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Abstract. In this work we apply the two-speed relaxation technique
to a relaxation system for the compressible ideal magnethydrodynamic
(MHD) equations. We show that the resulting approximate Riemann
solver reduces the dissipation in the low Mach regime and can thus gener-
ate accurate solutions in this regime even on coarse grids. These findings
are supported by numerical results.
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1 Introduction

In practical applications such as the simulation of gas flows in the interior of
stars, flows with large scale differences can occur. One example is the low sonic
Mach number regime, in which the sound speed is much higher than the speed
of the fluid flow. Numerically, for finite volume methods two difficulties arise
in the low Mach regime: excessive dissipation and a restrictive CFL condition.
Basically, there are two strategies in the literature to deal with these challenges:

1. Introduce a low Mach fix in the numerical flux function to reduce the dissi-
pation and use an implicit time integration to overcome the restrictive CFL
condition [9, 11].

2. Perform a splitting into convective and acoustic parts and solve the acoustic
parts implicitly [8, 7].

In this paper, we focus only on the first strategy and therein only on the design of
the numerical flux function. Typically, from implementing a low Mach fix follows
that the solver does not satisfy a discrete entropy inequality anymore. This is
different for the two-speed relaxation technique. As already shown for isentropic
Euler [3], full Euler [4] and full Euler equations with gravity [2], the resulting
approximate Riemann solver reduces dissipation in the low Mach regime and
still satisfies a discrete entropy inequality. In the spirit of these papers, we apply
the two-speed technique to an existing relaxation system for the ideal MHD
equations [5, 6]. In a first step we show how the artificial dissipation is reduced in
the low Mach regime and substantiate this theoretical result in numerical tests.
We assume that the approximate Riemann solver satisfies a discrete entropy
inequality as in previous work, but do not show it here. This is left to future
work.
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2 MHD equations

The compressible ideal MHD equations can be written as

∂ρ

∂t
+∇ · (ρU) = 0,

∂(ρU)

∂t
+∇ · [ρU ⊗U + (p+

1

2
|B|2)I −B ⊗B] = 0,

∂E

∂t
+∇ · [(E + p+

1

2
|B|2)U −B(B ·U)] = 0,

∂B

∂t
+∇ · (U ⊗B −B ⊗U) = 0,

(1)

where ρ denotes the density, U = (u, u⊥) the velocity field, B = (Bx, B⊥) the
magnetic field and p the gas pressure. The total energy E is defined as

E = ρe+
1

2
ρ|U |2 + 1

2
|B|2, (2)

where e denotes the specific internal energy. The system is closed by an equation
of state, which provides the numerical value of the gas pressure. Throughout this
work we will consider an ideal gas law defined by

p(ρ, e) = (γ − 1)ρe. (3)

In addition to the set of equations in (1), the magnetic field satisfies the solenoidal
constraint

∇ ·B = 0. (4)

Solutions to the system (1) automatically satisfy this condition at all times if
the initial field obeys the constraint.

2.1 Low-Mach limit of the MHD system

In order to analyze the behaviour of solutions in the low Mach regime it is
of help to determine the non-dimensional form of the MHD equations. This
dimensionless system can be derived by decomposing the variables into a scalar
value for the units and a non-dimensional quantity, i.e.

φ = φrφ̂. (5)

By inserting these quantities into the dimensional system (1), we obtain

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂Û) = 0,

∂(ρ̂Û)

∂t̂
+ ∇̂ ·

[
ρ̂Û ⊗ Û +

(
p̂

M̂2
son

+
1

M̂2
Alf

1

2
|B̂|2

)
I − B̂ ⊗ B̂

M̂2
Alf

]
= 0,

∂(ρ̂Ê)

∂t̂
+ ∇̂ ·

[(
ρ̂Ê + p̂+

M̂2
son

M̂2
Alf

1

2
|B̂|2

)
Û − B̂

(
B̂ · Û

) M̂2
son

M̂2
Alf

]
= 0,

∂B̂

∂t̂
+ ∇̂ · (Û ⊗ B̂ − B̂ ⊗ Û) = 0,

(6)



Two-speed MHD Relaxation 3

where M̂son = |Ur|/ar and M̂Alf = |Ur|/(|Br|/√ρr) denote the characteristic
sonic and Alfvén Mach numbers of the flow.
For analyzing the eigenstructure of the MHD system, we consider system (6)
reduced to one spatial dimension. This system has seven eigenvalues

λ1,7 = û∓ cf , λ2,6 = û∓ cA, λ3,5 = û∓ cs, λ4 = u. (7)

The fast magnetosonic, Alfvén and slow magnetosonic wave speeds are defined
by

cf,s =

1
2

a2 +
1

M̂Alf

|B̂|2
ρ̂

±

√√√√(a2 + 1

M̂Alf

|B̂|2
ρ̂

)2

− 4a2c2A




1
2

, (8)

cA =
1

M̂Alf

|B̂x|√
ρ̂
, (9)

with the sound speed a defined as

a =
1

M̂son

√
γp̂

ρ̂
. (10)

In this work we only consider low sonic Mach numbers, but not low Alfvén Mach
numbers. Therefore, we assume M̂Alf = 1 in the rest of the paper.

3 Relaxation model

Our goal is to derive a one-dimensional Riemann solver. Therefore, in the fol-
lowing we only consider one spatial dimension. In [5] and [6] a relaxation system
is described, which leads to a 5-wave approximate Riemann solver for the MHD
equations. For problems with low Mach numbers, however, this solver leads to
excessive dissipation, so that the solution is poorly resolved on coarse grids (see
Sect. 5). To cure this defect, we resort to a two-speed relaxation technique [3].
In this approach the relaxation speed for the normal direction is split into two
different speeds and additionally a new relaxation equation for the velocity is
introduced. At this point we would like to point out that the following relaxation
system has a total number of three relaxation speeds (c1, c2 and ca), but that we
always refer to c1 and c2 when using the term two-speed. We define the following
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relaxation system

∂tρ+ ∂x(ρv) = 0,

∂t(ρu) + ∂x(ρuv + π) = 0,

∂t(ρu⊥v + π⊥) = 0,

∂tE + ∂x ((E + π) v + π⊥ · u⊥) = 0,

∂tBx + v∂Bx = 0,

∂tB⊥ + ∂x (B⊥v −Bxu⊥) + u⊥∂xBx = 0,

∂t(ρπ) + ∂x (ρπv) + c1c2∂xv = ρ
p− π

ε
,

∂t(ρπ⊥) + ∂x (ρπ⊥v) + c2a∂xv = ρ
p− π

ε
,

∂t(ρv) + ∂x
(
ρv2
)
+

c1
c2

∂xπ = ρ
u− v

ε
,

∂tc1 + v∂xc1 = 0,

∂tc2 + v∂xc2 = 0,

∂tca + v∂xca = 0.

(11)

The two pressure variables π and π⊥ are defined in equilibrium by

π = p+
1

2
|B⊥|2 −

1

2
B2

x and π⊥ = −BxB⊥. (12)

As long as the relaxation speeds c1, c2 and ca satisfy the stability conditions

1

ρ
− B2

x

c2a
≥ 0, c1c2 − ρ2a2 ≥ 0,

|B⊥| ≤ (c1c2 − ρ2a2)

(
1

ρ
− B2

x

c2a

)
, c1 ≥ c2,

(13)

solutions of the relaxation system are viscous approximations of the solutions of
the original MHD system. The homogeneous system (11)ε=∞ is hyperbolic and
admits the eigenvalues

λ±
f = v ±max(ca, c1), λ±

s = v ±min(ca, c1), λv = v. (14)
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All characteristic fields are linearly degenerate and the Riemann invariants for
the different waves are given as follows

v − c1
ρ

: v − c1
ρ
, u− c2

ρ
, π +

c1c2
ρ

,
B⊥
ρ

, u⊥, Bx, π⊥, c1, c2, ca,

2c1c2 − c22 − 2c2ρ(v − u) + ρ
(
2π + |B⊥|2 +B2

x + 2ρe
)

2ρ2
,

v − ca
ρ

: π⊥ + cau⊥, B⊥ − ρu⊥Bx

ca
, e+

c2au
2
⊥ + 2cau⊥(BxB⊥ + π⊥)− ρB2

xu
2
⊥

2c2a
,

ρ, u, Bx, π, v, c1, c2, ca,

v : v, u⊥, π, π⊥,

v +
ca
ρ

: π⊥ − cau⊥, B⊥ +
ρu⊥Bx

ca
, e+

c2au
2
⊥ − 2cau⊥(BxB⊥ + π⊥)− ρB2

xu
2
⊥

2c2a
,

ρ, u, Bx, π, v, c1, c2, ca,

v +
c1
ρ

: v +
c1
ρ
, u+

c2
ρ
, π +

c1c2
ρ

,
B⊥
ρ

, u⊥, Bx, π⊥, c1, c2, ca,

2c1c2 − c22 + 2c2ρ(v − u) + ρ
(
2π + |B⊥|2 +B2

x + 2ρe
)

2ρ2
.

Let us now introduce the state vector

W = (ρ, ρu, ρu⊥, E,Bx, B⊥, ρπ, ρπ⊥, ρv, c1, c2, ca)
T . (15)

The solution to the Riemann problem associated with system (11)ε=∞ given by

W0(x) =

{
WL, x < 0,

WR, x > 0,
(16)

consists of six constant states. Therefore the Riemann solver WR(x/t;WL,WR)
has the structure

WR(x/t;WL,WR) =



WL, x
t < λ−

f ,

WL∗, λ−
f < x

t < λ−
s ,

WL∗∗, λ−
s < x

t < λv,

WR∗∗, λv < x
t < λ+

s ,

WR∗, λ+
s < x

t < λ+
f ,

WR, λ+
f < x

t .

(17)

The intermediate states can be derived using the invariants from above. Due to
their large number, we will not list the intermediate states here. The definition
of the relaxation speeds is given in Sect. 4.
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4 Definition of the relaxation speeds and the low Mach
property

In line with the definitions of the relaxation speeds for the one-speed solver in
[6], we define the speeds for the two-speed solver for α = 1, 2 by

cLα = ρLaL0,α + βρL
(
(vL − vR)+ +

(πR − πL)+
ρLaLq + ρRaRq

)
,

cRα = ρRaR0,α + βρR
(
(vL − vR)+ +

(πL − πR)+
ρLaLq + ρRaRq

)
,

cLa =

√
ρL

xL

(
B2

x + |BxBL
⊥|
)
, cRa =

√
ρR

xR

(
B2

x + |BxBR
⊥|
)
,

(18)

with

a20,1 =
1

min (ϕ2, 1)
a2 +

|B⊥|2 + |BxB⊥|
ρx

, (19)

a20,2 = min
(
ϕ2, 1

)
a2 +

|B⊥|2 + |BxB⊥|
ρx

, (20)

a2q = min
(
ϕ2, 1

)
a2 +

|B⊥|2 + |BxB⊥|
ρ

. (21)

For more details on the definitions of the used quantities, we refer the reader to
[6]. We want to point out that for ϕ = 1, we get c1 = c2 and consequently the
speeds coincide with the definitions in the one-speed solver. However, to get the
desired effect of the two-speed approach, we set ϕ = M̂son. As a consequence,
taking into account the results of Sect. 2.1, the speeds scale in this case by

c1 = O(1/M̂2
son) and c2 = O(1). (22)

This rescaling by the Mach number is essential to prevent excessive numerical
dissipation in the low Mach regime. This becomes clear when looking at the
intermediate state of the pressure π given by

π∗ =
cR2 π

L + cL2 π
R − cL2 c

R
2 (v

R − vL)

cL2 + cR2
. (23)

This state can be viewed as a central flux of the left and right pressure combined
with a dissipation term including the velocity difference vR − vL. Thanks to the
rescaling, c2 is of order O(1), which keeps the amount of dissipation in the
pressure independent of the Mach number. For the one-speed solver, on the
other hand, the relaxation speed c = c1 = c2 scales with O(1/M̂son). Thus,
in the low Mach regime, the dissipation term becomes the dominant part of
the momentum flux, causing the dissipation to increase with decreasing Mach
number. The rescaling in the two-speed approach prevents this behaviour.
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Fig. 1. Distribution of the kinetic energy for different maximum Mach numbers Mmax

after one full turnover

5 Numerical results

The one-dimensional approximate Riemann solver (17) is incorporated into a
second order two-dimensional unsplit finite volume method, that uses a standard
linear reconstruction with minmod-limiter. In order to keep the divergence of the
magnetic field to machine precision, the scheme is combined with a second order
staggered constrained transport method [10]. For time discretisation, the explicit
method of Heun is used. The CFL condition relies on the maximum wave speed
derived from (14). For comparison, we also show results of the one-speed solver,
in which the relaxation speeds are not rescaled with the Mach number and thus
we set c1 = c2.

5.1 Stationary vortex

We start with a stationary vortex that can be set up with different maximum
Mach numbers [1]. We compute the numerical solution on a 64 × 64 grid and
evaluate the kinetic energy distribution after one full turnover. The results for
different maximum Mach numbers Mmax are shown in Fig. 1. Clearly, the one-
speed solver introduces too much artifical dissipation, so that the loss of kinetic
energy is quite large. With the two-speed method, on the other hand, the loss
of kinetic energy is independent of the Mach number.
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Fig. 2. Distribution of the local sonic Mach number relative to Mx at final time tf

5.2 Kelvin Helmholtz instability

A more sophisticated test is the magnetised version of the Kelvin Helmholtz
instability [9]. This test is set up with different maximum Mach number of the
horizontal flow denoted byMx. We compute the solution on a 128 ×64 grid until
the final time tf = 0.8/Mx. Fig. 2 shows the distribution of the local sonic Mach
number Mloc relative to Mx. The test again shows that the two-speed solver
introduces significantly less numerical dissipation and can therefore resolve the
details of the solution much better.

6 Summary

In this work, we have built an approximate Riemann solver using the two-speed
technique, which gives accurate solutions even in the low Mach regime. Typically,
relaxation-based Riemann solvers satisfy a discrete entropy inequality when the
subcharacteristic condition is satisfied. The goal of future work will be to prove
such a result for the solver described here. Furthermore, it would be interesting
to investigate whether the two-speed approach can also be applied or extended
to the low Alfvén Mach regime.
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