
A High Order Semi-implicit Scheme
for Ideal Magnetohydrodynamics

Claudius Birke, Walter Boscheri, and Christian Klingenberg

Abstract In this work we design a novel semi-implicit finite volume solver for the
equations of ideal magnetohydrodynamics (MHD). The nonlinear convective terms
as well as the time evolution of the magnetic field are discretized explicitly, while
the terms related to the hydrodynamic pressure in the momentum and in the energy
equation are solved implicitly, hence making the scheme particularly well suited for
the simulation of low Mach number flows. An elliptic equation is then obtained for
the pressure, and the associated system is linearized in time relying on a semi-implicit
discretization of the kinetic energy and the enthalpy. High order of accuracy in time
is achieved using implicit-explicit Runge-Kutta (IMEX-RK) methods, whereas an
efficient CWENO reconstruction permits to gain high accuracy also in space. The
solenoidal property of the magnetic field is respected at the discrete level relying on
a high order constrained transport method, leading to a structure preserving scheme.
The new scheme is conservative for mass, momentum and total energy, and both
finite volume and central finite difference discretizations are adopted for the explicit
and the implicit terms, respectively, hence introducing no numerical dissipation in
the terms related to the pressure. We validate the new schemes against benchmarks
for ideal MHD, showing the accuracy and the robustness of the novel methods even
in the case of shock waves.
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1 Introduction

Magnetized plasma flows are governed by the equations of magnetohydrodynamics
(MHD), that describe the time evolution of electric conducting fluids embedded
in a magnetic field. The simplest model is given by ideal MHD, where the fluid
viscosity is neglected, which constitutes a system of nonlinear hyperbolic partial
differential equations (PDE) involving conservation of mass, momentum and total
energy coupled with Faraday law for the magnetic field.

The sonicMachnumber,which is the ratio between thefluid velocity and the sound
speed, describes the regime of the fluid under consideration. The low Mach regime
typically arises in astrophysical phenomena such as the generation of magnetic fields
in deep convective layers of stars. From the numerical viewpoint, compressible flows
are typically discretized using explicit Godunov-type finite volume schemes since
they are by construction conservative and thus allow the correct computation of shock
waves. However, in the low Mach limit, the effect of numerical viscosity which is
added to the numerical fluxes is proven to degrade the accuracy [2, 16]. Furthermore,
in the incompressible regime the elliptic behavior of the pressure introduces a very
severe restriction on the maximum admissible time step for lowMach number flows,
making explicit schemes very ineffective. A possible remedy would be the adoption
of fully implicit methods, which inevitably imply the solution of large nonlinear
systems that are computationally very expensive and in which the convergence is
numerically very difficult to control. Consequently, the MHD system in the low
Mach limit has been widely investigated [13, 15, 17, 19, 20, 22, 26]. A successful
idea consists in treating implicitly only one part of the system to be solved while
keeping the remaining explicit. In this way, the implicit part is relatively simple to
be inverted, whereas the nonlinear terms undergo an explicit discretization, making
the resulting method capable of dealing with all Mach regimes. This idea has been
originally conceived in the context of shallow water and incompressible flows [11,
12], where a semi-implicit time stepping technique has been used. Implicit-explicit
(IMEX) schemes have been designed [1, 4–6, 23, 24] in order to dealwithmulti-scale
phenomena, that are typically encountered in compressible fluids.

In this work we propose a novel pressure-based scheme for the solution of the
idealMHDequations. The time discretization is inspired by the class of semi-implicit
IMEX schemes [3, 9], and here we treat implicitly the terms related to the pressure,
hence not introducing any numerical dissipation and making the CFL stability con-
dition independent from the acoustic wave speed. Differently from [17, 18], no
nonlinear equations are used in our approach. Furthermore, the semi-implicit lin-
earization is also used for the kinetic energy, contrarily to what has been proposed
in [13].
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2 Governing Equations

Let us consider a one-dimensional computational domain � ∈ R defined by the
spatial coordinate x ∈ �, and let the time coordinate be denoted with t ∈ R+

0 . The
ideal equations ofmagnetohydrodynamics (MHD) in one space dimension constitute
a hyperbolic system of the form

∂q
∂t

+ ∂f
∂x

= 0, (1)

with the vector of state variables q and the fluxes f(q) that explicitly write

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu
ρv
ρw
ρE
Bx

By

Bz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p + 1

8π B
2 − 1

4π B2
x

ρuv − 1
4π Bx By

ρuw − 1
4π Bx Bz

u(ρE + p + 1
8π B

2) − 1
4π Bx (v · B)

0
u By − vBx

u Bz − wBx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The fluid density and pressure are addressed with ρ and p, respectively, while v =
(u, v, w) is the velocity field and themagnetic field is denotedwithB = (Bx , By, Bz).
The total energy ρE is obtained as the sum of three contributions, namely

ρE = ρe + ρk + m, ρe = p

γ − 1
, ρk = 1

2
ρv2, m = 1

8π
B2, (3)

where ρk is the kinetic energy and m is the magnetic energy. The internal energy
ρe is computed relying on the ideal gas equation of state (EOS) with γ = cp/cv

denoting the ratio of specific heats at constant pressure and volume, respectively. By
introducing the specific enthalpy h = e + p/ρ, one can reformulate the first part of
the energy flux in (2) such that

u(ρE + p + m) = u(ρk + m) + h(ρu). (4)

The MHD system (2) is hyperbolic since the eigenvalues λM H D
i={1,...,8} of the associated

Jacobian matrix A = ∂f/∂q with Bx = const are

λM H D
1,8 = u ± c f , λM H D

2,7 = u ± ca, λM H D
3,6 = u ± cs , λM H D

4 = u, λM H D
5 = 0,

(5)
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with the wave speeds given by

ca = Bx√
4πρ

,

c2s = 1

2

(
b2 + c2 −

√
(b + c)2 − 4c2ac2

)
, (6)

c2f = 1

2

(
b2 + c2 +

√
(b + c)2 − 4c2ac2

)
.

The Alfvén wave speed is ca , the speeds of slow and fast magnetosonic waves
are cs and c f , respectively, while c2 = γ p/ρ is the adiabatic sound speed that is
computed from the ideal equation of state. Furthermore, we use the abbreviation
b2 = B2/(4πρ).

The hydrodynamic behavior of the fluid can be analyzed by considering theMach
number M = u/c. In the low Mach number limit, the sound speed becomes very
high compared to the fluid velocity, hence the terms related to the pressure are
dominant. Consequently, larger values of the fast and slowmagnetosonicwave speeds
are retrieved, and fully explicit numerical methods suffer from both an excessive
amount of numerical viscosity, which is proportional to the eigenvalues, and a drastic
reduction of the admissible time step �t to ensure stability under a classical CFL
condition of the type

�t ≤ CFLmin
�

max |λM H D|
�x

, (7)

with �x denoting the characteristic mesh spacing and the CFL ≤ 1 being the CFL
number. Therefore, we propose to discretize implicitly the pressure gradient in the
momentum equation and the enthalpy term in the energy equation, while keeping an
explicit discretization for the nonlinear convective fluxes and the terms related to the
magnetic field. To that aim, let the fluxes be split into a convective-type flux fc(q)

and a pressure-type flux f p(q), that is

fc(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + m − 1

4π B2
x

ρuv − 1
4π Bx By

ρuw − 1
4π Bx Bz

u(ρk + m) − 1
4π Bx (v · B)

0
u By − vBx

u Bz − wBx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f p(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
p
0
0

hρu
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

We obtain two sub-systems with the following eigenvalues [17].
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• Convective sub-system:

∂q
∂t

+ ∂fc

∂x
= 0, (9a)

λc
1,8 = u ±

√
B2

4πρ
, λc

2,7 = u ± Bx√
4πρ

, λc
3,4,5,6 = 0. (9b)

• Pressure sub-system:

∂q
∂t

+ ∂f p

∂x
= 0, (10a)

λ
p
1 = 1

2

(
u −

√
u2 + 4c2

)
, λ

p
2,3,4,5,6,7 = 0, λ

p
8 = 1

2

(
u +

√
u2 + 4c2

)
.

(10b)

It is clear that, by taking the pressure sub-system implicitly, themaximum admissible
time step of the scheme becomes

�t ≤ CFLmin
�

max |λc|
�x

, (11)

hence making the scheme particularly well suited for lowMach number flows (M �
1) where the pressure terms are dominant. On the other hand, for strongly convected
flows with shocks, the convective eigenvalues lead the computation of the time step
granting stability.

3 Numerical Method

The computational domain � = [xL; xR] is discretized using a total number of Nx

equidistant cells of volume �x = (xR − xL)/Nx . The cell centers are indicated with
xi and the cell interfaces are referred to with xi+1/2. The time coordinate is bounded
in the interval t ∈ [0; t f ], and the final time t f is reached performing a sequence of
time steps�t = tn+1 − tn that are computed according to the CFL stability condition
(11).

3.1 First Order Semi-discrete Scheme in Time

Using the flux splitting (8), it is possible to design the following semi-discrete scheme
for the explicit sub-system:
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ρ∗ = ρn − �t
∂

∂x
(ρu)n , (12a)

(ρu)∗ = (ρu)n − �t
∂

∂x

(
ρu2 + m − 1

4π
B2

x

)n

, (12b)

(ρv)∗ = (ρv)n − �t
∂

∂x

(
ρuv − 1

4π
Bx By

)n

, (12c)

(ρw)∗ = (ρw)n − �t
∂

∂x

(
ρuw − 1

4π
Bx Bz

)n

, (12d)

(ρE)∗ = (ρE)n − �t
∂

∂x

(
u(ρk + m) − 1

4π
Bx (v · B)

)n

, (12e)

B∗
x = 0, (12f)

B∗
y = Bn

y − �t
∂

∂x

(
u By − vBx

)n
, (12g)

B∗
z = Bn

z − �t
∂

∂x
(u Bz − wBx )

n . (12h)

The above definitions are then employed to obtain a first order semi-implicit time
discretization [3, 9, 10] of the MHD equations (2), which writes

ρn+1 = ρ∗, (13a)

(ρu)n+1 = (ρu)∗ − �t
∂

∂x

(
pn+1

)
, (13b)

(ρv)n+1 = (ρv)∗, (13c)

(ρw)n+1 = (ρw)∗, (13d)

(ρe)n+1 + (ρu)n+1 (ρu)n

2ρn+1
+ mn+1 = (ρE)∗ − �t

∂

∂x

(
hn(ρu)n+1

)
, (13e)

Bn+1
x = B∗

x , (13f)

Bn+1
y = B∗

y , (13g)

Bn+1
z = B∗

z . (13h)

To avoid nonlinear implicit terms, let us notice that the implicit flux in the energy
equation has been discretized by taking the enthalpy explicitly, and the kinetic energy
in the total energy definition splits into an explicit and an implicit contribution:

(ρE)n+1 := (ρe)n+1 + (ρu)n+1 (ρu)n

2ρn+1
+ mn+1, (14)

following the approach presented in [9] for the hydrodynamics equations. Recall that
the internal energy can be expressed in terms of the pressure relying on the ideal gas
EOS (3), and that the new magnetic energy mn+1 = (Bn+1)2/(8π) can be explicitly
computed because the fluxes of the magnetic field belong to the explicit sub-system
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(9). Moreover, the time evolution of the density is also concerned with an explicit
update, hence making ρn+1 already known from (12a). Therefore, a preliminary
discretization of the total energy equation is chosen by inserting the momentum
equation (13b) into the energy equation (13e) leading to an elliptic equation for the
pressure:

pn+1

γ − 1
− �t

(ρu)n

2ρn+1

∂

∂x

(
pn+1) − �t2

∂

∂x

(
hn ∂

∂x

(
pn+1)

)
= bn, (15)

with the known right-hand-side given by

bn = (ρE)∗ − (ρu)n

2ρn+1
(ρu)∗ − mn+1 − �t

∂

∂x

(
hn(ρu)∗

)
. (16)

The pressure equation (15) constitutes a linear system for the scalar unknown pn+1

that is solved using the iterative GMRES solver [25] up to a prescribed tolerance (we
typically set tol = 10−12). Differently from [17, 18], this approach does not need
any fixed point method thanks to the semi-implicit splitting of the enthalpy flux and
the kinetic energy in the energy equation. Once the new pressure is known, the new
momentum (ρu)n+1 is updated with (13b), and then the new total energy is updated
using the conservative formulation

(ρE)n+1 = (ρE)∗ − �t
∂

∂x

(
hn(ρu)n+1

)
. (17)

3.2 First Order Discrete Spatial Operators

The spatial operators are given by both finite volume and finite difference approxi-
mations, and they are introduced hereafter referring to the state vector q(x, t).

The convective sub-system (9) is discretized with a conservative Godunov-type
finite volume method, that is

q∗
i = qn

i − �t

�x

(
fc
i+1/2 − fc

i−1/2

)
. (18)

We choose to use the simple Rusanov-type numerical flux fc
i+1/2 that is given by

fc
i+1/2 = 1

2

(
fc(qi+1) + fc(qi )

) − 1

2
smax (qi+1 − qi ) , (19)

where the numerical dissipation smax = max
(|λc

i+1|, |λc
i |
)
only accounts for the con-

vective eigenvalues, thus no acoustic speed is involved.
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The implicit terms appearing in the pressure sub-system (10) are approximated
by means of finite difference operators with no numerical dissipation, thus one has

∂q
∂x

∣∣∣∣
n+1

i

= qn+1
i+1 − qn+1

i−1

2�x
+ O(�x2), (20a)

∂

∂x

(
h

∂q
∂x

)∣∣∣∣
n,n+1

i

= 1

�x2

[
hn

i−1 hn
i hn

i+1

]
⎡
⎣
3/4 −1 1/4
0 0 0
1/4 −1 3/4

⎤
⎦

⎡
⎣
qn+1

i−1
qn+1

i

qn+1
i+1

⎤
⎦+O(�x2).

(20b)

3.3 Extension to High Order of Accuracy

The semi-discrete first order scheme (13) supplemented with the spatial operators
(18)–(20) is extended to high order of accuracy in space and time by means of
semi-implicit IMEX Runge-Kutta methods [3] and quadrature-free CWENO recon-
structions [9], respectively.

High order in time. The governing equations are written under the form of an
autonomous system with initial condition q(t0) = q0:

∂q
∂t

= H(qE (t),qI (t)), (21)

where the spatial fluxes are contained in the flux term H(qE (t),qI (t)) according
to (8), hence involving both explicit and implicit terms, namely qE (t) and qI (t),
respectively. Implicit-explicit (IMEX) Runge-Kutta schemes [24] are then used to
advance the solution in time of system (21), following a method of lines (MOL)
philosophy. After having set qE = qI = qn , the stage fluxes for r = 1, . . . , s are
computed in the following way:

qr
E = qn

E + �t
r−1∑
	=1

ãr	k	, 2 ≤ r ≤ s, (22a)

q̃r
I = qn

E + �t
r−1∑
	=1

ar	k	, 2 ≤ r ≤ s, (22b)

kr = H (
qr

E , q̃r
I + �t arr kr

)
. 1 ≤ r ≤ s. (22c)

The coefficients ãr	 and ar	 refer to the explicit and the implicit Runge-Kutta scheme,
respectively, and they are collected in a double Butcher tableau. We employ stiffly
accurate schemes [3], therefore the solution at the new time level is simply given by
the solution of the last stage of the RK time stepping, that is qs

E = qs
I = qn+1. The

interested reader is referred to [3].
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High order in space. To increase the spatial accuracy, the numerical fluxes in the
finite volume scheme (18) are fed with high order extrapolated data from the cells
sharing the interface. A CWENO reconstruction [21] is performed because it allows
for relatively compact stencils even for higher order reconstructions. Specifically,
we rely on the very efficient dimension-by-dimension technique forwarded in [9],
which ultimately yields a quadrature-free finite volume scheme. By denoting the
reconstruction operator withℝ(q), the high order numerical fluxes are simply given
by

fc
i+1/2 = 1

2

(
fc(ℝ(qi+1)) + fc(ℝ(qi ))

) − 1

2
smax (ℝ(qi+1) − ℝ(qi )) , (23)

where the reconstruction operator must be evaluated at the interface xi+1/2. High
order finite difference operators are adopted for the implicit terms (20). Further
details can be found in [9].

Remark on high Mach number flows. There is no advantage in our method for purely
high Mach number flows, where indeed it would be much better to use classical
explicit finite volume solvers. To track the shocks, the time step must be still deter-
mined taking into account the sound speed according to (7), at the computational
price of the solution of the linear system (15). Nevertheless, our numerical scheme
is stable even if the time step is chosen larger, namely according to (11), which is not
the case for explicit schemes. This might turn to be useful in the case of coexisting
different regimes, i.e. low and high Mach number flows, that may occur in the flow
at the same time. In this situation, our approach still allows for a rather large time
step, which will capture the stiff limit of the model while being stable across shocks.

3.4 Divergence-Free Involution in Multiple Space
Dimensions

The extension of the semi-implicit IMEX scheme (13) to multiple space dimensions
is carried out considering a Cartesian mesh in both y and z direction, therefore it is
straightforward. However, in multiple space dimensions, we must take care of the
solenoidal property of the magnetic field, that endows the MHD system with the
following involution:

∇ · B = 0. (24)

To respect this condition at the discrete level, we rely on the constrained transport
method presented in [14], which corrects the magnetic field by approximating the
curl of themagnetic vector potentialA such thatB = ∇ × Awith a fourth order finite
difference scheme. The resulting magnetic field is then proven to be divergence-free
by applying a discrete finite difference operator to the discrete curl operator. High
order div-curl operators have been recently considered in [7],while curl-free structure
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preserving schemes have been designed in [8]. All the details of the divergence-free
evolution of the magnetic field are reported in [14].

4 Numerical Results

In all the following numerical test problems, the time step is computed according to
(11)withCFL = 0.9 and the ratio of specific heats is set to γ = 5/3. Furthermore, the
magnetic field is verified to respect the divergence-free condition (24) up to machine
precision by measuring the maximum divergence error over the whole domain using
a finite difference approximation. Finally, the permeability of the magnetic field is
normalized to unity.

4.1 Numerical Convergence Studies

The numerical convergence study is carried out by considering a smooth MHD
vortex problem, according to the setup given in [17]. We run second and third order
space-time accurate semi-implicit schemes until the final time t f = 1. The results
are reported in Table1, demonstrating that the formal order of accuracy is achieved.

Furthermore, along the lines of [20], we run this problem for different values of the
Mach number, namely we consider a vortex with M = 1.55 · 10−5, M = 1.55 · 10−4

and M = 1.55 · 10−3. From the analysis shown in Table2, we can conclude that the

Table 1 Numerical convergence results for the ideal MHD equations equations using the semi-
implicit finite volume schemes (SIFV) for second and third order of accuracy in space and time.
The errors are measured in the L2 norm and refer to the variable u (velocity component in the
x−direction), p (pressure) and Bx (magnetic field component in the x−direction) at time t f = 0.1

SIFV O(2)

Nx = Ny L2(u) O(u) L2(p) O(p) L2(Bx ) O(Bx )

24 7.633E-03 – 6.351E-03 – 2.350E-03 –

32 3.801E-03 2.42 3.212E-03 2.37 1.107E-03 2.16

48 1.512E-03 2.27 1.271E-03 2.29 4.191E-04 2.40

64 8.309E-04 2.08 6.821E-04 2.16 2.223E-04 2.20

SIFV O(3)

Nx = Ny L2(u) O(u) L2(p) O(p) L2(Bx ) O(Bx )

24 5.485E-03 – 5.091E-03 – 1.879E-03 –

32 2.364E-03 2.93 2.397E-03 2.62 7.675E-04 3.11

48 7.228E-04 2.92 8.494E-04 2.56 2.213E-04 3.07

64 3.062E-04 2.99 4.188E-04 2.42 9.620E-05 2.90
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Table 2 Numerical convergence results for the ideal MHD equations using the semi-implicit finite
volume schemes (SIFV) for third order of accuracy in space and time running the smooth vortex test
cases at different Mach numbers. The errors are measured in the L2 norm and refer to the variable
Bx (magnetic field component in the x−direction) at time t f = 0.1

M = 1.55 · 10−5 M = 1.55 · 10−4 M = 1.55 · 10−3

Nx = Ny L2(Bx ) O(Bx ) L2(Bx ) O(Bx ) L2(Bx ) O(Bx )

24 3.831E-04 – 3.832E-03 – 3.835E-02 –

32 4.461E-05 3.10 4.461E-04 3.10 4.466E-03 3.10

48 5.257E-06 3.08 5.255E-05 3.09 5.259E-04 3.09

64 6.448E-07 3.03 6.438E-06 3.03 4.450E-05 3.03

novel schemes are asymptotic preserving and asymptotic accurate, meaning that no
loss of accuracy is observed for low Mach regimes. The distribution of magnetic
pressure and hydrodynamics pressure are shown in Fig. 1, where the structure of the
vortex is well preserved independently from the Mach number.

4.2 Riemann Problems

In this section, we apply the semi-implicit finite volume scheme to a set of four
different Riemann problems of the ideal MHD equations taken from the literature
[17, 18]. The aim of this set of test problems is to demonstrate the capability of the
semi-implicit scheme to deal with shocks, thus not in the low Mach regime of the
fluid. The initial left and right states, which are separated by a discontinuity located at
xd , are listed in Table3. The computational domain for all Riemann problems is set to
� = [0; 1] and the specific heat is defined by γ = 2.0 for RP1 and γ = 5

3 for the rest.
We use a discretization of 200 grid cells for the simulations with the semi-implicit
method and the results are compared with those derived by a fully explicit finite
volumemethod using the Rusanov flux on 1024 grid cells. Bothmethods have second
order accuracy in time and space. The comparison between the solution obtained
with the semi-implicit scheme and the reference solution is presented in Fig. 2. The
results show that the semi-implicit scheme is able to properly capture and resolve
the different waves. Only for By in RP2 and RP4 the resolution is not sufficient to
reproduce every discontinuity in a similar manner as the reference solution. Overall,
the results are consistent with those retrieved with other numerical methods in the
literature [17, 18].
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Fig. 1 Smooth MHD vortex. Numerical solution at t f = 1 of magnetic pressure (left column) and
hydrodynamics pressure (right column) for Mach number M = 1.55 · 10−3 (top), M = 1.55 · 10−4

(middle) and M = 1.55 · 10−5 (bottom)
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Fig. 2 Riemann problemRP1, RP2, RP3 and RP4 (from top to bottom row) at the final time t = t f .
Comparison of density (left column) and magnetic field component By (right column) against the
reference solution
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Fig. 3 Orszag-Tang vortex. Numerical solution of pressure at output time t = 1/12 (top left),
t = 1/3 (top right), t = 0.5 (bottom left) and t = 5/6 (bottom right)

4.3 Orszag-Tang Vortex

A widely used test for the two-dimensional MHD equations is the Orszag Tang
vortex [14, 17]. Starting with smooth initial data, over time shocks develop along
the diagonal direction in combination with a vortex located at the center of the
computational domain. On the spatial domain � = [0; 1]2 the initial condition for
the state variables q is given by

q(0, x, y)

=
(

25

36π
, − sin(2πy), sin(2πx), 0.0,

5

12π
, − 1√

4π
sin(2πy),

1√
4π

sin(4πx)

) (25)

and the magnetic vector potential A is initially defined by

A(0, x, y) = (
0.0, 0.0, cos(2πy)/(4π3/2) + cos(4πx)/(8π3/2)

)
. (26)
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Periodic boundary conditions are imposed on all sides. The computational domain
is discretized by a 128 × 128 control volumes. In Fig. 3 the results for the pressure
at different times computed by the third-order semi-implicit method are presented.
The numerical method manages to capture the shocks that occur as time evolves.
Overall, the results are qualitatively consistent with those in the literature [14, 17].

5 Conclusions

In thisworkwehave presented a pressure-based semi-implicit scheme for the solution
of the ideal MHD equations. An elliptic equation for the pressure is obtained to
solve low Mach regimes very efficiently without adding any numerical dissipation
in the implicit part. On the other hand, an explicit finite volume solver is adopted for
handling the nonlinear convective terms, endowing our schemewith shock-capturing
properties. The scheme is conservative for mass, momentum and total energy. High
order of accuracy is achieved by means of a CWENO reconstruction in space and
IMEX Runge-Kutta time stepping techniques. The accuracy and the robustness of
the scheme have been demonstrated by performing a numerical convergence study
for different Mach numbers and by solving a set of Riemann problems. Another
benchmark in numerical MHD has been shown, namely the Orszag-Tang vortex
test, proving the capability of the novel method to deal with complex magnetized
flows and to provide results which are qualitatively in agreement with other existing
numerical schemes in the literature.
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