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Abstract

In this paper, we study the global L entropy solutions for the Cauchy problem of the polytropic gas
dynamics system in a general nozzle with friction. First, under bounded conditions on the L! norm of
the cross-sectional area function A(x) and the friction function «(x), we apply the flux-approximation
technique coupled with the classical viscosity method to obtain the L™ estimates of the viscosity-flux
approximate solutions for any exponent y > 1; Second, by using the compactness framework from the
compensated compactness theory, we prove the convergence of the viscosity-flux approximate solutions
and obtain the global existence of the L° entropy solutions.
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1. Introduction

We consider the following system of isentropic gas dynamics in a general nozzle with friction

a'(x)

pr+ (pu)y = — a(x) PU

/ (1.0.1)
(pu)s + (pu® + P(p))s = = 5 pu® = ar(x) pulul
with bounded initial data
(p(x,0),u(x,0)) = (po(x), up(x)), po(x) =0, (1.0.2)

where p is the density of gas, u the velocity, P = P(p) the pressure, a(x) is a slowly variable
cross section area at x in the nozzle and «(x) denotes the coefficient function of the friction. For
the polytropic gas, P takes the special form P(p) = % pY , where the exponent y > 1 corresponds
to the isentropic case and y = 1 corresponds to the isothermal case. The nozzle is widely used
in some types of steam turbines, rocket engine nozzles, supersonic jet engines and jet streams in
astrophysics, and the friction appears due to the viscosity [39,48,15].

When A(x) = —% ;) = 0,a(x) =0 in (1.0.1), the study of the existence of global weak

a(x) . .
solutions for the underlying homogeneous isentropic system

pr + (pu)x =0
(1.0.3)
(ou); + (pu® + P(p))x =0

with the initial data (1.0.2) has a long history. For a polytropic gas in Lagrangian coordinates,
the first existence theorem for large initial data of locally finite total variation was proved in [37]
for y =1, in [38] for y € (1, 1 + ), where & is small. The Glimm scheme [7] was used in these
papers.

The ideas of compensated compactness developed in [41,36] were used in [5] to establish a
global existence theorem for the Cauchy problem (1.0.3) with large initial data for y =1 4 %
where N > 5 odd, with the use of the viscosity method. The convergence of the Lax-Friedrichs
scheme and the existence of a global solution in L° for large initial data with adiabatic expo-
nent y € (1, %] were proved in [3]. In [17], the global existence of a weak solution was proved
for y > 3 with the use of the kinetic setting in combination with the compensated compact-
ness method. The method in [17] was finally improved in [16] to fill the gap y € (%, 3), and a
new proof of the existence of a global solution for all y > 1 was given there. Later on, a new
application of the method in [17] was obtained in [21] on the study of the Euler equations of
one-dimensional, compressible fluid flow, where the linear combinations of weak and strong en-
tropies were invented to replace the weak entropies. The isothermal case y = 1 with the vacuum
was studied in [11].

A global smooth solution of the Cauchy problem (1.0.3) with smooth initial data for more
general pressure functions P (p) was obtained in [22], where a sequence of nonstrictly hyperbolic
systems was used to approximate system (1.0.3).

For some special inhomogeneous hyperbolic systems, the existence and qualitative behavior
of global solution with initial data of small total variation were first studied in [18-20] by using
Glimm random choice method. For a general inhomogeneous system of hyperbolic conservation
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laws, the Riemann problem was resolved in [13]. More results on inhomogeneous hyperbolic
systems can be found in [6,8,9,12,31,32,34,35,40,47,10,33,46] and the references cited therein.

It is well-known that, with the help of the compensated compactness theory, the unique diffi-
culty to prove the existence of global solution for the following inhomogeneous system

pr + (pu)y + f(p,u) =0
(1.0.4)

(pu) + (pu? + P(p))x + g(p,u) =0

is to obtain the a-priori L estimates of the approximate solutions of (1.0.4).

For systems of hyperbolic conservation laws of two equations, the well-known theory of in-
variant regions [2] is still a powerful tool to help us to obtain bounded estimates of solutions.
Based on the invariant regions theory, under some conditions on the nonlinear functions f (o, u)
and g(p, u), the global L entropy solutions for the Cauchy problem (1.0.4) with large initial
data (1.0.2) was obtained in [4] for the usual gases 1 < y < %

When A(x) # 0, a(x) # 0 in (1.0.1), in general, the theory of invariant regions can not be
applied directly to obtain the a-priori L*° estimate of the approximate solutions because we
could not find a suitable invariant region.

For the case of nozzle flow without the friction «(x) = 0, namely the following system

a

P+ (pu)y = — a(()):)) pu

(1.0.5)

a’(x)

(pu): + (pu? + P(p))x = — 4 pu?,

the global solution was studied in [14,42]. Based on the flux approximation technique introduced
in [23] coupled with the classical artificial viscosity, a sequence of the parabolic systems was
constructed in [24]

Pt + (=28u + pu)y = A(x)(p — 28)u + €pxx
(1.0.6)
(pu); + (pu? — 8u® + Pi(p, )y = A(x)(p — 28)u” + e(ou) xx

to approximate system (1.0.5), where § > O denotes a regular perturbation constant, the pertur-
bation pressure

14
t—26 _,
Pi(p,8) = fP(t)dt, (1.0.7)
25

and the perturbation initial data

(0% (x, 0, 1™ (x, 0)) = (po(x) + 28, ug(x)). (1.0.8)
Especially for the nozzle flow with the monotone cross section, which is corresponding to
a’(x) > 0, and for the general pressure function P(p), the new variable v = z — B(x) (or

s =w — C(x)) was introduced in [24,25] and the following inequality on v (or s)
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v +alx, vy +b(x,t)v < evyy, (1.0.9)

obtained from (1.0.6), where

p
z(p, u)=/
l

are Riemann invariants of (1.0.3) and [ is a constant, B(x) and C(x) are carefully selected non-
negative bounded functions of the space variable x to control the nonlinear functions A(x).

We can obtain the estimate v < 0 and so the upper estimate 2(p%%, u®%) < B(x) (orw < C(x))
when we apply the maximum principle to (1.0.9).

At the same time, a modified Godunov scheme was introduced to construct the approxi-
mate solutions of (1.0.5) and the global existence of weak solutions of the Cauchy problem
(1.0.5)-(1.0.2) was obtained for the Laval nozzle, which is corresponding to a’(x) - x > 0, in [43]
and the general nozzle in [44] for the usual gases | <y < % The case for any y > 1 was proved
in [30] by using the method given in [24].

When A(x) =0, a(x) #0in (1.0.1), namely

p
ds—u w(p, u):/ ds+u (1.0.10)
1

or + (pu)x =0,
(1.0.11)

(pu): + (pu? + P(p))x + a(x)pulu| =0,

the theory of invariant regions can be applied directly in [14] to obtain the a-priori L™ estimate
of the approximate solutions if o (x) > 0. However, the case of «(x) < 0 is completely different
because neither the theory of invariant regions nor the maximum principle could be applied
directly. Under the condition —M < a(x) <0and y > %, a technique was introduced in [26] to
obtain the L° estimates of the approximate solutions of (1.0.11).

When A(x) # 0 and «(x) is a positive constant, the existence of global entropy solutions
for the Cauchy problem (1.0.1) and (1.0.2) in the simplest divergent nozzle (with respect to
a’(x) > 0) was first obtained in [45] for the usual gases 1 <y < g, and later, extended in [27] to
the case of y > 1, provided that the initial data are bounded and satisfy the very special conditions
z2(po(x), uo(x)) <0. When a(x) > 0 and for the Laval nozzle (a’(x) - x > 0), the uniform bound
of solutions of (1.0.1) and (1.0.2) was proved in [26], where y is limited in (3, co) for a technical
difficulty.

It is worthwhile to point out that, under suitable conditions among the initial data, a(x) and
«/(x), the initial-boundary value problem of compressible Euler equations with friction and heat-
ing

(a(x)p); + (a(x)pu), =0,
(a(x)pu); + (a(x)pu? +a(x)P)y = a'(x) P — a/a(x) pulul, (1.0.12)
(@X)E); + (@@)u(E + P))y = Ba(x)q(x) — a/a(x) pu|ul,

was studied in [1] for 1 <y < %, by using a new version of a generalized Glimm scheme,
where p, u, E are, respectively, the density, velocity, total energy and pressure of the gas, « is
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the coefficient of friction, g (x) is a given function representing the heating effect from the force
outside the nozzle.

In this paper, we apply our flux approximate method introduced in [23] to study the global
existence of the entropy solutions for the general nozzle (A(x) € L), the general coefficient
function of friction («(x) € L") and the arbitrary exponent y > 1.

We consider the viscosity-flux approximate solutions (p%¢(x, 1), u%®(x, 1)) of the Cauchy
problem

Pr + (=28u + pu)y = A(x)(p — 28)u + €pxx
(1.0.13)
(pu); + (pu? — 8u* + P1(p, 8))x = A(x)(p — 28)u? — au(x) pulu| + &(ou) xx

with the initial data (1.0.8).

An obvious advantage of this kind of approximation on the flux functions is to obtain the
positive lower bound p > 28 > 0, directly from the first equation in (1.0.13), which grantees that
the term ,ou2 = ’%2 is regular. Moreover, as proved in [23], both systems (1.0.1) and (1.0.13) have
the same Riemann invariants and the entropy equation. With the help of these special behaviors
of system (1.0.13), for any weak entropy-entropy flux pair (n(p,m), g(p,m)) of system (1.0.1)
and for a general pressure function P (p), we can easily prove that

10>, m*®), + q(p*°, m>*),  are compactin H, (R x R"),

loc

with respect to the viscosity solutions (p%¢, m%#), and do not need to introduce the viscous
periodic solutions with respect to the spatial variable x to derive the auxiliary estimate (see
(1.53) in [16]),

/ / &2 (py)?dxdt < C8?
K

for the special pressure P(p) = %p” and y > 2.
Mainly, we have the following theorems.

Theorem 1. Let P(p) = % oY,y > 3. If there exist a positive constant M and a nonnegative
function B(x) such that

OMIAC + IMlaw)] < p. [ pords <5 (10.14)
then we have
8,6 (% -
205 (x, 1), ube (x, 1)) = W —ud (e, ) <M — / B(s)ds (1.0.15)

and
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w(p‘s‘a(x,t),us‘g(X,t))=M—i—ua’e(x,t)SM-l— /X B(s)ds (1.0.16)
if the initial data
z(,o‘s’g(x,O),u‘s’s(x,O))<M—/,B(S)ds (1.0.17)
and
w(p‘s’g(x,O),u‘S’g(x,O))<M+/,B(S)ds, (1.0.18)

where 6 = y ! and (,o‘S &(x, 1), ub¢(x, 1)) are the solutions of the Cauchy problem (1.0.13) and
(1.0.18).

Theorem 2. Let P(p) = %py, 1 <y < 3. If there exist a positive constant M and a nonnegative
function B(x) such that

3_y r y—1 3
OMIAWI < 3L B0, /,B(S)ds<TM, (oM < 5T +l)ﬁ(x) (1.0.19)

then we have the same estimates given in (1.0.15) and (1.0.16), if the initial data satisfy (1.0.17)
and (1.0.18).

Theorem 3. For such functions A(x), a(x) and the initial data satisfying the conditions in The-
orems 1-2, there exists a subsequence of (,o‘s"g(x, 1), ub? (x, 1)), which converges pointwisely to
a pair of bounded functions (p(x,t),u(x,t)) as §, € tend to zero, and the limit is a weak entropy
solution of the Cauchy problem (1.0.1)-(1.0.2).

Definition 1. A pair of bounded functions (p(x, t), u(x, t)) is called a weak entropy solution of
the Cauchy problem (1.0.1)-(1.0.2) if

I52 I pr + (o) — S (pu)pdixdr + [ po(x) (x, 0)dx =0,

Jo% [22, pud + (pu? + P(p)dy — (48 pu? + a(x) pulul)pdxdt (1.0.20)
+ [0, po(®X)uo(x)$ (x, 0)dx =0

holds for all test function ¢ € Cé (R x R™) and

J&2 I n(o. m)gy +q(p. mpy — (S8 pu + erx) pulul)n(p. m),
o (1.0.21)

() Pu r](p m)m¢pdxdt >0
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holds for any non-negative test function ¢ € CG°(R x RT — {t =0}), where m = pu and (1, q)
is a pair of convex entropy-entropy flux of system (1.0.1).

Finally, about the isentropic isothermal system, which is corresponding to the case of y =1,

we improve the existence result of the bounded entropy solutions, given in [28], where the L™
bound depends on the time ¢, and obtain the following

Theorem 4. Let P(p) = p and a(x) > 0 be a continuous function in R, A(x) = _dw e LY(R)

a(x)
and a(x) € L' (R). Moreover, if
1
A1) < T le(X) 1Ry < ) (1.0.22)
and the bounded initial data satisfy
In(po(¥)a(x)) — uo(x) < M —3( A1 gy + (D) L1 &)
(1.0.23)

In(po(x)a(x)) +uo(x) <M,

where M > 1 is a constant, then the Cauchy problem (1.0.1)-(1.0.2) has a bounded weak solution
(p, u), which has the following uniform bound

In(pa(x)) —u < M,
(1.0.24)
In(pa(x)) +u < M +3( AW 11 gy + ()] 1 (g)-

The arrangement of this paper is as follows: in Section 2, we introduce our main ideas how
to apply the maximum principle coupled with the flux-viscosity approximation to obtain the L
estimates of approximate solutions. In Sections 3-4, we give the details to deduce the inequal-
ities (2.0.12) in four different regions G; of (x,?): where G| = {(x,t) : a(x) > 0, A(x) > 0},
Gr={(x,t):a(x)>0,A(x) <0},Gz3={(x,1) :a(x) <0,A(x) >0} and G4 = {(x,1) : a(x) <
0, A(x) < 0} respectively. In Section 5, we prove the pointwise convergence of the approximation
solutions by using the compactness framework given in [16,17] from the compensated compact-
ness theory and obtain the proof of Theorem 3.

Finally we give the proof of Theorem 4 in Section 6. Since the case of y = 1 is different from
that of y > 1, in this section, we still adopt the technique given in [28] and rewrite (1.0.1) as
follows

vr + (vu)y =0
(1.0.25)
(vu); + (vu? +v)x + AX)v + a(x)vulu| =0,

where the new variable v = pa(x). By introducing the viscosity parameter ¢ > 0 and flux-
approximation parameter § > 0 to System (1.0.25), we study the following parabolic system

v+ (v —28)u)y = €vxx
(1.0.26)
(vu); + (v —&u? +v—28Inv), + A% (x)v + o’ (X)vulu| = (Vi) .
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The technique to prove Theorems 1-2 can be similarly applied to obtain the uniformly, time-
independent L*° estimates (1.0.24) of the viscosity solutions, and the convergence framework
from the compensated compactness theory deduces the proof of Theorem 4.
2. Preliminary
In this section, we introduce the main ideas to prove Theorems 1-2.
Multiplying (1.0.13) by (%—’;’, g%) and ( o 8m) respectively, where (w, z) are given in
(1.0.10), we obtain
w; + Agwx
= eWar + oty = 5 (2P 4 0P} 2.0.1)
TAGX)(p — 23)14—”;(” — a(x)ulul
and
z + A2y
= &2+ T Pxix = 5 s QP+ 0 PP (2.02)
TAGX)(p — 28)uVP ©) 4 o Gulul,

where k‘f, Ag are two eigenvalues of (1.0.13)

m p—28 m p—28
x‘;:;_ p Vv P'(p), /\g=;+ . P'(p). (2.0.3)

Letting z = B(x) + v in (2.0.2), where B(x) = M — ffoo B(s)ds, we have

v+ (= 22 PT0)) (v + B'(x)) — A (p — 28)u 22 — ar(x)ulul

(2.0.4)
= svux +8B"() + Lo + 0 B'(¥) = S5 QP 4 p P
or
— P/
v+ (0 — 2P, — B'(1)(B) +v — [ Yo dp)
—B'(0) 222 P(p) — A (p — 20)u T2 — a(xyulul
(2.0.5)
4p./P 20/ P

= EUxx — 5 2\/P/—(2P/+,0P”)[,0x 2?) +pSvp//leB (x) + (263/+p(pp//B ()%

—HE‘BH()C) + 28;0x vy + 2P’fp(lf”B (x)2
or
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v+ a(x, vy + b, v+ [~ 3542 B'(x)* — eB"(x) — £1B(x) B' ()] < £v3s

— [/ 2 dpB () + (1 = e) BB () + B'(x)(p — 28) V2 2.0.6)
+AE) (p = 28T+ a()ulul,
where £; > 0 is a suitable small constant, a(x,t) = u — p_TE‘S./P’(p) — %px and b(x,t) =

—B'(x).
Similarly, letting w = C(x) 4 vy in (2.0.1), where C(x) = M + ffoo B(s)ds, we have

v+ @+ 222 PT0) (i + C'(0) = A (p — 28)u 22 + ar(x)ulul

= £V1e +6C"(0) + T oxvi + T0:C'X) = S5 P + p Py =
or
iy + (+ 2 PT)vry + C()(CE) + v — [ YD)
+C'0) 222 YPTp) — A (p — 280D 1 a(yulul
(2.0.8)
= ev1ar = iy P+ PP = S 0.C' (1) + GRS O ()]
+6C" () + 2 por + 2D 0 (x)2
or
v +ar(x, i + b1 (x, Huy + [— éi,%C (X)? — eC"(x) 4+ £, C(x)C'(x)]
< oo+ 2 LdpC ) — (1= ) CC' W) - o 22 (209)

+A@)(p = 20)ur T — o (oyulul,

where €1 > 0 is a suitable small constant, aj(x,t) =u + p_TE‘S«/ P'(p) — %px and bi(x,t) =
C'(x).

Using the first equation in (1.0.13), we have the a priori estimate p > 2§. Since B(x) is strictly
positive, we can choose B(x) to be smooth enough, ¢ = 0(5) and suitable relation between ¢ and
&1 such that the following terms on the left-hand side of (2.0.6) and (2.0.9)

2e+/P’(p)

3P 1 op” B'(x)* —¢B"(x) — 1 B(x)B'(x) 2 0 (2.0.10)
0

and

2e+/P'(p)

_prc’u)2 —eC"(x) +£1C(x)C'(x) = 0. (2.0.11)
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With the help of the special structures of B(x) =M — [*__ B(s)ds, C(x) =M+ [*__ B(s)ds,

by carefully analyzing the relations among A(x), o(x) and flp —VPp/(p)dp, we obtain in different
regions G;,i =1, 2, 3, 4, the following inequalities on v and v; respectively

v t+a(x, vy +b(x, v+ c(x, vy < EVyy,
(2.0.12)
vir +Har(x, vy +b1(x, vy +c1(x, v < V1,

where the coefficient functions b(x, 1), c(x,t), b1(x,t),c1(x,t) could be different in different

regions G, but there’s always c(x,7) <0, ci(x,?) <0; and the regions G| = {(x,1) : ¢(x) >

0,A(x) >0}, Gr={(x,t) :a(x) >0,A(x) <0}, G3 ={(x,1) :a(x) <0,A(x) >0} and G4 =

{(x,1) :a(x) <0, A(x) <0} respectively. So the maximum principle (see [22] or [14] for the

details) on nonlinear coupled parabolic inequalities (2.0.12) gives us the estimates v(x, ) <

0, v1(x, t) <0 and the upper bounds of z and w. This could deduce the Proofs of Theorems 1-2.
The details will be given in the following several sections.

3. Proof of Theorem 1: the case of y >3

In this section, we shall prove Theorem 1. As introduced in Section 2, we will give the details
how to obtain the coupled inequalities in (2.0.12).
When P(p) = %py, y >3, we choose [ = 2§, then by using

—(p 29X for  y >3, (3.0.1)
P

P
! _ZS)JPp(m S /Jf; O gy < (p— 25y YT @
28

we have the following estimates on the terms in (2.0.6) and in (2.0.9) respectively

L=— [P apB (x) + (1 —e1)Bx)B'(x)
+B'(x)(p — 28) Y22 1 A (p — 20)u 2 + o (oyulul (3.0.2)

< (1= e)B)B'() + A (p — 20)u¥"2 4 a(xyulul

and

Ly = fP ¥E2dpC! (x) = (1 = e C T (x) = C'(x) (p — 28) L2
+A)(p — 20)u 2 — o (yulul (3.0.3)

<—(1—e)C@)C'(x) + A()(p — 25)u—'Pp/(p) — o (x)uful.

10
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3.1. The case of a(x) > 0; A(x) >0

Let a(x) > 0, A(x) > 0. First, at the points (x, t), where v| + 2ffoo,6(s)ds < 0, we have
from (3.0.2) that

L <(1-e)B@)B' @)+ A)(p — 28" + ar(x)ulul
= (1 - enB@)B'(@) + A (p — 28) 5 2 (w — 2) + fa () (w — 2)|w — 2|

= AW)(p —28)Y5 2 (v —v) + (1 — 1) B(x)B'(x)

+AE@)(p - 28) LD (C(x) - B(x))

@ — v+ 21 B — v +2 [* ps)ds

< AP~ 28 5D ()~ v)) — (1 = e)BONM — [~ Bis)ds)
+A@ (20D [£ p(s)ds — Ja(olv —v+2 7 Bs)dsly
< AW~ 2V v — ) — (1= e)BIM — [*, Bs)ds) .
+0Ax) [* B(s)ds [5 ”;Tds ra@)lv —v+2 [ B(s)ds|v

=—Ax)(p —28)~ P (p —v) = (1L =—e)BO)M — [T B(s)ds)

+30A(x) [* o B$)ds(w +2) — a()vr —v+2 [ B(s)ds|v
— AW —28) YDy~ vy) — (1 = eBEOM — [* f(s)ds)
+50Ax) [1 B(s)ds(vi + v+ C(x) + B(x) — ja(x)|vy —v+2 [ B(s)ds|v
= (J0AW) 5 Bs)ds + Ax)(p — 26) L5 D)y,
+(L6AC) [* Bls)ds — A (o — 28) Y52 — Loy — v +2 5 B(s)ds]
—((1—eD)B)M — [ B(s)ds) —OMA(x) [ B(s)ds),

where

—((1—eD)B)M — [ B(s)ds) —OMA(x) [* B(s)ds)

<—(ZBx) —OMAW)BX@)|L1(r) <O,

(3.1.2)

for a small &, due to the conditions [B(x)|1(g) < % and M A(x) < B(x) in Theorem 1. There-
fore we obtain the following inequality from (2.0.6), (2.0.10), (3.0.2), (3.1.1) and (3.1.2)

11
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v +alx, vy +1(x, v+ DL (x, 1)v) < evyy, (3.1.3)

where [1(x, 1), [r(x, t) <0 are suitable functions.
Second, at the points (x, ), where v| + 2ffoo B(s)ds >0,

L = AW)(p —28) Y532 (v = v) + (1 — e B(x) B'(x)

+A) (0 — 28) Y52 (C(x) — B(x)

+ra@) (v —v+2 " B)ds) vy —v+2 [* B(s)ds]

< A (p —20) Y52 (01 —v) — (1 — e)BC)M — [* B(s)ds)
+AMX)(p — 25)—“’,,"” [ Bs)ds — fa(o)lvr —v+2 [* B(s)dsv
o) +2 5 Bs)ds)(vr +2 5 B(s)ds + [v])

<l3(x. 0 + A (p — 28) Y5 2 v — (1 — e )M — [ B(s)ds)

FOAW) [* BGs)ds [ a5 + Ya) v +2 [ B(s)ds)>

N

— 3, v+ A (0 — 28 0Dy, — (1 —enBE)M — [* B(5)ds)
H10AM) [T B(s)ds (v +vi +2M) +a(x)(Gor + [T Bs)ds)vy +a(x)([* ., B(s)ds)?

= (A@)(p =20 Y52 + L0 A(x) [* B(s)ds + Fa()vr + ) [* Bs)ds)v)

Hla(x, v — (1 — ) BE)M — [2 B(s)ds) +OMA(x) [~ B(s)ds +a(x)(f* Bs)ds)?,
(3.1.4)
where [3(x, t), l4(x, t) are suitable functions. Since v > —2 ffoo B(s)ds, we know that the co-
efficient before v; is nonnegative and

—(1—eDB@)M — [T B(s)ds) +OMA(x) [~ B(s)ds +a(x)([* B(s)ds)?
(3.1.5)
<= B(x) +OMAWIBO)I L1 (k) + 5 Ma()BG)| L1 () <O
due to the conditions

BOIiwy <%, OMAR) + 3Ma(x) < B(x) (3.1.6)

in Theorem 1. Therefore we also obtain the inequality from (2.0.6), (2.0.10), (3.0.2), (3.1.4) and
(3.1.5)

v +alx, vy +Is(x, v + le(x, vy < €vyy, (3.1.7)
where Is(x, 1), lg(x, t) <0 are suitable functions.

12
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Similarly, at the points (x, ¢), where o(x) > 0 and A(x) > 0, we have

Li = =1 = e)CIC () + AC)(p = 28)u 2 — a(xulul
=—(1—eNCEC' ™) + A (0 — 26X w — (5 0 dp) — ()l (w — )

<—(1—e)CC'@) + AW (0 — 2022 ) + C(x)

—La(@)|ul(v; — v+ Cx) — B(x))

<—(1—eNC@®)C'(x) +AX)(p — 25)#;@) o

+OA(X)C(x) [B W — La@)ul(v) —v)
= —(1 = eNCWP) + AW (p - 28) Y0y,
+30AX)C) (W +2) — Jar(x)|ul(v1 —v)
= (1= eCWPE) + A (p — 28) L2y,
+10A)CE) (W +v1 + C(x) + B(x)) — La(0)lul(v) —v)
= (AW (p =28 Y22 4 16 A(0)C(x) - Lar(o)lulyy
+BACE) + baluhv — (1 - e)B) — IMAGE)C @)
< (AP - 2D L 1hA@C(x) - Ja)lulvy
+(30A(X)C(x) + For(x)|ul)v
(3.1.8)

due to OM A(x) < B(x). So, we have the following inequality from (2.0.9), (2.0.11), (3.0.3) and
(3.1.8)

vir +a1(x, v + 7 (x, v +Ig(x, vy < EViy, (3.1.9)
where I7(x,t) <0, [g(x, t) are suitable functions.
3.2. The case of a(x) >0; A(x) <0

Let a(x) > 0, A(x) < 0. First, at the points (x, t), where v; + 2ffoo,3(s)ds > 0, we have
from (3.0.2) that

13
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L= (1= enB@B @)+ A@)(p — 20)u L

+ra) (v —v+2 " B@s)ds)|vr —v+2 [T B(s)ds]

< (1= e B@)B'(x) + AWx) (p — 28) Y22 ([ Y2 g5 — )
@l —v+2 " B(s)dslv

@)@ +2 [ B)ds) i +2 [ Bls)ds + [v])

< (1= e)B)B'(x) — A)(p = 28) X2 (v + B(x)

—la@)vr —v 42" Bs)dslv

() @1 +2 [1 BE)ds) w1 +2 [* B(s)ds + [v])

= (1 =D BM)B'(x) = A (p — 26) X520 — 0 A0 B(x) [15 L ds
—je@lvr—v+2 1 B(s)dslv

+3a() @1 +2 [1 BE)ds) w1 +2 [* B(s)ds + [v])

(3.2.1)

=(1—-&)Bx)B'(x) — A(x)(p — 28)—‘};('0)v — %GA(x)B(x)(w +2)
—ta@)|vy —v 42" Bs)dslv
+ie@) i +2 [ Bs)ds) (v +2 [ B(s)ds + [v])

=—(1—e)BE)Bx) — AX)(p — 28)@ v — $0AX)B(x) (v + vy +2M)
—ta@lvr—v+2 " BE)ds|v+ fa ()i +2 [ Bs)ds)|v]
+(qu1+ [T Bs)ds)a(x)vr +a() ([~ B(s)ds)?
= —lo(x, t)v — Lip(x, )y — (1 — ) B(x) + OMA(x)) B(x) + a(x) ([ B(5)ds)>
where
lo(x, 1) = 30 A(X) B(x) — (Gu1 + [* B(s)ds)a(x)
=10AM)B() — (1 +2 1 B()ds)a(x) — Sa(x) [* B(s)ds <0 ¢22
and
—((1 = e)BE) + OMAX))B(x) + a(x) ([~ B(s)ds)>
<—((1—e)BE) +OMAE)M — [* B(s)ds) + 3 Ma(x)| )11 g (3.2.3)
<M1 —e)Bx) +OMAX) + IMa(x) <0

due to the conditions
M 1
B L1(r) < 5 OM|A(x)| + EM(X(X) < Bx).
Therefore we have

14
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v +a(x, vy +lo(x, v +lo(x, 1)vy < evyy, (3.2.4)

where lg(x, t), l10(x, t) <0 are suitable functions.
Second, at the points (x, ¢), where v + fooo B(s)ds <0, we have from (3.0.2) that

L<(—-g)Bx)B(x)+AX)(p— 26)um+a(x)u|u|

= —eNBXx)B'(x) + A(x)(p — 23)‘/W(fp */f”Td —2)+ @)W —)|w —z|
< —enNBx)B'(x) = A(x)(p — 28)@(1) + B(x)) + o (x)(w — 2)|w — 2
<(1—e)Bx)B'(x) — AX)(p — 25)W —0A)B(x) [5 LTS g
+lay @ —v+2 1 B)ds) v —v+2 [ B(s)ds]

< (1 —&1)Bx)B'(x) — A(x)(p — 28)@12 — 30A@)B(x)(w +2)
—ta@)vr —v 42" Bs)dslv

=(1—&)Bx)B'(x) — A(x)(p — 23)@1) —10A)B() (v +v1 +2M)
@l —v+2 " B(s)dslv

= —(A(x)(p — 23)@ +10A@) B

—L0A)B(x)v1 — (1 — e B(x) +OMA(x))B(x)

—la@)v —v+2 " Bs)dslv

< —(A(p ~ 2022 1 1A By

—la@)vr —v+2 " B(s)dslv — 10Ax)B(x)vy.
(3.2.5)

Therefore we have also a similar inequality
vr +a(x, vy +hi(x, 1)v+la(x, 1)vr < vy, (3.2.6)

where [11(x, 1), [12(x, t) <0 are suitable functions.
Similarly, at the points (x, ¢), where o(x) > 0 and A(x) <0, we have from (3.0.3) that

Ly = AG)(p — 28022 _ o (xyulul

— (A®(p 292D )i -2

= L(AX)(p — 23)@ —a@)|u))(vy —v+C(x) — B(x)) o
< 3(A@)(p — 25)W a(x)|ul)(vy — v).

15
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So, we have the following inequality from (2.0.9), (2.0.11), (3.0.3) and (3.2.7)

v+ a1 (x, v + 130, )v + L (x, Doy < ey, (3.2.8)
where [13(x, 1) <0,1l14(x, t) are suitable functions.
3.3. The case of a(x) <0; A(x) >0

Let a(x) <0, A(x) > 0. First, at the points (x, 1), where B(x) < [} st we have from
(3.0.2) that

L=(1-&)Bx)B'(x) +A(x)(p - 25)14@ + o (x)u|u

=(1—&1)B(x)B'(x) + A(x)(p — 23)W 9

—a(@)(z — [f; 2 ds)lz — 15 ds]

< AW (p —28) Y52 (01 —v) + (1 — £1) B@) B (x)

+A(x)(p —28)~ P (p (C(x) = B(x))

—a(x)|B(x) + v — [5 VPS(Y ds|v

=—AX)(p — 28)”’(” —v) = (1 —e)BE)M — [*_ B(s)ds)

+AX)(p — 25)”’(" [ B)ds — a(x)|B(x) +v — [ YEO gg|y

N

< —AW(p — 295 v — ) — (1 =) BIM — [*, B(s)ds) (3.3.1)

+OAW) [* BG)ds [ ds — a(x)|B(x) + v — [ Y2 ds|v

=—AX)(p — 28)“’(" —v) = (1 —e)BEM — [*_ B(s)ds)

+10AM) [* B(s)ds(w +2) — a()|B@) +v — [ Y2 sy

= —A@)(p =205 L (0 —vp) — (1 — e )M — [* B(s)ds)
+10AM) [* B(s)ds(vi + v+ C(x) + B(x) —a(x)|B(x) +v— [5 YD ds|v

= (J0AG) [* B(s)ds + AG)(p — 28) Y52y

+(L0AW) [* B(s)ds — Ax)(p — 25)V”"’ —a(0)|Bx) +v — [ ) ggp
—((L=eNB)M — [T B(s)ds) —OMA(x) [* B(s)ds),
where

16
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(1 —eNB)M — [2 B(s)ds) —OMA(x) [~ B(s)ds

u (3.3.2)
> 5 Px) —OMAX)BX)| gy =0
due to the conditions [B(x)|.1(g) < % and OM A(x) < B(x) in Theorem 1 and
LoA) [~ B(s)ds + A(x)(p — 23)“’ ®) > 0, (33.3)
Thus, we have from (3.3.1)-(3.3.3) that
v +a(x, v, +1i5(x, v+ Lig(x, 1)vy < EVyy, (3.3.4)

where [15(x, 1), l16(x, t) < 0 are suitable functions.

Second, at the points (x, t), where B(x) > f e £it0) P ©) gy, repeating the calculations of the part
A(x) in (3.3.1), we have

L<(—-¢g)Bx)B'(x)+AX)(p— 23),4\/%
—a(x)(B(x) +v— [ ‘/IZTdS)IB(x)+U v \/PAT ds|

= (30A®) [7 Bs)ds + A (p — 28) Y5 2)

+EOAW) [* B)ds — A)(p —28)5 Ly
—((1 = eDB)M — [ Bs)ds) — OMA(x) [* B(s)ds)
—a(x)|B(x) +v — [ ) gg)y

(3.3.5)
—a()(B(x) — [5 Jdes>|B(x)+v G LEOF N
< (30AW) [ B(s)ds + A (p — 28)W
+(6AC) [* o Bls)ds — A)(p —28) L5 Py
(L= eNB)M — [* B(s)ds) —OMA(x) [~ B(s)ds)
—a(®)|BE) +v — £ YLD gy — a(x)(Bx) — [ LECgg)[]
—a () (B(x) — [5 ”’ST ds)?,
where
(1 =B M — [*_ B(s)ds) —OMA() [ B(s)ds)
—a()(B(x) — [ Y2 g5y 536

<[-(1—&)B&) + OMA(x) — a(x) B(x)]B(x)
<[~(1—e)BXx) +OMAX) — La(x)M]B(x) <0

because

17



J.J. Chen, Q.Q. Fang, C. Klingenberg et al. Journal of Differential Equations 447 (2025) 113630

2[% B(s)ds <M (3.3.7)
or
S Bs)ds <M — [ B(s)ds (33.8)
and
OMA(x) — Sa(x)M < B(s)ds (3.3.9)

given in Theorem 1. Thus we have from (3.3.5) and (3.3.6) that

v +a(x, v + 1170, v+ Lig(x, 1)vg < EVyy, (3.3.10)
where [17(x, 1), l13(x, t) < 0 are suitable functions.
Similarly, at the points (x, 1), where a(x) <0, A(x) > 0 and C(x) < 5 ¥YEE) g, we have

Ly = —(1—eC@C' ) + A (p — 28)u 22— a(oyulul

= (1= e CWC () + A (p — 28) 2Dy — [ YT

—a ()W — [§ YLD dg)|w — [ LT gy

< —(1 = )COC @) + A (p — 28) LD (v 4 C(x))

—a(x)(CE) +vi — [ LD d5)|C(x) + 1 — [ LB g

< —(1=eNCWC ) + AW — 20220, 04w C0) [ Yoy
—a(@)Cx) +vi — 5 YL g,

=—(1—e)CWBW) + AW (p — 28) Y + 10 A@)Cx)(w +2) (33.11)

—a(x)|C(x) +vi — 5 'PS(S ds|vy

=—(1—eC@PE) + A)(p —26) Yy,

+30A(X)C(x)(v+vi + C(x) + B(x))

—a()|C(x) +v1 — [ Y dg|vy

= (A (p = 28) Y72 4 J0A()C(x) —a()|C) +v1 — [ s,
+HH0AC)CY — (1 = £DB() — OMA(x)C(x)

< (A@)(p —26)Y L2 + 10 A@)C @) — a@)|C@) +v1 — [3 YEDds ),

+§19A(x)C(x)v

18
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because O M A(x) < (1 — &1)B(x) for a suitable small &1. Thus we have from (3.3.11) that

vl +ar(x, Hoie +9(x, v+ bo(x, vy < eviyy, (3.3.12)
where l19(x, t) <0, lho(x, t) are suitable functions.

Finally, at the points (x, ), where a(x) <0, A(x) >0 and C(x) > p V Ps(s ds, we have
from the calculations on the part of A(x) in (3.3.11) that

Li < (A@)(p —25) Y22 1 LA @

+%9A(x)C(x)v —((1—eBx) —OMA(x))C(x)

—a()(CE@) +v1 — [ L2 45)|C(x) + vy — [f LEE) g

< (A — 222 L 1gaw) Cru (33.13)
+§9A(x)C(x)v —((1—eBx) —OMA(x))C(x)

—a)|CG) +vi — [ P dgjvy — a(x)(C ) — [§ YLD ds)lvy]

—a(x)(C(x) — [ YEG gy,

where
~((1 = eDB) = OMAM)C(x) — a()(C(x) — [ L2 g5y
—((1 =& Bx) = OMAX)C(x) — a(x)C(x)?
(3.3.14)
= [—(1 —e)BE) + OMA(x) — a(x)C(x)]C(x)
<[—(1 —eD)Bx) +OMAX) — 3Ma(x)]C(x) <0
because
B Lir) <%, OMAK) — 3Ma(x) < f(x). (3.3.15)
Thus we have also an inequality
v Far(x, vy +hi1(x, v+ o(x, vy < &Vixy, (3.3.16)

where I (x,t) <0, (x,t) are suitable functions.
3.4. The case of a(x) <0; A(x) <0

Let w(x) <0, A(x) <O0. First, at the points (x, t), where B(x) < p v PS(S ds, we have from
(3.0.2) that
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L= (1= e)BEB'(x) + A (0 — 28)u 2 4 o (xyulul

=(1—&)Bx)B'(x) + A(x)(p — zg)m(fp S gy

(B +v — [£ D45 Bx) + v — [f LT g

<(1-e)BO)B'(x) — A (p — 28) Y22 (v + B(x)

—a(0)|B(x) +v — 5 E ggpy

< (1= e)BOB'(x) — A (p — 2820y — 9 A B(x) [ LD gy
—a(0)|B(x) + v — 5 LD gy

=(1—¢e)Bx)B'(x) — A(x)(p — 25)@,) —19A@ B +2)

—a () BO) + v — [ LT gy (3.4.1)

= (1 —enB(x)B'(x) — A)(p — 28) Y22y — LA B (v + vy +2M)

—a(x)|B(x) +v — 5 LS gy

— —(A()(p — 25)@ +10A@) B
—%GA(X)B(x)vl —((1—e)Bx)+0MA(x))B(x)
—a(®)|B(x) +v — 5 YE ggpy

< —(A@(p— 28D 4 oA B

—10AM) BV —a(@)|BX) + v — [§ LD g,
where ——9A(x)B(x) > (. Thus we obtain

v +a(x, vy + 3 (x, v + balx, vy < vy, (3.4.2)

where Ip3(x, t), lp4(x, t) < 0 are suitable functions.
p JVP'(s)
A

Second, at the points (x, #), where B(x) > ds, we have

L <(1—e)B@)B' () + A)(p — 28u¥2
—a(x)(B(x) +v— [ Vlf(s ds)|B(x) +v — [y ‘If(s ds|
< —(A@)(p =22 4 Lo AG) )

(34.3)
—30AX)B(x)vi — ((1 —£1)B(x) + O MA(x)) B(x)

—a(0)[B(x) +v — [ D gsjp — a(x)(B(x) — [ S ds)|l
—a(x)(B(x) — [ Y20 ds)?,
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where

—((1 = eDB() +OMAX)B(x) — a(x)(B(x) — [§ Y2 g5
< —((1 —e)B(x) + OMA(x))B(x) — a(x) B(x)? (3.4.4)
<[—((1 —e)B(x) +OMA(x) — SMa(x)]B(x) <0.

Thus we obtain the following inequality
U +a(x, vy + bs(x, 1)v + le(x, 1)v1 < Evxy, (3.4.5)
where ly5(x, 1), lr6(x, t) < 0 are suitable functions.
Similarly, at the points (x, ¢), where a(x) <0, A(x) <0and C(x) < fp ¥ PS(Y ds, we have
< (1= eNCE)C' () + A@)(p — 20)u "2 — a(xyulul

=—(1-eDCE)C'(x) + A (p — 25)—‘P(p(w —2)
—oz(x)(w fp Wd )|w fp W

) (3.4.6)
=~ =eNCEOC () + 34 (p - 25>M(v1 —v+C) - B(x))
—a@)(C0) +v1 = [ YR d)|C) + v = [f T as
< 3AM(p — 2855 P(p (v1 = v) —@(X)|C(x) +v1 — [33 stlv
Thus we have
vir +ai(x, i +br(x, Hv + g (x, 1)v) < EV1xy, (3.4.7)

where Ip7(x,t) <0, lpg(x, t) are suitable functions.
Finally, at the points (x, ), where a(x) <0, A(x) <0 and C(x) > 5 ¥ZS) s, we have
from (3.4.6) that
Ly <—(1—e)Cx)C(x) + AX)(p — za)um o (x)ulu
= —(1 - )CEC () + LA (0 — 282D (1 — 2
—a()w — [ L2 ds)|w - [f; L2 g
=—(1—-e)CE)C'(x) + 3Ax)(p — 25)@(1) —v+C(x)— B(x)) (3.4.8)
—a(x)(C@) +v1 — [ LD d5)|Cx) +v1 — [ Y g
<—(1—e)C@C'(x) — FAX)(p — 2fS)\/W — b (x,t)v)
~a(x)(Cw) - [f; YL ds)?,
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where

—(1 = D) CX)C'(x) — a(X)(Cx) — [ LT g)2
<—(1—e)BE)C(x) —a(x)C(x)?

(3.4.9)
=(—1-e)Bx) —a(x)(M + ffoo B(s)ds))C (x)
< (=(I—e)B(x) — 3Ma(x))C(x) <0.

Thus we have
vy +ar(x, e +lo(x, vy +130(x, v < EV1xx, (3.4.10)

where lr9(x, 1), [30(x, t) <0 are suitable functions, which completes the Proof of Theorem 1.
4. Proof of Theorem 2: the case of 1 <y <3

In this section, we shall prove Theorem 2. As introduced in Section 2, we will only give the
details how to obtain the coupled inequalities in (2.0.12).
When P(p) = %p”, 1 <y <3, we choose / = 0, then the Riemann invariants of (1.0.3) are

1 0 1 0
z(p,u)=§p —u, w(p,u)=§p +u. 4.0.1)
We may rewrite (2.0.6) and (2.0.9) as follows

v +a(x, vy +b(x, t)v
=20 B ()2 — 6B (x) — 61 B(x) B'(x) + 28 Y22 /(1)
< eves — f YO o B (x) 4+ (1 - £) BB (x) + B'(x)VP(p) (4.0.2)
+A@) (0 — 260D 1 o (yulul
= evex + L2307 B'(x) + (1 — £) B()B'(x) + A(x)(p — 23)u@ + a()ulul
and
V1 + ar (x. Hvix + by (x, Dy

H- 2P0 02 — e () + £1C0C () — 25D 0 (1))

2P FpP”

< evie + J§ L dpC! () — (1 - e)CC () 4.0.3)
—C VPR + A (p — 28)u YD — o yulul
= EVlxx — ;—j;ﬁc/(x) —(1—e)CX)C'(x)+AX)(p — 28)u@ —a(x)ulul.

Since
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P'(p) y=3

28 — 2507 <(28)7, (4.0.4)
0

and B(x) is strictly positive, we may choose S(x) to be sufficiently smooth, ¢ = 0(§) and suitable
relation between ¢ and ¢ such that the following terms on the left-hand side of (4.0.2) and (4.0.3)

_26VPO) b B () — e BB () + 26 Y P iy > 0, (4.0.5)
2P' 4+ pP” P
_2EVPIO) 02 o) 1 C ) — 26 YR ey s 0. (4.0.6)
2P+ pP" 0
Let the terms on the right-hand side of (4.0.2) and (4.0.3) be
K =120 B'(x) + (1 — e) B) B (x) + A@) (p — 28)u L2 + a(xyulul 4.0.7)

and
Ky =—L=2pC'(x) = (1 — e)C@)C'(x) + Ax) (p — 25)uV”p) a(ulu).  (4.0.8)

By simple calculations,

K=1= 30919 (x) + (1 —e)B(x)B'(x) + A(x)(p — 28)u \/W +o(x)ulul
= VT”(w +2)B'(x) + (1 — &) B(x) B’ (x)

A BB L 4 Ly (x) (w — 2)w — 2] @09)
= 3TT”(v + v+ 2M)B(x) — (1 —e)BX)M — [* B(s)ds)

L A 2 (0 —v+2 [T B9)ds)(v + 1 +2M)

e —v+2 1 B)ds) v —v+2 [ B(s)ds|

and

Ky =—23p7C'(x) = (1 — e)C)C'(x) + AW (p — 28)u 22 — a(yulul
= —V—_3(w +2)C'(x) — (1 —e)Cx)C'(x)
JFA()c)"—Z‘SMGw—+Z — 3w —2)|w —z
(4.0.10)
= 3L @+ v +2M)BX) — (1 = DB M + [ B(s)ds)
+VT‘1A(x)”_TfS(v1 —v+2 " B(s)ds)(v+vi +2M)
— e —v+2 " B(s)ds)vy —v+2 7 B(s)ds].

We shall analyze the functions K and K point by point in the following several subsections.
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4.1. The case of a(x) > 0; A(x) >0

Let a(x) > 0, A(x) > 0. First, at the points (x, t), where v| + fooo,B(s)ds < 0, we have

from (4.0.9) that
K <32 @+v 4+ 2M)B@) — (1 —ep)(M — [* B(s)ds)
LA 2 1 — v 42 1 B(5)ds) (v + v +2M)
—ta@lvr—v+2 " Bs)ds|v
= CFLB) + 5 AW S22 [ Bs)ds — v — 2M))
—la@)vr —v 42" B(s)ds|v

+EFBE) + I AW LR Q [N B6)ds +2MD)ur + F A 52 0]

+3EMB(x) — (1 —eDBYM — [* B(s)ds) + Lt MA() 22 [ B(s)ds.

Since
vi=w—C@) =4p" +u—-Cx)=32p" —z—C(x)
=20 —v—Bx)—Cx)=2p" —v—2M,
we have from (4.1.1) that
K <GB + L AW 2 @ [ Bls)ds — v —2M))w
—ta)lv —v 427 ﬁ(s)ds|v—uA(x)p;%v1v
+CFEBE) + L A 2 1 Bs)ds)vr + Lt A(x) 252 pP)
+3LMB(x) — (1 — e)BYM — [~ B(s)ds) + Ly MA) L2 [* B(s)ds
where the coefficient before v
2B + LA R [T Bs)ds + gt A2 p? > 0
and
SEMB(x) — (1 — e)B()(M — [* B(s)ds)
+IAE MA@ R [ B(s)ds

< (B +e)MB) + (1 —en)Bx) [* B(s)ds + [* B(s)dsp(x)

BON(SE + )M + 2 —enBx) [ B(s)ds) <0
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because |0 M A(x)| < (f;g)ﬂ(x) < B(x)and 2 [*_B(s)ds < L1 M as the conditions given in

Theorem 2. Thus we have from (4.1.1)-(4.1.5) that

K <ni(x,H)v+na(x, vy, (4.1.6)
where n1(x, t), no(x, t) > 0 are two suitable functions.

Second, at the points (x, t), where vy + 2ffoo,8(s)ds > 0, we have from (4.0.9) and the
calculations on the part of A(x) in (4.1.1)-(4.1.3) that

K <3240 +2M)Bx) — (1 — eDBX)M — [~ B(s)ds)
+VT‘1A(x)P—T}5(v1 —v 42" B(s)ds) (v + vy +2M)
—je@vr —v+2 " B(s)ds|v
+ha ()1 +2 [ B)ds) (01 +2 [~ B(s)ds + [vl)
=n3(x, v + Ja () (v +2 [ B(s)ds)>

4.1.7)
+CEBE) + LA R @ [* p)ds +2M))vy + L A@) 202
+3LMB(x) — (1 —e)B)Y(M — [* B(s)ds) + Lt MA() 22 [ B(s)ds
= (n3(x, 1) — L A 2220w + jar(x) (v1 +2 [ B(s)ds)?
+CFEB) + L A 2 [ Bo)ds)vi + Lt A() 252 pf v
+3LMB(x) — (1 —eNB)Y(M — [* Bs)ds) + Lt MA() 22 [ B(s)ds

for a suitable function n3(x, t). Furthermore,

Fe@) Wi +2 [ B(s)ds)?
(4.1.8)
= 1o (X)(v1 +2 7 B(s)ds)vy + Fa(x) [* B(s)dsvr +a(x) ([, B(s)ds)?,

where v1 +2 [*__ B(s)ds > 0, and

SEMB() — (1 —eDBYM — [ B(s)ds)
+HIEMAMW R [* B(s)ds +a(0)([7, Bs)ds)?
< (S +eDMBE) + (1 —e1) [ B(s)dsB(x) (4.1.9)
+a(x) [*  BE)ds LM + 5 [ B(s)dsB(x)
< (G +eDMB() +2 7 Bs)dsB(x) <0
due to
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Y laom < BPUD gy < Lg(x),

8(y+1)
(4.1.10)
OMIAW)| < Z5B(x) < 3B(x), 1Bz < M.
Thus we have also from (4.1.7)-(4.1.9) that
K <n4(x,t)v+ns(x, t)vy, “4.1.11)
where n4(x, 1), ns(x, t) > 0 are two suitable functions.
Similarly, at the points (x, 7), where a(x) > 0, A(x) > 0, we have from (4.0.10) that
K < 3TTV(v + v+ 2M)B(x) — (1 —e)B)M + [* B(s)ds)
+L A R (0 —v+2 [T B(9)ds)(v + v1 +2M)
—la@)|ul(vy — v+ Cx) — B(x))
< B + LA 2 2‘3(2f B(s)ds + vi + 2M))v, (4.1.12)
— Yo (0)ul(vi — v)
+CLBE) + L A 2 @ 1 B(s)ds —2M))v — L A(x) 5202
SEMB(x) — (1= e)B)M + [* B(s)ds) + Lt MAG) =2 [~ B(s)ds,
where the coefficient before v
LB + L AW Q2 [* Bs)ds — 2M) + S (x)|ul
(4.1.13)
> 32 B(x) — LLOMIA(X)| = 0
because [0 MA(x)| < <3 B g(x);
—yglA(x)p_28v2§O (4.1.14)
and
T”Mﬂ(X) — (I —eDBX)M + [ B(s)ds)
+IAMAG) 2 [ B(s)ds (4.1.15)
< (Ty +e)MB(x) — (1 —e)Bx) [* B()ds + 5 f B(s)dsB(x) <0
because
1 y—1
OMA) < 2p().  |BWILig) < 5 M. (4.1.16)
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Thus we have from (4.1.12)-(4.1.15) that

Ky = ne(x, t)v+n(x, H)vy, (4.1.17)
where ng(x, t) > 0, n7(x, t) are two suitable functions.
Summing up the analysis above, at any point (x, ¢), where a(x) > 0, A(x) > 0, we obtain the
inequalities in (2.0.12).
4.2. The case of a(x) >0; A(x) <0

Let a(x) > 0, A(x) < 0. First, at the points (x, t), where v; + 2ffoo,6(s)ds < 0, we have
from (4.0.9) that

K <320+ +2M)Bx) — (1 — ) BE)M — [ B(s)ds)
YA 22 (0 — v 42 [7 B(s)ds) (v + vy +2M)
—la@)vr —v 42" Bs)dslv
= LB + L AN SR 2 [ B(s)ds — v = 2M))v @.2.1)
—ja@)v —v+2 " B(s)ds|v
+HCEEBC) + LA R @ [ p(s)ds +2M)w; + Lt A) 2202
+EMB() — (1 —eBC)M — [* p(s)ds) + LA MA) 2 [* B(s)ds,
where the coefficient before v
AW + AW SR Q[T B)ds +2M)
> 3B — L AW SR (M +2M) (4.2.2)

=L B(x) — LEOM|A(x)]| = 0

because [0 M A(x)| < ‘i;VS)ﬁ(x);

1 —
ANE—22 <0 (4.2.3)

and
3_TyMﬂ(x) —(L—e)B)(M — [~ B(s)ds)
+LEMA) R [T B(s)ds (4.2.4)

< (5 +enMBE) + (1 —e)BX) [~ B(s)ds <O
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due to ffooo B(s)ds < VTflM as given in Theorem 2. Thus we have from (4.2.1)-(4.2.4) that
K <ng(x,t)v+no(x,t)vy, 4.2.5)

where ng(x, 1), ng(x, t) > 0 are two suitable functions.
Second, the points (x, t), where vy + 2 ffoo B(s)ds > 0, we have from (4.0.9) that

K <3 @+ +2M)B@) — (1 — e (M — [* p(s)ds)
AW 22 (0 — v+ 2 1 B(5)ds) (v + v1 +2M)
—La@)lvr —v+2[* B(s)dslv

)@ +2 5 B)ds) (o1 +2 [5 Bls)ds + [v])

(4.2.6)
=nio(x, v + Ta(x) (v +2 * Bs)ds)vy
+3a(x) [1 Bls)dsvr +a(x0) (2 Bls)ds)?
+CEBO) + L AW 22 [* ) B(s)ds +2M))vr + Lt A(x) 22y
+3LMB(x) — (1 — e BYM — [~ B(s)ds) + Lyt MA) L2 [* B(s)ds
for a suitable function n1o(x, ), where to:(x) (v +2 [*_ B(s)ds) >0,
SEMB() — (1 —e)B)M — [* Bls)ds)
HEEMAG) 2[5 B(s)ds + a(x)(f7, B(s)ds)?
S HeDM+ (1 —ep) [* B6)d)BX) +a(x)([* Bs)ds)>? 42.7)
< (B FedM+ (1 —ep) [* B6)d)B@) +ax) [* Bs)dsLtM
< (5L +eDMBE) +2 [ B(s)dsp(x) <0
because
YL yom <222 g0 < ), 1BIge < LM (42.8)
y+3 4
and
LB + L AW Q2 [* B(s)ds +2M)
> 3V B(x) + Let A (L M +2M) 4.2.9)

= 2B + L20A0M = 0
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because
B "Ly, olawim <=L (42.10)
X <—M, X < ——=pBx). 2.
LI(R) 4 y+3
Thus we have from (4.2.6), (4.2.7) and (4.2.9) that

K <ni(x, v +npx, o, (4.2.11)

where ny1(x,t),n12(x, t) > 0 are two suitable functions.
Similarly, at the points (x, ¢), where a(x) > 0, A(x) <0, we have from (4.0.10) that

K1 = 324 v +2M)B() — (1 —eDBEM + [* B(s)ds)
A (p —28)YED L) ul) (v — v+ C) — B)
< CFB() — A (p —28)YE L 4 La()ful (4.2.12)
+CFB) + AW (o —2)Y02 Lo (olulyv,
+SEMB(x) — (1 — e)B()(M + [ B(s)ds),
where

S MB(x) — (1 — e (M + [~ B(s)ds)

4.2.13)
< (L +eDMB) — (1 —e)B(x) [~ B(s)ds < 0.
Thus we have from (4.2.12) and (4.2.13) that
Ki<nplx,t)v+nis(x,t)vg, 4.2.14)

where n14(x,t) > 0,n15(x, t) are two suitable functions.

Summing up the analysis above, at any point (x, ¢), where a(x) > 0, A(x) < 0, we obtain the
inequalities in (2.0.12).
4.3. The case of a(x) <0; A(x) >0

Let a(x) <0, A(x) > 0. Repeating the proof of (4.1.6), at the points (x,?), where v +
2 [*., B(s)ds >0, we have from (4.1.1) that

K <nie(x,)v+n17(x, vy, 4.3.1)
where n16(x, t), n17(x, t) > 0 are two suitable functions.
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Similarly, at the points (x, ¢), where v + 2 ffoo B(s)ds <0, we have from (4.1.7) that

K < (n3(x, 1) = L A 22200 — Ja ()1 +2 7 B(s)ds)?

FCEEB) + L A R [T B(s)ds)vn + Lt Ax) 22 pP,

+EMB) — (1= DM — [2, B(5)ds) + L MAW 22 [ B(s)ds.

By using (4.1.2), we have

—ta(x)(w +2 7 B(s)ds)?

—ta()v? —ax) [T B(s)dsvr —a@x)([* B(s)ds)?

— 1)1 (30" —v—2M) —a(x) [* B(s)dsv; —a(x)([*, B(s)ds)?.

Thus we have from (4.3.2) that

K < (n3(x, 1) = Lt A 22201 + Ja(n)v)v — gz (x)pv)

+ELBE) + LA 2 1 B9)ds + Sa () M)vy + Lt A) 222 p%

+ 3L MB(x) — (1 — e BC)M — [* B(s)ds)
+}%1MA(X)"_T38 [* o B)ds —a()([* B(s)ds)?,

where
LB + L A 2R [T B(s)ds + Sa ()M
> 27 B(x0) + La()yM =0
and
SLMB(x) — (1 —e)B()(M — [* B(s)ds)
HFMA) LR [ p(s)ds — a()(f* o B(s)ds)?
< (5L 4 e MB() + (1 — 1) [*, B(s)dsB(x)
L5 Bs)dsB) —a(x) [X B(s)ds M
< (5L 4 e MB(x) +2 [ B(s)dsB(x) <0
because
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——ot(x)M < 4 2(y+1)/3(x) < 2,3(x)

| 4.3.7)
OM|A(x)| < y+3/3(X) < 3B, 1BWILg <L M.
Thus we have also from (4.3.4)-(4.3.6) that
K <nigx,t)v+nio(x, t)vy, (4.3.8)

where n1g(x, t), n19(x, t) > 0 are two suitable functions.
To obtain a similar estimate on K1, first, repeating the proof of (4.1.17), at the points (x, t),
where —v + fooo B(s)ds <0, we have from (4.1.12) that

Ki=32 @+ +2M)Bx) — (1 — e BE)(M + [ f(s)ds)

+VT“A(x)P—TE‘S(v1 —v 42 % B(s)ds)(v+ vy +2M)

—3e@) @1 —v+2 [* B()ds) v —v+2 1 B(s)ds]

< CFB) + L A 2222 [* B(9)ds + v1 + 2M)vy (43.9)
—1a@v —v+2[* B(s)ds|vy

+ELBG) + L A R @ 1 Bs)ds —2M))w — L A(x) =202

+3EMB(x) — (1 — DM + [ B(s)ds) + Lt MAX) 2 [ B(s)ds,

and so

K1 <nyo(x, t)v+nai(x, H)vy, (4.3.10)

where nyg(x, t) > 0,n71(x, t) are two suitable functions.
Second, at the points (x, #), where —v + 2ffoo B(s)ds > 0, we have from (4.3.9) that

Ki <npn(x, vy — ra(x)(v —2 [* B(s)ds)?
+CFEB() + L A 2@ 7 Bls)ds —2M))w — Lt A(x) 2202 43.11)
SEMBX) — (1 —eDB)IM + [ Bs)ds) + Lt MAX) L2 [~ B(s)ds

for a suitable function n73(x, t). By using

v=z—Bx)=4p" —u—Bx)=3p" —w— B(x)
4.3.12)
=50’ —vi = Bx) = C) = 3p” —vi —2M,

we have
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)@ =2 [* B(s)ds)?
= —ga @) +a(x) [5 Bs)dsv —a(x)([ B(s)ds)
—3e@vGp’ — v —2M) +a(x) [ B(s)dsv —a() (1 B(s)ds)>.
Thus we have from (4.3.11) that

K1 < (no(x, 1) + ja(x)v)v) — sa(x)p’v

(4.3.13)

+(3TTVﬁ(x) + VT‘IA(x)”*Tf‘S(z [F oo B)ds —2M) + Sa ()M +a(x) [~ B(s)ds)v

+35EMB(x) — (1 — eBEIM + [+, B(s)ds)
MA@ R [* Bs)ds — a(o)([1 Bs)ds)2,
where
3L MB() — (1—eDB)(M + [~ B(s)ds)
HEAMA) L2 [ B(s)ds —a(0)([* B(s)ds)? <0
due to the proof of (4.3.6), and
LB + LA R Q2 [T B(s)ds —2M) + Ja ()M +a(x) [* Bs)ds

= _V,B( ) — —MA(X) + ZOl(X)M—}- L Ma(x)

> 3L B(x) — §35B00) — L 5L BG0) = 0
because the conditions in Theorem 2. Thus we have from (4.3.14)-(4.3.16) that
K1 < np3(x, v +nog(x, vy,

where ny3(x,t) > 0, ny4(x, t) are two suitable functions.

(4.3.14)

(4.3.15)

(4.3.16)

4.3.17)

Summing up the analysis above, at any point (x,t), where a(x) <0, A(x) > 0, we have

(2.0.12).

4.4. The case of a(x) <0; A(x) <0

Let o(x) <0, A(x) < 0. First, at the points (x, t), where v; + fooo B(s)ds > 0, repeating

the proof of (4.2.1) we have a similar inequality like (4.2.5)
K <nas(x,t)v+nae(x, v,
where ny5(x, t), nys(x, t) > 0 are two suitable functions.
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Second, at the points (x, t), where vy + fooo B(s)ds <0, repeating the proof of (4.2.6), we

have
K <ny(x,H)v — () (v +2 7 B(s)ds)>

HCFEB@) + L5 A 2@ [ Bls)ds +2M))vr + Tt A) 252 0]

+EEMB) — (1= eDBIM — [2, p(5)ds) + Lt MA@ 22 [2, B(5)ds

for a suitable function ny7(x, t). Using (4.1.2), we have

—la@) i +27,, B(s)ds)?

=—ta)v} —a@) [* B)dsvr —a(x)([* B(s)ds)?

—30@V1(Gp? —v—2M) —a(x) [ B(s)dsvi —a(x) (7 B(s)ds)>.

Thus we have from (4.4.2) that
K < (no7(x, 1) + go(x)v)v — (507 + [~ B)ds)a(x)vy
+LBE) + L A 2 2 1 Bs)ds +2M) + Sa(x) M)y

+EEMB(x) — (1 — e)B)M — [* B(s)ds) — a(x) ([~ B(s)ds)?,

where
— (350" + [~ oo B(s)ds)a(x) = 0,
B + L AR Q2 [1 Bs)ds +2M) + Ja ()M
> 2L B(x) + L A (5 M +2M) — 215 B (%)
> 3L B(x) + LPOMARX) =0
and

SEMB(x) — (1 — e M — [*_ B(s)ds) —a(x)([*, B(s)ds)? <0
due to the proof of (4.3.6). Thus we have
K < nag(x,t)v +noy(x, t)vy,
where n38(x, t), ny9(x, t) > 0 are two suitable functions.
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Similarly, at the points (x, ¢), where —v + 2 ffoo B(s)ds <0, we have from (4.0.10) that

K= 3TTV(U +v14+2M)B(x) — (1 —e) B)M + [* B(s)ds)
AW (0 =202 (0 — v+ C(x) - Bx)
L) —v+2 1 B(s)ds)lvy —v+2 [*_ Bls)ds] (4.4.9)
< nag(x, Dvr + CFLBE) — A (p = 28) Y00
+35LMB(x) — (1 — e)B)M + [* B(s)ds) < n3o(x, vy +na1(x, v,
where n30(x, £) is a suitable function, and
n31(x.0) = 2B — SAG)(p —28)Y0 2 > 0, (4.4.10)

Finally, at the points (x, ), where —v + 2ffoo B(s)ds = 0, we have from (4.0.10) and (4.3.13)
that

Ki =3 @+ v +2MB00) = (1 —eDBOM + [* p(s)ds)
+3A0)(p = 28) Y2 (0 — v+ C(x) = B)

—ta) (v —v+2 " Bs)ds) vy —v+2 [T B(s)ds]

<nxn@, v+ CEBR) — FAR) (o - 25)@)1) — Je) (=2 [ B(s)ds)? wall
+5EMB(x) — (1 —e)B)M + [* B(s)ds) -

= (n32(x. 1) + fa()v)v) + SLEMB() — (1 — e)B)M + [ B(s)ds)

—a () (2, B(s)ds)*

+CFB00) — 1A — 22D 4 ax) [* s)ds + L) Mv

for a suitable function n3(x, t), where

X MB(x) — (1 —e)B)M + [* B(s)ds) — a(x) ([~ B(s)ds) <0 (4.4.12)

due to the proof of (4.3.6), and

B — 1AW (0 - 280D o) [* p(s)ds + La)M
(4.4.13)

>3V B(x) +ax) [ Bs)ds + a(x)M =0
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due to the proof of (4.3.16). Thus for all points (x, ), where a(x) <0, A(x) <0, we have the
inequality

K1 <n33(x, vy +n34(x, v, n3a(x, 1) >0 (4.4.14)
and so the inequalities in (2.0.12), which complete the Proof of Theorem 2.
5. Proof of Theorem 3: existence of global solutions
In this section, we shall prove that there exists a subsequence of the viscosity-flux approximate
solutions (p%¢(x, 1), u®?(x, 1)) of the Cauchy problem (1.0.13) and (1.0.8), which converges
pointwisely to a pair of bounded functions (p(x,?), u(x, t)) as §, ¢ tend to zero, and the limit is
a weak entropy solution of the Cauchy problem (1.0.1)-(1.0.2).

First of all, from the upper estimates (1.0.17) and (1.0.18) given in Theorems 1-2, we can use
the Riemann invariants (1.0.10) to obtain the estimate on (0% (x, 1), u®®(x, 1)) directly

28 < p%(x, 1) < M(x), [udF(x,0)| < M(x), (5.0.1)
where M (x) is a nonnegative, bounded function, which depends on the bound of the initial data,

but independent of ¢, §.
By simple calculations, for smooth solutions, the following two systems

pr + (=28u + pu), =0,

(5.0.2)
(pu); + (pu* — 8u* + Py (p, 8)), =0,
where Pj(p, 8) being given in (1.0.7), and
ot + (=28u + pu)y =0
P
t—28)P'(t (5.0.3)
u;s +(%u2+f%dt)x =0

26

are equivalent, and particularly, both systems have the same entropy-entropy flux pairs. Thus any
entropy-entropy flux pair (n(p, m), g(p, m)) of system (5.0.2) satisfies the additional system

(0 —28)P'(p)
qp =un, + Tnu’ qu=(p — 25)7),0 +uny. (5.04)

Eliminating the g from (5.0.4), we have

P'(p)
Npp = ,02 Nuu - (505)

Therefore, system (5.0.2) and system (1.0.3) have the same entropies [23].
We recall that for the case of polytropic gas, any weak entropy [5] can be represented by the
following explicit formula:
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1

mip.w=p [1e0 =Pl + o - 20 0y, (5.0.6)
0
where 6 = Y-, A = 2( 1) and g is a smooth function.

Secondly, for general pressure P(p), we have the following lemma (See also Theorem 2 in

(23D

Lemma 5. Suppose the viscosity-flux approximate solutions (p>¢(x, t), u®*(x, 1)) of the Cauchy
problem (1.0.13) and (1.0.8) are uniformly bounded in L*° space, and the limit

(P'(0))? _

00 PP (p) GOD

where e > 0 is a constant. If the weak entropy-entropy flux pair (n(p,u),q(p,u)) of system
(1.0.3) is in the form n(p,u) = pH(p,u) and H,(p,u), Hy, (0, u), Hywu(p, u) are continuous
on0<p <My, |u| <M, where M is a positive constant, then

e (0% (e, 1), u®E (x, 1) 4+ g (p%F (x, 1), u® (x, 1)) (5.0.8)

is compact in Hj (R x RY)ase= o(P (25)) and § tends to zero, with respect to the viscosity
solutions (p‘s’e(x, 1), ub¢(x,t) of the Cauchy problem (1.0.13) and (1.0.8).

Proof of Lemma 5. One can easily check that system (5.0.2) has a convex entropy

0
2 —HP'(t
N +/ =-nF®, (5.0.9)
2 t
with corresponding entropy flux
/
t
q*_‘%——Jr (0 —25)/ @ 4 (5.0.10)
To show that
e(ox,mx) - V20" (0,m) - (px, m)" (5.0.11)
is bounded in L}OC(R x RT), we multiply (1.0.13) by (n;, ;). It follows that
P (p) '(p)
p ,02 +eé _[_Px —my>=¢ pp ,of + epu X (5.0.12)
is bounded in L}, (R x RT).
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We rewrite system (1.0.13) by the following equivalent system
P+ ((p —28)u)y = A(x)(p — 28)u + pxx
P
[~ 28)P(t 2% (5.0.13)
ur+ (%MZ +/ (t#dt)x = EUxx + ;pxux —a(x)|ulu.
28

Let (n(p,u),q(p,u)), (n(p,u),q1(p, u, 5)) be the entropy-entropy flux pairs of systems (1.0.3),
(5.0.2) respectively since they have the same entropy equation (5.0.5), but different entropy
fluxes.

Multiplying system (5.0.13) by (#,, 7,), we obtain the relation

n(p,m); +q(p,m)y
= en(p.m)xx = (q1(p,m,8) — g (o, m))x + 5 1upuitx (5.0.14)
— eMpppr + 2Mpupxitx + Muuty) + AX)(p = 28)un, — a(x)|ulun,.
By using the entropy equation (5.0.5), we obtain

ne = J§ B0t wydr + g(u)

(5.0.15)
= f()p Flo) Hyy (7, u)dt + g(u)

T

since n(p,u) = pH(p, u), where g(u) is an arbitrary smooth function. Furthermore, by integrat-
ing (5.0.15), we get

p ot
P/
n=// © gt wydrdt + g(u)p (5.0.16)
T
0 0
since 7(0, u) = 0. Then
P tP/
N = / / t(f) Hyu(t, w)ddt + ') p (5.0.17)
00
and
P'(1) ,
Mou = | = Hua (7. 0)d7 + 8 (w). (5.0.18)

0

By substituting (5.0.17), (5.0.18) into (5.0.14) and by using entropy equation (5.0.5), we get the
following equality

ne,m)+q(p,m)y =101+ h+ I, (5.0.19)
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where
I] =3n(p,m)xx _(ql(pam’s)_CI(P,m))x, (5020)
_ P

L= _8(— Hyu(p, M),OX + pHyyuy, ) +AX)(p— 28)"”7,0 — o (x)|uluny, (5.0.21)

r P'(7) 1 - P'(1)
I = —28(/ — Hyyu(t,w)dt — —// Hyuu (T, w)dTdt) pyity. (5.0.22)

T P T
0 00

For any ¢ € C{(R x RT) with § = supp ¢,

—00

<é| (nppx + Httpux)¢x|dth

| f f en(p, m)xddxdt| = | / / 6(oH (p, u))xbrdxdi]
0 —00

(5.0.23)

l—

=M[([ [se=,7 B2 (p2 Py dxdi)

+([ [se*p*utdxdt)? ](ff5(¢x)2dxdt)% 50

P’(26)) — 0 as &,8 — 0. Since q1(p,m, 8) — q(p, m) tends to zero as §

since & = o(; P,(p )
tends to zero, we get the compactness of /7 in Hloc (R x R™). Using (5.0.12), we know that I is
bounded in L} (R x RT), and hence compact in Wl;CI’“(R x R™), for some « € (1, 2), by the
Sobolev embedding theorems. Using the Vol’pert theorem and the limit given in (5.0.7), we have

the following estimates

¢ 22 Hy (v, wydt) < M [ £ 2dr) < Mi/P (),

L5 Jo BB Hu (v, wydedt| < M| [ [y B dedi| < Mip/PT(p).

(5.0.24)

Using these estimates, we get the boundedness of I3in L (R x R™) and hence the compactness

loc
in W,,."“(R x R™), for some « € (1,2), by the Sobolev embedding theorems.

Therefore the right-hand side of (5.0.19) is compact in W, 1"‘(R x RT) for some o €
(1,2), but the left-hand side is bounded in W~1°(R x R*). This implies the compactness
of n(p>¢, m®®), + q(p*, m?), in Hl;cl (R x R™) and hence the proof of Lemma 5 by the Murat
theorem [36].

It is clear that the condition (5.0.7) is true for the polytropic gas, P(p) = % pY, and the
weak entropy given in (5.0.6) satisfies the conditions in Lemma 5. Then there exists a subse-
quence of (p%% (x, 1), u®%(x, 1)), which converges pointwisely to a pair of bounded functions
(p(x,1),u(x,t)) as &, € tend to zero by using the compactness framework given in [3,5,16] for
1 <y <3 and in [17] for y > 3. It is easy to prove that the limit (p(x, ), u(x,t)) satisfies
(1.0.20). Moreover, for any weak convex entropy-entropy flux pair (n(p, u), g(p, u)) of system
(1.0.3), we multiply (1.0.13) by (1,5, /) to obtain that

38



J.J. Chen, Q.Q. Fang, C. Klingenberg et al. Journal of Differential Equations 447 (2025) 113630

e (P28 (x, 1), ub 8 (x, 1)) + g (0% (x, 1), ud€ (x, 1)) + 8q1x (0% (x, 1), u> (x, 1))

8, R R )
=en(p®e, m® %) —e(py®,my®) - V2 (%8, m>) - (py*, ms

,8)T
+A@X) (P> = 28)u’ 1, (07, mb)

F(AX) (P = 28) ) — a(x)m®€|u’# )y (0%, m€)
<en(p®f,m* ) + AX) (0% —28)un, (0%, m**)

+(A)(p5 = 28) (€)% — a(x)m® [u ) (p, m®),

(5.0.25)

where g + 84 is the entropy flux of system (5.0.2) corresponding to the entropy 7. Thus the
entropy inequality (1.0.21) is proved if we multiply a test function to (5.0.25) and let €, § go to

zero. Theorem 3 is proved.

6. Proof of Theorem 4

In this section, we shall prove Theorem 4. By simple calculations, the two eigenvalues of

(1.0.25) are
M=u—1, r=u+1
with corresponding Riemanna invariants
m m
zwo,m)=Inv——, w(l,m)=Inv+ —,
v v

where m = vu.
We consider the Cauchy problem of the parabolic system (1.0.26) with initial data

(w(x,0), v(x, 0u(x, 0)) = (V) (x), vd(X)uf(x)),

where

W (x), u(x)) = (a(x)po(x) + 28, up(x)) * G°,
(A°(x), &’ (x)) = (A(x), 2 (x)) * G°,

and G? is a mollifier.
Then by the conditions given in Theorem 4, we have

(W) (x), u(x)) € C®(R) x C®(R),
V() =28, vh(x)+ [ud(x) <M

and
Ad(x)e C®(R)NLY(R), o®(x)eC®(R)NL(R).
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Similarly, as did in Section 2, we multiply (1.0.26) by (wy, wy,) and (zy, Zm), respectively, to
obtain

z + M2y — A(x) — o (x)uful

=eZxx — (2w v)% + 2Zpmuxmy + mem%) (6.0.9)

2
2 evZ
=&Zxx + = v Vxix — v_z

and
wy +Agwx + A‘S(x) +a‘3(x)u|u|
= EWxx — 8(wvvv)% + 2Wym Ve ny + wmmmg) (6.0.10)

gv2
—ewxx+ wax_ﬁy

v—=28 8§ __ v—28
> JA =u+ ==

Let X (x) = 3(JA%(x)| + |&® (x)|), then X p1ry < % by the condition (1.0.22).
Making the transformations of z = z; + B(x), w = w1 + C(x), where

B(x):M—/X(s)ds>%,C(x):M+/X(s)ds>%, (6.0.11)

—00 —00

for a positive constant M > 1, we have from (6.0.9)-(6.0.10) that
21 +A3z1¢ — B'(x)z1 — B/(x) B(x)
+B'(x)Inv — B'(x) =2 — A3 (x) — o’ (x)ulul
= e21px + 8" () + L2y, + Lo, B/ (x) — 2% 6.0.12)
=e2iax + 2B () + Foezre — e — B’<x>>2 +eB2(x)
< eziax +B"(x) + Ev,z1x + B2 (x)
and
wir + Mwiy + C'(x)wi + C'(x)C(x)
—C'(x)Inv + C'(x) =2 + A (x) + o (x)ulul
= swi +6C" () + Lvawn, + L0, C'(x) — 2% (6.0.13)
= Wiy +C"(X) + Evewpy —e(L — C'(x)* +eC'%(x)
< ewiey +6C"(x) + Evwi +6C2(x).
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Clearly, we can choose a suitable small positive constant €1 and € = o(e1), T = o(¢1) such that
the following terms in (6.0.12) and (6.0.13) satisfy

—&1B'(X)B(x) —eB"(x) —eB2(x) =1 X (x) + X' (x) — e X3(x) > 0,
(6.0.14)
81C'(x)C(x) —eC"(x) —eC?(xX) =1 X (x) —e X' (x) — e X% (x) > 0.

Since the initial date vg (x) > 28, we may obtain the a priori estimate v®#7 > 2§ by applying the
maximum principle to the first equation in (1.0.26).

Now, under the conditions in Theorem 4, by using (6.0.12), (6.0.13) and (6.0.14), we prove
the following inequalities

Z1 + bi(x, Dzix + bax, )z1 + b3(x, Hwy < €Z1xxs
(6.0.15)
wi +c1(x, Hwiy +c2(x, Hwy +c3(x, )21 < ewxx,
where b;(x,1),ci(x,t),i = 1,2,3, are suitable functions satisfying the necessary conditions
b3(x,1) <0,c3(x,1) <O0.
Proof of (6.0.15). We prove (6.0.15) in several cases for two different groups of points (x, t),
where o (x) > 0 or &®(x) <0.
Case (I). At the points (x, t), where o (x)>0,v(x,1) <1 and w; + fooo X (s)ds <0, the
following terms in (6.0.12)

I =—(1—&)B'(x)B(x) + B'(x)Inv — B'(x)>=2 — A%(x) — o (x)ulu]
>(1—e)X@)M — [* X (5)ds) — 1 X (x)

—ted ) (wy —z1 +2 7 X ()ds)|lwy —z1 +2 [* X (s)ds] (6.0.16)
> —td () wi —z1 +2 7 X()ds)|wy —z1 +2 7 X (5)ds]

> 30 (@)|wi — 21+ 2 1 X (s)dslzi.

Case (II). At the points (x, t), where ®(x)>0,v(x,7) <1and w; + fooo X(s)ds >0,

L=(—eDX@)M— [* X(s)ds) — $X (x)
+1P W) lwy —z1 +2 1 X (s)ds|z
— @) w1 +2 [1 X ()ds)|zi| — g (6) (wi +2 [* X (5)ds)? (6.0.17)
=1 —eD)X @) (M — [* X (s)ds) — X (x) —o® () (J" , X (5)d5)?
+d(x,t)z1 +e(x,)wy >d(x,1)z1 + e(x, Hwy,
where e(x, 1) = —3a (x)(wy +4 [*__ X (s)ds) <0, because
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(1—eD)X )M — [* X(s)ds) — X (x) — P () (" X (5)ds)>
(6.0.18)
> 3(1— )X (x) = 3X(x) = 5 X (x) 2 0.

Case (III). At the points (x, ), where ®(x) >0, v(x,7) > 1 and w; + fooo X (s)ds <0, we
have "*Tz‘s >1—¢ > 0forasmall &, >0, and B’ (x)Inv = —X(x)(%(wl +z1) + M). Then

L= (1—e)X@)(M = [T X(s)ds) — 3(wi +21)X (x) — MX (x)
(1= )X () = 3X (1) + @’ wy =21 +2 [* X (s)dslz1 (6.0.19)
> —Lwi+ 20X @)+ @) wr — 21 +2 [ X(s)ds|zy
because
(1 —eDX@X)M — [ X(s)ds) — MX(x) + (1 — £2) X (x) — X (x)
(6.0.20)
>X()(1—eg—eM-—5-1H>0

for small ¢ and &;.
Case (IV). At the points (x, t), where @®(x)>0,v(x,7) > 1 and w; + fooo X(s)ds >0,

L= (1 —e)X)(M — [1 X (s)ds) — §(wi +2)X (x) — MX (x)
+(1—e)X(x)— %X(x) — a‘s(x)(ffoo X (s)ds)? (6.0.21)
+d(x,)z1 +e(x, Hwy = = (wi +2)X () +d(x, D)z +e(x, Hwy,
because
(1—eDX )M — [*_ X(s)ds) — MX(x)+ (1 — &)X (x) — 1 X (x)
(6.0.22)
—a () ([ X ()ds)> = X(x)(1 —ex —e1M — 5 — 5 — 15) >0,
where d(x, 1), e(x,t) are given in (6.0.17). Thus we obtain the proof of the first inequality in
(6.0.15) at the points (x, t), where a4 (x) > 0.

Now we prove the second inequality in (6.0.15). At the points (x, t), where a®(x) > 0 and
v(x,t) <1, the following terms in (6.0.13)

L=(1-g)C'x)Cx)—C'(x)Inv+C'(x)2=2 + A%(x) + o (x)uu]
>(1—e)X@)M + [* X(s)ds) — 1 X (x)

(6.0.23)
+rf )W — 21 +2 7 X ()ds)|wy —z1 +2 7 X (5)ds]
> T () (wi —zD)|wy — 21 +2 [ X (9)ds;

and at the points (x, t), where a‘s(x) >0and v(x,t) > 1,
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L>(1—e)X@) M+ [* X (s)ds) — H(wi + 20X (x) — MX (x)
+(1— &)X (x) — 1X (x) + e () (wy —z)lwi — 21 +2 [ X (s)ds]| (6.0.24)
> —J(wi +2)X () + e () (wi —z)|wi — 21 +2 7 X (s)ds].
Thus we obtain the proof of (6.0.15) at the points (x, t), where a®(x) > 0. Similarly, we may
prove (6.0.15) also at the points (x, ¢), where o’ (x) <0.

Under the conditions given in (1.0.24), it is clear that z; (x, 0) <0, wi(x, 0) <0, so, we may
apply the maximum principle to (6.0.15) to obtain the estimates

25 <vf <My, Inv®® — My <ub® <My —1nv®,  |m®%| < M, (6.0.25)

where M;,i =1, 2, 3 are suitable positive constants, independent of &, § and the time .

By applying the general contracting mapping principle to an integral representation of
(1.0.26), with the help of the lower, positive estimate and the L° estimates given in (6.0.25),
we can obtain the existence and uniqueness of smooth solution of the Cauchy problem
(1.0.26)-(6.0.3). Applying the convergence frame given in [11] we have the pointwise conver-
gence

W58 (x, 1), m>%(x, 1)) — (v(x, 1), m(x,1)) ae.,asd,e — 0 (6.0.26)

or

(" (. 1), (PP U’ ) (x, 1)) = (p(x. 1), (pu)(x, 1)) a.e.,as 8, & — 0. (6.0.27)
Furthermore, in a similar way as given in [29], we may prove that the limit (o(x,?), u(x,?))

satisfies system (1.0.1) in the sense of distributions and the Lax entropy condition (1.0.21). So,
we complete the proof of Theorem 4.
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