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Abstract In the first part of this work Bouchut et al. (J Comput Phys 108:7–41,
2007) we introduced an approximate Riemann solver for one-dimensional ideal MHD
derived from a relaxation system. We gave sufficient conditions for the solver to sat-
isfy discrete entropy inequalities, and to preserve positivity of density and internal
energy. In this paper we consider the practical implementation, and derive explicit
wave speed estimates satisfying the stability conditions of Bouchut et al. (J Comput
Phys 108:7–41, 2007). We present a 3-wave solver that well resolves fast waves and
material contacts, and a 5-wave solver that accurately resolves the cases when two
eigenvalues coincide. A full 7-wave solver, which is highly accurate on all types of
waves, will be described in a follow-up paper. We test the solvers on one-dimensional
shock tube data and smooth shear waves.
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648 F. Bouchut et al.

1 Introduction

The equations for ideal MHD in one dimension are

ρt + (ρu)x = 0, (1.1)

(ρu)t +
(

ρu2 + p + 1
2
|B⊥|2 − 1

2
B2

x

)

x
= 0, (1.2)

(ρu⊥)t + (ρuu⊥ − BxB⊥)x = 0, (1.3)

Et +
[(

E + p + 1
2
|B⊥|2 − 1

2
B2

x)u − Bx(B⊥ · u⊥

)]

x
= 0, (1.4)

(B⊥)t + (B⊥u − Bxu⊥)x = 0. (1.5)

The state variables are the mass density ρ, the pressure p, the velocity split into its
longitudinal and transverse components u and u⊥, and the magnetic field similarly
into Bx and B⊥. Hence u⊥ and B⊥ are two-dimensional vectors. Since the divergence
of the magnetic field is zero at all times, we take Bx constant for one-dimensional
data, but that restriction may be relaxed. Finally there is the total energy E ,

E = 1
2
ρ(u2 + |u⊥|2) + ρe + 1

2
(B2

x + |B⊥|2), (1.6)

with e denoting the specific internal energy. The system is closed by an equation
of state p = p(ρ, e). Thermodynamical considerations leads to the assumption of
existence of a specific physical entropy s = s(ρ, e) that satisfies

de + p d
(

1
ρ

)
= T ds (1.7)

for some temperature T (ρ, e) > 0. To ensure the hyperbolicity of (1.1)–(1.5), we
assume that

p′ ≡
(

∂p
∂ρ

)

s
> 0, (1.8)

where the subscript s means that the partial derivative is taken with s constant. We
shall also make the classical assumption that

− s is a convex function of
(

1
ρ

, e
)

. (1.9)

This is a follow-up paper to [5] where we proposed an approximate Riemann solver
for (1.1)–(1.5). It is based on a relaxation approximation which generalized the Suliciu
relaxation approach for the Euler equations, see [2,3]. In Sect. 1.1 of [5] we described
Godunov schemes and the idea of approximate Riemann solvers. We then introduced
discrete entropy inequalities as a stability constraint, which can be seen also as a
way to numerically impose the second law of thermodynamics. A second important
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Approximate Riemann solver for ideal MHD based on relaxation II 649

stability criterion is the positivity of density and internal energy. In Sect. 1.2 we dis-
cussed positivity and entropy inequalities in the context of relaxation systems. This
was exemplified by the Suliciu relaxation system for the Euler equations, that our
relaxation system for (1.1)–(1.5) generalizes.

In the next section we recall the results of [5]. In Sect. 3 we describe our approx-
imate Riemann solvers with 3 and 5 waves that are special cases of our underlying
approach. We give explicit formulas for wave speeds that ensure entropy inequalities
and positivity in both the 3-wave and the 5-wave case. These formulas are extensions
of the explicit signal speeds for the HLLC solver introduced in [3]. Finally we run
some numerical tests. Our solvers are compared against each other and against the
Roe solver, the HLL solver, and the 5-wave solver of [11]. At the end we summarize
the results. In a follow-up paper [4] we treat the case of the full 7-wave solver.

In multidimensional simulations, one-dimensional solvers are commonly used as
building blocks. In the case of ideal MHD the constraint that divB = 0 is an additional
challenge. We describe in an appendix how Powell’s idea of extending (1.1)–(1.5),
see [12], can be easily incorporated into our relaxation approach. Other methods used
in the multidimensional finite volume setting should in principle be able to use our
one-dimensional solver.

2 Relaxation system and approximate Riemann solver

In [5] we introduced the relaxation system

ρt + (ρu)x = 0, (2.1)

(ρu)t + (ρu2 + π)x = 0, (2.2)

(ρu⊥)t + (ρuu⊥ + π⊥)x = 0, (2.3)

Et + [(E + π)u + π⊥ · u⊥]x = 0, (2.4)

(B⊥)t + (B⊥u − Bxu⊥)x = 0, (2.5)

with still (1.6), and where the relaxation pressures π and π⊥ evolve according to

(ρπ)t + (ρπu)x + (|b|2 + c2
b)ux − cab · (u⊥)x = 0, (2.6)

(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2
a(u⊥)x = 0. (2.7)

The parameters ca ≥ 0, cb ≥ 0, and b ∈ R2 play the role of approximations of√
ρ|Bx|, ρ

√
p′ and sign(Bx)

√
ρB⊥ respectively. Indeed, ca, cb, b are not taken con-

stant, but are evolved with

(ca)t + u(ca)x = 0, (cb)t + u(cb)x = 0, bt + ubx = 0. (2.8)
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650 F. Bouchut et al.

The eigenvalues of the system (2.1)–(2.8) are u, u ∓ cs
ρ , u ∓ ca

ρ and u ∓ c f
ρ , where

c2
s = 1

2

(
c2

b + c2
a + |b|2 −

√
(c2

b + c2
a + |b|2)2 − 4c2

ac2
b

)
,

c2
f = 1

2

(
c2

b + c2
a + |b|2 +

√
(c2

b + c2
a + |b|2)2 − 4c2

ac2
b

)
,

(2.9)

u having multiplicity 8. All are linearly degenerate. Note that cs ≤ ca ≤ c f , cs ≤
cb ≤ c f , and that the eigenvalues of (2.1)–(2.8) equal the eigenvalues of (1.1)–(1.5)
whenever ca = √

ρ|Bx|, cb = ρ
√

p′ and b = sign(Bx)
√

ρB⊥. However, in order to
simplify, we shall make here different choices, leading to a solver with 3 waves or 5
waves instead of 7 waves. The full motivation for the relaxation system is given in
Sect. 2 of [5].

The approximate Riemann solver associated to the above relaxation system
is a function R(x/t, Ul , Ur ), where U stands for the MHD variable U =
(ρ, ρu, ρu⊥, E, B⊥). It is obtained by solving the Riemann problem for (2.1)–(2.8),
and dropping the extra components π,π⊥, ca, cb, b. Initially, this Riemann problem
starts with the relaxation pressures at equilibrium,

π = p + 1
2
|B⊥|2 − 1

2
B2

x and π⊥ = −Bx B⊥. (2.10)

The signal speeds ca, cb, b have to be specified initially on the left and on the right,
i.e. one has to give values for

cbl , cbr , cal , car , bl , br . (2.11)

This choice is the key issue for stability and accuracy. This approximate Riemann
solver is consistent with (1.1)–(1.5) and conservative, whatever is the choice of
these signal speeds (see [3] for the precise meaning of this). Our relaxation system
(2.1)–(2.8) generalizes the Suliciu relaxation system for gas dynamics, hence since
the HLLC solver is associated to the Suliciu system, our approximate Riemann solver
is an extension of the HLLC solver to MHD.

If the initial data Ul , Ur consist of a single material contact discontinuity, the approx-
imate Riemann solver gives the exact solution to (1.1)–(1.5), π and π⊥ remaining at
equilibrium. Isolated Alfven contact discontinuities are as well exactly resolved under
some additional conditions specified in [5]. These additional conditions cannot be
satisfied for the 3-wave or 5-wave solvers considered here.

As usual, an approximate Riemann solver leads to a conservative scheme

U n+1
i = U n

i − $t
$x

(
Fn

i+ 1
2

− Fn
i− 1

2

)
, (2.12)

where the index i refers to the cell, the index n to time, and

Fn
i+1/2 = F(U n

i , U n
i+1) (2.13)
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Approximate Riemann solver for ideal MHD based on relaxation II 651

with F(Ul , Ur ) the numerical flux. In our case, since our solver R(x/t, Ul , Ur ) comes
from the exact solution to (2.1)–(2.8) which is conservative in U , it is given by the
exact flux of (2.1)–(2.8) evaluated at x/t = 0,

F(Ul , Ur )=(ρu, ρu2 + π, ρuu⊥ + π⊥, (E + π)u+π⊥ · u⊥, B⊥u − Bxu⊥)x/t=0.

(2.14)

The CFL-condition for this scheme is

max
(∣∣∣∣ul − c f l

ρl

∣∣∣∣ ,
∣∣∣∣ur + c f r

ρr

∣∣∣∣

)
$t ≤ C$x, (2.15)

for some CFL-number C . A value C = 1/2 ensures that the waves emerging from the
cell interfaces do not interact. However, it is common in practice to use C = 1 for the
first-order scheme.

Since all characteristic fields of (2.1)–(2.8) are linearly degenerate, the Riemann
problem is much easier to solve than for the original MHD system. Indeed its solution
consists of constant states (we shall call them “intermediate states” in the sequel),
separated by discontinuities. In order to get the solution one has only to list the weak
Riemann invariants associated to each eigenvalue, and to write that each of them does
not jump through the associated discontinuity.

The aim of this work is to produce an accurate, positive and entropy satisfying
approximate Riemann solver for MHD. By entropy satisfying we mean that the scheme
(2.12) satisfies discrete entropy inequalities

η(U n+1
i ) ≤ η(U n

i ) − $t
$x

(
Gn

i+ 1
2

− Gn
i− 1

2

)
(2.16)

for entropy flux pairs (η, G), where Gn
i+ 1

2
= G(U n

i , U n
i+1), and G(Ul , Ur ) is a numeri-

cal entropy flux, satisfying G(U, U ) = G(U ). For ideal MHD we consider η = ρφ(s),
and G = ηu, where φ is any decreasing and convex function. The assumption (1.9)
ensures that η = ρφ(s) is convex with respect to U . A stronger entropy inequality can
indeed be formulated on the approximate Riemann solver itself (see [3]). The posi-
tivity of density and internal energy for the approximate Riemann solver (i.e. for its
intermediate values) is also retained as the useful formulation, instead of the weaker
one stating that the scheme (2.12) is positive.

In [5] we derived stability conditions, that ensure that the approximate Riemann
solver is positive and entropy satisfying. These stability conditions must hold for each
intermediate state of the approximate solver, and involve also the initial states and
the relaxation parameters (2.11). It is convenient to denote by a star any value corre-
sponding to an intermediate state, while the sub- or superscript ‘l/r ’ will be used to
refer to the initial state on the same side of the central wave as the intermediate value
considered. In [5] we proved the following result.

Proposition 2.1 The approximate Riemann solver defined by the relaxation sys-
tem (2.1)–(2.8) is positive and satisfies the discrete entropy inequalities if, for each
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652 F. Bouchut et al.

intermediate state, denoted by a star, we have ρ∗ > 0 and

(ρ2 p′)∗,l/r ≤ c2
b,

1
ρ∗ − B2

x

c2
a

≥ 0,

∣∣∣∣Bl/r
⊥ − Bx

b
ca

∣∣∣∣
2

≤
(

c2
b − (ρ2 p′)∗,l/r

)(
1
ρ∗ − B2

x

c2
a

)
,

(2.17)

where (ρ2 p′)∗,l/r is defined as

(ρ2 p′)∗,l/r ≡ sup
ρ∈[ρl/r ,ρ∗]

ρ2 p′(ρ, sl/r ), (2.18)

and where cb, ca, b are evaluated locally, i.e. they stand for cb,l/r , ca,l/r , bl/r .

3 Riemann solvers with 3 and 5 waves

The solvers considered in this paper are obtained with the choice bl = br = 0. This
makes the formulas for the intermediate states simpler, resulting in fast codes and a
relatively simple analysis.

3.1 Intermediate states for the 3-wave solver

The most simple choice for the signal speeds is obtained by taking

b = 0, ca = cb ≡ c, (3.1)

which means that we have only two parameters cl > 0, cr > 0. Then cs = c f = c, thus
we have only three eigenvalues for the system (2.1)–(2.8), which are u − c/ρ, u, u +
c/ρ. This leads to a solver with 3 waves and 2 intermediate states, that will be denoted
as l∗ and r∗.

The left and right waves have multiplicity 3. There are 8 strong Riemann invariants
associated to the central wave (i.e. quantities that lie in the kernel of ∂t + u∂x), which
are ca , cb, b, and

1
ρ

+ π

c2 ,
B⊥
ρ

+ Bx

c2 π⊥, e + B2
x + |B⊥|2

2ρ
− π2

2c2 − |π⊥|2
2c2 . (3.2)

These quantities are thus weak Riemann invariants for the left and right waves. They
must be completed with 3 weak Riemann invariants, that are found to be π + cu,
π⊥ + cu⊥ for the left wave, and π − cu, π⊥ − cu⊥ for the right wave. For the central
wave, 6 weak Riemann invariants are u, u⊥, π , π⊥. The wave speeds are therefore
σ1 < σ2 < σ3,

σ1 = ul − cl

ρl
, σ2 = u∗

l = u∗
r ≡ u∗, σ3 = ur + cr

ρr
. (3.3)
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The values of ca , cb, b are the left values for the l∗ state, and the right values for the r∗

state. The intermediate values for ρ, B⊥, e are deduced from the fact that the quantities
in (3.2) do not jump through the left and right waves. It remains to determine the values
u∗, u∗

⊥, π∗, π∗
⊥ (which are common for the l∗ and r∗ states). They are determined by

the relations

(π + cu)∗l = (π + cu)l , (π − cu)∗r = (π − cu)r ,

(π⊥ + cu⊥)∗l = (π⊥ + cu⊥)l , (π⊥ − cu⊥)∗r = (π⊥ − cu⊥)r .
(3.4)

Hence we get the intermediate values

u∗ = clul + cr ur + πl − πr

cl + cr
,

π∗ = crπl + clπr − clcr (ur − ul)

cl + cr
,

u∗
⊥ = clul

⊥ + cr ur
⊥ + π l

⊥ − πr
⊥

cl + cr
,

π∗
⊥ = crπ

l
⊥ + clπ

r
⊥ − clcr (ur

⊥ − ul
⊥)

cl + cr
.

(3.5)

Note that since σ1 = u∗
l − cl

ρ∗
l

and σ3 = u∗
r + cr

ρ∗
r

, positivity of ρ is equivalent to
σ1 < σ2 < σ3.

3.2 Intermediate states for the 5-wave solver

A more general solver is obtained if we only set

b = 0, (3.6)

and keep arbitrary ca , cb. Then we have the four parameters cbl , cal , cbr , car . We
observe that

cs = min(ca, cb), c f = max(ca, cb), (3.7)

thus we have five eigenvalues for our system (2.1)–(2.8), which are u−c f /ρ, u−cs/ρ,
u, u + cs/ρ, u + c f /ρ. The eigenvalues u ± ca/ρ have double multiplicity, while
u ± cb/ρ are simple. We get a 5-wave solver with four intermediate states.

There are 8 strong Riemann invariants associated to the central wave (i.e. quantities
that lie in the kernel of ∂t + u∂x), which are ca , cb, b, and

1
ρ

+ π

c2
b

,
B⊥
ρ

+ Bx

c2
a

π⊥, e + B2
x + |B⊥|2

2ρ
− π2

2c2
b

− |π⊥|2
2c2

a
. (3.8)

These quantities are thus weak Riemann invariants for the other waves. Six weak Rie-
mann invariants for the central wave are u, u⊥, π , π⊥. They take the same value on the
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654 F. Bouchut et al.

left and on the right of this central wave, we shall denote theses values by u∗, u∗
⊥, π∗,

π∗
⊥. The remaining weak Riemann invariants for the left and right waves are found to

be

u − cb/ρ :π + cbu,π⊥, u⊥,

u − ca/ρ :π⊥ + cau⊥,π, u,

u + cb/ρ :π − cbu,π⊥, u⊥,

u + ca/ρ :π⊥ − cau⊥,π, u.

(3.9)

Therefore, everything is as if the longitudinal part of the velocity–pressure (u,π) were
resolved independently of the transverse velocity–pressure (u⊥,π⊥), the first jumping
only through the cb waves, and the second jumping only through the ca waves. We
deduce the values u∗, u∗

⊥, π∗, π∗
⊥ by replacing c by cb or by ca in (3.5),

u∗ = cblul + cbr ur + πl − πr

cbl + cbr
,

π∗ = cbrπl + cblπr − cblcbr (ur − ul)

cbl + cbr
,

u∗
⊥ = calul

⊥ + car ur
⊥ + π l

⊥ − πr
⊥

cal + car
,

π∗
⊥ = carπ

l
⊥ + calπ

r
⊥ − calcar (ur

⊥ − ul
⊥)

cal + car
.

(3.10)

We complete the values of u, π , u⊥, π⊥ in the “noncentral” intermediate states by set-
ting them to either their star value or their l/r value depending on the ordering between
ca and cb. Indeed, if cb > ca then (u,π) = (u∗,π∗), (u⊥,π⊥) = (ul/r

⊥ ,π
l/r
⊥ ), and if

cb < ca then (u,π) = (ul/r ,π l/r ), (u⊥,π⊥) = (u∗
⊥,π∗

⊥).
The strong Riemann invariants (3.8) are constant on each side of the middle wave

providing formulas for the intermediate values ρ, B⊥ and e. In particular, ρ does not
jump through the ca waves.

Finally, we remark that u and π are given by u∗ and π∗ between the waves with
speeds ul − cbl

ρl
and ur + cbr

ρr
, while there ρ takes the values ρ∗

l and ρ∗
r . The remaining

left ca wave hence has speed ul − cal
ρl

if cal ≥ cbl , and u∗ − cal
ρl∗ otherwise. The remain-

ing right ca wave has speed ur + car
ρr

if car ≥ cbr , and u∗ + car
ρr∗ otherwise. Between

these two ca waves u⊥ and π⊥ are given by u∗
⊥ and π∗

⊥.

3.3 Previous 3-wave and 5-wave solvers

In [9,10] approximate Riemann solvers with 3 waves that resolve material contact
discontinuities are given. No stability analysis is known in their case, and indeed
instabilities can occur in practice. Miyoshi and Kusano proposed in [11] an approxi-
mate Riemann solver with 5 waves, that also accurately resolves Alfven contact waves.
Even if no analysis of stability is provided, it is stable in practice.
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Approximate Riemann solver for ideal MHD based on relaxation II 655

3.4 Choice of signal speeds for the 3-wave solver

Here we derive explicit values for the signal speeds that are sufficient for positivity
and entropy inequalities. This is done with the use of Proposition 2.1. Following the
analysis of the classical gas dynamics case performed in [2], we make some natural
assumptions on the pressure law, that is

(
∂

∂ρ

)

s

(
ρ
√

p′
)

> 0, (3.11)
(

∂

∂ρ

)

s

(
ρ
√

p′
)

≤ α
√

p′, for some constant α > 1, (3.12)

where we recall that p′ is defined in (1.8). Notice that these assumptions only involve
the pressure law p(ρ) at fixed s, and that the first inequality is equivalent to p being
convex with respect to 1/ρ, at fixed s. For an ideal gas these conditions hold with
α = 1

2 (γ + 1). Considering now the 3-wave case, we make the following a priori
choice of the relaxation speeds,

cl = ρla0
l + αρl

(
(ul − ur )+ + (πr − πl)+

ρlaql + ρr aqr

)
,

cr = ρr a0
r + αρr

(
(ul − ur )+ + (πl − πr )+

ρlaql + ρr aqr

)
.

(3.13)

Here, aql , aqr denote the left and right fast MHD speeds,

a2
q = 1

2



p′ + B2
x + |B⊥|2

ρ
+

√(
p′ + B2

x + |B⊥|2
ρ

)2

− 4p′ B2
x

ρ



 , (3.14)

and a0
l and a0

r need to be determined in such a way that

a0
l ≥ aql , a0

r ≥ aqr . (3.15)

This last restriction implies in particular that cl ≥ ρlaql , cr ≥ ρr aqr . We would like
now to find a value for a0

l , such that ρ∗
l > 0, and that the conditions (2.17) of Prop-

osition 2.1 are satisfied on the l∗ state. From the first invariant of (3.2) we have that
1/ρ∗

l + π∗/c2
l = 1/ρl + πl/c2

l , thus with the value of π∗ given in (3.5),

1
ρ∗

l
= 1

ρl
+ cr (ur − ul) + πl − πr

cl(cl + cr )

≥ 1
ρl

− cr (ul − ur )+
cl(cl + cr )

− (πr − πl)+
cl(cl + cr )

≥ 1
ρl

− (ul − ur )+
cl

− (πr − πl)+
cl(ρlaql + ρr aqr )

. (3.16)
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656 F. Bouchut et al.

Define now

Xl = 1
aql

(
(ul − ur )+ + (πr − πl)+

ρlaql + ρr aqr

)
, (3.17)

so that by the definition (3.13) of cl and by (3.15), one has

cl

ρl
≥ aql(1 + αXl). (3.18)

Using this in (3.16) gives

1
ρ∗

l
≥ 1

ρl

(
1 − Xl

1 + αXl

)
, (3.19)

hence ρ∗
l > 0,

0 < ρ∗
l ≤ ρl/xl , (3.20)

with

xl = 1 − Xl

1 + αXl
∈

(
α − 1

α
, 1

]
. (3.21)

The following Lemma generalizes the analysis performed for the Euler equations in
[3].

Lemma 3.1 Consider a pressure law p(ρ) satisfying (3.11)–(3.12). Let x = 1 −
X/(1 + αX) for some X ≥ 0. Then for all ρ > 0

ρ

x

√
p′

(ρ

x

)
≤ ρ

√
p′(ρ)(1 + αX). (3.22)

Proof The assumptions imply that

d
dρ

(
ρ−αρ

√
p′(ρ)

)
≤ 0, (3.23)

and thus that

∀r ≥ 1, rρ
√

p′(ρ) ≥ ρr1/α
√

p′(ρr1/α). (3.24)

Taking r = x−α gives

ρ

x

√
p′

(ρ

x

)
≤ ρ

√
p′(ρ)x−α, (3.25)
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thus in order to conclude it only remains to prove that x−α ≤ 1 +αX , or equivalently
that x ≥ (1 + αX)−1/α . This can be written

1 − X
1 + αX

− (1 + αX)−1/α ≥ 0. (3.26)

Defining θ = 1/(1 + αX) ∈ [0, 1], this reduces to

1 − 1 − θ

α
− θ1/α ≥ 0, (3.27)

which holds true for all θ ∈ [0, 1] and α ≥ 1. ,-

Applying the lemma with ρ = ρl gives

ρl

xl

√

p′
(

ρl

xl
, sl

)
≤ ρl

√
p′(ρl , sl)(1 + αXl). (3.28)

According to the monotonicity of ρ
√

p′ stated in (3.11) and to (3.20), this allows to
estimate the supremum of the speeds in (2.18),

√
(ρ2 p′)∗,l ≤ ρl

√
p′

l(1 + αXl), (3.29)

with p′
l = p′(ρl , sl). Now, in order to satisfy (2.17), it is sufficient to have

∣∣∣Bl
⊥
∣∣∣
2

≤
(

c2
l − ρ2

l p′
l(1 + αXl)

2
)(

xl

ρl
− B2

x

c2
l

)

, (3.30)

provided that the two factors on the right-hand side are nonnegative. In order to sim-
plify this, we write that cl = ρl(a0

l + αaql Xl), thus

c2
l = ρ2

l

(
(a0

l )2 + 2αa0
l aql Xl + (αaql Xl)

2
)

≥ ρ2
l

(
(a0

l )2 + 2αa2
ql Xl + (αaql Xl)

2
)

. (3.31)

Therefore, we get

c2
l − ρ2

l p′
l(1 + αXl)

2

≥ ρ2
l

(
(a0

l )2 − p′
l + 2αXl(a2

ql − p′
l) + (αXl)

2(a2
ql − p′

l)
)

≥ ρ2
l

(
(a0

l )2 − p′
l

)
. (3.32)
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Therefore, for (3.30) to hold it is enough that

∣∣∣Bl
⊥
∣∣∣
2

≤ ρ2
l

(
(a0

l )2 − p′
l

) (
xl

ρl
− B2

x

ρ2
l (a0

l )2

)

, (3.33)

provided that the two factors on the right-hand side are nonnegative. Multiplying this
by (a0

l )2 we get a second degree inequality, and (a0
l )2 must be larger than its largest

root. Therefore we can take for (a0
l )2 this largest root,

(a0
l )2 = 1

2



p′
l + B2

x + |Bl
⊥|2

ρlxl
+

√√√√
(

p′
l + B2

x + |Bl
⊥|2

ρlxl

)2

− 4p′
l

B2
x

ρlxl



 . (3.34)

Notice that this formula differs only by the appearance of xl from the definition of
aql . Since xl ≤ 1, the condition a0

l ≥ aql in (3.15) holds true.
The same analysis is valid on the right, with

Xr = 1
aqr

(
(ul − ur )+ + (πl − πr )+

ρlaql + ρr aqr

)
, xr = 1 − Xr

1 + αXr
, (3.35)

(a0
r )2 = 1

2



p′
r + B2

x + |Br
⊥|2

ρrxr
+

√(
p′

r + B2
x + |Br

⊥|2
ρrxr

)2

− 4p′
r

B2
x

ρrxr



 . (3.36)

We have proved the following:

Proposition 3.2 If the pressure law satisfies (3.11)–(3.12), the 3-wave solver is pos-
itive and entropy satisfying for the choice of cl , cr given by (3.13) with (3.34), (3.36),
(3.17), (3.21), (3.35).

The above formulas are sharp in the sense that they give the true fast MHD speeds
for constant initial data. Indeed, it is enough that ul = ur and πl = πr for getting
cl = ρlaql , cr = ρr aqr . This shows that fast waves are well resolved with this solver.
Furthermore, one observes that with our choice of cl , cr , the maximum speed involved
in the CFL condition (2.15) remains bounded when the speeds of the left and the
right states are bounded, (|u| + aq)l/r ≤ C . This is true in particular if for example
ρl approaches 0 with ρr fixed (but under the previous left/right bounds), as it was
required in order to treat the vacuum in the Euler case, see [3].

3.5 Choice of signal speeds for the 5-wave solver

We here provide formulas for the signal speeds cbl , cbr , cal , car for the 5-wave solver
that enable to get positivity and entropy inequalities. We still make the assumptions
(3.11)–(3.12). In order to apply Proposition 2.1 we need that

∣∣∣Bl/r
⊥

∣∣∣
2

≤
(

c2
b − (ρ2 p′)∗,l/r

) (
1
ρ∗

− B2
x

c2
a

)
, (3.37)
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with both factors on the right-hand side being nonnegative. If (3.37) is to hold sharply,
a decrease in ca implies an increase in cb, and vice versa. In the 3-wave case we
had cb = ca , and clearly that choice gives the least restrictive CFL-condition (2.15),
where c f = max(ca, cb) is involved. Another criterion for choosing ca and cb is to
minimize the effect of the diffusion obtained from the Chapman–Enskog expansion.
We shall make this choice here. The computation of the Chapman–Enskog expansion
was performed in [5], and one can check that minimizing the largest eigenvalue of the
diffusion matrix means minimizing c2

b + c2
a . If we assume that (3.37) holds sharply

(and for smooth solutions in the Chapman–Enskog context), minimum is achieved
when

c2
a = ρ(B2

x + |BxB⊥|), and c2
b = ρ2 p′ + ρ(|B⊥|2 + |BxB⊥|). (3.38)

Then, for this choice, the largest eigenvalue of the diffusion matrix is 2|BxB⊥|/ρ. We
notice that it implies that the diffusion matrix vanishes identically when Bx = 0 or
B⊥ = 0. The case when Bx = 0 or B⊥ = 0 means that two eigenvalues of the MHD
system coincide (the system has at most 5 waves instead of 7). Therefore, it means that
whenever the MHD system has at most 5 waves, the 5-wave solver with the choice
(3.38) becomes fully accurate (it has only the residual viscosity due to averaging on
the cells, or equivalently it has the same viscosity as the exact Godunov scheme).

We would like now to make a choice of cal , cbl , car , cbr for our solver in such a
way that for constant data we obtain the values (3.38). In order to analyze the stability
conditions, we notice that the intermediate densities are given by a formula similar to
the 3-wave case,

1
ρ∗

l
= 1

ρl
+ cbr (ur − ul) + πl − πr

cbl(cbl + cbr )
,

1
ρ∗

r
= 1

ρr
+ cbl(ur − ul) + πr − πl

cbr (cbl + cbr )
.

(3.39)

This suggests to take cbl , cbr similarly as in (3.13),

cbl = ρla0
l + αρl

(
(ul − ur )+ + (πr − πl)+

ρlabql + ρr abqr

)
,

cbr = ρr a0
r + αρr

(
(ul − ur )+ + (πl − πr )+

ρlabql + ρr abqr

)
,

(3.40)

but now with abql , abqr defined by

a2
bq = p′ + |B⊥|2 + |BxB⊥|

ρ
. (3.41)

We look for values a0
l , a0

r satisfying

a0
l ≥ abql , a0

r ≥ abqr . (3.42)
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This restriction implies in particular that cbl ≥ ρlabql , cbr ≥ ρr abqr . Then, we set

Xl = 1
abql

(
(ul − ur )+ + (πr − πl)+

ρlabql + ρr abqr

)
, (3.43)

so that by (3.40) and (3.42), one has

cbl

ρl
≥ abql(1 + αXl). (3.44)

Estimating the density ρ∗
l given in (3.39) similarly as in (3.16) yields that

0 < ρ∗
l ≤ ρl/xl , (3.45)

with

xl = 1 − Xl

1 + αXl
∈

(
α − 1

α
, 1

]
. (3.46)

Now we observe that we have two intermediate states on the left, but however for any
of them, its density ρ∗ is equal either to ρ∗

l , or to ρl . Thus ρ∗ > 0, and

sup
ρ∈[ρ∗,ρl ]

ρ ≤ ρl

xl
. (3.47)

Therefore, according to the monotonicity of ρ
√

p′ stated in (3.11), the maximal speed
in (2.18) can be estimated as

√
(ρ2 p′)∗,l ≤ ρl

xl

√

p′
(

ρl

xl
, sl

)
≤ ρl

√
p′

l(1 + αXl), (3.48)

the latter inequality resulting from Lemma 3.1. Thus, in order to get (3.37), it is enough
that

∣∣∣Bl
⊥
∣∣∣
2

≤
(

c2
bl − ρ2

l p′
l(1 + αXl)

2
) (

xl

ρl
− B2

x

c2
al

)

, (3.49)

provided that the two factors on the right-hand side are nonnegative. Next, we write
cbl = ρl(a0

l + αabql Xl), and the same estimates as in (3.31)–(3.32) give

c2
bl − ρ2

l p′
l(1 + αXl)

2 ≥ ρ2
l

(
(a0

l )2 − p′
l

)
. (3.50)

Therefore, for (3.49) to hold it is sufficient to have

∣∣∣Bl
⊥
∣∣∣
2

≤ ρ2
l

(
(a0

l )2 − p′
l

) (
xl

ρl
− B2

x

c2
al

)

, (3.51)
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with the two factors on the right-hand side being nonnegative. Our choice is then to
take

(a0
l )2 = p′

l + |Bl
⊥|2 + |BxBl

⊥|
ρlxl

, (3.52)

c2
al = ρl

xl

(
B2

x + |BxBl
⊥|

)
, (3.53)

that gives equality in (3.51). Since xl ≤ 1 the condition that a0
l ≥ abql in (3.42) is

satisfied. Notice again that (3.52) differs only by the factor 1/xl from the definition
of abql .

A similar analysis on the right leads to

Xr = 1
abqr

(
(ul − ur )+ + (πl − πr )+

ρlabql + ρr abqr

)
, xr = 1 − Xr

1 + αXr
, (3.54)

(a0
r )2 = p′

r + |Br
⊥|2 + |BxBr

⊥|
ρrxr

, c2
ar = ρr

xr

(
B2

x + |BxBr
⊥|

)
. (3.55)

We have proved the following:

Proposition 3.3 If the pressure law satisfies (3.11)–(3.12), the 5-wave solver is pos-
itive and entropy satisfying for the choice of cbl , cbr , cal , car given by (3.40), (3.52),
(3.53), (3.43), (3.46), (3.54), (3.55).

As it was chosen, for constant data the values of ca , cb reduce to (3.38), hence the
solver becomes fully accurate whenever Bx or B⊥ vanishes (or is sufficiently small).
Thus, an interest of this 5-wave solver is to be able to use it as a “patch” for other
solvers using 7 waves, that may have singularities when two eigenvalues become too
close.

However, a weak point in our 5-wave solver is that its maximal wave speed c f /ρ =
max(ca/ρ, cb/ρ) involved in the CFL condition (2.15) exceeds the maximal speed of
the MHD system, which is aq in (3.14). This excess can be evaluated by the ratios
ca/ρaq and cb/ρaq , where ca , cb are given in (3.38). For the first one, studying the
variations with respect to p′ one can easily prove that

ca

ρaq
=

√
B2

x + |BxB⊥|
ρa2

q
≤

√
1
2

+
√

1
2

≈ 1.099. (3.56)

For the second it is not so easy, but with the same method we get the same upper bound

cb

ρaq
=

√
p′

a2
q

+ |B⊥|2 + |BxB⊥|
ρa2

q
≤

√
1
2

+
√

1
2
. (3.57)
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This implies that the overall computational cost can be only of 10% in the worst case.
In practice the 5-wave solver uses timesteps close to what the 3-wave solver uses.

4 Numerical tests

In this section we investigate the accuracy and robustness in numerical computations
of the relaxation-based Riemann solvers with 3 and 5 waves. We compare them with
each other and with other methods. In all cases we use the solvers in the first-order
Godunov scheme (2.12). In order to get reference solutions we performed high reso-
lution computations with the entropy satisfying 3-wave solver. The CFL-number was
0.9 in all tests. We summarize the Riemann initial data taken as test cases in Table 1.
Note that we use the notation u⊥ = (v,w) and B⊥ = (By, Bz).

For comparison purposes we consider the Roe solver of [1], the HLL solver, and the
5-wave solver of [11], denoted by MK5. As signal speeds for HLL and MK5 we used
the speeds for the 3-wave solver from Sect. 3. For the HLL solver this choice ensures
positivity and entropy inequalities. This is because if we consider the conserved quan-
tities, the intermediate value of the HLL solver is equal to the spatial average between
the intermediate states of the 3-wave solver. Hence positivity of density and internal
energy is inherited by convex combination, and entropy inequalities are obtained via
Jensen’s inequality.

Table 1 Table of initial data for shock tube tests
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4.1 Shock tube of Dai and Woodward

This shock tube test was introduced in [7]. The initial data are given as ‘Dai–
Woodward’ in Table 1. The solution consists of shocks and contact discontinuities
for all characteristic fields. On this test we compare our solvers against the Roe solver
of [1]. This particular Roe solver, based on entropy variables, seems to give very sharp
resolution. For the Roe solver we used a CFL number of 0.45, since it is unstable for
values too close to 1. It gives the expected high accuracy on this fairly mild test case,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
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Reference
HLL
3−wave
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x

B
y

Roe
Reference
3−wave
HLL

Fig. 1 ρ and By for Dai–Woodward shock tube at time t = 0.2 with resolution $x = 0.01. The reference
solution is a 3-wave simulation with $x = 2
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see Fig. 1. We also note that the 3-wave solver gives a much better resolution than
HLL, especially of the density ρ. The 5-wave solver performs similarly to the 3-wave
solver except that it slightly improves the resolution of the left-going Alfven wave.

In Fig. 2 we compare our 3-wave solver to the MK5 solver. As signal speeds in the
MK5 solver we used our speeds for the 3-wave solver. For that reason it is not sur-
prising that the performance on fast waves differ very little. At the left-going Alfven
and slow waves MK5 is sharper than with our 3- and 5-wave solvers.
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Fig. 2 ρ and By for Dai–Woodward shock tube at time t = 0.2 with resolution $x = 0.01. The reference
solution is a 3-wave simulation with $x = 2
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4.2 Brio–Wu shock tube I

Next we consider the shock tube tests of [6], denoted by ‘Brio–Wu I’. Figure 3 shows
the resulting ρ and By . The solution consists of, from left to right, a fast rarefaction,
a compound wave, a contact discontinuity, and a slow shock. The compound wave
is a discontinuity attached to a slow rarefaction, it can be attributed to the non strict
hyperbolicity of the system (1.1)–(1.5). There is also a small Alfven wave and a fast
rarefaction going to the right, that are not shown in Fig. 3. We first compare our
3-wave solver with the HLL solver. As expected the 3-wave solver has much better
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Reference

3−wave

HLL

Fig. 3 ρ and By for Brio–Wu shock tube I at time t = 0.2 with resolution $x = 0.01. The reference
solution is a 3-wave simulation with $x = 0.0001
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Fig. 4 ρ and By for Brio–Wu shock tube I at time t = 0.2 with resolution $x = 0.01. The reference
solution is a 3-wave simulation with $x = 0.0001

resolution of the contact discontinuity. Figure 3 shows that the 3-wave solver also
strongly improves the sharpness of the slow shock and the compound wave. The fast
waves are well resolved by both solvers. We also see that the 5-wave solver gives good
results on these waves. Figure 4 shows that the 5-wave solver improves the resolution
of the compound wave compared to the 3-wave solver. This has to do with B⊥ being
locally small.

4.3 Brio–Wu shock tube II

The second test from [6] is a case with high fast magnetosonic Mach number. Since
Bx = 0, and u⊥ = 0, the 3-, 5-wave and MK5 solvers are identical, and a full 7-wave

123

 Author's personal copy 



Approximate Riemann solver for ideal MHD based on relaxation II 667

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

ρ

Reference
3−wave

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

B
y

Reference
3−wave

Fig. 5 ρ and By for Brio–Wu shock tube II at time t = 0.012 with resolution $x = 0.01. The reference
solution is a 3-wave simulation with $x = 0.0001. The 3- and 5-wave solvers are the same in this case

solver cannot be expected to perform better. The results are shown in Figure 5. In this
case we do not gain much compared to HLL from exactly resolving the contact wave,
since it moves much faster than the magnetosonic speeds. The smearing of the contact
wave is mostly due to numerical diffusion inherent in the Godunov scheme. Both fast
waves are reasonably well resolved.

4.4 Shear waves

This example illustrates the numerical accuracy on Alfven waves of the different
solvers. We choose the initial data
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ρ = 1.0, p = 1.0, u = 1.0,

By = sin(2πx), Bz = cos(2πx),

v = sin(2πx), w = cos(2πx),

Bx = 1.0, γ = 5/3.

This specifies a stationary left Alfven wave. We expect that the 5-wave solver will
give a better approximation than the 3-wave, and this is confirmed by the plot of By

in Fig. 6. We also made the same computation with p = 100.0, which still gives a
stationary Alfven wave. In this case the 5-wave solver is superior as expected, as Fig. 7
shows. We also note in Figs. 6, 7 that the 3-wave solver is a clear improvement with
respect to the HLL solver.

4.5 Slow sonic rarefaction

This test is a slow switch-on rarefaction suggested in [8], and also used in [11]. The
data are given in Table 1 There is a sonic point in this rarefaction, that is a point where
slow magnetosonic speed equals the fluid velocity. A linearized solver will typically
produce an unphysical shock at the sonic point unless additional numerical diffusion
is added. Figure 8 shows that the 3-wave solver is able to handle this problem in a
stable manner with good accuracy. It gives an improvement with respect to the HLL
solver. The structures in the density profile behind the rarefaction can be referred to
as start-up errors, and these are basically unavoidable for certain kinds of Riemann
problems. The 5-wave solver gives slightly better results than the 3-wave solver for
the magnetic field By , otherwise they are practically the same.
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Fig. 6 By for a smooth Alfven wave with resolution $x = 0.01 at time t = 1.0
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Fig. 7 The same as in Figure 6, but with pressure 100 times higher

4.6 Vacuum problem

An interesting test for the stability of a scheme is how it handles a Riemann problem
where one initial state is vacuum (see [2,3]). In the case of ideal MHD we have to take
zero magnetic field in the vacuum region to keep the characteristic speeds finite. This
implies that Bx = 0 everywhere. Since also u⊥ = 0 in our case, the 3- and 5-wave
solvers are the same. Consider a vacuum left state with ρl = 0, Bl = 0, and a right
state with ρr > 0, pr > 0. Then, cl , cr and the intermediate states are well defined. We
assume in order to get a value for cl/ρl that Bl/

√
ρl = 0. Note that no quantities jump

across the left-going wave. Therefore, the quantity cl/ρl is only used in calculating
the CFL condition. Furthermore, its contribution to the CFL condition is not strictly
needed.

In the case when γ = 2 (i.e. p = ρe), and Bz = 0, we can write the solution as

By = Br
y

ρr
ρ, together with a pure Euler system written in terms of ρ, u and an auxiliary

internal energy ẽ = e + 1
2ρ

(
Br

y
ρr

)2
. Then, since a rarefaction wave is isentropic, we

get the classical solution

u(t,x) = 2
3

(

max

(
x − 1

2

t
,−2

√
2̃er

)

−
√

2̃er

)

−
,

ρ(t,x) = ρr

(
1 + 1

2
u(t,x)√

2̃er

)2

+
,

ẽ(t,x) = ρ(t,x)
ẽr

ρr
.

(4.1)
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Fig. 8 Slow rarefaction at time t = 0.2 with resolution $x = 0.01. The reference solution is a 3-wave
simulation with $x = 0.0002

The Figs. 9–10 show that our solver handles this vacuum test case well. The MK5
solver with our 3-wave speeds is identical to the 3-wave solver in this case (u⊥ = 0,
Bx = 0), and hence would give the same result.

4.7 Expansion problem

This test is from [11]. It consists of two rarefactions separating a low density region,
which is difficult to compute, especially for linearized solvers. Since Bx = 0 and
u⊥ = 0, the 3- , 5-wave and MK5 solvers are the same, as in Sect. 4.3. HLL with
the same signal speeds as the 3-wave solver does an equally good job as the 3-wave
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Fig. 9 Vacuum problem at time t = 0.2 with resolution $x = 0.005. The 3- and 5-wave solvers are the
same in this case
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Fig. 10 Vacuum problem at time t = 0.2 with resolution $x = 0.005. The 3- and 5-wave solvers are the
same in this case

solver. Figure 11 shows ρ computed with the 3-wave solver. This is a good result as
one would expect.

4.8 Low thermal pressure

Taking Bx nonzero in the above example causes ρp′
|B|2 to become small in the center

region in the wake of two strong slow rarefactions. This is an additional difficulty to
the low density and pressure. The 3-wave and 5-wave solvers both handle this case
well, and give almost identical results. They resolve the density better than HLL, as
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Fig. 11 Expansion problem at time t = 0.2 with resolution $x = 0.005. Note the logarithmic y-axis. The
reference solution is a 3-wave simulation with $x = 0.0002. The 3- and 5-wave solvers are the same in
this case
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Fig. 12 Expansion problem with Bx = 1.0 at time t = 0.15 with resolution $x = 0.005. Note the
logarithmic y-axis. The reference solution is a 3-wave simulation with $x = 2

3 10−4

seen from Fig. 12. The magnetic field By is shown in Fig. 13, and for that quantity
there is less difference between the codes.

We also plotted β = 2 p
|B|2 , see Figure 14. The low values make this an interesting

test case. In Figure 15 we compare our solvers with the MK5 solver. We notice that the
latter gives similar results to the 3-wave solver, while our 5-wave solver computes the
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Fig. 13 Expansion problem with Bx = 1.0 at time t = 0.15 with resolution $x = 0.005
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Fig. 14 Expansion problem with Bx = 1.0 at time t = 0.15 with resolution $x = 0.005. Note the
logarithmic y-axis. The figure shows the ratio of thermal and magnetic pressure

thermal pressure more accurately. The specific internal energy reaches its maximum
emax at x = 0.5 in all cases. With our 5-wave solver we get emax = 0.698, while the
MK5 gives emax = 1.121, which is a significant difference. The reference solution
has emax = 0.310. Note that the quantity e is proportional to the temperature for an
ideal gas.

123

 Author's personal copy 



674 F. Bouchut et al.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
10

−4

10
−3

10
−2

10
−1

10
0

x

2p
/B

2

Reference
5−wave
3−wave
MK5

Fig. 15 Expansion problem with Bx = 1.0 at time t = 0.15 with resolution $x = 0.005. Note the
logarithmic y-axis. The reference solution is a 3-wave simulation with $x = 2

3 10−4

4.9 Conclusion

We summarize the results from this section in the following points.

• The 3-wave solver resolves slow moving contacts much better than HLL.
• The 3-wave solver also improves the resolution of Alfven waves and slow waves

compared to HLL.
• The 3-and 5-wave solvers can handle rarefactions into low density and low β =

2 p
|B|2 .

• The 5-wave solver can, in contrast to the 3-wave solver, sharply resolve all waves
when Bx or B⊥ vanishes.

• The 5-wave solver is significantly sharper on Alfven waves in certain regimes. In
particular when Alfven speed is smaller than sound speed, or when |Bx| is smaller
than |B⊥|. This appears from the numerical tests to also be the case for the slow
modes in certain cases.

The 3- and 5-wave solvers are ready to be applied on physical problems. They provide
good accuracy and excellent stability properties, with simple and explicit formulas.
In most cases, the 3-wave solver should perform better, because it runs faster. It also
allows larger timesteps, although the difference is not really significant. At high β

though, the 5-wave solver is much less diffusive. This is also the case if one has a
strong grid-aligned magnetic field.
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5 Appendix: Powell’s system

In this appendix we propose a method to numerically deal with nonconstant Bx. This
can be useful when dealing with multidimensional MHD and the div B = 0 constraint.
We shall denote here B = (Bx, B⊥) and u = (u, u⊥).

Following Powell [12], the so called Powell system in three dimensions (indeed
one of its versions) is obtained by removing the constraint div B = 0 in the MHD
system and by adding a term u div B on the induction equation, leading to

ρt + div(ρu) = 0,

(ρu)t + div
(

ρu ⊗ u +
(

p + 1
2
|B|2

)
Id − B ⊗ B

)
= 0,

Et + div
[(

E + p + 1
2
|B|2

)
u − (B · u)B

]
= 0,

Bt + div(B ⊗ u − u ⊗ B) + u div B = 0,

(5.1)

where E is still given by (1.6). This system is a classical quasilinear system, and only
the induction equation is not in conservative form. Some of the main properties of
Powell’s system are:

1. Powell’s system is hyperbolic, its eigenvalues being given by the same formulas
as for the MHD system, the only difference being that u has now multiplicity 2,

2. Under the assumptions (1.7), (1.8), (1.9), Powell’s system has the same entropy
inequalities as the classical MHD system

(ρφ(s))t + div(ρφ(s)u) ≤ 0, (5.2)

for all nonincreasing convex φ,
3. Solutions to Powell’s system such that div B ≡ 0 are solutions to the MHD system,
4. Solutions to Powell’s system such that div B(0,x) ≡ 0 satisfy also div B(t,x) ≡ 0

for all times t , because one has

(div B)t + div(u div B) = 0. (5.3)

Thus such solutions are also solutions to the MHD system (1.1)–(1.5).

123

 Author's personal copy 



676 F. Bouchut et al.

5.1 Powell’s system in one dimension

In one space dimension, Powell system reads

ρt + (ρu)x = 0,

(ρu)t +
(

ρu2 + p + 1
2
|B⊥|2 − 1

2
B2

x

)

x
= 0,

(ρu⊥)t + (ρuu⊥ − BxB⊥)x = 0,

Et +
[(

E + p + 1
2
|B⊥|2 − 1

2
B2

x

)
u − Bx(B⊥ · u⊥)

]

x
= 0,

(Bx)t + u(Bx)x = 0,

(B⊥)t + (B⊥u − Bxu⊥)x + u⊥(Bx)x = 0.

(5.4)

Instead of being constant previously, Bx is now advected at velocity u. Note that the
nonconservative products in the induction equations do not induce any difficulty con-
cerning definitions because Bx jumps only through a material contact discontinuity,
where u and u⊥ do not jump.

5.2 Relaxation system associated with Powell’s system

In order to approximate (5.4) by relaxation, we just add the nonconservative part
u div B of the Powell system to the magnetic equations of the relaxation system
(2.1)–(2.8), and obtain

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = 0,

(ρu⊥)t + (ρuu⊥ + π⊥)x = 0,

Et + [(E + π)u + π⊥ · u⊥]x = 0,

(Bx)t + u(Bx)x = 0,

(B⊥)t + (B⊥u − Bxu⊥)x + u⊥(Bx)x = 0,

(5.5)

with still (1.6), and no change in the other equations

(ρπ)t + (ρπu)x + (|b|2 + c2
b)ux − cab · (u⊥)x = 0,

(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2
a(u⊥)x = 0,

(5.6)

(ca)t + u(ca)x = 0, (cb)t + u(cb)x = 0, bt + ubx = 0. (5.7)
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The studies made previously in [5] and in the present paper for the case Bx = cst are
valid in the more general case Bx non constant, the only difference being that now Bx

has to be understood as evaluated locally (as it was the case for ca , cb, b).

5.3 Numerical fluxes

Computing the solution to the Riemann problem associated to the relaxation system
gives an approximate Riemann solver for the Powell system. Then, one wants to com-
pute the numerical fluxes associated to it. For the conservative quantities ρ, ρu, ρu⊥,
E , they are given by the corresponding components of (2.14), with the additional
information that Bx only jumps at the middle wave. For updating the magnetic quan-
tities Bx and B⊥, one has to be more careful since we are solving nonconservative
equations. In the spirit of approximate Riemann solvers, one has to write that the new
value Bn+1

i is obtained as the average over the cell of the approximate solution. The
approximate solution satisfies

Bt + (Bu − Bxu)x + u(Bx)x = 0, (5.8)

where u = (u, u⊥). Denote by u∗ the value of u through the material contact. Then
one has

Bx =






Bl
x if

x

t
< u∗,

Br
x if

x

t
> u∗.

(5.9)

But since

(Bx)x = (Br
x − Bl

x)δ(x − tu∗), u(Bx)x = u∗(Br
x − Bl

x)δ(x − tu∗), (5.10)

where u∗ is the value of u through the material contact, one has

[Bu − Bxu]x=0 + u∗(Br
x − Bl

x)1Iu∗=0 = 0, (5.11)

where [...]x=0 denotes the jump through the line x = 0.
Now, integrate (5.8) over (0,$t) × (−$x, 0). We get

1
$x

0∫

−$x

B(x/$t)dx − Bl + $t
$x

((Bu − Bxu)0− − (Bu − Bxu)l)

+ $t
$x

u∗(Br
x − Bl

x)1Iu∗<0 = 0. (5.12)
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Next, integrate (5.8) over (0,$t) × (0,$x). We get

1
$x

$x∫

0

B(x/$t)dx − Br + $t
$x

((Bu − Bxu)r − (Bu − Bxu)0+)

+ $t
$x

u∗(Br
x − Bl

x)1Iu∗>0 = 0. (5.13)

Denote

FB
l = (Bu − Bxu)0− + u∗(Br

x − Bl
x)1Iu∗<0,

FB
r = (Bu − Bxu)0+ − u∗(Br

x − Bl
x)1Iu∗>0.

(5.14)

We end up with

Bn+1
i − Bn

i + $t
$x

(
(FB

l )i+1/2 − (FB
r )i−1/2

)
= 0. (5.15)

According to (5.11), a formula for the numerical fluxes is

If u∗ ≥ 0 then
{

FB
l = (Bu − Bxu)0−,

FB
r = (Bu − Bxu)0− − u∗(Br

x − Bl
x),

(5.16)

If u∗ ≤ 0 then
{

FB
l = (Bu − Bxu)0+ + u∗(Br

x − Bl
x),

FB
r = (Bu − Bxu)0+.

(5.17)

In all cases one has

FB
r − FB

l = −u∗(Br
x − Bl

x), (5.18)

which implies a consistent discretization of the nonconservative term in (5.8). Notice
that the above derivation of the left and right numerical fluxes FB

l , FB
r involved in

(5.15) does not really use the relaxation system, but merely only (5.8), which is indeed
the exact induction equation of Powell’s system. Thus the formulas are true also for
the exact Riemann solver, for example.

This relaxation solver is positive and entropy satisfying under the same conditions
that are derived in [5]. The only modification is that Bx has always to be understood as
evaluated locally, according to (5.9). For the 3- and 5-wave solvers, Propositions 3.2
and 3.3 remain valid with this interpretation, as well as the formulas for the interme-
diate states.
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