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Abstract In this work we apply the two-speed relaxation technique to a relax-
ation system for the compressible ideal magnetohydrodynamic (MHD) equations.
We show that the resulting approximate Riemann solver reduces the dissipation in
the low Mach number regime and can thus generate accurate solutions in this regime
even on coarse grids. These findings are supported by numerical results.

Keywords Finite volume methods * Relaxation methods + Approximate Riemann
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1 Introduction

In practical applications such as the simulation of gas flows in the interior of stars,
flows with large scale differences can occur. One example is the low sonic Mach
number regime, in which the sound speed is much higher than the speed of the fluid
flow. Numerically, for standard finite volume methods two difficulties arise in the
low Mach number regime: excessive dissipation and a restrictive CFL condition.
Basically, there are two strategies in the literature to deal with these challenges:

1. (a) Introduce a low Mach number fix in the numerical flux function to reduce the
dissipation and (b) use an implicit time integration to overcome the restrictive
CFL condition [10, 11].

2. Perform a splitting into convective and acoustic parts and solve the acoustic parts
implicitly [7, 8].
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In this paper we focus only on part (a) of the first strategy, i.e. the design of the
numerical flow function and for practical reasons combine it with an explicit time-
stepping method. Typically, from implementing a low Mach number fix follows that
the solver does not satisfy a discrete entropy inequality anymore. This is different for
the two-speed relaxation technique. As already shown for isentropic Euler [3], full
Euler [4] and full Euler equations with gravity [2], the resulting approximate Riemann
solver reduces dissipation in the low Mach number regime and still satisfies a discrete
entropy inequality. In the spirit of these papers, we apply the two-speed technique to
an existing relaxation system for the ideal MHD equations [5, 6]. In a first step we
show how the artificial dissipation is reduced in the low Mach number regime and
substantiate this theoretical result in numerical tests. We assume that the approximate
Riemann solver satisfies a discrete entropy inequality as in previous work, but do not
show it here. This is left to future work.

2 MHD Equations

The compressible ideal MHD equations can be written as

dp
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where p denotes the density, U = (u, u_ ) the velocity field, B = (B,, B, ) the mag-
netic field and p the gas pressure. The total energy E 1is defined as
E = pe + % plU> + %lB |2, where e denotes the specific internal energy. The sys-
tem is closed by an equation of state, which provides the numerical value of the
gas pressure. Throughout this work we will consider an ideal gas law defined by
p(p, e) = (v — 1)pe. In addition to the set of equations in (1), the magnetic field sat-
isfies the solenoidal constraint V - B = 0. Solutions to the system (1) automatically
satisfy this condition at all times if the initial field obeys the constraint.

In order to analyze the behaviour of solutions in the low Mach number regime it

is of help to determine the dimensionless form of the MHD equations.
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The different variables have been rescaled by some reference quantity representative
of the phy51ca1 system of interest: t = t,f, x = x,%, p = p, p, U=UU,E= aZE

pP= arp’ B = BrB’ ar = pr/pr. Mson = |U,|/a, and MAlf = |Ur|/(|Br|/«/_r)
represent the characteristic sonic and Alfvén Mach numbers of the flow. The system
(2) has seven eigenvalues, which can be expressed using the normal vector r by

)\1,7=0~n2FCf, )\2,(,=l7-n:|:cA, )\3,5=f]~n:FCS, /\4:0" (3)

The fast and slow magnetosonic and Alfvén wave speeds are defined by
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with the sound speed a = ——

in the fast wave speed ¢ while subtracting it in the slow wave speed c;. In this
work we only consider low sonic Mach numbers, but not low Alfvén Mach numbers.
Therefore, we set Mayr = 1 in the rest of the paper.

%. Note that adding the root term in (4) results

3 Relaxation Model

Our goal is to derive a one-dimensional Riemann solver. Therefore, in the following
we only consider one spatial dimension. In [5, 6] a relaxation system is described,
which leads to a 5-wave approximate Riemann solver for the MHD equations. For
problems with low Mach numbers, however, this solver introduces excessive dissipa-
tion, so that the solution is poorly resolved on coarse grids (see Sect.5). To cure this
defect, we reformulate this relaxation system using a two-speed relaxation technique
[3, 4]. The resulting system writes
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where the pressure variables 7 and 7 are defined in relaxation equilibrium by
1 2 1o
’/T=p+§|Bl| —EBX and WLI—BXBL. (7)

In this two-speed approach the relaxation speed for the normal direction is split into
two different speeds and additionally a new relaxation equation for the velocity is
introduced. At this point we would like to point out that the relaxation system (6)
has a total number of three relaxation speeds (ci, ¢; and c,), but that we always refer
to c¢; and ¢, when using the term two-speed.

As long as the relaxation speeds ¢y, ¢, and ¢, satisfy the stability conditions

1 B?
-——=2>0, cep—pa =0,
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solutions of the relaxation system are viscous approximations of the solutions of the
original MHD system. The conditions in (8) are the result of a Chapman-Enskog
expansion for the relaxation system (6) that follows the same steps as the one for the
one-speed system in [S]. The homogeneous system (6).—« is hyperbolic and admits
5 different eigenvalues

C1 Ca

M=v—L Mm=v— = M=o+ L A=v+ L 9
p p p p
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where the eigenvalue v has multiplicity 8. All characteristic fields are linearly degen-
erate and the Riemann invariants for the different waves are given as follows
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Let us now introduce the state vector
W = (/)7 pu, pu |, E’ B)m BJ_’ pT, P, PV, C1, C2, ca)T' (10)

The solution to the Riemann problem associated with system (6).—, given by

WL, x <0,

11
WR, x>0, (i

Wo(x) = {

consists of six constant states. Therefore the Riemann solver Wi (x/t; WX, WX) has
the structure

WE £ < min(Ar, M),

WE . min(Af, Ay) < £ < max(Af, A),
WE max (A, Ap) < ¥ < A3,

WE= A3 < T < min(Ag, As),

WERs min(\4, \s) < £ < max(Mg, As),
WER  max(\g, Xs) <

Wr(x/t; WE, Wk = (12)

~I=

The intermediate states can be derived using the invariants from above. Since each
Riemann invariant is constant accross its corresponding wave, the invariants pose a
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system of equations that can be solved for the intermediate states. Due to their large
number, we will not list the intermediate states here. The definition of the relaxation
speeds is given in Sect. 4.

4 Definition of the Relaxation Speeds and the Low Mach
Number Property

Starting from the stability conditions in (8), the relaxation speeds for the two-speed
solver can be derived with steps very similar to those in [6] for k = 1, 2:

R L
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’ min (¢?, 1) pX
a; , = min (¢2,1)a2+|&'|2—;¢, (15)
a? = min (¢?, I)QZ+M. (16)

! p

For more details on the definitions of the used quantities, we refer the reader to [6].
We want to point out that for ¢ = 1, we get ¢; = ¢, and consequently the speeds
coincide with the definitions in the one-speed solver. However, to get the desired
effect of the two-speed approach, we set ¢ = M,,,. As a consequence, taking into
account the results of Sect. 2, the speeds scale in this case by

c=O01/M2,) and ¢ = O(1). (17)
The rescaling by the Mach number in (14)—(16) is essential to prevent excessive
numerical dissipation in the low Mach number regime. This becomes clear when
looking at the intermediate state of the pressure 7 given by

. oXrb 4 ckaR — ckeRR — b
= S . (18)
(o )




A Low Mach Number Two-Speed Relaxation Scheme ... 49

This state can be viewed as a central flux of the left and right pressure combined with a
dissipation term including the velocity difference v® — v%. Thanks to the rescaling, ¢,
is of order O(1), which keeps the amount of dissipation in the pressure independent
of the Mach number. For the one-speed solver, on the other hand, the relaxation
speed ¢ = ¢; = ¢, scales with O(1 /an). Thus, in the low Mach number regime,
the dissipation term becomes the dominant part of the momentum flux, causing the
dissipation to increase with decreasing Mach number. The rescaling in the two-speed
approach prevents this behaviour.

5 Numerical Results

The one-dimensional approximate Riemann solver (12) is incorporated into a sec-
ond order two-dimensional unsplit finite volume method, that uses a standard linear
reconstruction with minmod-limiter. By applying the Riemann solver separately in
both spatial directions, the reduced dissipation in the low Mach number regime due
to the two-speed approach is inherited by the overall scheme. In order to keep the
divergence of the magnetic field to machine precision, the scheme is combined with
a second order staggered constrained transport method [9]. For time discretisation,
the explicit method of Heun is used under the CFL condition

_ CFL min(Ax, 4y)

At <
4 max(JAi])

with CFL = 0.9. (19)

For comparison, we also show results of the one-speed solver, in which the relaxation
speeds are not rescaled with the Mach number and thus we set ¢; = ¢;.

5.1 Stationary Vortex

We start with a stationary version of the Balsara vortex that can be set up with different
maximum Mach numbers [1]. We compute the numerical solution on a 64 x 64 grid
and evaluate the distribution of the local Mach number M,,. = |U|/a relative to the
maximum Mach number M,,,, in the initial data. The results for different M,
after one turn of the vortex (f; = 5.9055/M,,,,) are shown in Fig. 1. Clearly, the
one-speed solver introduces too much artificial dissipation, so that the vortex is not
resolved accurately for smaller Mach numbers. With the two-speed method, on the
other hand, the dissipation is independent of the Mach number. This advantage is
paid for by a smaller timestep in comparison to the one-speed method, since the
rescaling of ¢; increases the fastest wave speed in the CFL condition.
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Fig. 1 Distribution of the local sonic Mach number relative to M,,,,, after one turn on a 64 x 64
grid. The value in the white box gives the order of the timestep

5.2 Kelvin Helmholtz Instability

A more sophisticated test is the magnetised version of the Kelvin Helmholtz insta-
bility [10]. This test is set up with different maximum Mach number of the initial
horizontal flow denoted by M. We compute the solution on a 128 x 64 grid until
the final time 7 = 0.8/ M. Figure 2 shows the distribution of the local sonic Mach
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Fig. 2 Distribution of the local sonic Mach number relative to M at time ¢y on a 128 x 64 grid.
The value in the white box gives the order of the timestep
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number M, relative to M. The test again shows that the two-speed solver intro-
duces significantly less numerical dissipation and can therefore resolve the details
of the solution much better.

6 Summary

In this work, we have built an approximate Riemann solver using the two-speed
technique, which gives accurate solutions even in the low Mach number regime.
Typically, relaxation-based Riemann solvers satisfy a discrete entropy inequality
when the subcharacteristic condition is satisfied. The goal of future work will be to
prove such a result for the solver described here. Furthermore, it would be interesting
to investigate whether the two-speed approach can also be applied or extended to the
low Alfvén Mach number regime.
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