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Abstract

We study a model of continuous sedimentation. Under idealizing assumptions, the settling of
the solid particles under the in4uence of gravity can be described by the initial value problem
for a one-dimensional scalar conservation law with a 4ux function that depends discontinuously
on the spatial position. We construct a weak solution to the sedimentation model by proving
the convergence of a front tracking method. The basic building block in this method is the
solution of the Riemann problem, which is complicated by the fact that the 4ux function is
discontinuous. A feature of the convergence analysis is the di8culty of bounding the total
variation of the conserved variable. To overcome this obstacle, we rely on a certain non-linear
Temple functional under which the total variation can be bounded. The total variation bound on
the transformed variable also implies that the front tracking construction is well de(ned. Finally,
via some numerical examples, we demonstrate that the front tracking method can be used as a
highly e8cient and accurate simulation tool for continuous sedimentation.
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1. Introduction

We consider a model of continuous sedimentation of suspensions of small solid
particles dispersed in a viscous 4uid. Under idealizing assumptions, the settling of
the particles under the in4uence of gravity can be described by the one-dimensional
kinematic sedimentation theory formulated by Kynch [25]. This theory models the
suspension as a mixture of two superimposed continuous media, the solid and the
4uid. Its essential assumption states that if vs and vf denote the solid and 4uid phase
velocity, then the relative or drift velocity, vr := vs−vf , is a function of the local solids
concentration u only, vr = vr(u). This assumption is well justi(ed for suspensions of
small rigid spheres showing no 4oc structure or compressibility eHects. A thorough
discussion of Kynch’s and related sedimentation models is provided in [6].
The basic balance equations are the continuity equations of the solid and of the 4uid,

ut + (uvs)x = 0; (1.1)

ut − ((1− u)vf )x = 0; (1.2)

where t is the time and the vertical coordinate x is assumed in this paper to increase
downwards. In terms of the volume-average velocity of the mixture q := uvs+(1−u)vf ,
the continuity equation of the mixture, obtained as the diHerence of (1.1) and (1.2), can
be written as qx =0, i.e., q(·; t) is a constant function for each t and is determined by
boundary and feed conditions. In particular, q ≡ 0 in a closed settling column without
in- or outlets.
In terms of the velocities vr(u) and q = q(x; t), Eq. (1.1) can be rewritten as

ut + (q(x; t)u + u(1− u)vr(u))x = 0:

It is customary to introduce the so-called Kynch batch 4ux density function h(u) =
u(1− u)vr(u), so that the governing equation takes the form

ut + (q(x; t)u + h(u))x = 0: (1.3)

The function h re4ects the material properties of the suspension. The basic assump-
tions on h can be stated as

supp (h) = [0; 1]; h(u)¿ 0 for u∈ (0; 1); h′(0)¿ 0 and h′(1)6 0:

We have chosen the value “1” as the maximum solids concentration. Since it is not the
purpose of this paper to discuss the widest class of model functions, we simply assume
h to be su8ciently smooth. The vast majority of Kynch batch 4ux density functions h
determined from settling experiments in the literature have at least one in4ection point,
see [4,6].
A very simple model for continuous sedimentation was studied by Bustos et al. [7],

in which Eq. (1.3) is restricted to a space interval, say x∈ [0; 1], corresponding to a
cylindrical vessel, and where the upper end x=0 is identi(ed with a feed inlet and the
lower x=1 with a discharge outlet. The vessel is assumed to be fed continuously with
feed suspension through the inlet (surface source) and to be discharged continuously
through the outlet (surface sink). The over4ow of clear liquid is not explicitly modelled.
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The volume average velocity is a function of time only, q(t) = qr(t), where qr is a
prescribed control function determined by the discharge opening. In the model by
Bustos et al. [7], Eq. (1.3) is provided with Dirichlet boundary conditions at x=0 and
x = 1 and appropriately studied in the framework of entropy boundary conditions [8].
This model, which was proposed (rst by Petty [27], has some severe shortcom-

ings. Among them is the lack of a global conservation principle due to the use of
Dirichlet boundary conditions. It is preferable to replace the boundary conditions at
the ends of the vessel by transitions between the transport 4ux q(x; t)u and the com-
posite 4ux q(x; t)u + h(u), such that the problem is reduced to a pure initial value
problem. Moreover, the feed suspension should enter at a feed level located between
the over4ow outlet at the top and the discharge outlet at the bottom. Such con(g-
urations were proposed by several authors [1,9,10,26]. Particularly thorough analyses
of clari(er–thickener models were presented by Diehl in a series of papers including
[12–15].
It is such an improved model which is considered in this paper, and its main ob-

jective is to show that front tracking can be employed both as a means to show the
existence of weak solutions as well as an e8cient computational tool to compute ap-
proximate solutions of the clari(er–thickener system. To put this observation in the
proper perspective, we recall that the main idea behind front tracking was introduced
by Dafermos [11]. To illustrate it, consider the conservation law

ut + h(u)x = 0; x∈R; t ¿ 0; u(x; 0) = u0(x); x∈R; (1.4)

where u0 is assumed to be piecewise constant. Then the entropy solution can be con-
structed by a superposition of solutions of Riemann problems, i.e., solutions of the
conservation law with initial data consisting of two constant states separated by a
simple discontinuity. If the 4ux h is piecewise linear, each Riemann solution con-
sists exclusively of constant states separated by shocks. When waves from neighboring
Riemann problems interact, the interaction will only involve constant states and there-
fore lead to new Riemann problems and the construction can be continued forward
in time. Thus, the construction consists of solving Riemann problems and tracking
straight-line discontinuities. In the general case, the initial function is approximated by
a step function and the 4ux by a piecewise linear function. This way rarefaction waves
are approximated by a sequence of small shocks. Variants of the method have been
used by many authors, see Holden and Risebro [20] for the history and many refer-
ences. In particular, Holden et al. [19] proved that the construction is well-de(ned and
terminates in a (nite number of steps, even for non-convex 4ux functions, given a (nite
number of constant states in u0(x). Front tracking was later formulated for hyperbolic
systems by DiPerna [16], Bressan [2] and Risebro [28], who used the method to give
an alternative proof of Glimm’s famous existence result for hyperbolic systems. Very
recently, a modi(cation of the front tracking method was used by Bressan et al. [3]
to prove that the limit of the front tracking sequence de(nes a continuous semigroup.
The front tracking method has also turned out to be a successful computational tool
for systems of conservation laws. For example, Risebro and Tveito [29,30] used it to
numerically solve the Euler equations of gas dynamics and a non-strictly hyperbolic
system modeling polymer 4ow, see [20] for further references. Variants of the front
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tracking technique based on Dafermos’ [11] have also been used earlier to compute
approximate solution to problems corresponding to batch sedimentation in a column
and they have been presented by Bustos and Concha [5] and Kunik [23,24]. However,
to apply front tracking to the advanced clari(er–thickener model with continuous 4ow,
one must be able to solve Riemann problems that are non-standard in that changes be-
tween 4ux functions, depending on the space coordinate x, are involved. Such solutions
were constructed by Gimse and Risebro [17,18]. In [17] it was shown that under some
mild conditions, Riemann problems with discontinuous 4ux functions always had weak
solutions. Furthermore, one can always single out a unique weak solution being the
limit of a viscous approximation. The paper [18] considered the Cauchy problem for
a conservation law modeling two-phase 4ow in porous media, where the 4ux function
depends discontinuously on the spatial location. It is the purpose of the present paper
to demonstrate that under slight modi(cations, the techniques advanced in [17,18] also
handle the non-standard Riemann problems occurring in the present application.
The remainder of this paper is organized as follows: In Section 2 the mathematical

model is outlined. This model leads to three non-standard Riemann problems, whose
solutions are constructed in Section 3. These solutions are then used as a tool in the
front tracking algorithm used to determine global weak solutions. In Section 4, we
(rst formulate the front tracking method for the clari(er–thickener problem. Then we
show that the variation of a particular nonlinear functional of the approximate solution
constructed by front tracking, the so-called Temple functional, is bounded. This result
implies that the front tracking construction is well de(ned, in the sense that there exist
only a (nite number of interactions between waves for t ¿ 0.
Finally, it is shown that one can let the discretization parameter of the front tracking

algorithm tend to zero, which permits to conclude that a weak solution to the settler–
clari(er problem exists, and that this weak solution is a limit of a sequence constructed
by front tracking. While we are in Section 4 mainly interested in proving existence of
a weak solution, we demonstrate in Section 5 by three numerical examples that front
tracking provides moreover an e8cient numerical tool for the actual computation of
weak solutions for practical problems.

2. The mathematical model

Consider the con(guration of Fig. 1, where x =−1, 0 and 1 are assumed to be the
levels at which in normal operation, the clari(ed liquid leaves the equipment (over4ow
level), the feed suspension in pumped into the unit (feed level), and through which
the concentrated sediment leaves the thickener (discharge level), respectively. At x=0,
the vessel is fed with fresh suspension at a volume 4ow rate QF(t)¿ 0. The volume
4ow rate of the discharge, Qr(t)¿ 0 or equivalently, the velocity qr(t) = Qr(t)=S,
where S denotes the constant cross-sectional area of the vessel, is also prescribed. The
volumetric balance of the mixture requires that

Qr(t) = Ql(t) + QF(t): (2.1)
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Fig. 1. The one-dimensional clari(er–thickener model.

We assume that the volume 4ows satisfy QF(t)¿ 0, Qr(t)¿ 0 and Ql(t)6 0. Dividing
(2.1) by S shows that

q(x; t) =

{
ql(t) = qr(t)− QF(t)=S6 0 for x¡ 0;

qr(t)¿ 0 for x¿ 0:
(2.2)

The prescribed local volumetric solids concentration of the feed 4ux is uF(t). Conse-
quently, the solids continuity equation for −1¡x¡ 1 can be written as

ut + (q(x; t)u + h(u))x = �(x)
QF(t)uF(t)

S
; (2.3)

where �(·) denotes Dirac unit mass located at x = 0, and q(x; t) is given by (2.2).
Expressing � as the derivative of the Heaviside function H and noting that

q(x; t) = ql(t) + H (x)(qr(t)− ql(t)) = ql(t) + H (x)
QF(t)

S
;

we can rewrite (2.3) as

ut + (q(x; t)(u − uF(t)) + ql(t)uF(t) + h(u))x = 0:

Taking into account that the Kynch batch 4ux density function h is zero outside the
interval (−1; 1), we (nally obtain the conservation law

ut + g(x; t; u)x = 0; x∈R; t ¿ 0 (2.4)

with the composite 4ux density function

g(x; t; u) :=


ql(t)u for x¡− 1;

ql(t)u + h(u) for − 1¡x¡ 0;

qr(t)u + h(u) + (ql(t)− qr(t))uF(t) for 0¡x¡ 1;

qr(t)u + (ql(t)− qr(t))uF(t) for x¿ 1:

(2.5)
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Fig. 2. The Kynch batch 4ux density function h(u) = 27
4 u(1− u)2.

For the remainder of this paper, we regard ql(t), qr(t) and uF(t) as independent con-
trol variables satisfying ql(t)6 0, qr(t)¿ 0 (then we always have QF(t) = S(qr(t) −
ql(t))¿ 0) and 06 uF(t)6 1. We shall also assume that the control variables ql, qr

and 06 uF6 1 are constant with respect to t (but see Section 5). Thus the model we
consider is the following:

ut + g(x; u)x = 0; x∈R; t ¿ 0; u(x; 0) = u0(x); x∈R: (2.6)

By a solution, we understand a weak solution in the usual sense, i.e.,∫ ∫
�
(u’t + g(x; u)’x) dt dx +

∫
R
u0(x)’(x; 0) dx = 0 (2.7)

for all test functions ’∈C∞
0 (�), where � := R × [0;∞〉. The 4ux function g is

de(ned according to (2.5)

g(x; u) :=


qlu for x¡− 1;

f(q(x); u) for − 1¡x¡ 1;

qru + (ql − qr)uF for x¿ 1:

(2.8)

Recall that ql6 06 qr . The “interior” 4ux function f is de(ned as

f(q; u) := q(u − uF) + h(u) + qluF: (2.9)

For the plots and numerical examples in this paper, we have used the function

h(u) :=
27
4

u(1− u)2; (2.10)

see Fig. 2.
The mixture 4ow velocity q has a discontinuity at x = 0,

q(x) =

{
ql for x¡ 0;

qr for x¿ 0:
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Fig. 3. Construction of the solution of Riemann problem (3.1) centered at x = −1 with ur ¡ ũ (left) and
ur ¿ ũ (right).

3. Solutions of the Riemann problems

Now we shall solve the Riemann problems at the discontinuities of g(·; u). In this
we follow Gimse and Risebro [17]. First we describe the Riemann problems at the
over4ow and discharge levels x = ∓1, each of which involves one linear and one
nonlinear 4ux function.
For x=−1, the left 4ux function is given by fl(u)= qlu and the right 4ux function

given by (2.9) with q= ql. Precisely, we wish to solve the initial value problem (2.6)
around x =−1 and for small t where

u0(x) =

{
ul for x¡− 1;

ur for x¿− 1:
(3.1)

There are two cases to consider depending on the sign of f(ql; ur). Let ũ be
de(ned by

f(ql; ũ) = 0 and ũ¿ 0: (3.2)

If f(ql; ur)¿ 0 or ur ¡ ũ, then the solution is given by a discontinuity moving to
the left with speed ql, separating ul and 0, and a discontinuity moving to the right
with speed f(ql; ur)=ur , separating the values 0 and ur . If ur ¿ ũ, let um be given by
um = f(ql; ur)=ql (see Fig. 3). Then the solution is given by a discontinuity moving
to the left with speed ql, separating ul and um, and a discontinuity located at x =−1
separating um and ur . These two cases are shown in Fig. 3.

For x = 1 the situation is slightly diHerent, since f(qr; u) can have both a local
maximum and a local minimum for u between 0 and 1. Now we wish to solve the
Riemann problem de(ned by the initial datum

u0(x) =

{
ul for x¡ 1;

ur for x¿ 1:
(3.3)
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Fig. 4. Construction of the solution of Riemann problem (3.3) centered at x = 1 with ul ∈ 〈u; Ru〉 (left) and
ul �∈ 〈u; Ru〉 (right).

Let fmin denote the value at the local minimum, and Ru the corresponding argument,
i.e.,

f(qr; Ru) = fmin ; (3.4)

and de(ne u to be the unique solution of

f(qr; u) = fmin ; (3.5)

where u¡ Ru. Then the solution of the Riemann problem depends on whether ul is in
the interval 〈u; Ru〉 or not. If ul ∈ 〈u; Ru〉, then the solution is given by a composite u
wave from ul to Ru, followed by a q wave with zero speed from Ru to um, and then by
a wave with speed qr from um to ur . Here the term “composite wave” means a wave
consisting of a shock followed by a rarefaction. The right middle state um is given by

um =
fmin + (qr − ql)uF

qr
:

If ul 
∈ 〈u; Ru〉, the solution is similar to the second case at x=−1. Now the solution is
given by a q wave of zero speed from ur to um, followed by a right wave of speed
qr from um to ur . Now the middle state um is given by

um =
f(qr; ul) + (qr − ql)uF

qr
:

Note that the state immediately to the left x=1 is always in the set [0; u]∪ [ Ru; 1]. See
Fig. 4 for an illustration.
For later use we shall refer to the waves moving out of the interval [− 1; 1] as left

and right waves, respectively. We call the waves with zero speed sitting at x = ∓1
left or right boundary waves. The waves moving into the region [ − 1; 1] are labeled
as u waves. The Riemann problem de(ned by the discontinuity in q at x = 0, which
includes the feed mechanism, involves two non-linear 4ux functions on either side and
is therefore more complicated, but also covered by the general theory in [17]. This



R. B-urger et al. / Nonlinear Analysis: Real World Applications 4 (2003) 457–481 465

Fig. 5. Solution of Riemann problem (3.6) located at x = 0 with ul ¡u1 (left) and ul¿ u1 (right).

Riemann problem is given by

ut + f(q; u)x = 0; (3.6)

u(x; 0) =

{
ul for x¡ 0;

ur for x¿ 0;
q(x) =

{
ql for x¡ 0;

qr for x¿ 0;
(3.7)

where ql6 06 qr . Here we will demonstrate that there exists a unique entropy solution
for all ul and ur in [0; 1], in the sense that this solution is the limit of a viscous
approximation. This solution consists of u waves, over which q is constant, and a q
wave, separating ql and qr . For simplicity, we shall assume that f(q; u) is strictly
monotone along the transition curve

T := {(u; q): @uf(q; u) = 0};
which is the curve in the (u; q)-plane consisting of the local extrema of f(q; ·) with
respect to u, see Fig. 5. This means that the control parameters ql, qr and uF are chosen
in such a way that

@f
@q


= 0 on T; (3.8)

which then implies that

either u − uF ¡ 0 or u − uF ¿ 0 on T:

We shall assume that the left inequality holds on the left branch of the transition curve,
and the right inequality holds on the right branch. Furthermore, we shall assume that
qr is so small that f(qr; u) has both a local maximum and a local minimum in (0; 1).
We set Rq to be the largest value of qr for which this is the case. If h(u) is chosen
as (2.10) we (nd that Rq = 9=4. Thus, in this case, we have the following restrictions
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on uF:

qr ¡
9
4
; and

2−√
1− 4qr=9
3

¡uF ¡
2 +

√
1− 4qr=9
3

: (3.9)

We point out that restrictions (3.9) are not essential and are merely stated for conve-
nience only, since they give fewer cases to discuss when solving the Riemann problem
at x= 0. For later use, we depict this solution in the (u; q) plane, see Fig. 5. We start
at a point (ul; ql) on the line ql × [0; 1] and move on a gray path to the point (ur; qr).
There are two cases to consider depending on the location of ul. Let fmax be the local
maximum of f(qr; u) (such a maximum exists for qr ¡ Rq), and let u1 ¡u2 denote the
solutions of

f(ql; u1) = f(ql; u2) = fmax: (3.10)

The set of all points (u; q) satisfying f(q; u) =fmax is shown as a dotted curve in the
left diagram of Fig. 5. Similarly, if f(qr; u) has a local minimum in u, then we let
fmin denote this value, and let u3 be the unique solution of

f(ql; u3) = fmin : (3.11)

The solution path is depicted as a gray path in the (gures. The horizontal segments
are u waves while the segments that move on contour lines of f(q; u) are q waves.
To (nd a particular solution, follow the gray path from (ql; ul) (on the lower hor-

izontal line) in the direction of the arrows to the any point (qr; ur). For example,
assume that ul ¡u1, i.e., we are in the (rst case, and that ur lies to the right of the
local minimum. Then the solution is given by a u wave connecting ul and u3, followed
by a q wave connecting (u3; ql) with the local minimum, given by the point Ru, where
Ru is de(ned by (3.4), where the right branch of T intersects the line q= qr , and (nally
a u wave connecting the Ru to ur . As another example, consider the case where ul is
between u1 and u2, and ur is to the left of the local maximum of f(qr; u). Then, ac-
cording to the right part of Fig. 5, the solution consists of a u wave from ul to u2 (this
wave will be a shock wave), followed by a q wave connecting (ul; ql) with (û; qr),
where û is the local maximum of f(qr; u), followed by u wave from û to ur (this wave
will be a rarefaction). Finally, we mention that any Riemann problems occurring inside
the intervals (−1; 0) or (0; 1) are Riemann problems for a single scalar conservation
law, and are solved by taking the envelope of the 4ux function, see [20] and Chapter 5
of [6]. Riemann problems outside the interval [ − 1; 1] are Riemann problems for a
linear equation, and their solution is trivial.

4. Front tracking

4.1. The front tracking procedure

Now that we have determined the solutions of all non-standard Riemann problems
occurring in our application, we can employ them as a tool for constructing approxi-
mations to more general Cauchy problems. The front tracking algorithm we construct
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closely resembles the ones used in [18,21,22]. These algorithms are all based on the
fact that for a scalar conservation law of the form

ut + F(u)x = 0; x∈R; t ¿ 0; u(x; 0) = u0(x); x∈R;

one can construct the exact entropy solution if F is piecewise linear on a (nite number
of intervals, and u0 takes values in the set of breakpoints of F [19]. We shall make
piecewise linear (in u) approximations to f(ql; u) and f(qr; u) in such a way that the
solution of the Riemann problem at x = 0 is easy to compute. To be speci(c, choose
a (small) positive number �. Let Ru1 and Ru 2 denote the local extrema of f(qr; u). For
i = 0;∓1;∓2; : : : let ui(q) denote the solutions of

f(q; ui(q)) = fi; fi = i�: (4.1)

In other words, the curves ui(q) are the contour lines of f in the (u; q)-plane.
With a slight abuse of notation, we de(ne for q = ql and q = qr the (nite sets of

points

{ui(qr)}= {0; Ru1; Ru 2; 1} ∪ {ui(qr)} ∩ [0; 1];

{ui(ql)}= {0; u1; u2; u3; 1} ∪ {ui(ql)} ∩ [0; 1];

where u1, u2 and u3 are de(ned by (3.10) and (3.11):

f(ql; u1) = f(ql; u2) = f(qr; û)a= fmax and f(ql; u3) = f(qr; Ru) = fmin ;

see also Fig. 5. We order the set {uj(q)} so that uj−1(q)¡uj(q). Then we de(ne a
piecewise linear (in u) approximation to f(q; u) by

f�(q; u) := f(q; uj(q)) + (u − uj(q))
f(q; uj+1(q))− f(q; uj(q))

uj+1(q)− uj(q)

for u∈ [uj(q); uj+1(q)]; (4.2)

for q = ql or qr .
Note that for a (xed (constant) q, the entropy solution of the initial value problem

ut + f�(q; u)x = 0; u(x; 0) = u0(x);

can be found by front tracking if u0 is piecewise constant, see [19]. Furthermore, if
u0 takes values in the set {ui}, the solution will also take values in this set. Note
also that by construction of f�, the solution of the Riemann problems in case f is
replaced by f�, can still be described by Figs. 3 and 4 for x =∓1 and by Fig. 5 for
x=0. The breakpoints of f� are also chosen such that if for some j the points (ql; uj)
are connected to (qr; u) by a q wave, then u∈{ui}. This means that if uj and uk are
breakpoints, the solution of the Riemann problem{

ut + f�(ql; u)x = 0; u(x; 0) = uj for x¡ 0;

ut + f�(qr; u)x = 0; u(x; 0) = uk for x¿ 0

will take values among the breakpoints. Also, since the 4ux function is linear outside
[− 1; 1], then a similar observation is valid for Riemann problems de(ned at x =∓1.
Since f� is piecewise linear, the solutions of these Riemann problems will be piecewise
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constant, and the discontinuities will move with (nite speed. Now we are ready to
de(ne the front tracking approximation to (2.6). Let

g�(x; u) :=


qlu for x¡− 1;

f�(q; u) for − 1¡x¡ 1;

qru + (ql − qr)uF for 1¡x

(4.3)

and let u�
0(x) be a piecewise constant approximation to u0 taking values in the set (ui).

We de(ne u� to be the weak solution to

u�
t + g�(x; u�)x = 0; x∈R; t ¿ 0; u�(x; 0) = u�

0(x); x∈R: (4.4)

The weak solution u� is constructed as follows: First we solve the Riemann problems
de(ned by the discontinuities of u�

0 and at the points x=∓1 and x=0. This will give
a (nite number of discontinuities emanating from the discontinuities of u�

0, x=∓1 and
x = 0. When these collide, we can solve the Riemann problem de(ned by the state
to the left and right of the collision. This Riemann problem will be of the same type
as the initial Riemann problems. Therefore we can continue this process for as many
collisions as we like, see [19,20]. In the next section, we shall see that there will only
be a (nite number of collisions for all t ¿ 0, and hence u� can be de(ned for any t.

4.2. The Temple functional

As in [18,21,22,31], it is di8cult to show that u� has bounded variation, so instead
we choose to bound the variation of a non-linear function of u�. Let � be de(ned as

�(q; u) :=
∫ u

0
|@uf(q; �)| d�+ f(q; 0) (4.5)

and set z := �(q; u). In other words, � is a real function of two real variables q and u.
Roughly speaking, �(q1; u1)−�(q2; u2) measures “how many” contour lines separate
(q1; u1) and (q2; u2). The functional � has become known as the Temple functional
[31]. Note that � is one-to-one and regular everywhere except on T . We can now
view the front tracking solution u� as a sequence of waves or fronts, left, boundary, u,
q or right, going from the left to the right. We label each such front Wl; Wlb; Wu; Wq

and Wrb, respectively. Each of these waves connects a left state (u1; q1) to a right state
(u2; q2). We de(ne the strength of a front according to its type. For a u front Wu, we
de(ne the strength as

F(Wu) = |z(q; u1)− z(q; u2)|: (4.6)

For a left front Wl we de(ne the strength as

F(Wl) = |ql(u1 − u2)|; (4.7)

since for a Wl front q1= q2 = ql. Similarly for a right front Wr , we de(ne the strength
as

F(Wr) = |qr(u1 − u2)|: (4.8)
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For q fronts the de(nition of the strength is more complicated. Let umax be the local
maximum of f(ql; u), and set

‘ = f(ql; umax)− fmax

(recall that fmax is the local maximum value of f(qr; u)). For a q wave to the left of
the left branch of T , we de(ne its strength as

F(Wq) = 4‘ (4.9)

and if the q wave is to the right of the left branch of T , its strength is de(ned to be

F(Wq) = 2‘: (4.10)

It remains to de(ne the strength of the boundary waves. Recall that these are waves
of zero speed connecting the interior 4ux function f(q; u) to the linear 4ux functions
qlu or qr(u− uF)+ qluF. We start by de(ning the strength of a left boundary wave. If
Wlb is a boundary wave connecting u1 and u2, then

F(Wlb) =

{
0 if u1 = u2 = 0;

|z(ql; ũ)− z(ql; 0)| otherwise;
(4.11)

where ũ is de(ned by (3.2), i.e., f(ql; ũ)=0 and ũ¿ 0. In other words, if the solution
of the Riemann problem at the left boundary gives a wave moving with positive speed,
then the strength of the boundary wave is zero. We de(ne the strength of the right
boundary waves in an analogous manner, though the situation is more complicated
since f(qr; u) can have a local minimum. Then the strength of the boundary wave
separating u1 and u2 is de(ned to be

F(Wrb) =

{ |z(qr; 1)− z(qr; u)| if u16 u;

|z(qr; 1)− z(qr; Ru)| if u1¿ Ru;
(4.12)

where u and Ru are de(ned by (3.5) and (3.4), respectively. Recall from Section 3 that
u1 cannot be in the interval (u; Ru). The front tracking construction u� can be seen as a
sequence of wave paths in the (u; q) plane; W1W2 · · ·WN . For any connected sequence
of wave paths, we de(ne F additively

F(u�) = F(W1W2 · · ·WN ) =
∑

i

F(Wi): (4.13)

Let z� =�(q(x); u�), then it is easy to see that

|z�|BV6F(u�):

This inequality holds since z� is a piecewise constant function in x for each t. Hence
|z�|BV is the sum of the absolute value of the jumps in z�. For any front W separating
z1 and z2, we have that

|z1 − z2|6F(W ):

Furthermore, we have the following crucial lemma:



470 R. B-urger et al. / Nonlinear Analysis: Real World Applications 4 (2003) 457–481

Fig. 6. The solution of Riemann problem at x =−1. Left: ur ¡ ũ, right: ur ¿ ũ.

Lemma 4.1. Let w = (q; u), and let [wl; wr] denote the wave path from wl to wr

de@ned by the solution of the Riemann problem with left state wl and right state wr .
Let % be any other wave path from wl to wr , then

F([wl; wr])6F(%): (4.14)

Proof. First we note that if the wave path is a sequence of u waves, then the lemma
holds, since the Riemann solution will be the wave path de(ned by the horizontal line
in the (u; q) plane connecting wl to wr . This is clearly the “shortest” wave path with
respect to F .
Next we consider the Riemann problem at the left boundary, x=−1. Let ũ be de(ned

by (4.4). The solution of the Riemann problem depends on whether ur ¡ ũ or not. If
ur ¡ ũ (Case A), then the solution is as indicated in Fig. 6. We have that

F([wl; wr]) = |qlul|+ |z(ql; ur)− z(ql; 0)|:
It is clear that any other path connecting wl to wr passing through 4ux values outside
the interval [qlul; f(ql; ur)] will have an F value larger than F[wl; wr]. Furthermore,
any path passing through points f(ql; u) where u¿ur will have a larger F value, since
such a path will either pass the same point f(ql; u) twice, or else involve a boundary
wave with zero speed, which will make the F value of the path larger. This shows
that in Case A, the path de(ned by the Riemann solution has the smallest F value. If
ur¿ ũ (Case B), then the solution of the Riemann problem is consists of a left wave
and a boundary wave, see Fig. 6. Now

F([wl; wr]) = |qlul − f(ql; ur)|+ |z(ql; ũ)− z(ql; 0)|:
Also, in this case, any path involving 4ux values outside [qlul; f(ql; ur)] will have a
larger F value than the Riemann solution. Furthermore, any path with a single boundary
wave inside the region qlu and to the left of f(ql; u) will have the same F value as
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Fig. 7. The solution of Riemann problem at x = 1. Left: u¡ul ¡ Ru, right: ul6 Ru.

that of the Riemann solution. Note that a boundary wave from u = 1 to u = 1 will
not decrease F , since this wave will have strength |z(ql; ũ)− z(ql; 0)|. This shows the
lemma in this case. For the Riemann problem at x = 1 the situation is similar. Recall
that Ru denotes the local minimum of f(qr; u), and that u is de(ned by f(qr; u)=fmin.
If u¡ul ¡ Ru (Case C), the solution of the Riemann problem is given by a left moving
u wave, and a boundary wave followed by a right wave, see Fig. 7. In this case

F([wl; wr]) = |z(qr; ul)− z(qr; Ru)|+ |z(qr; Ru)− z(qr; 1)|= |z(qr; 1)− z(qr; ul)|:
If we choose a boundary wave path passing below the line f = fmin, the resulting F
value will be larger, and also if we choose a path that is not monotone in u before
the boundary wave, the F value will be larger. This (nishes the proof of the lemma
in Case C. If ul6 u (Case D), the solution of the Riemann problem consists of a
boundary wave followed by a right wave, see Fig. 7. In this case

F([wl; wr]) = |z(qr; 1)− z(qr; u)|+ |f(qr; ul)− qr(ur − uF) + qluF|;
where the last term is the strength of the right wave propagating into the region x¿ 1.
For another wave path connecting (qr; ul) and (qr; ur), its F value will be strictly larger
if it passes through points in the interval (u; Ru).
Otherwise it will be the same as the F value of the Riemann solution. Hence the

lemma holds in Case D. Finally if ul¿ Ru, it is easy to see that the lemma holds.
For the proof of the lemma for a Riemann solution at x=0, the reader should consult

Fig. 5. First we note that any path that is non-monotone on the horizontal lines ql and
qr will have an F value greater than that of the Riemann solution. By “non-monotone”,
we mean that the path must be strictly increasing or decreasing in u for constant q,
it can however be increasing on the segment ql and decreasing on the segment qr

or vice versa. Hence, we need only consider wave paths that have this monotonicity
property when proving the lemma in this case. We call such paths u-monotone. We
start by considering ul ¡u1, and ur ¡ û, where û is the largest solution of f(qr; u) =
f(ql; ul). Then the Riemann solution is given by a q wave separating (ul; ql) and
(um ; qr) followed by a u wave separating (um ; qr) and (ur; qr), and

F([wl; wr]) = 4‘ + |z(qr; um)− z(qr; ur)|:
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Let Ŵ denote the q wave to û. Any u-monotone wave path connecting (ul; ql) to
(ur; qr) with a q wave to the left of or equal to the Ŵ will have the same F value
as that of the Riemann solution. Wave paths that involve a q wave that is to the right
of Ŵ will have a larger F value. Next we assume that ur ¿ û. Then any u-monotone
wave path, that is also increasing on the segment ql, will have the same F value as
that of the Riemann solution. Any path that is not increasing on the lower horizontal
segment will have a larger F value. This proves the lemma if ul ¡u1. Finally, we
assume that ul¿ u1. Then any u-monotone wave path that is monotone on the lower
horizontal segment for u¿u2, will have the same F value as that of the Riemann
solution, whereas any wave path that intersects the lower segment for some u6 u1,
will have a larger F value, unless ul = u1, in which case the F value will be that of
the Riemann solution. This concludes the proof of the lemma.

An immediate consequence of this lemma is that

F(z�(t))6F(z�(0)):

In particular, the total variation of z� is uniformly bounded, independently of �. Thus
we have shown

Lemma 4.2. Let u�(x; t) denote the front tracking approximation de@ned in Section
4.1, and let

z�(x; t) =�(q(x); u�(x; t));

where � is the mapping de@ned in (4.5). Assume that |�(q(x); u0(x))|BV is @nite,
then

|z�(·; t)|BV6C;

for some constant C independent of � and t.

Now we shall use Lemma 4.1 to show that the front tracking construction is well de-
(ned, in particular that there exists only a (nite number of interaction between fronts
for t ¿ 0. To this end, we shall study some types of collisions closer. First, if the
colliding fronts are both u waves, and the collision results in an increase in the num-
ber of fronts, then F(u�) after the collision is strictly smaller than F(u�) before the
collision, see, e.g., [19,20]. We also have that if two fronts collide, and n¿ 1 fronts
results from the collision, then F decreases by at least (n − 1)�. Next we consider
collisions of u fronts and the boundary fronts. We start by studying collisions be-
tween the left boundary front and a u front. Note that such a collision always will
result in a left front and a boundary front, and possibly a “re4ected” u front. As-
sume that this collision results in three or more fronts. Let the boundary front before
the collision separate ul and um, and the u front separate um and ur . We have that
f(ql; um)6 0, and if the collision results in more than two fronts, f(ql; ur)¿ 0. Let
Wb denote the wave path connecting ul to um followed by the wave path connecting
um to ur , and Wa the wave path of the Riemann solution de(ned by ul and ur . Now,
Wa must be as the left-hand side of Fig. 6, since we have a front moving to the right.
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Furthermore, f�(ql; ur)¿ 0, which by construction implies that f�(ql; ur)¿�.
Therefore

F(Wb) = |z(ql; ur)− z(ql; um)|+ |z(ql; ũ)− z(ql; 0)|
= |z(ql; ur)− z(ql; ũ)|+ |z(ql; ũ)− z(ql; um)|+ |z(ql; ũ)− z(ql; ur)|

+ |z(ql; ur)− z(ql; 0)|
¿ �+ |z(ql; ũ)− z(ql; um)|+ �+ |z(ql; ur)− z(ql; 0)|
= 2�+ F(Wa): (4.15)

Regarding collisions by a u front from the left with the right boundary front, we have
that if this collision results in more than two fronts, the middle state um must be
smaller or equal to u, and the left state greater than u. In this case, an easy calculation
shows that (4.15) holds. Since F(u�(0)) is (nite, and decreases by at least � each time
a front is “re4ected” from one of the boundary fronts, since F¿ 0, it follows that
this can happen at most a (nite number of times. Hence after some (nite time, t�, any
front colliding with the boundary fronts will be “transmitted”. From these observations,
it follows that after a (nite time t′�, there will be no u fronts with a non-zero speed
inside the interval [−1; 1], and hence, for a @xed �; there will only be a @nite number
of collisions between fronts in u�. We also have by construction that u� is a weak
solution to (4.4). We summarize this observation as a lemma.

Lemma 4.3. Let u�(x; t) be the front tracking construction de@ned in Section 4:1, and
assume that |z�(·; 0)|BV is @nite. Then u�(x; t) is a weak solution to the initial value
problem

u�
t + g�(x; u�)x = 0; x∈R; t ∈ [0;∞);

where g� is de@ned by (4.3). Furthermore, u� can be computed using only a @nite
number of steps.

Proof. We have already shown that u� can be computed in a (nite number of steps,
since to de(ne u� we only have to solve a (nite number of Riemann problems, and to
calculate when and where a (nite number of interactions occur. Also, by construction,
u� is a weak solution.

Remark. A numerical method that can calculate an approximation for all times t in a
@nite number of steps is often called “hyperfast”. Therefore, in this terminology, front
tracking is a hyperfast method for initial value problem (1.3).

4.3. Compactness

Note that from the de(nition of z it now follows that

|g�(x; u�(·; t))|BV6M;
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Fig. 8. The 4ux density functions for Example 1 (left) and Example 2 (right).

for some (nite constant M not depending on � or t. Let (h(t) be a smooth approxi-
mation to the characteristic function of the interval [)1; )2],

(h(t) := *[)1 ;)2] ∗ !h(t);

where !h is a standard molli(er with radius h. Then we use the test function ’(x; t)=
,(x)(h(t) in (2.7), where , is any smooth function with compact support. We let
h → 0, and (nd that∫

R
,(x)(u�(x; )2)− u�(x; )1)) dx +

∫ )2

)1

∫
R
,′(x)g�(x; u�(x; t)) dx dt = 0:

From this we (nd that

‖u�(·; )2)− u�(·; )1)‖L1(R) = sup
|,|61

∫
R
,(x)(u�(x; )2)− u�(x; )1)) dx

6
∫ )2

)1
|g�(·; u�)|BV dt

6M ()2 − )1): (4.16)

Now we have established that u� is well de(ned for any t ¿ 0, and satis(es the
estimates

‖z�(·; t)‖L∞(R)6M; ∀t ¿ 0; (4.17)

|z�(·; t)|BV6M; ∀t ¿ 0; (4.18)

‖z�(·; t)− z�(·; s)‖L1(R)6M (t − s); ∀t; s¿ 0; t¿ s (4.19)
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Fig. 9. Example 1: The fronts in the (t; x)-plane.

for some (nite constant M independent of � and t. To see that the last bound, (4.19),
holds, we observe that

|z(q; u1)− z(q; u2)|=
∣∣∣∣ ∫ u2

u1
|@uf(q; �)| d�

∣∣∣∣6 |u1 − u2‖|f‖Lip:

From bounds (4.17), (4.18) and (4.19), it follows from standard theory that the se-
quence {z�} is strongly compact in L1

loc. Consequently, a subsequence, still labeled
{z�}, converges a.e. and in L1

loc to some function of bounded variation z. We de(ne

u(x; t) := �−1(q(x); z(x; t)): (4.20)

Since u� = �−1(z�) and �−1 is continuous, we also have that u� converges a.e. and
in L1

loc to u, and u is a weak solution to (2.6). The fact that u is a weak solution
follows since u� is a weak solution of (4.4), and we have that∫ ∫

�
(u’t + g(x; u)’x) dx dt +

∫
R
u�
0(x)’(x; 0) dx

6
∫ ∫

�
|u − u�‖’t | dx dt +

∫ ∫
�
|g(x; u)− g�(x; u�)‖’x| dx dt
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Fig. 10. Example 1: Concentration pro(les at selected times.

+
∫
R
|u(x; 0)− u�(x; 0)‖’(x; 0)| dx

→ 0; when � → 0:

Hence we have proved the following theorem:

Theorem 4.1. Assume that the coeCcients ql, qr and uF satisfy assumptions (3.8),
and that u0 is such that |z(u0)|BV is @nite. Then there exists a weak solution to
(2.6), and this weak solution is a limit of a sequence constructed by front tracking.

5. Numerical examples

5.1. Constant initial; boundary and control parameters

In the (rst two examples, we start from a clari(er–thickener which is initially full
of water, i.e., u0(x) = 0 for x∈R. At t = 0, we start to (ll up the vessel with feed
suspension of the concentrations uF = 0:7 in the (rst and uF = 0:8 in the second case.
In both examples, we select ql =−1 and qr = 0:6.
Fig. 8 shows the plots of the four 4ux density functions involved for each of both

examples. These parameters have been chosen in such a way that the structures of
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Fig. 11. Example 2: The fronts in the (t; x)-plane.

the entropy solutions coincide with those of two examples examined by Diehl [15],
for which analytical and, in the case corresponding to our choice uF = 0:8, numerical
solutions obtained from Godunov’s method are presented. A detailed construction of
the entropy solutions is given in [15]. In both cases, the control parameters satisfy

uFQF = uF(qr − ql)S = 1:6uFS ¿umaxQr (5.1)

which means that the solids feed rate in these example always exceeds the maximum
possible solids discharge rate umaxQr¿ u(1; t)Qr . Thus the clari(er–thickener is over-
loaded and one expects that, since the settling zone cannot handle the solids feed 4ux,
solids pass into the clari(cation zone and will eventually leave the unit through the
over4ow level. The main qualitative diHerence between Examples 1 and 2 lies in the
behavior at the feed level x = 0 for small times. In the (rst case, with uF = 0:7, this
Riemann problem produces a downwards propagating fan, and the concentration in
the clari(cation zone remains initially zero, while for uF = 0:8, the local maximum of
f(qr; u) is negative, and we obtain a centered wave including positive and negative
speeds, and the solids will propagate immediately into the clari(cation zone. We set
the parameter � = 1=80 in the (rst two examples. In Fig. 9 we show the fronts of
Example 1 in the (t; x)-plane, while Fig. 10 displays the same result as concentration
pro(les at selected times.
Figs. 11 and 12 display the same types of results for Example 2. The numerical

results are as expected from the (ndings of Diehl [15]. Observe that the step-like
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Fig. 12. Example 2: Concentration pro(les at selected times.

solution behavior in the thickening zone as seen in Figs. 10 and 12 corresponds to
regions of continuous transitions of the true entropy solution. Finally, we (nd con(rmed
that the solution of Riemann problems at x=−1 and x=1 leads to signi(cant changes
of the solution values with respect to height: the concentration near the bottom is
increased, while the over4ow concentration is decreased. This contrasts with the results
obtained by using entropy boundary conditions [8].

5.2. Time-dependent coeCcients

It is clear that the analysis of Sections 3 and 4 remains valid if the control parameters
ql, qr and uF are piecewise constant functions of t. Assuming that t0 = 0 and that the
parameters are constant in the time intervals [ti; ti+1〉 for i¿ 0, we can use front tracking
to (nd a weak solution in each interval [ti; ti+1〉, and therefore in [0; T ]. To demonstrate
this, and to show that front tracking method is able to handle initial data that are not
necessarily constant, we show an example where the control parameters are as in
Table 1, and the initial data are given by

u0(x) = 0:5 + 0:3 sin(2/max(−1;min(x; 1))):

For this example, we have used �= 0:005.
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Table 1
The parameters for Example 3

Time interval ql qr uF

[0; 0:25〉 −0.50 0.40 0.80
[0:25; 0:5〉 −0.75 0.80 0.40
[0:5; 0:75〉 −0.50 0.40 0.80
[0:75; 1〉 −0.75 0.80 0.40
[1; 1:25〉 −0.50 0.40 0.80
[1:25; 1:5〉 −0.75 0.80 0.40

Fig. 13. Example 3: The initial datum u�
0(x) for the front tracking method and the (nal concentration pro(le

u�(x; 1:5).

In Fig. 13 we show the initial data and the (nal result, and in Fig. 14 we show the
fronts in the (t; x) plane.
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Fig. 14. The fronts in Example 3.
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