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1 Introduction

The equations of magnetohydrodynamics (MHD) are obtained by coupling the
Euler equations of gas dynamics and the Maxwell equations of electromagnetism.
They describe the flow of a fluid in the presence of magnetic field. For ideal
gases, the inviscid MHD equation in one dimension reads

∂tρ + ∂x(ρvn) = 0,

∂tρvn + ∂x(ρv2
n + p + 1

2
B2

t ) = 0,

∂tρvt + ∂x(ρvt − BnBt) = 0,

∂tρBt + ∂x(vnBt − Bnvt) = 0,

∂tE + ∂x((E + p + 1
2
B2

t )vn − BnBt · vt) = 0,

(1)

where the variables are density ρ, flow velocity v = (vx, vy, vz) = (vn,vt),
magnetic field B = (Bn,Bt), and total energy E. The total energy is substituted
by the pressure

E =
1

γ − 1
p +

1
2
ρv2

n +
1
2
ρvt

2 +
1
2
Bt

2, (2)

where γ is the adiabatic constant. Note that because of the divergence condi-
tion ∇ · B = 0 in 1D, Bn has to be constant, and therefore we consider it as a
parameter.
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By writing the system (1) in the quasi-linear form Ut + AUx = 0, one can
see that it has the characteristic velocities

λ1 = v − cf , λ2 = v − cA, λ3 = v − cs,

λ4 = v,

λ5 = v + cs, λ6 = v + cA, λ7 = v + cf ,

(3)

which are the eigenvalues of the Jacobian A. The fast, slow and Alfven velocities
are computed as

cf,s =

√√√√1
2

(
B2

n + Bt
2

ρ
+ a2

)
±

√
1
4

(
B2

n + Bt
2

ρ
+ a2

)2

− a2
B2

n

ρ
,

cA =

√
B2

n

ρ
,

(4)

where a =
√

γp
ρ is the sound speed.

Since cs ≤ cA ≤ cf , the real eigenvalues (3) may coincide at certain points,
and therefore the MHD equation is a non-strictly hyperbolic system. For ex-
ample if Bn = 0, we get cs = ca = 0, and v is an eigenvalue of multiplicity
5.

2 Stability of the waves

In a Riemann problem for a hyperbolic system, the initial conditions are discon-
tinuous. the solution of such problems is built from either discontinuities, like
shock waves, or rarefaction waves. Due to the non-strict hyperbolicity of MHD
equations, the wave structure of the Riemann problem for ideal MHD, governed
by 7 waves, is more complicated than for a strictly hyperbolic system; First,
the uniqueness of solution is not guaranteed. Second, the system may admit
non-regular waves, including compound waves and over-compressive shocks.

We will specifically study the Riemann problem with left state

(ρ, vn,vt, Bn,Bt, p) = (1, 0, [0, 0], 1, [1, 0], 1) , (5)

and right state

(ρ, vn,vt, Bn,Bt, p) = (0.2, 0, [0, 0], 1, [cosα, sin α], 0.2) , (6)

as initial conditions, which was investigated by Manuel Torrilhon in [4]. Angle α
is the initial twist angle of the planes of the magnetic fields. The exact solution
for α = 3.0 and α = π is shown in figure 1.

For certain initial data the Riemann problem for ideal MHD does not have
a unique solution. In [5], the uniqueness condition has been derived as the fol-
lowing:
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Figure 1: Exact solutions of (1,5,6), calculated by Torrilhon [3].

Theorem. If for the initial conditions in the non-planar case (α �= kπ, k =
0, 1, 2), the condition [[vt]] = 0, or in the coplanar case (α = π), the condition
0 �= [[vt]] �‖ [[Bt]] holds, then the MHD Riemann problem has a unique regular
solution.

Here, the quantity
[[φ]] := φ(1) − φ(0)

describes the jump of the fields to right and left of the discontinuity.

From the theorem it follows that the solution of (5) and (6), when α = π, is
not unique since [[vt]] = 0. In this case the left and right states have magnetic
fields in the same plane, and there are two solutions to the Riemann problem,
which we will denote the r-solution and the c-solution, following [4]. The ’r’
in r-solution stands for regular since it is composed of only Lax shocks, rar-
efactions, rotational discontinuities and a contact discontinuity, all having nice
stability properties. The c-solution, however, has a compound wave (hence the
’c’) travelling to the left, where a marginally over-compressive shock is directly
followed by a slow rarefaction. For α �= π there is only one solution, Uα to the
Riemann problem (5), (6), and as α → π, Uα approaches the r-solution. Hence
the c-solution is unstable to arbitrarily small perturbations of B out of the plane.

Therefore one might suggest that the c-solution does not have physical sig-
nificance. However, we have assumed that there is no viscosity, which is an
approximation. In the viscous equation the momentum equations are modified
as follows:

∂tρvn + ∂x(ρv2
n + p + 1

2
B2

t ) =
2
3
ν∂x(ρ ∂xvn),

∂tρvt + ∂x(ρvt − BnBt) = ν∂x(ρ ∂xvt),
(7)

If ν > 0 the c-solution will be stable under small perturbations in phase
space, including perturbations of B out of the plane. However this stability
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region shrinks with ν, until it disappears at ν = 0, see [2].

When doing numerical simulations of the inviscid equations, one also gets
more complex behaviour than the inviscid analysis suggests. For α = π, all the
schemes we are aware of pick the c-solution. However, if α is slightly perturbed,
at coarse grids the schemes will still tend to the c-solution, and begins to con-
verge to the unique regular solution only when the grid is refined sufficiently.
Since all the schemes add viscosity in a certain sense, it is plausible that the
analysis of the viscous equation might provide some explanation for this. For
coarser resolution the numerical viscosity is higher, so it is as though the data
are within the stability region of the c-solution until we refine, and thereby
reduce viscosity, sufficiently.

3 Solving the inviscid MHD equations

To solve the inviscid one dimensional MHD equations (1) numerically we used
the Staggered Central Scheme by Tadmor and Nessyahu [1]. The scheme is 2.
order i01 Deviĺs Haircut.mp3n time and space. Already on the second day of the
workshop we were able to run a few test runs with an existing two-dimensional
code written by Knut Waagan for α �= π.

The only modifications needed was specifying the initial conditions, and
setting the dimensions to n × 1. We were able to reproduce the convergence
behavior discussed by Torrilhon in [4]. For coarse grids the solution is “c-like”,
and for finer grids the solution approaches the correct r-solution.

Since the code was two-dimensional it was quite time consuming to run
on finer grids (> 10000 grid points). The goal was to run on very fine grids
(> 100000 grid points), so we stripped the 2nd dimension from the code, giving
a purely one-dimensional code. Then the code ran about 10 times faster. The
code running on a 1.6 GHz portable computer ran 10000 grid points to time
t=0.4 in a couple of hours, while 50000 grid points required about 24 hours. In
order to run on even finer grids we started parallelizing the code.

3.1 Parallel version

The parallelization was done using domain decomposition. Assuming that we
have N processors (and domains) numbered by i ∈ [0, N − 1] and n total grid
points. The the domain of processor i have ni = n/N grid points. The division
is integer, and in case the modulo is nonzero, each processor with rank less than
the modulo get one more grid point. In addition the grid has two1ghost cells
on both sides of the domain. The ghost cells are set by communicating the
corresponding cells from the neighbouring domains. Figure 2 shows an example
for n = 64 and N = 6. The arrows shows the direction of communication. If the
ghost cells lie outside the boundaries of the total grid they are set using Neumann
boundary conditions. The communications are done using MPI which is widely

1Actually we use three ghost cells to avoid communicating twice each time step.

4



cpu3cpu2cpu1cpu0 cpu4 cpu5

Figure 2: An example of domain decomposition of a system with n = 64 grid
points distributed to N = 6 processors. Arrows show the direction of commu-
nication.

available and may run on both massively parallel computers and workstation
clusters.

The parallelization was done just in time to run on 100000 grid points be-
fore last preparations for the next days final presentations. Using 32 2,6GHz
processors on the Horseshoe cluster in Odense (Denmark) the running time was
less than 1 hour.

3.2 Results

In figure 3 we have plotted the density, ρ and the y-component of the magnetic
field By for different number of grid points using (5,6) and α = 3.0. Note that
for coarse grids we get a solution that is similar to a c-solution, and that for the
finer grids we approach the analytic r-solution.
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Figure 3: The transition from a “c-like” solution towards the exact r-solution
for α = 3.0.

3.3 Numerical stability of the r-solution

For α = π we were not able to get the r-solution at all numerically. But as a
step towards achieving that, we decided to sample the r-solution at some time,
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and use it as the initial condition for the Nessuahu-Tadmor scheme. In order to
do so we obtained from M. Torrilhon his calculation of the exact solution to the
Riemann problem (5)-(6). The simulation did not simply evolve the r-solution as
one would expect. Instead the left-going rotational discontinuity broke up into
several new structures that eventually interacted with the slow shock - Hence the
self-similarity of the r-solution was destroyed. We believe that this failure is due
to a general difficulty in resolving rotational discontinuities numerically, since
similar phenomena could be observed for other Riemann problems consisting
only of a rotational discontinuity. There seemed to be some analogy with the
issue of resolving shear waves in hydrodynamics. However this observation does
not contradict the presence of rotational discontinuities in numerical solutions
of other Riemann problems. In that case they emerge in a stable fashion out
of other structures. It is possible that some kind of smoothing of the initial
rotational discontinuity would solve this issue.

3.4 1-D simulation using the Pencil code

Although the pre-existing Pencil code was able to provide the necessary tool for
the numerical computing, it – as a fully three-dimensional – was a bit supernu-
merary for our purposes. Namely, as we needed only one-dimensional analysis
and only certain 1-D related operations, the inclusion of un-needed extra di-
mensions and complex numerical algorithms were slowing down the simulations
unnecessarily. Thus, we decided to write a new, lighter 1-D code basing on the
Pencil code in order to reduce computing time in the forthcoming simulation
runs.

The ”dimension reduction” was performed so that one of the group leaders
as well as one of the members started to work on the pre-existing code using
CVS 2 for keeping track of changes and dealing with (and avoiding, as much as
possible) conflicting modifications of the source codes. This approach turned
out to be successful, and at the end of the week we had managed to do nearly
all the modifications needed to have 1) modules for the physical interactions
and properties, 2) mathematical formulas for needed derivatives and other op-
erations, and 3) data handling and visualization procedures turned or rewritten
to work in the 1-D scheme.

Taking into account the limited amount of time for working within the frames
of the workshop, the (re)writing of the whole simulation code package was,
obviously, too wide a project to be completed in order to have a working and
tested code for the rest of the groups, so the contribution of the coding part of
the work group to the overall research of the group remained minor. On the
pedagogical side, on the other hand, this part of the project was very fruitful:
getting in touch with larger scale coding projects and learning to use certain
development and code writing tools effectively, together with seeing alternative
uses for some familiar tools, was very instructing.

As for the future, there is still more work to do in order to get the code fully
2Concurrent Versioning System, see https://www.cvshome.org/
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working in every aspects, including not only the dimensional conversion and
rewriting of the code, but also testing and documentation as well; this project
is very likely to continue beyond the workshop.

3.5 Regular and compound solutions in the 1D viscous
case

We investigate numerically solutions to the MHD problem where the RHS of
Eq. (1) do not vanish and the momentum equations will take the form of Eq.
(7). Initially a regular shock is applied, and it is the aim of this section to look
at the non-uniqueness in solutions for different values of α and ν, hence the
angle between Bt before and after the shock and the viscosity.

In the case where we have the least viscosity the solutions have more numer-
ical noise due to the discretization of the grid. We used grid sizes of hence 20000
and 50000 grid points in the x-direction due to the scheme described previously.
The runs were carried out on a single CPU with the serial version of the Pencil
Code and the results are shown in the figures below.

-60 -50 -40 -30 -20 -10 0
X

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ρ

α = 3.0
α = 3.1

c-solution
approaching r-solution

-60 -50 -40 -30 -20 -10 0
x

0,4

0,5

0,6

0,7
ρ
α = 3.0
α = 3.05
α = πc-solution

approaching r-solution

Figure 4: Numerical solutions with ν = 0.002 and ν = 0.005 with different α.
The runs are done with 50000 grid points and took several hours on a single
CPU.

In the results we see that for α = π and close to α = π the solution is
compound like, while in the case of alpha < 3.1 the solutions tend towards a
regular wave.
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