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Abstract

In this paper, we study the global L∞ entropy solutions for the Cauchy problem of the polytropic gas 
dynamics system in a general nozzle with friction. First, under bounded conditions on the L1 norm of 
the cross-sectional area function A(x) and the friction function α(x), we apply the flux-approximation 
technique coupled with the classical viscosity method to obtain the L∞ estimates of the viscosityflux 
approximate solutions for any exponent γ ≥ 1; Second, by using the compactness framework from the 
compensated compactness theory, we prove the convergence of the viscosityflux approximate solutions 
and obtain the global existence of the L∞ entropy solutions.
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1. Introduction

We consider the following system of isentropic gas dynamics in a general nozzle with friction

⎧⎨
⎩

ρt + (ρu)x = − a′(x)
a(x) ρu

(ρu)t + (ρu2 + P(ρ))x = − a′(x)
a(x) ρu2 − α(x)ρu|u|

(1.0.1)

with bounded initial data

(ρ(x,0), u(x,0)) = (ρ0(x), u0(x)), ρ0(x) ≥ 0, (1.0.2)

where ρ is the density of gas, u the velocity, P = P(ρ) the pressure, a(x) is a slowly variable 
cross section area at x in the nozzle and α(x) denotes the coefficient function of the friction. For 
the polytropic gas, P takes the special form P(ρ) = 1 

γ
ργ , where the exponent γ > 1 corresponds 

to the isentropic case and γ = 1 corresponds to the isothermal case. The nozzle is widely used 
in some types of steam turbines, rocket engine nozzles, supersonic jet engines and jet streams in 
astrophysics, and the friction appears due to the viscosity [39,48,15].

When A(x) = − a′(x)
a(x) = 0, α(x) = 0 in (1.0.1), the study of the existence of global weak 

solutions for the underlying homogeneous isentropic system

⎧⎨
⎩

ρt + (ρu)x = 0

(ρu)t + (ρu2 + P(ρ))x = 0
(1.0.3)

with the initial data (1.0.2) has a long history. For a polytropic gas in Lagrangian coordinates, 
the first existence theorem for large initial data of locally finite total variation was proved in [37] 
for γ = 1, in [38] for γ ∈ (1,1 + δ), where δ is small. The Glimm scheme [7] was used in these 
papers.

The ideas of compensated compactness developed in [41,36] were used in [5] to establish a 
global existence theorem for the Cauchy problem (1.0.3) with large initial data for γ = 1 + 2 

N
, 

where N ≥ 5 odd, with the use of the viscosity method. The convergence of the Lax-Friedrichs 
scheme and the existence of a global solution in L∞ for large initial data with adiabatic expo
nent γ ∈ (1, 5

3 ] were proved in [3]. In [17], the global existence of a weak solution was proved 
for γ ≥ 3 with the use of the kinetic setting in combination with the compensated compact
ness method. The method in [17] was finally improved in [16] to fill the gap γ ∈ ( 5

3 ,3), and a 
new proof of the existence of a global solution for all γ > 1 was given there. Later on, a new 
application of the method in [17] was obtained in [21] on the study of the Euler equations of 
one-dimensional, compressible fluid flow, where the linear combinations of weak and strong en
tropies were invented to replace the weak entropies. The isothermal case γ = 1 with the vacuum 
was studied in [11].

A global smooth solution of the Cauchy problem (1.0.3) with smooth initial data for more 
general pressure functions P(ρ) was obtained in [22], where a sequence of nonstrictly hyperbolic 
systems was used to approximate system (1.0.3).

For some special inhomogeneous hyperbolic systems, the existence and qualitative behavior 
of global solution with initial data of small total variation were first studied in [18--20] by using 
Glimm random choice method. For a general inhomogeneous system of hyperbolic conservation 
2 
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laws, the Riemann problem was resolved in [13]. More results on inhomogeneous hyperbolic 
systems can be found in [6,8,9,12,31,32,34,35,40,47,10,33,46] and the references cited therein.

It is well-known that, with the help of the compensated compactness theory, the unique diffi
culty to prove the existence of global solution for the following inhomogeneous system

⎧⎨
⎩

ρt + (ρu)x + f (ρ,u) = 0

(ρu)t + (ρu2 + P(ρ))x + g(ρ,u) = 0
(1.0.4)

is to obtain the a-priori L∞ estimates of the approximate solutions of (1.0.4).
For systems of hyperbolic conservation laws of two equations, the well-known theory of in

variant regions [2] is still a powerful tool to help us to obtain bounded estimates of solutions. 
Based on the invariant regions theory, under some conditions on the nonlinear functions f (ρ,u)

and g(ρ,u), the global L∞ entropy solutions for the Cauchy problem (1.0.4) with large initial 
data (1.0.2) was obtained in [4] for the usual gases 1 < γ ≤ 5

3 .
When A(x) ≠ 0, α(x) ≠ 0 in (1.0.1), in general, the theory of invariant regions can not be 

applied directly to obtain the a-priori L∞ estimate of the approximate solutions because we 
could not find a suitable invariant region.

For the case of nozzle flow without the friction α(x) = 0, namely the following system

⎧⎨
⎩

ρt + (ρu)x = − a′(x)
a(x) ρu

(ρu)t + (ρu2 + P(ρ))x = − a′(x)
a(x) ρu2,

(1.0.5)

the global solution was studied in [14,42]. Based on the flux approximation technique introduced 
in [23] coupled with the classical artificial viscosity, a sequence of the parabolic systems was 
constructed in [24]

⎧⎨
⎩

ρt + (−2δu + ρu)x = A(x)(ρ − 2δ)u + ερxx

(ρu)t + (ρu2 − δu2 + P1(ρ, δ))x = A(x)(ρ − 2δ)u2 + ε(ρu)xx

(1.0.6)

to approximate system (1.0.5), where δ > 0 denotes a regular perturbation constant, the pertur
bation pressure

P1(ρ, δ) =
ρ∫︂

2δ 

t − 2δ

t
P ′(t)dt, (1.0.7)

and the perturbation initial data

(ρδ,ε(x,0), uδ,ε(x,0)) = (ρ0(x) + 2δ,u0(x)). (1.0.8)

Especially for the nozzle flow with the monotone cross section, which is corresponding to 
a′(x) ≥ 0, and for the general pressure function P(ρ), the new variable v = z − B(x) (or 
s = w − C(x)) was introduced in [24,25] and the following inequality on v (or s)
3 
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vt + a(x, t)vx + b(x, t)v ≤ εvxx, (1.0.9)

obtained from (1.0.6), where

z(ρ,u) =
ρ∫︂

l

√
P ′(s)
s

ds − u, w(ρ,u) =
ρ∫︂

l

√
P ′(s)
s

ds + u, (1.0.10)

are Riemann invariants of (1.0.3) and l is a constant, B(x) and C(x) are carefully selected non
negative bounded functions of the space variable x to control the nonlinear functions A(x).

We can obtain the estimate v ≤ 0 and so the upper estimate z(ρε,δ, uε,δ) ≤ B(x) (or w ≤ C(x)) 
when we apply the maximum principle to (1.0.9).

At the same time, a modified Godunov scheme was introduced to construct the approxi
mate solutions of (1.0.5) and the global existence of weak solutions of the Cauchy problem 
(1.0.5)-(1.0.2) was obtained for the Laval nozzle, which is corresponding to a′(x) · x ≥ 0, in [43] 
and the general nozzle in [44] for the usual gases 1 < γ ≤ 5

3 . The case for any γ > 1 was proved 
in [30] by using the method given in [24].

When A(x) = 0, α(x) ≠ 0 in (1.0.1), namely

⎧⎨
⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P(ρ))x + α(x)ρu|u| = 0,
(1.0.11)

the theory of invariant regions can be applied directly in [14] to obtain the a-priori L∞ estimate 
of the approximate solutions if α(x) ≥ 0. However, the case of α(x) < 0 is completely different 
because neither the theory of invariant regions nor the maximum principle could be applied 
directly. Under the condition −M ≤ α(x) ≤ 0 and γ > 5

3 , a technique was introduced in [26] to 
obtain the L∞ estimates of the approximate solutions of (1.0.11).

When A(x) ≠ 0 and α(x) is a positive constant, the existence of global entropy solutions 
for the Cauchy problem (1.0.1) and (1.0.2) in the simplest divergent nozzle (with respect to 
a′(x) ≥ 0) was first obtained in [45] for the usual gases 1 < γ ≤ 5

3 , and later, extended in [27] to 
the case of γ > 1, provided that the initial data are bounded and satisfy the very special conditions 
z(ρ0(x), u0(x)) ≤ 0. When α(x) ≥ 0 and for the Laval nozzle (a′(x) · x ≥ 0), the uniform bound 
of solutions of (1.0.1) and (1.0.2) was proved in [26], where γ is limited in (3,∞) for a technical 
difficulty.

It is worthwhile to point out that, under suitable conditions among the initial data, a(x) and 
α(x), the initial-boundary value problem of compressible Euler equations with friction and heat
ing

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a(x)ρ)t + (a(x)ρu)x = 0,

(a(x)ρu)t + (a(x)ρu2 + a(x)P )x = a′(x)P − α
√

a(x)ρu|u|,
(a(x)E)t + (a(x)u(E + P))x = βa(x)q(x) − α

√
a(x)ρu2|u|,

(1.0.12)

was studied in [1] for 1 < γ ≤ 5
3 , by using a new version of a generalized Glimm scheme, 

where ρ,u,E are, respectively, the density, velocity, total energy and pressure of the gas, α is 
4 
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the coefficient of friction, q(x) is a given function representing the heating effect from the force 
outside the nozzle.

In this paper, we apply our flux approximate method introduced in [23] to study the global 
existence of the entropy solutions for the general nozzle (A(x) ∈ L1), the general coefficient 
function of friction (α(x) ∈ L1) and the arbitrary exponent γ ≥ 1.

We consider the viscosityflux approximate solutions (ρδ,ε(x, t), uδ,ε(x, t)) of the Cauchy 
problem

⎧⎨
⎩

ρt + (−2δu + ρu)x = A(x)(ρ − 2δ)u + ερxx

(ρu)t + (ρu2 − δu2 + P1(ρ, δ))x = A(x)(ρ − 2δ)u2 − α(x)ρu|u| + ε(ρu)xx

(1.0.13)

with the initial data (1.0.8).
An obvious advantage of this kind of approximation on the flux functions is to obtain the 

positive lower bound ρ ≥ 2δ > 0, directly from the first equation in (1.0.13), which grantees that 
the term ρu2 = m2

ρ
is regular. Moreover, as proved in [23], both systems (1.0.1) and (1.0.13) have 

the same Riemann invariants and the entropy equation. With the help of these special behaviors 
of system (1.0.13), for any weak entropy-entropy flux pair (η(ρ,m), q(ρ,m)) of system (1.0.1) 
and for a general pressure function P(ρ), we can easily prove that

η(ρδ,ε,mδ,ε)t + q(ρδ,ε,mδ,ε)x are compact in H−1
loc (R × R+),

with respect to the viscosity solutions (ρδ,ε,mδ,ε), and do not need to introduce the viscous 
periodic solutions with respect to the spatial variable x to derive the auxiliary estimate (see 
(I.53) in [16]),

∫︂ ∫︂

K1

ε2(ρx)
2dxdt ≤ Cδ2

for the special pressure P(ρ) = 1 
γ
ργ and γ > 2.

Mainly, we have the following theorems.

Theorem 1. Let P(ρ) = 1 
γ
ργ , γ ≥ 3. If there exist a positive constant M and a nonnegative 

function β(x) such that

θM|A(x)| + 3

2
M|α(x)| < β(x), 

∞ ∫︂

−∞
β(s)ds <

M

2 
, (1.0.14)

then we have

z(ρδ,ε(x, t), uδ,ε(x, t)) = (ρδ,ε(x, t))θ

θ
− uδ,ε(x, t) ≤ M −

x∫︂

−∞
β(s)ds (1.0.15)

and
5 
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w(ρδ,ε(x, t), uδ,ε(x, t)) = (ρδ,ε(x, t))θ

θ
+ uδ,ε(x, t) ≤ M +

x∫︂

−∞
β(s)ds (1.0.16)

if the initial data

z(ρδ,ε(x,0), uδ,ε(x,0)) < M −
x∫︂

−∞
β(s)ds (1.0.17)

and

w(ρδ,ε(x,0), uδ,ε(x,0)) < M +
x∫︂

−∞
β(s)ds, (1.0.18)

where θ = γ−1
2 and (ρδ,ε(x, t), uδ,ε(x, t)) are the solutions of the Cauchy problem (1.0.13) and 

(1.0.18).

Theorem 2. Let P(ρ) = 1 
γ
ργ ,1 < γ < 3. If there exist a positive constant M and a nonnegative 

function β(x) such that

θM|A(x)| < 3 − γ

3 + γ
β(x), 

∞ ∫︂

−∞
β(s)ds <

γ − 1

4 
M, |α(x)|M <

3 − γ 
2(γ + 1)

β(x), (1.0.19)

then we have the same estimates given in (1.0.15) and (1.0.16), if the initial data satisfy (1.0.17) 
and (1.0.18).

Theorem 3. For such functions A(x),α(x) and the initial data satisfying the conditions in The
orems 1-2, there exists a subsequence of (ρδ,ε(x, t), uδ,ε(x, t)), which converges pointwisely to 
a pair of bounded functions (ρ(x, t), u(x, t)) as δ, ε tend to zero, and the limit is a weak entropy 
solution of the Cauchy problem (1.0.1)-(1.0.2).

Definition 1. A pair of bounded functions (ρ(x, t), u(x, t)) is called a weak entropy solution of 
the Cauchy problem (1.0.1)-(1.0.2) if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫︁ ∞
0

∫︁ ∞
−∞ ρϕt + (ρu)ϕx − a′(x)

a(x) (ρu)ϕdxdt + ∫︁ ∞
−∞ ρ0(x)ϕ(x,0)dx = 0,

∫︁ ∞
0

∫︁ ∞
−∞ ρuϕt + (ρu2 + P(ρ))ϕx − (

a′(x)
a(x) ρu2 + α(x)ρu|u|)ϕdxdt

+ ∫︁ ∞
−∞ ρ0(x)u0(x)ϕ(x,0)dx = 0

(1.0.20)

holds for all test function ϕ ∈ C1
0(R × R+) and

∫︁ ∞
0

∫︁ ∞
−∞ η(ρ,m)ϕt + q(ρ,m)ϕx − (

a′(x)
a(x) ρu + α(x)ρu|u|)η(ρ,m)ρ

− a′(x)
ρu2η(ρ,m)mϕdxdt ≥ 0

(1.0.21)
a(x) 

6 
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holds for any non-negative test function ϕ ∈ C∞
0 (R × R+ − {t = 0}), where m = ρu and (η, q)

is a pair of convex entropy-entropy flux of system (1.0.1).

Finally, about the isentropic isothermal system, which is corresponding to the case of γ = 1, 
we improve the existence result of the bounded entropy solutions, given in [28], where the L∞
bound depends on the time t , and obtain the following

Theorem 4. Let P(ρ) = ρ and a(x) > 0 be a continuous function in R,A(x) = − a′(x)
a(x) ∈ L1(R)

and α(x) ∈ L1(R). Moreover, if

|A(x)|L1(R) ≤ 1 
12

, |α(x)|L1(R) ≤ 1 
12

(1.0.22)

and the bounded initial data satisfy

⎧⎨
⎩

ln(ρ0(x)a(x)) − u0(x) < M − 3(|A(x)|L1(R) + |α(x)|L1(R)),

ln(ρ0(x)a(x)) + u0(x) < M,
(1.0.23)

where M > 1 is a constant, then the Cauchy problem (1.0.1)-(1.0.2) has a bounded weak solution 
(ρ,u), which has the following uniform bound

⎧⎨
⎩

ln(ρa(x)) − u ≤ M,

ln(ρa(x)) + u ≤ M + 3(|A(x)|L1(R) + |α(x)|L1(R)).
(1.0.24)

The arrangement of this paper is as follows: in Section 2, we introduce our main ideas how 
to apply the maximum principle coupled with the flux-viscosity approximation to obtain the L∞
estimates of approximate solutions. In Sections 3-4, we give the details to deduce the inequal
ities (2.0.12) in four different regions Gi of (x, t): where G1 = {(x, t) : α(x) ≥ 0,A(x) ≥ 0}, 
G2 = {(x, t) : α(x) ≥ 0,A(x) ≤ 0}, G3 = {(x, t) : α(x) ≤ 0,A(x) ≥ 0} and G4 = {(x, t) : α(x) ≤
0,A(x) ≤ 0} respectively. In Section 5, we prove the pointwise convergence of the approximation 
solutions by using the compactness framework given in [16,17] from the compensated compact
ness theory and obtain the proof of Theorem 3.

Finally we give the proof of Theorem 4 in Section 6. Since the case of γ = 1 is different from 
that of γ > 1, in this section, we still adopt the technique given in [28] and rewrite (1.0.1) as 
follows

⎧⎨
⎩

vt + (vu)x = 0

(vu)t + (vu2 + v)x + A(x)v + α(x)vu|u| = 0,
(1.0.25)

where the new variable v = ρa(x). By introducing the viscosity parameter ε > 0 and flux
approximation parameter δ > 0 to System (1.0.25), we study the following parabolic system

⎧⎨
⎩

vt + ((v − 2δ)u)x = εvxx

(vu) + ((v − δ)u2 + v − 2δ lnv) + Aδ(x)v + αδ(x)vu|u| = ε(vu) .
(1.0.26)
t x xx

7 
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The technique to prove Theorems 1-2 can be similarly applied to obtain the uniformly, time
independent L∞ estimates (1.0.24) of the viscosity solutions, and the convergence framework 
from the compensated compactness theory deduces the proof of Theorem 4.

2. Preliminary

In this section, we introduce the main ideas to prove Theorems 1-2.
Multiplying (1.0.13) by ( ∂w

∂ρ , ∂w 
∂m

) and ( ∂z 
∂ρ

, ∂z 
∂m

), respectively, where (w, z) are given in 
(1.0.10), we obtain

wt + λδ
2wx

= εwxx + 2ε
ρ

ρxwx − ε

2ρ2
√︁

P ′(ρ)
(2P ′ + ρP ′′)ρ2

x

+A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

(2.0.1)

and

zt + λδ
1zx

= εzxx + 2ε
ρ

ρxzx − ε

2ρ2
√︁

P ′(ρ)
(2P ′ + ρP ′′)ρ2

x

+A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|,

(2.0.2)

where λδ
1, λ

δ
2 are two eigenvalues of (1.0.13)

λδ
1 = m

ρ
− ρ − 2δ

ρ

√︁
P ′(ρ), λδ

2 = m

ρ
+ ρ − 2δ

ρ

√︁
P ′(ρ). (2.0.3)

Letting z = B(x) + v in (2.0.2), where B(x) = M − ∫︁ x

−∞ β(s)ds, we have

vt + (u − ρ−2δ
ρ

√
P ′(ρ))(vx + B ′(x)) − A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= εvxx + εB ′′(x) + 2ε
ρ

ρxvx + 2ε
ρ

ρxB
′(x) − ε

2ρ2
√︁

P ′(ρ)
(2P ′ + ρP ′′)ρ2

x

(2.0.4)

or

vt + (u − ρ−2δ
ρ

√
P ′(ρ))vx − B ′(x)(B(x) + v − ∫︁ ρ

l

√︁
P ′(ρ)

ρ
dρ)

−B ′(x)
ρ−2δ

ρ

√
P ′(ρ) − A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= εvxx − ε

2ρ2
√︁

P ′(ρ)
(2P ′ + ρP ′′)[ρ2

x − 4ρ
√︁

P ′(ρ)

2P ′+ρP ′′ ρxB
′(x) + (

2ρ
√︁

P ′(ρ)

2P ′+ρP ′′ B ′(x))2]

+εB ′′(x) + 2ε
ρ

ρxvx + 2ε
√︁

P ′(ρ)

2P ′+ρP ′′ B ′(x)2

(2.0.5)

or
8 
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vt + a(x, t)vx + b(x, t)v + [− 2ε
√︁

P ′(ρ)

2P ′+ρP ′′ B ′(x)2 − εB ′′(x) − ε1B(x)B ′(x)] ≤ εvxx

− ∫︁ ρ

l

√︁
P ′(ρ)

ρ
dρB ′(x) + (1 − ε1)B(x)B ′(x) + B ′(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ

+A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|,

(2.0.6)

where ε1 > 0 is a suitable small constant, a(x, t) = u − ρ−2δ
ρ

√
P ′(ρ) − 2ε

ρ
ρx and b(x, t) =

−B ′(x).
Similarly, letting w = C(x) + v1 in (2.0.1), where C(x) = M + ∫︁ x

−∞ β(s)ds, we have

v1t + (u + ρ−2δ
ρ

√
P ′(ρ))(v1x + C′(x)) − A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= εv1xx + εC′′(x) + 2ε
ρ

ρxv1x + 2ε
ρ

ρxC
′(x) − ε

2ρ2
√︁

P ′(ρ)
(2P ′ + ρP ′′)ρ2

x

(2.0.7)

or

v1t + (u + ρ−2δ
ρ

√
P ′(ρ))v1x + C′(x)(C(x) + v1 − ∫︁ ρ

l

√︁
P ′(ρ)

ρ
dρ)

+C′(x)
ρ−2δ

ρ

√
P ′(ρ) − A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= εv1xx − ε

2ρ2
√︁

P ′(ρ)
(2P ′ + ρP ′′)[ρ2

x − 4ρ
√︁

P ′(ρ)

2P ′+ρP ′′ ρxC
′(x) + (

2ρ
√︁

P ′(ρ)

2P ′+ρP ′′ C′(x))2]

+εC′′(x) + 2ε
ρ

ρxv1x + 2ε
√︁

P ′(ρ)

2P ′+ρP ′′ C′(x)2

(2.0.8)

or

v1t + a1(x, t)v1x + b1(x, t)v1 + [− 2ε
√︁

P ′(ρ)

2P ′+ρP ′′ C′(x)2 − εC′′(x) + ε1C(x)C′(x)]

≤ εv1xx + ∫︁ ρ

l

√︁
P ′(ρ)

ρ
dρC′(x) − (1 − ε1)C(x)C′(x) − C′(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ

+A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|,

(2.0.9)

where ε1 > 0 is a suitable small constant, a1(x, t) = u + ρ−2δ
ρ

√
P ′(ρ) − 2ε

ρ
ρx and b1(x, t) =

C′(x).
Using the first equation in (1.0.13), we have the a priori estimate ρ ≥ 2δ. Since B(x) is strictly 

positive, we can choose β(x) to be smooth enough, ε = o(δ) and suitable relation between ε and 
ε1 such that the following terms on the left-hand side of (2.0.6) and (2.0.9)

− 2ε
√

P ′(ρ)

2P ′ + ρP ′′ B
′(x)2 − εB ′′(x) − ε1B(x)B ′(x) ≥ 0 (2.0.10)

and

− 2ε
√

P ′(ρ)

′ ′′ C
′(x)2 − εC′′(x) + ε1C(x)C′(x) ≥ 0. (2.0.11)
2P + ρP

9 
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With the help of the special structures of B(x) = M −∫︁ x

−∞ β(s)ds,C(x) = M +∫︁ x

−∞ β(s)ds, 

by carefully analyzing the relations among A(x),α(x) and 
∫︁ ρ

l

√︁
P ′(ρ)

ρ
dρ, we obtain in different 

regions Gi, i = 1,2,3,4, the following inequalities on v and v1 respectively

⎧⎨
⎩

vt + a(x, t)vx + b(x, t)v + c(x, t)v1 ≤ εvxx,

v1t + a1(x, t)v1x + b1(x, t)v1 + c1(x, t)v ≤ εv1xx,
(2.0.12)

where the coefficient functions b(x, t), c(x, t), b1(x, t), c1(x, t) could be different in different 
regions Gi , but there’s always c(x, t) ≤ 0, c1(x, t) ≤ 0; and the regions G1 = {(x, t) : α(x) ≥
0,A(x) ≥ 0}, G2 = {(x, t) : α(x) ≥ 0,A(x) ≤ 0}, G3 = {(x, t) : α(x) ≤ 0,A(x) ≥ 0} and G4 =
{(x, t) : α(x) ≤ 0,A(x) ≤ 0} respectively. So the maximum principle (see [22] or [14] for the 
details) on nonlinear coupled parabolic inequalities (2.0.12) gives us the estimates v(x, t) ≤
0, v1(x, t) ≤ 0 and the upper bounds of z and w. This could deduce the Proofs of Theorems 1-2.

The details will be given in the following several sections.

3. Proof of Theorem 1: the case of 𝜸 ≥ 3

In this section, we shall prove Theorem 1. As introduced in Section 2, we will give the details 
how to obtain the coupled inequalities in (2.0.12).

When P(ρ) = 1 
γ
ργ , γ ≥ 3, we choose l = 2δ, then by using

1 
θ
(ρ − 2δ)

√
P ′(ρ)

ρ
≤

ρ∫︂

2δ 

√
P ′(s)
s

ds ≤ (ρ − 2δ)

√
P ′(ρ)

ρ
for γ ≥ 3, (3.0.1)

we have the following estimates on the terms in (2.0.6) and in (2.0.9) respectively

L = − ∫︁ ρ

l

√︁
P ′(ρ)

ρ
dρB ′(x) + (1 − ε1)B(x)B ′(x)

+B ′(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

(3.0.2)

and

L1 = ∫︁ ρ

l

√︁
P ′(ρ)

ρ
dρC′(x) − (1 − ε1)C(x)C′(x) − C′(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ

+A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ) − α(x)u|u|.

(3.0.3)
ρ

10 
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3.1. The case of α(x) ≥ 0;A(x) ≥ 0

Let α(x) ≥ 0,A(x) ≥ 0. First, at the points (x, t), where v1 + 2
∫︁ x

−∞ β(s)ds ≤ 0, we have 
from (3.0.2) that

L ≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (w − z) + 1
4α(x)(w − z)|w − z|

= A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v1 − v) + (1 − ε1)B(x)B ′(x)

+A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (C(x) − B(x))

+ 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|

≤ −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ

∫︁ x

−∞ β(s)ds − 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

≤ −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+θA(x)
∫︁ x

−∞ β(s)ds
∫︁ ρ

2δ

√
P ′(s)
s

ds − 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

= −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ 1
2θA(x)

∫︁ x

−∞ β(s)ds(w + z) − 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

= −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ 1
2θA(x)

∫︁ x

−∞ β(s)ds(v1 + v + C(x) + B(x)) − 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

= ( 1
2θA(x)

∫︁ x

−∞ β(s)ds + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ )v1

+( 1
2θA(x)

∫︁ x

−∞ β(s)ds − A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ − 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|)v
−((1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − θMA(x)
∫︁ x

−∞ β(s)ds),

(3.1.1)

where

−((1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − θMA(x)
∫︁ x

−∞ β(s)ds)

< −(M
2 β(x) − θMA(x)|β(x)|L1(R)) ≤ 0,

(3.1.2)

for a small ε1, due to the conditions |β(x)|L1(R) < M
2 and θMA(x) < β(x) in Theorem 1. There

fore we obtain the following inequality from (2.0.6), (2.0.10), (3.0.2), (3.1.1) and (3.1.2)
11 
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vt + a(x, t)vx + l1(x, t)v + l2(x, t)v1 ≤ εvxx, (3.1.3)

where l1(x, t), l2(x, t) ≤ 0 are suitable functions.
Second, at the points (x, t), where v1 + 2

∫︁ x

−∞ β(s)ds ≥ 0,

L ≤ A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v1 − v) + (1 − ε1)B(x)B ′(x)

+A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (C(x) − B(x))

+ 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|

≤ A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v1 − v) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ

∫︁ x

−∞ β(s)ds − 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v
+ 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)(v1 + 2
∫︁ x

−∞ β(s)ds + |v|)

≤ l3(x, t)v + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ v1 − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+θA(x)
∫︁ x

−∞ β(s)ds
∫︁ ρ

2δ

√
P ′(s)
s

ds + 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)2

= l3(x, t)v + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ v1 − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ 1
2θA(x)

∫︁ x

−∞ β(s)ds(v + v1 + 2M) + α(x)( 1
4v1 + ∫︁ x

−∞ β(s)ds)v1 + α(x)(
∫︁ x

−∞ β(s)ds)2

= (A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ + 1
2θA(x)

∫︁ x

−∞ β(s)ds + 1
4α(x)v1 + α(x)

∫︁ x

−∞ β(s)ds)v1

+l4(x, t)v − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + θMA(x)
∫︁ x

−∞ β(s)ds + α(x)(
∫︁ x

−∞ β(s)ds)2,

(3.1.4)
where l3(x, t), l4(x, t) are suitable functions. Since v1 ≥ −2

∫︁ x

−∞ β(s)ds, we know that the co
efficient before v1 is nonnegative and

−(1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + θMA(x)
∫︁ x

−∞ β(s)ds + α(x)(
∫︁ x

−∞ β(s)ds)2

< −M
2 β(x) + θMA(x)|β(x)|L1(R) + 1

2Mα(x)|β(x)|L1(R) ≤ 0
(3.1.5)

due to the conditions

|β(x)|L1(R) < M
2 , θMA(x) + 1

2Mα(x) < β(x) (3.1.6)

in Theorem 1. Therefore we also obtain the inequality from (2.0.6), (2.0.10), (3.0.2), (3.1.4) and 
(3.1.5)

vt + a(x, t)vx + l5(x, t)v + l6(x, t)v1 ≤ εvxx, (3.1.7)

where l5(x, t), l6(x, t) ≤ 0 are suitable functions.
12 
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Similarly, at the points (x, t), where α(x) ≥ 0 and A(x) ≥ 0, we have

L1 ≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(w − ∫︁ ρ

2δ

√︁
P ′(ρ)

ρ
dρ) − α(x)|u| 1

2 (w − z)

≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v1 + C(x))

− 1
2α(x)|u|(v1 − v + C(x) − B(x))

≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v1

+θA(x)C(x)
∫︁ ρ

2δ

√︁
P ′(ρ)

ρ
dρ − 1

2α(x)|u|(v1 − v)

= −(1 − ε1)C(x)β(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v1

+ 1
2θA(x)C(x)(w + z) − 1

2α(x)|u|(v1 − v)

= −(1 − ε1)C(x)β(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v1

+ 1
2θA(x)C(x)(v + v1 + C(x) + B(x)) − 1

2α(x)|u|(v1 − v)

= (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)C(x) − 1
2α(x)|u|)v1

+( 1
2θA(x)C(x) + 1

2α(x)|u|)v − ((1 − ε1)β(x) − θMA(x))C(x)

≤ (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)C(x) − 1
2α(x)|u|)v1

+( 1
2θA(x)C(x) + 1

2α(x)|u|)v
(3.1.8)

due to θMA(x) < β(x). So, we have the following inequality from (2.0.9), (2.0.11), (3.0.3) and 
(3.1.8)

v1t + a1(x, t)v1x + l7(x, t)v + l8(x, t)v1 ≤ εv1xx, (3.1.9)

where l7(x, t) ≤ 0, l8(x, t) are suitable functions.

3.2. The case of α(x) ≥ 0;A(x) ≤ 0

Let α(x) ≥ 0,A(x) ≤ 0. First, at the points (x, t), where v1 + 2
∫︁ x

−∞ β(s)ds ≥ 0, we have 
from (3.0.2) that
13 
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L ≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ

+ 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|
≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(
∫︁ ρ

2δ

√
P ′(s)
s

ds − z)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v
+ 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)(v1 + 2
∫︁ x

−∞ β(s)ds + |v|)
≤ (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v + B(x))

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v
+ 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)(v1 + 2
∫︁ x

−∞ β(s)ds + |v|)
≤ (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − θA(x)B(x)

∫︁ ρ

2δ

√
P ′(s)
s

ds

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v
+ 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)(v1 + 2
∫︁ x

−∞ β(s)ds + |v|)
= (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − 1

2θA(x)B(x)(w + z)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v
+ 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)(v1 + 2
∫︁ x

−∞ β(s)ds + |v|)
= −(1 − ε1)β(x)B(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − 1

2θA(x)B(x)(v + v1 + 2M)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v + 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)|v|
+( 1

4v1 + ∫︁ x

−∞ β(s)ds)α(x)v1 + α(x)(
∫︁ x

−∞ β(s)ds)2

= −l9(x, t)v − l10(x, t)v1 − ((1 − ε1)β(x) + θMA(x))B(x) + α(x)(
∫︁ x

−∞ β(s)ds)2

(3.2.1)

where

l10(x, t) = 1
2θA(x)B(x) − ( 1

4v1 + ∫︁ x

−∞ β(s)ds)α(x)

= 1
2θA(x)B(x) − 1

4 (v1 + 2
∫︁ x

−∞ β(s)ds)α(x) − 1
2α(x)

∫︁ x

−∞ β(s)ds ≤ 0
(3.2.2)

and

−((1 − ε1)β(x) + θMA(x))B(x) + α(x)(
∫︁ x

−∞ β(s)ds)2

≤ −((1 − ε1)β(x) + θMA(x))(M − ∫︁ x

−∞ β(s)ds) + 1
2Mα(x)|β(x)|L1(R)

≤ −M
2 ((1 − ε1)β(x) + θMA(x) + 1

2Mα(x)) ≤ 0

(3.2.3)

due to the conditions

|β(x)|L1(R) <
M

2 
, θM|A(x)| + 1

2
Mα(x) < β(x).

Therefore we have
14 
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vt + a(x, t)vx + l9(x, t)v + l10(x, t)v1 ≤ εvxx, (3.2.4)

where l9(x, t), l10(x, t) ≤ 0 are suitable functions.
Second, at the points (x, t), where v1 + 2

∫︁ x

−∞ β(s)ds ≤ 0, we have from (3.0.2) that

L ≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(
∫︁ ρ

2δ

√
P ′(s)
s

ds − z) + 1
4α(x)(w − z)|w − z|

≤ (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v + B(x)) + 1

4α(x)(w − z)|w − z|

≤ (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − θA(x)B(x)

∫︁ ρ

2δ

√
P ′(s)
s

ds

+ 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|

≤ (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − 1

2θA(x)B(x)(w + z)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

= (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − 1

2θA(x)B(x)(v + v1 + 2M)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

= −(A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)B(x))v

− 1
2θA(x)B(x)v1 − ((1 − ε1)β(x) + θMA(x))B(x)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

≤ −(A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)B(x))v

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v − 1
2θA(x)B(x)v1.

(3.2.5)

Therefore we have also a similar inequality

vt + a(x, t)vx + l11(x, t)v + l12(x, t)v1 ≤ εvxx, (3.2.6)

where l11(x, t), l12(x, t) ≤ 0 are suitable functions.
Similarly, at the points (x, t), where α(x) ≥ 0 and A(x) ≤ 0, we have from (3.0.3) that

L1 ≤ A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
− α(x)|u|) 1

2 (w − z)

= 1
2 (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
− α(x)|u|)(v1 − v + C(x) − B(x))

≤ 1 (A(x)(ρ − 2δ)

√︁
P ′(ρ) − α(x)|u|)(v1 − v).

(3.2.7)
2 ρ

15 
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So, we have the following inequality from (2.0.9), (2.0.11), (3.0.3) and (3.2.7)

v1t + a1(x, t)v1x + l13(x, t)v + l14(x, t)v1 ≤ εv1xx, (3.2.8)

where l13(x, t) ≤ 0, l14(x, t) are suitable functions.

3.3. The case of α(x) ≤ 0;A(x) ≥ 0

Let α(x) ≤ 0,A(x) ≥ 0. First, at the points (x, t), where B(x) ≤ ∫︁ ρ

2δ

√
P ′(s)
s

ds, we have from 
(3.0.2) that

L ≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (w − z)

−α(x)(z − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|z − ∫︁ ρ

2δ

√
P ′(s)
s

ds|

≤ A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v1 − v) + (1 − ε1)B(x)B ′(x)

+A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (C(x) − B(x))

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

= −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ

∫︁ x

−∞ β(s)ds − α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

≤ −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+θA(x)
∫︁ x

−∞ β(s)ds
∫︁ ρ

2δ

√
P ′(s)
s

ds − α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

= −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ 1
2θA(x)

∫︁ x

−∞ β(s)ds(w + z) − α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

= −A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ (v − v1) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ 1
2θA(x)

∫︁ x

−∞ β(s)ds(v1 + v + C(x) + B(x)) − α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

= ( 1
2θA(x)

∫︁ x

−∞ β(s)ds + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ )v1

+( 1
2θA(x)

∫︁ x

−∞ β(s)ds − A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ − α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|)v
−((1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − θMA(x)
∫︁ x

−∞ β(s)ds),

(3.3.1)

where
16 
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(1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − θMA(x)
∫︁ x

−∞ β(s)ds

> M
2 β(x) − θMA(x)|β(x)|L1(R) ≥ 0

(3.3.2)

due to the conditions |β(x)|L1(R) < M
2 and θMA(x) < β(x) in Theorem 1 and

1
2θA(x)

∫︁ x

−∞ β(s)ds + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ ≥ 0. (3.3.3)

Thus, we have from (3.3.1)-(3.3.3) that

vt + a(x, t)vx + l15(x, t)v + l16(x, t)v1 ≤ εvxx, (3.3.4)

where l15(x, t), l16(x, t) ≤ 0 are suitable functions.
Second, at the points (x, t), where B(x) ≥ ∫︁ ρ

2δ

√
P ′(s)
s

ds, repeating the calculations of the part 
A(x) in (3.3.1), we have

L ≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ

−α(x)(B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|
= ( 1

2θA(x)
∫︁ x

−∞ β(s)ds + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ )v1

+( 1
2θA(x)

∫︁ x

−∞ β(s)ds − A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ )v

−((1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − θMA(x)
∫︁ x

−∞ β(s)ds)

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v
−α(x)(B(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|
≤ ( 1

2θA(x)
∫︁ x

−∞ β(s)ds + A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ )v1

+( 1
2θA(x)

∫︁ x

−∞ β(s)ds − A(x)(ρ − 2δ)

√︁
P ′(ρ)

2ρ )v

−((1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − θMA(x)
∫︁ x

−∞ β(s)ds)

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v − α(x)(B(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|v|
−α(x)(B(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)2,

(3.3.5)

where

−((1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − θMA(x)
∫︁ x

−∞ β(s)ds)

−α(x)(B(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)2

≤ [−(1 − ε1)β(x) + θMA(x) − α(x)B(x)]B(x)

≤ [−(1 − ε1)β(x) + θMA(x) − 1
2α(x)M]B(x) ≤ 0

(3.3.6)

because
17 
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2
∫︁ ∞
−∞ β(s)ds < M (3.3.7)

or

∫︁ x

−∞ β(s)ds < M − ∫︁ x

−∞ β(s)ds (3.3.8)

and

θMA(x) − 1
2α(x)M < β(s)ds (3.3.9)

given in Theorem 1. Thus we have from (3.3.5) and (3.3.6) that

vt + a(x, t)vx + l17(x, t)v + l18(x, t)v1 ≤ εvxx, (3.3.10)

where l17(x, t), l18(x, t) ≤ 0 are suitable functions.
Similarly, at the points (x, t), where α(x) ≤ 0, A(x) ≥ 0 and C(x) ≤ ∫︁ ρ

2δ

√
P ′(s)
s

ds, we have

L1 ≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(w − ∫︁ ρ

2δ

√︁
P ′(ρ)

ρ
dρ)

−α(x)(w − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|w − ∫︁ ρ

2δ

√
P ′(s)
s

ds|

≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v1 + C(x))

−α(x)(C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|

≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v1 + θA(x)C(x)

∫︁ ρ

2δ

√︁
P ′(ρ)

ρ
dρ

−α(x)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v1

= −(1 − ε1)C(x)β(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v1 + 1

2θA(x)C(x)(w + z)

−α(x)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v1

= −(1 − ε1)C(x)β(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v1

+ 1
2θA(x)C(x)(v + v1 + C(x) + B(x))

−α(x)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v1

= (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)C(x) − α(x)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|)v1

+ 1
2θA(x)C(x)v − ((1 − ε1)β(x) − θMA(x))C(x)

≤ (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)C(x) − α(x)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|)v1

+ 1θA(x)C(x)v

(3.3.11)
2

18 
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because θMA(x) < (1 − ε1)β(x) for a suitable small ε1. Thus we have from (3.3.11) that

v1t + a1(x, t)v1x + l19(x, t)v + l20(x, t)v1 ≤ εv1xx, (3.3.12)

where l19(x, t) ≤ 0, l20(x, t) are suitable functions.
Finally, at the points (x, t), where α(x) ≤ 0, A(x) ≥ 0 and C(x) ≥ ∫︁ ρ

2δ

√
P ′(s)
s

ds, we have 
from the calculations on the part of A(x) in (3.3.11) that

L1 ≤ (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)C(x))v1

+ 1
2θA(x)C(x)v − ((1 − ε1)β(x) − θMA(x))C(x)

−α(x)(C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|

≤ (A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)C(x))v1

+ 1
2θA(x)C(x)v − ((1 − ε1)β(x) − θMA(x))C(x)

−α(x)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v1 − α(x)(C(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|v1|

−α(x)(C(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)2,

(3.3.13)

where

−((1 − ε1)β(x) − θMA(x))C(x) − α(x)(C(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)2

≤ −((1 − ε1)β(x) − θMA(x))C(x) − α(x)C(x)2

= [−(1 − ε1)β(x) + θMA(x) − α(x)C(x)]C(x)

≤ [−(1 − ε1)β(x) + θMA(x) − 3
2Mα(x)]C(x) ≤ 0

(3.3.14)

because

|β(x)|L1(R) < M
2 , θMA(x) − 3

2Mα(x) < β(x). (3.3.15)

Thus we have also an inequality

v1t + a1(x, t)v1x + l21(x, t)v + l22(x, t)v1 ≤ εv1xx, (3.3.16)

where l21(x, t) ≤ 0, l22(x, t) are suitable functions.

3.4. The case of α(x) ≤ 0;A(x) ≤ 0

Let α(x) ≤ 0,A(x) ≤ 0. First, at the points (x, t), where B(x) ≤ ∫︁ ρ

2δ

√
P ′(s)
s

ds, we have from 
(3.0.2) that
19 
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L ≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(
∫︁ ρ

2δ

√
P ′(s)
s

ds − z)

−α(x)(B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|
≤ (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v + B(x))

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v
≤ (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − θA(x)B(x)

∫︁ ρ

2δ

√
P ′(s)
s

ds

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v
= (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − 1

2θA(x)B(x)(w + z)

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

= (1 − ε1)B(x)B ′(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − 1

2θA(x)B(x)(v + v1 + 2M)

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

= −(A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)B(x))v

− 1
2θA(x)B(x)v1 − ((1 − ε1)β(x) + θMA(x))B(x)

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v

≤ −(A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)B(x))v

− 1
2θA(x)B(x)v1 − α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v,

(3.4.1)

where − 1
2θA(x)B(x) ≥ 0. Thus we obtain

vt + a(x, t)vx + l23(x, t)v + l24(x, t)v1 ≤ εvxx, (3.4.2)

where l23(x, t), l24(x, t) ≤ 0 are suitable functions.
Second, at the points (x, t), where B(x) ≥ ∫︁ ρ

2δ

√
P ′(s)
s

ds, we have

L ≤ (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ

−α(x)(B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|

≤ −(A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2θA(x)B(x))v

− 1
2θA(x)B(x)v1 − ((1 − ε1)β(x) + θMA(x))B(x)

−α(x)|B(x) + v − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v − α(x)(B(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|v|
−α(x)(B(x) − ∫︁ ρ

√
P ′(s)

ds)2,

(3.4.3)
2δ s
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where

−((1 − ε1)β(x) + θMA(x))B(x) − α(x)(B(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)2

≤ −((1 − ε1)β(x) + θMA(x))B(x) − α(x)B(x)2

≤ [−((1 − ε1)β(x) + θMA(x) − 1
2Mα(x)]B(x) ≤ 0.

(3.4.4)

Thus we obtain the following inequality

vt + a(x, t)vx + l25(x, t)v + l26(x, t)v1 ≤ εvxx, (3.4.5)

where l25(x, t), l26(x, t) ≤ 0 are suitable functions.
Similarly, at the points (x, t), where α(x) ≤ 0, A(x) ≤ 0 and C(x) ≤ ∫︁ ρ

2δ

√
P ′(s)
s

ds, we have

L1 ≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= −(1 − ε1)C(x)C′(x) + 1
2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(w − z)

−α(x)(w − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|w − ∫︁ ρ

2δ

√
P ′(s)
s

ds|
= −(1 − ε1)C(x)C′(x) + 1

2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v1 − v + C(x) − B(x))

−α(x)(C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|
≤ 1

2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v1 − v) − α(x)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|v1.

(3.4.6)

Thus we have

v1t + a1(x, t)v1x + l27(x, t)v + l28(x, t)v1 ≤ εv1xx, (3.4.7)

where l27(x, t) ≤ 0, l28(x, t) are suitable functions.
Finally, at the points (x, t), where α(x) ≤ 0, A(x) ≤ 0 and C(x) ≥ ∫︁ ρ

2δ

√
P ′(s)
s

ds, we have 
from (3.4.6) that

L1 ≤ −(1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= −(1 − ε1)C(x)C′(x) + 1
2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(w − z)

−α(x)(w − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|w − ∫︁ ρ

2δ

√
P ′(s)
s

ds|
= −(1 − ε1)C(x)C′(x) + 1

2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v1 − v + C(x) − B(x))

−α(x)(C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds)|C(x) + v1 − ∫︁ ρ

2δ

√
P ′(s)
s

ds|
≤ −(1 − ε1)C(x)C′(x) − 1

2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
v − l29(x, t)v1

−α(x)(C(x) − ∫︁ ρ
√

P ′(s)
ds)2,

(3.4.8)
2δ s
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where

−(1 − ε1)C(x)C′(x) − α(x)(C(x) − ∫︁ ρ

2δ

√
P ′(s)
s

ds)2

≤ −(1 − ε1)β(x)C(x) − α(x)C(x)2

= (−(1 − ε1)β(x) − α(x)(M + ∫︁ x

−∞ β(s)ds))C(x)

≤ (−(1 − ε1)β(x) − 3
2Mα(x))C(x) ≤ 0.

(3.4.9)

Thus we have

v1t + a1(x, t)v1x + l29(x, t)v1 + l30(x, t)v ≤ εv1xx, (3.4.10)

where l29(x, t), l30(x, t) ≤ 0 are suitable functions, which completes the Proof of Theorem 1.

4. Proof of Theorem 2: the case of 1 < 𝜸 < 3

In this section, we shall prove Theorem 2. As introduced in Section 2, we will only give the 
details how to obtain the coupled inequalities in (2.0.12).

When P(ρ) = 1 
γ
ργ ,1 < γ < 3, we choose l = 0, then the Riemann invariants of (1.0.3) are

z(ρ,u) = 1 
θ
ρθ − u, w(ρ,u) = 1 

θ
ρθ + u. (4.0.1)

We may rewrite (2.0.6) and (2.0.9) as follows

vt + a(x, t)vx + b(x, t)v

+[− 2ε
√︁

P ′(ρ)

2P ′+ρP ′′ B ′(x)2 − εB ′′(x) − ε1B(x)B ′(x) + 2δ

√︁
P ′(ρ)

ρ
B ′(x)]

≤ εvxx − ∫︁ ρ

0

√︁
P ′(ρ)

ρ
dρB ′(x) + (1 − ε1)B(x)B ′(x) + B ′(x)

√
P ′(ρ)

+A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= εvxx + γ−3
γ−1ρθB ′(x) + (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

(4.0.2)

and

v1t + a1(x, t)v1x + b1(x, t)v1

+[− 2ε
√︁

P ′(ρ)

2P ′+ρP ′′ C′(x)2 − εC′′(x) + ε1C(x)C′(x) − 2δ

√︁
P ′(ρ)

ρ
C′(x)]

≤ εv1xx + ∫︁ ρ

0

√︁
P ′(ρ)

ρ
dρC′(x) − (1 − ε1)C(x)C′(x)

−C′(x)
√

P ′(ρ) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= εv1xx − γ−3
γ−1ρθC′(x) − (1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|.

(4.0.3)

Since
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2δ

√
P ′(ρ)

ρ
= 2δρ

γ−3
2 ≤ (2δ)

γ−1
2 , (4.0.4)

and B(x) is strictly positive, we may choose β(x) to be sufficiently smooth, ε = o(δ) and suitable 
relation between ε and ε1 such that the following terms on the left-hand side of (4.0.2) and (4.0.3)

− 2ε
√

P ′(ρ)

2P ′ + ρP ′′ B
′(x)2 − εB ′′(x) − ε1B(x)B ′(x) + 2δ

√
P ′(ρ)

ρ
B ′(x) ≥ 0, (4.0.5)

− 2ε
√

P ′(ρ)

2P ′ + ρP ′′ C
′(x)2 − εC′′(x) + ε1C(x)C′(x) − 2δ

√
P ′(ρ)

ρ
C′(x) ≥ 0. (4.0.6)

Let the terms on the right-hand side of (4.0.2) and (4.0.3) be

K = γ−3
γ−1ρθB ′(x) + (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u| (4.0.7)

and

K1 = − γ−3
γ−1ρθC′(x) − (1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|. (4.0.8)

By simple calculations,

K = γ−3
γ−1ρθB ′(x) + (1 − ε1)B(x)B ′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
+ α(x)u|u|

= γ−3
4 (w + z)B ′(x) + (1 − ε1)B(x)B ′(x)

+A(x)
ρ−2δ

ρ
w−z

2 θ w+z
2 + 1

4α(x)(w − z)|w − z|
= 3−γ

4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

+ 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|

(4.0.9)

and

K1 = − γ−3
γ−1ρθC′(x) − (1 − ε1)C(x)C′(x) + A(x)(ρ − 2δ)u

√︁
P ′(ρ)

ρ
− α(x)u|u|

= − γ−3
4 (w + z)C′(x) − (1 − ε1)C(x)C′(x)

+A(x)
ρ−2δ

ρ
w−z

2 θ w+z
2 − 1

4α(x)(w − z)|w − z|
= 3−γ

4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

− 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|.

(4.0.10)

We shall analyze the functions K and K1 point by point in the following several subsections.
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4.1. The case of α(x) ≥ 0;A(x) ≥ 0

Let α(x) ≥ 0,A(x) ≥ 0. First, at the points (x, t), where v1 + 2
∫︁ x

−∞ β(s)ds ≤ 0, we have 
from (4.0.9) that

K ≤ 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

= (
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds − v − 2M))v

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + 2M))v1 + γ−1
8 A(x)

ρ−2δ
ρ

v2
1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds.

(4.1.1)

Since

v1 = w − C(x) = 1 
θ
ρθ + u − C(x) = 2 

θ
ρθ − z − C(x)

= 2 
θ
ρθ − v − B(x) − C(x) = 2 

θ
ρθ − v − 2M,

(4.1.2)

we have from (4.1.1) that

K ≤ (
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds − v − 2M))v

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v − γ−1
8 A(x)

ρ−2δ
ρ

v1v

+(
3−γ

4 β(x) + γ−1
4 A(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds)v1 + γ−1
4θ A(x)

ρ−2δ
ρ

ρθv1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

(4.1.3)

where the coefficient before v1

3−γ
4 β(x) + γ−1

4 A(x)
ρ−2δ

ρ

∫︁ x

−∞ β(s)ds + γ−1
4θ A(x)

ρ−2δ
ρ

ρθ ≥ 0 (4.1.4)

and

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

≤ (
1−γ

2 + ε1)Mβ(x) + (1 − ε1)β(x)
∫︁ x

−∞ β(s)ds + ∫︁ x

−∞ β(s)dsβ(x)

= β(x)((
1−γ + ε )M + (2 − ε )β(x)

∫︁ x
β(s)ds) ≤ 0

(4.1.5)
2 1 1 −∞
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because |θMA(x)| <
(3−γ )
γ+3 β(x) < β(x) and 2

∫︁ ∞
−∞ β(s)ds <

γ−1
2 M as the conditions given in 

Theorem 2. Thus we have from (4.1.1)-(4.1.5) that

K ≤ n1(x, t)v + n2(x, t)v1, (4.1.6)

where n1(x, t), n2(x, t) ≥ 0 are two suitable functions.
Second, at the points (x, t), where v1 + 2

∫︁ x

−∞ β(s)ds ≥ 0, we have from (4.0.9) and the 
calculations on the part of A(x) in (4.1.1)-(4.1.3) that

K ≤ 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v
+ 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)(v1 + 2
∫︁ x

−∞ β(s)ds + |v|)
= n3(x, t)v + 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)2

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + 2M))v1 + γ−1
8 A(x)

ρ−2δ
ρ

v2
1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

= (n3(x, t) − γ−1
8 A(x)

ρ−2δ
ρ

v1)v + 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)2

+(
3−γ

4 β(x) + γ−1
4 A(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds)v1 + γ−1
4θ A(x)

ρ−2δ
ρ

ρθv1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

(4.1.7)

for a suitable function n3(x, t). Furthermore,

1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)2

= 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)v1 + 1
2α(x)

∫︁ x

−∞ β(s)dsv1 + α(x)(
∫︁ x

−∞ β(s)ds)2,

(4.1.8)

where v1 + 2
∫︁ x

−∞ β(s)ds ≥ 0, and

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds + α(x)(
∫︁ x

−∞ β(s)ds)2

≤ (
1−γ

2 + ε1)Mβ(x) + (1 − ε1)
∫︁ x

−∞ β(s)dsβ(x)

+α(x)
∫︁ x

−∞ β(s)ds
γ−1

4 M + 1
2

∫︁ x

−∞ β(s)dsβ(x)

≤ (
1−γ

2 + ε1)Mβ(x) + 2
∫︁ x

−∞ β(s)dsβ(x) ≤ 0

(4.1.9)

due to
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γ−1
4 α(x)M <

(3−γ )(γ−1)
8(γ+1) β(x) < 1

2β(x),

θM|A(x)| < 3−γ
γ+3β(x) < 1

2β(x), |β(x)|L1(R) <
γ−1

4 M.

(4.1.10)

Thus we have also from (4.1.7)-(4.1.9) that

K ≤ n4(x, t)v + n5(x, t)v1, (4.1.11)

where n4(x, t), n5(x, t) ≥ 0 are two suitable functions.
Similarly, at the points (x, t), where α(x) ≥ 0,A(x) ≥ 0, we have from (4.0.10) that

K1 ≤ 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

− 1
2α(x)|u|(v1 − v + C(x) − B(x))

≤ (
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + v1 + 2M))v1

− 1
2α(x)|u|(v1 − v)

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds − 2M))v − γ−1
8 A(x)

ρ−2δ
ρ

v2

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds,

(4.1.12)

where the coefficient before v

3−γ
4 β(x) + γ−1

8 A(x)
ρ−2δ

ρ
(2

∫︁ x

−∞ β(s)ds − 2M) + 1
2α(x)|u|

≥ 3−γ
4 β(x) − γ−1

4 θM|A(x)| ≥ 0
(4.1.13)

because |θMA(x)| < (3−γ )
γ+3 β(x);

−γ − 1

8 
A(x)

ρ − 2δ

ρ
v2 ≤ 0 (4.1.14)

and

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

≤ (
1−γ

2 + ε1)Mβ(x) − (1 − ε1)β(x)
∫︁ x

−∞ β(s)ds + 1
2

∫︁ x

−∞ β(s)dsβ(x) ≤ 0

(4.1.15)

because

θMA(x) <
1
β(x), |β(x)|L1(R) <

γ − 1
M. (4.1.16)
2 2 
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Thus we have from (4.1.12)-(4.1.15) that

K1 ≤ n6(x, t)v + n7(x, t)v1, (4.1.17)

where n6(x, t) ≥ 0, n7(x, t) are two suitable functions.
Summing up the analysis above, at any point (x, t), where α(x) ≥ 0,A(x) ≥ 0, we obtain the 

inequalities in (2.0.12).

4.2. The case of α(x) ≥ 0;A(x) ≤ 0

Let α(x) ≥ 0,A(x) ≤ 0. First, at the points (x, t), where v1 + 2
∫︁ x

−∞ β(s)ds ≤ 0, we have 
from (4.0.9) that

K ≤ 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

= (
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds − v − 2M))v

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + 2M))v1 + γ−1
8 A(x)

ρ−2δ
ρ

v2
1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds,

(4.2.1)

where the coefficient before v1

3−γ
4 β(x) + γ−1

8 A(x)
ρ−2δ

ρ
(2

∫︁ x

−∞ β(s)ds + 2M)

≥ 3−γ
4 β(x) − γ−1

8 |A(x)|ρ−2δ
ρ

(
γ−1

2 M + 2M)

= 3−γ
4 β(x) − γ+3

8 θM|A(x)| ≥ 0

(4.2.2)

because |θMA(x)| < (3−γ )
γ+3 β(x);

γ − 1

8 
A(x)

ρ − 2δ

ρ
v2

1 ≤ 0 (4.2.3)

and

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

≤ (
1−γ + ε )Mβ(x) + (1 − ε )β(x)

∫︁ x
β(s)ds ≤ 0

(4.2.4)
2 1 1 −∞
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due to 
∫︁ ∞
−∞ β(s)ds <

γ−1
4 M as given in Theorem 2. Thus we have from (4.2.1)-(4.2.4) that

K ≤ n8(x, t)v + n9(x, t)v1, (4.2.5)

where n8(x, t), n9(x, t) ≥ 0 are two suitable functions.
Second, the points (x, t), where v1 + 2

∫︁ x

−∞ β(s)ds ≥ 0, we have from (4.0.9) that

K ≤ 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v
+ 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)(v1 + 2
∫︁ x

−∞ β(s)ds + |v|)
= n10(x, t)v + 1

4α(x)(v1 + 2
∫︁ x

−∞ β(s)ds)v1

+ 1
2α(x)

∫︁ x

−∞ β(s)dsv1 + α(x)(
∫︁ x

−∞ β(s)ds)2

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + 2M))v1 + γ−1
8 A(x)

ρ−2δ
ρ

v2
1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

(4.2.6)

for a suitable function n10(x, t), where 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds) ≥ 0,

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds + α(x)(
∫︁ x

−∞ β(s)ds)2

≤ ((
1−γ

2 + ε1)M + (1 − ε1)
∫︁ x

−∞ β(s)ds)β(x) + α(x)(
∫︁ x

−∞ β(s)ds)2

≤ ((
1−γ

2 + ε1)M + (1 − ε1)
∫︁ x

−∞ β(s)ds)β(x) + α(x)
∫︁ x

−∞ β(s)ds
γ−1

4 M

≤ ((
1−γ

2 + ε1)Mβ(x) + 2
∫︁ x

−∞ β(s)dsβ(x) ≤ 0

(4.2.7)

because

γ − 1

4 
α(x)M <

3 − γ

γ + 3
β(x) < β(x), |β(x)|L1(R) <

γ − 1

4 
M (4.2.8)

and

3−γ
4 β(x) + γ−1

8 A(x)
ρ−2δ

ρ
(2

∫︁ x

−∞ β(s)ds + 2M)

≥ 3−γ
4 β(x) + γ−1

8 A(x)(
γ−1

2 M + 2M)

≥ 3−γ
β(x) + γ+3

θA(x)M ≥ 0

(4.2.9)
4 8 
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because

|β(x)|L1(R) <
γ − 1

4 
M, θ |A(x)|M <

3 − γ

γ + 3
β(x). (4.2.10)

Thus we have from (4.2.6), (4.2.7) and (4.2.9) that

K ≤ n11(x, t)v + n12(x, t)v1, (4.2.11)

where n11(x, t), n12(x, t) ≥ 0 are two suitable functions.
Similarly, at the points (x, t), where α(x) ≥ 0,A(x) ≤ 0, we have from (4.0.10) that

K1 ≤ 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+(A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
− 1

2α(x)|u|)(v1 − v + C(x) − B(x))

≤ (
3−γ

4 β(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ 1

2α(x)|u|)v

+(
3−γ

4 β(x) + A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
− 1

2α(x)|u|)v1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds),

(4.2.12)

where

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

≤ (
1−γ

2 + ε1)Mβ(x) − (1 − ε1)β(x)
∫︁ x

−∞ β(s)ds ≤ 0.

(4.2.13)

Thus we have from (4.2.12) and (4.2.13) that

K1 ≤ n14(x, t)v + n15(x, t)v1, (4.2.14)

where n14(x, t) ≥ 0, n15(x, t) are two suitable functions.
Summing up the analysis above, at any point (x, t), where α(x) ≥ 0,A(x) ≤ 0, we obtain the 

inequalities in (2.0.12).

4.3. The case of α(x) ≤ 0;A(x) ≥ 0

Let α(x) ≤ 0,A(x) ≥ 0. Repeating the proof of (4.1.6), at the points (x, t), where v1 +
2
∫︁ x

−∞ β(s)ds ≥ 0, we have from (4.1.1) that

K ≤ n16(x, t)v + n17(x, t)v1, (4.3.1)

where n16(x, t), n17(x, t) ≥ 0 are two suitable functions.
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Similarly, at the points (x, t), where v1 + 2
∫︁ x

−∞ β(s)ds ≤ 0, we have from (4.1.7) that

K ≤ (n3(x, t) − γ−1
8 A(x)

ρ−2δ
ρ

v1)v − 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)2

+(
3−γ

4 β(x) + γ−1
4 A(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds)v1 + γ−1
4θ A(x)

ρ−2δ
ρ

ρθv1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds.

(4.3.2)

By using (4.1.2), we have

− 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)2

= − 1
4α(x)v2

1 − α(x)
∫︁ x

−∞ β(s)dsv1 − α(x)(
∫︁ x

−∞ β(s)ds)2

= − 1
4α(x)v1(

2 
θ
ρθ − v − 2M) − α(x)

∫︁ x

−∞ β(s)dsv1 − α(x)(
∫︁ x

−∞ β(s)ds)2.

(4.3.3)

Thus we have from (4.3.2) that

K ≤ (n3(x, t) − γ−1
8 A(x)

ρ−2δ
ρ

v1 + 1
4α(x)v1)v − 1 

2θ
α(x)ρθv1

+(
3−γ

4 β(x) + γ−1
4 A(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds + 1
2α(x)M)v1 + γ−1

4θ A(x)
ρ−2δ

ρ
ρθv1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds − α(x)(
∫︁ x

−∞ β(s)ds)2,

(4.3.4)

where

3−γ
4 β(x) + γ−1

4 A(x)
ρ−2δ

ρ

∫︁ x

−∞ β(s)ds + 1
2α(x)M

≥ 3−γ
4 β(x) + 1

2α(x)M ≥ 0
(4.3.5)

and

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds − α(x)(
∫︁ x

−∞ β(s)ds)2

≤ (
1−γ

2 + ε1)Mβ(x) + (1 − ε1)
∫︁ x

−∞ β(s)dsβ(x)

+ 1
2

∫︁ x

−∞ β(s)dsβ(x) − α(x)
∫︁ x

−∞ β(s)ds
γ−1

4 M

≤ (
1−γ

2 + ε1)Mβ(x) + 2
∫︁ x

−∞ β(s)dsβ(x) ≤ 0

(4.3.6)

because
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− γ−1
4 α(x)M <

γ−1
4 

3−γ 
2(γ+1)

β(x) ≤ 1
2β(x),

θM|A(x)| < 3−γ
γ+3β(x) < 1

2β(x), |β(x)|L1(R) <
γ−1

4 M.

(4.3.7)

Thus we have also from (4.3.4)-(4.3.6) that

K ≤ n18(x, t)v + n19(x, t)v1, (4.3.8)

where n18(x, t), n19(x, t) ≥ 0 are two suitable functions.
To obtain a similar estimate on K1, first, repeating the proof of (4.1.17), at the points (x, t), 

where −v + 2
∫︁ x

−∞ β(s)ds ≤ 0, we have from (4.1.12) that

K1 = 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ γ−1
8 A(x)

ρ−2δ
ρ

(v1 − v + 2
∫︁ x

−∞ β(s)ds)(v + v1 + 2M)

− 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|

≤ (
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + v1 + 2M))v1

− 1
4α(x)|v1 − v + 2

∫︁ x

−∞ β(s)ds|v1

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds − 2M))v − γ−1
8 A(x)

ρ−2δ
ρ

v2

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds,

(4.3.9)

and so

K1 ≤ n20(x, t)v + n21(x, t)v1, (4.3.10)

where n20(x, t) ≥ 0, n21(x, t) are two suitable functions.
Second, at the points (x, t), where −v + 2

∫︁ x

−∞ β(s)ds ≥ 0, we have from (4.3.9) that

K1 ≤ n22(x, t)v1 − 1
4α(x)(v − 2

∫︁ x

−∞ β(s)ds)2

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds − 2M))v − γ−1
8 A(x)

ρ−2δ
ρ

v2

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

(4.3.11)

for a suitable function n22(x, t). By using

v = z − B(x) = 1 
θ
ρθ − u − B(x) = 2 

θ
ρθ − w − B(x)

= 2 
θ
ρθ − v1 − B(x) − C(x) = 2 

θ
ρθ − v1 − 2M,

(4.3.12)

we have
31 



J.J. Chen, Q.Q. Fang, C. Klingenberg et al. Journal of Differential Equations 447 (2025) 113630 
− 1
4α(x)(v − 2

∫︁ x

−∞ β(s)ds)2

= − 1
4α(x)v2 + α(x)

∫︁ x

−∞ β(s)dsv − α(x)(
∫︁ x

−∞ β(s)ds)2

= − 1
4α(x)v( 2 

θ
ρθ − v1 − 2M) + α(x)

∫︁ x

−∞ β(s)dsv − α(x)(
∫︁ x

−∞ β(s)ds)2.

(4.3.13)

Thus we have from (4.3.11) that

K1 ≤ (n22(x, t) + 1
4α(x)v)v1 − 1 

2θ
α(x)ρθv

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds − 2M) + 1
2α(x)M + α(x)

∫︁ x

−∞ β(s)ds)v

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds − α(x)(
∫︁ x

−∞ β(s)ds)2,

(4.3.14)
where

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds − α(x)(
∫︁ x

−∞ β(s)ds)2 ≤ 0
(4.3.15)

due to the proof of (4.3.6), and

3−γ
4 β(x) + γ−1

8 A(x)
ρ−2δ

ρ
(2

∫︁ x

−∞ β(s)ds − 2M) + 1
2α(x)M + α(x)

∫︁ x

−∞ β(s)ds

≥ 3−γ
4 β(x) − γ−1

4 MA(x) + 1
2α(x)M + γ−1

4 Mα(x)

≥ 3−γ
4 β(x) − 1

2
3−γ
γ+3β(x) − γ+1

4 
3−γ 

2(γ+1)
β(x) ≥ 0

(4.3.16)

because the conditions in Theorem 2. Thus we have from (4.3.14)-(4.3.16) that

K1 ≤ n23(x, t)v + n24(x, t)v1, (4.3.17)

where n23(x, t) ≥ 0, n24(x, t) are two suitable functions.
Summing up the analysis above, at any point (x, t), where α(x) ≤ 0,A(x) ≥ 0, we have 

(2.0.12).

4.4. The case of α(x) ≤ 0;A(x) ≤ 0

Let α(x) ≤ 0,A(x) ≤ 0. First, at the points (x, t), where v1 + 2
∫︁ x

−∞ β(s)ds ≥ 0, repeating 
the proof of (4.2.1) we have a similar inequality like (4.2.5)

K ≤ n25(x, t)v + n26(x, t)v1, (4.4.1)

where n25(x, t), n26(x, t) ≥ 0 are two suitable functions.
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Second, at the points (x, t), where v1 + 2
∫︁ x

−∞ β(s)ds ≤ 0, repeating the proof of (4.2.6), we 
have

K ≤ n27(x, t)v − 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)2

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + 2M))v1 + γ−1
8 A(x)

ρ−2δ
ρ

v2
1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) + γ−1
2 MA(x)

ρ−2δ
ρ

∫︁ x

−∞ β(s)ds

(4.4.2)

for a suitable function n27(x, t). Using (4.1.2), we have

− 1
4α(x)(v1 + 2

∫︁ x

−∞ β(s)ds)2

= − 1
4α(x)v2

1 − α(x)
∫︁ x

−∞ β(s)dsv1 − α(x)(
∫︁ x

−∞ β(s)ds)2

= − 1
4α(x)v1(

2 
θ
ρθ − v − 2M) − α(x)

∫︁ x

−∞ β(s)dsv1 − α(x)(
∫︁ x

−∞ β(s)ds)2.

(4.4.3)

Thus we have from (4.4.2) that

K ≤ (n27(x, t) + 1
4α(x)v1)v − ( 1 

2θ
ρθ + ∫︁ x

−∞ β(s)ds)α(x)v1

+(
3−γ

4 β(x) + γ−1
8 A(x)

ρ−2δ
ρ

(2
∫︁ x

−∞ β(s)ds + 2M) + 1
2α(x)M)v1

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − α(x)(
∫︁ x

−∞ β(s)ds)2,

(4.4.4)

where

−( 1 
2θ

ρθ + ∫︁ x

−∞ β(s)ds)α(x) ≥ 0, (4.4.5)

3−γ
4 β(x) + γ−1

8 A(x)
ρ−2δ

ρ
(2

∫︁ x

−∞ β(s)ds + 2M) + 1
2α(x)M

≥ 3−γ
4 β(x) + γ−1

8 A(x)(
γ−1

2 M + 2M) − 3−γ 
4(γ+1)

β(x)

≥ 3−γ
8 β(x) + γ+3

8 θMA(x) ≥ 0

(4.4.6)

and

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M − ∫︁ x

−∞ β(s)ds) − α(x)(
∫︁ x

−∞ β(s)ds)2 ≤ 0 (4.4.7)

due to the proof of (4.3.6). Thus we have

K ≤ n28(x, t)v + n29(x, t)v1, (4.4.8)

where n28(x, t), n29(x, t) ≥ 0 are two suitable functions.
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Similarly, at the points (x, t), where −v + 2
∫︁ x

−∞ β(s)ds ≤ 0, we have from (4.0.10) that

K1 = 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ 1
2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v1 − v + C(x) − B(x))

− 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|

≤ n30(x, t)v1 + (
3−γ

4 β(x) − A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
)v

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds) ≤ n30(x, t)v1 + n31(x, t)v,

(4.4.9)

where n30(x, t) is a suitable function, and

n31(x, t) = 3−γ
4 β(x) − 1

2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
≥ 0. (4.4.10)

Finally, at the points (x, t), where −v + 2
∫︁ x

−∞ β(s)ds ≥ 0, we have from (4.0.10) and (4.3.13) 
that

K1 = 3−γ
4 (v + v1 + 2M)β(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

+ 1
2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
(v1 − v + C(x) − B(x))

− 1
4α(x)(v1 − v + 2

∫︁ x

−∞ β(s)ds)|v1 − v + 2
∫︁ x

−∞ β(s)ds|

≤ n32(x, t)v1 + (
3−γ

4 β(x) − 1
2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
)v − 1

4α(x)(v − 2
∫︁ x

−∞ β(s)ds)2

+ 3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

= (n32(x, t) + 1
4α(x)v)v1 + 3−γ

2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds)

−α(x)(
∫︁ x

−∞ β(s)ds)2

+(
3−γ

4 β(x) − 1
2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ α(x)

∫︁ x

−∞ β(s)ds + 1
2α(x)M)v

(4.4.11)

for a suitable function n32(x, t), where

3−γ
2 Mβ(x) − (1 − ε1)β(x)(M + ∫︁ x

−∞ β(s)ds) − α(x)(
∫︁ x

−∞ β(s)ds)2 ≤ 0 (4.4.12)

due to the proof of (4.3.6), and

3−γ
4 β(x) − 1

2A(x)(ρ − 2δ)

√︁
P ′(ρ)

ρ
+ α(x)

∫︁ x

−∞ β(s)ds + 1
2α(x)M

≥ 3−γ
β(x) + α(x)

∫︁ x
β(s)ds + 1α(x)M ≥ 0

(4.4.13)
4 −∞ 2
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due to the proof of (4.3.16). Thus for all points (x, t), where α(x) ≤ 0,A(x) ≤ 0, we have the 
inequality

K1 ≤ n33(x, t)v1 + n34(x, t)v, n34(x, t) ≥ 0 (4.4.14)

and so the inequalities in (2.0.12), which complete the Proof of Theorem 2.

5. Proof of Theorem 3: existence of global solutions

In this section, we shall prove that there exists a subsequence of the viscosityflux approximate 
solutions (ρδ,ε(x, t), uδ,ε(x, t)) of the Cauchy problem (1.0.13) and (1.0.8), which converges 
pointwisely to a pair of bounded functions (ρ(x, t), u(x, t)) as δ, ε tend to zero, and the limit is 
a weak entropy solution of the Cauchy problem (1.0.1)-(1.0.2).

First of all, from the upper estimates (1.0.17) and (1.0.18) given in Theorems 1-2, we can use 
the Riemann invariants (1.0.10) to obtain the estimate on (ρδ,ε(x, t), uδ,ε(x, t)) directly

2δ ≤ ρδ,ε(x, t) ≤ M(x), |uδ,ε(x, t)| ≤ M(x), (5.0.1)

where M(x) is a nonnegative, bounded function, which depends on the bound of the initial data, 
but independent of ε, δ.

By simple calculations, for smooth solutions, the following two systems

⎧⎨
⎩

ρt + (−2δu + ρu)x = 0,

(ρu)t + (ρu2 − δu2 + P1(ρ, δ))x = 0,
(5.0.2)

where P1(ρ, δ) being given in (1.0.7), and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρt + (−2δu + ρu)x = 0

ut + ( 1
2u2 +

ρ∫︂

2δ 

(t − 2δ)P ′(t)
t2 dt)x = 0

(5.0.3)

are equivalent, and particularly, both systems have the same entropy-entropy flux pairs. Thus any 
entropy-entropy flux pair (η(ρ,m), q(ρ,m)) of system (5.0.2) satisfies the additional system

qρ = uηρ + (ρ − 2δ)P ′(ρ)

ρ2 ηu, qu = (ρ − 2δ)ηρ + uηu. (5.0.4)

Eliminating the q from (5.0.4), we have

ηρρ = P ′(ρ)

ρ2 ηuu. (5.0.5)

Therefore, system (5.0.2) and system (1.0.3) have the same entropies [23].
We recall that for the case of polytropic gas, any weak entropy [5] can be represented by the 

following explicit formula:
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η0(ρ,u) = ρ

1 ∫︂

0 

[τ(1 − τ)]λg(u + ρθ − 2ρθτ)dτ, (5.0.6)

where θ = γ−1
2 , λ = 3−γ 

2(γ−1)
and g is a smooth function.

Secondly, for general pressure P(ρ), we have the following lemma (See also Theorem 2 in 
[23])

Lemma 5. Suppose the viscosityflux approximate solutions (ρδ,ε(x, t), uδ,ε(x, t)) of the Cauchy 
problem (1.0.13) and (1.0.8) are uniformly bounded in L∞ space, and the limit

lim 
ρ→0

(P ′(ρ))
3
2

ρP ′′(ρ) 
= e, (5.0.7)

where e ≥ 0 is a constant. If the weak entropy-entropy flux pair (η(ρ,u), q(ρ,u)) of system 
(1.0.3) is in the form η(ρ,u) = ρH(ρ,u) and Hu(ρ,u),Huu(ρ,u),Huuu(ρ,u) are continuous 
on 0 ≤ ρ ≤ M1, |u| ≤ M1, where M1 is a positive constant, then

ηt (ρ
δ,ε(x, t), uδ,ε(x, t)) + qx(ρ

δ,ε(x, t), uδ,ε(x, t)) (5.0.8)

is compact in H−1
loc (R × R+) as ε = o

(︁
P ′(2δ)

2δ 
)︁

and δ tends to zero, with respect to the viscosity 
solutions (ρδ,ε(x, t), uδ,ε(x, t) of the Cauchy problem (1.0.13) and (1.0.8).

Proof of Lemma 5. One can easily check that system (5.0.2) has a convex entropy

η⋆ = ρu2

2 
+

ρ∫︂

2δ 

(ρ − t)P ′(t)
t

dt, (5.0.9)

with corresponding entropy flux

q⋆ = ρu3

2 
− δu3

3 
+ u(ρ − 2δ)

ρ∫︂

2δ 

P ′(t)
t

dt. (5.0.10)

To show that

ε(ρx,mx) · ∇2η⋆(ρ,m) · (ρx,mx)
T (5.0.11)

is bounded in L1
loc(R × R+), we multiply (1.0.13) by (η⋆

ρ, η⋆
m). It follows that

ε
P ′(ρ)

ρ
ρ2

x + ε
1 
ρ

[m
ρ

ρx − mx]2 = ε
P ′(ρ)

ρ
ρ2

x + ερu2
x (5.0.12)

is bounded in L1 (R × R+).
loc
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We rewrite system (1.0.13) by the following equivalent system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρt + ((ρ − 2δ)u)x = A(x)(ρ − 2δ)u + ερxx

ut + ( 1
2u2 +

ρ∫︂

2δ 

(t − 2δ)P ′(t)
t2 dt)x = εuxx + 2ε

ρ
ρxux − α(x)|u|u.

(5.0.13)

Let (η(ρ,u), q(ρ,u)), (η(ρ,u), q1(ρ,u, δ)) be the entropy-entropy flux pairs of systems (1.0.3), 
(5.0.2) respectively since they have the same entropy equation (5.0.5), but different entropy 
fluxes.

Multiplying system (5.0.13) by (ηρ, ηu), we obtain the relation

η(ρ,m)t + q(ρ,m)x

= εη(ρ,m)xx − (q1(ρ,m, δ) − q(ρ,m))x + 2ε
ρ

ηuρxux

− ε(ηρρρ2
x + 2ηρuρxux + ηuuu

2
x) + A(x)(ρ − 2δ)uηρ − α(x)|u|uηu.

(5.0.14)

By using the entropy equation (5.0.5), we obtain

ηρ = ∫︁ ρ

0
P ′(τ )

τ 2 ηuu(τ,u)dτ + g(u)

= ∫︁ ρ

0
P ′(τ )

τ
Huu(τ,u)dτ + g(u)

(5.0.15)

since η(ρ,u) = ρH(ρ,u), where g(u) is an arbitrary smooth function. Furthermore, by integrat
ing (5.0.15), we get

η =
ρ∫︂

0 

t∫︂

0 

P ′(τ )

τ
Huu(τ,u)dτdt + g(u)ρ (5.0.16)

since η(0, u) = 0. Then

ηu =
ρ∫︂

0 

t∫︂

0 

P ′(τ )

τ
Huuu(τ,u)dτdt + g′(u)ρ (5.0.17)

and

ηρu =
ρ∫︂

0 

P ′(τ )

τ
Huuu(τ,u)dτ + g′(u). (5.0.18)

By substituting (5.0.17), (5.0.18) into (5.0.14) and by using entropy equation (5.0.5), we get the 
following equality

η(ρ,m)t + q(ρ,m)x = I1 + I2 + I3, (5.0.19)
37 



J.J. Chen, Q.Q. Fang, C. Klingenberg et al. Journal of Differential Equations 447 (2025) 113630 
where

I1 = εη(ρ,m)xx − (q1(ρ,m, δ) − q(ρ,m))x, (5.0.20)

I2 = −ε
(︁P ′(ρ)

ρ
Huu(ρ,u)ρ2

x + ρHuuu
2
x

)︁ + A(x)(ρ − 2δ)uηρ − α(x)|u|uηu, (5.0.21)

I3 = −2ε
(︁ ρ∫︂

0 

P ′(τ )

τ
Huuu(τ,u)dτ − 1 

ρ

ρ∫︂

0 

t∫︂

0 

P ′(τ )

τ
Huuu(τ,u)dτdt

)︁
ρxux. (5.0.22)

For any ϕ ∈ C1
0(R × R+) with S = supp ϕ,

|
∞ ∫︂

0 

∞ ∫︂

−∞
εη(ρ,m)xxϕdxdt | = |

∞ ∫︂

0 

∞ ∫︂

−∞
ε(ρH(ρ,u))xϕxdxdt |

≤ ε|(︁ηρρx + Huρux

)︁
ϕx |dxdt

≤ M
[︁(︁ ∫︁ ∫︁

S
ε

P ′(ρ)
ρ

(ρx)
2 ερ 

P ′(ρ)
dxdt

)︁ 1
2

+(︁ ∫︁ ∫︁
S
ε2ρ2u2

xdxdt
)︁ 1

2
]︁(︁ ∫︁ ∫︁

S
(ϕx)

2dxdt
)︁ 1

2 → 0

(5.0.23)

since ε = o
(︁

P ′(2δ)
2δ 

)︁
or ερε

P ′(ρε)
→ 0 as ε, δ → 0. Since q1(ρ,m, δ) − q(ρ,m) tends to zero as δ

tends to zero, we get the compactness of I1 in H−1
loc (R ×R+). Using (5.0.12), we know that I2 is 

bounded in L1
loc(R × R+), and hence compact in W−1,α

loc (R × R+), for some α ∈ (1,2), by the 
Sobolev embedding theorems. Using the Vol’pert theorem and the limit given in (5.0.7), we have 
the following estimates

| ∫︁ ρ

0
P ′(τ )

τ
Huuu(τ,u)dτ | ≤ M| ∫︁ ρ

0
P ′(τ )

τ
dτ | ≤ M1

√
P ′(ρ),

| ∫︁ ρ

0

∫︁ t

0
P ′(τ )

τ
Huuu(τ,u)dτdt | ≤ M| ∫︁ ρ

0

∫︁ t

0
P ′(τ )

τ
dτdt | ≤ M1ρ

√
P ′(ρ).

(5.0.24)

Using these estimates, we get the boundedness of I3 in L1
loc(R×R+) and hence the compactness 

in W−1,α
loc (R × R+), for some α ∈ (1,2), by the Sobolev embedding theorems.

Therefore the right-hand side of (5.0.19) is compact in W−1,α
loc (R × R+) for some α ∈

(1,2), but the left-hand side is bounded in W−1,∞(R × R+). This implies the compactness 
of η(ρδ,ε,mδ,ε)t + q(ρε,mε)x in H−1

loc (R × R+) and hence the proof of Lemma 5 by the Murat 
theorem [36].

It is clear that the condition (5.0.7) is true for the polytropic gas, P(ρ) = 1 
γ
ργ , and the 

weak entropy given in (5.0.6) satisfies the conditions in Lemma 5. Then there exists a subse
quence of (ρδ,ε(x, t), uδ,ε(x, t)), which converges pointwisely to a pair of bounded functions 
(ρ(x, t), u(x, t)) as δ, ε tend to zero by using the compactness framework given in [3,5,16] for 
1 < γ < 3 and in [17] for γ ≥ 3. It is easy to prove that the limit (ρ(x, t), u(x, t)) satisfies 
(1.0.20). Moreover, for any weak convex entropy-entropy flux pair (η(ρ,u), q(ρ,u)) of system 
(1.0.3), we multiply (1.0.13) by (ηρ, ηm) to obtain that
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ηt (ρ
δ,ε(x, t), uδ,ε(x, t)) + qx(ρ

δ,ε(x, t), uδ,ε(x, t)) + δq1x(ρ
δ,ε(x, t), uδ,ε(x, t))

= εη(ρδ,ε,mδ,ε)xx − ε(ρ
δ,ε
x ,m

δ,ε
x ) · ∇2η(ρδ,ε,mδ,ε) · (ρδ,ε

x ,m
δ,ε
x )T

+A(x)(ρδ,ε − 2δ)uδ,εηρ(ρδ,ε,mδ,ε)

+(A(x)(ρδ,ε − 2δ)(uδ,ε)2 − α(x)mδ,ε|uδ,ε|)ηm(ρδ,ε,mδ,ε)

≤ εη(ρδ,ε,mδ,ε)xx + A(x)(ρδ,ε − 2δ)uδ,εηρ(ρδ,ε,mδ,ε)

+(A(x)(ρδ,ε − 2δ)(uδ,ε)2 − α(x)mδ,ε|uδ,ε|)ηm(ρδ,ε,mδ,ε),

(5.0.25)

where q + δq1 is the entropy flux of system (5.0.2) corresponding to the entropy η. Thus the 
entropy inequality (1.0.21) is proved if we multiply a test function to (5.0.25) and let ε, δ go to 
zero. Theorem 3 is proved.

6. Proof of Theorem 4

In this section, we shall prove Theorem 4. By simple calculations, the two eigenvalues of 
(1.0.25) are

λ1 = u − 1, λ2 = u + 1 (6.0.1)

with corresponding Riemanna invariants

z(v,m) = lnv − m

v
, w(v,m) = lnv + m

v
, (6.0.2)

where m = vu.
We consider the Cauchy problem of the parabolic system (1.0.26) with initial data

(v(x,0), v(x,0)u(x,0)) = (vδ
0(x), vδ

0(x)uδ
0(x)), (6.0.3)

where

(vδ
0(x), uδ

0(x)) = (a(x)ρ0(x) + 2δ,u0(x)) ∗ Gδ, (6.0.4)

(Aδ(x),αδ(x)) = (A(x),α(x)) ∗ Gδ, (6.0.5)

and Gδ is a mollifier.
Then by the conditions given in Theorem 4, we have

(vδ
0(x), uδ

0(x)) ∈ C∞(R) × C∞(R), (6.0.6)

vδ
0(x) ≥ 2δ, vδ

0(x) + |uδ
0(x))| ≤ M (6.0.7)

and

Aδ(x) ∈ C∞(R) ∩ L1(R), αδ(x) ∈ C∞(R) ∩ L1(R). (6.0.8)
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Similarly, as did in Section 2, we multiply (1.0.26) by (wv,wm) and (zv, zm), respectively, to 
obtain

zt + λδ
1zx − Aδ(x) − αδ(x)u|u|

= εzxx − ε(zvvv
2
x + 2zvmvxmx + zmmm2

x)

= εzxx + 2ε
v

vxzx − εv2
x

v2

(6.0.9)

and

wt + λδ
2wx + Aδ(x) + αδ(x)u|u|

= εwxx − ε(wvvv
2
x + 2wvmvxmx + wmmm2

x)

= εwxx + 2ε
v

vxwx − εv2
x

v2 ,

(6.0.10)

where λδ
1 = u − v−2δ

v
, λδ

2 = u + v−2δ
v

.
Let X(x) = 3(|Aδ(x)| + |αδ(x)|), then |X(x)|L1(R) ≤ 1

2 by the condition (1.0.22).
Making the transformations of z = z1 + B(x),w = w1 + C(x), where

B(x) = M −
x∫︂

−∞
X(s)ds >

1

2
,C(x) = M +

x∫︂

−∞
X(s)ds >

1

2
, (6.0.11)

for a positive constant M > 1, we have from (6.0.9)-(6.0.10) that

z1t + λδ
1z1x − B ′(x)z1 − B ′(x)B(x)

+B ′(x) lnv − B ′(x) v−2δ
v

− Aδ(x) − αδ(x)u|u|

= εz1xx + εB ′′(x) + 2ε
v

vxz1x + 2ε
v

vxB
′(x) − εv2

x

v2

= εz1xx + εB ′′(x) + 2ε
v

vxz1x − ε( vx

v
− B ′(x))2 + εB ′ 2(x)

≤ εz1xx + εB ′′(x) + 2ε
v

vxz1x + εB ′ 2(x)

(6.0.12)

and

w1t + λδ
2w1x + C′(x)w1 + C′(x)C(x)

−C′(x) lnv + C′(x) v−2δ
v

+ Aδ(x) + αδ(x)u|u|

= εw1xx + εC′′(x) + 2ε
v

vxw1x + 2ε
v

vxC
′(x) − εv2

x

v2

= εw1xx + εC′′(x) + 2ε
v

vxw1x − ε( vx

v
− C′(x))2 + εC′ 2(x)

≤ εw + εC′′(x) + 2ε v w + εC′ 2(x).

(6.0.13)
1xx v x 1x
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Clearly, we can choose a suitable small positive constant ε1 and ε = o(ε1), τ = o(ε1) such that 
the following terms in (6.0.12) and (6.0.13) satisfy

⎧⎨
⎩

−ε1B
′(x)B(x) − εB ′′(x) − εB ′ 2(x) = ε1X(x) + εX′(x) − εX2(x) ≥ 0,

ε1C
′(x)C(x) − εC′′(x) − εC′ 2(x) = ε1X(x) − εX′(x) − εX2(x) ≥ 0.

(6.0.14)

Since the initial date vδ
0(x) ≥ 2δ, we may obtain the a priori estimate vδ,ε,τ ≥ 2δ by applying the 

maximum principle to the first equation in (1.0.26).
Now, under the conditions in Theorem 4, by using (6.0.12), (6.0.13) and (6.0.14), we prove 

the following inequalities

⎧⎨
⎩

z1t + b1(x, t)z1x + b2(x, t)z1 + b3(x, t)w1 ≤ εz1xx,

w1t + c1(x, t)w1x + c2(x, t)w1 + c3(x, t)z1 ≤ εw1xx,
(6.0.15)

where bi(x, t), ci(x, t), i = 1,2,3, are suitable functions satisfying the necessary conditions 
b3(x, t) ≤ 0, c3(x, t) ≤ 0.

Proof of (6.0.15). We prove (6.0.15) in several cases for two different groups of points (x, t), 
where αδ(x) ≥ 0 or αδ(x) ≤ 0.

Case (I). At the points (x, t), where αδ(x) ≥ 0, v(x, t) ≤ 1 and w1 + 2
∫︁ x

−∞ X(s)ds ≤ 0, the 
following terms in (6.0.12)

I1 = −(1 − ε1)B
′(x)B(x) + B ′(x) lnv − B ′(x) v−2δ

v
− Aδ(x) − αδ(x)u|u|

≥ (1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − 1
3X(x)

− 1
4αδ(x)(w1 − z1 + 2

∫︁ x

−∞ X(s)ds)|w1 − z1 + 2
∫︁ x

−∞ X(s)ds|
≥ − 1

4αδ(x)(w1 − z1 + 2
∫︁ x

−∞ X(s)ds)|w1 − z1 + 2
∫︁ x

−∞ X(s)ds|
≥ 1

4αδ(x)|w1 − z1 + 2
∫︁ x

−∞ X(s)ds|z1.

(6.0.16)

Case (II). At the points (x, t), where αδ(x) ≥ 0, v(x, t) ≤ 1 and w1 + 2
∫︁ x

−∞ X(s)ds ≥ 0,

I1 ≥ (1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − 1
3X(x)

+ 1
4αδ(x)|w1 − z1 + 2

∫︁ x

−∞ X(s)ds|z1

− 1
4αδ(x)(w1 + 2

∫︁ x

−∞ X(s)ds)|z1| − 1
4αδ(x)(w1 + 2

∫︁ x

−∞ X(s)ds)2

= (1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − 1
3X(x) − αδ(x)(

∫︁ x

−∞ X(s)ds)2

+d(x, t)z1 + e(x, t)w1 ≥ d(x, t)z1 + e(x, t)w1,

(6.0.17)

where e(x, t) = − 1αδ(x)(w1 + 4
∫︁ x

X(s)ds) ≤ 0, because
4 −∞
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(1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − 1
3X(x) − αδ(x)(

∫︁ x

−∞ X(s)ds)2

≥ 1
2 (1 − ε1)X(x) − 1

3X(x) − 1 
12X(x) ≥ 0.

(6.0.18)

Case (III). At the points (x, t), where αδ(x) ≥ 0, v(x, t) > 1 and w1 + 2
∫︁ x

−∞ X(s)ds ≤ 0, we 
have v−2δ

v
≥ 1 − ε2 > 0 for a small ε2 > 0, and B ′(x) lnv = −X(x)( 1

2 (w1 + z1) + M). Then

I1 ≥ (1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − 1
2 (w1 + z1)X(x) − MX(x)

+(1 − ε2)X(x) − 1
3X(x) + αδ(x)|w1 − z1 + 2

∫︁ x

−∞ X(s)ds|z1

≥ − 1
2 (w1 + z1)X(x) + αδ(x)|w1 − z1 + 2

∫︁ x

−∞ X(s)ds|z1

(6.0.19)

because

(1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − MX(x) + (1 − ε2)X(x) − 1
3X(x)

≥ X(x)(1 − ε2 − ε1M − 1
2 − 1

3 ) ≥ 0
(6.0.20)

for small ε1 and ε2.
Case (IV). At the points (x, t), where αδ(x) ≥ 0, v(x, t) > 1 and w1 + 2

∫︁ x

−∞ X(s)ds ≥ 0,

I1 ≥ (1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − 1
2 (w1 + z1)X(x) − MX(x)

+(1 − ε2)X(x) − 1
3X(x) − αδ(x)(

∫︁ x

−∞ X(s)ds)2

+d(x, t)z1 + e(x, t)w1 ≥ − 1
2 (w1 + z1)X(x) + d(x, t)z1 + e(x, t)w1,

(6.0.21)

because

(1 − ε1)X(x)(M − ∫︁ x

−∞ X(s)ds) − MX(x) + (1 − ε2)X(x) − 1
3X(x)

−αδ(x)(
∫︁ x

−∞ X(s)ds)2 ≥ X(x)(1 − ε2 − ε1M − 1
2 − 1

3 − 1 
12 ) ≥ 0,

(6.0.22)

where d(x, t), e(x, t) are given in (6.0.17). Thus we obtain the proof of the first inequality in 
(6.0.15) at the points (x, t), where αδ(x) ≥ 0.

Now we prove the second inequality in (6.0.15). At the points (x, t), where αδ(x) ≥ 0 and 
v(x, t) ≤ 1, the following terms in (6.0.13)

I2 = (1 − ε1)C
′(x)C(x) − C′(x) lnv + C′(x) v−2δ

v
+ Aδ(x) + αδ(x)u|u|

≥ (1 − ε1)X(x)(M + ∫︁ x

−∞ X(s)ds) − 1
3X(x)

+ 1
4αδ(x)(w1 − z1 + 2

∫︁ x

−∞ X(s)ds)|w1 − z1 + 2
∫︁ x

−∞ X(s)ds|
≥ 1

4αδ(x)(w1 − z1)|w1 − z1 + 2
∫︁ x

−∞ X(s)ds|;

(6.0.23)

and at the points (x, t), where αδ(x) ≥ 0 and v(x, t) > 1,
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I2 ≥ (1 − ε1)X(x)(M + ∫︁ x

−∞ X(s)ds) − 1
2 (w1 + z1)X(x) − MX(x)

+(1 − ε2)X(x) − 1
3X(x) + 1

4αδ(x)(w1 − z1)|w1 − z1 + 2
∫︁ x

−∞ X(s)ds|
≥ − 1

2 (w1 + z1)X(x) + 1
4αδ(x)(w1 − z1)|w1 − z1 + 2

∫︁ x

−∞ X(s)ds|.
(6.0.24)

Thus we obtain the proof of (6.0.15) at the points (x, t), where αδ(x) ≥ 0. Similarly, we may 
prove (6.0.15) also at the points (x, t), where αδ(x) ≤ 0.

Under the conditions given in (1.0.24), it is clear that z1(x,0) ≤ 0,w1(x,0) ≤ 0, so, we may 
apply the maximum principle to (6.0.15) to obtain the estimates

2δ ≤ vδ,ε ≤ M1, lnvδ,ε − M2 ≤ uδ,ε ≤ M2 − lnvδ,ε, |mδ,ε| ≤ M3, (6.0.25)

where Mi, i = 1,2,3 are suitable positive constants, independent of ε, δ and the time t .
By applying the general contracting mapping principle to an integral representation of 

(1.0.26), with the help of the lower, positive estimate and the L∞ estimates given in (6.0.25), 
we can obtain the existence and uniqueness of smooth solution of the Cauchy problem 
(1.0.26)-(6.0.3). Applying the convergence frame given in [11] we have the pointwise conver
gence

(vδ,ε(x, t),mδ,ε(x, t)) → (v(x, t),m(x, t)) a.e., as δ, ε → 0 (6.0.26)

or

(ρδ,ε(x, t), (ρδ,εuδ,ε)(x, t)) → (ρ(x, t), (ρu)(x, t)) a.e., as δ, ε → 0. (6.0.27)

Furthermore, in a similar way as given in [29], we may prove that the limit (ρ(x, t), u(x, t))

satisfies system (1.0.1) in the sense of distributions and the Lax entropy condition (1.0.21). So, 
we complete the proof of Theorem 4.
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