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Abstract

Physical regimes characterized by low Mach numbers and steep stratifications pose se-
vere challenges to standard finite volume (FV) methods. We present three new methods
specifically designed to navigate these challenges by being both low Mach compliant and
well-balanced. These properties are crucial for numerical methods to efficiently and ac-
curately compute solutions in the regimes considered.
First, we concentrate on the construction of an approximate Riemann solver within
Godunov-type FV methods. A new relaxation system gives rise to a two-speed relaxation
solver for the Euler equations with gravity. Derived from fundamental mathematical prin-
ciples, this solver reduces the artificial dissipation in the subsonic regime and preserves
hydrostatic equilibria. The solver is particularly stable as it satisfies a discrete entropy in-
equality, preserves positivity of density and internal energy, and suppresses checkerboard
modes. The second scheme is designed to solve the equations of ideal magnetohydrodynam-
ics (MHD) and combines different approaches. In order to deal with low Mach numbers, it
makes use of a low-dissipation version of the Harten-Lax-van Leer Disontinuities (HLLD)
solver and a partially implicit time discretization to relax the Courant-Friedrichs-Lewy
(CFL) time step constraint. A Deviation Well-Balancing method is employed to pre-
serve a priori known magnetohydrostatic equilibria and thereby reduces the magnitude
of spatial discretization errors in strongly stratified setups. The third scheme relies on an
implicit-explicit (IMEX) approach based on a splitting of the MHD equations. The slow
scale part of the system is discretized by a time-explicit Godunov-type method, whereas
the fast scale part is discretized implicitly by central finite differences. Numerical dissipa-
tion terms and CFL time step restriction of the method depend solely on the slow waves of
the explicit part, making the method particularly suited for subsonic regimes. Deviation
Well-Balancing ensures the preservation of a priori known magnetohydrostatic equilibria.
The three schemes are applied to various numerical experiments for the compressible Eu-
ler and ideal MHD equations, demonstrating their ability to accurately simulate flows in
regimes with low Mach numbers and strong stratification even on coarse grids.

i





Zusammenfassung

Physikalische Regime mit sehr niedrigen Machzahlen und starken Abschichtungen stellen
konventionelle Finite Volumen (FV) Verfahren vor erhebliche Herausforderungen. In
dieser Arbeit präsentieren wir drei neue Verfahren, die in der Lage sind, die Heraus-
forderungen zu bewältigen. Die neuen Verfahren sind speziell an kleine Machzahlen
angepasst und können (magneto-)hydrostatische Gleichgewichte exakt erhalten. Diese
Eigenschaften sind essentiell für eine effiziente Berechnung präziser Lösungen in den be-
trachteten Regimen.
Zunächst konzentrieren wir uns auf die Konstruktion eines approximativen Riemannlösers
innerhalb von Godunov-artigen FV Verfahren. Ein neues Relaxationssystem führt zu
einem Relaxationslöser für die Euler Gleichungen mit Gravitation, der zwei Relaxati-
onsgeschwindigkeiten verwendet. Abgeleitet von grundlegenden mathematischen Prinzi-
pien reduziert dieser Löser die künstliche Dissipation im subsonischen Bereich und erhält
hydrostatische Gleichgewichte. Der Löser ist besonders stabil, da er eine diskrete En-
tropieungleichung erfüllt, die Positivität von Dichte und interner Energie bewahrt und
Schachbrettmuster unterdrückt. Das zweite Verfahren löst die idealen magnetohydrody-
namischen (MHD) Gleichungen und kombiniert verschiedene Ansätze, um die einzelnen
numerischen Herausforderungen zu bewältigen. Für einen effizienten Umgang mit niedri-
gen Machzahlen wird eine Variante des Harten-Lax-van Leer Discontinuities (HLLD)
Lösers mit künstlich niedriger Dissipation sowie eine teilweise implizite Zeitdiskretisierung
zur Lockerung der Courant-Friedrichs-Lewy (CFL) Zeitschrittbeschränkung gewählt. Eine
Deviation Well-Balancing Methode wird angewendet, um magnetohydrostatische Gleich-
gewichte zu bewahren und dadurch das Ausmaß von räumlichen Diskretisierungsfehlern
in stark geschichteten Atmosphären zu reduzieren. Das dritte Verfahren verwendet einen
implizit-explizit (IMEX) Ansatz, welcher auf einer Aufspaltung der MHD Gleichungen
basiert. Das Teilsystem mit langsamen Ausbreitungsgeschwindigkeiten wird durch eine
zeit-explizite Godunov-artige Methode diskretisiert, während das Teilsystem mit schnellen
Ausbreitungsgeschwindigkiten implizit durch zentrale finite Differenzen diskretisiert wird.
Numerische Dissipationsterme und die CFL Zeitschrittbeschränkung der Methode hängen
somit nur von den langsamen Wellen des expliziten Teils ab, so dass die Methode beson-
ders für subsonische Regime geeignet ist. Deviation Well-Balancing gewährleistet die
Erhaltung a priori bekannter magnetohydrostatischer Gleichgewichte. Die drei Verfahren
werden auf numerische Experimente für die kompressiblen Euler und idealen MHD Glei-
chungen angewendet und zeigen darin ihre Fähigkeit, Strömungen in Regimen mit niedri-
gen Machzahlen und starker Schichtung auch auf groben diskreten Gittern akkurat zu
simulieren.
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team, especially Giovanni Leidi, for the great cooperation. Engaging discussions in our
meetings have enriched my understanding of physics and strengthened the connection be-
tween my research work and its practical application. In this context, I also acknowledge
the German Research Foundation (DFG) for funding my work within our joint project, en-
abling me to concentrate fully on my scientific research and to participate in enlightening
conferences.
I very much appreciate the fruitful collaborations with Prof. Dr. Christophe Chalons and
Prof. Dr. Walter Boscheri, who have contributed with their knowledge and experience
to our joint projects. A warm thank goes to Dr. Wasilij Barsukow, a reliable source of
advice and a good companion at many conferences.
Furthermore, I consider myself very fortunate to be part of such a lively work group and
I want to thank my current and former colleagues for great discussions and experiences.
Finally, I am deeply thankful to my family for their unwavering support in every situation
in life, and to Lena for all her love and encouragement.

Claudius Birke

v





Contents

1 Introduction 1

2 Conservation and Balance Laws 5

2.1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Balance Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Compressible Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Ideal Gas Equation of State . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Eigenstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Equilibrium Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.5 Dimensionless Equations and the Incompressible Limit . . . . . . . 13

2.4 Compressible Ideal MHD Equations . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Solenoidal Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Eigenstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Equilibrium Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.5 Dimensionless Equations and Incompressible Limit . . . . . . . . . 18

3 Finite Volume Methods 21

3.1 Finite Volume Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Godunov’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Approximate Riemann Solvers . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Relaxation Systems and Solvers . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Jin-Xin Relaxation Model . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Suliciu Relaxation Model . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Source Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Extension to Multiple Space Dimensions . . . . . . . . . . . . . . . . . . . 37

3.8 Extension to Second Order in Space . . . . . . . . . . . . . . . . . . . . . 38

3.9 Time Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Numerical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10.1 Low Mach Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10.2 Small Perturbations of Equilibria . . . . . . . . . . . . . . . . . . . 45

3.10.3 Solenoidal Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 A Time-Explicit Two-Speed Relaxation Method 49

4.1 Relaxation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Relaxation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Properties of the Relaxation Scheme . . . . . . . . . . . . . . . . . . . . . 55

vii



viii CONTENTS

4.3.1 Entropy Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Prevention of Checkerboard Modes . . . . . . . . . . . . . . . . . . 58

4.3.3 Positivity-Preserving Property . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Asymptotic-Preserving Property . . . . . . . . . . . . . . . . . . . 63

4.3.5 Well-Balanced Property . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Second Order Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Multi-Dimensional Extension . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.1 Convergence Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.2 Shock Tube under Gravitational Field . . . . . . . . . . . . . . . . 73

4.6.3 Strong Rarefaction Test . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.4 Isothermal Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.5 General Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.6 Perturbation of an Isothermal Atmosphere . . . . . . . . . . . . . 76

4.6.7 Kelvin-Helmholtz Instability . . . . . . . . . . . . . . . . . . . . . 77

4.6.8 Stationary Vortex in a Gravitational Field . . . . . . . . . . . . . . 79

4.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 An Implicit-Explicit Strang Splitting Method 83

5.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Numerical Flux Function . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Well-Balancing Method . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Constrained Transport Method . . . . . . . . . . . . . . . . . . . . 89

5.3 Time Integration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Balsara Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.2 Magnetized Kelvin-Helmholtz Instability . . . . . . . . . . . . . . . 95

5.4.3 Hot Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 A Semi-Implicit IMEX Method 105

6.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Flux Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 First Order Semi-Discrete Scheme in Time . . . . . . . . . . . . . 107

6.2.2 Discrete Spatial Operators . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.3 Second Order Extension . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.4 Multi-Dimensional Extension . . . . . . . . . . . . . . . . . . . . . 111

6.2.5 Constrained Transport Method . . . . . . . . . . . . . . . . . . . . 113

6.2.6 Well-Balanced Property . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.7 Summary of the Scheme . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.8 Modified Density Update . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Shock Tube under Gravitational Field . . . . . . . . . . . . . . . . 117

6.3.2 Orszag-Tang Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.3 Balsara Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.4 Magnetized Kelvin-Helmholtz Instability . . . . . . . . . . . . . . . 122

6.3.5 Isothermal Atmosphere for Euler . . . . . . . . . . . . . . . . . . . 123



CONTENTS ix

6.3.6 Perturbation of an Isothermal Atmosphere for Euler . . . . . . . . 123
6.3.7 MHD Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.8 Perturbation of an MHD Steady State . . . . . . . . . . . . . . . . 124
6.3.9 Euler Vortex in a Gravitational Field . . . . . . . . . . . . . . . . . 125

6.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusion and Outlook 129

Appendices 133
A An Implicit-Explicit Strang Splitting Method . . . . . . . . . . . . . . . . 133

A.1 Magnetized Kelvin-Helmholtz Instability . . . . . . . . . . . . . . . 133
A.2 Hot Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B A Semi-Implicit IMEX Method . . . . . . . . . . . . . . . . . . . . . . . . 138
B.1 Balsara Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.2 Magnetized Kelvin-Helmholtz Instability . . . . . . . . . . . . . . . 139

Bibliography 143





Chapter 1

Introduction

Fluid dynamics plays a crucial role in many practical applications, e.g. in aerospace
for optimizing aircraft designs, in biomedicine for studying blood flows and respiratory
mechanisms, and in meteorology for accurately modeling atmospheric flows that form the
basis for precise weather predictions. This work focuses on applications in astrophysics,
more precisely on fluid flows in the interior of stars. Over large periods of their evolution,
stars are close to a (magneto-)hydrostatic equilibrium which is characterized by a balance
of pressure gradient and gravitational forces. Dynamical flows in the stellar interior such
as convection then constitute (relatively) small perturbations of the equilibrium. The
speeds of such flows are typically much smaller than the speed of sound, so that the flows
are characterized by low Mach numbers (M . 10−2) [KM17]. At the same time, these
flows have high-β values1 and moderate Alfvén Mach numbers (MAlf & 1) [Mes99]2.

Gaining knowledge about physical processes in stellar interiors through observations (e.g.
from neutrinos or asteroseismology) is only possible to a limited extent. It is therefore es-
sential to also make use of mathematical models that describe these flows. The classic way
to model fluid dynamics are hyperbolic systems of partial differential equations (PDEs). In
this work we focus on the compressible Euler and ideal MHD equations with gravitational
source terms as models for describing stellar interiors. Although there is rich literature
providing mathematical theory on existence and uniqueness of solutions for these equa-
tions and for hyperbolic PDEs in general (see e.g [Gli65, BCP00, BF18, BKK+20]), it is
rarely possible to calculate analytical solutions to PDEs in practical applications. There-
fore, practitioners have to rely on numerical methods to compute approximate solutions.
A very popular approach are FV methods, which discretize space by control volumes
and compute fluxes across the boundaries of these volumes. FV methods are appreciated
because they are conservative by construction and can handle discontinuous flows. An
important subclass of FV methods are Godunov-type methods, which approximately solve
local Riemann problems at the volume boundaries to compute appropriate approximations
of the fluxes. The literature in this field provides a wide variety of approximate Riemann
solvers (see e.g. [Rus62, Roe81, HLvL83]). However, these standard FV methods are
subject to severe limitations in the considered astrophysical regimes. Most FV methods
are designed to work in transonic and supersonic regimes and their approximate Riemann
solvers add dissipation terms to the physical flux that scale with the largest wave speed in
order to capture shocks. However, in regimes characterized by Mach numbers below 10−2

this construction leads to excessive numerical dissipation [GV99, GM04]. Second, explicit
time-steppers have to choose a time step in accordance with a CFL condition [CFL28] to

1 β denotes the ratio of gas pressure to magnetic pressure.
2 In contrast, the outer layers of active stars (e.g. the solar corona) are characterized by low β values.
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2 CHAPTER 1. INTRODUCTION

be stable. For low Mach number flows, the condition severely reduces the admissible time
step. Lastly, a separate discretization of hyperbolic fluxes and gravitational source terms
prevents standard schemes to exactly balance equilibrium solutions, generating spurious
flows that can dominate the numerical solution.
The aim of this thesis is to present new numerical methods that are capable of solving the
compressible Euler and ideal MHD equations at low Mach numbers in strongly stratified
setups in an efficient way, in the sense that they

i. reduce the numerical dissipation,

ii. relax the CFL time step condition,

iii. maintain (magneto-)hydrostatic equilibria exactly.

In this context, we first focus on the design of approximate Riemann solvers, since this is
the core component of Godunov-type methods. On the basis of a relaxation system, we
construct a new Riemann solver for the inhomogeneous Riemann problem of the Euler
equations. Physical fluxes and source terms are thereby discretized in a consistent fashion,
which enables the solver to maintain hydrostatic equilibria. The numerical dissipation is
reduced in the subsonic regime by a Mach number dependent rescaling of the dissipation
term. This is done within the construction of the relaxation system, so that the Riemann
solver does not have to rely on an artificial low Mach fix with free parameters, but is
derived from a fundamental basis. The mathematically closed derivation also helps the
solver to satisfy a discrete entropy inequality, to be positivity-preserving and to suppress
checkerboard modes, which makes it particularly stable. The spatial discretization is
combined with an explicit time-stepper, so that the CFL condition remains very restrictive
for low Mach numbers.
The second method is designed for solving the ideal MHD equations. To address the dis-
sipation problem, we use a low-dissipation version of the HLLD solver [MM21]. The CFL
condition is relaxed by a time-implicit discretization of the continuity, momentum and
energy equation that enables to choose the time step independent of the Mach number de-
pendent wave speeds. The induction equation is handled explicitly and coupled to the rest
of the system by Strang-Splitting [Str68]. The proposed time-marching algorithm leads
to a significant speed-up in subsonic regimes. The scheme is combined with the Deviation
Well-Balancing method [BCK21], which allows to maintain a priori known equilibrium
solutions and considerably reduces numerical errors in strongly stratified setups.
The third method poses an alternative to the second one as it addresses the numerical
challenges induced by low Mach numbers through a different approach. Based on the
observation that the stiffness of the PDE system in subsonic regimes is only generated by
one part of the PDE system, namely the acoustic pressure flux, the system is split into
a convective-type and a pressure-type sub-system. The system is then discretized by an
IMEX approach: the convective part is discretized explicitly by a Godunov-type method,
the pressure part implicitly with central finite difference operators. The resulting implicit
part is smaller and easier to invert in comparison with fully implicit methods, making
the IMEX method less computationally expensive. The dissipation terms and the CFL
condition in the Godunov-type method refer only to the convective sub-system for which
all wave speeds are Mach number independent, so that the method becomes particularly
suited for subsonic regimes. The approach is coupled with the Deviation Well-Balancing
method to preserve magnetohydrostatic equilibria.
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The thesis is structured as follows. Chapter 2 provides a brief introduction to conservation
and balance laws and discusses the definition and properties of the compressible Euler
and ideal MHD equations. In Chapter 3 we introduce basic concepts used in FV methods
to discretize given systems of PDEs. In Chapter 4 we then concentrate on deriving a low
Mach compliant and well-balanced approximate Riemann solver for the Euler equations.
Chapters 5 and 6 are devoted to construct methods for the ideal MHD equations, which
make it possible to select relatively large time steps despite small Mach numbers and are
therefore particularly efficient in the subsonic regime. In Chapter 5 this is achieved by
a partially implicit time-marching scheme, in Chapter 6 by an IMEX approach. Finally,
Chapter 7 concludes this thesis by giving a summary and a brief outlook.





Chapter 2

Conservation and Balance Laws

Many problems in technical applications or natural sciences can be modeled by the fol-
lowing principle. Let us consider a spatial domain I ⊂ Rd and an unknown quantity Q,
which is defined for all points x ∈ I. The evolution of Q follows a simple principle:

The temporal change of Q in a subset ω ⊂ I is equal to the amount of Q
destroyed or generated within ω, plus the flux balance of Q across the surface
of ω. The quantity Q thus changes if there is a source or sink within ω or if
something flows either in or out over the boundary of ω.

In the following, we first model the case without considering sources and sinks.

2.1 Conservation Laws

Mathematically, this model can be expressed by the integral form of a conservation law

d

dt

∫

ω
Q(x, t)dx +

∮

∂ω
F(Q(x, t)) · n dS = 0 (2.1)

on a time interval t ∈ [0, tf ] ⊂ R≥0. The vector Q(x, t) : Rd × R≥0 → Rm contains
the conserved variables, while F = (F1, ...,Fd)T with ∀i Fi : Rm → Rm denotes the
physical flux function and n the outward pointing normal to the boundary ∂ω. Under
the assumption that Q and F(Q) are at least continuously differentiable, we can apply
the divergence theorem of Gauß to reformulate equation (2.1) into

d

dt

∫

ω
Q(x, t)dx +

∫

ω
∇ · F(Q(x, t))dx = 0. (2.2)

Since equation (2.2) holds for all ω ⊂ I, we can consider an infinitesimal ω to obtain the
differential form of a conservation law

∂

∂t
Q(x, t) +∇ · F(Q(x, t)) = 0. (2.3)

In combination with an initial condition

Q0(x) = Q(x, 0), (2.4)

5



6 CHAPTER 2. CONSERVATION AND BALANCE LAWS

equation (2.3) poses a Cauchy or initial value problem (IVP). The system of conservation
laws (2.3) can be written in the quasi-linear form

Qt +

d∑

i=1

Ai(Q)Qxi = 0, (2.5)

where the Ai = ∂
∂QFi(Q) represent Jacobians. In the remainder of this work we focus on

hyperbolic systems.

Definition 2.1.1. The system of conservation laws (2.3) is called hyperbolic if all Ai
have m real eigenvalues λ1, . . . , λm and a full set of eigenvectors r(1), . . . , r(m). The system
is called symmetric hyperbolic if all Ai are symmetric and strictly hyperbolic if all
eigenvalues λj are distinct.

Since the Jacobians of hyperbolic systems can be diagonalized, such systems can be put
in characteristic form

wt + diag (λ1(w), . . . , λm(w)) wx = 0, (2.6)

where w denotes the vector of characteristic variables. The resulting m linear transport
equations are decoupled and show that information propagates along characteristic curves
defined by the characteristic variables with the speed of the eigenvalues λj .

The pair (λj(Q), r(j)), consisting of an eigenvalue and its corresponding eigenvector, is
called the j-th characteristic field.

Definition 2.1.2. The j-th characteristic field is called genuinely nonlinear if for all
Q it holds

∂Qλj(Q) · r(j)(Q) 6= 0. (2.7)

On the other hand, the j-th characteristic field is called linearly degenerate if for all Q

∀r ∈ ker ((A(Q)− λj(Q)I) , ∂Qλj(Q) · r = 0. (2.8)

Based on the eigenstructure, we can determine Riemann invariants.

Definition 2.1.3. A scalar function I(Q) is called a Riemann invariant to the field j,
if for all Q

∀r ∈ ker (Ai(Q)− λj(Q)I) , ∂QI(Q) · r = 0. (2.9)

Riemann invariants are a helpful tool for determining the solution of Riemann problems,
particularly within the context of relaxation systems as discussed in Sect. 3.4.

Solutions of the system of PDEs (2.3) are called classical or strong solutions. These
solutions must be differentiable. However, this is not guaranteed. Due to the nonlinearity
of PDEs, discontinuities can develop in the solution even with smooth initial data. A
simple example can be derived from Burgers’ equation [LeV02].
In order to allow discontinuities in the solution, we need to introduce a different concept
of solutions. Let us assume that there exists a smooth solution of (2.3). We then multiply
the differential form (2.3) with a smooth test function φ(x, t) with compact support so
that it is zero outside of some bounded region of the x-t plane, and integrate over time
and space ∫

Rd×R≥0

[Qt +∇ · F(Q)]φ(x, t)dxdt = 0. (2.10)
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Integration by parts and the compact support of φ lead to
∫

Rd×R≥0

[Qφt + F(Q) · ∇φ] dxdt+

∫

Rd
Q(x, 0)φ(x, 0)dx = 0. (2.11)

The advantage is that now all derivatives are on the smooth test function φ and not on
Q or F(Q). Therefore, equation (2.11) also makes sense for discontinuous Q.

Definition 2.1.4. The function Q(x, t) is called a weak solution of the conservation
law (2.3) with given initial data Q(x, 0) if it satisfies (2.11) for all test functions φ ∈ C1

0 .

The class of weak solutions thus includes classical solutions, but is not limited to them
[HR15]. In contrast to classical solutions, weak solutions can also be discontinuous. These
discontinuities also occur in nature and are called shock waves or just shocks. Let us
consider a one-dimensional Riemann problem (RP) defined by




Qt + F(u)x = 0,
Q(x, 0) = QL, if x < 0,
Q(x, 0) = QR, if x > 0.

(2.12)

In this case, the speed of the shock S needs to satisfy the Rankine-Hugoniot jump condition

F(QL)−F(QR) = S
(
QL −QR

)
. (2.13)

For a scalar conservation law the shock speed can be explicitly computed by

S =
F(QL)−F(QR)

QL −QR . (2.14)

One problem about the concept of weak solutions is that they are not unique. Even
the application of the Rankine-Hugoniot condition does not lead to unique solutions
[GR02]. In order to find physically meaningful solutions, it is therefore advisable to
rely on additional physical conditions, such as entropy conditions.

Definition 2.1.5. The scalar function η(Q) : Rm → R is an entropy function, if

1. the function η satisfies

(
∂η

∂Q

)T (∂Fi
∂Q

)
=

(
∂Fent

i

∂Q

)T
∀i = 1, . . . , d, (2.15)

where V = ∂η/∂Q denotes the entropy variables and Fent = (Fent
1 , . . . ,Fent

d )T

the entropy fluxes, and

2. the function η(Q) is convex.

The pair (η,Fent) is called entropy-entropy flux pair.

We can derive an evolution equation for the entropy by multiplying the conservation law
(2.3) with the entropy variables

VTQt + VT∇ · F = 0 (2.16)

and using the condition (2.15) to finally derive

η(Q)t +∇ · Fent(Q) = 0. (2.17)
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Thus, for smooth solutions entropy is conserved. However, for discontinuous solutions,
which can always arise for nonlinear equations, the previous steps do not hold. In the
case of discontinuities, entropy is dissipated across the shock, which is why (2.17) should
be rewritten as an inequality

η(Q)t +∇ · Fent(Q) ≤ 0. (2.18)

In order to deal with discontinuities, we derive a weak form of the inequality by multiplying
with a nonnegative test function φ, integrating over space and time and then applying
the divergence theorem

∫

Rd×R≥0
φtη +∇φ · Fent(Q)dxdt ≤ −

∫

Rd
φ(x, 0)η(x, 0)dx. (2.19)

Definition 2.1.6. A function Q(x, t) is called a weak entropy solution if it is a weak
solution and additionally satisfies (2.19) for all φ ∈ C1

0 and for all entropy-entropy flux
pairs (η,Fent).

This condition on weak solutions is a useful criterion for selecting a unique solution to
the system of conservation laws, which otherwise has many weak solutions. Therefore, it
is also useful for the construction of numerical methods.

2.2 Balance Laws

Homogeneous conservation laws do not include sources or sinks. In the following, we will
now incorporate source terms1 into the mathematical model. Using similar steps as for
conservation laws, we can obtain the following differential form of balance laws

∂

∂t
Q(x, t) +∇ · F(Q(x, t)) = S(Q(x, t)). (2.20)

The source term S : Rm → Rm can, for instance, model radiation or chemical reactions.
In this work we will consider S to be a time-independent gravitational source term.
In the solutions of balance laws, as in the case of conservation laws, discontinuities can
occur, which is why it makes sense to operate with the concept of weak solutions here as
well.

Definition 2.2.1. The function Q(x, t) is called a weak solution of the balance law
(2.20) with given initial data Q(x, 0) if it satisfies

∫

Rd×R≥0

[Qφt + F(Q) · ∇φ− S(Q)φ] dxdt+

∫

Rd
Q(x, 0)φ(x, 0)dx = 0. (2.21)

for all test functions φ ∈ C1
0 .

For a solution that is piecewise C1, the Rankine-Hugoniot condition remains the same
as for conservation laws. The eigenstructure of the system, on the other hand, changes
due to the source term, since it adds a new linearly degenerate eigenvalue λ = 0. The
system of balance laws remains hyperbolic as long as all eigenvalues of the Jacobians of
the homogeneous system are nonzero.

1 Note that the term “source” from here on also includes sinks.
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Including source terms in the PDE also has a significant effect on stationary solutions.
These solutions are independent of time and satisfy a balance of flux and source term
given by

∇ · F(Q) = S(Q). (2.22)

Stationary solutions are of great interest because many physical systems are close to their
equilibrium state. This is attributed to the second law of thermodynamics, which states
that the (physical) entropy of closed systems tends to increase over time until the system
reaches its equilibrium [Wal85].

2.3 Compressible Euler Equations

The compressible Euler equations are a set of fundamental equations in fluid dynamics
that describe the behavior of a compressible fluid without considering viscous effects. The
homogeneous Euler equations are derived from the physical principles of conservation of
mass, momentum and energy (see e.g. [LeV92]). In addition, we include gravitational
forces in order to describe atmospheric flows. In consequence, the momentum and energy
equations become nonconservative. The resulting hyperbolic system of balance laws writes

∂

∂t




ρ
ρv
E


+∇ ·




ρv
ρv ⊗ v + pI

(E + p)v


 =




0
ρg

ρv · g


 , (2.23)

where ρ(x, t) : Rd × R≥0 → R+ denotes the density, v(x, t) : Rd × R≥0 → Rd the velocity
vector and E(x, t) : Rd×R≥0 → R+ the total energy. The pressure is given by a pressure
law p(τ, e) : R+ × R+ → R+, where τ = 1/ρ denotes the specific volume and e > 0 the
internal energy. The total energy can then be expressed by

E = ρe+
1

2
ρ|v|2. (2.24)

The source term on the right-hand side of (2.23) contains the gravitational acceleration
g(x) : Rd → Rm, which can also be expressed by

g = ∇Φ, (2.25)

where Φ(x) : Rd → R denotes a given smooth gravitational potential.

We define the set of physical admissible states, which contains the states Q = (ρ, ρv, E)
with positive density and internal energy, by

ΩEuler
phys = {Q ∈ Rd+2; ρ > 0, e > 0}. (2.26)

This domain is convex invariant in the sense that if Q0(x) ∈ ΩEuler
phys then Q(x, t) ∈ ΩEuler

phys

for all x ∈ I, t > 0.

2.3.1 Ideal Gas Equation of State

In order to obtain a closed system of equations, one needs in addition to the Euler system
in (2.23) an equation of state (EoS) that relates the internal energy to pressure and density.
The explicit form of the EoS depends on the underlying physics of the gas that shall be
modeled. In this work we will consider an ideal gas law given by

p = ρRT and e =
RT

γ − 1
, (2.27)
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where R represents the gas constant, which can be derived by dividing the universal gas
constant R by the molecular weight of the gas. The function T (τ, e) > 0 denotes the
temperature and γ the adiabatic coefficient. Using (2.27) the pressure can be expressed
in terms of the specific volume and internal energy by

p(τ, e) =
(γ − 1)e

τ
. (2.28)

The adiabatic coefficient depends on the nature of the gas and must therefore be adapted
to the respective gas under consideration. For mono-atomic gases it can be estimated
by γ = 5/3 and for diatomic gases by γ = 1.4 [LeV02]. Air on the Earth’s surface, for
example, is modelled as a diatomic gas, since it consists largely of the diatomic gases
nitrogen (N2) and oxygen (O2) [Tok02].

2.3.2 Entropy

The Euler equations can have many weak solutions. Therefore, it is necessary to rule
out unphysical solutions such as expansion shocks. Essential in this context is the ther-
modynamic entropy, which can only increase with time according to the second law of
thermodynamics. Since we define entropy in Def. 2.1.5 as a convex function, the mathe-
matical entropy can only decrease with time.

Let us assume that the pressure law obeys the second law of thermodynamics so that a
specific entropy s(τ, e) : R+ × R+ → R+ exists, which satisfies the relation

− Tds = de+ pdτ. (2.29)

From this relation, we can deduce the conditions

s(τ, e)τ = − p(τ, e)
T (τ, e)

< 0 and s(τ, e)e = − 1

T (τ, e)
< 0. (2.30)

Lemma 2.3.1. Smooth solutions of the Euler equations (2.23) satisfy the additional con-
servation law

∂t(ρG(s)) +∇ · (ρG(s)v) = 0. (2.31)

We assume

G′(s) > 0 and
1

cp
G′(s) + G′′(s) > 0, (2.32)

where cp is the specific heat at constant pressure defined by

cp = −T
(
∂s

∂T

)

p

. (2.33)

Then Q 7→ ρG(s) is strictly convex, (ρG(s), ρG(s)v) defines an entropy-entropy flux pair
in the sense of Def. 2.1.5 and weak solutions of (2.23) satisfy

∂t(ρG(s)) +∇ · (ρG(s)v) ≤ 0. (2.34)

Proof. From the continuity equation in (2.23), we can derive an equation for the specific
volume

∂tτ + v · ∇τ − τ∇ · v = 0. (2.35)
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Multiplying this equation with − p
T and using the first equation in (2.30) yields

∂τs∂tτ + ∂τsv · ∇τ − ∂tsτ∇ · v = 0. (2.36)

From the momentum and total energy equations we can derive the following equation
describing the evolution of the internal energy

∂te+ v · ∇e+ τp∇ · v = 0. (2.37)

Multiplying this equation with − 1
T and using the second equation from (2.30) results in

∂es∂te+ ∂esv · ∇e+ τ∂ts∇ · v = 0. (2.38)

Summing up equations (2.36) and (2.38) yields

∂ts+ v · ∇s = 0. (2.39)

Finally, multiplying (2.39) with ρG′(s) and applying the chain rule gives (2.31). The
function ρG(s) is strictly convex, since its Hessian matrix is positive definite [GR02,
Daf09, HLLM98, LeF02].

The negatively scaled thermodynamic entropy and the corresponding entropy flux for the
Euler equations associated with an ideal gas law are given in [Har83] by

η = − ρs

γ − 1
,

Fent = − ρs

γ − 1
v,

(2.40)

where the specific entropy is defined by

s = log

(
p

ργ

)
. (2.41)

2.3.3 Eigenstructure

For a better understanding of the Euler equations and later for the construction of nu-
merical methods to solve them approximately, it is helpful to study the eigenstructure
of the matrix A in the quasi-linear form (2.5). The one-dimensional Euler system with
gravitational source term exhibits four waves with the wave speeds

λEuler
1 = u− c, λEuler

2 = u, λEuler
3 = u+ c, λEuler

4 = 0. (2.42)

The quantity c denotes the speed of sound given by

c = τ
√
p∂ep− ∂τp. (2.43)

Under the assumption of an ideal gas law (2.28), the sound speed can be computed by

c =

√
γp

ρ
. (2.44)

The eigenvalue λEuler
4 originates from including the source term. For positive density and

pressure the Euler equations have real eigenvalues and a full set of eigenvectors, except
for the resonant point {u = c}, for which two eigenvectors coincide. Apart from this case,
the system is hyperbolic.

Remark 2.3.2. The one-dimensional homogeneous Euler equations are strictly hyper-
bolic, since they do not exhibit the eigenvalue λEuler

4 . The Euler equations in d > 1
dimension fail to be strictly hyperbolic because the eigenvalue u has a multiplicity of d.
However, since the corresponding waves are linearly degenerate, their behaviour remains
independent [LeV98].



12 CHAPTER 2. CONSERVATION AND BALANCE LAWS

x

t

u− c 0 u u+ c

Figure 2.1: Wave structure of the one-dimensional Euler equations with a gravitational
source term. The acoustic waves (maroon) are either shock or rarefaction waves, while
the contact wave (indigo) and the zero wave (sky blue) are contact discontinuities.

2.3.4 Equilibrium Solutions

We have already seen that stationary solutions satisfy the balance of flux and source term
given in (2.22). For applications modeling atmospheric flows or stellar structures, the
class of hydrostatic equilibria (HSE) is of special interest. These equilibria are stationary
states at rest, meaning that the velocities are zero. The balance (2.22) simplifies in these
cases to

{
v = 0,
∇p = ρg.

(2.45)

Solutions to system (2.45) are not unique and depend on the pressure law defining the
relation between pressure and density. The assumption of additional conditions for the
gas law leads to uniqueness and explicit formulas for the solution can be determined. One
especially in astrophysics relevant family of EoS assumes

p(x) = χρ(x)Γ (2.46)

for χ > 0 and Γ ∈ (0,∞]. The parameter Γ denotes the polytropic coefficient, which is
to be distinguished from the adiabatic coefficient γ used in the ideal gas law. The HSE
equation (2.45) along with (2.46), can be solved explicitly, contingent upon the specific
value of Γ. The explicit formulae for three families of equilibria are given below:

• Isothermal equilibrium: For Γ = 1 and a given constant C ∈ R, the equilibrium
is given by





v(x) = 0,

ρ(x) = exp
(
C−Φ(x)

χ

)
,

p(x) = χ exp
(
C−Φ(x)

χ

)
.

(2.47)

• Polytropic equilibrium: For Γ ∈ (0, 1) ∪ (1,∞) and a given constant C ∈ R, the
equilibrium is given by





v(x) = 0,

ρ(x) =
(

Γ−1
Γχ (C − Φ(x))

) 1
Γ−1

,

p(x) = χ
1

1−Γ
(

Γ−1
Γ (C − Φ(x))

) Γ
Γ−1 .

(2.48)
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• Incompressible equilibrium: For a constant density, the equilibrium is given by





v(x) = 0,
ρ(x) = const,
p(x) + ρ(x)Φ(x) = const.

(2.49)

2.3.5 Dimensionless Equations and the Incompressible Limit

In order to analyze the effect of different flow regimes on the gas, it is reasonable to
consider the dimensionless form of the Euler equations [BEKR17]:

∂

∂t




ρ̂

ρ̂v̂

Ê


+ ∇̂ ·




ρ̂v̂

ρ̂v̂ ⊗ v̂ + 1
M2 p̂I

(Ê + p̂)v̂


 =




0

− 1
Fr2 ρ̂∇Φ̂

−M2

Fr2 ρ̂v̂ · ∇Φ̂


 . (2.50)

The rescaled total energy is defined by

Ê = ρ̂ê+
1

2
M2ρ̂|v̂|2. (2.51)

The different variables have been rescaled by some reference quantity representative of
the physical system of interest: t = trt̂, x = xrx̂, ρ = ρrρ̂, v = vrv̂, e = c2

r ê, p = ρrc
2
r p̂,

Φ = ΦrΦ̂, vr = xr/tr, c
2
r = pr/ρr. M = |vr|/cr represents the characteristic sonic Mach

number and Fr = vr/
√

Φr the characteristic Froude number of the flow. In this work, we
only consider the combined low Mach/low Froude number limit, which is the reason why
we set

Fr =M. (2.52)

We impose this restriction because in the case Fr �M gravity dominates the complete
flow, whereas in the case Fr �M gravity hardly plays a role. The case Fr ≈M, on the
other hand, is typically given for atmospheric flows in which we are interested.

The appearance of the Mach number in front of the pressure gradient also effects the
acoustic waves:

λ̂Euler
1 = û− ĉ

M , λ̂Euler
2 = û, λ̂Euler

3 = û+
ĉ

M , λ̂Euler
4 = 0. (2.53)

At this point it may be noted in particular that the acoustic wave speeds become faster
for smaller Mach numbers. For the rest of this subsection, we will omit the hat notation
for simplicity.

In the low Mach limit, the solutions of the Euler equations (2.23) tend to the solutions of
the incompressible Euler equations [KM82]. We illustrate this behaviour along the lines
of [HXX22]. Since it is more convenient, we replace the equation for the total energy in
(2.50) by the following equation for the pressure, which can be derived from the total
energy equation and the momentum equation:

∂tp+ v · ∇p+ γp∇ · v = 0. (2.54)

Defining the pressure p in terms of the potential temperature θ by p = (ρθ)γ and inserting
this definition into (2.54) yields

∂t(ρθ) +∇ · (ρθv) = 0. (2.55)



14 CHAPTER 2. CONSERVATION AND BALANCE LAWS

Applying the product rule and using the continuity equation results in an advection
equation of the form

∂tθ + v · ∇θ = 0. (2.56)

For the derivation of the limit equations, we now replace the total energy equation in
(2.50) by this transport equation for the potential temperature:

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ ·
(
ρv ⊗ v +

1

M2
pI

)
= − 1

M2
ρ∇Φ,

∂tθ + v · ∇θ = 0.

(2.57)

In this new set of equations, we insert expansions in terms of M given by

ρ = ρ0 +M2ρ2 +O(M3), v = v0 +Mv1 +M2v2 +O(M3),

p = p0 +M2p2 +O(M3), θ = θ0 +M2θ2 +O(M3).
(2.58)

Collecting all terms of order O(M−2) yields

∇p0 = −ρ0∇Φ. (2.59)

The couple (ρ0, p0) thus fulfills the HSE. We therefore assume a constant background
stratification for which θ0 constitutes a constant background potential temperature. Un-
der these assumptions, the limit equations are

∇ · (ρ0v0) = 0,

∂tv0 + v0 · ∇v0 +
∇p2

ρ0
= −ρ2∇Φ

ρ0
,

∂tθ2 + v0 · ∇θ2 = 0.

(2.60)

This system was first derived by Ogura and Phillips in [OP62].

Remark 2.3.3. The limit equations (2.60) contain an unknown ρ2, to which no conditions
seem to be attached that determine its behavior. The system is closed by p = (ρθ)γ, and
making use of (2.58) one can derive the relation

p2 = lim
M→0

p− p0

M2
= lim
M→0

(ρθ)γ − (ρ0θ0)γ

M2
= γ(ρ0θ0)γ−1 (ρ0θ2 + ρ2θ0) . (2.61)

In the next step, we want to analyze to what extent the solutions of the compressible Euler
equations correspond to those of the incompressible equations. Under the assumptions
that in the density no constant fluctuations occur, i.e.

ρ = ρ0 +O(M2), (2.62)

and that the HSE is fulfilled up to errors of order O(M2), i.e.

∇p+ ρ∇Φ = O(M2), (2.63)
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the Euler equations (2.23) become

∇ · (ρv) = O(M2),

∂tv + v · ∇v +
∇p2

ρ0
= −ρ2∇Φ

ρ0
+O(M2),

∂tθ + v · ∇θ = 0.

(2.64)

The solutions of (2.23) thus agree with those of the incompressible model up to an error
of order O(M2).

It is interesting to investigate the behaviour of the kinetic energy in the incompressible
limitM→ 0. We can derive an evolution equation for the kinetic energy Ekin = 1

2M2ρ|v|2
from the rescaled equations in (2.50) given by

∂tEkin +∇ · (Ekinv) = −v · (∇p+ ρ∇Φ) . (2.65)

In the low Mach number limit, solutions of the compressible Euler equations satisfy the
hydrostatic equilibrium up to errors of order O(M2), so that the kinetic energy is con-
served in the limit.

2.4 Compressible Ideal MHD Equations

The equations of MHD describe electrically conducting fluids in the presence of a mag-
netic field. They can be used to model a wide range of physical phenomena, including
astrophysical systems such as stars and galaxies, plasma physics, and fusion reactors.
Their simplest form is given by the ideal MHD equations, in which the influence of fluid
viscosity is neglected. This model consists of a system of nonlinear hyperbolic PDEs that
involve the conservation of mass, momentum, and total energy, along with Faraday’s law
for the magnetic field. A brief derivation can for example be found in [LeV98]. Taking
gravitational forces into account, the following balance laws are obtained

∂

∂t




ρ
ρv
E
B


+∇ ·




ρv
ρv ⊗ v + (p+ 1

2 |B|2)I−B⊗B
(E + p+ 1

2 |B|2)v −B (B · v)
v ⊗B−B⊗ v


 =




0
ρg

ρv · g
0


 , (2.66)

where B = (Bx, By, Bz) represents the magnetic field2. All other notations correspond
to those of the Euler equations. The total energy does now include the magnetic energy
and therefore is defined by

E = ρe+
1

2
ρ|v|2 +

1

2
|B|2. (2.67)

The convex invariant set of physical admissible states for the MHD equations with Q =
(ρ, ρv, E,B) is denoted by

ΩMHD
phys = {Q ∈ R8; ρ > 0, e > 0}. (2.68)

2 We use the Lorentz-Heaviside units: B = b/
√

4π.
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2.4.1 Solenoidal Constraint

The ideal MHD equations (2.66) are coupled with an additional solenoidal constraint for
the magnetic field

∇ ·B = 0. (2.69)

This constraint has its origin in Maxwell’s equation and states that physically no magnetic
monopoles can exist. Solutions to (2.66) automatically satisfy this condition at all times if
the initial magnetic field obeys the constraint. This can easily be illustrated by rewriting
the induction equation into the equivalent form

∂B

∂t
+∇× E = 0, (2.70)

where E = −v×B is the electromotive force. Applying the divergence to equation (2.70)
results in

∂(∇ ·B)

∂t
= 0. (2.71)

The solenoidal constraint can also be incorporated into the ideal MHD equations by
adding a source term proportional to the divergence of the magnetic field as shown by
Godunov [God72]. The homogeneous ideal MHD system then transforms to

∂

∂t




ρ
ρv
E
B


+∇ ·




ρv
ρv ⊗ v + (p+ 1

2 |B|2)I−B⊗B
(E + p+ 1

2 |B|2)v −B (B · v)
v ⊗B−B⊗ v


 = −(∇ ·B)




0
B

v ·B
v


 . (2.72)

At the continuous level, the source term only adds a zero to the original system due to the
solenoidal constraint (2.69). Mathematically, adding the source term changes the charac-
ter of the equations. Firstly, the new system of equations can be brought into symmetric
hyperbolic form [Bar99, God72] and, secondly, it becomes invariant under the Galilei
transformation [PRL+99]. At the same time, even without including gravitational terms,
the system is no longer in conservative form, especially in the hydrodynamic equations.

If the magnetostatic force density B∇ · B is included in the expression of the Lorentz
force when deriving the equations, the source terms in the equations for momentum and
energy disappear [Jan00]. The resulting system of equations writes

∂

∂t




ρ
ρv
E
B


+∇ ·




ρv
ρv ⊗ v + (p+ 1

2 |B|2)I−B⊗B
(E + p+ 1

2 |B|2)v −B (B · v)
v ⊗B−B⊗ v


 = −(∇ ·B)




0
0
0
v


 . (2.73)

Now energy and momentum are conserved even for ∇ · B 6= 0. In both systems (2.72)
and (2.73), the divergence of the magnetic field is convected as a passive scalar, i.e.

∂ (∇ ·B)

∂t
+∇ · (v∇ ·B) = 0. (2.74)

2.4.2 Entropy

The solenoidal constraint also has an influence on the entropy equation, as the following
lemma shows.
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Lemma 2.4.1. Under the conditions (2.30), smooth solutions of the MHD equations
(2.66), which obey the solenoidal constraint (2.69), satisfy an additional conservation law
for the entropy of the form (2.31).

Proof. The equation for the specific volume (2.35) can be derived as for the Euler equa-
tions. In order to derive an equation for the internal energy, analogous steps as in the
Euler case lead to

∂te+ v · ∇e+ τp∇ · v − τ(v ·B)(∇ ·B) = 0. (2.75)

Under the assumption that the solenoidal constraint of the magnetic field in (2.69) holds,
the last term vanishes from the equation and we end up with (2.37). The further steps
are carried out as for Euler and lead to equation (2.31).

Hence, an additional conservation law for the entropy emerges solely when the solenoidal
constraint is fulfilled. Therefore, entropy conservation and solenoidal constraint are linked
for the ideal MHD equations. This connection is underlined by the observation that only
the eight wave formulation (2.72) can be reformulated in symmetric hyperbolic form
[DGWW18]. The Godunov-Mock theorem states the absence of a strictly convex entropy
for systems of conservation laws that lack symmetrization [FL71, GR02].

2.4.3 Eigenstructure

In order to analyze the eigenstructure of the MHD system, we consider its one-dimensional
version with Bx = const. The eigenvalues associated with the Jacobian of the quasilinear
system are given by

λMHD
1,8 = u∓cf,x, λMHD

2,7 = u∓ca,x, λMHD
3,6 = u∓cs,x, λMHD

4 = u, λMHD
5,9 = 0. (2.76)

The Alfvén wave speed (ca) and the slow (cs) and fast (cf) magnetosonic wave speeds
herein are defined by

ca,x =
|Bx|√
ρ
, (2.77)

cf,s,x =


1

2


c2 +

|B|2
ρ
±
√(

c2 +
|B|2
ρ

)2

− 4c2c2
a,x






1
2

. (2.78)

The MHD system is hyperbolic, but not strictly hyperbolic (not even in the homogeneous
case), because for {ca,y + ca,z = 0}, {ca,x = 0} or {ca,y + ca,z = 0 ∧ ca,x = c} wave
speeds do coincide. The analysis of these umbilic points is out of the scope of this work.
Interested readers are referred to [LeV98] and references therein.

2.4.4 Equilibrium Solutions

The presence of the magnetic field in the MHD system (2.66) affects the equilibrium
solutions. Stationary steady states, for which all time derivatives are zero and the velocity
is zero everywhere, are called magnetohydrostatic equilibria (MHSE). These states satisfy

{
v = 0,
∇ ·
((
p+ 1

2 |B|2
)
I−B⊗B

)
= ρg.

(2.79)
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x

t

u− cf,x u− ca,x u− cs,x 0 u u+ cs,x u+ ca,x u+ cf,x

Figure 2.2: Wave structure of the one-dimensional MHD equations including gravity.
Fast/slow magnetosonic waves (maroon/orange) are shocks or rarefactions, Alfvén waves
(green) are rotational discontinuities, contact wave (indigo) and zero wave (sky blue) are
contact discontinuities.

The equilibrium equation is undetermined, so that it offers an entire continuum of mag-
netohydrostatic solutions. The MHSE plays an important role because it accurately
describes the stratification of stars for most of their lifespan. Until later evolutionary
stages, the equilibrium underlies only minor perturbations so that the structure remains
close to the equilibrium. Substantial changes only occur over longer thermal and nuclear
time scales [KWW13, LBA+22].

2.4.5 Dimensionless Equations and Incompressible Limit

In the following we consider the dimensionless form of the ideal MHD equations. All
quantities are rescaled as for the Euler equations. In addition, the magnetic field is
rescaled by B = BrB̂ and we introduce the Alfvén Mach numberMAlf = |vr|/(|Br|/√ρr).
The following equations result:

∂

∂t̂




ρ̂
ρ̂v̂

Ê

B̂


+ ∇̂ ·




ρ̂ṽ

ρ̂v̂ ⊗ v̂ + ( p̂
M2 + 1

2
|B̂|2
M2

Alf
)I− B̂⊗B̂

M2
Alf

(Ê + p̂+ 1
2 |B̂|2 M

2

M2
Alf

)v̂ − B̂
(
B̂ · v̂

)
M2

M2
Alf

v̂ ⊗ B̂− B̂⊗ v̂




=




0

− 1
Fr2 ρ̂∇Φ̂

−M2

Fr2 ρ̂v̂ · ∇Φ̂
0


 .

(2.80)
The eigenvalues corresponding to the one-dimensional dimensionless MHD equations are
given by

λ̂MHD
1,8 = û∓ĉf,x, λ̂MHD

2,7 = û∓ĉa,x, λ̂MHD
3,6 = û∓ĉs,x, λ̂MHD

4 = û, λ̂MHD
5,9 = 0, (2.81)

with the speeds

ĉa,x =
1

MAlf

|B̂x|√
ρ̂
, (2.82)

ĉf,s,x =


1

2


 1

M2
ĉ2 +

1

MAlf

|B̂|2
ρ̂
±

√√√√
(

1

M2
ĉ2 +

1

MAlf

|B̂|2
ρ̂

)2

− 1

M2
4ĉ2ĉ2

a,x







1
2

.

(2.83)

From this point on, we will again omit the hat notation for the rest of this subsection.
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In this work we are interested in astrophysical applications, in which the sonic Mach
numberM can become very small, while the Alfvén Mach number isMAlf ∼ 1. Therefore,
at this point we only consider the limit M → 0 and keep MAlf = 1. In this limit, the
solutions of the MHD equations (2.23) tend to the solutions of the incompressible MHD
equations [MB88]. In the following, we perform analogous steps as in the Euler case to
derive the limit equations. Under the assumption of a divergence-free magnetic field, we
derive the equation for the pressure given by (2.54) from (2.75). Using the definition
p = (ρθ)γ , we deduce the transport equation for the potential temperature θ and replace
the energy equation in the dimensionless MHD equations by this transport equation. The
resulting system writes

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ ·
(
ρv ⊗ v +

1

M2
pI

)
= − 1

M2
ρ∇Φ,

∂tθ + v · ∇θ = 0,

∂tB +∇ · (v ⊗B−B⊗ v) = 0.

(2.84)

Inserting expansions in terms of M given by

ρ = ρ0 +M2ρ2 +O(M3), v = v0 +Mv1 +M2v2 +O(M3),

p = p0 +M2p2 +O(M3), θ = θ0 +M2θ2 +O(M3),

B = B0 +MB1 +M2B2 +O(M3),

(2.85)

into the dimensionless MHD equations and collecting terms of order O(M−2) yields

∇p0 = −ρ0∇Φ. (2.86)

Under the assumption of a background stratification with constant potential temperature
θ0, the limit equations are defined by

∇ · (ρ0v0) = 0,

∂tv0 + v0 · ∇v0 +
1

ρ0
∇ ·
((

p2 +
1

2
|B0|2

)
I−B0 ⊗B0

)
= −ρ2∇Φ

ρ0
,

∂tθ2 + v0 · ∇θ2 = 0,

∂tB0 +∇ · (v0 ⊗B0 −B0 ⊗ v0) = 0.

(2.87)

Remark 2.4.2. In order to avoid that no conditions apply to the unknown ρ2, we close
the system by p = (ρθ)γ and

p2 = lim
M→0

p− p0

M2
= lim
M→0

(ρθ)γ − (ρ0θ0)γ

M2
= γ(ρ0θ0)γ−1 (ρ0θ2 + ρ2θ0) . (2.88)

In consequence, all variables can be determined.

Under the assumptions (2.62) and (2.63), the MHD equations (2.66) become

∇ · (ρv) = O(M2),

∂tv + v · ∇v +
1

ρ0
∇ ·
((

p2 +
1

2
|B|2

)
I−B⊗B

)
= −ρ2∇Φ

ρ0
+O(M2),

∂tθ + v · ∇θ = 0,

∂tB +∇ · (v ⊗B−B⊗ v) = 0.

(2.89)
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The solutions of the MHD equations (2.66) thus agree with those of the incompressible
model up to an error of order O(M2).

As for the Euler equations, we can derive a time evolution equation for the kinetic energy
from the rescaled equations (2.80) with MAlf = 1, which has the form

∂tEkin +∇ · (Ekinv) = −v · (∇p+ ρ∇Φ)−M2v ·
[
∇ ·
(

1

2
|B|2I−B⊗B

)]
. (2.90)

The kinetic energy is thus conserved in the incompressible limit up to errors of order
O(M2).



Chapter 3

Finite Volume Methods

In general, IVPs for conservation and balance laws such as the Euler and ideal MHD
equations are difficult to solve exactly. Therefore, it becomes necessary to rely on nu-
merical algorithms that provide approximate solutions. One widely used approach are
FV methods, which discretize the integral form of the PDE. This discretization naturally
ensures conservation, thereby reflecting the physical nature of the underlying PDE. Ad-
ditionally, FV methods are valued for their robustness in the face of shock waves and
discontinuities and their applicability to a wide range of grid structures, making them a
flexible and effective tool in practical applications.
In this chapter, we describe the basic concepts that are used in the development of FV
methods. Our presentation is based on the explanations given in standard textbooks on
FV methods [LeV02, Tor09, Bou04, GR02]. For more details, the reader is referred to
this literature and references therein.

3.1 Finite Volume Approach

In the following, we consider one spatial dimension and derive a numerical scheme for the
IVP {

Q(x, t)t + (F(Q(x, t))x = 0,

Q0(x) = Q(x, 0),
(3.1)

on the spatial domain I = [xL, xR] and for t ∈ R≥0. The extension of the numerical
concepts to multi-dimensional spaces is given in Sect. 3.7. In order to discretize the
spatial domain, we subdivide I into Nx cells Ci = (xi−1/2, xi+1/2) with the uniform cell
size ∆x. The cell center of cell i is denoted by xi = (xi+1/2 + xi−1/2)/2. The time is
discretized by tn = n∆t for n = 1, 2, ... with a time step ∆t.
The core of FV methods is the approximation of the solution on a cell Ci at time tn by
the cell average

Qni ≈
1

∆x

∫ xi+1/2

xi−1/2

Q(x, tn)dx (3.2)

and the goal is to compute the cell averages at the next time level tn+1. In order to derive
an update formula for the cell averages, we integrate the conservation law in (3.1) over
[xi−1/2, xi+1/2)× [tn, tn+1) and get

∫ tn+1

tn

∫ xi+1/2

xi−1/2

Q(x, t)tdxdt+

∫ tn+1

tn

∫ xi+1/2

xi−1/2

F (Q(x, t))x dxdt = 0. (3.3)

21
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Then, applying the fundamental theorem of calculus results in

∫ xi+1/2

xi−1/2

Q(x, tn+1)dx−
∫ xi+1/2

xi−1/2

Q(x, tn)dx

= −
∫ tn+1

tn
F
(
Q(xi+1/2, t)

)
dt+

∫ tn+1

tn
F
(
Q(xi−1/2, t)

)
dt.

(3.4)

By replacing the integrals on the left-hand side with the cell averages from (3.2), we
obtain

Qn+1
i = Qni −

1

∆x

(∫ tn+1

tn
F
(
Q(xi+1/2, t)

)
dt−

∫ tn+1

tn
F
(
Q(xi−1/2, t)

)
dt

)
. (3.5)

In general, the exact evaluation of the integrals is difficult and expensive. Therefore, we
approximate the flux average by a numerical flux

Fi+1/2 ≈
1

∆t

∫ tn+1

tn
F
(
Q(xi+1/2, t)

)
dt. (3.6)

If the numerical flux only depends on data at time tn, i.e. on Qn, we derive an explicit
formula to compute an approximate solution at time tn+1 given by

Qn+1
i = Qni −

∆t

∆x

(
Fni+1/2 − Fni−1/2

)
. (3.7)

However, if the numerical flux is evaluated based on Qn+1, the update formula becomes
implicit and reads

Qn+1
i = Qni −

∆t

∆x

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
, (3.8)

which in consequence leads to a nonlinear system of equations that must be solved to
obtain Qn+1.

In the following, we continue with time-explicit schemes of the form (3.7). Given that
information propagates at a finite speed for hyperbolic equations, we calculate the nu-
merical flux at the interface solely based on the cell averages of the two neighboring cells,
i.e.

Fni+1/2 = F (Qni , Q
n
i+1). (3.9)

This definition leads to a three-point method, in the sense that the solution Qn+1
i depends

on the three cell averages Qni−1, Qni and Qni+1. As a result, we obtain a first order
approximation.
An important property of the method (3.7) is that it is conservative. Summing up over
∆xQn+1

i shows that all flux contributions cancel out and only the fluxes at the boundaries
remain

∆x

Nx∑

i=1

Qn+1
i = ∆x

Nx∑

i=1

Qni −∆t
(
FnNx+1/2 − Fn1/2

)
. (3.10)

However, the conservation property does not automatically lead to stability of the numeri-
cal method. In order to be stable, it must at least fulfill two further necessary conditions.
First, the numerical flux must be consistent with the physical flux in the sense of the
following definition.



3.1. FINITE VOLUME APPROACH 23

i− 1 i i+ 1

n

n+ 1

λmax∆t

∆x

λmax∆t

∆x

Figure 3.1: The numerical domain of dependence (red) of the three-point method. For a
method to be stable, its numerical domain of dependence must be larger than the true
domain of dependence (green).

Definition 3.1.1. A numerical flux is called consistent, if for Qni = Qni+1 = Q it
satisfies the condition

F (Q,Q) = F(Q). (3.11)

The consistency of a numerical flux ensures that its behavior in the simple case of a
constant solution exactly matches the behavior of the physical flux.

Second, it is important from which spatial region information can influence a given cell’s
value. This region is called numerical domain of dependence and must necessarily be
larger than or equal to the true domain of dependence on the level of the PDE. We
summarize this constraint in the following lemma.

Lemma 3.1.2. A numerical method can only be convergent if its numerical domain of
dependence contains the true domain of dependence of the PDE, at least in the limit as
∆t and ∆x go to zero [LeV02].

The true domain of dependence for hyperbolic conservation laws depends on the eigen-
values of the flux-Jacobian F ′(Q), since it follows from the characteristic form of the
hyperbolic system of conservation laws that information propagates with the speed of
these eigenvalues. In the time-explicit three-point method, on the other hand, informa-
tion may be transported a maximum of one cell width during a time step, because Qn+1

i

depends only on Qni−1, Qni and Qni+1. Thus, the fraction of cell width ∆x and time step
∆t must be greater than or equal to the maximum absolute wave speed λmax = maxj |λj |
(see also Fig. 3.1). The CFL condition follows from this consideration, i.e.

∆t ≤ CCFL

∆x

λmax
(3.12)

with a CFL number CCFL ≤ 1 for the three-point method. Note that for other methods
having a different numerical domain of dependence, a different CFL number is necessary
for stability.

Remark 3.1.3. The implicit method (3.8) is unconditionally stable with respect to the
CFL condition, since its numerical domain of dependence includes the whole computa-
tional domain. This is the result of having to solve a nonlinear system of equations
depending on all cell averages in the computational domain.
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The consistency condition (3.11) and the CFL condition (3.12) are necessary but not
always sufficient conditions for stability and convergence of a finite volume method. A
useful property that improves the stability of the numerical method is to ensure that it
satisfies a discrete version of an entropy inequality

η(Qn+1
i ) ≤ η(Qni )− ∆t

∆x

(
Fent,n
i+1/2 −F

ent,n
i−1/2

)
. (3.13)

Analogous to the entropy inequality (2.18), ensuring (3.13) excludes unphysical discrete
solutions for which the mathematical entropy increases.

A crucial theorem on convergence of finite volume methods is provided by Lax and
Wendroff [LW60].

Theorem 3.1.4 (Lax-Wendroff theorem, taken from [LeV02]). Consider a sequence of
grids (∆t(j),∆x(j)) for which ∆t(j),∆x(j) → 0 as j → ∞ and let the function Q(j)(x, t)
denote a numerical solution computed by a consistent and conservative method on the j-th
grid. If Q(j) converges to a function Q as j →∞ in the sense that

∫ tf

0

∫ xR

xL

|Q(j)(x, t)−Q(x, t)|dxdt→ 0 as j →∞ (3.14)

and that for each tf there is a constant C > 0 such that

TV
(
Q(j)(·, t)

)
< C for all 0 ≤ t ≤ tf , j = 1, 2, . . . , (3.15)

then Q(x, t) is a weak solution of the conservation law.

The function TV (·) used in the theorem denotes the total variation function and can be
computed by TV (q) =

∫ xR
xL
|q′(x)|dx. It is important to notice that the Lax-Wendroff

theorem does not guarantee convergence. For achieving this, the numerical method must
also be stable and even then, different sequences can converge against different weak solu-
tions. Nevertheless, the theorem is helpful because it allows us to assume that a physically
reasonable numerical solution, which is derived by a consistent and conservative method,
is a good approximation of some weak solution [LeV02].

3.2 Godunov’s Method

The method (3.7) provides a way to compute a numerical solution at the next time step.
What is still missing is a good approximation for the flux Fi+1/2 in (3.6). Godunov
[God59] has found that the piecewise constant approximation by cell averages gives rise
to local Riemann problems at the cell interfaces, which have the form

Qt + F(Q)x = 0,

Q0(x) =

{
Qni , if x < xi+1/2,

Qni+1, if x > xi+1/2.

(3.16)

Under the assumption that a solution to this Riemann problem exists, he proposes to
solve (3.16) exactly, so that a solution W̃(x, tn+1) at the new time level tn+1 can be
constructed, which consists piecewise of the Riemann solutions

Wi+1/2

(
x− xi+1/2

t− tn ;Qni , Q
n
i+1

)
for x ∈ (xi, xi+1). (3.17)



3.2. GODUNOV’S METHOD 25

x

t

xi−1 xi−1/2 xi xi+1/2 xi+1 xi+3/2 xi+2

tn

tn+1

∆t

Figure 3.2: Maximum waves of the Riemann problems at xi−1/2, xi+1/2 and xi+3/2. The
dashed line marks the maximum time step ∆t permitted by the CFL condition (3.19) for
Godunov’s method.

Finally, the cell averages for the next time level can be obtained by an averaging step
over each cell

Qn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

W̃(x, tn+1)dx. (3.18)

When using this approach it is important that the waves of the individual Riemann
solutions must not cross (see Fig. 3.2). This results in the following more restrictive CFL
condition

∆t ≤ CCFL

∆x

λmax
with CCFL ≤

1

2
. (3.19)

Godunov’s method can be summarized by the Reconstruction-Evolution-Averaging (REA)
algorithm.

Algorithm 3.2.1. Godunov’s method consists of three consecutive steps:

1. Reconstruction: The piecewise constant solution W̃(x, tn) is constructed from the
cell averages Qni .

2. Evolution: The reconstructed function is evolved in time by solving local Riemann
problems of the form (3.16) at the cell interfaces by an exact Riemann solverWi+1/2.

3. Averaging: The solution at the new time level W̃(x, tn+1) is averaged over each
grid cell to determine Qn+1

i .

Godunov’s method can be translated into the conservative form (3.7). For this purpose
we reformulate the integral form (3.4) into

∫ xi+1/2

xi−1/2

W̃(x, tn+1)dx =

∫ xi+1/2

xi−1/2

W̃(x, tn)dx

+

∫ ∆t

0
W̃(xi−1/2, t)dt−

∫ ∆t

0
W̃(xi+1/2, t)dt.

(3.20)

The Riemann solution is self-similar and thus constant along the ray x
t = const, which

allows us to write

W̃(xi−1/2, t) =Wi−1/2(0) = const,

W̃(xi+1/2, t) =Wi+1/2(0) = const.
(3.21)
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Then, by dividing the integral form (3.20) by ∆x and using the definition of the cell
averages, we derive the conservative form (3.7) with the numerical flux defined by

Fni+1/2 = F (Qni , Q
n
i+1) = F

(
Wi+1/2(0;Qni , Q

n
i+1)

)
. (3.22)

Here, only the Riemann solution at the interface is used. Therefore, the waves are allowed
to travel over the entire width of a cell, so that a less restrictive CFL number CCFL ≤ 1
is sufficient.

The latter approach only uses the Riemann solution at the interface. Nevertheless, one
needs to determine the whole Riemann solution, which in general is difficult and costly.
Therefore, it is worth considering not solving the Riemann problem exactly, but only
approximately with the help of approximate Riemann solvers.

3.3 Approximate Riemann Solvers

In general, computing the exact Riemann solution for nonlinear hyperbolic systems is
rather cumbersome and computationally inefficient. Roe pointed out that the Riemann
problem does not need to be solved exactly, but that an approximate solution is suffi-
cient in many cases. The result of his work was the Roe solver [Roe81], which is briefly
described in Ex. 3.3.3. Methods that replace the exact Riemann solver by an approxi-
mate Riemann solver in the evolution step of the REA algorithm are called Godunov-type
methods. Since the Riemann solver is the core part in Godunov’s method, the efficiency
of the scheme can significantly be increased by the use of approximate Riemann solvers.
When computing the exact Riemann solution, it is particularly difficult to calculate rare-
faction waves. Therefore, we consider approximate Riemann solvers for which the solution
only contains shocks or contact discontinuities. In consequence, the solution consists of
K + 1 constant states wk, 1 ≤ k ≤ K + 1, separated by waves propagating at speed sk
and has the general structure

WR
(x
t

;QL, QR
)

=





w1 = QL, if x
t < s1,

w2, if s1 <
x
t < s2,

...

wK , if sK−1 <
x
t < sK ,

wK+1 = QR, if sK < x
t .

(3.23)

This solution structure is illustrated in Fig. 3.3. In order to be consistent with the
underlying conservation law, the Riemann solver WR should satisfy

WR
(x
t

;Q,Q
)

= Q (3.24)

and
∫ xi+1

xi

WR
(
x− xi+1/2

∆t
;Qi, Qi+1

)
dx =

∫ xi+1

xi

W̃
(
x− xi+1/2

∆t
;Qi, Qi+1

)
dx. (3.25)

The approximate solution W̃∆(x, tn+1) at time level tn+1 then consists piecewise of the
Riemann solutions at the interfaces. An advantage of this method is that some properties
of the approximate Riemann solver transfer to the overall method, as can be seen in the
following theorem.
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x

t

s1 s2 sK−1 sK

w1 = QL

w2 . . .. . . wK

wK+1 = QR

Figure 3.3: Structure of the general approximate Riemann solver (3.23). It consists of
K + 1 constant states separated by shocks or contact discontinuities.

Theorem 3.3.1. Consider the explicit scheme (3.7) using an approximate Riemann
solver of the form (3.23) under the CFL condition (3.19). If all constant states in the
solver are in a set Ωphys, then for the updated state it holds Qn+1

i ∈ Ωphys.

Proof. Using the integral form, the scheme (3.7) can be rewritten as follows

Qn+1
i = Qni −

∆t

∆x

(
Fni+1/2 − Fni−1/2

)

=

∫ xi+1/2

xi−1/2

W̃∆(x, tn+1)dx

=

∫ xi

xi−1/2

WR
(
x− xi−1/2

∆t
;Qni−1, Q

n
i

)
dx+

∫ xi+1/2

xi

WR
(
x− xi+1/2

∆t
;Qni , Q

n
i+1

)
dx.

Since the constant states in the approximate Riemann solvers are assumed to be in Ωphys

and the set Ωphys is assumed to be convex, both integrals are in Ωphys and thus the
statement of the theorem is proven.

If the Riemann solver (3.23) satisfies (3.24), the CFL condition (3.19) and the Rankine-
Hugoniot condition

F(QR)−F(QL) =
K∑

k=1

λk (Qk+1 −Qk) , (3.26)

then it is a Godunov-type method [GR02]. It can be put into conservation form (3.7)
with numerical fluxes defined by

F (QL, QR) =
1

2

(
F(QL) + F(QR)−

K∑

k=1

|λk| (Qk+1 −Qk)
)
. (3.27)

In the following, we briefly list some of the most important and most frequently used
approximate Riemann solvers.

Example 3.3.2 (Rusanov solver). A very simple approximate Riemann solver is the
Rusanov solver. It consists of three constant states separated by two waves, i.e.

WR
(x
t

;QL, QR
)

=





QL, if x
t < −λ∗max,

QRus, if − λ∗max <
x
t < λ∗max,

QR, if λ∗max <
x
t ,

(3.28)
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with the intermediate state

QRus =
1

2

(
QL +QR

)
− 1

2λ∗max

(
F(QR)−F(QL)

)
(3.29)

and the estimate of the maximum wave speed

λ∗max = max
(
λLmax, λ

R
max

)
. (3.30)

By applying Rankine-Hugoniot conditions of the form (2.13) to the left and right wave,
we can derive the well-known Rusanov flux function [Rus62]

FRus(QL, QR) =
1

2

(
F(QL) + F(QR)

)
− λ∗max

2

(
QR −QL

)
. (3.31)

The flux function (3.31) consists of a central flux and an artificial dissipation term. This
structure is typical of numerical fluxes, since the central flux alone is unconditionally
unstable [LeV02]. The numerical flux resulting from Roe’s solver is also structured in this
way.

Example 3.3.3 (Roe solver). Roe’s idea is to linearize the flux function by F(Q) = AQ
and to solve the Riemann problem for the simpler system

Qt +AQx = 0. (3.32)

The resulting Riemann solver has the form (3.23) with

A(QL, QR) (wk+1 − wk) = λk (wk+1 − wk) , 1 ≤ k ≤ K. (3.33)

Roe’s method can be put in conservation form, in which the numerical flux is defined by

FRoe(QL, QR) =
1

2

(
F(QL) + F(QR)

)
− |A(QL, QR)|

(
QR −QL

)
. (3.34)

In practice the Roe matrix can be computed by

|A(QL, QR)| = |A(QRoe)| = R(QRoe)|Λ(QRoe)|R(QRoe)−1, (3.35)

where R(Q) denotes the matrix of right eigenvectors of the Jacobian and Λ(Q) is the
diagonal matrix of the corresponding eigenvalues. The absolute value operator | · | is
applied componentwise. The quantity QRoe represents an average of the two input states
that needs to satisfy

A(QRoe)
(
QR −QL

)
= F(QR)−F(QL). (3.36)

When using Roe’s solver it is possible to compute quite accurate solutions in an efficient
way, but the solver lacks some important properties. A major flaw of Roe’s original solver
is that it does not necessarily satisfy a discrete entropy inequality. Later, modifications to
the Roe solver were proposed that overcome this weakness [HH83, Tad84, Osh84, Roe92,
PQV01]. Building on Roe’s ideas, other approximate Riemann solvers were developed in
the following years. One class of such solvers are the Harten-Lax-van Leer (HLL) solvers.

Example 3.3.4 (HLL solver). The HLL Riemann solver [HLvL83] assumes that the
Riemann solution consists of three constant states separated by two waves, i.e.

WR
(x
t

;QL, QR
)

=





QL, if x
t < SL,

QHLL, if SL < x
t < SR,

QR, if SR < x
t ,

(3.37)
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and that the wave speeds SL and SR are given by some algorithm. The intermediate state
QHLL is defined as the average of the exact Riemann solution between the slowest and
fastest wave. This average is constant and can be computed by

QHLL =
SRQR − SLQL + F(QL)−F(QR)

SR − SL . (3.38)

For more details on its derivation, see [Tor09]. There are different options to estimate
the speeds SL and SR. A simple and yet robust choice proposed by Einfeldt [Ein88] for
ordered eigenvalues is given by

SL = min
(
λ1(QL), λ1(QRoe)

)
and SR = max

(
λm(QRoe), λm(QR))

)
. (3.39)

Remark 3.3.5. The HLL solver is equivalent to the Rusanov solver, if the wave speeds
are estimated by

SL = −λ∗max and SR = λ∗max. (3.40)

As long as the wave speed estimates SL and SR are a lower respective upper bound
for the wave speeds of the exact Riemann solution, the HLL solver is entropy-satisfying
[HLvL83, GR02] and positivity-preserving [ERMS91], leading to a good stability of the
method. The HLL solver yields accurate results for systems with only two equations,
such as the shallow water equations, but performs poorly for larger systems like the
full Euler equations. From the simplification of the solution structure it follows that
all intermediate states between QL and QR, which may exist in the exact solution of
the Riemann problem, are approximated by only one intermediate state QHLL. For the
Euler equations, this means that the contact discontinuity associated with the eigenvalue
λEuler

2 = u is not resolved. In the case of the MHD equations, the slow magnetosonic as
well as the Alfvén waves are not resolved, either. This results in a lower accuracy of the
method in these areas. To overcome this drawback for the Euler equations, Toro et al.
constructed the Harten-Lax-van Leer Contact (HLLC) solver [TSS94].

Example 3.3.6 (HLLC solver). The HLLC solver for the Euler equations consists of four
constant states separated by three waves. i.e.

WR
(x
t

;QL, QR
)

=





QL, if x
t < SL,

QL∗, if SL < x
t < SM ,

QR∗, if SM < x
t < SR,

QR, if SR < x
t .

(3.41)

In order to determine the intermediate states QL∗ and QR∗ it is necessary to make addi-
tional assumptions about the solution. Toro et al. [TSS94] assume the normal compo-
nent of the velocity to be constant over the Riemann fan, i.e.

uL∗ = uR∗ = SM . (3.42)

Batten et al. [BCLC97] propose to compute this velocity by the HLL average QHLL.
Then the remaining intermediate states can be calculated using the Rankine-Hugoniot
conditions. Details can be found in [MK05].

Just like the HLL solver, the HLLC solver is positivity-preserving and entropy-satisfying
if the wave speeds are chosen appropriately [Bou04]. Thanks to the contact wave in
the middle, the HLLC solver is able to resolve isolated contact discontinuities exactly.
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There are extensions of the HLLC solver to the MHD equations [Gur04, Li05] and other
systems of conservation and balance laws [Tor19]. However, those solvers do not always
resolve isolated rotational discontinuities exactly, which may be caused by the two-state
approximation in the Riemann solution. This can be cured by the HLLD solver developed
by Miyoshi and Kusano for the MHD equations [MK05].

Example 3.3.7 (HLLD solver). The HLLD solver is a 5-wave solver of the form

WR
(x
t

;QL, QR
)

=





QL, if x
t < SL,

QL∗, if SL < x
t < SL∗,

QL∗∗, if SL∗ < x
t < SM ,

QR∗∗, if SM < x
t < SR∗,

QR∗, if SR∗ < x
t < SR,

QR, if SR < x
t .

(3.43)

Besides the entropy wave it also includes two Alfvén waves with speeds SL∗ and SR∗,
which are estimated by

SL∗ = SM − |Bx|√
ρL∗

and SR∗ = SM +
|Bx|√
ρR∗

. (3.44)

The assumptions for computing the intermediate states are that the normal velocity and
the total pressure pT = p+ 1

2 |B|2 are constant over the Riemann fan. Then the respective
intermediate states can be found by using the Rankine-Hugoniot conditions [MK05]. A
possible estimate for the outer wave speeds is given by

SL = min
(
uL, uR

)
−max(cLf,x, c

R
f,x) and SR = max

(
uL, uR

)
+ max(cLf,x, c

R
f,x). (3.45)

Remark 3.3.8. In the case of a zero magnetic field, the Alfvén waves collapse to the
contact wave and the HLLD solver reduces to the HLLC solver.

The HLLD solver is able to resolve all isolated discontinuities formed in the ideal MHD
system and is positivity-preserving [MK05].

Of course there exist more approximate Riemann solvers, numerical flux functions and
variations of those presented above. For more information the reader is referred to
[LeV02, Tor09, GR02] and the references therein.

We have seen that for HLL-type solvers it is not clear how the wave speeds should be
estimated in order to obtain a stable method while keeping numerical dissipation as low
as possible. In the next section we will take a closer look at another class of approximate
Riemann solvers, for which the choice of speeds is more natural and which plays an
important role in the further course of this work: relaxation solvers.

3.4 Relaxation Systems and Solvers

In the 1990s, the concept of relaxation schemes emerged [JX95, CLL94, CP98, Bou04].
The basic idea is to construct a new enlarged relaxation system, including a relaxation
term on the right-hand side, which is an approximation of the original system. The
numerical scheme then solves the relaxation system in two steps:
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1. First solve the left-hand side of the relaxation system, which consists of a linear
transport and is therefore numerically easy to solve.

2. Then project the solution of the first step back onto the equilibrium variables, i.e.
use only the variables of the original system to solve the next time step.

Thus, the resulting numerical method is simple and yet leads to rather accurate results.
Another advantage is that Riemann solvers associated with relaxation systems natu-
rally satisfy a discrete entropy inequality, which results in an increased robustness of the
method. Since there is a certain degree of freedom in how to construct the relaxation
system, it is moreover possible to equip the approximate Riemann solver with additional
desirable properties, as we will see later in Chapter 4. The description of the relaxation
concept given in this section follows the lines of [BK23b].

3.4.1 Jin-Xin Relaxation Model

In order to get a deeper understanding of the concept of relaxation, let us first consider
the simple case of a scalar conservation law

∂tq + ∂xf(q) = 0. (3.46)

To solve this equation, Jin and Xin [JX95] introduced the relaxation system

∂tq + ∂xν = 0,

∂tν + a2∂xq =
1

ε
(f(q)− ν) ,

(3.47)

with a relaxation variable ν, a constant relaxation speed a and a relaxation parameter
ε. The relaxation system (3.47) is derived by multiplying the original conservation law
(3.46) by f ′(q), which yields

∂tf(q) + f ′(q)2∂xq = 0. (3.48)

This equation is linearized by replacing f ′(q)2 by a2. This alone would still lead to a very
poor approximation, so f(q) is replaced by the new relaxation variable ν and a relaxation
source term connecting f(q) and ν is added. The resulting relaxation system (3.47) is
a diffusive approximation of the original scalar conservation law in (3.46). This can be
illustrated by a Chapman-Enskog expansion [CC90]. For this procedure we consider a
formal expansion of ν in terms of ε

ν = ν0 + εν1 +O(ε2), (3.49)

and insert this expansion into system (3.47)

∂tq + ∂x (ν0 + εν1) = 0,

∂t (ν0 + εν1) + a2∂xq =
1

ε
(f(q)− ν0 − εν1) .

(3.50)

From collecting all terms of order O(1/ε), we can determine

ν0 = f(q). (3.51)

For the terms with order O(1), on the other hand, we gain the system

∂tq + ∂xν0 = 0,

∂tν0 + a2∂xq = −ν1.
(3.52)
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We can reformulate the second equation using both (3.51) and the chain rule

ν = f(q)− ε
(
a2 − f ′(q)2

)
∂xq. (3.53)

This expression can be plugged into the first equation of (3.47) and we derive

∂tq + ∂xf(q) = ε∂x
((
a2 − f ′(q)2

)
∂xq
)
. (3.54)

Clearly this equation is diffusive as long as the stability criterion

− a ≤ f ′(q) ≤ a (3.55)

is satisfied. This criterion is called subcharacteristic condition [JX95]. The Chapman-
Enskog expansion shows that the relaxation system is a suitable approximation of the
original conservation law. Therefore it is sufficient to determine the solution of the relax-
ation system. We do that by applying the following splitting approach. In a first step we
solve the left-hand side of (3.47)

∂tq + ∂xν = 0,

∂tν + a2∂xq = 0.
(3.56)

The eigenvalues and eigenvectors of this system can be computed to be

λJX
1 = −a, λJX

2 = a (3.57)

and

r(1),JX =

(
− 1
a

1

)
, r(2),JX =

(
1
a
1

)
. (3.58)

It is easy to check that both characteristic fields are linearly degenerate, which makes it
is easy to find the solution to the associated Riemann problem. The Riemann invariants
associated with the characteristic fields are given by

λJX
1 : IJX

1 = ν + aq,

λJX
2 : IJX

2 = ν − aq,
(3.59)

and give rise to the following intermediate states in the exact Riemann solution of the
homogeneous system (3.56)

q∗ =
1

2
(qL + qR)− 1

2a
(νR − νL), (3.60a)

ν∗ =
1

2
(νL + νR) +

1

2
a(qR − qL). (3.60b)

In the second step, the projection step, we solve the system in the limit ε→ 0, i.e.

∂tq = 0,

∂tν =
1

ε
(f(q)− ν) .

(3.61)

In practice, we use an instantaneous relaxation, meaning that we project on the relaxation
equilibrium {(q, ν); ν = f(q)} and simply take the solution of the first step for q and use
this as the initial value when calculating the solution at the next time step. This projection
step was first introduced in [Bre84]. Overall, the result is a Godunov-type scheme for the
scalar conservation law (3.46) with the approximate Riemann solver

WR
(x
t

; qL, qR
)

=





qL, if x
t < −a,

1
2(qL + qR)− 1

2a(f(qR)− f(qL)), if − a < x
t < a,

qR, if a < x
t .

(3.62)
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Remark 3.4.1. Clearly, for a = λ∗max the Jin-Xin relaxation solver (3.62) coincides with
the Rusanov solver (3.28) and for SL = −a and SR = a with the HLL solver (3.37).

The Jin-Xin relaxation can be extended to systems of hyperbolic conservation laws. In
this case, the relaxation system is defined by

∂tQ+ ∂xV = 0,

∂tV + A∂xQ =
1

ε
(F(Q)− V ),

(3.63)

where A denotes a constant diagonal matrix with positive entries. The advantage of this
approach is that a fixed recipe works for any system of hyperbolic conservation laws.
However, the price is that the relaxation system consists of twice as many equations as
the original system, which means a relatively high computational effort. As we will see in
the following section, there are also smarter approaches with fewer additional relaxation
equations.

3.4.2 Suliciu Relaxation Model

Instead of taking a “one-size-fits-all” approach like the Jin-Xin relaxation system, it is
more efficient to adapt to the system of conservation laws at hand. To reduce the number
of additional equations, it makes sense to approximate only nonlinear terms of the original
system by relaxation while keeping linear equations. An example of this approach for the
one-dimensional Euler equations is the so-called Suliciu relaxation model [Sul90, Sul92,
CGP+01, Bou04]. The main idea of this approach is to relax only the nonlinear pressure
term in the momentum equation. A new evolution equation for the pressure is derived
from the continuity equation in (2.23)

∂t(ρp) + ∂x(ρup) + ρ2p′(ρ)∂xu = 0. (3.64)

In this equation one replaces the pressure p by a relaxation variable π and the sound
speed ρ

√
p′(ρ) by a positive constant relaxation speed a

∂t(ρπ) + ∂x(ρuπ + a2u) = ρ
p− π
ε

. (3.65)

Finally, this new relaxation equation is added to the original Euler equations and the
pressure p is replaced in all equations by π so that the resulting Suliciu relaxation system
has the form

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + π) = 0,

∂tE + ∂x((E + π)u) = 0,

∂t(ρπ) + ∂x(ρπu+ a2u) = ρ
p− π
ε

.

(3.66)

A Chapman-Enskog expansion with similar steps as for the Jin-Xin relaxation leads to
the following subcharacteristic stability condition

a ≥ ρc, (3.67)

where c represents the sound speed. The eigenvalues of the homogeneous system (3.66)ε=∞
are given by

λSul
1 = u− a

ρ
, λSul

2 = u, λSul
3 = u+

a

ρ
, (3.68)
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Figure 3.4: Structure of the solution to the Riemann problem associated with the Suliciu
relaxation model (3.66).

where λSul
2 has multiplicity two. It can be checked that all eigenvalues are linearly degener-

ate, which allows us to exactly solve the Riemann problem associated with the relaxation
system. As shown in Fig. 3.4, the solution has four constant states separated by three
waves. The intermediate states can then be computed with the help of the Riemann
invariants

λSul
1 : ISul

1 = u− a
ρ , ISul

2 = π + a2

ρ , ISul
3 = e+ π

ρ + a2

2ρ2 ,

λSul
2 : ISul

4 = u, ISul
5 = π,

λSul
3 : ISul

6 = u+ a
ρ , ISul

7 = π + a2

ρ , ISul
8 = e+ π

ρ + a2

2ρ2 .

(3.69)

We refrain from explicitly stating the definitions of the intermediate states here. Interested
readers can find them for example in [BKZ20]. The approximate Riemann solver for the
Euler equations thus has the structure

WR
(x
t

;QL, QR
)

=





QL, if x
t < λSul

1 ,

QL∗, if λSul
1 < x

t < λSul
2 ,

QR∗, if λSul
2 < x

t < λSul
3 ,

QR, if λSul
3 < x

t .

(3.70)

It can be proven that for a sufficiently large relaxation speed a and QL, QR ∈ Ωphys, the
intermediate states QL∗ and QR∗ also lie in Ωphys and that the solver satisfies a discrete
entropy inequality of the form (3.13) [Bou04, GR02].

Remark 3.4.2. The structure of the Suliciu Riemann solver strongly resembles that of
the HLLC solver. In fact, it can be shown that with a certain choice of wave speeds, both
solvers are equivalent [Bou04].

Based on the Suliciu relaxation system, many other relaxation systems of a similar type
have been constructed (see e.g. [CGP+01, BdL09, CGS12, CC14, BL16, BKZ20]). Partic-
ularly relevant in the context of this thesis is an extension to the isentropic Euler equations
in [BCG20] and to the full Euler equations with gravitational source terms in [DZBK16],
whose concepts are discussed in more detail in Chapter 4. Relaxation systems and corre-
sponding solvers for the ideal MHD equations can be found in [BKW07, BKW10, WFK11].
Key idea of these systems is the definition and relaxation of newly defined pressure vari-
ables

π = p+
1

2
|B|2 −B2

x and π⊥ = −(BxBy, BxBz)
> (3.71)

instead of the acoustic pressure.
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3.5 Source Terms

Up to this point we have concentrated on the discretization of homogeneous conservation
laws. In the following, we also include source terms. Let us consider the one-dimensional
system of balance laws

Qt + F(Q)x = S(Q). (3.72)

In this work we employ two general approaches to discretize this balance law. In the
first one, we apply a Godunov-type method to the left-hand side of (3.72) so that the
approximate Riemann solver solves the homogeneous Riemann problem. The source term
is discretized separately. This results in an unsplit method of the form

Qn+1
i = Qni −

∆t

∆x

(
Fni+1/2 − Fni−1/2

)
+ ∆tSni , (3.73)

where Sni = S(Qni ) is a suitable choice of a second order accurate discretization. This ap-
proach allows us to use standard approximate Riemann solvers from Sect. 3.3-3.4, which
are developed for the homogeneous Riemann problem.

For the second approach we assume that the source term can be written in the form

S(Q(x, t)) = s(x, t)Z(x)x, (3.74)

with s : R×R≥0 → Rm and Z : R→ R, so that the balance law (3.72) can be reformulated
to

Qt + F(Q)x = s(Q)Zx,
Zt = 0.

(3.75)

This ansatz is possible for Euler and ideal MHD equations in the case of a time-independent
gravity term. In this case Z corresponds to the gravitational potential Φ. Just like the
conservative variables Q, the source Z is approximated by piecewise constant cell averages

Zi ≈
1

∆x

∫ xi+1/2

xi−1/2

Z(x)dx. (3.76)

We now aim to design an approximate Riemann solver for the inhomogeneous Riemann
problem

Qt + F(Q)x = s(Q)Zx,

Q0(x) =

{
Qi, if x < xi+1/2,

Qi+1, if x > xi+1/2,

Z0(x) =

{
Zi, if x < xi+1/2,

Zi+1, if x > xi+1/2.

(3.77)

As a consequence, the resulting solver depends on Q and Z and we denote it by

WR(x/t;QL, ZL, QR, ZR). (3.78)
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Figure 3.5: One-dimensional computational domain extended by ghost cells.

The cell averages at the new time level tn+1 can be computed analogously to the homo-
geneous case by

Qn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

W̃∆(x, tn+1)dx

=
1

∆x

∫ xi

xi−1/2

WR
(
x− xi−1/2

∆t
;Qi−1, Zi−1, Qi, Zi

)
dx

+
1

∆x

∫ xi+1/2

xi

WR
(
x− xi+1/2

∆t
;Qi, Zi, Qi+1, Zi+1

)
dx.

(3.79)

3.6 Boundary Conditions

In the previous sections we assume to know the cell averages of cell Ci and its neighboring
cells at time tn when calculating Qn+1

i . In practical applications, however, we operate
on finite spatial domains, which is why it becomes necessary to describe the solution at
the boundaries. This is done by boundary conditions. There are different ways to set the
boundary conditions, depending on physically reasonable assumptions or our knowledge
about the solution at the boundaries.
In numerical codes, boundary conditions are often implemented with the help of ghost
cells. In this case, the grid is extended beyond the actual domain by additional cells
in which the solution is specified by the boundary conditions. For the one-dimensional
case this grid structure is shown in Fig. 3.5. In the following we briefly describe for the
one-dimensional case four relevant types of boundary conditions that are used in this
work.

• Periodic boundary conditions: The simplest choice are periodic boundary con-
ditions. In this case it is assumed that the domain at the right boundary connects
to the left boundary. This is implemented numerically by the following definition
of the ghost cells

Qn0 = QnNx , QnNx+1 = Qn1 . (3.80)

• Exact boundary conditions: In this case the solution at the boundary is known,
so that we can define the cell averages in the ghost cells by

Qn0 = Qn,exact0 ≈
∫ x1/2

x−1/2

Q(x, tn)dx,

QnNx+1 = Qn,exactNx+1 ≈
∫ xNx+3/2

xNx+1/2

Q(x, tn)dx.

(3.81)

• Transmissive conditions: Especially for small computational domains it may be
useful to define boundary conditions that allow the passage of waves without any
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effect on them. Such transmissive boundary conditions can be defined by

Qn0 = Qn1 , QnNx+1 = QnNx . (3.82)

• Reflective boundary conditions: Reflective boundary conditions model a fixed,
reflective impermeable wall. They are defined as transmissive boundary conditions
with the difference that the sign is switched in the normal velocity component:

un0 = −un1 , unNx+1 = −unNx . (3.83)

For higher order finite volume methods, more ghost cells are needed. They can be defined
in the same way by setting boundary conditions.

3.7 Extension to Multiple Space Dimensions

In Sect. 3.1-3.5 we have constructed a numerical method for one-dimensional systems
of conservation and balance laws. This method will now be extended to several spatial
dimensions. There are various approaches in the literature, e.g. dimensional splitting
[Tor09, LeV02] or multi-dimensional Riemann solvers [Bal10, Bal12, VLW04]. For the
numerical methods described in this work, we will rely on so-called unsplit finite volume
methods [Tor09]. Let us consider the two-dimensional conservation law

Qt + F1(Q)x + F2(Q)y = 0. (3.84)

In this case, the domain is discretized by rectangular cells Ci,j = (xi−1/2, xi+1/2) ×
(yj−1/2, yj+1/2) with uniform space steps ∆x and ∆y. Thus, the cell averages are de-
fined by

Qni,j =
1

∆x∆y

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

Q(x, y, tn)dxdy. (3.85)

In order to evolve the solution to the next time step, we do sweeps in x- and y-directions
and solve at each cell edge one-dimensional Riemann problems of the form

x-direction:





Qt + F1(Q)x = 0,

Q0(x, y) =

{
Qni,j , if x < xi+1/2,

Qni+1,j , if x > xi+1/2,

(3.86)

y-direction:





Qt + F2(Q)y = 0,

Q0(x, y) =

{
Qni,j , if y < yj+1/2,

Qni,j+1, if y > yj+1/2.

(3.87)

Hence, one-dimensional (approximate) Riemann solvers can still be applied, which results
in Riemann solutions Wi+1/2,j(x/t) and Wi,j+1/2(y/t). The cell averages can then be
evolved by

Qn+1
i,j = Qni,j −

∆t

∆x

(
Fn1,i+1/2,j − Fn1,i−1/2,j

)
− ∆t

∆y

(
Fn2,i,j+1/2 − Fn2,i,j−1/2

)
(3.88)

with the fluxes defined by

Fn1,i+1/2,j = F1

(
Wi+1/2,j(0;Qni,j , Q

n
i+1,j)

)
, (3.89a)

Fn2,i,j+1/2 = F2

(
Wi,j+1/2(0;Qni,j , Q

n
i,j+1)

)
. (3.89b)
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Figure 3.6: In order to evolve the cell average Qi,j on a two-dimensional Cartesian grid,
four separate Riemann problems (one at each side of cell Ci,j) are solved to determine the
numerical flux functions.

Fig. 3.6 illustrates the four Riemann problems that need to be solved for the update of
the cell average Qi,j and the in- and outflows through the fluxes between cell Ci,j and
its neighboring cells. Since the method now also solves Riemann problems in y-direction,
it must be ensured that the waves in this direction also can only travel one cell width
within a time step. Consequently, the CFL condition for the method (3.88) must include
the space step ∆y and is therefore

∆t ≤ CCFL min

(
∆x

λmax,x
,

∆y

λmax,y

)
with CCFL ≤ 1. (3.90)

Here, λmax,x denotes the maximum absolute eigenvalue of the Jacobian A1 = ∂F1/∂Q
and λmax,y the maximum absolute eigenvalue of A2 = ∂F2/∂Q.

The extension of unsplit finite volume methods to a third spatial dimension works ac-
cording to the same principles and is therefore straightforward.

3.8 Extension to Second Order in Space

The Godunov and Godunov-type methods described so far are first order accurate. Be-
sides the first order temporal discretization, this is due to the fact that the function
W̃(x, tn) in the reconstruction step of the REA algorithm is only piecewise constant. In
order to increase the order of the spatial discretization, we rely on a piecewise linear
reconstruction [vL77]

W̃(x, tn) = Qni + σni (x− xi) for xi−1/2 ≤ x ≤ xi+1/2. (3.91)

To obtain the initial values for the Riemann problem at each cell interface, the function
(3.91) is evaluated in each cell Ci at its boundaries xi−1/2 and xi+1/2. This clearly gives
more accurate initial data for the Riemann problems in the Godunov-type method. It is
important to notice that the scheme remains conservative as the linear function satisfies

1

∆x

∫ xi+1/2

xi−1/2

W̃(x, tn)dx = Qni . (3.92)
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Figure 3.7: Linear reconstruction polynomials derived with different slope definitions near
a discontinuity at xi+1/2. Maroon: central. Orange: upwind. Yellow: downwind. Green:
minmod. All choices except the minmod slope lead to spurious oscillations near the
discontinuity.

The slope σni depends on the neighboring cells and is computed componentwise for each
entry in Qni . Obvious choices to compute σni are

σni =
Qni+1 −Qni−1

2∆x
(central),

σni =
Qni −Qni−1

∆x
(upwind),

σni =
Qni+1 −Qni

∆x
(downwind).

Unfortunately, a linear reconstruction that relies on one of the above slopes produces
overshoots near discontinuities, as illustrated in Fig. 3.7. These spurious oscillations can
lead to unphysical solutions, such as negative values for density or pressure. Numerically,
this can result in a premature termination of the scheme, because the root of negative
values cannot be computed. We can prevent the phenomenon by using slope limiters that
recognize extrema on the cell average level and reduce the reconstruction procedure to a
first order approximation in such cells, i.e. using a constant reconstruction with σ = 0.
In the literature, one can find different limiters such as the van Leer [vL77] or Superbee
[Roe85] limiter. In this work we choose to use the minmod limiter [Roe86] so that the
slope is computed by

σni = minmod

(
Qni+1 −Qni

∆x
,
Qni −Qni−1

∆x

)
. (3.93)

The minmod function therein is defined by

minmod(a1, . . . , an) =

{
sgn(a1) mini |ai|, if sgn(a1) = ... = sgn(an),

0, else.
(3.94)

Thus, the minmod limiter compares the upwind and downwind slope. If the sign is the
same, the slope with the smaller magnitude is selected; if the signs are different, the cell
average Qni is a local extremum and the slope σni is set to zero.
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In this work we restrict ourselves to second order linear reconstructions. Readers who
are interested in higher order methods are referred for example to a piecewise parabolic
reconstruction [CW84] or essentially non-oscillatory (ENO) [Har89, HEOC87, HOEC86],
weighted ENO (WENO) [JS96, LOC94, Shu03] and central WENO (CWENO) [LPR99,
LPR00] methods.

3.9 Time Integration Methods

Up to this point, we have considered fully discrete methods, in which we discretized
space and time simultaneously. In practice, however, we rely on the method of lines
approach, in which initially only the spatial discretization is done, leading to a semi-
discrete formulation

d

dt
Qi = − 1

∆x

(
Fi+1/2(Q(t))− Fi−1/2(Q(t))

)
. (3.95)

This approach thus reduces the PDE to a system of ordinary differential equations (ODEs)
of general form

d

dt
Q(t) = H(Q(t)), (3.96)

where H denotes the spatial residual. Now it is possible to apply standard ODE solvers,
which makes it easy to achieve higher order discretizations in time. A widely used class
of ODE solvers are Runge-Kutta (RK) methods [But63, But64, JST81]. If the right-hand
side does not explicitly depend on time, a RK method with S stages has the general form

ks = H
(
Qn + ∆t

S∑

l=1

aslkl

)
, s = 1, ..., S, (3.97)

Qn+1 = Qn + ∆t
S∑

s=1

bsks. (3.98)

The coefficients asl and bs define the specific RK method and are typically denoted in
Butcher tableaux of the form

c A

b>
(3.99)

An RK method is explicit if asl = 0 whenever l ≥ s, because then every ks can be
computed from the previously computed kl with l < s. Explicit RK methods are easy to
implement and a single update to the next time level is computationally cheap. The time
step size for explicit RK methods depends on a CFL restriction of the form (3.12). It
should be noted that the CFL number CCFL required for stability is different for different
RK methods [JST81, LT98]. In the following we give two examples of Butcher tableaux
for well-known explicit RK methods.

Example 3.9.1. The Butcher tableau for the first order forward Euler method is given
by

0 0

1
(3.100)

and its CFL coefficient for stability is CCFL = 1
2 .
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Example 3.9.2. The butcher tableau for the third order strong-stability-preserving RK
(SSP-RK) method [SO88] is given by

0 0 0 0

1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 2/3

(3.101)

Strong-stability-preserving methods are a subclass of RK methods that maintain the total
variation diminishing (TVD) property TV (Qn+1) ≤ TV (Qn) of the first order forward
Euler method while achieving higher order accuracy in time. The CFL number of SSP-
RK3 is CCFL = 1.

RK methods with nonzero entries on and above the diagonal depend on unknown ks and
are implicit therefore. They require to solve a nonlinear system of equations at each time
step, which makes a single update to the next time level computationally costly. The
advantage, on the other hand, is that the time step can be chosen unconditionally large.
The choice then only needs to consider the desired accuracy of the method.

Example 3.9.3. The Butcher tableau for the first order backward Euler method is given
by

1 1

1
(3.102)

Example 3.9.4. The Butcher tableau of the second order accurate explicit singly diagonal
implicit Runge-Kutta (ESDIRK2) method [HS96] is given by

0 0 0 0

γ d d 0

1 w w d

w w d
1−w

3
3w+1

3
d
3

(3.103)

with γ = 2 −
√

2, w =
√

2/4 and d = γ/2. The coefficients in the last row belong to
an embedded low order step, which is used to produce an estimate of the local truncation
error of a single RK step and thereby to control the error. For more details on embedded
RK methods, the reader is referred to [JKT18].

A third alternative next to explicit and implicit are IMEX-RK methods. They are used
when a PDE is partially explicitly and partially implicitly discretized. In this case, the
semi-discrete form of the ODEs has the general form

d

dt
Q(t) = H(QE(t), QI(t)), (3.104)

where the first argument of H is discretized explicitly, whereas the second argument
is discretized implicitly. At the beginning of each time step, the method starts with
QnE = QnI = Qn. Then the stage fluxes ks for each stage s are computed in the following
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way:

Q
(s)
E = QnE + ∆t

s−1∑

l=1

âslkl, 2 ≤ s ≤ S, (3.105a)

Q
(s)
I = QnE + ∆t

s−1∑

l=1

aslkl, 2 ≤ s ≤ S, (3.105b)

ks = H
(
Q

(s)
E , Q

(s)
I + ∆tassks

)
, 1 ≤ s ≤ S. (3.105c)

Using these stage fluxes, the updated solution at the new time level is computed by

Qn+1 = Qn + ∆t

S∑

s=1

bsks. (3.106)

The coefficients for IMEX-RK methods are given by a double Butcher tableau of the form

ĉ Â

b̂
>

c A

b>
(3.107)

Example 3.9.5. One example of IMEX-RK methods is the L-stable Second-Order Diag-
onally Implicit Runge Kutta Method (LSDIRK2)(2,2,2) [PR05]. The triplet (2,2,2) refers
to the number of stages of the implicit part, the number of stages of the explicit part, and
the order of the IMEX scheme, respectively. The double Butcher tableau for LSDIRK2 is
given by

0 0 0

β β 0

1− γ γ

γ γ 0

1 1− γ γ

1− γ γ

(3.108)

with γ = 1−1/
√

2 and β = 1/(2γ). The left tableau denotes the coefficients for the explicit
part, whereas the right tableau shows the ones for the implicit part.

3.10 Numerical Challenges

The previous sections provide the tools to implement a working method whose numerical
solution converges to weak solutions of the compressible Euler or ideal MHD equations.
This raises the question of whether it is necessary to design new numerical methods at all.
The main reason for the construction of new methods is the varying quality and efficiency
of standard methods in different applications. In order to reach an accurate result, a
standard method may need to be run on a highly resolved numerical grid, which often is
impossible in practice. Given the currently available computing power even of supercom-
puters, the construction of efficient methods that are adapted to the underlying problem
remains essential. Below we consider three numerical challenges we are confronted with
in the astrophysical context and for which standard FV methods are not efficient.

3.10.1 Low Mach Numbers

The maximum eigenvalues of the rescaled Euler and MHD equations in (2.53) and (2.81)
both scale with O(1/M). In the case of low Mach numbers, the maximum wave speeds
thus become very large. This implies two problems for FV methods:
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Figure 3.8: Distribution of the local Mach number (normalized by the maximum initial
value) of the Gresho vortex. The plot on the left shows the initial vortex for the maximum
Mach number Mmax = 10−1, the three other the results for the explicit Rusanov FV
method after one turnover for differentMmax. All results are obtained on a 80× 80 grid.

1. Many Riemann solvers used nowadays are designed to work in supersonic regimes.
In order to achieve numerical stability, such solvers need to add upwind numerical
diffusion terms to the physical fluxes, which smear out any discontinuity present in
the flow on a time scale comparable to the cell crossing time of the shock. Thus,
the diffusion term scales with the largest wave speed of the underlying PDE and
consequently introduces excessive dissipation in the low Mach number regime. This
behavior can be analyzed particularly easily in the structure of the Rusanov flux
(3.31), but also applies to others such as Roe’s solver or HLL-type solvers.

2. The CFL condition in fully time-explicit schemes restricts the time step to the
crossing time of the fastest wave resulting from the underlying PDE over a grid
cell. Since the fastest wave speed scales with O(1/M) for both the Euler and
MHD equations, small Mach numbers force time-explicit schemes to choose a small
time step in order to remain stable. As a consequence, it becomes computationally
expensive to resolve slow fluid motions and Alfvén waves.

Example 3.10.1. The numerical problems induced by low Mach numbers can be illus-
trated by a simulation of the Gresho vortex, which describes a stationary vortex in which
centrifugal forces and pressure gradients are in perfect balance [GC90, MRE15]. The vor-
tex can be set up with different maximum local Mach numbers Mmax = max(Mloc,t=0).
We solve the IVP with a standard time-explicit FV method that uses the Rusanov solver
within the Godunov-type method and an explicit SSP-RK2 method for time integration.
The results after one turnover in Fig. 3.8 show that the dissipation increases significantly
with decreasing Mach numbers so that the vortex cannot be resolved accurately anymore.
An investigation of the evolution of kinetic energy in Fig. 3.9 highlights this behavior. Al-
though the total kinetic energy should be conserved in the incompressible limit (see (2.65)),
it decreases more and more for smaller Mach numbers due to the increasing dissipation.
Even if the Rusanov solver is known to be very dissipative in general, the results for Roe’s
and HLL-type solvers are comparable. An evaluation of the wall-clock time of the indi-
vidual simulations presented in Fig. 3.10 shows that the duration of the simulations scale
with the Mach number. This is caused by the acoustic wave speeds in the CFL condition,
which become very fast for low Mach numbers.

These numerical problems as a consequence of low Mach numbers lead to interest in
asymptotic-preserving (AP) methods.
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a SSP-RK2 method for time integration.

Definition 3.10.2. Let us denote the solutions of the compressible PDE by QM. This
solution depends on the Mach number M. In the low Mach number limit the solutions
tend to the solutions of the incompressible equations denoted by Q0. A numerical scheme
is called asymptotic-preserving if its solutions QM∆ tend to a consistent approximation
of Q0.

Various approaches have been suggested in the literature to derive low Mach compliant
numerical methods. For several approximate Riemann solvers there are low Mach fixes
that rescale the dissipation term so that it no longer scales with the inverse of the Mach
number [Tur87, Rie11, XC13, MRE15, Lio06, MM21]. These fixes are not derived from
a fundamental basis, but artificially incorporated into the one-dimensional solvers, which
potentially reduces the method’s stability. An alternative strategy is to keep the original
one-dimensional method and extend it to multiple dimensions in a particular all-speed
way, leading to more stable numerical methods [Bar21].
These approaches can be combined with an implicit time integration as described in
Sect. 3.9. Then the time step is not limited by stability conditions but only the desired
accuracy. In order to resolve fluid motions and Alfvén waves, it makes sense to use the
Alfvén wave speed in the CFL condition. If the Mach number is small enough, the possi-
bility of larger chosen time steps outweighs the disadvantage of higher computational costs
for a single time step by using the implicit solver. Combinations of low Mach Riemann
solvers and implicit time integration are used for example in [MRE15, BEK+17, HHE+21].

A second approach is given by IMEX methods. These methods rely on a splitting of the
underlying system of PDEs into two parts: one containing the slow dynamics and the
other containing the stiff acoustic terms. The first one is discretized explicitly in time
with a Godunov-type method, whereas the second one is discretized implicitly in time.
As a result, the dissipation term in the numerical flux and the CFL condition only refer to
the explicit part whose eigenvalues are independent of the Mach number. The IMEX ap-
proach has been applied to the homogeneous Euler equations [Kle95, CDK12, DLMDV18,
TZPK20, BQRX19, BDL+20], Euler equations with gravity [BLMY17, TPK20] and the
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homogeneous MHD equations [LL91, ALJ99, DBTF19, Fam21, CWX23].

AP methods help to resolve low Mach number flows accurately, but they might also
exhibit unphysical checkerboard modes in their solution [Rie11, NBA+14]. Checkerboard
modes describe an odd-even decoupling of the spatial approximation, purely caused by
the discretization of the scheme [FP02, LMW02, Del09, Del10]. The discretization of the
method thus leads to a unphysical and yet stable solution. Only some of the low Mach
fixes suppress the occurrence of checkerboard modes [Rie11, CYX18].

3.10.2 Small Perturbations of Equilibria

In many applications the fluid flows of interest are close to a (magneto-)hydrostatic equi-
librium so that they represent only a very small perturbation of the equilibrium. On coarse
grids, the magnitude of these perturbations might be smaller than the truncation error
of the numerical method, which means that the method cannot resolve the perturbation.
The following example gives a simple illustration of this phenomenon.

Example 3.10.3. Let us consider an isothermal equilibrium for the one-dimensional
Euler equations [CK15]. The equilibrium is given by

(ρ, u, p)(x, 0) = (exp(−Φ(x)), 0, exp(−Φ(x))) and Φ(x) =
1

2
x2, (3.109)

which clearly satisfies (2.45). We then add a perturbation in the pressure so that the new
pressure is defined by

p(x, 0) = exp(−Φ(x)) + η exp(−100(x− 0.5)2), (3.110)

and control the magnitude of the perturbation by the parameter η. The problem is solved
with a standard FV method of the form (3.73) using the Rusanov flux (3.31) first on a
coarse grid with Nx = 100 and then on a finer grid with Nx = 2000 cells. Fig. 3.11
presents the initial perturbation ∆p0 and the perturbation ∆p at final time tf = 0.2 for
a large parameter η = 10−1 and a small parameter η = 10−5. The large perturbation is
well-resolved on both grids. In case of the small perturbation, the method is only able to
resolve the perturbation on the fine grid.

We are interested in efficient numerical methods that can resolve small perturbations
already on coarse grids. This can be achieved by well-balanced methods.

Definition 3.10.4. A numerical method is called well-balanced if it exactly preserves
the discretization of (certain) equilibria of the form (2.22), e.g. hydrostatic equilibria
(2.45) or magnetohydrostatic equilibria (2.79).

Standard FV methods are typically not well-balanced as the flux and the source term
are discretized separately and therefore not coordinated in such a way that they ex-
actly preserve steady states at rest. The literature provides a number of different ap-
proaches to construct well-balanced FV methods such as equilibrium preserving recon-
structions [KM14, KM16, VC19], path conservative methods [CGLGP08, Par06], global
fluxes [CCK+18], special source term discretizations based on given equilibrium states
[BCK18, BCKR19], approximate Riemann solvers for the inhomogeneous Riemann prob-
lem [DZBK16, TPK20] or methods designed to solve equations for the deviation of the
solution from an a priori known equilibrium [BLMY17, BCK21]. A classification and
description of different well-balancing approaches can be found in [Ber20].
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Figure 3.11: Pressure perturbation. Left: η = 10−1. Right: η = 10−5.

3.10.3 Solenoidal Constraint

The solenoidal constraint described in Sect. 2.4.1 is not automatically satisfied if the
induction equation is solved with standard Godunov-type schemes. As a result, magnetic
monopoles are created locally at each time step and tend to accumulate as they cannot be
transported away by any of the MHD waves. The following example gives an impression
of this behavior.

Example 3.10.5. We consider the Orszag-Tang vortex which is a two-dimensional MHD
test problem. The test is described in more detail in Sect. 6.3.2. Fig. 3.12 shows the time
evolution of the maximum and mean relative central discrete divergence

(∇ ·B)i,j =
Bx,i+1,j −Bx,i−1,j

2∆x
+
By,i,j+1 −By,i,j−1

2∆y
(3.111)

for a standard Godunov-type scheme using the Rusanov flux. Clearly, the discrete di-
vergence increases significantly over time, which poses a unphysical phenomenon on the
discrete level.

If not properly treated, these artifacts can accelerate the flow along field lines, generate
wrong field topologies, and ultimately lead to severe stability problems [BB80]. Therefore,
special care needs to be taken to design accurate and stable Godunov-type methods for
solving the MHD equations.
Different strategies have been presented in the literature to handle the divergence con-
straint. Among these, discretizing the 8-wave formulation (2.72) relies on including ad-
ditional source terms that are proportional to ∇·B, which implies an advection equation
for the divergence (see (2.74)). Therefore, magnetic monopoles are advected with the flow
and do not accumulate over time [Pow97, PRL+99].
A second approach can be seen in divergence cleaning schemes [DKK+02] in which the
divergence constraint is coupled to the MHD system using a generalized Lagrangian multi-
plier ψ. This allows to transport numerical monopoles with the maximum available speed
on the grid and reduce divergence errors at the same time. One downside of both the
8-wave formulation and divergence cleaning is that they are not conservative and cannot
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Figure 3.12: Time evolution of the maximum relative divergence max[(∇·B∆x)/|B|] (solid
line) and mean relative divergence 〈(∇·B∆x)/|B|〉 (dot-dashed) in the simulations of the
Orszag-Tang vortex with a standard Rusanov FV method for different grid resolutions.

enforce any discretization of ∇·B to zero. Furthermore, these methods are most effective
when open boundaries are used, so that the magnetic monopoles can leave the domain.
A third strategy, first introduced by Evans and Hawley [EH88], are constrained transport
(CT) methods based on a staggered formulation. These methods exploit Stokes’ theorem
to reformulate the induction equations, which results in equations for the face-averaged
magnetic field. Thereby, staggered CT methods maintain one particular discretization
of ∇ ·B to zero up to machine accuracy [DW98, BS99, Tót00, LZ04, GS08, MZ21]. Al-
though numerical schemes cannot simultaneously be conservative and enforce a discretized
Lorentz force orthogonal to the magnetic field lines in every grid cell at the same time
[Tót00], CT methods do notably decrease the magnitude of the parallel component of the
force acting on the fluid [LBA+22].

Interested readers can find a review of a number of methods for handling the solenoidal
constraint discretely in [Tót00].





Chapter 4

A Time-Explicit Two-Speed
Relaxation Method

In this chapter we construct a Godunov-type finite volume method for solving the Euler
equations with gravity. The main focus lies on reducing the artificial dissipation in the
low Mach number limit and preserving steady states at rest. The method though does not
address the problem of the restrictive CFL condition resulting from small Mach numbers.
In order to design the method’s artificial dissipation Mach number independent, we rely
on a two-speed relaxation approach that is originally constructed for the homogeneous
and barotropic Euler equations [BCG20]. Similar to other low Mach modifications, the
dissipation term is rescaled in the one-dimensional approximate Riemann solver. While
the artificial low Mach fix of other methods might reduce their stability, the two-speed
Riemann solver is naturally derived from a new relaxation system. This fundamental basis
enables the solver to satisfy a discrete entropy inequality, which improves the stability of
the method. The two-speed approach has already been used to construct an IMEX scheme
for the homogeneous Euler equations where the two speeds are used to fully linearize the
acoustic sub-system so that only an elliptic operator with constant coefficients needs to be
inverted [BFN20], and in the original time-explicit spirit for the homogeneous ideal MHD
equations [BK23a]. We extend the original explicit method to the full Euler equations with
gravity. To obtain a well-balanced method, the source term is included in the approximate
Riemann solver by solving the inhomogeneous Riemann problem, which ensures that the
solver stays at rest in case of hydrostatic equilibria [DZBK16].

We construct the scheme in the notation of the dimensionless Euler equations given in
(2.50) in order to illustrate the effects of low Mach numbers in the scheme. The gravita-
tional source term is written in the form (2.25) using the gravitational potential Φ. The
presentation of the method closely follows the results published in [BCK23] and is struc-
tured as follows. First, in Sect. 4.1 we define the relaxation system that approximates the
original Euler equations and construct the corresponding approximate Riemann solver.
On this basis, the Godunov-type method is defined in Sect. 4.2. In Sect. 4.3, we analyze
the theoretical properties of the approximate Riemann solver. Then, the method is ex-
tended to second order in Sect. 4.4 and multiple space dimensions in Sect. 4.5. Finally,
the overall relaxation scheme is investigated in various numerical experiments, including
setups near hydrostatic equilibria and in the low Mach number regime.

49
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4.1 Relaxation Model

The following one-dimensional relaxation system is based at its core on the Suliciu relax-
ation model described in Sect. 3.4.2. The pressure p is approximated by the relaxation
variable π and we add an additional equation describing its behavior to the system

∂tρπ + ∂x(ρπv) + ab∂xv = ρ
p− π
ε

. (4.1)

While only one relaxation speed is used in the classical Suliciu relaxation model, here
two speeds a > 0 and b > 0 appear, as proposed in [BCG20]. This will be useful to
control viscosity for pressure and velocity separately. These speeds will be defined later
in Sect. 4.3.4 so that they meet stability criteria and keep the viscosity bounded in the
low Mach regime. For the velocity we write v instead of u because also the velocity u is
approximated by a relaxation variable v. So the following equation is introduced

∂t (ρv) + ∂x
(
ρv2
)

+
a

b
∂x

π

M2
= ρ

u− v
ε
− a

b

1

M2
ρ∂xΦ. (4.2)

In the next step, we also want to include the gravitational potential in the approximate
Riemann solver. Since we consider a time-independent gravitational force, the intuitive
way would be to add

∂tΦ = 0 (4.3)

to the relaxation model. Unfortunately, adding this equation introduces an additional
wave with zero wave speed (see Sect. 2.3.3), which prevents a fixed ordering of the wave
speeds and makes it rather cumbersome to determine the Riemann solver for the relaxation
system. Instead, we decide to relax the gravitational potential Φ by a relaxation variable
Z, as it is done in [DZBK16], and add a transport relaxation equation to the relaxation
system

∂tρZ + ∂xρZv = ρ
Φ− Z
ε

. (4.4)

Finally, we add transport equations for the relaxation speeds a and b to the system and
derive the following relaxation model

∂tρ+ ∂x (ρv) = 0, (4.5a)

∂t (ρu) + ∂x

(
ρuv +

π

M2

)
= − 1

M2
ρ∂xZ, (4.5b)

∂tE + ∂x ((E + π)v) = −ρv∂xZ, (4.5c)

∂t (ρπ) + ∂x (ρπv) + ab∂xv = ρ
p− π
ε

, (4.5d)

∂t (ρv) + ∂x
(
ρv2
)

+
a

b
∂x

π

M2
= ρ

u− v
ε
− a

b

1

M2
ρ∂xZ, (4.5e)

∂tρZ + ∂xρZv = ρ
Φ− Z
ε

, (4.5f)

∂ta+ v∂xa = 0, (4.5g)

∂tb+ v∂xb = 0. (4.5h)

A Chapman-Enskog expansion as done for the Jin-Xin relaxation system in Sect. 3.4.1
shows that the solutions to this relaxation model can be seen as a viscous approximation of
the solutions of the original Euler system (2.50) as long as the subcharacteristic conditions

a ≥ b and ab ≥ ρ2c2 (4.6)

are satisfied.
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Remark 4.1.1. When neglecting gravitational forces (Φ = Z = 0), we can recover the
standard Suliciu relaxation model (3.66) by choosing v = u and b = a.

The homogeneous system, denoted by (4.5)ε=∞, has the following properties.

Lemma 4.1.2. The relaxation system (4.5)ε=∞ is hyperbolic and all characteristic fields
are linearly degenerate. The eigenvalues of the system are given by

λ− = v − a

Mρ
, λv = v, λ+ = v +

a

Mρ
, (4.7)

where λv has multiplicity six. The eigenvalues have the fixed ordering

λ− < λv < λ+. (4.8)

The Riemann invariants for the different characteristic fields are

λ− : I1 = v − a
Mρ , I2 = u− b

Mρ , I3 = 1
ρ + π

ab , I4 = e+ (a−b)b+2ρ(π−Mb(v−u))
2ρ2 ,

I5 = a, I6 = b, I7 = Z,

λv : I8 = v,

λ+ : I9 = v + a
Mρ , I10 = u+ b

Mρ , I11 = 1
ρ + π

ab , I12 = e+ (a−b)b+2ρ(π+Mb(v−u))
2ρ2 ,

I13 = a, I14 = b, I15 = Z.

(4.9)

Proof. The computations are straightforward and left to the reader.

Remark 4.1.3. The relaxation system (4.5)ε=∞ provides only one Riemann invariant
for the contact wave, which is v. Here, in contrast to the standard Suliciu model, the
pressure π is not a Riemann invariant. As a result, the associated Riemann problem is
under-determined.

Let us now consider a single Riemann problem associated with the system (4.5)ε=∞. In
order to simplify the notations we introduce the state vector

W = (ρ, ρu,E, ρπ, ρv, ρZ, a, b)T (4.10)

in the phase space

O = {W ∈ R8 : ρ > 0, e > 0}. (4.11)

Additionally, for Q ∈ ΩEuler
phys and given gravitational potential Φ we denote the state vector

at relaxation equilibrium by

W eq(Q) = (ρ, ρu,E, ρp(τ, e), ρu, ρΦ, a, b)T . (4.12)

Then the initial data of the Riemann problem is given by two constant states WL and
WR separated by one discontinuity located at x = 0

W0(x) =

{
WL, if x < 0,

WR, if x > 0.
(4.13)
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x

t

v − a
Mρ v v + a

Mρ

WL

WL∗ WR∗

WR

Figure 4.1: Schematic diagram of the Riemann fan for the relaxation system (4.5)ε=∞.
The Riemann solution consists of four constant states WL, WL∗, WR∗ and WR. The
states are separated by three waves with the wave speeds v−a/(Mρ), v and v+a/(Mρ).

The solution to this problem consists of four constant states, each separated by a contact
discontinuity. Therefore, the approximate Riemann solver WR(x/t;WL,WR) has the
structure

WR
(x
t

;WL,WR
)

=





WL, if x
t < λ−,

WL∗, if λ− < x
t < λv,

WR∗, if λv < x
t < λ+,

WR, if λ+ < x
t .

(4.14)

This structure of the solution is also shown in Fig. 4.1. For the computation of the
intermediate states WL∗ and WR∗ we can use the Riemann invariants given in Lem. 4.1.2.
Since Riemann invariants are constant across their corresponding wave, each Riemann
invariant provides one equation. However, only 15 Riemann invariants face 16 unknown
intermediate states. Therefore, the Riemann problem (4.13) is, as already stated in
Rem. 4.1.3, under-determined. An additional condition is necessary, which takes on the
role of the missing Riemann invariant π and connects the left and right intermediate state
of the pressure. We follow the approach in [DZBK16] and choose to introduce the relation

πR∗ − πL∗ = −ρ̄
(
WL,WR

) (
ZR − ZL

)
. (4.15)

This equation is a discrete representation of the steady states at rest in (2.45) in one
spatial dimension and guarantees that the intermediate states of the pressure fulfill the
hydrostatic equilibrium equation for this specific discretization of the source term. This
fact will become very useful for the well-balancing of hydrostatic equilibria. The function
ρ̄ denotes a ρ-average function and depends on the underlying hydrostatic equilibrium.
We leave its explicit definition open at this point and will present several possible defini-
tions in Sect. 4.3.5.

Adding the closure equation to the equations resulting from the Riemann invariants en-
ables us to compute the intermediate states in the Riemann solution.

Lemma 4.1.4. The solution of the Riemann problem (4.13) associated with the relaxation
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system (4.5)ε=∞ has the structure given in (4.14) with the intermediate states

v∗ =
MbLvL +MbRvR + πL − πR − ρ̄

(
WL,WR

) (
ZR − ZL

)

M(bL + bR)
, (4.16)

1

ρL∗
=

1

ρL
+
MbR

(
vR − vL

)
+ πL − πR − ρ̄

(
WL,WR

) (
ZR − ZL

)

aL (bL + bR)
, (4.17)

1

ρR∗
=

1

ρR
+
MbL

(
vR − vL

)
+ πR − πL + ρ̄

(
WL,WR

) (
ZR − ZL

)

aR (bL + bR)
, (4.18)

uL∗ = uL +
bL
(
MbR

(
vR − vL

)
+ πL − πR − ρ̄

(
WL,WR

) (
ZR − ZL

))

MaL (bL + bR)
, (4.19)

uR∗ = uR +
bR
(
MbL

(
vL − vR

)
+ πL − πR − ρ̄

(
WL,WR

) (
ZR − ZL

))

MaR (bL + bR)
, (4.20)

πL∗ =
bRπL + bLπR +MbLbR

(
vL − vR

)
+ bLρ̄

(
WL,WR

) (
ZR − ZL

)

bL + bR
, (4.21)

πR∗ =
bRπL + bLπR +MbLbR

(
vL − vR

)
− bRρ̄

(
WL,WR

) (
ZR − ZL

)

bL + bR
, (4.22)

eL∗ = eL +
(πL∗)2 − (πL)2

2aLbL
+

(v∗ − uL∗)2 − (vL − uL)2

2(a
L

bL
− 1)

, (4.23)

eR∗ = eR +
(πR∗)2 − (πR)2

2aRbR
+

(v∗ − uR∗)2 − (vR − uR)2

2(a
R

bR
− 1)

, (4.24)

aL∗ = aL, aR∗ = aR, bL∗ = bL, bR∗ = bR, ZL∗ = ZL, ZR∗ = ZR. (4.25)

Proof. The intermediate states can be computed by solving the system of equations given
by the Riemann invariants and the closure equation (4.15). The precise steps are straight-
forward and therefore left to the reader.

Including the source term in the Riemann problem means that the gravitational potential
is also contained in the intermediate states. In comparison to the states in the standard
Suliciu solver for the homogeneous Euler equations, the term ρ̄(WL,WR)(ZR − ZL) is
added to the pressure difference (πR − πL) in each state. As a consequence, each in-
termediate state contains a discretization of the one-dimensional steady state equation
(2.45).

Remark 4.1.5. At this point, we do not explicitly define the relaxation speeds aL, aR, bL

and bR, since later, in the proofs of the properties of the Riemann solver, various condi-
tions are placed on these speeds. The explicit definitions are then provided in Sect. 4.3.4.

Equipped with the approximate Riemann solver, we can now define the overall discretiza-
tion of the scheme in the next section.

4.2 Relaxation Scheme

At the start of each time step, we assume to be at the relaxation equilibrium. For that
reason, the initial data for the relaxation variables at time level n is defined by

πni = pni , vni = uni , Zni = Φn
i . (4.26)
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Starting from the equilibrium we solve the homogeneous relaxation system (4.5)ε=∞ using
the Riemann solver WR defined in (4.14) and update the cell averages to the next time
level tn+1 by a Godunov-type method of the form

Qn+1
i =Qni −

∆t

∆x

(
Fni+1/2 − Fni−1/2

)

+
∆t

2

(
S+,n
i−1/2

Φn
i − Φn

i−1

∆x
+ S−,ni+1/2

Φn
i+1 − Φn

i

∆x

)
,

Fni−1/2 =F (Qni−1,Φ
n
i−1, Q

n
i ,Φ

n
i ), Fni+1/2 = F (Qni ,Φ

n
i , Q

n
i+1,Φ

n
i+1),

S+,n
i−1/2 =S+(Qni−1,Φ

n
i−1, Q

n
i ,Φ

n
i ), S−,ni+1/2 = S−(Qni ,Φ

n
i , Q

n
i+1,Φ

n
i+1).

(4.27)

The numerical flux is defined by

F (QL,ΦL, QR,ΦR) =





F(QL), if λ− > 0,

FL∗, if λ− < 0 ≤ λv,
FR∗, if λv < 0 < λ+,

F(QR), if λ+ < 0,

(4.28)

where according to the left-hand sides of the first three equations of (4.5) the intermediate
fluxes can be written as

FL∗ =

(
ρL∗v∗, ρL∗uL∗v∗ +

πL∗

M2
, (EL∗ + πL∗)v∗

)
,

FR∗ =

(
ρR∗v∗, ρR∗uR∗v∗ +

πR∗

M2
, (ER∗ + πR∗)v∗

)
.

(4.29)

The numerical source terms are set as follows

S+(QL,ΦL, QR,ΦR) = −(s(v∗) + 1)

(
0,

1

M2
ρ̄(WL,WR), ρ̄(WL,WR)v∗

)T
,

S−(QL,ΦL, QR,ΦR) = (s(v∗)− 1)

(
0,

1

M2
ρ̄(WL,WR), ρ̄(WL,WR)v∗

)T
.

(4.30)

The function s : R→ R in the source terms is defined by

s(v) =

{
1, if v ≥ 0,

−1, else,
(4.31)

and is used to adjust the source term to the choice of the numerical flux in (4.28). This
is necessary to establish the well-balancing property of the scheme in Sect. 4.3.5.

The Godunov-type scheme (4.27) underlies a CFL time step restriction of the form

∆t

∆x
max
i

{∣∣∣∣vi −
ai
Mρi

∣∣∣∣ ,
∣∣∣∣vi +

ai
Mρi

∣∣∣∣
}
≤ 1

2
. (4.32)

We note that in this procedure only the variables of the original Euler equations (2.50)
are updated to the next time level. The relaxation variables π, v and Z are just used
for the update of the original variables, but are not actually updated. Instead, for the
upcoming time step, we again assume to be at the equilibrium. As a consequence of this
projection approach, the relaxation parameter ε does not appear in the relaxation scheme
(4.27) and thus does not have to be set explicitly.
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4.3 Properties of the Relaxation Scheme

In this section we focus on the properties of the numerical scheme just described. We
start with the property of entropy stability.

4.3.1 Entropy Inequality

The final scheme shall seek those correct solutions that satisfy the entropy inequality. In
practice, it can be observed that searching for entropy solutions makes a finite volume
method more stable. This is partly the case because an entropy inequality can help to
ensure the positivity of density and/or internal energy.
We have seen in Sect. 2.3.2 that smooth solutions of the Euler equations satisfy an addi-
tional conservation law for the entropy. In one spatial dimension this conservation law is
given by

∂t(ρG(s)) + ∂x(ρG(s)u) = 0 (4.33)

for all smooth functions G. However, since the Euler equations are nonlinear, disconti-
nuities can arise in the solution in finite time despite of smooth initial conditions. At
discontinuities the equation (4.33) is not valid, since it does not consider the entropy
dissipation at shocks. Therefore, we replace the equality in (4.33) by an inequality, which
leads to the following entropy inequality

∂t(ρG(s) + ∂x(ρG(s)u) ≤ 0. (4.34)

Our scheme should now mimic this behavior in the sense that its solutions satisfy a
discrete version of (4.34).

Theorem 4.3.1. Let us assume that Qni belongs to ΩEuler
phys for all i ∈ Q. Furthermore,

we assume that at each interface with initial left state QL and initial right state QR the
intermediate states for density and internal energy in the Riemann solution are positive,
i.e. ρL∗, ρR∗, eL∗, eR∗ > 0, and that the relaxation speeds aL,R and bL,R are such that they
satisfy the subcharacteristic Whitham conditions

aLbL > p(τL, eL)∂ep(τ
L, eL)− ∂τp(τL, eL), (4.35)

aLbL > p(τL∗, eL∗)∂ep(τL∗, eL∗)− ∂τp(τL∗, eL∗), (4.36)

aRbR > p(τR∗, eR∗)∂ep(τR∗, eR∗)− ∂τp(τR∗, eR∗), (4.37)

aRbR > p(τR, eR)∂ep(τ
R, eR)− ∂τp(τR, eR). (4.38)

Moreover, we assume that the pressure law satisfies Assumption 4.3.3.
Then for all i ∈ Q, the updated state Qn+1

i , computed with the relaxation scheme (4.27)
under the CFL condition (4.32), satisfies the discrete entropy inequality

ρn+1
i G(sn+1

i )− ρni G(sni )− ∆t

∆x

(
{ρG(s)u}ni+1/2 − {ρG(s)u}ni−1/2

)
≤ 0, (4.39)

where we define the numerical entropy flux by

{ρGu}ni−1/2 = {ρG(s)u}
(
W eq(Qni−1),W eq(Qni )

)
, (4.40)

{ρGu}L,R ={ρG(s)u}
(
W eq(QL),W eq(QR)

)
=





ρLG(s(τL, eL))uL, if λ− > 0,

ρL∗G(ŝ(WL∗))v∗, if λ− < 0 ≤ λv,
ρR∗G(ŝ(WR∗))v∗, if λv < 0 < λ+,

ρRG(s(τR, eR))uR, if λ+ < 0,

(4.41)
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where the function W 7→ ŝ(W ) is defined by (4.45).

Remark 4.3.2. At the beginning of this theorem, we assume the intermediate states of
density and internal energy to be positive. In Sect. 4.3.3 we show that the approximate
Riemann solver 4.14 satisfies this property for suitably chosen relaxation speeds.

Proof. (Proof of Theorem 4.3.1) The proof of this theorem closely follows the steps of
a similar proof in [DZBK16]. Therefore, we only give the basic outline of the proof here
and do not prove every intermediate step. For more details see [DZBK16]. First of all, it
is easy to check that

I(W ) = π + abτ and J(W ) = e− M
2(v − u)2

2(ab − 1)
− π2

2ab
(4.42)

are strong Riemann invariants of (4.5)ε=∞. Therefore, weak solutions of (4.5)ε=∞ satisfy

∂tρΨ(I, J) + ∂xρΨ(I, J)v = 0 (4.43)

for all smooth functions Ψ : R2 → R. As a consequence, for a function W 7→ ŝ(W ), which
only depends on I and J , weak solutions of (4.5)ε=∞ satisfy the additional conservation
law

∂tρG(ŝ) + ∂xρG(ŝ)v = 0. (4.44)

We define the function ŝ by

ŝ(W ) = s(τ̂(I(W ), J(W )), ê(I(W ), J(W ))), (4.45)

where τ̂(I, J) is the largest root within R+ of the function fI,J : R+ → R defined by

fI,J(τ) = τp (τ, e(τ, I − abτ)) + abτ2 − Iτ (4.46)

and ê is defined by

ê(I, J) = e(τ̂(I, J), I − abτ̂(I, J)). (4.47)

For the further steps, the following assumption is made about the pressure law.

Assumption 4.3.3. We assume that the pressure law is such that the function τ 7→ fI,J
is strictly convex for all fixed pairs (I, J).

This condition is fulfilled by most common pressure laws, including the ideal gas law
[DZBK16]. Under this assumption, it can be proven (see [DZBK16]) that for all W , for
which the pair (I(W ), J(W )) is in

A = {(I, J) ∈ R2,∃τ > 0, ∃e > 0,∃v,∃u such that:

I = p(τ, e) + abτ, (4.48)

J = e− p(τ, e)2

2ab
, (4.49)

ab > p(τ, e)∂ep(τ, e)− ∂τp(τ, e)}, (4.50)

the function ŝ is larger than the specific entropy of the original system, i.e.

ŝ(W ) ≥ s(τ, e) (4.51)
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and that equality is reached in the relaxation equilibrium, i.e.

ŝ(W|π=p(τ,e),v=u) = s(τ, e). (4.52)

Let us now go back to the additional conservation law (4.44) and integrate it over
[0,∆x/2)× [0,∆t)
∫ ∆x/2

0
(ρG(ŝ)

(
WR

( x

∆t
;W eq(QL),W eq(QR)

))
dx =

∫ ∆x/2

0
(ρG(ŝ))(W (x, 0))dx

−∆t(ρG(ŝ)v)

(
WR

(
∆x

2∆t
;W eq(QL),W eq(QR)

))

+∆t(ρG(ŝ)v)(WR(0;W eq(QL),W eq(QR))).

(4.53)

Under consideration of the CFL condition (4.32) and equality (4.52), this can be rewritten
as

1

∆x

∫ ∆x/2

0
(ρG(ŝ)

(
WR

( x

∆t
;W eq(QL),W eq(QR)

))
dx

=
ρRG(sR)

2
− ∆t

∆x

(
ρRG(sR)uR − {ρGu}L,R

)
.

(4.54)

The replacement of v by u in the entropy fluxes is due to the fact that the input values
of the approximate Riemann solver are at equilibrium and therefore left and right states
of u and v are equal in each case. Just in the intermediate states both velocities differ,
which is the reason why we write v∗ in (4.41). Due to the inequality (4.51), it follows

ŝ
(
WR

( x

∆t
;W eq(QL),W eq(QR)

))
≥ s

(
(τ eq, eeq)

( x

∆t
;QL, QR

))
. (4.55)

The quantities τ eq, eeq on the right-hand side originate from the approximate Riemann
solver WR(x/∆t;W eq(QL),W eq(QR)). Since we assume G to be increasing, see (2.32), it
in turn follows that

G(ŝ)
(
WR

( x

∆t
;W eq(QL),W eq(QR)

))
≥ G(s)

(
W(ρ,ρu,E)
R

( x

∆t
;W eq(QL),W eq(QR)

))
.

(4.56)
By replacing the content of the integral in (4.54), we obtain the inequality

1

∆x

∫ ∆x/2

0
(ρG(s))

(
W(ρ,ρu,E)
R

( x

∆t
;W eq(QL),W eq(QR)

))
dx

≤ ρRG(sR)

2
− ∆t

∆x

(
ρRG(sR)uR − {ρG(s)u}L,R

)
.

(4.57)

Inserting QL = Qni−1 and QR = Qni leads to

1

∆x

∫ xi

xi−1/2

(ρG(s))

(
x− xi−1/2

∆t
;Qni−1, Q

n
i

)
dx

≤ ρni G(sni )

2
− ∆t

∆x

(
ρni G(sni )uni − {ρG(s)u}ni−1/2

)
.

(4.58)

For the other half of the cell, on the other hand, integrating over (−∆x/2, 0]× [0,∆t) and
applying similar steps as before results in

1

∆x

∫ 0

−∆x/2
(ρG(s))

(
W(ρ,ρu,E)
R

( x

∆t
;W eq(QL),W eq(QR)

))
dx

≤ ρLG(sL)

2
− ∆t

∆x

(
{ρG(s)u}L,R − ρLG(sL)uL

)
,

(4.59)
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and inserting QL = Qni and QR = Qni+1 leads to

1

∆x

∫ xi+1/2

xi

(ρG(s))

(
x− xi+1/2

∆t
;Qni , Q

n
i+1

)
dx

≤ ρni G(sni )

2
− ∆t

∆x

(
{ρG(s)u}ni+1/2 − ρni G(sni )uni

)
.

(4.60)

Summing up the inequalities (4.58) and (4.60) results in the inequality

1

∆x

∫ xi+1/2

xi−1/2

(ρG(s))(Q(x, tn+1))dx ≤ ρni G(sni )− ∆t

∆x

(
{ρG(s)u}ni+1/2 − {ρG(s)u}ni−1/2

)
.

(4.61)
Since we assume ρG(s) to be strictly convex, by applying Jensen’s inequality we get

ρG(s)

(
1

∆x

∫ xi+1/2

xi−1/2

Q(x, tn+1)dx

)
≤ 1

∆x

∫ xi+1/2

xi−1/2

(ρG(s))(Q(x, tn+1))dx. (4.62)

Finally, we obtain the desired discrete entropy inequality

ρn+1
i G(sn+1

i ) ≤ ρni G(sni )− ∆t

∆x

(
{ρG(s)u}ni+1/2 − {ρG(s)u}ni−1/2

)
. (4.63)

4.3.2 Prevention of Checkerboard Modes

For asymptotic-preserving methods, stationary and non-constant solutions (checkerboard
modes) may occur in the low Mach number regime, jumping between two different values.
This behavior can arise from the fact that the divergence or gradient of a variable is
supposed to be zero in the limit equations, while the discretization of this term allows a
jumping solution. Of course, it is desirable to prevent the occurrence of this unphysical
phenomenon.

Theorem 4.3.4. Under the conditions of Theorem 4.3.1, velocity and pressure of the
relaxation solver (4.14) are constant in space for steady periodic solutions.

Proof. The proof builds on the entropy inequality of the previous subsection and follows
the strategy of a similar proof in [BCG20]. First of all, using the notations used in the
entropy proof, we can write

ρn+1
i G(sn+1

i ) ≤ρni G(sni )− ∆t

∆x

(
{ρG(s)u}ni+1/2 − {ρG(s)u}ni−1/2

)

=
1

∆x

∫ xi+1/2

xi−1/2

(ρG(ŝ))
(
WR(x, tn+1)

)
dx.

(4.64)

Additionally, by applying Jensen’s inequality to the left-hand side we get the following
inequalities

ρn+1
i G(sn+1

i ) ≤ 1

∆x

∫ xi+1/2

xi−1/2

(ρG(s))(Q(x, tn+1))dx

≤ 1

∆x

∫ xi+1/2

xi−1/2

(ρG(ŝ))
(
WR(x, tn+1)

)
dx.

(4.65)
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We now define the left-hand side of the entropy inequality (4.39) by

Dn
i := ρn+1

i G(sn+1
i )− ρni G(sni )− ∆t

∆x

(
{ρG(s)u}ni+1/2 − {ρG(s)u}ni−1/2

)
. (4.66)

For steady and space periodic solutions we then have
∑

i

Dn
i = 0. (4.67)

In combination with the entropy inequality (4.39) we get

Dn
i = 0 ∀i. (4.68)

From this result follows directly that all the inequalities in (4.65) are replaced by equalities
and therefore the entropy is equal to the relaxation entropy

(ρG(s))(Q(x, tn+1)) = (ρG(ŝ))
(
WR(x, tn+1)

)
. (4.69)

In the proof of the entropy inequality it is shown that this is just the case in the relaxation
equilibrium, so only if

π = p(ρ, e), u = v, τ =
1

ρ
, ŝ = s. (4.70)

As a consequence, the following relations apply to a single Riemann problem

τL∗ =
1

ρL∗
, τR∗ =

1

ρR∗
, v∗ = uL∗ = uR∗,

πL∗ = p(ρL∗,eL∗) = p(ρL∗, sL∗), πR∗ = p(ρR∗, eR∗) = p(ρR∗, sR∗).
(4.71)

Since τ is a Riemann invariant for λ− and λ+, it holds

τL∗ = τL, τR∗ = τR. (4.72)

We can use this fact to gain more information about the intermediate densities

1

ρL∗
= τL∗ =

1

ρL
⇒ ρL∗ = ρL,

1

ρR∗
= τR∗ =

1

ρR
⇒ ρR∗ = ρR.

(4.73)

From the explicit definition of the intermediate states in (4.17) and (4.18) we can deduce
that

1

ρL∗
− 1

ρL
=
MbR

(
vR − vL

)
+ πL − πR − ρ̄

(
WL,WR

) (
ZR − ZL

)

aL (bL + bR)
= 0, (4.74)

1

ρR∗
− 1

ρR
=
MbL

(
vR − vL

)
+ πR − πL + ρ̄

(
WL,WR

) (
ZR − ZL

)

aR (bL + bR)
= 0. (4.75)

With a look at the intermediate states uL∗ and uR∗, we see that we can use (4.74) and
(4.75) to get

uL∗ = uL +
bL

M
MbR

(
vR − vL

)
+ πL − πR − ρ̄

(
WL,WR

) (
ZR − ZL

)

aL (bL + bR)
= uL, (4.76)

uR∗ = uR +
bR

M
MbL

(
vL − vR

)
+ πL − πR + ρ̄

(
WL,WR

) (
ZR − ZL

)

aR (bL + bR)
= uR. (4.77)
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Since we are at equilibrium we can conclude that

v∗ = uL∗ = uR∗ = uL = uR = vL = vR. (4.78)

In the next part we will show that the left and the right state at the interface are equal
for π. From the Riemann invariants in (4.9) we take

I3 = I11 =
1

ρ
+

π

2ab
. (4.79)

This quantity is constant across the left and right waves in the Riemann fan, which means

1

ρL∗
+

πL∗

2aLbL
=

1

ρL
+

πL

2aLbL
,

1

ρR∗
+

πR∗

2aRbR
=

1

ρR
+

πR

2aRbR
.

(4.80)

It has already been established in (4.73) that the density has only two states and therefore
we can simplify the equations to

πL∗ = πL

πR∗ = πR.
(4.81)

From the explicit definition of the intermediate states and the closure equation (4.15) we
gain

πL∗ = πL =
bRπL + bLπR +MbLbR

(
vL − vR

)
− bLρ̄

(
WL,WR

) (
ZR − ZL

)

bL + bR

(4.78)
=

bRπL + bLπR − bLρ̄
(
WL,WR

) (
ZR − ZL

)

bL + bR

(4.15)
=

bRπL + bLπR + bL
(
πR − πL

)

bL + bR
. (4.82)

Solving for πL gives
πL = πR. (4.83)

Thus, we have shown that for both velocities and the pressure, the left and right states
at the interface are equal. The solution in these quantities is therefore constant in space.

Remark 4.3.5. For pressure laws that depend only on density, it can also be proven that
the density and the internal energy are constant for steady and space periodic solutions.

For steady periodic solutions of the relaxation method the velocity and pressure are
constant, which contradicts the non-constant nature of checkerboard modes. The result
of the above lemma can thus be interpreted in so far that in velocity and pressure no
checkerboard modes can occur.

4.3.3 Positivity-Preserving Property

The two-speed relaxation method shall only compute physical relevant solutions that lie
within ΩEuler

phys . In addition, it is also essential for the robustness of the numerical method
that density and internal energy remain positive during the simulation. Otherwise, opera-
tions such as taking the root of negative numbers may occur, which lead to the premature
termination of the simulation. The following lemma guarantees that the approximate Rie-
mann solver computes only positive values for both density and internal energy.
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Lemma 4.3.6. Given QL, QR ∈ ΩEuler
phys . If the relaxation speeds aL and aR are large

enough to ensure

vL − aL

MρL
< v∗ < vR +

aR

MρR
, (4.84)

eL +
(πL∗)2 − (πL)2

2aLbL
+

(v∗ − uL∗)2 − (vL − uL)2

2(a
L

bL
− 1)

> 0, (4.85)

eR +
(πR∗)2 − (πR)2

2aRbR
+

(v∗ − uR∗)2 − (vR − uR)2

2(a
R

bR
− 1)

> 0, (4.86)

then the approximate Riemann solver WR preserves the positivity of density and internal
energy.

Proof. First, it is trivial that the conditions (4.84), (4.85) and (4.86) are satisfied for
sufficiently large aL and aR. To prove the positivity of the density intermediate states in
a next step, we start with the Riemann invariants I1 and I9 from Lem. 4.1.2, which give
us

vL − aL

MρL
= v∗ − aL

MρL∗
and vR +

aR

MρR
= v∗ +

aR

MρR∗
. (4.87)

Using these relations, we can rewrite (4.84) by

− ρL∗ < 0 < ρR∗. (4.88)

So the intermediate states for the density are positive. The positivity of the internal
energy directly follows from (4.85) and (4.86), since the left-hand sides of these conditions
represent the left and right intermediate states of the internal energy.

Clearly, this lemma is of limited use in practice. It states that in principle it is possible to
preserve the positivity, but it does not help to find a suitable definition of the relaxation
speeds that works generally. The following lemma gives stricter conditions for the relax-
ation speeds, which can also be used for their explicit definition. Under these conditions,
it can be proven that the density is kept positive.

Lemma 4.3.7. Consider the relaxation solver (4.14) with intermediate states and speeds
defined by (4.16)-(4.25) with the initial data at equilibrium. Assume that the relaxation
speeds aL, aR, bL, bR satisfy

aL ≥ bL, aR ≥ bR, (4.89)

bL

ρL
≥ aLq ,

bR

ρR
≥ aRq , (4.90)

√
aLbL

ρL
≥ cL

(
1 + βXL

)
,

√
aRbR

ρR
≥ cR

(
1 + βXR

)
, (4.91)

for some aLq and aRq depending on QL, QR and XL, XR defined by (4.94) and (4.95) with a

parameter β ≥ 1. The quantities cL, cR represent the sound speed. Then the approximate
Riemann solver WR preserves the positivity of the density.
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Proof. We start with the definition of the left intermediate density (4.17)

1

ρL∗
=

1

ρL
+
MbR

(
vR − vL

)
+ πL − πR − ρ̄

(
WL,WR

) (
ZR − ZL

)

aL (bL + bR)

≥ 1

ρL
− MbR(vL − vR)+

aL(bL + bR)
−
(
πR − πL + ρ̄(WL,WR)(ZR − ZL)

)
+

aL(bL + bR)

≥ 1

ρL
− M(vL − vR)+

aL
−
(
πR − πL + ρ̄(WL,WR)(ZR − ZL)

)
+

aL(ρLaLq + ρRaRq )
. (4.92)

Analogously, for the right intermediate state we get

1

ρR∗
≥ 1

ρR
− M(vL − vR)+

aR
−
(
πL − πR + ρ̄(WL,WR)(ZL − ZR)

)
+

aR(ρLaLq + ρRaRq )
. (4.93)

Let us now define the variables

XL =
1

cL

[
M
(
vL − vR

)
+

+

(
πR − πL + ρ̄(WL,WR)(ZR − ZL)

)
+

ρLaLq + ρRaRq

]
, (4.94)

XR =
1

cR

[
M
(
vL − vR

)
+

+

(
πL − πR + ρ̄(WL,WR)(ZL − ZR)

)
+

ρLaLq + ρRaRq

]
, (4.95)

in order to rewrite the former inequalities in the more compact form

1

ρL∗
≥ 1

ρL

(
1− ρLcL

aL
XL

)
, (4.96)

1

ρR∗
≥ 1

ρR

(
1− ρRcR

aR
XR

)
. (4.97)

From combining the conditions (4.89) and (4.91), it follows that

aL

ρL
≥ cL(1 + βXL) ⇒ ρLcL

aL
≤ 1

1 + βXL
, (4.98)

aR

ρR
≥ cR(1 + βXR) ⇒ ρRcR

aR
≤ 1

1 + βXR
. (4.99)

With these inequalities we rewrite (4.96) and (4.97)

1

ρL∗
≥ 1

ρL

(
1− XL

1 + βXL

)
, (4.100)

1

ρR∗
≥ 1

ρR

(
1− XR

1 + βXR

)
. (4.101)

Because of the definitions in (4.94) and (4.95) we know that XL, XR ≥ 0 and therefore
we can conclude that

ρL∗ > 0, ρR∗ > 0. (4.102)
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4.3.4 Asymptotic-Preserving Property

In the low Mach number limit, the solutions of the compressible Euler equations tend
to the solutions of the incompressible Euler equations (see Sect. 2.3.5). Following this
theoretical result, the numerical scheme should be consistent with the limit behavior as
M tends to zero, in the sense that the discretization for the compressible Euler equations
should tend to the incompressible Euler equations if the Mach number tends to zero.
The key to achieve this behavior for the presented relaxation scheme is the definition of
the relaxation speeds a and b. In the former sections several conditions are imposed on
these speeds that have to be satisfied so that the scheme is stable and has the properties
presented. A suitable choice that indeed fulfills the so far stated requirements is the
classical one, in which a and b are set to be equal

aαq = cα,

aα = bα = ραcα(1 + βXα).
(4.103)

This definition closely follows the condition (4.91) in Lem. 4.3.7. Unfortunately, this
definition does not lead to an appropriate discretization, but to excessive diffusion in the
low Mach number limit. In order to change this behaviour the speeds have to be redefined.
In this context it is important to ensure that not only the diffusion is reduced, but also
that the subcharacteristic conditions (4.6) remain fulfilled. A suitable choice proposed in
[BCG20] is given by

aαq = min(1,M)cα,

aα =
1

min(1,M)
ραcα(1 + βXα),

bα = min(1,M)ραcα(1 + βXα).

(4.104)

By this definition the speeds are rescaled in the case of low Mach numbers, i.e. forM < 1.

Remark 4.3.8. In the case of Mach numbers M ≥ 1, the relaxation speeds are equal
(a = b) and so we obtain the standard Suliciu relaxation system with only one relaxation
speed.

Remark 4.3.9. The new scaling of the relaxation speed a has the effect that the maximum
wave speed increases by an order of magnitude M. As a consequence, the CFL condition
(4.32) becomes stricter and the time step must be chosen smaller accordingly, i.e.

∆t ∼ M
2∆x

c
. (4.105)

As shown in [BCG20], by replacingM by M̂ = max{M2, k∆x} in the relaxation scheme,
the CFL condition can be reduced to the parabolic-type condition

∆t ∼ max{M2, k∆x}∆x
c

. (4.106)

Theorem 4.3.10. The two-speed relaxation scheme with the relaxation speeds (4.104) is
asymptotic-preserving in the sense that:

a) it is first-order uniformly with respect to the Mach number M and

b) forM <
√
k∆x and k constant it is consistent at first order with the incompressible

limit model (2.60).
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Proof. In order to prove the first statement of the theorem we evaluate the consistency
error by expanding the numerical flux (4.28) in terms ofM and then subtract the central
flux (F (QL) + F (QR))/2.

In the low Mach number limitM→ 0, the wave speeds λ− and λ+ in (4.7) tend towards
infinity. Therefore it is sufficient just to consider the intermediate fluxes FL∗ and FR∗

for the numerical flux. In a first step of the analysis we rewrite the relaxation speeds as
expansions in terms of M, so we get

Xα = O(M), bα =Mb̄α +O(M2), aα =
b̄α

M(1 +O(M)) (4.107)

with

b̄α = ραcα. (4.108)

Since

b̄R − b̄L = O(M2), (4.109)

we can write b̄ instead of b̄L and b̄R up to errors of O(M2). Expanding the intermediate
states (4.16)-(4.22) in terms of M yields

v∗ =
uL + uR

2
+
πL − πR
2M2b̄

− ρ(ZR − ZL)

2M2b̄

+O(M(uL − uR)) +O(
πR − πL + ρ̄(ZR − ZL)

M ),

πL∗ =
πL + πR

2
+M2b̄

uL − uR
2

+
ρ̄(ZR − ZL)

2b̄

+O(M3(uL − uR)) +O(M(πR − πL + ρ̄(ZR − ZL))),

πR∗ =
πL + πR

2
+M2b̄

uL − uR
2

− ρ̄(ZR − ZL)

2b̄

+O(M3(uL − uR)) +O(M(πR − πL + ρ̄(ZR − ZL))),

1

ρL∗
=

1

ρL
+O(M2(uL − uR)) +O(πR − πL + ρ̄(ZR − ZL)),

1

ρR∗
=

1

ρR
+O(M2(uL − uR)) +O(πR − πL + ρ̄(ZR − ZL)),

uL∗ = uL +O(M2(uL − uR)) +O(πR − πL + ρ̄(ZR − ZL)),

uR∗ = uR +O(M2(uL − uR)) +O(πR − πL − ρ̄(ZR − ZL)).

(4.110)

We can derive these expansions from the intermediate states (4.17)-(4.25) and put the
terms πR − πL + ρ̄(ZR − ZL) into the error estimates, since, according to (2.59), the
hydrostatic equilibrium is satisfied up to terms of order O(M2) in the low Mach limit,
i.e.

πR − πL + ρ̄(ZR − ZL) = O(M2). (4.111)

With the help of these expansions, we calculate the flux differences component by com-
ponent.
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i) The difference for the left intermediate flux FL∗ in the first component writes

ρL∗v∗ − ρLuL + ρRuR

2

=− ρLuL + ρRuR

2
+
ρL

2b̄

(
pL − pR
M2

+
ρ̄(ΦL − ΦR)

M2

)

+ ρL
uL + uR

2
+O(M(uL − uR)) +O

(
pR − pL + ρ̄(ΦR − ΦL)

M

)
.

This difference can be further simplified. In the low Mach limit, the density is
constant up to errors of O(M2). Therefore we can write

ρR − ρL = O(M2) (4.112)

and replace ρR in the difference by ρL. Additionally, we replace the differences
between the left and right states by numerical derivatives, i.e.

uL − uR = −∆x∂xu+O(∆x2),

pL − pR = −∆x∂xp+O(∆x2),

ΦL − ΦR = −∆x∂xΦ +O(∆x2).

(4.113)

Applying these simplifications results in

ρL∗v∗ − ρLuL + ρRuR

2
= −∆x

2

ρL

b̄

(
∂xp+ ρ̄∂xΦ

M2

)
+O(∆x2) +O(M∆x). (4.114)

The denominator M2 does not lead to excessive dissipation at this point, as again
the hydrostatic equilibrium is fulfilled up to O(M2). Analogous calculations for the
right intermediate flux FR∗ lead to

ρR∗v∗ − ρLuL + ρRuR

2
= −∆x

2

ρR

b̄

(
∂xp+ ρ̄∂xΦ

M2

)
+O(∆x2) +O(M∆x). (4.115)

ii) The second component for the left flux can be expressed by

ρL∗uL∗v∗ +
πL∗

M2
− ρL(uL)2 + πL

M2 + ρR(uR)2 + πR

M2

2

= b̄
uL − uR

2
+ ρLuL

uL + uR

2
− ρLuRu

L − uR
2

+ ρLuR
uL − uR

2

− ρL(uL)2 + ρR(uR)2

2
+ ρLuL

pL − pR + ρ̄(ΦL − ΦR)

2b̄M2

− ρ̄(ΦL − ΦR)

2M2
+O(M(uL − uR)) +O

(
pR − pL + ρ̄(ΦR − ΦL)

M

)

= b̄
uL − uR

2
+ ρLuR

uL − uR
2

+ ρLuL
pL − pR + ρ̄(ΦL − ΦR)

2b̄M2

− ρ̄(ΦL − ΦR)

2M2
+O(M(uL − uR)) +O

(
pR − pL + ρ̄(ΦR − ΦL)

M

)

=− ∆x

2

(
b̄+ ρLuR

)
∂xu−

∆x

2

ρLuL

b̄

(
∂xp+ ρ̄∂xΦ

M2

)
+

∆x

2
ρ̄∂x

Φ

M2

+O(∆x2) +O(M∆x)
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and for the right flux by

ρR∗uR∗v∗ +
πR∗

M2
− ρL(uL)2 + πL

M2 + ρR(uR)2 + πR

M2

2

=− ∆x

2

(
b̄+ ρRuL

)
∂xu−

∆x

2

ρRuR

b̄

(
∂xp+ ρ̄∂xΦ

M2

)
− ∆x

2
ρ̄∂x

Φ

M2

+O(∆x2) +O(M∆x).

In this flux difference, the new scaling of the relaxation speeds defined in (4.104)
unfolds its importance. Clearly, the viscosity on the velocity, represented by the
first term, is independent of the Mach number and therefore does not increase in
the low Mach limit. With the classical scaling (4.103), on the other hand, this term
would have the size O(1/M) leading to excessive dissipation for low Mach numbers.
While a Mach number dependence in the first term would be problematic, it is not in
the second term due to (4.111). The remaining third term containing the derivative
of the gravitational potential, which also depends on 1/M2, cancels out with the
gravitational source term (4.30) in the relaxation scheme.

iii) For the difference in the third component, similar steps for the left flux result in

((
1

2
M2ρL∗(uL∗)2 + ρL∗eL∗

)
+ πL∗

)
v∗ − (EL + pL)uL + (ER + pR)uR

2

= ρLuR
eL − eR

2
+ uR

pL − pR
2

+
ρLeL + pL

2b̄

pL − pR + ρ̄(ΦL − ΦR)

M2

+O(M(uL − uR)) +O
(
pR − pL + ρ̄(ΦR − ΦL)

M

)

=− ∆x

2
ρLuR∂xe−

∆x

2
uR∂xp−

∆x

2

ρLeL + pL

b̄

(
∂xp+ ρ̄∂xΦ

M2

)

+O(∆x2) +O(M∆x).

and for the right flux in

((
1

2
M2ρR∗(uR∗)2 + ρR∗eR∗

)
+ πR∗

)
v∗ − (EL + pL)uL + (ER + pR)uR

2

=
∆x

2
ρRuL∂xe+

∆x

2
uL∂xp−

∆x

2

ρReR + pR

b̄

(
∂xp+ ρ̄∂xΦ

M2

)

+O(∆x2) +O(M∆x).

The expansions for all three components are first-order uniformly inM. It is particularly
important that the viscosity on the velocity u in the momentum flux is independent of
M.

Remark 4.3.11. The rescaling of bL,R by the Mach number has not only an effect on the
scaling of the intermediate pressures πL∗,R∗, where it reduces the dissipation in the low
Mach number regime. It also adds a M in the denominator of the intermediate velocity
v∗. Thereby it increases the artificial dissipation there. However, it only acts on the term
πL−πR− ρ̄(WL,WR)(ZR−ZL), which scales with O(M2). Therefore, it does not lead to
an increasing dissipation for decreasing Mach numbers. This additional change of scaling
in v∗ poses a difference to other low Mach fixes, which only concentrate on reducing the
dissipation in the intermediate pressure state.
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The result of the first statement can now be used to prove the second statement of the
theorem. We have proven that the solution QM,∆x of the relaxation scheme is consistent
with the exact solution QM of the dimensionless Euler equations (2.50) up to order O(∆x)
independent of the Mach number, i.e.

QM,∆x −QM = O(∆x). (4.116)

Additionally, we can deduce from system (2.64) that QM is consistent with the solution
Q of the incompressible Euler equations up to order O(M2), i.e.

QM −Q = O(M2). (4.117)

Combining (4.116) and (4.117) with the condition M2 = O(∆x) finally results in

QM,∆x −Q = O(∆x) (4.118)

and therefore meets the second statement of the theorem.

4.3.5 Well-Balanced Property

As described in Sect. 3.10.2, the well-balanced property is important for solving problems
close to hydrostatic equilibria. In a first step, we will show that the approximate Riemann
solver satisfies this property. Building on this result, we will then prove in the second
step that the entire scheme has this property.

Lemma 4.3.12. Assume two given states at equilibrium WL and WR satisfy

uL = uR = 0, (4.119)

pR − pL + ρ̄(WL,WR)(ΦR − ΦL) = 0. (4.120)

Then the approximate Riemann solver WR in (4.14) preserves the steady state, i.e.

WR(
x

t
,WL,WR) =

{
WL, if x

t < 0,

WR, if x
t > 0.

(4.121)

Proof. The result directly follows from the definition of the intermediate states given
in (4.16)-(4.25). Consider the intermediate state v∗. Since we start at equilibrium, we
can replace the relaxation variables by their corresponding original variables. Using the
conditions (4.119)-(4.120) results in

v∗ =
1

bL + bR
(
MbLuL +MbRuR + pL − pR − ρ̄

(
WL,WR

) (
ΦR − ΦL

))
= 0.

Similar calculations for the other intermediate states complete the proof.

In this proof the importance of the closure relation (4.15) becomes evident. The newly
introduced terms ρ̄(WL,WR)(ΦR − ΦL) in the intermediate states are essential for the
approximate Riemann solver preserving steady states, as they cancel out with the pres-
sure difference terms. Otherwise the intermediate states for the velocities would not be
zero.

Lem. 4.3.12 is rather general, as it assumes that the conditions in (4.119) and (4.120) are
satisfied. Clearly, these conditions depend on the definition of the ρ̄-function. For a simple
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definition like the arithmetic mean, which is not adjusted to the underlying hydrostatic
equilibrium, the scheme maintains the equilibrium to second order [DZBK16]. Since we
are free to define ρ̄ we can adjust it to the hydrostatic equilibrium and maintain it even
up to machine precision. The only limiting requirement for ρ̄ that has to be considered
is the consistency property

ρL = ρR = ρ ⇒ ρ̄(WL,WR) = ρ. (4.122)

The following lemma describes the adjusted definitions for isothermal, incompressible and
polytropic equilibria. These definitions have already been described in [DZBK16].

Lemma 4.3.13. The approximate Riemann solver WR can exactly preserve the following
families of hydrostatic equilibria:

i) Let WL and WR be two states satisfying an isothermal equilibrium of the form
(2.47). If the function ρ̄ is defined by

ρ̄(WL,WR) =

{
ρR−ρL

ln(ρR)−ln(ρL)
, if ρL 6= ρR,

ρL, if ρL = ρR,
(4.123)

then the approximate Riemann solver WR preserves the steady state.

ii) Let WL and WR be two states satisfying a polytropic equilibrium of the form (2.48).
If the function ρ̄ is defined by

ρ̄(WL,WR) =

{
Γ−1

Γ
(ρR)Γ−(ρL)Γ

(ρR)Γ−1−(ρL)Γ−1 , if ρL 6= ρR,

ρL, if ρL = ρR,
(4.124)

then the approximate Riemann solver WR preserves the steady state.

iii) Let WL and WR be two states satisfying an incompressible equilibrium of the form
(2.49). If the function ρ̄ satisfies the consistency condition (4.122), then the approx-
imate Riemann solver WR preserves the steady state.

Proof. In order to prove this lemma it is sufficient to show that with the explicit definition
of ρ̄ the conditions (4.119) and (4.120) are satisfied. If so, we can use Lem. 4.3.12 and
the proof is complete. Using the definitions of the isothermal equilibrium states, we can
determine the following differences

ΦR − ΦL = χ(ln(ρR)− ln(ρL)),

pR − pL = χ(ρR − ρL).

By inserting these differences together with ρ̄ defined by (4.123) into equation (4.120), it
becomes clear that this condition is satisfied. Together with the velocities, which are zero,
Lem. 4.3.12 can be applied and the proof of i) is complete. The proofs for polytropic and
incompressible equilibria work in the same way. For more details we may refer the reader
to [DZBK16].

In practical applications, e.g. in astrophysics, the hydrostatic states are often only avail-
able as discrete data generated by previously performed simulations. The following lemma
provides an approach to maintain these hydrostatic equilibria as well.
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Lemma 4.3.14. Let WL and WR be two states satisfying some hydrostatic equilibrium




uL = uR = 0,

ρL,R = ρL,Rhs ,

pL,R = pL,Rhs ,

(4.125)

with ρhs and phs given hydrostatic states. If the function ρ̄ is defined by

ρ̄(WL,WR) =
1

2
(ρL + ρR) (4.126)

and the difference of the gravitational potential in the intermediate states is approximated
by

ZR − ZL ≈ − pRhs − pLhs
1
2(ρLhs + ρRhs)

, (4.127)

then the approximate Riemann solver WR preserves the steady state.

Proof. As can be seen in the proof of Lem. 4.3.13 it is sufficient to show that the conditions
(4.119) and (4.120) are fulfilled so that Lem. 4.3.12 can be applied. In order to do so we
insert the states from (4.125) and the approximation (4.127) in (4.120) and use definition
(4.126) for ρ̄. This results in

pRhs − pLhs −
1

2
(ρLhs + ρRhs)

pRhs − pLhs
1
2(ρLhs + ρRhs)

= 0. (4.128)

Remark 4.3.15. The technique used in Lem. 4.3.14 is related to the α-β method presented
in [BCK18]. Both methods approximate the gravitational potential by given hydrostatic
states. The difference, however, is that here the approximation is done within the Riemann
solver so that the solver stays at rest in equilibrium. In the α-β method the approximation
is applied in the numerical source term and combined with a hydrostatic reconstruction.

Having shown that the approximate Riemann solverWR satisfies the well-balanced prop-
erty, it remains to show that the entire scheme does so as well.

Theorem 4.3.16. Let us consider cell averages at time level n denoted by Qni−1, Q
n
i and

assume that for all i ∈ Q they satisfy

uni = 0, (4.129)

1

∆x
(pni − pni−1) + ρ̄(Wn

i−1,W
n
i )

Φi − Φi−1

∆x
= 0. (4.130)

Then the updated state satisfies Qn+1
i = Qni for all i ∈ Q and thus the solution stays at

rest.

Proof. Since both conditions (4.119) and (4.120) of Lem. 4.3.12 are fulfilled, the approx-
imate Riemann solver stays at rest. In consequence, the Riemann solver returns WL∗ =
WL. Thus, v∗ = 0 and the numerical flux in (4.28) is chosen to be F (WL∗) = F(WL).
Only the momentum component of the flux is nonzero. Here, the flux contains only the
pressure contribution. The source term on the right-hand side is also zero except for the
momentum component. The s function ensures that it is equal to S+

i−1/2.Therefore the
update in the momentum equation reads

(ρu)n+1
i = (ρu)ni −

∆t

∆x

(
pni − pni−1

)
− ∆t

2

(
2ρ̄
(
Wn
i−1,W

n
i

) Φi − Φi−1

∆x

)
(4.131)

and with (4.130) the residual in the momentum becomes zero. This means that all
residuals are zero and we get the statement of the theorem.
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4.4 Second Order Extension

In this section we give a possible extension of the proposed scheme to second order in
space. As a basic strategy we apply a linear reconstruction. However, if we took the
standard linear reconstruction described in Sect. 3.8, the scheme would lose the positivity
and well-balanced properties.
To ensure that the scheme remains positivity-preserving, we rely on an approach intro-
duced in [TZK19] that builds on the work in [Ber05]. Instead of reconstructing the con-
servative variables Q, we reconstruct the primitive variables QP = (ρ,v, p) and therefore
evaluate the function

QP (x) = QPi + σi(x− xi) (4.132)

in each cell Ci at its boundaries xi−1/2 and xi+1/2 to obtain initial values of the Riemann

problem denoted by QP,Ri−1/2 and QP,Li+1/2. The slope σ is computed for each primitive
variable separately and is defined by

σρi = ρi max

(
−1,min

(
1,
σ̄ρi
ρi

))
, (4.133)

σv
i = κσ̄v

i , (4.134)

σpi = pi max

(
−1,min

(
1,
σ̄pi
pi

))
, (4.135)

with

σ̄i = minmod

(
QPi −QPi−1

∆x
,
QPi+1 −QPi

∆x

)
(4.136)

and

κi = min(1, κ̄i), (4.137)

κ̄i =




−σρi (vi·σ̄v

i )+
√

(σρi )2(vi·σ̄v
i )2+‖σ̄v

i ‖2
ρipi
γ−1

ρi‖σ̄v
i ‖2

, if σ̄v
i 6= 0,

1, if σ̄v
i = 0.

(4.138)

The choice of these slopes provably ensures the positivity of the reconstructed values that
serve as initial data for the Riemann problems [TZK19]. This means that the requirements
for applying Lem. 4.3.6 and 4.3.7 are met, which ensure that Qn+1

i ∈ ΩEuler
phys .

Additionally, we also want to preserve the well-balanced property for the second-order
scheme. To achieve this, we adjust the pressure slope by using a hydrostatic reconstruction
[KM16, TZK19, TPK20]. Instead of directly using the pressure values of the neighboring
cells, one first applies the transformations

qi−1 = pi−1 − ρ̄(Wi−1,Wi)(Φi − Φi−1),

qi+1 = pi+1 + ρ̄(Wi,Wi+1)(Φi+1 − Φi),
(4.139)

and then computes the slope for the pressure by

σ̄pi = minmod

(
pi − qi−1

∆x
,
qi+1 − pi

∆x

)
. (4.140)

In the case of a hydrostatic equilibrium, the slope becomes zero and the interface values
for the pressure thus reduce to the cell averages. The approximate Riemann solver then
stays at rest due to Lem. 4.3.12 and all results of Sect. 4.3.5 about well-balancing remain
valid for the second order scheme.
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4.5 Multi-Dimensional Extension

For two spatial dimensions the Euler equations (2.50) can be written in the form

Qt + F1(Q)x + F2(Q)y = S(Q,Φ). (4.141)

On a regular Cartesian grid, we extend the numerical scheme described in Sect. 4.2 to two
spatial dimensions by applying an unsplit finite volume method as described in Sect. 3.7.
The contributions of both directions are used in only one step to update the numerical
solution by the formula

Qn+1
i,j = Qni,j −

∆t

∆x

(
Fn1,i+1/2,j − Fn1,i−1/2,j

)
− ∆t

∆y

(
Fn2,i,j+1/2 − Fn2,i,j−1/2

)

+
∆t

2

(
S+,n
i−1/2,j

Φn
i,j − Φn

i−1,j

∆x
+ S−,ni+1/2,j

Φn
i+1,j − Φn

i,j

∆x

)

+
∆t

2

(
S+,n
i,j−1/2

Φn
i,j − Φn

i,j−1

∆y
+ S−,ni,j+1/2

Φn
i,j+1 − Φn

i,j

∆y

)
.

(4.142)

The definitions of the numerical fluxes and source terms are straightforward extensions
of those presented in Sect. 4.2. The numerical fluxes continue to use a one-dimensional
approximate Riemann solver so that it is applied separately in x- and y-direction. This
Riemann solver corresponds to the one defined in (4.14), in which additionally the in-
termediate states for the transversal velocity are set by the left and right values at the
interface, respectively, since this velocity is a Riemann invariant for the outer waves λ−

and λ+.
The two-dimensional method relies on the one-dimensional approximate Riemann solver
so that the properties proven in Sect. 4.3 for the solver also apply to this method. So
we gain the entropy inequality, the absence of checkerboard modes, the positivity of
density and internal energy and the asymptotic-preserving property. In addition, the
well-balanced property is also preserved, since the approximate Riemann solver is at rest
for initial data in hydrostatic equilibrium in both spatial directions and thus in both
momentum equations the pressure gradient cancels out with the source term.

4.6 Numerical Results

In this section we numerically investigate the theoretical properties of the two-speed well-
balanced finite volume (2S-WB-FV) scheme presented in the previous sections. The ap-
proximate Riemann solver in the scheme is equipped with the intermediate states defined
in (4.16)-(4.25) and the Mach number adjusted relaxation speeds (4.104) with β = 1.1.
Various definitions are used for the ρ̄-function. Definition (4.123) is used by default. If a
different choice is made, this is indicated in the respective test. The second order spatial
scheme is combined with the third order SSP-RK3 method [SO88] for time integration
(see Ex. 3.9.2).

We perform eight different numerical tests and start with a convergence study to verify
the order of convergence of the method in different Mach number regimes (i). The second
test consists of a Sod shock tube with an added gravitational force in order to demon-
strate that the scheme can also capture shocks (ii). A strong rarefaction test challenges
the ability of the scheme to preserve positive density and internal energy (iii). After that
the scheme is applied to different types of hydrostatic equilibria (iv,v) und flows close to
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Quantity SI unit Scaling

x, y [m] xr

t [s] tr

ρ [ kg
m3 ] ρr

u, c [ m
s

] ur = xr
tr

, M = ur
cr

p [ kg
ms2

] pr = ρrc2r

Φ [ m2

s2
] Φr =

u2
r
M2

Table 4.1: Relations between physical quantities, SI units and reference values used in
Sect. 4.6.

equilibria (vi) in order to check the well-balanced property and its effect on the simulated
solutions. The last two test problems are set up in the low Mach number regime. First,
we consider a Kelvin-Helmholtz instability for the homogeneous Euler equations and per-
form a qualitative comparison between the two-speed relaxation scheme and a one-speed
alternative (vii). Second, we simulate a stationary vortex in a gravitational field and do
a quantitive measurement of the dissipation introduced by the method in the case of low
Mach numbers (viii).

The initial data for the different test problems is given in physical variables and trans-
formed to dimensionless quantities by reference values. The relations between physical
variables, international system of units (SI) and reference values are given in Tab. 4.1.
For all test setups we assume an ideal gas law p = (γ − 1)ρe. The computations are
performed on a regular Cartesian grid.

4.6.1 Convergence Test

In a first numerical test, which is suggested by [XS13], we investigate the experimental
order of convergence of the relaxation scheme presented. For the Euler equations (2.50)

on the domain I = [0, 1]2 with a linear gravitational potential Φ(x, y) = x + y m2

s2 , one
possible exact solution is defined by

ρ(x, y, t) = 1 + 0.2 sin (π (x+ y − t(u0 + v0)))
kg

m3
,

v(x, y, t) = (u0, v0)
m

s
,

p(x, y, t) = 4.5 + (u0 + v0)t− (x+ y) + 0.2 cos ((π (x+ y − (u0 + v0)t)) /π
kg

ms2
,

(4.143)

with u0 = v0 = 20. This exact solution is also used for the boundary conditions. The
adiabatic coefficient in the EoS is set to γ = 5/3. We solve the equations in different
regimes and therefore transform the initial data into dimensionless quantities using the
reference values

xr = 1 m, ur = 1
m

s
, ρr = 1

kg

m3
, pr =

1

M2

kg

ms2
, Φr =

1

M2

m2

s2
. (4.144)

The numerical solution computed with the 2S-WB-FV scheme is computed on a N ×N
grid and compared to the exact solution at final time tf = 0.01 s. The resulting L1-error
and the experimental order of convergence (EOC) can be found in Table 4.2. As expected,
we obtain orders of convergence of nearly 2.0 independently of the Mach number regime.
Without the use of limiters full second order is reached.
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M N L1(ρ) EOC(ρ) L1(ρu) EOC(ρu) L1(ρv) EOC(ρv) L1(E) EOC(E)

1 32 7.26E-04 - 1.45E-02 - 1.45E-02 - 2.90E-01 -
64 1.97E-04 1.88 3.93E-03 1.88 3.93E-03 1.88 7.87E-02 1.88
128 5.22E-05 1.92 1.04E-03 1.92 1.04E-03 1.92 2.08E-02 1.92
256 1.37E-05 1.92 2.73E-04 1.93 2.73E-04 1.93 5.47E-03 1.93

10−1 32 7.29E-04 - 1.46E-02 - 1.46E-02 - 2.92E-01 -
64 1.98E-04 1.88 3.94E-03 1.89 3.94E-03 1.89 7.90E-02 1.88
128 5.24E-05 1.91 1.05E-03 1.92 1.05E-03 1.92 2.09E-02 1.92
256 1.38E-05 1.92 2.75E-04 1.93 2.75E-04 1.93 5.51E-03 1.93

10−2 32 7.34E-04 - 1.47E-02 - 1.47E-02 - 2.94E-01 -
64 2.00E-04 1.87 4.01E-03 1.87 4.01E-03 1.87 8.03E-02 1.87
128 5.40E-05 1.90 1.08E-03 1.90 1.08E-03 1.90 2.15E-02 1.90
256 1.45E-05 1.90 2.87E-04 1.91 2.87E-04 1.91 5.74E-03 1.91

10−3 32 7.32E-04 - 1.46E-02 - 1.46E-02 - 2.93E-01 -
64 2.06E-04 1.83 4.12E-03 1.83 4.12E-03 1.83 8.24E-02 1.83
128 5.77E-05 1.84 1.15E-03 1.84 1.15E-03 1.84 2.30E-02 1.84
256 1.59E-05 1.86 3.17E-04 1.86 3.17E-04 1.86 6.31E-03 1.86

Table 4.2: L1-errors and experimental orders of convergence.

4.6.2 Shock Tube under Gravitational Field

The next test case is the standard Sod shock tube for the one-dimensional Euler equations,
to which a gravitational source term with linear gravitational potential Φ(x) = x is added
[CK15]. The initial conditions in the domain I = [0, 1] are given by

(ρ, u, p)(x, 0) =

{
(1, 0, 1), if x ≤ 0.5,

(0.125, 0, 0.1), if x > 0.5,
(4.145)

with solid wall boundary conditions. We choose a compressible regime and therefore set
M = 1. The ratio of specific heats is γ = 1.4. The solution at final time tf = 0.2 is
computed by the 2S-WB-FV scheme on 100 cells. The numerical solution is compared to a
reference solution, which is computed by a fully explicit second order finite volume method
on 20000 cells. The results in Fig. 4.2 show a good agreement with the reference solution
and are also consistent with solutions in the literature [CK15]. This test demonstrates
the capability of the relaxation scheme to deal with shocks, i.e. flows which are not in
the low Mach number regime.

4.6.3 Strong Rarefaction Test

The second order relaxation scheme shall preserve the positivity of density and internal
energy if the relaxation speeds are chosen properly. The following 1-2-0-3 strong rare-
faction test is challenging, as density and pressure become very small [TPK20]. In this
test setup, two rarefaction waves are launched in x-direction on top of an isothermal at-
mosphere. Therefore, on the domain I = [0, 1]2 the density ρ and pressure p are initially
defined by (2.47) with the constants C = −0.01 and χ = γ − 1, an adiabatic coefficient
γ = 1.4 and a quadratic gravitational potential Φ(x, y) = 1

2 [(x− 0.5)2 + (y − 0.5)2]. The
initial velocities are set to

u(x, y, 0) =

{
−2, if x < 0.5,

2, if x ≥ 0.5,
and v(x, y, 0) = 0. (4.146)

The reference Mach number is set toM = 1 so that the setup is in the compressible regime.
One slice along the x-axis of the numerical solution at final time tf = 0.1 computed on a
128×128 grid by our relaxation scheme is presented in Fig. 4.3. Even though the values for
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Figure 4.2: Shock tube under gravitational field at time tf = 0.2. Comparison to the
reference solution for density (top left), horizontal velocity (top right), pressure (bottom
left) and internal energy (bottom right).

density and total pressure become very small during the simulation, they always remain
positive. This outcome underlines the theoretical results stated in Lem. 4.3.6 and 4.3.7.
Overall, the results of the 2S-WB-FV scheme agree with those presented in the literature
[TPK20].

4.6.4 Isothermal Atmosphere

The relaxation scheme equipped with the ρ̄-average (4.123) is designed to exactly preserve
isothermal equilibria. The following initial data is taken from [CK15] and fulfills the
isothermal equilibrium. On the domain I = [0, 1]2, we consider the gravitational potential

Φ(x, y) = x+ y (4.147)



4.6. NUMERICAL RESULTS 75

0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

0.0 0.5 1.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u

0.0 0.5 1.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E

Figure 4.3: Numerical solution for density ρ, velocity u and total energy E at final time
tf = 0.1.

and initial conditions

ρ(x, y, 0) = ρ0 exp(−ρ0g(x+ y)/p0),

v(x, y, 0) = 0,

p(x, y, 0) = p0 exp(−ρ0g(x+ y)/p0),

(4.148)

with the parameters ρ0 = 1.21, p0 = 1 and g = 1. The problem is solved in the com-
pressible regime with M = 1 and the adiabatic coefficient is set to γ = 1.4. The solution
should be preserved up to any final time. Here we choose tf = 1. The L1-error between
the approximated solution and the exact solution is given in Table 4.3. It is in the order
of magnitude of the machine accuracy, which underlines that the 2S-WB-FV scheme is
well-balanced for isothermal equilibria.

N L1(ρ) L1(ρu) L1(ρv) L1(E)

32 8.95E-17 5.21E-16 5.21E-16 4.18E-16
64 1.73E-16 1.62E-16 1.62E-16 7.24E-16
128 3.40E-16 3.47E-16 3.47E-16 1.63E-15
256 6.30E-16 6.89E-16 6.89E-16 3.46E-15
512 1.22E-15 1.54E-15 1.54E-15 7.43E-15

Table 4.3: L1-errors for an isothermal atmosphere.

4.6.5 General Steady State

In practice, steady states at rest do not always belong to the class of isothermal, polytropic
or incompressible equilibria. In order to investigate the behaviour of the well-balancing
mechanism for such cases, we now apply the scheme to a general steady state. We take the
initial conditions from the setup in Sect. 4.6.1 with M = 1 and set the initial velocities
u0 and v0 to zero. It is easy to check that the initial data then poses a hydrostatic
equilibrium.
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In a first step, we use the ρ̄-average tuned to isothermal equilibria given by (4.123) and
compute the solution at final time tf = 1. As expected, the L1-error shown in Table 4.4 is
not in the order of magnitude of the machine accuracy, but the hydrostatic equilibrium is
still preserved up to second order. This result remains true even if we use a constant re-
construction and consequently a first order scheme. As the convergence rates in Table 4.5
show, the hydrostatic equilibrium is maintained up to second order despite the constant
reconstruction. Mathematically, this can be explained by the fact that equation (4.130)
is satisfied up to second order.

N L1(ρ) EOC(ρ) L1(ρu) EOC(ρu) L1(ρv) EOC(ρv) L1(E) EOC(E)

32 9.43E-06 - 1.36E-05 - 1.36E-05 - 5.08E-05 -
64 2.35E-06 2.01 3.43E-06 1.99 3.43E-06 1.99 1.26E-05 2.01
128 5.88E-07 2.00 8.60E-07 2.00 8.60E-07 2.00 3.14E-06 2.01
256 1.47E-07 2.00 2.16E-07 1.99 2.16E-07 1.99 7.85E-07 2.00
512 3.69E-08 2.00 5.42E-08 2.00 5.42E-08 2.00 1.97E-07 2.00

Table 4.4: L1-error and experimental order of convergence of the second order 2S-WB-FV
scheme for a general steady state using the ρ̄-average (4.123).

N L1(ρ) EOC(ρ) L1(ρu) EOC(ρu) L1(ρv) EOC(ρv) L1(E) EOC(E)

32 9.74E-06 - 1.40E-05 - 1.40E-05 - 5.15E-05 -
64 2.39E-06 2.03 3.48E-06 2.01 3.48E-06 2.01 1.27E-05 2.02
128 5.93E-07 2.01 8.67E-07 2.01 8.67E-07 2.01 3.15E-06 2.01
256 1.48E-07 2.00 2.17E-07 2.00 2.17E-07 2.00 7.86E-07 2.00
512 3.70E-08 2.00 5.43E-08 2.00 5.43E-08 2.00 1.97E-07 2.00

Table 4.5: L1-error and experimental order of convergence of the first order 2S-WB-FV
scheme for a general steady state using the ρ̄-average (4.123).

Let us now assume that we a priori know the hydrostatic equilibrium and it is given
as discrete data for the density and pressure. In this case, the approach described in
Lem. 4.3.14 should be able to maintain this particular hydrostatic equilibrium up to
machine precision. In order to check this, we set the values ρhs and phs equal to the initial
values for density respective pressure. The L1-error in Table 4.6 shows that the hydrostatic
equilibrium is indeed maintained up to machine precision. This result illustrates that the
2S-WB-FV scheme is well-balanced for every a priori known hydrostatic equilibrium.

N L1(ρ) L1(ρu) L1(ρv) L1(E)

32 6.54E-17 9.10E-16 9.10E-16 1.33E-15
64 1.85E-16 1.95E-15 1.95E-15 4.78E-15
128 2.98E-16 4.78E-15 4.78E-15 8.97E-15
256 6.25E-16 8.32E-16 8.32E-16 2.04E-14
512 1.25E-15 1.83E-14 1.83E-14 4.24E-14

Table 4.6: L1-error for a general steady state using the approach for a priori known
hydrostatic equilibria from Lem. 4.3.14.

4.6.6 Perturbation of an Isothermal Atmosphere

One main advantage of well-balanced schemes is their ability to resolve small perturbations
of the hydrostatic equilibrium even on coarse grids. It is precisely this effect that we are
investigating with the following test. For this purpose, we take the initial values from
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Figure 4.4: Pressure perturbations of varying strength η of an isothermal atmosphere at
tf = 0.15 resolved by the 2S-FV (top row) and 2S-WB-FV (bottom row) scheme. The
perturbations are rescaled by the corresponding value of η.

the isothermal atmosphere in Sect. 4.6.4, which are in hydrostatic equilibrium, and add
a perturbation on the pressure by redefining its initial value by

p(x, y, 0) = p0 exp (−ρ0g(x+ y)/p0) + η exp
(
−100ρ0g((x− 0.5)2 + (y − 0.5)2)/p0

)
.

The strength of the perturbation is controlled by the parameter η. The numerical solutions
are computed on a 64 × 64 mesh up to a final time tf = 0.15. In order to investigate
the well-balancing effect, we compare the results of the new 2S-WB-FV scheme with a
non-well-balanced two-speed finite volume (2S-FV) scheme that uses the arithmetic mean
of left and right density for ρ̄.

The numerical solutions of the two schemes for three differently strong perturbations are
displayed in Fig. 4.4. For the largest perturbation with η = 10−1, a qualitative com-
parison shows no difference between the two solutions. In the case of the medium-sized
perturbation, the non-well-balanced 2S-FV scheme can still resolve the perturbation, but
the underlying hydrostatic equilibrium is no longer preserved. For the smallest perturba-
tion, the method does not resolve the perturbation at all and the scale of the perturbation
lies far outside of the scale of the plot. The well-balanced 2S-WB-FV method, on the
other hand, manages to resolve the medium and very small perturbation and also pre-
serves the underlying equilibrium. This underlines the functionality of the well-balancing
mechanism and also demonstrates the importance of this property for problems close to
hydrostatic equilibria.

4.6.7 Kelvin-Helmholtz Instability

In the following part, we run simulations of a Kelvin-Helmholtz instability. This is the
primary instability that arises when there is a velocity shear within a continuous fluid,
and it is the main source of vorticity that leads to the energy cascade in 3D turbulent
flows [LBA+22]. Let us consider a spatial domain I = [0, 2] × [−0.5, 0.5]. The initial
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Figure 4.5: Initial setups of u and v (here rescaled byM) used for simulating the growth
of the Kelvin-Helmholtz instability.

density, horizontal velocity and pressure are given by

ρ(x, y, 0) = γ
kg

m3
,

u(x, y, 0) =M[1− 2η(x, y)]
m

s
,

p(x, y, 0) = 1
kg

ms2
,

(4.149)

with

η(x, y) =





1
2

{
1 + sin [16π(y + 0.25)]

}
, if − 9

32 < y < − 7
32 ,

1, if − 7
32 < y < 7

32 ,
1
2

{
1− sin [16π(y − 0.25)]

}
, if 7

32 < y < 9
32 ,

0, else.

(4.150)

The ratio of specific heat is chosen to be γ = 1.4. The instability is started by adding a
perturbation to the y-velocity component in form of

v(x, y, 0) = 0.1M sin(2πx)
m

s
. (4.151)

The initial velocity profiles are also illustrated in Fig. 4.5. Periodic boundary conditions
are imposed in both directions. The initial data is transformed to dimensionless quantities
by the reference values

xr = 1 m, tr =
1

ur
s, ρr = 1

kg

m3
, ur =M m

s
, pr = 1

kg

ms2
. (4.152)

The final time is set to tf = 0.8. The chosen initial conditions are such that the interface
across the shear flow is smooth and resolved, which leads to convergent results at least in
the early stages of the evolution of the flow.
We perform a qualitative comparison between the low Mach compliant 2S-WB-FV scheme
and its counterpart, the one-speed well-balanced finite volume (1S-WB-FV) scheme that
uses the speeds (4.103) in order to investigate the effect of using two different relaxation
speeds. In Fig. 4.6, we present the numerical results for the local Mach number Mloc

relative to M at final time tf computed on a 128 × 64 grid. For all Mach numbers
M there is a clear difference in the quality of the results of the two methods. The 1S-
WB-FV scheme is not able to resolve the vortexes properly because the dissipation in
the momentum flux scales with O(1/M). The 2S-WB-FV scheme, on the other hand,



4.6. NUMERICAL RESULTS 79

1
S
-W

B
-F

V

M = 10−3 M = 10−2 M = 10−1

2
S
-W

B
-F

V

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
lo

c /M

Figure 4.6: Numerical results of the local Mach number rescaled by the correspondingM
at tf for the 1S-WB-FV (top row) and 2S-WB-FV (bottom row) scheme on a 128 × 64
grid.

manages to resolve the structures of the flows well even at low Mach numbers. The fact
that the results do not deteriorate for smaller Mach numbers shows that the dissipation
in the 2S-WB-FV scheme becomes Mach number independent by using the two relaxation
speeds and thus underlines the theoretical results from Sect. 4.3.4.

4.6.8 Stationary Vortex in a Gravitational Field

In this section, we investigate whether the positive effect of two relaxation speeds is also
visible when including gravitational forces. As a test, we use a version of the Gresho
vortex modified for the Euler equations with a gravitational source term that was already
given in [TPK20]. The density in this setup is defined by

ρ(x, y, 0) = exp

(
−Φ(x, y)

RT

)
. (4.153)

The rest of the initial data is given in radial coordinates (r, θ). The velocity field has the
form

uθ(r, 0) =





5r, if r ≤ 0.2,

2− 5r, if 0.2 < r ≤ 0.4,

0, else,

(4.154)

and the gravitational potential is defined by

Φ(r) =





12r2, if r ≤ 0.2,

0.5− ln(0.2) + ln(r), if 0.2 < r ≤ 0.4,

ln(2)− 0.5 rc
rc−0.4 + 2.5 rc

rc−0.4r − 1.25 1
rc−0.4r

2, if 0.4 < r ≤ rc,
ln(2)− 0.5 rc

rc−0.4 + 1.25 r2
c

rc−0.4 , else.

(4.155)

The pressure p is split into a hydrostatic pressure p0 and a pressure p2 associated with
the centrifugal forces and given by p = p0 +M2p2, where p0 = RTρ and

p2(r, 0) = RT





p21(r), if r ≤ 0.2,

p21(0.2) + p22(r), if 0.2 < r ≤ 0.4,

p21(0.2) + p22(0.4), else,

(4.156)
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Figure 4.7: Numerical results of the local Mach number rescaled by the corresponding
M at tf for the 1S-WB-FV (top row) and 2S-WB-FV (bottom row) scheme on a 40× 40
grid.

with

p21(r) =

(
1− exp

(
−12.5

r2

RT

))
,

p22(r) =
1

(1−M2)(1− 0.5M2)
exp

(−0.5 + ln(0.2))

RT

)

(
r−

1
RT
(
M4(r(10− 12.5r)− 2)− 4 +M4(r(12.5r − 20) + 6)RT

)

+ exp

(− ln(0.2)

RT

)(
4− 2.5M4RT + 0.5M4

))
.

The initial data is described in physical quantities. The reference values for the transfor-
mation in dimensionless quantities are given by

xr = 1 m, tr =
1

ur
s ρr = 1

kg

m3
, ur = 0.4π

m

s
, RT =

1

M2

m2

s2
. (4.157)

We choose γ = 5/3 for the adiabatic coefficient. The spatial domain is I = [0, 1]2 and has
periodic boundary conditions. The computations are carried out on a 40 × 40 grid until
a final time tf = 0.8s, which corresponds to one turn of the vortex. We solve this initial
value problem for various Mach numbers M using the 1S-WB-FV and the 2S-WB-FV
scheme. The solutions generated by the one-speed relaxation scheme are depicted in the
top row of Fig. 4.7, while the solutions computed by the two-speed relaxation scheme
are shown in the bottom row. The results support the findings of the Kelvin-Helmholtz
instability. The one-speed scheme introduces a Mach number dependent dissipation that
smears the structure of the vortex. The vortexes produced by the two-speed scheme, on
the other hand, retain their shape regardless of the Mach number so that no qualitative
difference is discernible.
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Figure 4.8: Time evolution of the total kinetic energy for different Mach numbersM and
grid resolutions N = Nx = Ny for the 2S-WB-FV scheme.

Quantitative evidence for this behavior can be found in the analysis of kinetic energy.
In (2.65) it is shown, that kinetic energy is conserved in the low Mach number limit. A
numerical scheme should mimic this behaviour discretely. Fig. 4.8 presents the loss of
total kinetic energy in time in the results of the 2S-WB-FV scheme. While the curves
for different grid resolutions N × N differ, the curves for different Mach numbers M
but the same grid resolution match. Consequently, the loss of kinetic energy, which can
be interpreted as a measure for the artificial dissipation of the numerical method, only
depends on the grid resolution but not on the Mach number.

4.7 Summary and Conclusions

The proposed scheme extends the two-speed relaxation approach to the full Euler equa-
tions with a time-independent gravitational source term. The resulting approximate Rie-
mann solver is designed in the way that it solves the inhomogeneous Riemann problem.
The two-speed ansatz reduces the artificial dissipation in the low Mach number regime,
making the scheme in consequence provably asymptotic-preserving. In numerical tests,
the two-speed method shows a significantly better performance in resolving nearly incom-
pressible flows in comparison to a classical one-speed Suliciu relaxation scheme. In the
case of supersonic flows, the method is reduced to the one-speed method so that enough
dissipation is introduced to capture shocks.
Solving the inhomogeneous Riemann problem helps to find a consistent discretization of
the fluxes and the source term. By incorporating a discretization of the hydrostatic equi-
librium equation into all intermediate states of the Riemann solver, the method becomes
well-balanced for certain families and a priori known hydrostatic equilibria. Numerical
simulations show that the well-balanced method can maintain the equilibria up to machine
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precision. This property also helps to resolve small perturbations of such a background
equilibrium.
The method is particularly stable since the approximate Riemann solver is positivity-
preserving, entropy-satisfying and prevents the occurrence of checkerboard modes in the
velocity and pressure variables. The price to be paid for this stability is a more restric-
tive CFL condition. Due to the fully explicit discretization, the CFL condition already
depends on the Mach number. By rescaling the relaxation velocity a to comply with
the subcharacteristic condition, the CFL condition for the two-speed method scales with
O(M2) instead of O(M). In practice, the method can therefore only be used for moder-
ately low Mach numbers. Numerical experiments moreover showed that if the two-speed
solver is combined with an implicit time-marching scheme, the nonlinear solver only con-
verges if the time step has the order O(M). It is therefore necessary to further develop
the two-speed method itself in order to relax the CFL condition.



Chapter 5

An Implicit-Explicit Strang
Splitting Method

The two-speed approach successfully reduces the artificial dissipation in the approximate
Riemann solver in the low Mach number regime. Though, it does not address the Mach
number dependent CFL restriction on the time step. Instead, the CFL condition becomes
more restrictive (even with implicit time integration to reach convergence of the nonlin-
ear solver). Therefore, in practice, there is a need for an alternative low Mach number
strategy that makes both the dissipation and the time step condition Mach number in-
dependent. In this chapter, we present a new FV method for the ideal MHD equations
that addresses both problems induced by low Mach numbers. The Godunov-type method
relies on a low Mach version of the HLLD solver [MM21] in which only the dissipation
term in the intermediate state of the pressure is rescaled while the wave speeds remain
unaltered. In order to bypass the restrictive CFL condition, a new time-marching scheme
is introduced. Since we only consider small sonic Mach numbersM, but not small Alfvén
Mach numbers MAlf , the CFL condition is only tightened by the acoustic pressure term
in the flux. For his reason, we split the MHD system into two parts following the approach
in [FMR09], and solve only the subset of continuity, momentum and energy equations im-
plicitly, whereas the induction equation is integrated using an explicit time-stepper. The
two separate steps are coupled with second-order accuracy by Strang splitting [Str68].
The time step is then limited by the fastest fluid/Alfvén speeds on the grid, and it is
approximately 1/M longer than what is allowed by the standard CFL condition. This
leads to a considerable speed-up when the Mach number of the flow is low.

Since the update on the induction equation is performed in a separate step, the flux-
Jacobian in the time-implicit part of the algorithm does not need to be evaluated with
respect to the magnetic field components. This allows us more flexibility when choosing
the method that evolves the magnetic field. In particular, we use a staggered formula-
tion of constrained transport [GS05] to satisfy the solenoidal constraint up to machine
precision, at least for a specific discretization of the divergence of the magnetic field.

The method is coupled with the Deviation Well-Balancing method [BCK21, EHB+21],
which allows to preserve the a priori known background stratification in MHSE, dramat-
ically reducing the magnitude of numerical errors and the strength of spurious flows.

This chapter is structured as follows. In Sect. 5.1 we briefly define the set of MHD equa-
tions that shall be discretized. In Sect. 5.2 and 5.3 we provide the details on the numerical
methods for space and time discretization. In Sect. 5.4 several numerical experiments are
run with the new MHD scheme in order to check its accuracy and efficiency in simulat-

83
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ing flows at low Mach numbers, even in the presence of a steep stratification. Finally, in
Sect. 5.5 we draw the conclusions and summarize the fundamental aspects of the proposed
algorithm. The results of this chapter closely follow the presentation in [LBA+22].

5.1 Governing Equations

In this chapter we rewrite the MHD equations (2.66) by including the time-independent
source term of the energy equation in the definition of the total energy

EΦ = ρe+
1

2
ρ|v|2 +

1

2
|B|2 + ρΦ. (5.1)

Using this definition, we can write the MHD equations in the following form:

∂

∂t




ρ
ρv
EΦ

B


+∇ ·




ρv
ρv ⊗ v + (p+ 1

2 |B|2)I−B⊗B
(EΦ + p+ 1

2 |B|2)v −B (B · v)
v ⊗B−B⊗ v


 =




0
ρg
0
0


 . (5.2)

Numerical experiments show that solving the equation for EΦ leads to more accurate re-
sults and better entropy and energy conservation properties in simulations of gas dynamics
with gravity [Mü20, EHB+21].

5.2 Spatial Discretization

The MHD system (5.2) takes the general form

∂Q
∂t

+
∂F1(Q)

∂x
+
∂F2(Q)

∂y
+
∂F3(Q)

∂z
= S(Q), (5.3)

with the respective vector of conservative variables Q, physical fluxes F1, F2, F3 and
source term S. For the discretization we use a FV method of the form

∂Qi,j,k
∂t

=− 1

∆x

(
F1,i+1/2,j,k − F1,i−1/2,j,k

)

− 1

∆y

(
F2,i,j+1/2,k − F2,i,j−1/2,k

)

− 1

∆z

(
F3,i,j,k+1/2 − F3,i,j,k−1/2

)

+ Si,j,k,

(5.4)

where F1, F2 and F3 represent numerical flux functions and S a numerical source term.
For the latter, we simply take the value of the physical source in the center of the cell,
which is accurate to second order:

Si,j,k ' Si,j,k. (5.5)

The computation of numerical fluxes, in contrast, needs more care, and is subject of the
following section.
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5.2.1 Numerical Flux Function

One suitable way to derive a proper estimate of the fluxes in a FV method for the MHD
equations is to use the HLLD approximate Riemann solver that is briefly described in
Ex. 3.3.7. The numerical fluxes of the original HLLD solver in [MK05] are computed
from Rankine-Hugoniot conditions of the form

FL∗ = F(QL) + SL(QL∗ −QL), (5.6)

FL∗∗ = FL∗ + SL∗(QL∗∗ −QL∗), (5.7)

FR∗ = F(QR) + SR(QR∗ −QR), (5.8)

FR∗∗ = FR∗ + SR∗(QR∗∗ −QR∗). (5.9)

However, we decide to only use the intermediate states from the original solver and plug
those states into the physical flux. Then the numerical flux is defined by

F (QL, QR) =





F(QL), if SL > 0,

F(QL∗), if SL < 0 < SL∗,

F(QL∗∗), if SL∗ < 0 < SM ,

F(QR∗∗), if SM < 0 < SR∗,

F(QR∗), if SR∗ < 0 < SR,

F(QR), if SR < 0.

(5.10)

Either way, the approximate Riemann solver introduces a large amount of dissipation
in the low Mach number regime. We can investigate this behaviour by analyzing the
intermediate flux as it is done for the two-speed relaxation solver in Sect. 4.3.4. It is
sufficient to concentrate on the momentum flux, as this is the only flux component in
which a term is divided by the Mach numberM. For the following part, we switch to the
dimensionless form of the MHD equations in order to show the Mach number’s influence.
The intermediate states for the velocity and the pressure are constant across the entropy
and Alfvén waves and are given by

SM = u∗ =
(SR − uR)ρRuR − (SL − uL)ρLuL − 1

M2

(
pRT + pLT

)

ρL(uL − SL)− ρR(SR − uR)
, (5.11)

p∗T =
(SR − uR)ρRpLT − (SL − uL)ρLpRT +M2ρLρR(SR − uR)(SL − uL)(uR − uL)

(SR − uR)ρR − (SL − uL)ρL
,

(5.12)

where SL and SR can be defined by (3.45) with the dimensionless fast magnetosonic
speeds given in (2.81). The total pressure in this dimensionless version is given by pT =
p + 1

2M2|B|2. We can rewrite these intermediate states in more convenient forms that
strongly resemble those in Suliciu-type relaxation solvers:

u∗ =
aLuL + aRuR + 1

M2

(
pLT − pRT

)

aL + aR
, (5.13)

p∗T =
aRpLT + aLpRT +M2aLaR(uL − uR)

aL + aR
, (5.14)

with the speeds

aL = ρL(SL − uL) and aR = ρR(SR − uR). (5.15)
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In the low Mach number limit, these speeds are dominated by the sound speed, i.e.

aL =
1

M
(
ρLcL +O(M)

)
and aR =

1

M
(
ρRcR +O(M)

)
. (5.16)

We define

āL = ρLcL and āR = ρRcR, (5.17)

which satisfy

āR − āL = O(M2), (5.18)

so that we can write ā for both āL and āR. Expansions of the intermediate states (5.13)
and (5.14) then yield

u∗ =
uL + uR

2
+
pLT − pRT

2āM +O(M), (5.19)

p∗T =
pLT + pRT

2
+Mā

uL − uR
2

+O(M2). (5.20)

For the sake of simplicity, we do not write out the O(M2) terms in the pressure because
they remain bounded in the flux and do not contribute to the excessive dissipation in the
low Mach number regime. We can now analyze the intermediate momentum flux, which
has the form

FL∗ρu = ρL∗(u∗)2 +
p∗T
M2
−
(
BL
x +BR

x

2

)2

=
ρL(uL)2 + ρR(uR)2

2
+
pLT + pRT

2M2
− (BL

x )2 + (BR
x )2

2

−
(
uL − uR

2

)2

+ 2

(
pLT − pRT

2āM

)(
uL + uR

2

)
+

(
pLT − pRT

2āM

)2

+ ā
uL − uR

2M

+

(
BL
x −BR

x

2

)2

+O(1).

(5.21)

Here, we made use of the fact that in the low Mach limit the density is constant up to
errors of order O(M2). The numerical flux consists of a central flux and a dissipation
term. Since the pressure difference pLT − pRT scales with O(M2), these dissipation terms
remain bounded despite the Mach number in the denominator. In contrast, the penulti-
mate dissipation term containing the velocity difference uL−uR scales with O(1/M) and
thus causes an increasing dissipation of the original version of the HLLD solver in the low
Mach number limit.

In order to cure this problem, we rely on a modification of the solver proposed in [MM21].
In this modification, a Mach number dependent parameter φ ∝ M is inserted in the
intermediate state of the total pressure:

p∗T =
(SR − uR)ρRpLT + (SL − uL)ρLpRT

(SR − uR)ρR − (SL − uL)ρL

+ φ
M2ρLρR(SR − uR)(SL − uL)(uR − uL)

(SR − uR)ρR − (SL − uL)ρL
.

(5.22)
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This parameter is computed according to the following formulas:

cLu =


1

2


 |B

L|2
ρL

+ |vL|2 +

√( |BL|2
ρL

+ |vL|2
)2
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}
,

φ =χ(2− χ).

(5.23)

The modification of the pressure changes the scaling in the momentum flux (5.21) into

FL∗ρu =
ρL(uL)2 + ρR(uR)2

2
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2M2
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x )2
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)(
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2āM

)2

+ ā
uL − uR

2

+

(
BL
x −BR

x

2

)2

+O(M),

(5.24)

so that the Mach number in the velocity term vanishes and in consequence the artificial
dissipation becomes independent of the sonic Mach number. The modified solver is called
low-dissipation HLLD (LHLLD) solver.

Remark 5.2.1. If the Alfvén Mach number MAlf is not equal to one, we note that the
combined dissipation in (5.24) has a residual scaling O(1/MAlf). Therefore, the solver
still introduces too much dissipation in sub-Alfvén regimes.

Remark 5.2.2. The low Mach fix in LHLLD works very similarly to the one in the
two-speed relaxation solver. Here too, an additional M is inserted into the intermediate
pressure to change the scaling of the velocity term. In contrast to the two-speed approach,
however, there is only this one local change and no additional dissipation is introduced
in the pressure difference dissipation term of the intermediate velocity (see Rem. 4.3.11).
Therefore, it is at least questionable whether the LHLLD solver (or a low-dissipation
HLLC (LHLLC) solver) fulfills a discrete entropy inequality as the relaxation solver does.

Remark 5.2.3. Due to the close relationship between HLL-type and relaxation solvers, it
is clear that the low Mach fix proposed in [MM21] can also be transferred to Suliciu-type
relaxation solvers.

5.2.2 Well-Balancing Method

In our scheme the hyperbolic fluxes and gravitational source terms are discretized sep-
arately with different methods. As a consequence, the scheme does not automatically
preserve magnetohydrostatic solutions on a discrete grid exactly. Therefore, whenever
a stratification needs to be enforced to be in MHSE on the computational grid, we use
the Deviation Well-Balancing method [BCK21, EHB+21]. The main ingredient of this
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method is an a priori known target state Q̃ that is a magnetohydrostatic solution to (5.3)
and consequently satisfies

∂F1(Q̃)

∂x
+
∂F2(Q̃)

∂y
+
∂F3(Q̃)

∂z
= S(Q̃), (5.25)

with ṽ = 0. Subtracting (5.25) from the original balance law in (5.3) yields a system of
PDEs for the deviations from the target solution ∆Q = Q− Q̃:

∂(∆Q)

∂t
+

(
∂F1(Q̃+ ∆Q)

∂x
− ∂F(Q̃)

∂x

)

+

(
∂F2(Q̃+ ∆Q)

∂y
− ∂F2(Q̃)

∂y

)

+

(
∂F3(Q̃+ ∆Q)

∂z
− ∂F3(Q̃)

∂z

)
= S(Q̃+ ∆Q)− S(Q̃).

(5.26)

Now, to obtain a well-balanced method, (5.26) is discretized according to the FV method
described in Sect. 5.2, which leads to the semi-discrete form

∂(∆Q)i,j,k
∂t

=− 1

∆x

(
F dev1,i+1/2,j,k − F dev1,i−1/2,j,k

)

− 1

∆y

(
F dev2,i,j+1/2,k − F dev2,i,j−1/2,k

)

− 1

∆z

(
F dev3,i,j,k+1/2 − F dev3,i,j,k−1/2

)

+ Sdevi,j,k.

(5.27)

In this formulation, the deviation fluxes and source terms are defined by

F dev1,i+1/2,j,k = F1,i+1/2,j,k −F1

(
Q̃i+1/2,j,k

)
, (5.28)

F dev2,i,j+1/2,k = F2,i,j+1/2,k −F2

(
Q̃i,j+1/2,k

)
, (5.29)

F dev3,i,j,k+1/2 = F3,i,j,k+1/2 −F3

(
Q̃i,j,k+1/2

)
, (5.30)

Sdevi,j,k = Si,j,k − S(Q̃i,j,k), (5.31)

where F1,i+1/2,j,k denotes the LHLLD flux evaluated in the states

QL,Ri+1/2,j,k = ∆QL,Ri+1/2,j,k + Q̃i+1/2,j,k, (5.32)

while F1

(
Q̃i+1/2,j,k

)
corresponds to the physical flux of the MHD system evaluated in

the target solution at the cell boundary. The deviations ∆Qi,j,k, rather than the states
Qi,j,k, are reconstructed to the boundary of the cell1. In the case of ∆Qi,j,k = 0, this
means that the left and right state at the cell interface, which are used as initial data for
the Riemann problem, are equal. A consistent Riemann solver then guarantees

F1,i+1/2,j,k = F1

(
Q̃i+1/2,j,k, Q̃i+1/2,j,k

)
= F1

(
Q̃i+1/2,j,k

)
, (5.33)

1 Deviations in the primitive variables can also be reconstructed if the corresponding equilibrium values
are provided at the cell centers and at the cell boundaries.
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so that the deviation fluxes and source terms become zero. Thus, the resulting method
preserves magnetohydrostatic solutions and is well-balanced. Moreover, by removing the
numerical errors arising from the magnetohydrostatic stratification, this method allows
to simulate low Mach flows in stratified setups, which only cause small deviations from
the MHSE state and would be completely dominated by spurious flows otherwise.

5.2.3 Constrained Transport Method

As described in Sect. 3.10.3, FV methods do not automatically satisfy the solenoidal con-
straint. This is also the case for the method at hand. In order to prevent the scheme from
creating unphysical magnetic monopoles, we rely on a staggered constrained transport
method. The key point of these methods is to compute the surface integral of

∂B

∂t
+∇× E = 0

over cell boundaries using Stokes’ theorem, which leads to an equation for the magnetic
field at the cell face2

∂Bx,i+1/2,j,k

∂t
=

1

∆y

(
Ez,i+1/2,j+1/2,k − Ez,i+1/2,j−1/2,k

)

− 1

∆z

(
Ey,i+1/2,j,k+1/2 − Ey,i+1/2,j,k−1/2

)
.

(5.34)

Analogous formulas can be derived for By and Bz. As a consequence of (5.34), it becomes
necessary to store the magnetic field at the cell faces (see Fig. 5.1). However, the recon-
struction of the initial data for the Riemann problems that are solved by the approximate
Riemann solver still requires the cell-centered values of the magnetic field. These can be
derived after the update (5.34) from the therein calculated face-centered magnetic field
by an arithmetic mean

Bx,i,j,k =
1

2

(
Bx,i−1/2,j,k +Bx,i+1/2,j,k

)
,

By,i,j,k =
1

2

(
By,i,j−1/2,k +By,i,j+1/2,k

)
,

Bz,i,j,k =
1

2

(
Bz,i,j,k−1/2 +Bz,i,j,k+1/2

)
.

(5.35)

The computation of the face-centered magnetic field in (5.34) relies on the electromotive
force at the cell edges, which can be computed by the Contact-CT algorithm of [GS05]. In
this method, the electric field at cell edges is computed as a simple arithmetic average of
the four neighboring face-centered electromotive force components. The average is com-
bined with a diffusion term that helps removing spurious oscillations when the magnetic
field is advected. For instance, Ez,i+1/2,j+1/2,k is approximated to second order accuracy
by

Ez,i+1/2,j+1/2,k =
1

4

(
Ēz,i+1/2,j,k + Ēz,i+1/2,j+1,k + Ēz,i,j+1/2,k + Ēz,i+1,j+1/2,k

)

+
∆y

8

{(
∂Ez
∂y

)

i+1/2,j+1/4,k

−
(
∂Ez
∂y

)

i+1/2,j+3/4,k

}

+
∆x

8

{(
∂Ez
∂x

)

i+1/4,j+1/2,k

−
(
∂Ez
∂x

)

i+3/4,j+1/2,k

}
,

(5.36)

2 Here the calculation is made over the cell boundary (i+ 1/2, j, k).
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Figure 5.1: Locations within the three-dimensional cell Ci,j,k at which the different quan-
tities need to be stored in the Contact-CT method. The vector Q contains all conservative
variables.

where Ēz can be computed from the solution given by the approximate Riemann solver.
The calculation for the x- and y-component is again analogous. The upwind diffusion
term enters in the derivatives of the electromotive force in (5.36), which are obtained
according to the sign si+1/2,j,k of the entropy waves at the cell interfaces:

(
∂Ez
∂y

)

i+1/2,j+1/4,k

=
1 + si+1/2,j,k

2

(
Ēz,i,j+1/2,k − Eccz,i,j,k

∆y/2

)
+

1− si+1/2,j,k

2

(
Ēz,i+1,j+1/2,k − Eccz,i+1,j,k

∆y/2

)
.

(5.37)

Here Eccz,i,j,k = (−vi,j,k ×Bi,j,k)z represents the z-component of the cell-centered electro-
motive force. The discretization of the electromotive force leads to a semi-discrete form
of (5.34) that can be integrated numerically in time. Any time-stepper that solves the
resulting system of ODEs can keep the cell volume average of ∇ ·B defined by

(∇ ·B)i,j,k =
Bx,i+1/2,j,k −Bx,i−1/2,j,k

∆x
+

By,i,j+1/2,k −By,i,j−1/2,k

∆y
+

Bz,i,j,k+1/2 −Bz,i,j,k−1/2

∆z
,

(5.38)

within rounding errors.

5.3 Time Integration Algorithm

In addition to the spatial discretization, the scheme needs a suitable time discretization.
A fully time-explicit method is computationally costly in practice due to its Mach number
dependent CFL condition (see Sect. 3.10.1). In order to relax the CFL condition by mak-
ing it independent of the Mach number, at least a part of the PDE system needs to be
discretized time-implicitly. In regimes of low sonic Mach numbers, the stiffness is mostly
generated by the pressure flux in the momentum equation, while the nondimensional form
of the induction equation in (2.80) does not depend on the Mach number of the flow. This
suggests that implicit time discretization only needs to be applied to the subset of con-
tinuity, momentum and energy equations, whereas the induction equation can be solved
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with explicit time-steppers. Therefore, we split the induction equation from the continu-
ity, momentum and energy equations, based on the approach described in [FMR09]. This
allows us to use different spatial and temporal discretizations depending on the problem
at hand. For the continuity, momentum and energy equations we decide to use an ES-
DIRK2 scheme [HS96]. The resulting nonlinear system of equations is solved iteratively
with a root-finding Raphson-Newton algorithm, which relies on the analytic formulation
of the flux-Jacobian. The Biconjugate Gradient Stabilized Method (BiCGSTAB(l)) [SF93]
is used to solve each sub-step of the nonlinear solver. In contrast, the semi-discrete form
of the induction equation (see (5.34)) is solved with the time-explicit SSP-RK2 method
of [SO88].

These two updates can be combined to second order accuracy with Strang splitting [Str68]:

Qn+1 = L( 1
2

∆t)H(∆t)L( 1
2

∆t)Qn. (5.39)

Here, L represents a linear operator that updates only the magnetic field with the explicit
marching scheme, while the nonlinear operator H updates density, momentum and total
energy (including source terms) using the implicit stepper. In each sub-step of Strang
splitting, the discretization of the fluxes, source terms, and electromotive force is per-
formed according to the methods described in Sect. 5.2. From here on, we refer to this
type of time discretization as implicit-explicit Strang splitting (IESS). The implicit-explicit
terminus refers to the different discretization of continuity, momentum and energy equa-
tions in contrast to the induction equation. Despite the similarity in name, this approach
should not be confused with IMEX methods such as the one in Chapter 6.

Numerical experiments performed with the IESS approach suggest that the maximum
time step allowed for stability is approximately determined by

∆t = min
Ω=(i,j,k)

{
∆x

|uΩ|+ ca,x,Ω
,

∆y

|vΩ|+ ca,y,Ω
,

∆z

|wΩ|+ ca,z,Ω

}
, (5.40)

so that the propagation of fluid motions and Alfvén waves is well-resolved in time. This
time step is approximately 1/M larger than that allowed by the conventional CFL condi-
tion if the plasma-β is high. Therefore, the computational effort is considerably reduced
when simulating low Mach number flows. The price one has to pay is that the propagation
of fast magnetosonic waves is not well-resolved in time.

A single step of the described time-marching scheme can be summarized in the following
way:

1. Get ∆t from (5.40) given ρn, ρvn, EnΦ and Bn.

2. Use SSP-RK2 and Contact-CT to solve the induction equation over the first half of
the time step ∆t/2. This results in an intermediate solution for the magnetic field
Bn+1/2.

3. Use this intermediate solution Bn+1/2 to solve the continuity, momentum and energy
equations over the full time step ∆t with ESDIRK2. If gravity is present and a target
state Q̃ is a priori known, then the well-balancing method described in Sect. 5.2.2
can be used. The results are the solutions for density, momentum and energy at the
next step, ρn+1, ρvn+1 and En+1

Φ .
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4. Use ρn+1, ρvn+1, En+1
Φ and Bn+1/2 for solving the induction equation over ∆t/2.

This yields the magnetic field at the final step Bn+1.

The proposed MHD scheme is extremely modular meaning that time-steppers as well as
spatial reconstruction schemes and approximate Riemann solvers as proposed here can
in principle be used in each sub-step of the algorithm. Additionally, the well-balancing
method can easily be switched off by setting Q̃ = 0 if required.

5.4 Numerical Results

In order to assess the accuracy and performance of the newly proposed IESS method for
solving the ideal MHD equations, we rely on a set of numerical experiments. Since the
main purpose of the scheme is to be able to simulate flows at low sonic Mach numbers in
strong stratifications, we decide not to show the typical tests commonly run by other MHD
codes. These usually include shock tubes, supersonic vortices and magnetic blasts, which,
however, are designed to test the shock-capturing capabilities of a numerical scheme.
Instead, we run a series of verification benchmarks that are more suited for testing the
low Mach properties of an MHD code.
In the first two tests (i,ii), we solve the homogeneous MHD equations. The convergence
and scaling of the method is analyzed for the advection of a stable MHD vortex (i). We
compare the results for the standard HLLD and the low-dissipation LHLLD solver in order
to investigate the effect of the low Mach fix on the artificial dissipation. The simulations
with the LHLLD solver are repeated in fully explicit mode using a SSP-RK2 method for
time integration, which allows to quantify the speed-up of IESS as a function of the Mach
number.
The ability of accurately evolving shear instabilities is fundamental in the context of
simulations of turbulence, as they generate additional vorticity which leads to a cascade of
energy. For this reason, we run simulations of a magnetized Kelvin-Helmholtz instability
(ii). We follow the growth and evolution of the instability in a resolution study from low
Mach to slightly subsonic regimes. A comparison between the standard HLLD and the
low-dissipation LHLLD solver is performed to show the advantage of using low-dissipation
fluxes over conventional methods in regimes of low Mach numbers.
In the third numerical experiment, we consider the influence of gravity (iii). The test
setup consists of a MHSE to which we add a small perturbation in the pressure in order
to validate the well-balancing method. To check the entropy conservation properties of
the scheme, we model the rise of a parcel of fluid with higher entropy content than the
(isentropic) background stratification, i.e. a “hot bubble”. By changing the magnitude
of the entropy perturbation, we simulate different rise velocities of the bubble, down to
maximum Mach numbers of Mmax ∼ 10−4. To quantify the magnitude of the numerical
errors generated by an unbalanced stratification, we also simulate the rise of the bubble
at Mmax ∼ 10−2 without well-balancing.

For all of the following tests, an ideal gas EoS is used with γ = 5/3 except when specified
otherwise. The time step for the IESS scheme is chosen according to the CFL condition
(5.40) and reduced by 20% to get a more conservative stability criterion. Finally, unlim-
ited linear reconstruction, which is second order accurate in space, is applied to primitive
variables. Overall, the proposed scheme is (globally) second order accurate.

The method presented is implemented in the Seven-League Hydro (SLH) code [Mic13,
Ede14] and all following tests are performed with this code.



5.4. NUMERICAL RESULTS 93

5.4.1 Balsara Vortex

In order to check the convergence and to test the low Mach capabilities of the scheme, we
consider a MHD vortex first described by [Bal04]. This is an exact stationary solution of
the two-dimensional homogeneous ideal MHD equations in which the distribution of the
centrifugal acceleration, magnetic tension, gas and magnetic pressure gradients is such
that the vortex is stable. The spatial domain is I = [−5, 5]2 with periodic boundaries in
both directions. The initial conditions are given by

ρ(x, y, 0) = 1,

(u, v)(x, y, 0) = Ṽ e
1−r2

2 (−y, x),

p(x, y, 0) = 1 +

[
B̃2

2
(1− r2)− Ṽ 2

2

]
e1−r2

,

(Bx, By)(x, y, 0) = B̃e
1−r2

2 (−y, x),

(5.41)

with r2 = x2+y2. Ṽ is the maximum rotational velocity of the vortex and B̃ sets the value
of the maximum Alfvén speed on the grid. The ratio βK = B̃2/Ṽ 2 represents the ratio
of magnetic to rotational kinetic energy, which is constant across the domain. To make
this problem numerically more challenging, the vortex is advected along the diagonal of
the computational grid with |vadv| = Ṽ . The vortex is evolved for one advective crossing
time tf = 10

√
2/Ṽ after which it returns to the initial position. In this time interval, the

vortex rotates 2.25 times.

In order to check the convergence of the scheme in 2D, we run the vortex with Ṽ =
10−3 (corresponding to Mmax = max(Mloc)t=0 = 1.55 × 10−3) and βK = 1 at different
resolutions. At the end of the simulation, the L1-error is computed for each primitive
variable QPk as

L1(QPk ) =
1

N2

∑

i,j

|QPk,i,j(t = tf )−QPk,i,j(t = 0)|, (5.42)

where i, j are the spatial indices. Fig. 5.2 shows the convergence of the L1-error for differ-
ent grids from N = 32 up to N = 512 cells per dimension. Convergence is second order
for all primitive variables.

In a next step, we investigate the effect of the low Mach modification in LHLLD. Therefore,
we re-run this last set of simulations with the standard version of HLLD. In Fig. 5.4 we
show the final rotational kinetic energy distribution obtained with the two methods:

ER =
1

2
ρ

[(
u− Ṽ/

√
2
)2

+
(
v − Ṽ/

√
2
)2
]
. (5.43)

At low resolution, HLLD considerably stretches the vortex and a large fraction of kinetic
energy is dissipated into internal energy. In contrast, simulations run with LHLLD show
mild dissipation and dispersion errors are only visible at the lowest resolutions. All sim-
ulations converge with increasing resolution, but the kinetic energy conservation in the
vortex simulated with HLLD is still two orders of magnitude worse than that obtained
with LHLLD at the highest resolution considered in this study.
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Figure 5.2: Convergence of the L1-error
in the Balsara vortex for each primitive
variable as a function of resolution. For
these simulations, the initial data are set
such that the parameters are Ṽ = 10−3

and βK = 1. The dashed black line is
the second order scaling.
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In order to study the behavior of the LHLLD solver in a wider range of subsonic regimes
in both weakly and strongly magnetized fluids, we run the following grid of models

(Ṽ )× (βK) =
(
10−5, 10−4, 10−3, 10−2, 10−1

)
×
(
10−2, 10−1, 1, 101, 102

)
. (5.44)

Given this choice of parameters, the initial maximum Mach number M ranges from
1.55 × 10−5 to 1.55 × 10−1. Fig. 5.5 shows the magnetic energy distribution after one
advective crossing time tf computed on a 64 grid. Numerical dissipation converts a frac-
tion of kinetic and magnetic energy into internal energy, but the shape of the vortex is
well-preserved in all runs. The dissipation rate is virtually independent ofM. In contrast,
dissipation of magnetic energy depends on the value of βK. As already pointed out in
Rem. 5.2.1, the pressure-diffusion coefficient in LHLLD has a residual scaling O(1/MAlf).
A larger value of βK corresponds to lower MAlf , which then increases the magnitude of
the numerical dissipation. The velocity field is progressively more diffused out and be-
comes less efficient in sustaining the magnetic field through induction against numerical
resistivity.

As explained in Sect. 5.3, one advantage of IESS is that it can employ longer time steps
than fully time-explicit methods without sacrificing stability. However, a single step of
the proposed scheme is much more expensive than a single step of a more standard time-
explicit marching scheme, as a large nonlinear system has to be solved iteratively with
a Raphson-Newton method. Because of these competing effects, we expect the IESS
scheme to be more efficient than an explicit time-stepper below a certain Mach number.
To determine this threshold, we run sets of simulations with the parameters

(Ṽ )× (βK) = (10−4, 10−3, 10−2, 10−1)× (10−1, 1, 101), (5.45)
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Figure 5.4: Distribution of the rotational kinetic energy (normalized by the maximum
initial value) of the Balsara vortex with Ṽ = 10−3 and βK = 1 after one advective time
tf . The top panels show the vortices obtained with the HLLD flux function as a function
of resolution, while the plots in the bottom panels are obtained with LHLLD. The insets
show the fraction of rotational kinetic energy that has been dissipated by the end of the
simulation: (ER,t=tf )tot/(ER,t=0)tot − 1.

using both IESS and the explicit SSP-RK23 on 40 × 40 grid cells. Every other sub-
step of the Godunov-type method (like the spatial reconstruction, the LHLLD flux func-
tion and constrained transport) remains unchanged, so the only difference is in the
time discretization. At the end of each simulation, the ratio of the wall-clock times
WCTSSP−RK2/WCTIESS is taken as a measure of the relative efficiency between the
marching schemes. The results are shown in Fig. 5.3. As expected, the speed-up of
IESS increases as the Mach number of the vortex is decreased. The simulations with
βK = 10 are slower than the other cases, as the larger Alfvén speed considerably reduces
the time step estimate in (5.40), while no significant difference is seen between βK = 0.1
and βK = 1.0. IESS overtakes SSP-RK2 at Mmax ' 4 × 10−2 for βK = (0.1, 1) and
Mmax ' 2× 10−2 for βK = 10. AtMmax = 10−3, IESS is ten to twenty times faster than
SSP-RK2. This justifies the implementation efforts of a partially implicit time discretiza-
tion algorithm for modeling slow flows.

5.4.2 Magnetized Kelvin-Helmholtz Instability

In this section, we run simulations of a magnetized version of the Kelvin-Helmholtz in-
stability presented in Sect. 4.6.7. The spatial domain is again I = [0, 2]× [−0.5, 0.5] with
periodic boundary conditions and the initial conditions for density, velocity and pressure
remain as given in (4.149)-(4.151). At this point, however, we do not transform the values
into dimensionless quantities, but solve the dimensional system. Thus, the final time now
depends onM and is reached for tmax = 4.8/M. For the MHD equations, a uniform and
horizontal initial magnetic field is added:

Bx(x, y, 0) = 0.1M, By(x, y, 0) = 0. (5.46)

The initial data results in a minimum Alfvén Mach number MAlf,min = 11.82 for all
values of M. It is well-known that magnetic fields aligned with the shear flow have a
stabilizing effect because they exert a restoring force on the perturbed interface [Cha61].

3 For the time-explicit simulations, the CFL time step is reduced by 20%.
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Figure 5.5: Magnetic energy distribution of the Balsara vortex after one advective crossing
time tf , normalized by the maximum magnetic energy at t = 0. The ratio of the magnetic
to the (rotational) kinetic energy of the vortex is varied along the y-axis (in descending
order), while the initial maximum rotational velocity Ṽ varies along the x-axis. The inset
in each subplot shows the ratio of the final to the initial magnetic energy. The vortex
run with Ṽ = 10−1 and βK = 102 (bottom right corner) has a maximum Mach number
ofMmax = 1.65× 10−1. In that system, the gas pressure drops in the regions around the
center of the vortex to balance the large magnetic and centrifugal forces, which ultimately
decreases the sound speed where the velocity is maximum.

With a field too strong, the instability may reach saturation when the flow is still essen-
tially laminar or it may be suppressed completely. Instead, weak magnetic stresses do
not considerably affect the initial growth of the instability, so the flow can develop the
typical vortex structures present in the pure hydrodynamic case. This leads to a much
more complex evolution in the nonlinear phase [FJRG96]. For this weak field regime,
nearly laminar flows are expected only if min(MAlf)t=0 . 1.1, as shown in Fig. 7.2.

The evolution of the Kelvin-Helmholtz instability is studied for a wide range of Mach
numbers and grid resolutions:

(M)× (N) =
(
10−4, 10−3, 10−2, 10−1

)
× (32, 64, 128, 256, 512, 1024) . (5.47)
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As done in the previous test, we compare the results obtained with both the HLLD and
LHLLD solver. Fig. 5.6 and Fig. 5.7 show the time evolution of the y-direction kinetic
energy Ekin,y =

∑
ij(ρv

2)ij/2 and the total magnetic energy Emag =
∑

ij |Bij |2/2 for all
the simulations considered in this study. Because of stretching and wrapping of the field
lines within the vortices, the magnetic energy slowly increases with time at the expense
of the kinetic energy content of the flow. After the primary rolls have reached the top
and bottom boundaries (t/tmax ' 0.25), Ekin,y saturates due to the periodicity of the grid
and starts to decrease. The secondary vortices keep winding up the magnetic field lines
until Lorentz forces start to feedback on the velocity field, breaking down these inner
structures. The two original shear interfaces get closer to each other (see Fig. 7.1) until a
strong numerical reconnection event happens at t/tmax ' 0.45, which violently decouples
the primary rolls and causes a secondary peak in Ekin,y at t/tmax ' 0.5. After this time
span, other reconnection events break up the flow into smaller structures, and both the
magnetic and the kinetic energy are slowly dissipated away by the action of numerical
resistivity and viscosity.

Since in this case we solve the ideal MHD equations, there is no characteristic scale on
which magnetic and kinetic energy are dissipated into heat. So numerical effects play a
significant role on progressively smaller scales at higher resolution. Thus, the amplifica-
tion and dissipation of magnetic energy hardly converge for the resolutions considered in
this study. The initial growth of Ekin,y, by contrast, is not much influenced by the initial
weak field, and it is mostly determined by the strength of the shear flows and the width of
the shear interface which is resolved. As a consequence, Ekin,y converges until the major
numerical reconnection event affects the velocity field. As shown in Fig. 5.6, the HLLD
solver requires more resolution to reach convergence as the setup is run at progressively
lower sonic Mach numbers. Eventually, the Mach number dependent dissipation term in
the momentum flux (5.21) completely dominates the evolution of the flow and deteriorates
the numerical solution. For this reason, atM = 10−4 we are able to successfully run with
HLLD only the 64 × 32 and 128 × 64 grids, while for higher resolutions the nonlinear
solver fails to converge.

The effects of numerical dissipation are also shown in Fig. 5.8, where the distributions of
the sonic Mach number obtained with HLLD and LHLLD are compared at fixed resolution
(128× 64 cells) for different values of M at t/tmax = 1/6. While in moderately subsonic
regimes the large-scale structures in the flow are qualitatively similar, for lower Mach
numbers HLLD introduces progressively more dissipation and the instability is eventually
halted. When LHLLD is used instead, the morphology of the flow seems to be indepen-
dent of the Mach number.

Finally, we perform a quantitative convergence study by computing the L1-error associ-
ated with Ekin,y at t/tmax = 1/6. At this time, the first rolls have developed to consid-
erable vertical wavelengths (see Fig. 5.8) so that the instability has already entered the
nonlinear regime, and the flow is expected to converge as shown in Fig. 5.6. The L1-error
is computed against a reference solution that we take from the highest grid resolution runs
considered in this test (N = 1024) using the LHLLD solver. All simulations (including
the reference solutions) are down-sampled to a 64×32 grid so that the errors can directly
be computed for different resolutions. This analysis is repeated for different values of M
using both HLLD and LHLLD. The results are shown in Fig. 5.9. The errors are rescaled
by M2 so that curves corresponding to different sonic Mach numbers lie on the same
scale. Overall, the convergence is second order with N for all simulations. The LHLLD
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Figure 5.6: Time evolution of the y-direction kinetic energy rescaled by its initial value
in the magnetized Kelvin-Helmholtz instability test problem. Each panel corresponds to
a different initial Mach numberM. Different colors are used for different grid resolutions
(the 64 × 32 and 128 × 64 grids cells have been left out for clarity). Results obtained
with the HLLD solver are represented by dot-dashed lines, while solid lines are used for
LHLLD. The black solid line in each panel is the reference solution. As explained in the
text, the nonlinear solver does not converge when using HLLD atM = 10−4 for N > 64.

solver provides almost identical (rescaled) errors at given resolution in different regimes
of Mach numbers. This is expected because the numerical dissipation introduced by this
solver does not depend on M, thanks to the low Mach modification in (5.23). Instead,
the errors computed for the HLLD runs show a clear dependence on the sonic Mach num-
ber, and the errors get larger for slower flows. In particular, at M = 0.1, HLLD needs
approximately 1.2 times the resolution of LHLLD to achieve the same accuracy, which
justifies the use of HLLD in this regime of Mach numbers. Instead, when M = 10−2

and M = 10−3, HLLD needs respectively twice or four times the resolution to be as
accurate as the low-dissipation flux, which increases the amount of computing time by 8
or 64. Thus, the use of a low Mach approximate Riemann solver becomes indispensable
for providing accurate results in regimes of low sonic Mach numbers with moderate grid
resolutions, which would be unfeasible with more standard solvers.
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Figure 5.7: Same as Fig. 5.6 but showing the total magnetic energy divided by its initial
value.
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Figure 5.8: Distribution of the local sonic Mach number in the Kelvin-Helmholtz instabil-
ity test at t/tmax = 1/6 obtained with the HLLD (top panels) and the LHLLD (bottom
panels) solvers on a 128 × 64 grid for different values of M. All panels are rescaled by
the corresponding value of M.

5.4.3 Hot Bubble

Flows in deep stellar convection zones are usually characterized by the presence of slow
parcels of fluid which move in a stratification that is unstable against convection. In
the absence of volume heating and cooling processes, these packets of fluid preserve their
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Figure 5.9: Convergence with resolution N of the L1-error associated with Ekin,y rescaled
byM2 in the simulations of the Kelvin-Helmholtz instability. Different colors are used for
different initial Mach numbers M using the LHLLD (solid lines) and HLLD (dot-dashed
lines) solvers. The black dashed line is the second order scaling.

entropy content until they mix with the surroundings. Therefore, a numerical scheme de-
signed to simulate such flows should have good entropy conservation properties. However,
entropy conservation is hard to achieve if the density, temperature and pressure stratifica-
tions span several orders of magnitude and if the flows are very slow, since their entropy
content would only be slightly higher/lower than the adiabatic surroundings4. Under
these conditions, discretization errors caused by an imperfect balance of the background
MHSE stratification can dominate the dynamics and deteriorate the numerical solution.
The magnitude of such errors can be drastically reduced by using well-balancing tech-
niques.

In this section, we check the entropy conservation properties of the new MHD scheme by
running simulations of the “hot bubble” setup described by [EHB+21], where a bubble of
higher entropy content with respect to the surroundings buoyantly rises in an adiabatic
stratification. The physical domain is mapped on a 2D Cartesian grid (Nx = 2/3 ×
Ny), and the background stratification is in MHSE. Boundary conditions are periodic
everywhere and the gravitational acceleration takes the form

gy(x, y) = g0 sin(kyy), (5.48)

where g0 = −1.09904373× 105 cm
s2 , ky = 2πy/Ly is the maximum vertical wavelength and

Ly is the vertical extent of the grid. The value of g0 is set such that the ratio of the
maximum to the minimum gas pressure5 p(x, y) is 100, which corresponds to 4.6 pressure
scale heights. The entropy profile inside the bubble is given by

A = A0

{
1 +

(
∆A

A

)

t=0

cos

(
π

2

r

r0

)2
}
, (5.49)

4 Better entropy conservation properties can be achieved by directly evolving the specific entropy
instead of EΦ. However, this approach does not conserve the total energy.

5 More details on how to compute the pressure profile can be found in [EHB+21].
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where A0 is background entropy, r0 is the radius of the bubble, r is the distance from the
center of the bubble and (∆A/A)t=0 is the initial entropy perturbation. Fig. 5.10 shows
exemplarily the initial perturbation for (∆A/A)t=0 = 10−1. The density is

ρ(x, y, 0) =

(
p(x, y, 0)

A

)1/γ

, (5.50)

so that the (initial) buoyant acceleration of the bubble is proportional to the entropy
perturbation,

ab =
∆ρ

ρ
gy ∝

(
∆A

A

)

t=0

. (5.51)

We run the models for the set of parameters

(
∆A

A

)

t=0

× (Ny) =
(
10−7, 10−5, 10−3, 10−1

)
× (96, 192, 384, 768) , (5.52)

and we set the maximum time such that in each run the bubble rises approximately the
same distance l. For our simulations we use

tf =
30√

10
(

∆A
A

)
t=0

. (5.53)

This allows us to simulate different regimes of sonic Mach numbers, as the velocity V
reached by the bubble over a length l scales as

V ∝ (abl)
1/2. (5.54)

This ultimately leads to the relation

M∝
(

∆A

A

)1/2

t=0

. (5.55)

We add a uniform horizontal magnetic field such that its strength is rescaled depending
on the entropy perturbation,

Bx(x, y, 0) = B0

(
∆A

A

)1/2

t=0

. (5.56)

This ensures that the relative magnitude of magnetic stresses compared to the ram pres-
sure of the bubble remains the same for all simulations, and that the morphology of the
flow is unaltered. B0 = 47.3 is chosen in a way that the final Alfvén Mach number at the
position of largest entropy is in the range MAlf ' 2 − 3 depending on the grid resolu-
tion. Thus, magnetic fields are dynamically important but not strong enough to suppress
buoyancy.

In Fig. 7.4 we show the final entropy excess for all the simulations run in the parameter
study. The center of the bubble accelerates faster than other regions as it is the point
with maximum entropy, and the acceleration profile across the bubble leads to the devel-
opment of shear at its outer edges. As the bubble rises in the stratification, the magnetic
field lines are stretched into thin tubes, which locally amplifies the magnetic energy (see
Fig. 7.5). The amount of amplification depends on the numerical resistivity and so on
resolution. In contrast to the pure hydrodynamic case studied by [EHB+21], here the
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Figure 5.10: Initial entropy
perturbation in the hot bubble
setup exemplarily illustrated for
(∆A/A)t=0 = 10−1 on a 64 × 96
grid.
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Figure 5.11: Maximum Mach number, mini-
mum and maximum entropy fluctuations and
Alfvén speed of the hot bubble as a func-
tion of the initial entropy perturbation. The
black lines represent the physical scalings.

presence of a magnetic field suppresses the formation of vortices at the sides of the bub-
ble. Overall, the entropy content of the bubble is well-preserved even on the coarsest grid,
but some negative entropy fluctuations are present at the very top of the bubble. These
negative fluctuations are numerical artifacts. In fact, the entropy fluctuations may locally
increase, as a fraction of magnetic and kinetic energy is dissipated into internal energy,
but the fluctuations cannot become negative physically. These artifacts do not depend
on the entropy perturbation, and they are limited to a very narrow region in the spatial
domain which tends to shrink as the resolution is increased. All models converge upon
grid refinement.

According to equation (5.55), the sonic Mach number of the bubble is expected to scale
as the square root of the initial entropy perturbation. Any deviation from this relation,
which has been obtained on the basis of physical arguments, can be due to difficulties in
modeling slow flows in a stratified setup and the build-up of significant numerical errors.
In Fig. 5.11 we show this scaling for the coarsest grid resolution. All data points overlap
with the theoretical curve, and the minimum local Mach number Mloc achieved in this
parameter study is 3.32× 10−4 (see also Fig. 7.6). The ratio of the rising velocity of the
bubble to the Alfvén speed (in the point of maximum entropy) does not depend on the
amplitude of the entropy perturbation. Since the initial magnetic field is proportional to

(∆A/A)
1/2
t=0, the amount of amplification due to induction only depends on the velocity

of the bubble V and the time scale over which magnetic induction operates (∝ 1/V ).

Finally, to quantify the strength of the spurious flows that are expected to arise if the
stratification is left unbalanced, in Fig. 5.12 we show a comparison between simulations
obtained with and without Deviation Well-Balancing, where the vertical resolution Ny
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Figure 5.12: Final distribution of the entropy fluctuations of the hot bubble at time
tf = 300 for (∆A/A)t=0 = 10−3 at different grid resolutions. The entropy fluctuations
are rescaled by (∆A/A)t=0. The top row shows the results obtained with Deviation
Well-Balancing, whereas no well-balancing method was used in the simulations shown
in the bottom row. The insets show the minimum and maximum values of the entropy
fluctuation in each panel.

ranges from 96 to 768. For this comparison, we fix (∆A/A)
1/2
t=0 = 10−3 such that the

maximum sonic Mach number of the bubble is approximately 3×10−2. The well-balanced
method manages to accurately resolve the rise of the bubble already on very coarse grids
and its solutions exhibit only narrow regions on top of the bubble with negative entropy
fluctuations. The unbalanced simulations, however, develop large entropy fluctuations,
both negative and positive, which strongly deteriorate the numerical solution. The shape
of the bubble can hardly be identified on the coarsest grid with 64 × 96 cells. As the
grid is refined, the simulations tend to converge, but wide regions of negative entropy
fluctuations are still present even on the finest grid. As a result, this test demonstrates
that well-balancing techniques are fundamental to correctly simulate the evolution of
small entropy perturbations in steep isentropic stratifications and to reduce the effects of
numerical errors when using moderately coarse grids.

5.5 Summary and Conclusions

In this chapter we have presented a new FV scheme to solve the fully compressible MHD
equations with gravity in regimes of low sonic Mach numbers and high-β environments.
This method relies on a modified version of the HLLD Riemann solver called LHLLD
[MM21] to avoid the excessive numerical dissipation typical of high-resolution, shock-
capturing solvers in the low Mach number regime. The strict Mach number dependent
CFL condition on the time step is overcome by using an implicit-explicit time discretiza-
tion algorithm for which the induction equation is integrated by using an explicit time-
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stepper while the rest of the MHD system is integrated implicitly. The solutions to the
two subsets of equations are coupled through Strang splitting following the prescription
of [FMR09]. The combined marching scheme IESS has a less restrictive CFL condition.
The time step is limited only by the fastest fluid and Alfvén speeds instead of the fast
magnetosonic speed, and therefore does not depend on the sonic Mach number. When-
ever required, a magnetohydrostatic solution can be enforced on the discrete grid with
the Deviation Well-Balancing method [BCK21, EHB+21]. This technique leads to better
entropy conservation properties of the numerical scheme, even in cases where the pressure
and density stratifications span several orders of magnitude across the computational do-
main. Finally, the solenoidal constraint is enforced using the Contact-CT method [GS05].
Numerical experiments show that the new method is second order accurate. The results
of the Balsara vortex and the Kelvin-Helmholtz instability underline the positive effect of
the low-dissipation LHLLD Riemann solver, as it does not introduce excessive artificial
dissipation in the simulations characterized by low Mach numbers. Measuring the wall-
clock time shows that the IESS time-marching approach leads to efficiency advantages
over fully time-explicit methods in regimes with Mach numbers below (2 − 5) × 10−2.
The Deviation Well-Balancing method significantly reduces discretization errors arising
from the background stratification in the “hot bubble” setup. Compared to a non-well-
balanced method, the rise of the bubble can be simulated more accurately and unphysical
negative entropy fluctuations have a smaller magnitude and are limited to narrow regions.
Overall, the results obtained in these tests demonstrate that the proposed numerical
method can accurately and efficiently cope with a variety of MHD processes that are
relevant in stellar interiors, but are in regimes that are inaccessible to conventional FV
methods.



Chapter 6

A Semi-Implicit IMEX Method

The stiffness of the MHD system in the low Mach number regime is essentially caused by
the acoustic pressure term in the flux. Therefore, it is not necessary to use an implicit
discretization for the whole system. Instead, in this chapter we only treat terms asso-
ciated with the acoustic pressure implicitly. All remaining terms are part of an explicit
sub-system. For this purpose, a time integration inspired by the class of IMEX schemes
is used [BFR16, BP21]. The underlying CFL condition of the method is only coupled to
the convective sub-system and therefore independent of the Mach number. Moreover, the
implicit part is small, easy to invert and does not require to solve large nonlinear systems
of equations as in fully implicit methods, which reduces computational costs. Further-
more, no numerical dissipation is embedded in the implicit solver, preventing excessive
numerical dissipation in the low Mach number regime. This procedure builds on compa-
rable methods for the Euler equations [BDL+20] and Navier-Stokes equations [BDT21].
Within a finite difference framework, it has also been applied to the homogeneous MHD
equations [CWX23]. Our work is strictly related to what is presented in [CWX23], how-
ever there are some important differences: i) we use a finite volume discretization for the
convective terms; ii) no numerical dissipation is added to the implicit part even in the
case of shock waves; iii) we also include gravitational source terms.

In the splitting, the source term is added to the explicit sub-system, because it has no
direct effect on the CFL condition and the numerical dissipation. More challenging is its
impact on (magneto-)hydrostatic solutions. We combine the semi-implicit scheme with
the Deviation Well-Balancing method [BCK21] which helps the scheme to exactly pre-
serve a priori known equilibria and significantly reduces discretization errors arising from
background stratifications. A similar approach has been recently used in [GCD21] in the
context of general relativity. The solenoidal constraint is numerically treated by the Con-
tact CT method [GS05]. The CT method corrects the magnetic field directly after the
explicit step as the induction equations are entirely assigned to the explicit sub-system of
the splitting. By correcting the magnetic field, a specific discrete definition of divergence
is kept within machine precision, thereby increasing the stability of the overall scheme.

This chapter is structured as follows. In Sect. 6.1, we rewrite the MHD equations and
propose a splitting into convective and pressure sub-systems. On the basis of this splitting,
we develop a second order accurate semi-implicit and well-balanced numerical scheme in
Sect. 6.2. The properties of this scheme are investigated in numerical experiments in
Sect. 6.3, including setups in the low Mach number regime and near (magneto-)hydrostatic
equilibria. Finally, Sect. 6.4 concludes with a summary of the method and an outlook on
future developments. The results of this chapter can also be found in [BBK24].
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6.1 Governing Equations

In order to enforce the flux splitting, it is useful to rewrite the MHD system (2.66) in a
more convenient form. To do so we split the total energy E into internal (ρe), kinetic
(ρk) and magnetic energy (m), i.e.

E = ρe+ ρk +m, ρe =
p

γ − 1
, ρk =

1

2
ρv2, m =

1

2
|B|2. (6.1)

Then the flux in the energy equation is reformulated in terms of the specific enthalpy
h = e+ p/ρ by

(
E + p+

1

2
|B|2

)
v −B (B · v) = v(ρk + ρh+ 2m)−B(B · v). (6.2)

Using this new form of the energy equation, we can write the MHD equations in the
equivalent form

∂Q
∂t

+
∂F1(Q)

∂x
+
∂F2(Q)

∂y
+
∂F3(Q)

∂z
= S(Q), (6.3)

with the state vector Q, the flux in x-direction F1(Q) and the source S(Q) that explicitly
write

Q =




ρ
ρu
ρv
ρw
E
Bx
By
Bz




, F1(Q) =




ρu
ρu2 + p+m−B2

x

ρuv −BxBy
ρuw −BxBz

u(ρk + ρh+ 2m)−Bx(v ·B)
0

uBy − vBx
uBz − wBx




, S(Q) =




0
ρgx
ρgy
ρgz
ρv · g

0
0
0




.

(6.4)
The fluxes F2(Q) and F3(Q) can be expressed in similar forms.

6.1.1 Flux Splitting

In the low Mach number limit, the sound speed becomes very high compared to the fluid
velocity, hence the terms related to the pressure are dominant. Consequently, large values
of the fast and slow magnetosonic wave speeds are retrieved (see also Sect. 2.4.5). As
analyzed in Sect. 3.10.1, fully explicit FV methods suffer from both an excessive amount
of numerical dissipation, which is proportional to the largest absolute eigenvalue, and a
drastic reduction of the admissible time step ∆t to ensure stability under a classical CFL
condition of the type

∆t ≤ CFL min
I

min(∆x,∆y,∆z)

max |λMHD| . (6.5)

Therefore, we propose to discretize the pressure gradient in the momentum equation and
the enthalpy term in the energy equation implicitly, while keeping an explicit discretization
for the nonlinear convective fluxes and the terms related to the magnetic field. To achieve
that aim, let the fluxes in x-direction be split into a convective-type flux Fc(Q) and a
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pressure-type flux Fp(Q), that is

Fc1(Q) =




ρu
ρu2 +m−B2

x

ρuv −BxBy
ρuw −BxBz

u(ρk + 2m)−Bx(v ·B)
0

uBy − vBx
uBz − wBx




, Fp1 (Q) =




0
p
0
0
hρu

0
0
0




. (6.6)

We obtain the following two sub-systems with the corresponding eigenvalues:

• Convective sub-system:

∂Q
∂t

+
∂Fc1
∂x

= S, (6.7a)

λc1,8 = u±
√

B2

ρ
, λc2,7 = u± Bx√

ρ
, λc3,4,5,6 = 0. (6.7b)

• Pressure sub-system:

∂Q
∂t

+
∂Fp1
∂x

= 0, (6.8a)

λp1 =
1

2

(
u−

√
u2 + 4c2

)
, λp2,3,4,5,6,7 = 0, λp8 =

1

2

(
u+

√
u2 + 4c2

)
. (6.8b)

The fluxes F2 and F3 can be split in a similar way with analogous sub-systems and
eigenvalues. In the above splitting we have added the source term to the convective sub-
system, since it does not introduce a Mach number dependence in the eigenvalues and
thus does not pose a numerical problem in the low Mach limit. By treating the pressure
sub-system implicitly, the maximum admissible time step of the scheme only depends on
the explicit sub-system

∆t ≤ CFL min
I

min(∆x,∆y,∆z)

max |λc| , (6.9)

hence making the scheme particularly well-suited for low Mach number flows (M� 1).
On the other hand, for strongly convected flows with shocks, the convective eigenvalues
in the computation of the time step ensure stability.

6.2 Numerical Scheme

For reasons of clarity and comprehensibility we restrict ourselves in the following part to
one spatial dimension before returning to three spatial dimensions in Sect. 6.2.4.

6.2.1 First Order Semi-Discrete Scheme in Time

In order to construct a numerical method that is well-balanced in the sense that it dis-
cretely preserves MHSE of the form (2.79) in an exact way, we rely on the Deviation
Well-Balancing method described in Sect. 5.2.2. We thus assume that we know a priori
an equilibrium solution Q̃ that satisfies (2.79). As usual in this approach we then do not
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discretize (6.3), but do so for the following equation for the deviation of the equilibrium
solution

∂∆Q
∂t

+
∂F(∆Q+ Q̃)

∂x
− ∂F(Q̃)

∂x
= S(∆Q+ Q̃)− S(Q̃). (6.10)

As a consequence, we apply the splitting into convective and pressure parts defined in
(6.6) to this equation, i.e.

∂∆Q
∂t

+
∂Fc(∆Q+ Q̃)

∂x
− ∂Fc(Q̃)

∂x
+
∂Fp(∆Q+ Q̃)

∂x
− ∂Fp(Q̃)

∂x

= S(∆Q+ Q̃)− S(Q̃).

(6.11)

The semi-discrete form of the convective sub-system writes

∆Q∗ = ∆Qn −∆t
∂

∂x
Fc(∆Qn + Q̃) + ∆t

∂

∂x
Fc(Q̃) + ∆tS(∆Qn + Q̃)−∆tS(Q̃). (6.12)

To simplify the notation, we introduce Q̄n = ∆Qn + Q̃. Broken up into the individual
components, system (6.12) results in

∆ρ∗ = ∆ρn −∆t
∂

∂x
(ρ̄ū)n + ∆t

∂

∂x
(ρ̃ũ), (6.13a)

(∆ρu)∗ = (∆ρu)n −∆t
∂

∂x

(
ρ̄ū2 + m̄− B̄2

x

)n
+ ∆t

∂

∂x

(
ρ̃ũ2 + m̃− B̃2

x

)

+ ∆t (ρ̄gx)n −∆t (ρ̃gx) ,
(6.13b)

(∆ρv)∗ = (∆ρv)n −∆t
∂

∂x

(
ρ̄ūv̄ − B̄xB̄y

)n
+ ∆t

∂

∂x

(
ρ̃ũṽ − B̃xB̃y

)
, (6.13c)

(∆ρw)∗ = (∆ρw)n −∆t
∂

∂x

(
ρ̄ūw̄ − B̄xB̄z

)n
+ ∆t

∂

∂x

(
ρ̃ũw̃ − B̃xB̃z

)
, (6.13d)

(∆E)∗ = (∆E)n −∆t
∂

∂x

(
ū(ρ̄k̄ + 2m̄)− B̄x(v̄ · B̄)

)n

+ ∆t
∂

∂x

(
ũ(ρ̃k̃ + 2m̃)− B̃x(ṽ · B̃)

)
+ ∆t (ρ̄ūgx)n −∆t (ρ̃ũgx) ,

(6.13e)

∆B∗x = 0, (6.13f)

∆B∗y = ∆Bn
y −∆t

∂

∂x

(
ūB̄y − v̄B̄x

)n
+ ∆t

∂

∂x

(
ũB̃y − ṽB̃x

)
, (6.13g)

∆B∗z = ∆Bn
z −∆t

∂

∂x

(
ūB̄z − w̄B̄x

)n
+ ∆t

∂

∂x

(
ũB̃z − w̃B̃x

)
. (6.13h)

In the above equations, we include terms containing ũ, ṽ or w̃. In the following, however,
we will omit these terms since the equilibrium velocities are zero. The definitions presented
above are employed to obtain a first order semi-implicit time discretization [BFR16, BP21,
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BT22] of (6.10), which is defined by

∆ρn+1 = ∆ρ∗, (6.14a)

(∆ρu)n+1 = (∆ρu)∗ −∆t
∂

∂x

(
pn+1 − p̃

)
, (6.14b)

(∆ρv)n+1 = (∆ρv)∗, (6.14c)

(∆ρw)n+1 = (∆ρw)∗, (6.14d)

(∆E)n+1 = (∆E)∗ −∆t
∂

∂x

(
hn(ρu)n+1

)
, (6.14e)

∆Bn+1
x = ∆B∗x, (6.14f)

∆Bn+1
y = ∆B∗y , (6.14g)

∆Bn+1
z = ∆B∗z . (6.14h)

Here, we use the known enthalpy hn at time level n in the energy equation to avoid
nonlinear terms in the implicit part, which is different from the schemes proposed in
[DBTF19, Fam21]. Additionally, we have made use of the fact that in the implicit fluxes
we only work with point values at the cell centers, i.e. we use an implicit finite difference
discretization. Thus, we can write

(
∆Q+ Q̃

)
i

= Qi − Q̃i + Q̃i = Qi. (6.15)

Therefore, the implicit fluxes are simplified by

∂

∂x

(
∆pn+1 + p̃

)
−∆t

∂

∂x
p̃ =

∂

∂x

(
pn+1 − p̃

)
, (6.16)

∂

∂x

((
∆hn + h̃

) (
(∆ρu)n+1 + ρ̃ũ

))
=

∂

∂x

(
hn(ρu)n+1

)
. (6.17)

According to the definition given in the energy equation (6.1), we split the deviation of
the total energy at the new time level as follows

(∆E)n+1 = (∆ρe)n+1 + (∆ρk)n+1 + (∆m)n+1. (6.18)

The deviation of the kinetic energy therein is set to

(∆ρk)n+1 = (ρk)n+1 − (ρ̃k̃) =
1

2

(ρu)n

ρn+1
(ρu)n+1 − 1

2
ρ̃ũ2, (6.19)

where a semi-implicit strategy is adopted for the term (ρk)n+1. Indeed, the splitting of
the momentum contribution into an explicit and an implicit part is again done in order to
avoid nonlinear implicit terms. The density ρn+1 and the deviation in the magnetic energy
∆mn+1 are known because both continuity and induction equations are fully explicit.
With the help of the ideal gas law, the deviation in the internal energy can be expressed
in terms of the pressure

(∆ρe)n+1 =
pn+1 − p̃
γ − 1

. (6.20)

In order to derive a preliminary discretization of the total energy equation we transform
(6.14b) into

(ρu)n+1 = (∆ρu)∗ + ρ̃ũ−∆t
∂

∂x

(
pn+1 − p̃

)
, (6.21)
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and insert the result into the energy equation (6.14e). This leads to an elliptic equation
for the pressure

pn+1

γ − 1
−∆t

(ρu)n

2ρn+1

∂

∂x

(
pn+1 − p̃

)
−∆t2

∂

∂x

(
hn

∂

∂x

(
pn+1 − p̃

))
= bn, (6.22)

with the known right-hand side given by

bn =
p̃

γ − 1
+

1

2
ρ̃ũ2 + (∆E)∗ − (ρu)n

2ρn+1
((∆ρu)∗ + ρ̃ũ)−∆mn+1

−∆t
∂

∂x
(hn ((∆ρu)∗ + ρ̃ũ)) .

(6.23)

The pressure equation (6.22) constitutes a linear system for the scalar unknown pn+1 that
is solved using the iterative Generalized Minimal Residual Method (GMRES) solver [SS86]
up to a prescribed tolerance (we typically set tol = 10−12). Different from [DBTF19,
Fam21], this approach does not need any fixed point method thanks to the semi-implicit
splitting of the enthalpy flux and the kinetic energy in the energy equation. Once the new
pressure is known, the deviation in the momentum (∆ρu)n+1 is updated with (6.14b), and
then the deviation in the total energy is updated using (6.14e). Notice that the scheme
is written in flux form, therefore it is locally and globally conservative.

6.2.2 Discrete Spatial Operators

The convective sub-system (6.12) is discretized by a Godunov-type FV method which
writes

∆Q∗i =∆Qni −
∆t

∆x
(F ci+1/2 − F ci−1/2) +

∆t

∆x
(Fc(Q̃i+1/2)−Fc(Q̃i−1/2))

+ ∆tSi −∆tS(Q̃i),
(6.24)

where F ci+1/2 denotes a numerical flux function and Si a numerical source. For the nu-
merical flux, we decide to use a simple and robust Rusanov-type flux of the form

F ci+1/2 = F c(Q̄Li+1/2, Q̄
R
i+1/2)

=
1

2

(
Fc(Q̄Li+1/2) + Fc(Q̄Ri+1/2)

)
− 1

2
λmax

(
Q̄Ri+1/2 − Q̄Li+1/2

)
.

(6.25)

The numerical dissipation term herein is defined by

λmax = max
(
|(λc)Li+1/2|, |(λc)Ri+1/2|

)
(6.26)

and thus only depends on the convective eigenvalues. This is a crucial difference to the
definition in (3.31) and its application to the Gresho vortex in Ex. 3.10.1, where the
maximum eigenvalue of the complete PDE system is used. The convective eigenvalues
used in (6.26) are independent of the Mach number M, which is why the flux does not
introduce excessive dissipation for low Mach numbers. The numerical flux is evaluated in
the states

Q̄L,Ri+1/2 = ∆QL,Ri+1/2 + Q̃i+1/2, (6.27)

where the superscripts L,R denote the left and right extrapolated data at the interface. It
is essential for the well-balancing that only the deviation ∆Q is reconstructed, while the
equilibrium solution Q̃ is evaluated at the cell interface. The third term on the right-hand
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side of (6.24) simply computes the physical fluxes based on the equilibrium solution at the
cell interface that is Fc(Q̃i±1/2). For the source term, we substitute the volume-averaged
quantity with its cell-centered value, which is accurate up to second order:

Si = S(Q̄i). (6.28)

The implicit terms that appear in the pressure sub-system (6.8) are approximated by
means of finite difference operators without any numerical dissipation [BP21]:

∂p

∂x

∣∣∣∣
n+1

i

=
pn+1
i+1 − pn+1

i−1

2 ∆x
+O(∆x2), (6.29a)

∂

∂x

(
h
∂p

∂x

)∣∣∣∣
n,n+1

i

=
1

∆x2

[
hni−1 h

n
i h

n
i+1

]



3/4 −1 1/4
0 0 0

1/4 −1 3/4





pn+1
i−1

pn+1
i

pn+1
i+1


+O(∆x2).

(6.29b)

6.2.3 Second Order Extension

The method that has been described so far is only first order accurate in time and space.
In order to increase the accuracy of the time-marching scheme, we apply the second order
accurate IMEX-RK method LSDIRK2(2,2,2) from Ex. 3.9.5 [PR05]. In the terminology
of IMEX-RK methods, the discretization of the convective sub-system constitutes the
explicit operator QE , while the discretization of the pressure sub-system is represented
by QI .

The spatial discretization within the Godunov-type method in the explicit update is
extended to second order accuracy by a simple piecewise linear reconstruction of the
conservative variables (see Sect. 3.8). The finite difference operators (6.29) in the implicit
update are already second order accurate and can therefore be retained unchanged.

6.2.4 Multi-Dimensional Extension

In three spatial dimensions we discretize the domain I = [xL, xR]× [yL, yR]× [zL, zR] by
a Cartesian grid with Nx × Ny × Nz cells having the uniform cell size ∆x × ∆y × ∆z.
The discretization of the explicit part is extended to three spatial dimensions by using an
unsplit finite volume method according to [Tor09] (see also Sect. 3.7) given by

∆Q∗i,j,k = ∆Qni,j,k

− ∆t

∆x

(
F c1,i+1/2,j,k − F c1,i−1/2,j,k

)
+

∆t

∆x

(
Fc1(Q̃i+1/2,j,k)−Fc1(Q̃i−1/2,j,k)

)

− ∆t

∆y

(
F c2,i,j+1/2,k − F c2,i,j−1/2,k

)
+

∆t

∆y

(
Fc2(Q̃i,j+1/2,k)−Fc2(Q̃i,j−1/2,k)

)

− ∆t

∆z

(
F c3,i,j,k+1/2 − F c3,i,j,k−1/2

)
+

∆t

∆z

(
Fc3(Q̃i,j,k+1/2)−Fc3(Q̃i,j,k−1/2)

)

+ ∆tSi,j,k −∆tS(Q̃i,j,k).

(6.30)

The numerical fluxes F c1 , F c2 and F c3 have the form of the Rusanov flux and are constructed
as in (6.25), while the source term S uses the cell-centered value as in (6.28). The updated
density ∆ρn+1

i,j,k and magnetic field ∆Bn+1
i,j,k are equal to their explicit update since in the

splitting the complete flux of these components is explicit. The update of the momentum
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components, on the other hand, contains implicit parts and reads in the fully discrete and
three-dimensional form as

(∆ρu)n+1
i,j,k = (∆ρu)∗i,j,k −

∆t

2∆x

(
pn+1
i+1,j,k − p̃i+1,j,k − pn+1

i−1,j,k + p̃i−1,j,k

)
, (6.31a)

(∆ρv)n+1
i,j,k = (∆ρv)∗i,j,k −

∆t

2∆y

(
pn+1
i,j+1,k − p̃i,j+1,k − pn+1

i,j−1,k + p̃i,j−1,k

)
, (6.31b)

(∆ρw)n+1
i,j,k = (∆ρw)∗i,j,k −

∆t

2∆z

(
pn+1
i,j,k+1 − p̃i,j,k+1 − pn+1

i,j,k−1 + p̃i,j,k−1

)
. (6.31c)

Implicit terms also appear in the update of the total energy:

(∆E)n+1
i,j,k = (∆E)∗i,j,k −

∆t

2∆x

(
hni+1,j,k(ρu)n+1

i+1,j,k − hni−1,j,k(ρu)n+1
i−1,j,k

)

− ∆t

2∆y

(
hni,j+1,k(ρv)n+1

i,j+1,k − hni,j−1,k(ρv)n+1
i,j−1,k

)

− ∆t

2∆z

(
hni,j,k+1(ρw)n+1

i,j,k+1 − hni,j,k−1(ρw)n+1
i,j,k−1

)
.

(6.32)

The pressure pn+1, which is needed for the updates (6.31) and (6.32), can be determined
by solving the following elliptic equation:

pn+1
i,j,k

γ − 1

− ∆t

2∆x

(ρu)ni,j,k

2ρn+1
i,j,k

(
pn+1
i+1,j,k − p̃i+1,j,k − pn+1

i−1,j,k + p̃i−1,j,k

)

− ∆t

2∆y

(ρv)ni,j,k

2ρn+1
i,j,k

(
pn+1
i,j+1,k − p̃i,j+1,k − pn+1

i,j−1,k + p̃i,j−1,k

)

− ∆t

2∆z

(ρw)ni,j,k

2ρn+1
i,j,k

(
pn+1
i,j,k+1 − p̃i,j,k+1 − pn+1

i,j,k−1 + p̃i,j,k−1

)

−∆t2

∆x2

[(
3

4
hni−1,j,k +

1

4
hni+1,j,k

)(
pn+1
i−1,j,k − p̃i−1,j,k

)
−
(
hni−1,j,k + hni+1,j,k

) (
pn+1
i,j,k − p̃i,j,k

)

+

(
1

4
hni−1,j,k +

3

4
hni+1,j,k

)(
pn+1
i+1,j,k − p̃i+1,j,k

)]

−∆t2

∆y2

[(
3

4
hni,j−1,k +

1

4
hni,j+1,k

)(
pn+1
i,j−1,k − p̃i,j−1,k

)
−
(
hni,j−1,k + hni,j+1,k

) (
pn+1
i,j,k − p̃i,j,k

)

+

(
1

4
hni,j−1,k +

3

4
hni,j+1,k

)(
pn+1
i,j+1,k − p̃i,j+1,k

)]

−∆t2

∆z2

[(
3

4
hni,j,k−1 +

1

4
hni,j,k+1

)(
pn+1
i,j,k−1 − p̃i,j,k−1

)
−
(
hni,j,k−1 + hni,j,k+1

) (
pn+1
i,j,k − p̃i,j,k

)

+

(
1

4
hni,j,k−1 +

3

4
hni,j,k+1

)(
pn+1
i,j,k+1 − p̃i,j,k+1

)]

= bni,j,k
(6.33)
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with the right-hand side

bni,j,k =
p̃i,j,k
γ − 1

+ (∆E)∗i,j,k −∆mn+1
i,j,k

−
(ρu)ni,j,k

2ρn+1
i,j,k

(∆ρu)∗i,j,k −
∆t

2∆x

(
hni+1,j,k(∆ρu)∗i+1,j,k − hni−1,j,k(∆ρu)∗i−1,j,k

)

−
(ρv)ni,j,k

2ρn+1
i,j,k

(∆ρv)∗i,j,k −
∆t

2∆y

(
hni,j+1,k(∆ρv)∗i,j+1,k − hni,j−1,k(∆ρv)∗i,j−1,k

)

−
(ρw)ni,j,k

2ρn+1
i,j,k

(∆ρw)∗i,j,k −
∆t

2∆z

(
hni,j,k+1(∆ρw)∗i,j,k+1 − hni,j,k−1(∆ρw)∗i,j,k−1

)
.

(6.34)

To set up this equation for the pressure, we have made use of the finite difference operators
(6.29).

6.2.5 Constrained Transport Method

The numerical scheme described up to this point does not obey the solenoidal constraint
(2.69). As a result, the divergence of the magnetic field can increase significantly during
the simulation leading to a reduced stability and unphyiscal solutions. Therefore, an
additional correction of the magnetic field is required after each time step. In order
to restore a solenoidal magnetic field at the discrete level, we rely on the second order
accurate Contact CT method [GS05] that is described in Sect. 5.2.3. The scheme thus
operates on a staggered grid and stores the magnetic field additionally at the cell faces.
As the induction equation is handled completely in the explicit part, the update of the
magnetic field in x-direction at the faces given by

∂

∂t
∆Bx,i+1/2,j,k =

1

∆y

(
∆Ez,i+1/2,j+1/2,k −∆Ez,i+1/2,j−1/2,k

)

− 1

∆z

(
∆Ey,i+1/2,j,k+1/2 −∆Ey,i+1/2,j,k−1/2

) (6.35)

is done directly after the explicit step. The formulas to evolve the face-centered values
of By and Bz are analogous. The new cell-centered magnetic field is then calculated by
determining the arithmetic mean of the respective face-entered values as done in (5.35).
The definition of the elliptic equation for the pressure in (6.33) then relies on the corrected
and therefore divergence-free magnetic field Bn+1.

6.2.6 Well-Balanced Property

The following theorem states that the presented fully discrete scheme preserves MHSE of
the form (2.79) up to rounding errors.

Theorem 6.2.1. Let us assume that the numerical solution Qn is equal to the discrete
magnetohydrostatic equilibrium solution Q̃, i.e.

Qni,j,k = Q̃i,j,k ∀(i, j, k) ∈ {1, ..., Nx} × {1, ..., Ny} × {1, ..., Nz}. (6.36)

Then the numerical method described in Sect. 6.2.1-6.2.5 preserves the solution up to
machine precision.
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Proof. From the assumption (6.36) one can conclude that ∆Qni,j,k = 0 at every grid point.
Thus, the input (6.27) of the Rusanov fluxes in the explicit sub-system is reduced to the
equilibrium solution at the interface, i.e.

Q̄Li+1/2,j,k = Q̄Ri+1/2,j,k = Q̃i+1/2,j,k, (6.37a)

Q̄Li,j+1/2,k = Q̄Ri,j+1/2,k = Q̃i,j+1/2,k, (6.37b)

Q̄Li,j,k+1/2 = Q̄Ri,j,k+1/2 = Q̃i,j,k+1/2. (6.37c)

The Rusanov flux is a consistent flux in the sense of Def. 3.1.1. For that reason, the
numerical fluxes are equal to the physical fluxes so that all flux terms in (6.30) cancel each
other out. Likewise, the source terms are truncated away. Therefore, the contributions
from the explicit part (6.30) are zero:

∆ρ∗i,j,k = (∆E)∗i,j,k = 0 and (∆ρv)∗i,j,k = ∆B∗i,j,k = 0

∀(i, j, k) ∈ {1, ..., Nx} × {1, ..., Ny} × {1, ..., Nz}.
(6.38)

Consequently, also the deviation in the magnetic energy ∆mn+1
i,j,k is zero. The constrained

transport step that is performed after the explicit update keeps the deviations in the
magnetic field at zero, because the electric field at the corners in the update (6.35) is
equal to zero due to the zero velocity in the equilibrium. Under these conditions, the
elliptic equation for the pressure (6.33) simplifies to

pn+1
i,j,k

γ − 1

−∆t2

∆x2

[(
3

4
hni−1,j,k +

1

4
hni+1,j,k

)
pn+1
i−1,j,k −

(
hni−1,j,k + hni+1,j,k

)
pn+1
i,j,k

+

(
1

4
hni−1,j,k +

3

4
hni+1,j,k

)
pn+1
i+1,j,k

]

−∆t2

∆y2

[(
3

4
hni,j−1,k +

1

4
hni,j+1,k

)
pn+1
i,j−1,k −

(
hni,j−1,k + hni,j+1,k

)
pn+1
i,j,k

+

(
1

4
hni,j−1,k +

3

4
hni,j+1,k

)
pn+1
i,j+1,k

]

−∆t2

∆z2

[(
3

4
hni,j,k−1 +

1

4
hni,j,k+1

)
pn+1
i,j,k−1 −

(
hni,j,k−1 + hni,j,k+1

)
pn+1
i,j,k

+

(
1

4
hni,j,k−1 +

3

4
hni,j,k+1

)
pn+1
i,j,k+1

]

(6.39)
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=
p̃i,j,k
γ − 1
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4
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)
p̃i−1,j,k −
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4
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∆z2
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1

4
hni,j,k+1

)
p̃i,j,k−1 −

(
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)
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+

(
1

4
hni,j,k−1 +

3

4
hni,j,k+1

)
p̃i,j,k+1

]
,

which admits the unique solution

pn+1
i,j,k = p̃i,j,k. (6.40)

This means that the right-hand side of the momentum update (6.31) becomes zero and
consequently the right-hand side of the energy update (6.32) also becomes zero. Thus the
updated deviations for all components of the state vector remain zero, which means that
the numerical solution does not change during one time step, i.e.

Qn+1
i,j,k = Qni,j,k = Q̃i,j,k ∀(i, j, k) ∈ {1, ..., Nx} × {1, ..., Ny} × {1, ..., Nz}. (6.41)

6.2.7 Summary of the Scheme

Since various methods are combined in the semi-implicit well-balanced finite volume (SI-
WB-FV) scheme presented, we provide an overview of the individual steps of the scheme
at this point. Let us assume that we know the time-independent equilibrium solution Q̃
at every point in the computational domain I. Then a single time step in the method
from time t = tn to time t = tn+1 consists of the following sub-steps:

1. Start with the values at the current time level: Qni,j,k, B
n
x,i+1/2,j,k, B

n
y,i,j+1/2,k,

Bn
z,i,j,k+1/2.

2. Compute the deviation: ∆Qni,j,k = Qni,j,k − Q̃i,j,k.

3. Reconstruct the values at the cell interfaces for the deviation: ∆QLi+1/2,j,k, ∆QRi+1/2,j,k,

∆QLi,j+1/2,k, ∆QRi,j+1/2,k, ∆QLi,j,k+1/2, ∆QRi,j,k+1/2.

4. Perform the explicit update (6.24): ∆Q∗i,j,k.

5. Start the CT routine, update the staggered magnetic field at the face centers
and compute the updated cell-centered magnetic field: Bn+1

x,i+1/2,j,k, B
n+1
y,i,j+1/2,k,

Bn+1
z,i,j,k+1/2, Bn+1

i,j,k .



116 CHAPTER 6. A SEMI-IMPLICIT IMEX METHOD

6. Use the computed quantities from the explicit part to solve the elliptic equation for
the pressure (6.33) via GMRES: pn+1

i,j,k .

7. Compute the updated deviation in the momentum: (∆ρu)n+1
i,j,k .

8. Compute the updated deviation in the total energy: (∆E)n+1
i,j,k .

9. Recompute the actual solution at the new time level: Qn+1
i,j,k = ∆Qn+1

i,j,k + Q̃i,j,k.

In the case that we do not want to balance a MHSE, the equilibrium solution Q̃ can be
set to zero.

6.2.8 Modified Density Update

Recently, it has been noted that semi-implicit methods of the form presented lead to
relatively high magnitudes of density fluctuations in the incompressible limit [ALB]. Nu-
merical results for the Balsara vortex in Sect. 6.3.3 support this finding. This phenomenon
is rooted in two factors: firstly, it is proven for the homogeneous case that the divergence
of the velocity field within this type of semi-implicit method has the order of the time
step in the incompressible limit [BP21], i.e.

∇ · vn+1 = O(∆t). (6.42)

As the time step is chosen independently of the Mach number, the divergence does not
disappear in the incompressible limit so that an initially constant density is evolved by
a nonzero flux that produces new fluctuations of Mach number independent magnitude.
Secondly, the continuity equation is discretized by a Godunov-type method with an up-
winding technique. Therefore, the density is subject to compression and decompression
[Bar], which intensifies the density fluctuations. In order to avoid the upwind discretiza-
tion and thereby reduce the magnitude of the fluctuations, we propose to evolve the
density in the implicit part [ALB]. After computing the updated deviation in the mo-
mentum in step seven, the density deviation is updated by central finite differences of the
form

∆ρn+1
i,j,k = ∆ρni,j,k +

∆t

2∆x

(
∆ρun+1

i+1,j,k −∆ρun+1
i−1,j,k

)

+
∆t

2∆y

(
∆ρun+1

i,j+1,k −∆ρun+1
i,j−1,k

)

+
∆t

2∆z

(
∆ρun+1

i,j,k+1 −∆ρun+1
i,j,k−1

)
.

(6.43)

In the following sections, we call the method with this new density update modified semi-
implicit well-balanced finite volume (SI+-WB-FV) method.

6.3 Numerical Results

In this section, we apply the second order SI-WB-FV method to various numerical experi-
ments for the compressible Euler and ideal MHD equations. First, we assess the method’s
capability to handle shocks through the examination of two standard tests: a 1D shock
tube under gravity (i) and the 2D Orszag-Tang vortex (ii). Subsequently, we solve the
Balsara vortex (iii) and a magnetized Kelvin-Helmholtz instability (iv) to investigate the
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method’s performance in low Mach number environments. Our investigation includes the
analysis of the order of convergence and of the influence of Mach numbers on the scheme’s
dissipation.
Moving forward, we check the well-balancing property of Sect. 6.2.6. As a start, we ascer-
tain whether the method exactly preserves hydrostatic equilibria for the Euler equations
(v). Then, we introduce a small pressure perturbation to find out whether the method
can resolve it on a coarse grid (vi). Following this principle, we examine the well-balanced
property for magnetohydrostatic solutions in the context of the MHD equations (vii, viii).
Finally, we apply the method to a stationary vortex for the Euler equations, evaluating
its effectiveness in resolving low Mach flows under the influence of gravity (ix).
In all numerical experiments, the method’s time step is computed using the CFL condition
(6.9) with a prescribed CFL value of 0.9. In the tests studying the impact of the well-
balancing method on resolving small perturbations (vi, viii), the SI-WB-FV results are
juxtaposed with those of a non-well-balanced counterpart called SI-FV. While sharing the
same semi-implicit scheme, the SI-FV method sets the equilibrium solution Q̃ to zero.
All tests are performed on a uniform Cartesian grid.

6.3.1 Shock Tube under Gravitational Field

The first test case is the Sod shock tube for the one-dimensional Euler equations with
an added gravitational source. The test is designed as described in Sect. 4.6.2. Since we
define the source term directly on the basis of the gravitational acceleration g and not
on the potential Φ, we use gx = −1. The magnetic field B is set to zero. The solution
at final time tf = 0.2 is computed by the second order SI-WB-FV scheme on 100 cells.
Since we have no flow around an equilibrium in this test, we set the equilibrium solution
Q̃ to zero. The numerical solution is compared to a reference solution, which is computed
by a fully explicit second order FV method on 20000 cells. The results in Fig. 6.1 show
good agreement with the reference solution and are also consistent with the solution in
Sect. 4.6.2 and solutions in the literature [CK15]. The test demonstrates the capability
of the semi-implicit scheme to deal with shocks, meaning flows which are not in the low
Mach number regime.

6.3.2 Orszag-Tang Vortex

A well-known test for the two-dimensional homogeneous MHD equations is the Orszag-
Tang vortex [CRT14, DBTF19, OT79]. Starting with smooth initial data, over time
shocks develop along the diagonal direction in combination with a vortex located at the
center of the computational domain. The initial conditions for the primitive variables on
the spatial domain I = [0, 1]2 are given by

QP0 =

(
25

36π
, − sin(2πy), sin(2πx), 0,

5

12π
, − 1√

4π
sin(2πy),

1√
4π

sin(4πx), 0

)
.

(6.44)

The gravitational acceleration g and the equilibrium solution Q̃ are set to zero. Periodic
boundary conditions are imposed on all sides. We discretize the computational domain
by 128 × 128 control volumes. In Fig. 6.2 results for the pressure p at different times
computed by the SI-WB-FV method are presented. The numerical method successfully
captures the shocks that occur as time evolves and the results align qualitatively with
those reported in the literature. [CRT14, DBTF19].
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Figure 6.1: Shock tube under gravitational field at time tf = 0.2. Comparison with the
reference solution for density (top left), horizontal velocity (top right), pressure (bottom
left) and internal energy (bottom right).

As the Orszag-Tang vortex is a two-dimensional problem, the solenoidal constraint must
be taken into account. The time evolution of the discrete divergence (5.38) in Fig. 6.3
shows that the Contact CT method ensures that the divergence remains very small during
the entire simulation and has no significant influence on the results.

6.3.3 Balsara Vortex

In order to investigate the scaling and the low Mach capabilities of the SI-WB-FV scheme,
we consider the Balsara vortex described in Sect. 5.4.1. Since this setup is purely subsonic,
we do not use a limiter in the linear reconstruction of the method.
As done before, the knowledge of the exact solution is used for a convergence study. In
the initial data of the vortex, we set Ṽ = 10−3 and βK = 1, which corresponds to a
maximum initial Mach number ofMmax = max(Mloc)t=0 = 1.55× 10−3. This test setup
is solved with different grid resolutions: N = 32, 64, 128, 256. The resulting L1-errors for
the primitive variables are presented in Fig. 6.4 and confirm the expected second order
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Figure 6.2: Orszag-Tang vortex. Numerical solution of the pressure at output time tf =
1/12 (top left), tf = 1/3 (top right), tf = 1/2 (bottom left) and tf = 5/6 (bottom right).
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Figure 6.3: Time evolution of the maximum relative divergence max[(∇·B∆x)/|B|] (solid
line) and mean relative divergence 〈(∇·B∆x)/|B|〉 (dot-dashed) in the simulations of the
Orszag-Tang vortex.
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sara vortex with Ṽ = 10−3 and βK = 1
for each primitive variable as a function
of resolution. The dashed black line is
the second order scaling.
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for each primitive variable as a function
of resolution. The dashed black line is
the second order scaling.

accuracy of the scheme. The errors for the density though have a significantly greater
magnitude compared to the other quantities and also compared to the results of the IESS
scheme in Chapter 5. The reason lies in the increased density fluctuations produced by
the semi-implicit IMEX method in the low Mach number regime (see Sect. 6.2.8). We
therefore repeat the convergence study with the modified density update (6.43). The
results of the SI+-WB-FV method in Fig. 6.5 show that this modification decreases the
error in the density variable by several orders of magnitude. This occurs without a
significant effect on the error of the other primitive variables. The smaller error is due to
lower fluctuations in density, as an evaluation in Appendix B.1 shows. It therefore makes
sense to use the modified version of the method in purely subsonic regimes.
In a second step, we investigate the effect of the IMEX approach on the numerical diffusion
in the low Mach number regime. In Fig. 6.6, we present the distributions of the rotational
kinetic energy

ER =
1

2
ρ

[(
u− Ṽ/

√
2
)2

+
(
v − Ṽ/

√
2
)2
]

(6.45)

after one advective time tf that result from the runs in the convergence study. The
SI+-WB-FV method is able to resolve the vortex already on rather coarse grids, which
can be attributed to the low Mach compliant dissipation terms of the spatial operators
in Sect. 6.2.2. The loss of rotational kinetic energy is kept small and has a comparable
magnitude with that in the IESS method.

To analyze the amount of numerical dissipation for different Mach number regimes, we
run a set of simulations

(Ṽ )× (N) = (10−4, 10−3)× (32, 64, 128) (6.46)

with βK = 1. The corresponding maximum initial Mach number in the setup is either
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Figure 6.6: Distribution of the rotational kinetic energy (normalized by the maximum
initial value) of the Balsara vortex with Ṽ = 10−3 and βK = 1 after one advective time tf
obtained by the SI+-WB-FV scheme. The insets show the fraction of rotational kinetic
energy that has been dissipated by the end of the simulation: (ER,t=tf )tot/(ER,t=0)tot−1.
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Ṽ = 10−4, N = 128
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Mmax = 1.55×10−3 for Ṽ = 10−3 orMmax = 1.55×10−4 for Ṽ = 10−4. The loss of total
kinetic energy during the simulations serves as measure for the dissipation. The results
in Fig. 6.7 show that the curves only differ for different grid resolutions N ×N , but not
for different Mach numbers Mmax. This finding underlines that the dissipation in the
SI+-WB-FV scheme does not increase in the low Mach number regime.

In order to measure the efficiency of the semi-implicit approach in subsonic regimes, we
compare its wall-clock time for different Mmax with those of a fully time-explicit alter-
native. In order to reach second order in time, the explicit scheme relies on a MUSCL-
Hancock approach [vL84]. The LHLLD solver described in Sect. 5.2.1 is used in its
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Figure 6.9: Distribution of the local sonic Mach number in the Kelvin-Helmholtz insta-
bility test at t/tmax = 1/6 obtained with the SI+-WB-FV scheme on a 128× 64 grid for
different values of M. All panels are rescaled by the corresponding value of M.

Godunov-type method to obtain accurate results in subsonic regimes. The linear recon-
struction and the constrained transport method remain unaltered. We run the following
set of simulations

(Ṽ )× (βK) = (10−3, 10−2, 10−1)× (1), (6.47)

on a grid with 40 × 40 cells. The results in Fig. 6.8 show that the semi-implicit scheme
is faster than the fully explicit method in all considered setups. It is already more than
twice as fast for a moderate Mach number of 10−1, and the efficiency gap is widening
further for smaller Mach numbers. The threshold above which the semi-implicit approach
is worthwhile is therefore at even higher Mach numbers. Thus, the semi-implicit approach
leads to efficiency advantages very quickly due to its small implicit part. This property
makes it particularly suitable for applications that include both regimes with very low
and regimes with moderate Mach numbers.

6.3.4 Magnetized Kelvin-Helmholtz Instability

In this section we consider a magnetized Kelvin-Helmholtz instability. The test setup is
exactly defined as in Sect. 5.4.2. Since it is purely subsonic, we do not apply limiters
in the reconstruction method and use the modified density update (6.43). We perform
simulations for the following range of Mach numbers and grid resolutions:

(M)× (N) =
(
10−4, 10−3, 10−2, 10−1

)
× (32, 64, 128, 256) . (6.48)

For a start, it is worth investigating whether the SI+-WB-FV method evolves the Kelvin-
Helmholtz instability properly. In order to do that, we check the distribution of the local
Mach number Mloc at time t/tmax = 1/6 computed on 126 × 64 control volumes. The
results presented in Fig. 6.9 show that the method can resolve the vortexes independently
of the Mach number M in the respective setup and that there is no visible qualitative
difference between the solutions.

These findings are supported by the time evolution of the y-direction kinetic energy
Ekin,y =

∑
ij(ρv

2)ij/2 and the total magnetic energy Emag =
∑

ij |Bij |2/2, which are
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N L1(ρ) L1(u) L1(p) Iterations Residual

20 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00
40 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00
80 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00
160 0.0000E+00 0.0000E+00 0.0000E+00 0 0.0000E+00

Table 6.1: Isothermal atmosphere. The errors are measured in L1 norm at time tf = 1 for
the density, velocity and pressure using different numbers of cells (N = Nx = Ny). The
maximum number of the iterations and the corresponding residuals needed in the linear
solver for the pressure system are also reported.

presented in Fig. 7.9 and Fig. 7.10 in Appendix B.2. The respective time evolutions are
independent of the Mach number M. Moreover, they converge very quickly towards the
reference solution, which is given by the 1024 × 512 run of the IESS scheme, and the
results for the 256× 128 grid are qualitatively comparable to the respective result of the
IESS scheme.

6.3.5 Isothermal Atmosphere for Euler

In order to verify the well-balanced property of the SI-WB-FV scheme, we simulate the
isothermal atmosphere described in Sect. 4.6.4. The initial data for the hydrodynamic
variables is again given by

(ρ,v, p)(x, y, 0) =
(

1.21e−1.21(x+y),0, e−1.21(x+y)
)
,

the magnetic field B is set to zero and the gravitational acceleration is defined by g =
(−1,−1, 0). We run this test until a final time tf = 1 on a domain I = [0, 1]2 with different
numbers of cells (N = Nx = Ny). As boundary conditions we enforce the exact solution.
The numerical results of this test in Tab. 6.1 show that no iterations are needed to solve
the pressure linear system (6.33) because the right-hand side is perfectly balanced by the
pressure terms. As a consequence, the residual has the order of the machine accuracy and
the solution is exactly preserved throughout the simulation.

6.3.6 Perturbation of an Isothermal Atmosphere for Euler

The well-balanced property shall enable the numerical method to resolve small pertur-
bations of equilibria even on coarse grids. Keeping this in mind, we add a pressure
perturbation to the isothermal equilibrium, i.e.

p(x, y, 0) = e−1.21(x+y) + ηe−121((x−0.5)2+(y−0.5)2). (6.49)

The parameter η regulates the size of the perturbation. We perform the test on a 64×64-
grid with the non-well-balanced method SI-FV as well as with the well-balanced method
SI-WB-FV. For the well-balanced scheme, the unperturbed initial data is used for Q̃.

We carry out the test with three different levels of perturbation: η = (10−1, 10−5, 10−10).
In Fig. 6.10, we present the perturbations rescaled by η at final time tf = 0.15. The
largest perturbation is resolved equally well by both methods. For smaller perturbations,
however, only the well-balanced method is able to resolve the perturbation on this coarse
grid. The truncation error is too large for the method without well-balancing, so that its
amplitude is larger than the perturbation itself. This result is consistent with those in
Sect. 4.6.6 and in the literature [BCK23, CK15, KPS19].
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Figure 6.10: Pressure perturbations of varying strength η of an isothermal atmosphere
at tf = 0.15 resolved by the SI-FV (top row) and SI-WB-FV (bottom row) scheme. The
perturbations are rescaled by the corresponding value of η.

6.3.7 MHD Steady State

The following test is intended to show that the method can also maintain equilibria
exactly, which have a nonzero magnetic field. For this purpose, we modify the isothermal
equilibrium from the former sections by adding a magnetic field. The initial values on the
domain I = [0, 1]2 are then given by

(ρ,v, p,B)(x, y, 0) =
(

2.21e−(x+y), 0, 1.21e−(x+y), e−
1
2

(x+y), −e− 1
2

(x+y), 0
)
, (6.50)

and we set γ = 1.4. The boundary conditions rely on the exact solution. The L1-errors for
the well-balanced scheme at time tf = 1 are zero just as for the HSE before, which shows
that the MHSE is preserved exactly. Consequently, the method is also well-balanced for
MHSE as stated in Theorem 6.2.1.

6.3.8 Perturbation of an MHD Steady State

As already done for the isothermal Euler equilibrium, we also add a perturbation to the
MHD equilibrium (6.50). The initial pressure is then given by

p(x, y, 0) = 1.21e−(x+y) + ηe−100((x−0.5)2+(y−0.5)2). (6.51)

This test is also carried out with perturbations of different strength: η = 10−1, 10−5, 10−10.
Fig. 6.11 shows the results on a 64×64 grid for the well-balanced and the non-well-balanced
method at final time tf = 0.15. The behavior is similar to the one for the Euler equilibrium
in Sect. 6.3.6. The non-well-balanced method can only resolve the large perturbation, but
already fails for the medium perturbation. The well-balanced method, on the other hand,
reproduces all three perturbations accurately. It should be noted that the altered shape
of the Gaussian perturbation in comparison to the one of the Euler equilibrium results
from the newly introduced force of the magnetic field.
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Figure 6.11: Pressure perturbations of varying strength η of an MHD equilibrium at
tf = 0.15 resolved by the SI-FV (top row) and SI-WB-FV (bottom row) scheme. The
perturbations are rescaled by the corresponding value of η.

6.3.9 Euler Vortex in a Gravitational Field

After demonstrating low Mach capabilities for tests without gravitational source terms
in Sect. 6.3.3 and 6.3.4, this final test is carried out to show the low Mach property of
the SI+-WB-FV scheme for the inhomogeneous case. For this purpose, we use the vortex
for the Euler equations described in Sect. 4.6.8. Since the vortex is placed on top of a
hydrostatic equilibrium solution, we set Q̃ to this equilibrium state.
We compute the solution after one full turn of the vortex for different initial maximum
Mach numbersMmax on a 40×40 grid. Fig. 6.12 shows the distributions of the local Mach
number Mloc at final time tf and additionally the initial distribution for Mmax = 10−1

(top left). It is evident that the numerical scheme adds a certain amount of numerical
dissipation to the approximate solution in comparison with the initial data, which damp-
ens the local Mach number. The vortex, however, is well-resolved in each case and there
is no qualitative difference between the solutions for different Mmax. This again shows
that the numerical dissipation is independent of the Mach number due to the implicit
discretization of the acoustic terms in the flux splitting.

This finding is underlined by the time evolution of the total kinetic energy. Since the
domain is a closed setup due to the periodic boundary conditions, the total kinetic energy
should be conserved over time in the low Mach number limit. Fig. 6.13 shows the time
evolution of the kinetic energy for different Mmax and grid resolutions N = Nx = Ny. It
turns out that the loss of kinetic energy only depends on the grid resolution and not on
the Mach number. The results are consistent with those in Sect. 4.6.8 and results in the
literature [TPK20].



126 CHAPTER 6. A SEMI-IMPLICIT IMEX METHOD

t = 0

Mmax = 10−1

t = tf

Mmax = 10−1

t = tf

Mmax = 10−2

t = tf

Mmax = 10−3

t = tf

Mmax = 10−4

t = tf

Mmax = 10−5

0.0

0.2

0.4

0.6

0.8

1.0
M

lo
c /M

m
a
x

Figure 6.12: Distribution of the local Mach number Mloc at tf = 0 (top left) and after
one turn for different maximum Mach numbers Mmax. All panels are rescaled by the
corresponding value of Mmax.
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Figure 6.13: Time evolution of the total kinetic energy for different maximum Mach
numbers Mmax and grid resolutions N = Nx = Ny for the SI+-WB-FV scheme.

6.4 Summary and Conclusions

In this chapter we have presented a new semi-implicit and well-balanced IMEX FV scheme
for the compressible Euler and ideal MHD equations with gravitational source terms.
The method is based on splitting the equations into its convective-type part, which is
discretized explicitly in time, and the acoustic part, which is discretized implicitly. In
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consequence, the CFL time step condition only depends on the slow dynamics in the
explicit part. The implicit discretization generates an elliptic equation for the pressure,
which is solved via GMRES. The resulting new pressure is used to update momentum
and energy by finite difference operators without any numerical dissipation. This and the
new CFL condition make the method particularly suitable for problems in the low Mach
regime. However, numerical tests show that the method introduces density fluctuations of
high magnitude in subsonic regimes, caused by an inconsistent update of density and mo-
mentum. The magnitude of the fluctuations can be significantly reduced by introducing
a modified density update that relies on a central difference of the momentum at the new
time level. Numerical results of the Balsara vortex and the Kelvin-Helmholtz instability
show indeed that the modified method resolves low Mach flows accurately in different
regimes. This finding is also valid under the influence of gravity, as shown in the results
of the stationary vortex. The analysis of the kinetic energy loss numerically proves that
the numerical diffusion of the new method is independent of the Mach number.
At the same time, the explicit Godunov-type method for the nonlinear flux terms ensures
stability in the presence of shocks, as shown by the results of the Sod shock tube and the
Orszag-Tang vortex.
The semi-implicit approach is combined with the Deviation Well-Balancing method to
maintain (magneto-)hydrostatic equilibria exactly and to resolve flows around the equi-
librium state even on coarse grids. The resulting scheme solves the equations for the
deviation of the solution of an a priori known equilibrium solution. We have proven
that, in the equilibrium, the elliptic pressure equation has only one solution, which is the
equilibrium pressure itself. As a result, the solution is preserved exactly in the case of a
(magneto-)hydrostatic equilibrium so that the scheme is well-balanced. Numerical tests
demonstrate that arbitrary equilibria are exactly preserved and even very small pertur-
bations are resolved accurately.
In order to ensure the solenoidal property of the magnetic field at the discrete level, a
Contact-CT method is embedded in the scheme. In all numerical tests concerning the
MHD equations, it could be checked that the magnetic field remains divergence-free up
to rounding errors.
The new semi-implicit IMEX method thus represents an interesting alternative to fully
time-implicit methods for simulating flows in low Mach number regimes. The development
of density fluctuations in the incompressible limit, though, deserves more attention and
offers potential for further improvements.





Chapter 7

Conclusion and Outlook

The simulation of fluid flows in the interior of stars is challenging and computationally
expensive. Therefore, numerical methods must be particularly efficient in the considered
physical regime in the sense that they (i) do not introduce excessive dissipation, (ii) al-
low a large time step and (iii) preserve (magneto-)hydrostatic equilibria. In this context,
we have presented three different numerical methods which are based on very different
approaches.

When searching for a method that fulfills all three requirements, we first focused on the
design of approximate Riemann solvers. Within the concept of relaxation solvers, we have
constructed a new Suliciu-type relaxation system whose solutions are approximations of
the solutions of the Euler equations with gravity as long as the subcharacteristic condition
is met. The characteristic fields of the derived relaxation system are linearly degenerate
so that the corresponding Riemann problem is easy to solve. The resulting solver is
an approximate Riemann solver for the inhomogeneous Riemann problem of the Euler
equations. By relaxing the gravitational potential in the relaxation system, a discrete
formulation of the hydrostatic equilibrium equation can be incorporated into the solver,
ensuring that certain families of as well as a priori known hydrostatic equilibria can exactly
be preserved. Furthermore, we employ the two-speed approach in the relaxation system.
The different scaling of the two relaxation speeds ensures that the numerical dissipation
does not increase for low Mach numbers and that the method is asymptotic-preserving
in the incompressible limit. The key to this positive result is the influence of the second
relaxation speed on the intermediate pressure state of the Riemann solver by which the
Mach number is canceled out in the dissipation term. A side effect of the rescaling is that
the dissipation is increased within the intermediate velocity. However, this dissipation
term remains bounded and does not increase with decreasing Mach numbers. The choice
of relaxation speeds respects the subcharacteristic condition so that the solver satisfies
an entropy inequality and is positivity-preserving. From the entropy inequality follows
that the solver suppresses checkerboard modes in velocity and pressure variables. These
properties guarantee that the solver is particularly stable. The price that must be paid
for this stability is a CFL condition that is more restrictive than the classic one. The
resulting scheme thus only fulfills requirements (i) and (iii), but not requirement (ii).

The second scheme in this thesis solves the ideal MHD equations and addresses all three
requirements. The dissipation is reduced by a low Mach fix in the HLLD solver, which acts
only on the intermediate pressure. Within this intermediate state, the mechanism of the
fix is very similar to that of the two-speed approach. The fix, however, is artificially built
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into the solver and not based on a fundamental mathematical derivation. It is therefore
not entirely clear what impact the fix has on the stability of the solver. However, numerical
experiments in the low Mach number regime show no negative stability effects by using the
fix. The CFL condition is relaxed by using time-implicit discretization techniques. Within
the IESS algorithm, the continuity, momentum and energy equations are solved implicitly
in time, while the induction equation is treated time-explicitly. This means that the CFL
condition only depends on the Alfvén wave speed and is therefore independent of the
Mach number. Numerical tests indicate that this approach is computationally cheaper in
comparison with fully explicit schemes for Mach numbers smaller than 10−2. The separate
explicit discretization of the induction equation offers the advantage of being able to easily
add a staggered Contact CT method to the scheme. The CT method ensures that the cell
volume-averaged divergence of the magnetic field remains within the order of the machine
accuracy, suppressing the evolution of unphysical magnetic monopoles and increasing the
stability of the scheme. A priori known magnetohydrostatic solutions can be preserved
by the Deviation Well-Balancing method, which prevents spurious flows and reduces nu-
merical errors in simulations with steep stratifications. Numerical experiments show that
the new-formed method is indeed capable of accurately resolving flows characterized by
low Mach numbers in strongly stratified setups, and is significantly more efficient in such
regimes than standard explicit methods are, due to the partially implicit time integration.

The third method relies on an IMEX approach to address the low Mach requirements. The
MHD system is splitted into a slow scale convective-type and a fast scale pressure-type
sub-system. The splitting ensures that only the wave speeds of the pressure-type sub-
system depend on the Mach number. The convective-type sub-system is discretized time-
explicitly by a Godunov-type method using the Rusanov solver, whereas the pressure-type
sub-system is discretized implicitly and uses finite difference operators without any dis-
sipation. The implicit part constitutes a linear system for the pressure, which is solved
iteratively via GMRES. Then, based on the updated pressure, momentum and energy can
be evolved in time. As a consequence of this discretization, the dissipation terms of the
method are independent of the Mach number and do not introduce excessive dissipation.
The CFL condition refers exclusively to the convective sub-system and thus allows time
step sizes independent of the Mach number, while remaining restrictive enough to allow
the scheme to capture shocks in supersonic regimes. Since the induction equation is com-
pletely contained in the explicit part, the staggered Contact CT method can be applied
to keep a divergence-free magnetic field. The third requirement is satisfied by using the
Deviation Well-Balancing method. It can be proven that the pressure equation only has
one solution in the equilibrium case, which is the equilibrium pressure itself. We can de-
duce from this result that the other conservative variables are also exactly preserved. The
IMEX method presented is applied to a number of numerical experiments in the subsonic
regime and near magnetohydrostatic equilibria, which underline that the method fulfills
the requirements (i)-(iii).

Overall, we can conclude that the two-speed scheme in its current form is not efficient
enough to be applied in very subsonic regimes because of its restrictive CFL condition.
Nevertheless, the numerical analysis of the method gives us interesting insights into the
relation between low Mach compliant dissipation terms and stability properties of ap-
proximate Riemann solvers. One interesting aspect is that the stability of low-dissipation
solvers such as LHLLD can potentially be increased by also incorporating the low Mach
fix factor in the intermediate state of the velocity without leading to excessive dissipation
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in the low Mach number regime.
The second method that uses a partially implicit time integration in combination with the
low Mach compliant LHLLD solver has proven to be a very good option in the numerical
experiments presented and can currently be considered as the best option in practice.
However, the approach requires the laborious implementation of implicit solvers, which
then have to solve large nonlinear systems of equations. At this point, the IMEX approach
offers the potential to increase the efficiency in the low Mach number regime, since only
a smaller implicit part has to be solved. In the future, it would be interesting to compare
the computational costs of the two methods under identical conditions in order to compare
their efficiency. Such a study could be done similarly to the one that is carried out in
[LAB+23] for different approximate Riemann solvers.
In addition, the construction of the IMEX method itself leaves room for further improve-
ment. The development of density fluctuations in the low Mach number regime needs a
more detailed investigation in order to revise the design of the method such that it mimics
the limit behaviour on the discrete level. An alternative strategy that might help in this
context could be an extension of the IMEX method presented in [TPK20] from the Euler
to the ideal MHD equations. The method therein relies on a Klein splitting [Kle95] of
the pressure within a relaxation system. Implicit discretized terms only appear in the
additional relaxation equations, whereas the conservative variables of the original PDE
system are completely updated in the closed form of a Godunov-type method. Thus,
density and momentum are evolved simultaneously and in a consistent way within the
explicit part of the IMEX method, which potentially reduces the fluctuations.





Appendices

A An Implicit-Explicit Strang Splitting Method

A.1 Magnetized Kelvin-Helmholtz Instability

This appendix explores the effects of the grid resolution and strength of the initial mag-
netic field on the evolution of the Kelvin-Helmholtz instability shown in Sect. 5.4.2.
Firstly, Fig. 7.1 illustrates the evolution of Bx in time on a fine grid with 2048 × 1024
control volumes. In Fig. 7.2, we present the results of nine different simulations with
initial magnetic fields of different strength. It shows that strong magnetic fields prevent
the growth of the instability. The simulations with different resolutions show in Fig 7.3
that secondary instabilities arise in the magnetic field for low resolution runs, which are
purely caused by discretization errors and disappear in the solutions generated on finer
grids (N > 128).
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Figure 7.1: Time evolution of Bx in the simulations of the Kelvin-Helmholtz instability
starting from the initial conditions described in Sect. 5.4.2 with M = 10−3. The grid
consists of 2048× 1024 cells.
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Figure 7.2: Distribution of the local sonic Mach number Mloc in the simulations of the
Kelvin-Helmholtz instability at t/tmax = 1/6 for different values of the initial magnetic
field Bx, computed as Bx =

√
γα, with α = (0.1, 0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2). These

simulations are performed on a 512 × 256 grid with M = 10−3. The title in each panel
is the corresponding minimum Alfvén Mach number of the flow at t = 0. For an initial
magnetic field that is strong enough, the magnetic stresses prevent the growth of the
instability.
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Figure 7.3: Distribution of Bx in the simulations of the Kelvin-Helmholtz instability at
t/tmax = 1/6 for different grid resolutions, starting from the initial conditions described in
Sect. 5.4.2 withM = 10−3. On grids with N ≤ 128, numerical discretization errors gener-
ate grid-scale vorticity, which leads to the growth of secondary instabilities in the regions
between the primary rolls. This effect does not appear in better converged simulations.
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A.2 Hot Bubble

In this section, we extend the study of the “hot bubble” described in Sect. 5.4.3. In par-
ticular, we show the dependence of the entropy fluctuations, pB andM on the magnitude
of the initial entropy perturbation (∆A/A)t=0.
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Figure 7.4: Final distribution of the entropy fluctuations ∆A/A of the hot bubble for
different values of (∆A/A)t=0 and grid resolutions. Each panel is rescaled by the corre-
sponding value of (∆A/A)t=0. The insets provide the minimum and maximum values of
the entropy fluctuations in each plot.
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Figure 7.5: Final distribution of |B|/Bx,t=0 for different values of (∆A/A)t=0 and grid
resolutions in the simulations of the hot bubble. The insets show the maximum ratio in
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Figure 7.6: Final distribution of the sonic Mach number of the hot bubble for different
values of (∆A/A)t=0 and different grid resolutions. Each panel is rescaled by the corre-

sponding value of (∆A/A)
1/2
t=0. The insets show the maximum sonic Mach number. An

entropy perturbation of (∆A/A)t=0 = 0.1 drives flows that are far from the low Mach
number regime. In this case, effects of compressibility caused by the high ram pressure
of the bubble are large enough to cause a 6 − 7% deviation from the theoretical scaling
discussed in Sect. 5.4.3.
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B A Semi-Implicit IMEX Method

B.1 Balsara Vortex

In this part, we briefly investigate the intensity of density fluctuations within the solutions
of the Balsara vortex. The left plot in Fig. 7.7 shows that the fluctuations decrease with
second order in terms of the grid resolution for both versions of the semi-implicit method.
The fluctuations for the modified scheme SI+-WB-FV are several orders smaller in com-
parison to the ones produced by SI-WB-FV, which is a positive effect of the modified
density update (6.43). The right plot in Fig. 7.7 illustrates the magnitude of the fluctu-
ations in relation to the maximum Mach number of the different runs. The maximum
of the absolute value of the fluctuations does not change at all with the Mach number
and remains on a high level for the SI-WB-FV method. For the modified version, we can
observe a small decrease in the results fromMmax = 1.55×10−1 andMmax = 1.55×10−2,
but for smaller Mach numbers the magnitude is constant and therefore independent of
the maximum Mach number. Since the divergence of the velocity field for this type of
semi-implicit method has the order of the time step in the incompressible limit [BP21],
and the time step is chosen independently of the Mach number due to the IMEX ap-
proach, the divergence does not decrease for smaller Mach numbers. This has the effect
that the divergence does not vanish in the discretization of the continuity equation and
Mach number independent pile-ups of density fluctuations arise. Further investigations
into this process will need to be carried out in the future.
For a comparison, we show the scaling for the IESS scheme using the LHLLD solver in
Fig. 7.8. The maximum fluctuations for this method scale with O(M2).
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resolutions N × N with N = 32, 64, 128, 256 (left) and maximum rotational velocities
Ṽ = 10−1, 10−2, 10−3 (right).
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Figure 7.8: Maximum absolute density fluctuation over the grid for the Balsara vortex
at final time tf of the IESS method using the LHLLD solver for different grid resolutions
N ×N and maximum rotational velocities Ṽ .

B.2 Magnetized Kelvin-Helmholtz Instability

In order to underline the low Mach capabilities of the semi-implicit method, we analyze
the time evolution of the y-direction kinetic energy and the magnetic energy. The test is
run with the SI+-WB-FV scheme on the following range of initial Mach numbersM and
grid resolutions (Nx ×Ny):

(M)× (Nx ×Ny) = (10−1, 10−2, 10−3, 10−4)× (64× 32, 128× 64, 256× 128). (7.1)

For comparison, we include the solutions generated by the IESS scheme presented in
Chapter 5 in Fig. 7.9 and 7.10. The time evolutions for both kinetic and magnetic
energy are independent of the Mach number M, which underlines the low Mach number
compliance of the semi-implicit method. Additionally, the results show good agreement
with those of the IESS scheme on the 256× 128 grid.
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Figure 7.9: Time evolution of the y-direction kinetic energy rescaled by its initial value in
the magnetized Kelvin-Helmholtz instability test problem. Each panel corresponds to a
different initial Mach number M. Different colors are used for different grid resolutions.
Results obtained with the SI+-WB-FV are represented by dot-dashed lines. The results
are compared to those of the IESS scheme with the LHLLD solver, represented by solid
lines.
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Figure 7.10: Time evolution of the magnetic energy rescaled by its initial value in the
magnetized Kelvin-Helmholtz instability test problem. Each panel corresponds to a dif-
ferent initial Mach number M. Different colors are used for different grid resolutions.
Results obtained with the SI+-WB-FV are represented by dot-dashed lines. The results
are compared to those of the IESS scheme with the LHLLD solver, represented by solid
lines.





Bibliography
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Mach Roe-type solver for the Euler equations allowing for gravity source
terms. ESAIM: Proceedings and Surveys, 58:27–39, 2017.

[Ber05] C. Berthon. Stability of the MUSCL Schemes for the Euler Equations.
Communications in Mathematical Sciences, 3(2):133–157, 2005.

[Ber20] J. P. Berberich. Fluids in Gravitational Fields - Well-Balanced Modifications
for Astrophysical Finite-Volume Codes. Dissertation, Julius-Maximilians-
Universität Würzburg, 2020.



BIBLIOGRAPHY 145
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C. Klingenberg, and F. K. Röpke. Well-balanced treatment of gravity in
astrophysical fluid dynamics simulations at low Mach numbers. Astronomy
& Astrophysics, 652:A53, 2021.

[Ein88] B. Einfeldt. On Godunov-Type Methods for Gas Dynamics. SIAM Journal
on Numerical Analysis, 25(2):294–318, 1988.

[ERMS91] B. Einfeldt, P. L. Roe, C.-D. Munz, and B. Sjögreen. On Godunov-Type
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Sbornik, 47(3):271–306, 1959.

[God72] S. K. Godunov. Symmetric form of the magnetohydrodynamic equation.
Numerical Methods for Mechanics of Continuum Medium, 3(1):26–34, 1972.

[GR02] E. Godlewski and P.-A. Raviart. Coupling nonlinear Hyperbolic Systems:
mathematical and numerical analysis. In R. Herbin and D. Kröner, editors,
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