwflzg,. e wla(Nlig, S e wflies - (2.15)
Proof We first prove (2.14). From (2.7), we apply (2.11) and compute
1
Wy (IS wPfI Y[, x»/o 0idd| S 13 wxi (. )| Y IF i)
i i i
S hwf iz, Y™ xa)® S lwflize, -
i

Here we used 6 < § so that (1 + [u])fe?" y; < 1. The second inequality in (2.14) follows
in the same computation:

e wl ()] S |wal fxi |Z| (o] S e wf i
Then for I'>(f) we apply (2.11) and have

1
wrI S el 2 (o) [ 0o S hofl e Yot ) 5 s s

l

HMuwla ()| S Ie“wfl Z L) S e wf I, -
For I'3(f), we apply (2.12) to have

[wl3(f) S w /Q,,(l—ﬁ)dﬂ‘u_”zllwfllpo lwf 7z,
0<i,j<4 '

w3 ()] S w / Qij(1 —ﬁ)dﬂ\u—”zue“wfnm S e wf 7z -
0<i,j<4 !

This concludes (2.14).
Next, we prove (2.15). We apply (2.11) and (2.12) to have

WEa (N1 S Y41 ) / Q,dl‘/“ w\/ Qij (1 = 9)dd | (U f1, ) (11, 36)

3
5 ||wf||L§‘_>U'
Similarly, we have
22 A 3
Wy ()] S Nl wf 1o -

This concludes (2.15).
O
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2.3 Stability estimate of I’

To prove the existence and uniqueness of solutions, we will employ a sequential argument.
In this section, we derive the L stability estimate of I" in Lemma 7.

Lemma6 Let F| = u+ . /itf1, F2 = p+ /i f> and assume that ||wfk||L;?v <8, k=1,2.
We denote (pi, Uy, Ty) as the macroscopic quantities of Fy defined in (1.2), then it holds that

1
/ 1Qi(p1,9, Urw, T19) — Qi(p2.9, Uzw, T29)|d0 S lw(fi — )L,  (2.16)
0

1
2
(1 + [vpPefl?! / |Qij(p1,9,v — ULy, Ury, Tr9) — Qij(p2,9, v — Uy, Uz, To9)|
0

(A =9)dopu ™ S w(fi = f)llzs,- (2.17)
Proof From (2.10) we have
lox =1, U, T = Ulre S8, k=1,2. (2.18)

We compute the difference of the macroscopic quantities p, U, T as

o=l =| [ B = Fowe| =] [ (= poviae] < s = Pl

1 1
|U1_U2|:‘7/ Fivdv — — szdv‘
P1 JR3 P2 JR3

I 1
- ‘7/ (F| — Fy)vdv +/ szdv<— - 7)’
o1 Jr3 R3 o1 P2

- % /R3(f1 — f2)v/idv + /R fzvﬂd”(i - L)‘

oL P

lo1 — p2]

S lw(fi = g, + lwfallig, S llw(fi = 2 g,

11 1
|T1—T2|:7’—/ F1|v—U1|2dv——/ lev—Uzlzdv‘
3lp1 Jr3 P2 JR3
1

11 , , _—
- 7‘7 Filo = Ui2 = Balv = UsPdv + | Falo = UpPdv(— - —)‘
31p1 JR3 R3 p1 P2

S [ =Flv- Pt [ Bl 0l - - s
R3 R3
+ o1 —,02|/3 fzIU—U2|2ﬁdv
R

5/ Ifl—lelv—Ullzﬂdv+/ AU — U2
R3 R3

+ (U1 — V) - vl/pdv + lw(fi = f)llx,
Slw(fi = P, + UL = Ual S w(fi = f2) e,
These estimates imply the following control: for integer power m > 1, due to (2.18), we have

(01" = p3", Ul" = U3, T = T3
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Slor = p2, Ut = Un, Ti = D)o}~ 4+ 0y~ + U w0 1+ 1
S o1t = p2, Uy = Uz, Tt = T)| S lw(fi — f2)llLes, - (2.19)
For positive power m > 0,

P = P53 T = T S Lot = pallof ™ + 3 ™+ TP+ 1

Sl = T = T S w(fi = )i, - (2.20)

Here ,o]’("*l, Tkmfl < 1 for finite m due to (2.18).
For positive power m > 0, again due to (2.18),

Gr =7~ 20)| = o )
P T T pres I
S = 3 T = T S lw(fi = f)lles, - (2:21)

We compute the difference of px 9, Uk, v, Tk,» using the definition in (2.3) and the com-
putation (2.19), (2.20), (2.21):

F(o1Uy — p2U2) — B U2, 9 (01 — 02)
P10

lp1,0 — 2,0, Uty — Uapl = ‘75‘(,01 - p2),

Slw(fi = 2l

X’

2 o1.01U1 91> = p2olUssl* 3
[T1,0 — Ta 9l = ‘ - — =T p(p1,9 — p2,9)
3p1,9 2 2
ollUI>+301T1 3 02|U21> + 30T 3
—H}{f_im _fﬁ_im}l

S w(fi = 2,

It is straightforward to verify that we can achieve the same estimate for px 3, Uk, 9, Tk »
as (2.19), (2.20), (2.21):

[0ty — Pargs Uiy — Us'y, T — T S lw(fi — f2)llLge,, m is a positive integer.

11" = P39 Ty — To'p)] S lw(fi — f2)llLee,, m is a positive constant. (2.22)
(55 = = 7 — 7 )| S IwCi — )i, mis a postive constant
— = e — 7 )| S lw(fi = f2)llLge,, m is a positive constant.
Pl Pry Ty T

From (2.8) and (2.9), the denominator of Q; and Q;; contain monomial of oy, Ty, while
the numerator contain polynomial of py, Uy, Ty, v — Uy with integer powers. Then we can
apply the computation (2.22) for the subtraction in (2.16) and (2.17). Then the lemma follows
by a rather tedious but straightforward computation. O

Lemma?7 Given fi and f; such that |e" wfi| rx, + e wfallrex, < 8, it holds that

I w(T(f1) = T, S sl w(fi — f2)llrx, - (2.23)

Xu N

Proof We will derive the lemma by estimating every term in (2.7).
We start with I'1 (f) = v, (f)P f1. From the definition of v, in (2.1), we compute that

vp(fOPf1 —vp (P2 = (p(f1) — vp(2)Pf1 +vp(f2)P(f1 — f2).
The second term is bounded using (2.1) and (2.11):

e wv, (P = I Sl wfi = )l e whiiee, $ sllew(fi = )i,
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For the first term, we use the property of Q; (2.8) to have
e vy (1) = vp(f2)
1 1
<SS (MIf - fal m/0 Qi (fDldD + S (e ol x»/o Qi (f1) — 0i( )1
Sllew(fi = ), + e whillee, lw(fi — )z, S lew(fi = )i,
(2.24)

Here we have used (2.11) and (2.16).
This leads to

e w(vp(f1) = vp (PP S M whilles lle w( i — f)llLee, S 8l w(fi = f)llLe, -

Thus (2.23) holds for I';.
Next we estimate I'>(f) = —v,(f) f. We compute that

vp(f)f1 —vp(f2) f2 = (wp(f1) —vp(S2)) 1 + vp(2)(f1 — f2)-
The second term is bounded using (2.1) and (2.11):

e w(fi = fvp (] S e w(fi = Pl lle whllie, < slle™w(fi — f)llie, -

x,v Y

For the first term, using the same computation as (2.24), we obtain

e w, (f1) = vp () Al S e w(fi = Pl lle whillix, S sle™w(fi = f)llis,-

Thus (2.23) holds for I';.

Next we estimate I3 (f) = > g<; j<4 fol Qi (H A=AV f, xi)(f, xj) ™ 1/?. We com-
pute that

M w3 (f1) — wl3( )]

1
<w Y /0[Q,»j(fl)—Qi,-(fzn(l—ﬂ)dﬁ(e“fl,x,~><e“f1,x,->u*”2

0<i,j=<4

1
+w Y /0|Ql~j(fz)|(1—0>d0[<e“(f1—fz>,xi><e*’f1,xj>

0<i,j<4
+ (& ool (fir = ) )
Sl wfillge lw(fi = g, + e w(fi = g, Nl wfillg, + e whlig,]
Slew(fi = f)llzs,- (2.25)

Here we have applied (2.12) and (2.17). Thus (2.23) holds for I's.

Last we estimate Ty(f) = v,(f) Yoci jea Jo Qij(H)(1 = 9)ADf . xi) (f xj) 2.
We compute that

M wly(f1) — wla(H)] < e vy (fi) — vp(f2)lw
1
/0 105 (DI = )8 (fr x0) (i b

+ (M w3(f1) = wa()] S Nl wfi = flleg, I whillfe

+8leMwhlies, e wfi = ), < Sl w(fi = f)lles, -
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In the RHS of the first line, we have applied (2.24), (2.12). In the last line, we have applied
(2.1), (2.11), and (2.25).
‘We conclude the lemma.

[m}
3 L2 dissipation estimate
In this section, we consider the solution to the linearized BGK equation
hf+v-Vof +Lf =g, 3.D
with the source term g = g (¢, x, v) satisfying
Pg = 0. (3.2)
The boundary condition of f is given by
F,x 0, = cuy/m) (n(x) - u) £, x, u)y/pu)du. (3.3)

n(x)-u>0

We denote

Py f = cuy/1t(v) / (n(x) - ) £ (1, %, 1)/ () du.

n(x)u>0

We will prove the following L>-dissipation result.

Proposition 2 Let Q be an arbitrary bounded and C' domain. There exists 0 < A < 1 such
that if the initial data fo and source data g satisfy (3.2) and

t
2 A 2
1 foll2, +/ I g ()2, ds < oo,
X,v 0 Xx,v

then there exists a unique solution to the problem

atf+v‘vxf+£f:ga (3.4)
£(0,x,v) = fo(x,v), fl,_ =P, f. '
Moreover, it holds that
t
oI, s e i, + /0 leg@)I2, ds}. vizo. (3.5)

To prove Proposition 2, we need to have the following L? dissipation estimate of the
macroscopic quantities. Denote

1f13.4 = / / | £, x,v)]>(n(x) - v)dvdSy, dS, is the surface integral.
Q2 Jn(x)-v>0

Lemma 8 Suppose f solves the following equation,

ohf+v-Vif+Lf =g, (3.6)
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with boundary condition (3.3). Here g does not need to satisfy the condition (3.2). It holds
that

t t t
/0 IPF&)I7; ds <G —GO) + /0 IA=P)fII7, ds+ /0 [HOIFS
t
+ [=psoB. e

where G(t) is a functional of f(t, x, v) such that |G(t)| < ||f(t)||i2 holds true for any
t>0. !

The proof of the macroscopic dissipation estimate is standard. For completeness, we refer to
the proof provided in the appendix.

Proof of Proposition 2 We prove the decay estimate (3.5). Multiplying (3.4) with e*' we get
[0 +v - Vi + L1 f) = 1™ f + M g. (3.7)

Applying Green’s identity to (3.7), we have
t t
IIe“f(t)Ilig ,T /0 X — P)eksf(s)”i%UdS +/0 (I — Py)e™ f(s)]3 4.ds
13 t
S / 1 F )12, ds+ £ O, + / le** g7, ds.  (3.8)
0 X, v X,v 0 X, v

Here, we have applied P(e*' g) = 0. We have also applied the following coercive property
of the diffuse reflection boundary condition:

/ / |f (@, x,v)]>(n(x) - v)dvdSy
I JR3
= [ [ = s PP - vduds,
Q2 Jn(x)v>0
+/ / |P, f1*(n(x) - v)dvdS,
Q2 Jn(x)v<0
- / / (I = P fP(n(x) - v)dudS,
Q2 Jn(x)v>0
+2/ / S Py f(n(x) - v)dvdSy
Q2 Jn(x)v>0
—2/ / |P, fI*(n(x) - v)dvdS,
Q2 Jn(x)v>0

+/ / |P, f1>(n(x) - v)dvdS,
aQ JR3
2
=it =pfB ([ [ e faVetods,)
Q2 Jn(x)u>0

x [2 - 2)/ cpp(v)(n(x) - v)dv +/ cpp(v)(n(x) - v)dv]
n(x)-v>0 R3

== P) [l
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Next, we apply Lemma 8 to (3.7), then we obtain
1 ) t ) t )
/O I Pf($)l72 ds S G@) = G(0) +/0 | @=P) f(s)]7; ds +/O 1™ £172 ds

t t
+ [ g, s+ [ =P foR 0 G9)
0 xv 0

where |G(2)] < |le* f(1) ||2L2 . Therefore, multiplying (3.9) by a small constant ¢ and adding
the resultant to (3.8), we obtain that for some C > 0,

t t
1 =colle rol2, +{a-ce /0 Il A=P)f )7, ds+e /0 I PS@)I2, ds}
t
+(1 - Cs)/ e (I — Py) f(5)[3 ds
0

t t
<CO+2) / 1 £, ds+CIFO)2, + / I* g2, ds.
0 X, X, v 0 X,

Since ||e* (I — P) f(s)lliz + ||eMP f(s)||iz = ||e* f(s)||i2 , we further obtain that for
e << 1: X,V X,V X, v

t
e FOI7, +e / le™ f($)II7, ds
X, v 0 xX,v

t t
< C(A+k2)/0 e f©)I72 ds+CIFOI7; +/0 le™ g ()7 ds.

Last we let A < 1 be such that C(A + Az) < ¢, then the above estimate gives the desired
decay estimate (3.5). We conclude the proof of Proposition 2. O

4 L*> estimate by method of characteristic

In this section, we are devoted to the proof of Theorem 1. We will control the nonlinear
operator I'(f) in (1.3) using L norm. For this purpose, we start with the L estimate of
the linear problem (3.1) in the following proposition.

Proposition 3 Suppose the initial condition and source term in (3.1) satisfy

lwfollzss, < oo, sup e**llwg(s)llrx, < o0, P(g) =0, (4.1)

0<s<t

then there exists C > 0 such that the unique solution in Proposition 2 satisfies

lwf @l = Ce™ flwfollz, + sup e lwg(®)lles, |

=s=t

foranyt > 0.

We will derive the L control using the method of characteristics. We use standard
notations for the backward exit time and backward exit position:

tp(x,v) :=sup{s > 0,x —sv € Q}, xp(x,v) :=x — tp(x, V).

We denote 1y = Ty, a fixed starting time. Since the backward trajectory may have multiple
interactions with the boundary, we define the following stochastic cycle:
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Definition 1 We define a stochastic cycles as (xg, vg) = (x, v) € Q x R3 and inductively
X1 := xp(x,v), vy € {v] € R3: n(xy) - vy > 0},
vr € Vi = {ug € R3: n(xg) - vg >0}, fork > 1, “4.2)
Xt 1= xp (X, V), 1 1= 1y (xp, vg) for n(xg) - v > 0,
te=to—{tp+tp+---+1 '}, fork>1.

With the stochastic cycles defined, suppose f satisfies the linear equation (3.1), with £ f
defined in (2.6) in Lemma 1, we apply the method of characteristic to get

w() f(To, x, v)
=1, <ow()e 0 £(0,x — tv, v) (4.3)

T 4
+14<0 / Oe*TO*”w(v)in(v) / S x =@ =) wxiduds - (44)
0 i=0 R’

T 4
+ 1,20 / Oe—”f’—“w(v)in(w / Fox = @ = v xiduds (45)
n i=0 R’

To
+ 1,150/ e~ Ty (v)g(s, x — (r — s)v, v)ds (4.6)
0
To
+ 1,20 / e Ty (v)g(s, x — (t — 5)v, v)ds 4.7)
1
+ 1y =0e" 7w (v) f (11, x1, v). (4.8)

The boundary term (4.8) is represented using the diffuse reflection boundary condition (1.3)
and the stochastic cycle Definition 1:

[, x1,v) = ¢/ (o) ft, x1,v1)y/ () |n(xy) - vi|dvy.

n(xy)-v;>0

Applying the method of characteristic againto f (¢, x, vi), with the stochastic cycle defined
in Definition 1, it is standard to derive the following bound for the boundary term (4.8):

(4.8)] < =T (v)
k-1
X /k_1 { Z1r,-+,§0<z,-€_t"w(vi)|f(07 xXi — t;v;, v;)|dZ; 4.9)
l_[j=1 Vi i=1
+ 1y sow k=D f (ks Xk, vi—1)1d g1 (4.10)

k-1 4 4
+ Y 1 <0<y / e TN W) xe (i) /R X [, xi = (1 = $)vi, w)dudsd
i=1 0 =0 :

4.11)

k-1 4 4
+3 14,050 / eI W) xe () / X (s, %0 = (@ = $)vi, w)dudsd
i=1 fig1 Y R

(4.12)

k—1 4
+ ) L <0<y / e~ w()g(s, xi — (1 — s)vi, vi)dE; (4.13)
i=1 0
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k—1 4
+Y L0 / e g (s, xi — (1 —s)vi,vi)dzi}. (4.14)
i=1 fit1
Here d%; is defined as
k—1 1 i—1
ds; = { dm} x {7da<} x { e—(’f—ff+1>do-}, (4.15)
‘ jﬂl T w) Vi) ,1:[1 !

where do; is a probability measure in V; (4.2) given by
do; = ¢ (vi)(n(x;) - vi)dv;. (4.16)

The term (4.10) corresponds to the scenario that the backward trajectory interacts with the
diffuse boundary for more than k times, while the other terms involve finite-time interaction.
This uncontrolled interaction times is estimated by the following lemma.

Lemma9 For Ty > O sufficiently large, there exists constants C1, Co > 0 independent of Ty
such that for k = C1T05/4, and (ty, xo, vo) = (¢, x,v) € [0, Ty] x Q x R3,

k—1 5/4
1\ C2T
1 do; < (7) .
/IT'}ZII Vi tk>0jl:[1 ! 2

Proof Since the characteristic in Definition 1 with repeated interaction with the boundary is
fully determined by the diffuse reflection boundary condition, this statement is independent
of the equation. We refer to the proof in Lemma 23 of [35] for the Boltzmann equation. 0O

To prove Proposition 3, among the characteristic formula (4.3) - (4.8), first we estimate
the boundary term (4.8) in the following lemma.

Lemma 10 For the boundary term (4.8), with A given in Proposition 2, it holds that

w)|f (1, x1,v)| < deMwfollLe, +o(De™ sup [l wf(5)Lx,
0<s<Tp

+ C(Tp)e ™ sup |le™wg(s)llL,

X,V
0<s<Tjy

+C(T)e ™ sup ™)l -

0<s<Ty
Proof Since do; in (4.16) is a probability measure, (4.9) is directly bounded as
(4.9) <de "MwfollL,, 4.17)

where the constant 4 comes from
/ n(x:) - vily/ow ™" (vy)d; < / [n(x) - vi [/ p(vi)dv; < 4.
Vi Vi

The exponential decay factor e~ in (4.17) comes from the combinations of the decay factor
in (4.15):

e i g (tic1=1i) < e—fi—l’ e li-1p=(tica—ti—1) < e li-2 ...
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For (4.10), with .. < 1 and k = C T05/4, we apply Lemma 9 to have

(4.10) < / o Lysoe MM w ) f (1. X vi-) Ay
M=V 4.18)

—A A
<oMe ™ sup [le™wf(s)llL,
0<s<Tjy ’

Here the exponential decay factor e ™! comes from the following computation:

e~ Mk o= (t—1=1) < e*}ttk—l’ e Mik—1 o= (tk—2—1tk—1) < e Mk=2 ..

For (4.13) and (4.14), they are directly bounded as

0<s=<Ty max {0, 41}

k—1 4
[(4.13) + (4.14)| < sup IIeng(s)IlL%Z/Hk 1 / e (179 ™M qsds;
i=1 V1= Vi

To
< Cke*)\ll sup e)»X”wg(s)”Lgov / e*(TO*S)/ZdS
“Jo

0<s<Tpy

< Cke™ sup ™ lwg(s)llss, -

0<s<Tp
(4.19)
Then we estimate (4.12), which reads
i
/ Lo [ JdojrT P pw™ i)
Hlj:l Vi j=1
(4.20)

1 4
X /ti+1 e~ (=9 ;X[(v,’) /R3 wu) f(s, xi — (t; — $)v;, u) );f((z))duds.

First we decompose the ds integral into 15>, _5 + 154, —s. The contribution of the first
term reads

i
(420)1y>, 5 < [Tdojn™"?@ow™" @)

l_[Lj:le j:l
1 4
X/ e*(II*-V)Zw(vi)Xe(vi)
max{t; 1,1 —58} =0
/ W) £, x; = 6 — 5y0r, 10X duds
. w(u)
<o(e ™™ sup M wf(s)llix, “.2D

0<s<Tpy

Then we decompose the du integral into 1;,>5 + 1j,j<n. The contribution of the first
term reads

“20)1 >N < / o Pwnw! ()
[T

=1V j=1

1 4
S ) [ B0 s X0 2 e
it R3 (

s w(u)
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<oMe™ sup [ wf ()L, - (4.22)

0<s<Tpy

Last, we consider the intersection of all other cases, where we have s < f; — &, and
lu| < N. We compute

(420015, 51 <N </ ndaj/v V@) n(x;) - vildy;

=1 Vs i

ti—38
% / e—(ti—s)/ f(s’ Xj — (ti — S)Ui, u)duds
tit1 lu|<=N

P
< da/ e_(t‘_‘y)/ /f(s,y,u)dudyds.
53 1_[ <N Jo

(4.23)

In the last line, we have applied the change of variable v; — y = x; — (t; — s)v; € Q with

Jacobian )
‘det (M)’ — (1 —5) > 5
81),'

Then we leverage the L estimate by applying the Hélder inequality

(423) < Cyn.s Q/ ]_[ do; x / eI f )2 ds

HJ 1V j=l1
< Cys.qe ™ sup | f)l2 - (4.24)
0<s<Tpy v

Collecting (4.21), (4.22) and (4.24), we conclude that
4.12) So(e™™ sup [ wf($)lLx, + Cnsrae ™ sup | f($)ll2, . (4.25)

0<s<Tjy 0<s<Tp
By the same computation, we obtain the same bound for (4.11):

@11 So(e ™™ sup [l wf ()L, + Cnskoe ™ sup I f ()2 . (4.26)

0<s<Tjy 0<s<Tpy
Summarizing (4.17), (4.18), (4.19), (4.26) and (4.25), and using the fact that k is a function
of Tp, we conclude the lemma with C(Tp) = Cy 5,0 - ]

Now we are in a position to prove Proposition 3.

Proof of Proposition 3 We focus on the a priori estimate. We will discuss the construction of
solution using an approximating sequence at the end of the proof.
First of all, (4.3), (4.6) and (4.7) are bounded as

[(4.3)] +1(4.6)| + 4.7 < e PllwfolliLx, + Ce™ sup M wg(s)lrx,.  (427)
0<s<Tp
Moreover, (4.8) is bounded by Lemma 10 as
(4.8) < 4e” O lwfoll L, + o(De ™0 sup [l wf ()L,
0<s<Tp
(4.28)

0<s<Tpy 0<s<Tpy

+ C(Tp) [e”o sup [le* wg(s)l|zse, +e 0 sup ||.f<s)||L;v]
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Then we focus on (4.5). We expand f (s, x — (t — s)v, u) using (4.3) - (4.8) again along
the characteristic with velocity u.

Denote t{ := s — tp(x — (t —s)v,u) and y := x — (f — s)v, we compute that

(45) =10 / 35T Y w0 [ aes

= “ww

x {l,lugoe*fwwf(o, ¥ — s u) (4.29)
P xj@)

+liy=o | ds' ZU)(M)X](”) WDy = (s =5, u 4 wi) O

j=0

(4.30)

—(s—5) Xj(u/) /

+ 1,u>0 ds w(u)x,(u) w(u VF(s'sy = (s — s u, u') =——=du

= w(u’)

(4.31)

+ 1zr<0/ “CDu(u)g (s’ y — (s — s, u)ds’ (4.32)

0
+ 1tu>0/ “6=Du)g(s', y — (s — s u, u)ds' (4.33)
+ 1ti’>06_(3_t1 w) f@tf,y — to(y, uu, u)}. (4.34)
The contribution of (4.29) in (4.5) is bounded by
To 4 (M)
dse—To—s) . / du X s .
/,1 se Z w() x; (v) . u ) e llwfollre,
T
< Cﬂ/ dse—(To=5)/2 5= 2To”w}cO”L§>OL < Cge~ 2 ||wf0||Loo . (4.35)
13l

Here the constant Cg comes from (1 + |v|)ﬁee‘”|2 xi(w) < Cg.
The contribution of (4.32) and (4.33) in (4.5) are bounded by

/ dsef(To s) Z w(v)Xl ('U)/ Xi (M) / 7(st’)ef)hs/ sup “e)\Swg(s)”L;%

" u)( ) 0=<s5<Ty
T .
<C sup [l wg(s)lie, / dseT=5) s / paQ)
0=s=To o R w(u)
=C sup e wg(®)lg,- w36
0<s<Tpy

The contribution of the boundary term in (4.34) can be bounded by applying Lemma 10:

434)] < / dse~ (T Y)Zw(v)x,(v) / Py p—
3} (u)

x {e"l Alwfollzee, +o()e ™ sup fle* wf(s)lLz,

0<s<Tp
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+C(M)[e ™ sup e wg(s)lLx, +e M sup e“nf(s)nL;v]}

0<s<Tj 0<s<Tj

To .
< Cp / dse™ ) x [4e™ % wfollz, +0(De™ sup e wf )Lz,
I

0<s<Tp
—AS AS —As AS
+C@[e™ swp FuwgGliz, +e swp 17Oz, ]]
0<s<Tpy 0<s<Tpy
_h ATy As
=4Cge” 2 lwfoliLg, +o(De sup fle™ wf ($)llLge,
0<s<Tpy
+CT)[e™™ sup (M wg ), +e sup I fO)L2 ]
0<s<Ty 0<s<Tp

4.37)
Again, the constant Cg comes from w(v) x; (v) < Cg.

Then we focus on the contribution of (4.31) in (4.5). First we decompose the ds’ integral
into 1,_¢ .5 + 15_y 5. The contribution of the first term reads

[(4.3 1)1.9—S/<8 |

T . i [* :
< / dse~(To=9) Z w(v))(i(v)/ du / e~ (6790 gy!
1 im0 R3 max{s—4,r}

w(u)

xZw(u)x,(u) / a8 s g lle* wf ()l s,

w(u') 0<s<Ty

To —(Ty—s) Xl(u) —As As
50(1)/ dse™ (0™ Zw(v)x,-(v)/R3duw(u)e Y osup [l wf )i,
h i=0

0<s<Tjy

<oMe ™ sup [ wf(s)l e, (4.38)
0<s<Ty ’

Next we decompose the du’ integral into 1,/> 5 + 1},/j<n. The contribution of the first
term reads

[(4.3D1)=n]

Tp 4 . ) s / /
= 0(1)/ dse 070 Z w (V) xi (v)/ du! o Rl T
1 i=0 R w(u) Ju

To
< o(1) / dse= =967 sup [P wf ()i,
13l

0=<s<Tp

A
sup e wf ()L,
0<s<Ty

<o(Me ™0 sup e wf(s)llzz,. (4.39)
0<s<Tp !

Now we consider the intersection of all other cases, where we have s’ < s — § and
lu'| < N.In such case, we compute such contribution in (4.31) as

|(4.31)1x’<.v73, \u/|<N|

To xiw) [57° /
< / dsef(Tof‘Y)/ du="-—= e (s )ds'/ du' f(s',y — (s — sHu, u').
f R3S w) Ju /| <N

(4.40)
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We apply the change of variable u — y’ = y — (s — s")u with Jacobian

'det (W)’ —(s—s5) =8

to derive that

To s—8 ,
[(4.40)| 5/ dse_(TO_S)/ dy// e_(s_s)ds// FG Y, u)Hdu
n Q ty lu'|<N

To s—§ ,
<Cua [ dse @ [Tl 0
i |

n
To
< CN,Q sup e)\S”f(S)”L%U/ dse*(TO*S)e*)»S
0<s<Tpy : 131

< Cnge ™™ sup I f Iz, (4.41)

0<s<Tp

Collecting (4.38), (4.39) and (4.41), we conclude
43D < o(We ™ sup e wf(s)rx, + C(To)e ™™ sup ™[ f(s)ll2, . (4.42)

0<s<Tp 0<s<Tp

By the same computation, we obtain that

(4.30)] < o()e™™ sup e wf ()L, + C(To)e ™ sup [ f(s)l2, . (4.43)

0<s<Tjy 0<s<Ty

We combine (4.35), (4.36), (4.37), (4.43) and (4.42) to conclude the estimate for (4.5):

T
(4.5) < (44 5Cp)e™ 7 [lwfoll L

Xx,v

+o(We 0 sup |leMwf(s)Lx,
0<s<Ty

+C(To)e ™™ sup [l wg()llrx, + C(To)e ™ sup [ f(9)ll;2 -

0<s<Tpy 0<s<Tp

Similarly, we can have the same estimate for (4.4) as

T
(4D < @ +5Cp)e T lwfolliz, +o(e ™ sup e wf(s)]l,

0<s<Tpy
+ C(To)e ™ sup [l wg(s)lze, + C(To)e ™ sup ™| f()2 -
0<s<Ty ' 0<s<Ty v
(4.44)
Last we collect (4.27), (4.28), (4.44) and (4.44) to conclude that
w@)|f(To, x, v)]
.
< (545Cp)e 7 [wholls, +o(e™™ sup e wf(s)|x, (4.45)
’ 0<s<Ty ’
+C(Tp)e ™™ sup M wg(s)llz, + C(To)e ™™ sup ™| f()l2 -
0<s<Tp ' 0<s<To v

Since the source term g and initial condition fj satisfy (4.1), the conditions in Proposition

2 are satisfied. With the weight w(v) = (14| v|)ﬂ 69""2 ,we control the L2 term by Proposition
2:

To 12
sp M IFOlzz, < follzz, + /0 P52, ds)

0<s<Tp
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Slwfolliee, + sup e we)le Mw™ @)L
0<s<Tp v

Sllwfolliee, + sup [le wg(s)l|re,- (4.46)
0<s<Ty

Here we have applied the definition of w(v) in (1.5) such that wlw) e L%.
For given 0 < ¢ < oo, we denote

2As

Ry = llwfollez, + sup lle™ wg()lrs,-
0

<s<t
Recall that Cg in (4.45) does not depend on Ty. We choose T to be large enough such
1q 1q
that (5+ 5Cg)e~2 < e~ 4 . Then we further have

Ty ATy A
lwf(To)llLe, < e 4 [lwfollLee, +o(1)e™ sup [le™ wf(s)]Le,
' 0<s<Ty

+C(To)e ™™™ sup (e wg(s)l, + C(To)e ™™™ sup e[ f ()2,
0<s<Tpy 0<s<Tjy '

(4.47)

For 0 <t < Ty, with the same choice of k = Cy TO5 / 4, it is straightforward to apply the
same argument for e“w(v)lf(t, X, v)| to have:

t
lwfOlrg, = S +5Cp)e 2 lwfollLy, + o(1)e™" sup ||6wa(s)||L;?v

X, v =
0<s<t

+C(To)e™ sup [ wg(s)llzgs, + C(To)e™ sup I f ()2 -

O<s=<t O<s<t

(4.48)

For t = mTy, we apply (4.47) to have

lwf (mTo)llLee,

_Ty _
<e 4 wf(m — DT, + C(To)e 0 sup |le™ g((m — DTy + )|l 1o,
: 0<s<Ty ’
—ATo As
+o(le sup [l wf ((m — DTp +5) | oo,
0<s<Ty ’

+C(Tp)e ™0 sup M| f(m = DTy +9)ll 2
0<s<Ty v

_To —xmTy AS —xmTy
< e Jwf(m — DTp)llLgs, +o(De sup M wf (), + C(To)e M OR,, 7,
. 0<s<mTp ’

)
e "4 wf(m =2)To)ll Ly,
_ (1-40Ty
7

]

+ e—2mTo [0(1) sup ||‘3wa(s)”L$°v + C(TO)RmTo:I X [1 +e
0=s<mTy ’
_mly
<--se 7 wfolirx,

m—1

_ ! _i(1-40Ty
+e M Mlo() sup e wf ()L, + CT)Rupy | x D e T
0<s<mTy ’ i—0
<oMe ™0 sup e wf (), + C(To)e " OR,, ;. (4.49)
0<s<mTy ’
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In the fourth line, we have applied the same computation as (4.46) to the L? term.
For any ¢ > 0, we can choose m such that mTy < t < (m + 1)Tp. Witht = mTy + s,
0 < s < Ty, we apply (4.48) to have

lwfOllLge, = lwfmTy+ )l

< (5+5Cpe? [wf (mTp) ||,
+o()e™ sup ™ wfmTo+ )L,

0<s'<s

+C(Tp)e™ sup e wg(mTo + )Lz,

0<s'<s
+C(Tp)e™ sup || f(mTo+ 52,

0<s'<s !
< o(1)(5+5Cp)e M) sup e wf (5L,

0<s<mTy
+ C(To)e MR, v
<o(e™ sup [e*wf(s)llLe, + C(To)e M R;. (4.50)
0<s<t

In the fourth line, we have applied (4.49) and (4.46) to the L? term.
Since (4.50) holds for all ¢, we conclude that

M wf (1)L, < C(To)e ™ |:||wf0||L;?U + sup ||e2“wg(s)||ng}. (4.51)

0<s<t

We conclude the a-priori estimate. To establish the existence of the solution, we will use
the following approximating sequence:

{ G f v Vi 4 fHL Pl o PN, x, v) = folx, v) (4.52)

P = (1= 1) /B [y m0 S OONVEGD (0 (x) - ).
By employing a similar argument using the method of characteristic, one can show that f*
forms a Cauchy sequence in the L> space. This leads to the existence of a solution f that
satisfies (4.51). The uniqueness follows in a similar way. For conciseness, we do not present

the detail of such computation, we refer to a detailed argument in Proposition 7.1 of [26].
We conclude the proof of Proposition 3. O

4.1 Proof of Theorem 1

We consider the following iteration sequence:

Wf v Ve fH  LfH =T (fY, 5710, x,0) = folx, v),
FH = cu/ ) om0 £TVR@ (0(X) - w)du.

The initial sequence is defined as f© = 0. With the assumption on the initial condition
lwfollLe, < 8, we apply Proposition 3 to conclude that for £ = 0, there exists a unique
solution f! such that

As 1
sup [le"wf L, < 6.
0<s<t '
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Inductively, we assume supg, -, [l* wf 4 Ly, < 2C3. Then the condition in Lemma 5 is

satisfied. Moreover, from Lemma 3, we have P(I'( £¢)) = 0, thus the condition of Proposition
3 is also satisfied.
We apply Proposition 3 to conclude that there is a unique solution f¢*! such that

A L+1 A 02 A 03
sup [le™w sz, SCIwaolng?v+C[Sup I wft 3, + sup e wsf ||Lgcv]
0<s<t 0<s<t ’ O=<s<t '

Here we have used Lemma 5 for 1 < i < 3 to obtain the following estimates:

2X L A €2
sup e Ty (£9) Iz, S sup e wf I .

0<s<t 0<s<t

and

2As 4 AS €3
sup [l wly (£°) iz, S sup le™ws I3
0<s<t ’ 0<s<t v

We take |[wjo Lo, < J to be small enough such that 2C§ < 1, then with lle?s wfz lLee, <
2Cé§, we further derive that

sup [l wf ! |1, < C8 +4C%8% +8C383 < 2C.

0<s<t
Hence by induction argument, we conclude the uniform-in-¢ estimate:

sup sup [l wfLx, < 2C8. (4.53)

¢ 0<s<t

Next, we take the difference f¢*t! — f¢. The equation of f¢*! — f¢ becomes

9, (fZJrl _ff) +v-V, (fZJrl _ff) +£(f€+l _fZ) — r(f[) _F(fffl)’
SN0, x,0) = £40,x,v) =0,
[fZ-H - fz] |)/7 = C,U«\/mfn(x)-u>0 [f“_l - fe] W(n(x) ~u)du.

We apply Proposition 3 to have

sup [l w(f ! = [l < C sup e wIT(f) =T (DL,

0<s<t O<s<t

<8 sup M w(rf = £ DL,

0<s<t

In the second line, we have applied the estimate in Lemma 7 to I['(f¢) — I'(f¢~1). The
condition in Lemma 7 is satisfied due to the uniform-in-¢ estimate (4.53).
Thus for some constant C, we have
sup [l w(f ! = fOllee, < €18 sup e w(ff = DL,
0<s<t ’ 0<s<t ’
We choose 8 < 1 such that C;8 < 1. Then f* is a Cauchy sequence, and we construct a
solution f to (1.3) such that for all ¢+ > 0,
leMwf (@)L= < 2C8. (4.54)

xXv —

@ Springer



61  Page 28 of 38 H. Chenetal.

To prove the uniqueness, we let f and g be two solutions to (1.3) such that
le* wf (@)L, . e wg (1)l L, < 2C8. The equation of f — g satisfies

W(f—9+tv- Vi(f =g+ L(f -9 =T()—T(g),
f(@O,x,v) — g0, x,v) =0,

f = &lly. = cu/i®) [ umolf — gIWr@)(n(x) - w)du.
Applying Proposition 3, we have

sup [l w(f —g)llzg, < C18 sup | w(f — &)l

X, v
0<s<t O=<s<t

Since C16 < 1, we conclude that sup, -, ||e)‘“w(f—g)||Lch = 0, thus f = g. We complete
the well-posedness. o B

Positivity. Finally, we prove that the unique solution f satisfies F' = u + /i f > 0. We
use a different sequence

3[F€+1 T VXFK+1 — UK(M(FE) _ FK—H),
FHY, =cun() Jatoruso Ftn(x) - u)du,
FU0, x,v) = Fo(x,v), FO = Fy(x, v).

Clearly, such an iteration preserves positivity. In the perturbation F¢ = u + JIf ¢, the
equation of f¢*! reads

atf5+l +U_fof+l +vefe+1 :Pfe—i‘rl (fl)_i_l—'} (f£)+r4(f£),
fZJrl ly. = cuv/i(v) fn(x)~u>0 f[(n(x) ~u)+/ p(u)du,
FEN0,x,0) = folx, v), 0= folx, v).

We prove the following claim: there exists 7* < 1 such thatif the initial condition satisfies
lwfollLee, < 2C3, and sup; o sup, <7+ |lwf' ()L, < 4C3 K 1, then it holds

sup [lwf @) Lx, <4C8 < 1.

t<T*

Here the constant C is constructed in (4.54).

Proof of claim When ||wf*|| L, < 1, from (2.10), the damping factor satisfies vl > % With
the estimate of the nonlinear operator 'y, '3, I'4 in Lemma 5, one can employ a similar
argument (proof of Proposition 3) and obtain

+1 5/4 i i 12 i3
sup [lwf ™ Dllzgs, < llwfollzgs, +T*C1Tg" sup sup {wf'llzgs, + lwf'17ee + llwf 70 }-
t<T* i< 1<T* N X0

Here we emphasize that we do not derive the L,%,v for P £¢, and directly control such term in

the L3°, estimate using the small time integration fOT . The term C TO5 /4 corresponds to the

repeat interaction with the boundary in the application of Lemma 9.
By choosing 7* small enough such that

1 . . .
sup llwf iz, < lwfollLg, + 7559 sup (lwf iz, + s G, + lwfi 7 ) < 4Cé,
t<T* ' ' i<€t<T* - v v

we conclude the claim. O

@ Springer



BGK model in bounded domain Page290f38 61

Since the f0 = fy satisfies the assumption ||wf0||L§oU < § < 2C$, the above claim
implies the uniform in £ estimate: sup, _ ., SUp; <7+ lwrt (DL, < 2C3 K 1. The subtrac-
tion fH! — ¢ satisfies the equation

8[ (f2+l _ f/Z) T Vx (f2+l _ f/Z) _,’_UZ (fl+l _ fl) — (vlfl _ vl) fé +P(fl _ fl*l)
AT () =T (f) + T3 () = T3 (1) + Ta (F) = Ta (F7),

[fl+l - f[] |)/— = Cﬂmfn(x)-u>0 [fl - fl_l] (n(x) ’ u)mdu’

[F = £, x,v) = 0.

With the estimate to the difference of the nonlinear operator in Lemma 7, we apply a similar
argument as the claim above and conclude

5/4
sup [w(f ! = fOl, < T*C1 Ty

t<T*

(1+ C&)max sup [w(f — ' HlLe,
i<t 1<T* :

IA

L max sup w(f = )1z
5 i<t (<T* X

Therefore, £¢ forms a Cauchy sequence in the LZ°, space. By the uniqueness, we conclude the
positivity on [0, 7*]. Since the unique solution is proved to satisfy [|wf (¢)|| Le, < 2Ce™M§
in (4.54), for [T*, 2T*], [2T*, 3T*]..., we apply the same induction argument as in the proof
of claim. Here the only difference is that the initial condition becomes f s (nT*, x,v) =
f(nT*, x, v). Since the assumption on the initial condition is still satisfied, we conclude the
positivity for any [nT™*, (n + 1)T*]. We complete the proof.

Appendix A Proof of Lemma 8
We derive the L2 dissipation estimate of the macroscopic quantities a(t, x), b(z, x), c(z, x)
using special test functions with the following weak formulation to (3.6), here we emphasize

that these variables only depend on ¢ and x. This method was proposed by [26, 27] for the
Boltzmann equation.

—/t// v - Vi fdxduds
0 QxR3
t t
= // {(=v f@) + v f(0)}dxdv —l—/ // foyrdxduds —/ / ¥ fdyds
QxR3 0 QxR3 0 Jy
- /t // L fyrdxdvds —l—/t// g¥rdxdvds
0 QxR3 0 QxR3

={Gy ) =Gy )} + 1 + o+ J3+ Js.

(A.1)
Step 1: estimate of c(z, x).
We choose a test function as v/ be a solution to the following problem
o= e = v Vg0 = 5)p',
— A¢p. =cin 2, ¢, = 0on 9. (A2)

From a direct computation, the contribution of b vanishes from the oddness, and the
contribution of a vanishes from the orthogonality of v(|v]? — 5)u'/? L ker £. The LHS
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of (A.1) becomes

LHS—S// 2dxds — Z// S (T—P) £, viv;(Jo]* — 5)p'/?)dxds

=5 / / cdxds + Eq, (A.3)
0 JQ

where, for any §; > 0, from the elliptic estimate to (A.2),

t 1 t
IE1| <81 [ llellz.ds +— [ [Ie* A =P)fII3, ds.
ok 81 Jo B

For J;, we denote ®, as the elliptic equation
— Ad, =0;,cin 2, &, =0on 2.

Integration by part leads to
t t
/ / |Vx<bc|2dxds = / / drc(s, x)D.dxds. (A4)
Jo Je Jo Je
Denote A (f) := %((|v|2 —5)vj /i, f)y. From the conservation of energy, we have

1 1
dc+ Ve b+ 2V AA=P)f) =0.

Then (A.4) becomes

/ /a,c(s ), dxds_/ / b v, ®, A((I—P)f)-VXCDC]dxds
—/ / f(b'n)d>c+f(A((I—P)f)-n)dDL.)deds. (A5)
0 Jaq \3 6

The boundary term vanishes from the boundary condition ®.(x) = 0 on x € d€2. The other
term in (A.5) is controlled as

t t
o(l)/ IV, @] zd3+/ ||b||L2ds+/ IA—P)fI2, ds.
O X,v

Plugging the estimates to (A.4), we obtain

t t t
[iweedizos < [+ [ia-pig; o

Thus we compute J; as
t ) 1 t )
e e L Y
0 x 0 XU

t 1 t
561/ ||b||i;ds+g/ Ia—P)fI2, . (A6)
0 X 0 X

Next, we apply boundary condition of ¢, and f to compute J>:

/ vidy= [ wray+ [ vrdy.
V4 Y+

V-
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‘We have
/ [ J }(|v|2—5)\/ﬁ<v-vx¢c>(n-v)fdvdsx
Q2 n(x)-v>0 n(x)-v<0
- / / (10 = 5) /(v - Vee)(n - v)(f — P, f)dvdS,
Q2 Jn(x)v>0
+2/ / (Iv]* = 5)VRln(x) - v*(n(x) - V@) P, fdudSy
Q2 Jn(x)v>0
=/ / (10 = 5) /(v - Vee)(n - v)(f — P, f)dvdS,
Q2 Jn(x)-v=>0

1 1
S 811V Pl 72 ) + 51— P)f154 S Stllellzs + 51U - PS54

In the first equality, we have applied the change of variable v — v — 2(n - v)n. The third
line vanishes by fn()(),v>()(|v|2 —5)(n-v)?udv = 0. In the last inequality, we applied elliptic
estimate to (A.2) with the trace theorem:

2 2 2
IV ®@ell2 gy S el S lellya-

We conclude the estimate for J, as

t ) 1 t )
|2l S 61 [ lelljds + 5 (I = Py) fl5 1 ds. (A7)
0 * 0

For J3, due to the exponential decay factor ,ul/ 2in ¢, we have
t 1 t
151 <81 [ llelds+ — [ In'*ca—Pyfi2, ds
0 Lx 81 0 Lx,v

t 1 t
581/ Ilclliz,ds+;/ A= P)fI2, ds. (AB)
0 X 1 0 X,V

Here we applied the elliptic estimate to Vy¢,.
For J4, similar to the computation in (A.8), we have

t t 1 t
| / // gWedxduds| < 8y / lel7zds + < / gz, ds. (A9)
0 Jaxws 0 * 1 Jo %

Collecting (A.3), (A.6), (A.7), (A.8) and (A.9), we conclude the estimate of ¢ as follows:
for some C; > 0 and G (1) := [q [s Ve f(1)dxdv,

t t 1 t
[ eizas = {60 - 6o+ a1 [ biZds+ - A= Rz, o
0 X 0 X 0 X,v

1 1
— [ a=prHr.d 7/ 2 d]. A10
o [ =pori a5 [ o (A.10)

Step 2: estimate of b(z, x). We use the weak formulation in (A.1) for the estimate of b.
First, we estimate b{. We choose a test function as

3 lv|?
Y = E(lvll2 - T)ﬁaxﬁﬁl + V1V /U0, D1 + V1V3A/ L0y D1

We let ¢ satisfy the elliptic system

{ ~02 61— Agy = b1 in R,

A1l
¢1 =0onx € 9Q2. ¢ )
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From a direct computation, the contribution of a and ¢ vanish from the oddness, and the LHS
of (A.1) becomes

v]?
/ /z/ |U ? - T)M311¢1b1 + v7v3udid1by + viviudizgibs
R

3 DIk
+ vIv3udsspiby + vivindng by + *Ug(lvl ? - T)Mamblbz

vf?
2”3(| > - T)M313¢1b3]dxdvds + E>

—/ /3 / [2011¢1b1 + 022¢1D1 + 333¢1b1 + 12P1b2 — 12P1b2
0 JrR3Jo

+ 0139103 — 913¢1b3]dxdvds + E
1 t
—/ (A¢1 + 0n1¢1)bidxds + Er = / IB1172ds + E».
0 0 ¥
For E», using the elliptic estimate, we obtain that for any §, < 1,
t 1 t
B S0 [ Wonlpds o [ AP AR, .
0 * 8 Jo X
For Ji, we let @ satisty the elliptic equation
— 95, @ — Ady = b inQ, &} =0onx €IQ.
Integration by part leads to
t t
/ /[2|ax, D112 + [0y, P1]% + |5, P1]*1dxds = / / d,by 1dxds. (A.12)
0 Ja 0 Ja

Denote ©;;(f) := ((v;v; — 1)/, f)v. From the conservation of momentum, we have
0:b1 + 0y, (a+2¢) + V- 01 (A-P)f) =0.
Then (A.12) becomes

1 1
//8,b1<b1dxds:/ / [(a+2c)8xl¢>1+®1((I—P)f)~VxCI>1]dxds
0 JQ 0 JQ

t
—/ / Pi(a+2c)n; +P1(O1(X—P)f) - n)dSyds. (A.13)
0 JoQ

The boundary term vanishes from the boundary condition ®(x) = 0, x € 9.
The other term in (A.13) is controlled as

t t
o(l)/0 ||vxq>1||i§ds+/0 UlalZ; +leliZ; + 1A =P)fI7, 1ds.

Plugging this estimate to (A.12), we obtain

t t
| 1couitas S [ tall; + el - 1a-PsE ds s

J1 can be computed using the estimate (A.14):

t t
niss [ v+ [a-psi, o
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1 t t
§52/ [||a||iz+||c||iz]+/ ||c||§2ds+/ IA—P)fI2, ds.
0 X X 0 x 0 X,

Next we compute the boundary integral J; using the diffuse boundary condition:

/ / fY1(a(x) - v)dS.dv = / / Py, fy1(n(x) - v)dS,dv
R3 JaQ R3 JAQ
wf [ a=pprmew s,
Q2 Jn(x)-v=>0
ST =P fIs +0MIVe®il g0, S 1T = PO fIL,
+ oIl SIU = P fIE, +oMlbil,.

In the second line, the contribution of P, f vanished due to oddness. In the third line, we
applied the trace theorem with the Poincare inequality.
J3 and J4 are bounded in a similar manner as (A.8) and (A.9):

t 1 t
B3 <8 b3 7/ I-P) 7|2, ds,
PARS 2/0 b1l + 3, | 1A=P)FIZ; ds

t 1 t
Ji| <8 b2, ds 7/ 2 ds.
sl S 2/0 61175+ 5 | lgllz; ds

For G, (1) := [ [gs V1 f(t)dxdv, we conclude the following for by:
1 1
/0 16111725 < Gp, (1) = G, (0) + 6 /0 @@, b1, o)l

1 /I ) 1 t )
+ = [ Id=P)f] dS+*/|(I—P)f| ds.
82 Jo Lo 82 Jo TR
The estimate to b> and b3 are the same by modifying the test function (A.11) to the following:
3 |v|?
Vo = vivay/Rdk ¢+ 5 (02l = 5
- 3)%2¢2 — A¢y = by,

)\/ﬁaxz¢2 + U2v3«/ﬁax3¢27

3 v]?
V3 = 01034/ U0x, $3 + 203/ L0x, 3 + §(|v3|2 -3
— 0}, ¢3 — Agpy = bs.

For Gy(t) := [ [ps(¥1 + Y2 + ¥3) f (t)dxdv, we conclude the estimate for b as follows:
for some C; and any 8§, > 0,

)3,

t t
/ ||b||izdsscz[Gb(r)—Gb(owaz/ (@, )%,
0 X 0 X

1 1 1
+—/ ds+—/ d—P)f|> ds+—/ (I—P)f3 ds].
5o ) etz s o [ a=ppiz, dse o [ ia - P s
(A.15)

Step 3: estimate of a (7, x).
‘We choose the test function as

3
Y= =Y digavi (> — 10)u' /2,

i=1
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— A¢p, =a, inQ, Vi, -n=0o0nadQ. (A.16)

From direction computation, on LHS of (A.1), b vanished from oddness and ¢ vanished
from [p; (Jv]* — 10)v?(Jv|? — 3)dv = 0. Thus we obtain

' 3 '
LHS:S/O ||a||%%ds -y /0 /Qafj¢a(uiuj(|u|2— 10)u'/?, @ = P) f)dxds
i, j=1
1
= 5/0 ||a||2L§ds + E3, (A.17)
where, for any §3 > 0,
! 2 1 ! 1/4 2
|Es| 583/ ||a||L2ds+3—/ I 4@ =P)f1I2, ds.
0 ¥ 3Jo T
For J; in (A.1), we denote
— Ad, = 0d;a(s), in 2, V,d,-n=0o0ndQ.

Integration by part leads to

1 t
/ / |V, @y |2dxds = / / da®,dxds. (A.18)
0 JQ 0 JoQ

From the conservation of mass d;a + V, - b = 0, it holds

1 13 1
/ / 0rad,dxds = / / b.-V,®,dxds — / / (b-n)d,dS,ds. (A.19)
0 JQ 0 JQ 0 JoQ

The boundary term can be computed as

t t
/ / (bn)d)adSXdS:/ / (DaI:/ (n(x).v)ﬁ(ny+(1 —Py)f)dv
0 JoaQ 0 JaQ n(x)-v>0
+ / (n(x) - v)/ILP, fdv]deds
n(x)-v<0

t t
50(1)/0 |<ba|iz(amds+/0 (I = P, f13 . ds

t 1
o) [ 1vulyas+ [0 - B fB s
In the third line, the contribution of P, f vanished from the oddness, and we applied the trace

theorem with the Poincaré inequality.
The other term in (A.19) is controlled as

t t
o(l)/ ||vxq>a||§2ds+/ b2, ds.
0 x JO x

Plugging the estimates to (A.18), we obtain

t t t
/ IV, @2, ds < / b2 ds + / (1 = P)fE,ds. (A20)
0 X 0 ~x 0

We apply (A.20) to compute J; as

t t t
ws/o ||vxd>a||g%ds+/o ||b||2%ds+/0 I A =P £, ds
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t t
5/ ||b||izds+/ I #A=P) 12, ds+ (I — Py f13 . (A21)
0 X O X, v

Then we apply the boundary condition of ¢, and f to compute J>:

/ vrdy= [ wray+ [ vrdy.
Y Y+

Y-

We compute that

/ [/ +/ [P =100 2 - Vo) 0 - v) fdvs,
Q2 n(x)-v>0 n(x)-v<0

=/ / (0? = 10) 2 (v - Vo) (n - 0)(f — P, f)dvdS,
aQ Jn(x)-v>0

+2 / / (02 = 10012 (1 - Vi) (n - )P, fdudS,

0Q Jn(x)v>0

_ / / (0P = 1012w - Va1 - v)(f — P, f)dvdS,

Q2 Jn(x)v>0
< 83|V Dy 12 i1—1l>2<5 2 iI—P2
S 8311 Vx@alfzq) + 51U = P Sy S Ssllally + 510 = P f15 .

33

In the first equality, we used the change of variable v — v — 2(n(x) - v)n(x). In the sec-
ond equality, the third line vanishes due to the boundary condition of ¢, in (A.16). In the
last inequality, we used the standard elliptic estimate of (A.16) with the trace theorem:

1all o) < Qa2 S llallz2.
‘We derive the estimate for J; as

1 ) 1 t )

11505 [ lallas+ = [0 = P s (A22)
J3 and J4 are estimated similarly as (A.8) and (A.9):

t ) 1 t 2

AT 53/ llall;.ds + */ IX=P)fl;. ds, (A.23)
0 x 83 0 X, v
t ) 1 t )
s 51 [ Nalyds 5 [ el as (A24)
0 . 3 Jo w

Collecting (A.17), (A.21), (A.22), (A.23) and (A.24), we conclude the estimate a as
follows: for some C3 > 0 and G4 (1) := [q [ps ¥a f (t)dxdv

t t 1 t
/0 ”a”iﬁds §C3[Ga(t)—Ga(0)+/0 ||b||i§ds+£/0 ||(I—P)f||i§uds

1 [! [
o st as e o [ -posi ) (A25)
83 Jo v 83 Jo

Step 4: conclusion
We summarize (A.25), (A.15) and (A.10). We let §, = /81, and multiply (A.15) by 8?4
to have

t t t
/[ b < oot [ raidas+ el [ et + ot [6nn - 6o
0 X 0 X 0 X
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1 ! 1 ! 1 !
— I—Pzd—/zd—/l—Pzd.
+m/0 1A =P)fI5; ds + = [ lgl; b5+ —= |10 = P13 ]
(A.26)

Then we evaluate §; x (A.25) + (A.26) + (A.10) as

t t t
3/4
5]/0 ||a||i§ds+81/ /0 ||b||2L§ds+/0 el ds

13 t 13
s(c381+clal)/ ||b||izds+czaf/4/ ||a||izds+czai/“/ el ds
0 X O X 0 X

+C[Gal) + Go(t) + Go(t) = Gal0) = Gp(0) = G (0)

t t t
v [na-psi; o+ ek, o+ [10-posi o)
0 X,v 0 X, v 0

Here the constant C in the last two lines depends on C1, C3, C3, §1. We choose small enough
81 such that

3/4 5/4
1

C381+C181 < 8%, 08" <81, 8% < 1.

Finally, we conclude the lemma with |G ()| = |G () + Gp(1) + G| = | [[opeps Va
+ ¥+ o) f(Ddxdv] S 1 FOI2,
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