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Abstract. The present paper concerns the derivation of finite volume methods to approximate the weak solutions of
the Euler equations within all Mach number regimes. To address such an issue, we develop a Suliciu relaxation type
scheme. By adopting a relevant scaling according to the Mach number, the obtained numerical scheme is proved to
be accurate in the sense that the numerical viscosity does not increase as soon as the Mach number tends to zero.
Moreover, the obtained scheme is proved to be asymptotic preserving since the correct incompressible asymptotic
regime is recovered in the limit of the Mach number to zero. In addition, the robustness of the method is established
since both density and internal energy remain positive during the simulations. Several numerical experiments in 1D
and 2D are performed to illustrate the relevance of the proposed low Mach number numerical scheme.
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1. Introduction

In this work, we consider the approximation of the solutions of the compressible Euler equations of
gas dynamics in 2 space dimensions. The system under consideration is given by

ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2 + p)x + (ρuv)y = 0,
(ρv)t + (ρvu)x + (ρv2 + p)y = 0,
Et + (u(E + p))x + (v(E + p))y = 0,

(1.1)

where ρ(x, y, t) > 0 denotes the density, u(x, y, t) and v(x, y, t) in R are the velocities and E(x, y, t) > 0
is the total energy. The pressure law p(ρ, e) : R+ ×R+ → R+ is given by a general function such that

p∂ep+ ρ2∂ρp > 0,
in order to enforce the system (1.1) to be hyperbolic. The quantity e(x, y, t) > 0 stands for the internal
energy such that

E = ρe+ ρ
u2 + v2

2 .
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this work.
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The characteristic nature of the flow is governed by dimensionless quantities like the Mach num-
ber M which controls the ratio of the velocity versus the sound speed. In this work, we consider
solutions in regimes only governed by the Mach number M . Hence, we rewrite the system (1.1) in
a non-dimentionalized form. Arguing standard rescaling (see [16],[26],[1]), we get the following set of
equations where the Mach number M stands for a given parameter:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t +
(
ρu2 + p

M2

)
x

+ (ρuv)y = 0,

(ρv)t + (ρvu)x +
(
ρv2 + p

M2

)
y

= 0,

Et + (u(E + p))x + (v(E + p))y = 0,

(1.2)

with the following definition for the total energy:

E = ρe+M2ρ
u2 + v2

2 . (1.3)

To shorten notations, we introduce

w =


ρ
ρu
ρv
E

 , f(w) =


ρu

ρu2 + p
M2

ρuv
u(E + p)

 , g(w) =


ρv
ρuv

ρv2 + p
M2

v(E + p)

 , (1.4)

so that the system (1.2) can be written in the following compact form:
wt + f(w)x + g(w)y = 0. (1.5)

The system (1.2)-(1.3) is associated with the following set of physical admissible states:
ΩM = {w ∈ R4; ρ > 0, e > 0}. (1.6)

From now on, let us emphasize that the nature of the system (1.2)-(1.3) may drastically change
depending to the values ofM . Indeed, with large values ofM , we have to deal with a hyperbolic system
while the problem becomes elliptic in the limit of M to zero. In the case of a barotropic model, i.e.
the pressure law does not depend on the internal energy e, Klainermann and Majda [21] established
that the compressible model tends to the incompressible counterpart given by

ut + uux + vuy + p̄x = 0,
vt + uvx + vvy + p̄y = 0,
ux + vy = 0,
ρ = const.

(1.7)

This is a remarkable result, since the limit pressure now satisfies the following elliptic equation:
∆p̄ = −(uux + vuy)x − (uvx + vvy)x.

Next, considering the full Euler system (1.2)-(1.3), the limit behavior is proven in [13]. In the limit
of M to 0, the incompressible model is recovered in a sense to be prescribed, and both kinetic and
internal energies are proved to be thus conserved quantities.

In this work, we are interested to approximate solutions which are in the low Mach number regime,
i.e.M � 1, as well as in the high Mach number regime. While standard upwind finite volume schemes
produce good approximation with large value ofM , it has been shown that they often lack in accuracy
within the low Mach number regime (for instance, see [11, 16, 33]). More precisely, in the low Mach
number regime, standard upwind schemes suffer from excessive numerical diffusion. For instance, the
Roe scheme [29] introduces a diffusion which scales as 1/M . As a consequence, the numerical viscosity

2



An all Mach number relaxation upwind scheme

wM w0

wM∆ w0
∆

M → 0
continuum

∆→ 0

discrete
M → 0

∆→ 0

Figure 1.1. Asymptotic Preserving Diagram: wM is a solution of system (1.2)-(1.3)
and w0 is a solution to (1.7) and wM∆ and w0

∆ are discrete approximations to the
respective solutions.

dominates the approximate solution as soon as the Mach number is close to zero (see [33, 35, 26]).
To cure such a failure, a wide range of preconditioners have been developed to modify the diffusion
matrix of upwind schemes. In the present paper, we will also address this issue in our design of a low
Mach number scheme.

To avoid these drastic numerical errors, several approaches have been developed to design low Mach
number schemes. The first concept we want to mention is the so called asymptotic preserving schemes.
In fact, the limit behavior depends on the parameter M . The numerical scheme in turn should be
consistent with this limit behavior according to the governing parameter. In this case, a discretization
for the compressible Euler equations should tend, in a prescribed sense, to a discretization of the
incompressible Euler equations when M tends to zero (see Figure 1.1).

A distinct widely used approach to deal with this problem is to split the stiff and non-stiff terms
in the system (1.2)-(1.3) and discretize them in different ways to ensure the stability of the scheme.
This leads to the well-known IMEX approach (for example, see [3, 27, 19, 17, 10, 4, 12]). In general,
the stiff part of system (1.2)-(1.3) is strongly related to the pressure term and therefore these splitting
approaches often fall in the spirit of Klein [22]. Here, we also make use of this approach and a split of
the pressure term into fast and slow fluctuations is proposed.

Finally, we want to emphasize on a particular analysis of the scaling of the dependent variables in
the low Mach number regime (for instance, see [11, 16, 15] and references therein). These computations
give a constraint on the scaling of the different variables with respect to the Mach number in order to
achieve the incompressible limit equations. For the sake of clarity, we briefly review these computations.

Within the low Mach number regime, the unknowns can be rescaled according to M as follows:

ρ = ρ0 +Mρ1, u = u0 +Mu1, v = v0 +Mv1, e = e0 +Me1, (1.8)

where, to simplify the notations, we have omitted both space (x, y) and time t dependencies.
For instance, under open boundary assumptions, from (1.2)-(1.3), we deduce that the zero-order

terms satisfy

∇ρ0 = 0 and ∇ ·
(
u0
v0

)
= 0, (1.9)

while the pressure law must verify

p = p0 +M2p2 and ∇p0 = 0. (1.10)

It is worth noticing that the space dependent zero-order velocities (u0, v0) satisfy the free divergence
condition (1.9) but they satisfy

∂xu0 = O(1) and ∂yv0 = O(1). (1.11)
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This remark will be essential in the sequel when studying the asymptotic behavior of numerical
viscosity.

As strongly underlined in [11, 16, 15], standard upwind schemes generally violate the expected
scaling of the pressure. For instance, the Roe scheme [29] introduces pressure fluctuations of order
O(M). This leads to excessive numerical diffusion and therefore the incompressible limit might not be
achieved as well.

According to (1.9) and (1.10), we define a set of asymptotic preserving states as follows:

Ω0 =
{
w0 ∈ R4;∇ρ0 = 0, p = p0 +M2p2,∇p0 = 0,∇ ·

(
u0
v0

)
= 0

}
. (1.12)

In order to produce physical relevant results, we naturally demand that Ω0 is an invariant region for
the designed upwind scheme. Moreover, we can strengthen the definition of the invariant region by
combining (1.6) and (1.12) to get

Ω = ΩM ∩ Ω0, (1.13)
and by imposing Ω to be an invariant region. In other words, we enforce the derived relaxation up-wind
scheme to preserve Ω, to control the numerical diffusion according to the Mach number fluctuations,
and to recover the correct asymptotic incompressible regime.

The present work is structured as follows. In section 2, for the sake of completeness, we recall the
numerical framework of the Godunov-type scheme [18]. Next, we design a Suliciu relaxation model
according to the usual approach [31, 32, 2, 8]. Unfortunately, the usual approach does not yield to the
required numerical viscosity as soon as the Mach number is small enough. To correct such a failure,
in section 3,we introduce a suitable Suliciu relaxation model where fast and slow phenomenon are
relevantly split. The scheme obtained thus is proved to satisfy the required properties in the limit of
the Mach number to zero. Finally, in section 4 we give numerical results to show the applicability of
the scheme.

2. Numerical Scheme

Since the Euler system (1.2)-(1.3) under consideration is known to be invariant by Galilean rotations,
we here describe the discretization of the associated 1D model given by

wt + f(w)x = 0, (2.1)
where w and f(w) are defined by (1.4). Let us underline that the 2D extension turns out to be obvious
(for instance, see [14, 28]).

In the present work, we adopt a finite volume scheme of Godunov-type [18]. To address such an
issue, the space is discretized by considering an uniform mesh made of cells (xi− 1

2
, xi+ 1

2
) of constant

size ∆x. In addition, we adopt a constant time step ∆t such that tn = n∆t.
At time tn, we define the following piecewise constant function:

wn(x, tn) = wni , x ∈ (xi− 1
2
, xi+ 1

2
) for all i ∈ Z,

to be an approximation of the solution of (2.1). Next, this approximation is evolved to get an updated
approximation at time tn + ∆t. According to the pioneer work by Harten, Lax and van Leer [18], we
introduce w̃R(x/t;wL, wR) an approximate Riemann solver in the form

w̃R

(
x

t
;wL, wR

)
=



wL if x
t
< λL(wL, wR),

w?
(
x

t
;wL, wR

)
if λL(wL, wR) < x

t
< λR(wL, wR),

wR if x
t
> λR(wL, wR),

(2.2)
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which satisfies the following integral consistency condition:

1
∆x

∫ ∆x
2

−∆x
2

w̃R

(
x

∆t ;wL, wR
)
dx = 1

2(wL + wR)− ∆t
∆x(f(wR)− f(wL)). (2.3)

Equipped with this approximate Riemann solver, we evolve wn(x, tn + t) in time as follows:

wn(x, tn + t) =w̃R

(
x− xi+ 1

2

t
;wni , wni+1

)
,

x ∈
(
xi+ 1

2
− ∆x

2 , xi+ 1
2

+ ∆x
2

)
for all i ∈ Z.

From now on, let us emphasize that this time evolution is nothing but the juxtaposition of the
approximate Riemann solvers stated at each interface xi+ 1

2
for all i in Z. In order to avoid interactions

between all the approximate Riemann solvers, we impose the following CFL-like condition:
∆t
∆x max

i∈Z

(
|λL(wni , wni+1)|, |λR(wni , wni+1)|

)
≤ 1

2 .

Now, we are able to give the updated states at time tn+1as follows:

wn+1
i = 1

∆x

∫ x
i+ 1

2

x
i− 1

2

wn(x, tn + ∆t)dx.

According to the integral consistency condition (2.3), the updated states rewrite

wn+1
i = wni −

∆t
∆x

(
f(wni , wni+1)− f(wni−1, w

n
i )
)
. (2.4)

Furthermore, let us underline that the functions λL and λR may depend on the Mach number M
and such a CFL condition may become very restrictive as soon as M goes to zero. As a consequence,
an implicit time discretization will be adopted to perform numerical simulations. The time implicit
scheme therefore reads

wn+1
i = wni −

∆t
∆x

(
f(wn+1

i , wn+1
i+1 )− f(wn+1

i−1 , w
n+1
i )

)
, (2.5)

where the numerical flux function is given by
f(wL, wR) = f(w̃R (0;wL, wR)). (2.6)

Now, the main objective is to derive a relevant approximate Riemann solver w̃R. To access such an
issue, we suggest to consider the usual Suliciu relaxation approach [8, 5, 31, 32] where the nonlinear
pressure p is substituted by a new variable π. This new variable π is governed by the following equation:

πt + uπx + c2

ρ
ux = 1

ε
(p− π). (2.7)

The relaxation parameter c is fixed according to some stability and robustness properties. As a con-
sequence, the Suliciu relaxation model now reads

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + π

M2

)
x

= 0,

(ρv)t + (ρuv)x = 0,
Et + (u(E + π))x = 0,

(ρπ)t + (ρuπ + c2u)x = ρ

ε
(p− π).

(2.8)
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Let us notice that, in the limit of ε to zero, formally the relaxation source term implies that π converges
to the expected pressure law p and then the sub-system extracted from (2.8) to govern w coincides
with the expected Euler model (2.1).

For the sake of simplicity in the notations, let us set

U = t(ρ, ρu, ρv, E, ρπ).

Moreover, let us note (2.8)ε=∞ the homogeneous system extracted from (2.8). Now, we are interested
in the derivation of the Riemann solution associated with (2.8)ε=∞. First, in the following result, we
give the nature of each field. The proof of this result is standard (for instance, see [14]) and it is
omitted here.

Lemma 2.1. The homogeneous system extracted from (2.8) is hyperbolic with eigenvalues λ± = u± ρ
cM

and λc = u, where λc has multiplicity three. All the fields are linearly degenerated.

Now, we consider an initial data given by

U(x, t = 0) =
{
UL if x < 0,
UR if x > 0. (2.9)

According to Lemma 2.1, the Riemann solution of (2.8)ε=∞ consists of piecewise constant states
separated by contact discontinuities in the following form:

UR

(
x

t
;UL, UR

)
=


UL if x

t < λ−,

U∗L if λ− < x
t < λc,

U∗R if λc < x
t < λ+,

UR if x
t > λ+,

(2.10)

where the intermediate states are given by (see [5, 6])

πC = π∗L = π∗R = πL + πR
2 − cM uR − uL

2 ,

uC = u∗L = u∗R = uL + uR
2 − πR − πL

2cM ,

ρ∗L = 1
1
ρL

+ πC−πL
c2

, ρ∗R = 1
1
ρR

+ πR−πC
c2

,

e∗L = eL −
π2
L − π2

C

2c2 , e∗R = eR −
π2
R − π2

C

2c2 ,

v∗L = vL, v∗R = vR,

(2.11)

with the internal energy e defined by (1.3).
From (2.10) and (2.11), we now give the Suliciu relaxation approximate Riemann solver needed to

fully define the scheme (2.4)-(2.6). Let us introduce

U eq(w) = t(ρ, ρu, ρv, E, ρp(ρ, e)),

to define the required approximate Riemann solver as follows:

w̃R

(
x

∆t ;wL, wR
)

= UR

(
x

t
;U eq(wL), U eq(wR)

)
. (2.12)

In order to exhibit the behavior of the numerical diffusion within the asymptotic regime in the limit
of M to zero, we enforce the Mach number rescaling given in (1.8). We consider w0 ∈ Ω0 to write

wL = w0,L +O(M) and wR = w0,R +O(M).
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Next, since ∇ρ0 = 0 from (1.9), with no restriction we can assume that ρ0,L = ρ0,R = ρ0. Similarly,
from (1.10), we have ∇p0 = 0 and then we can assume p0,L = p0,R = p0 and e0,L = e0,R = e0. As a
consequence, we have

ρL = ρ0 +O(M),
uL = u0,L +O(M),
vL = v0,L +O(M),
eL = e0 +O(M),
πL = p0 +O(M2),

ρR = ρ0 +O(M),
uR = u0,R +O(M),
vR = v0,R +O(M),
eR = e0 +O(M),
πR = p0 +O(M2).

(2.13)

Because of (1.11), it is worth noticing that
u0,R − u0,L = O(1). (2.14)

These expressions are now adopted to exhibit the behavior of the intermediate states U∗L and U∗R.
First, let us focus on the intermediate pressure πC defined by (2.11). According to (2.13), we obtain

πC =
(
p0 +O(M2)

)
− cM

2 (u0,R − u0,L +O(M)) . (2.15)

Arguing (2.14), we easily have
πC = p0 +O(M). (2.16)

We immediately notice that the intermediate pressure πC admits variations of the order O(M) instead
of variations of the order O(M2).

Concerning the other quantities, once again from (2.11) and (2.13), we get
uC = u0,L + u0,R

2 +O(M),
v∗L = v0,L +O(M), v∗R = v0,R +O(M),
ρ∗L = ρ0 +O(M), ρ∗R = ρ0 +O(M),
e∗L = e0 +O(M), e∗R = e0 +O(M).

(2.17)

Equipped with the behavior of the approximate Riemann solver, we are now able to exhibit the
numerical viscosity. Let us remark that the numerical flux function rewrites

f(wL, wR) = 1
2(f(wL) + f(wR))− 1

2D(wR − wL),

where D stands for the sought numerical diffusion matrix. Using the scaling (2.16) and (2.17), and
plugging them into both exact and numerical flux functions, we obtain

1
2D(wR − wL) = 1

2(f(wL) + f(wR))− f(wL, wR), (2.18)

=


ρ0u0,L/R +O(1)

ρ0u
2
0,L/R + p0

M2 +O(1)
ρ0u0,L/Rv0,L/R +O(1)
u0,L/R(E0 + p0) +O(1)

−


ρ0u0,L/R +O(1)
ρ0u

2
0,L/R + p0

M2 +O( 1
M )

ρ0u0,L/Rv0,L/R +O(1)
u0,L/R(E0 + p0) +O(1)

 ,

=


O(1)
O( 1

M )
O(1)
O(1)

 . (2.19)

Therefore we can expect excessive diffusion in the momentum orthogonal to the interface in the low
Mach number regime. As a consequence, the standard Suliciu relaxation scheme turns out to be
non-relevant to approximate solutions in the low Mach number regime.
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At this level, let us underline that the main failure in deriving the Suliciu relaxation solver stays
in (2.14). Indeed, as soon as u0,R − u0,L = O(M), we immediately recover the required behavior of
the diffusion matrix. Such a good situation is satisfied for fully 1D simulations. Of course, we are here
considering 2D problems and, unfortunately, the condition (2.14) holds true.

We have thus seen that the standard version of the Suliciu relaxation is not suited for approximating
low Mach number flows in more then one space dimension. However, we also conclude, that the main
problem is in the scaling of the intermediate relaxation pressure πC . Since this relaxation technique
relies on controlling a relaxation pressure, it seems natural to search for a different control of the
relaxation pressure in order to achieve the asymptotic behavior of the intermediate states. This is the
purpose of the next section.

3. All Mach number Relaxation Model

To cure the deficiencies of the model presented in section 2, we now propose a different relaxation
model capable to accurately capture low Mach number flows. We follow the spirit of Klein et al. [23]
by adopting a splitting of the pressure into a slow dynamics pressure and a fast acoustics pressure.

We suggest to decompose the scaled pressure as follows:

p

M2 = M2
loc

M2 p+ 1−M2
loc

M2 p, (3.1)

where Mloc ∈ [0, 1] denotes a given parameter. From a practical point of view, Mloc will be defined
as a local Mach number derived from local flow properties. Of course, with M ≤ 1, Mloc = M is a
relevant choice but, according to numerical simulations of interest, it is more convenient to consider
Mloc as a free parameter.

In (3.1), the quantity M2
loc

M2 p corresponds to the slow dynamics pressure while 1−M2
loc

M2 p stands for the
fast acoustics pressure. Now, in the spirit of the standard Suliciu relaxation approach, we substitute
both slow and fast pressures by new unknowns. We thus introduce M2

loc
M2 π and 1−M2

loc
M2 ψ, the new

variables, to respectively represent the slow and fast pressures. As a consequence, the momentum
equation in (2.1) is here substituted by

(ρu)t +
(
ρu2 + M2

loc

M2 π + 1−M2
loc

M2 ψ

)
x

= 0.

Next, evolution laws satisfied by the new unknowns π and ψ must be proposed. Since the usual
Suliciu relaxation model is relevant for slow dynamics pressure, we adopt the equation (2.7) to govern
π. In fact, the situation turns out to be more delicate to evolve the unknown ψ. Indeed, adopting (2.7)
to evolve ψ yields to non-relevant diffusion terms in the full numerical scheme. To correct such a
failure, we adopt the following evolution law:

ψt + uψx + c2

ρ
ūx = 1

ε
(p− ψ), (3.2)

where ū coincides with a relaxed velocity governed as follows:

ūt + uūx + 1
ρM2

locM
2ψx = 1

ε
(u− ū). (3.3)

8
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We are now able to give the all Mach number Suliciu relaxation model of interest in the present work

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + M2

loc

M2 π + 1−M2
loc

M2 ψ

)
x

= 0,

(ρv)t + (ρvu)x = 0,
Et + (u(E +M2

locπ + (1−M2
loc)ψ)x = 0,

(ρπ)t + (ρuπ + c2u)x = ρ

ε
(p− π),

(ρψ)t + (ρuψ + c2ū)x = ρ

ε
(p− ψ),

(ρū)t +
(
ρuū+ 1

M2
locM

2ψ

)
x

= ρ

ε
(u− ū).

(3.4)

Once again, let us emphasize that in the limit of ε to zero, the relaxed unknowns π, ψ and ū respectively
converges, at least formally, to p, p and u. As a consequence, the evolution laws for (ρ, ρu, ρv, E) in (3.4)
coincide to the initial system (2.1).

To simplify the notation in the sequel, we set

W = t(ρ, ρu, ρv, E, ρπ, ρψ, ρū) and W eq(w) = t(ρ, ρu, ρv, E, ρp, ρp, ρu). (3.5)

3.1. Stability of the relaxation system

After Whitham [36] (see also [7, 28, 2]), both equilibrium system (2.1) and relaxation model (3.4)
have to satisfy some compatibility conditions to prevent instabilities in the limit of ε to zero. These
compatibility conditions are the so-called sub-characteristic conditions [36] to be put on the relaxation
parameter c. In order to exhibit these restriction on c, several approaches have been proposed in the
literature (for instance, see [7, 28, 2]). In the present work, we study the viscous asymptotic equilibrium
system, in the limit of ε to zero, coming from a formal Chapman-Enskog expansion. To address such
an issue, let us consider a small perturbation W ε of a local equilibrium w ∈ ΩM such that

πε = p(ρ, e) + επ1 +O(ε2),
ψε = p(ρ, e) + εψ1 +O(ε2),
ūε = u+ εu1 +O(ε2).

(3.6)

By substituting (3.6) into (3.4) and neglecting higher order terms in ε, we get the following viscous
equilibrium system (see Theorem 3.1):

wt + f(w)x = ε(D(w)wx)x, (3.7)

where the flux function f is defined by (1.4) and D is a diffusion matrix.
Here, the stability requirement is obtained imposing the eigenvalues of D to be non-negative. In

the next statement, we establish that such stability condition is verified as long as a sub-characteristic
condition holds.

Theorem 3.1. Assume that the relaxation parameter c satisfies the following sub-characteristic con-
dition:

c2 > ρ2∂ρp(ρ, e). (3.8)
Then, the diffusion matrix in (3.7) has non-negative eigenvalues. As a consequence, the relaxation
system (3.4) is a stable diffusive approximation of system (1.2)-(1.3).

9
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Proof. Adopting the Chapman-Enskog expansion (3.6), we evaluate the first-order correctors π1, ψ1

and ū1. First, from (3.4), we immediately get

πε = p− ε
(
πεt + uπεx + c2

ρ
ux

)
,

ψε = p− ε
(
ψεt + uψεx + c2

ρ
ux

)
,

ūε = u− ε
(
ūεt + uūεx + 1

ρM2
locM

2ψ
ε
x

)
.

Substituting the expansions (3.6) into the above three relations, we obtain

πε = p− ε
(
pt + upx + c2

ρ
ux

)
+O(ε2),

ψε = p− ε
(
pt + upx + c2

ρ
ux

)
+O(ε2),

ūε = u− ε
(
ut + uux + c2

ρM2
locM

2 px

)
+O(ε2).

(3.9)

Next, from both conservation of mass and momentum in (3.4), a formal computation gives
pt + upx = −ρ∂ρpux,

ut + uux = − px
ρM2 .

Let us plug these relations into (3.9) to write

π1 = −
(
c2

ρ
− ρ∂ρp

)
ux +O(ε),

ψ1 = −
(
c2

ρ
− ρ∂ρp

)
ux +O(ε),

ū1 = −
(

1
M2
loc

− 1
)

1
ρM2 px +O(ε).

Equipped with these first-order correctors, both momentum and energy equations now read

(ρu)t+
(
ρu2 + p

M2

)
x

= ε

( 1
ρM2 (c2 − ρ2∂ρp)ux

)
x

+O(ε2),

Et+(u(E + p))x = ε

(
1
ρ

(c2 − ρ2∂ρp)(
u2

2 )x

)
x

+O(ε2).

By neglecting higher order terms in ε, we recover the viscous system (3.7) for a diffusion matrix given
by

D =


0 0 0 0

− u
ρ2M (c2 − ρ2∂ρp) 1

ρ2M (c2 − ρ2∂ρp) 0 0
0 0 0 0

−u2

ρ2 (c2 − ρ2∂ρp) u
ρ2M (c2 − ρ2∂ρp) 0 0

 .

The eigenvalues of D easily read 0 and 1
ρ2M (c2 − ρ2∂ρp) and therefore the diffusion matrix admits

non-negative eigenvalues as long as the sub-characteristic condition (3.8) holds. The proof is thus
achieved.
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3.2. Properties of the primitive relaxation system

In order to complete the definition of the numerical scheme (2.4)-(2.6),we have to exhibit the Rie-
mann solution coming from the first-order homogeneous extracted system associated to the relaxation
model (3.4). In the sequel, we denote (3.4)ε=∞ this first-order extracted system obtained in the limit
of ε to infinity.

In the next statement, we give the expected Riemann solution. Next, this solution is studied and
conditions are stated in order to enforce such solutions to belong to ΩM . In a last result, we consider
the particular case of Mloc close to 1.

Lemma 3.2. The first-order homogeneous system extracted from(3.4) is hyperbolic and fully linear
degenerate with eigenvalues

λs±(W ) = u± cMloc

ρM
, λf±(W ) = u± c

ρMlocM
and λc(W ) = u, (3.10)

where λc has multiplicity 3. Moreover, the solution to the Riemann problem is composed of 7 constant
states separated by 5 contact discontinuities (see Figure 3.1) as follows:

WR(x
t

;WL,WR) =



WL if x
t < λf−(W ),

WL∗ if λf−(W ) < x
t < λs−(W ),

WCL if λs−(W ) < x
t < λc(W ),

WCR if λc(W ) < x
t < λs+(W ),

WR∗ if λs+(W ) < x
t < λf+(W ),

WR if x
t > λf+(W ),

(3.11)

11
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where the intermediate states are given by

ψL∗ = ψR∗ = ψCL = ψCR = ψC = ψL + ψR
2 + cMlocM

ūL − ūR
2 ,

ūL∗ = ūR∗ = ūCL = ūCR = ūC = ūL + ūR
2 + ψL − ψR

2cMlocM
,

πCL = πCR = πC = πL∗ + πR∗

2 + cM

Mloc

(uL∗ − uR∗)
2 ,

uCL = uCR = uC = uL∗ + uR∗

2 + Mloc

cM

πL∗ − πR∗

2 ,

eL∗ = eL −
M2
loc

2c2 (π2
L − π2

L∗ + 1−M2
loc

1 +M2
loc

(ψ2
L − ψ2

C)),

eR∗ = eR −
M2
loc

2c2 (π2
R − π2

R∗ + 1−M2
loc

1 +M2
loc

(ψ2
R − ψ2

C)),

eCL = eL∗ − πL∗
M2
locπL∗ + 2(1−M2

loc)ψC
2c2 + πC

M2
locπC + 2(1−M2

loc)ψC
2c2 ,

eCR = eR∗ − πR∗
M2
locπR∗ + 2(1−M2

loc)ψC
2c2 + πC

M2
locπC + 2(1−M2

loc)ψC
2c2 ,

πL∗ = πL + M2
loc

1 +M2
loc

(ψC − ψL), πR∗ = πR + M2
loc

1 +M2
loc

(ψC − ψR),

uL∗ = uL −
Mloc

cM2(1 +M2
loc)

(ψC − ψL), uR∗ = uR + Mloc

cM2(1 +M2
loc)

(ψC − ψR),

ρL∗ = 1
1
ρL

+ πL−πL∗
c2

, ρR∗ = 1
1
ρR

+ πR−πR∗
c2

,

ρCL = 1
1
ρL

+ πL−πC
c2

, ρCR = 1
1
ρR

+ πR−πC
c2

,

vL∗ = vCL = vL, vR∗ = vCR = vR.

(3.12)

From now on, let us underline that we have enforced the eigenvalues to be ordered in (3.11). Such
an order will be justified in the next result devoted to the admissibility of the Riemann solutions.

In addition, fromWRdefined by (3.11)-(3.12), we are now able to give the all Mach number relaxation
scheme according to (2.4)-(2.6). Let us introduce

W eq(w) = t(ρ, ρu, ρv, E, ρp(ρ, e), ρp(ρ, e), ρu).

Then, the approximate Riemann solver introduced in (2.4)-(2.6) is defined as follows:

w̃R

(
x

∆t ;wL, wR
)

= WR

(
x

t
;W eq(wL),W eq(wR)

)
. (3.13)

Now, we turn establishing Lemma 3.2.
Proof. In order to exhibit the algebra of the first-order extracted system (3.4)ε=∞, it turns out to
be convenient to consider the primitive variables given by

V = t (ρ, u, v, e, π, ψ, ū) ,
where the internal energy e is defined by (1.3). Then, V is solution of the system

Vt +A(V )Vx = 0, (3.14)

12
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0

t

x

λf− λc λf+λs− λs+

WRWL

WCR WR∗WL∗ WCL

Figure 3.1. Wave structure of the Riemann problem

where the matrix A(V ) is given by

A(V ) =



u ρ 0 0 0 0 0

0 u 0 0 M2
loc

ρM2
1−M2

loc

ρM2 0
0 0 u 0 0 0 0

0 M2
locπ + (1−M2

loc)ψ
ρ

0 u 0 0 0

0 c2

ρ
0 0 u 0 0

0 0 0 0 0 u
c2

ρ

0 0 0 0 0 1
ρM2M2

loc

u


From direct computations, we easily obtain the eigenvalues of A(V ) given by (3.10) with the associated
eigenvectors given as follows:

• with λc, the eigenvectors are r1
c =



1
0
0
0
0
0
0


, r2

c =



0
0
1
0
0
0
0


and r3

c =



0
0
0
0
1
0
0


,

• with λs±, the eigenvectors are rs± =



ρ2

± cMloc
M
0
c2

M2
locπ + (1−M2

loc)ψ
0
0


,

13
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• with λf±, the eigenvector are rf± =



ρ2

± c
MMloc

0
c2

M2
locπ + (1−M2

loc)ψ
±c(1+M2

loc)
M3

loc
M

c2(1+M2
loc)

M2
loc


.

After a straightforward computation, we remark that ∇V λ·r = 0 for all pairs (eigenvalue, eigenvector).
As a consequence, the system (3.14) is hyperbolic fully linearly degenerated. Then, the Riemann
solution is easily deduced from the Riemann invariants. Indeed, as soon as the j-th field linearly
degenerated, the Riemann invariants stay constant across the j-th contact discontinuity. From standard
evaluations (see [14, 8, 2, 6]), field by field, the Riemann invariants read as follows:

• associated with λc, the Riemann Invariants are
{u, π, ψ, ū} ,

• associated with λs±, the Riemann Invariants are{
u± cMloc

ρM
, π ∓ cM

Mloc
u, e− πM

2
locπ + 2(1−M2

loc)ψ
2c2 , v, ψ, ū

}
,

• associated with λf±, the Riemann Invariants are{
π + c2

ρ
, ψ − 1 +M2

loc

M2
loc

π, ψ ∓ cM(1 +Mloc)2

Mloc
u, ψ ∓ cMlocMū,

e− Mloc2

2c2 (π2 + 1−M2
loc

1 +M2
loc

ψ2), v
}
.

Equipped with these Riemann invariants, their continuity across their associated field yields to a linear
system with solution given by (3.12). The proof is thus completed.

In the next statement, we establish that the Riemann solution (3.11)-(3.12) belongs to ΩM .
Lemma 3.3. For all Mloc < 1 such that

M /∈

 M2
loc

2 +M2
loc +

√
1−M4

loc

,
M2
loc

2 +M2
loc −

√
1−M4

loc

 , (3.15)

there exists c > 0 large enough such that the Riemann solution (3.11)-(3.12) belongs to ΩM .
From now on, let us emphasize that the condition (3.15) must be understood as a restriction to

be put on Mloc. Here, the Mach number is never restricted. Moreover, in a low Mach number regime,
the restriction to be satisfied by Mloc is very weak. In addition, we underline that the case Mloc = M
always satisfies (3.15), see also Figure 3.2.
Proof. The proof is established as soon as both density and internal energy are proved to be positive.
Arguing the definition of the intermediate densities, given by (3.12), we immediately get the required
positivity for large enough values of the relaxation parameter c.
In fact, the situation turns out to be more delicate when considering the positiveness of the intermediate
internal energy. Here, we solely consider the positiveness of eL∗ and eCL while the establishment of
eR∗ > 0 and eCR > 0 is similar.
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Figure 3.2. Functions M± defined in (3.15). The green line gives the case M = Mloc

for reference. The condition (3.15) states that the pair (Mloc,M) is not inside area
between the curves M±.

Since we are considering large values of c, we suggest to rewrite the intermediate states according to
an expansion with respect to c. From the intermediate state definition (3.12), we get

πL∗ = c
M3
locM

1 +M2
loc

(uL − uR)
2 +O(1),

πC = c
M(1 +M2

loc +M4
loc)−M2

loc

Mloc(1 +M2
loc)

(uL − uR)
2 +O(1),

ψC = cMMloc
(uL − uR)

2 +O(1).
For the sake of clarity in the notations, we set

θ1 = M3
locM

1 +M2
loc

,

θ2 = M(1 +M2
loc +M4

loc)−M2
loc

Mloc(1 +M2
loc)

,

(3.16)

in order to write

πL∗ = cθ1
(uL − uR)

2 +O(1),

πC = cθ2
(uL − uR)

2 +O(1).

According to the definition of eL∗ , given by (3.12), we obtain

eL∗ = eL +M2
loc

(
θ2

1 + 1−M2
loc

1 +M2
loc

θ2
2

)
(uL − uR)2

8 +O

(1
c

)
.
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With Mloc ∈ (0, 1), since eL > 0, we get eL∗ > 0 as soon as c is large enough.
Now, the expansion of eCL with respect to c reads as follows:

eCL = eL + f(Mloc,M)(uL − uR)2

8 +O

(1
c

)
,

where we have set

f(Mloc,M) =
(
M2
loc

1−M2
loc

1 +M2
loc

M2M2
loc +M2

locθ
2
2 − 2(1−M2

loc)MMloc(θ1 − θ2)
)
.

The quantity eCL will be proved to be positive as soon as f(Mloc,M) is fixed non-negative. By
definition of θ1 and θ2, given by (3.16), we write

f(Mloc,M) = (3 + 4M2
loc + 2M4

loc)M2 −M(4M2
loc + 2M4

loc) +M4
loc

(1 +M2
loc)2 .

Since the denominator is always positive we only have to consider the numerator as given in the
following function:

N (Mloc,M) = (3 + 4M2
loc + 2M4

loc)M2 −M(4M2
loc + 2M4

loc) +M4
loc.

The function N is a quadratic convex function with respect to M and it admits the following roots:

M± = M2
loc

2 +M2
loc ±

√
1−M4

loc

. (3.17)

The required non-negativity of the function f(Mloc,M) is thus satisfied as long as M does not belong
to (M+,M−). The proof is achieved.

To conclude the presentation of the main properties satisfied by the Riemann solutions of sys-
tem (3.4)ε=∞, we now show that such solutions coincide, in a sense to be prescribed, with the Riemann
solutions of system (2.8)ε=∞ in the limit of Mloc to 1. As a consequence, the all Mach number relax-
ation scheme (2.4)-(2.6)-(3.13) coincides with the standard Suliciu relaxation scheme (2.4)-(2.6)-(2.12)
which performs well when the flow is not in the low Mach number regime.

Lemma 3.4. In the limit of Mloc to 1, the vector

ŨR(x
t

;WL,WR) = t(ρ, ρu, ρv, E, ρπ),

extracted from the Riemann solution (3.11)-(3.12) of (3.4)ε=∞ tends to the vector UR(xt , UL, UR),
defined by (2.10)-(2.11), solution of the Riemann problem associated with (2.8)ε=∞.

Proof. When Mloc tends to 1, the last two equations in (3.4)ε=∞ do not have any influence one the
rest of the system. As a consequence, the extracted system from (3.4)ε=∞ to govern t(ρ, ρu, ρv, E, ρπ)
is identical to the standard relaxation system (2.8)ε=∞.

3.3. Low Mach number properties of the new relaxation scheme

In this section, we study the properties satisfied by the derived all Mach number relaxation scheme.
In fact, we are here interested in two properties. The first property of main interest is the so-called
Asymptotic-Preserving property. Indeed, in the limit of M to zero, we will establish that the scheme
converges to a consistent discretization of the expected incompressible model flow (1.7). The second
property concerns the behavior of the numerical diffusion. Indeed, after (2.19), the numerical viscosity
may become preponderant as M goes to zero by producing very large numerical error. We will show
that such a failure is corrected by adopting the numerical scheme (2.4)-(2.6)-(3.13).
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Within this asymptotic analysis, we adopt Mloc = M since such a choice is relevant and satisfies
the restriction (3.15). Also since the eigenvalues become very large in the low Mach number regime
and therefore the CFL restriction becomes too restrictive we now adopt the implicit time stepping
technique for the proposed numerical scheme.

First, we consider the AP-properties satisfied by the derived scheme. More precisely, in the limit
of M to zero, we have to recover the asymptotic regime governed by (1.9)-(1.10). To address such an
issue, we have to consider the full 2D-scheme as defined in (2.4)-(2.6)-(3.13). Due to the implicit time
stepping the regularity of the solution at the new time-level might not be known in advance. Therefore
we use the following assumption.

We assume that the expansions of the primitive variables given in (1.8) do also hold at the new
time step. Moreover we assume that the discrete time derivatives for each primitive variable q scale
independent of the Mach number, i.e.

1
∆t

(
qn+1
i,j − q

n
i,j

)
= O(1). (3.18)

Lemma 3.5. Consider the scheme (2.4)-(2.6)-(3.13). Under the assumption (3.18), it holds that
pn+1
i+1,j − p

n+1
i−1,j = O(M2). (3.19)

and
pn+1
i,j+1 − p

n+1
i,j−1 = O(M2). (3.20)

Proof. First, we consider the discrete equation for the x-momentum given by

(ρu)n+1
i,j = (ρu)ni,j −

∆t
∆x

(
fρu,n+1
i+1/2,j − f

ρu,n+1
i−1/2,j + gρu,n+1

i,j+1/2 − g
ρu,n+1
i,j−1/2

)
, (3.21)

where, with clear notations to define the numerical flux function at the interface xi+1/2, we have set

fρu,n+1
i±1/2,j = (ρu2)n+1

i±1/2,j + πn+1
i±1/2,j + 1−M2

M2 ψn+1
i±1/2,j ,

gρu,n+1
i,j±1/2 = (ρuv)n+1

i,j±1/2.

Next, multiply (3.21) by M2 and rearrange to get

ψn+1
i+1/2,j − ψ

n+1
i−1/2,j = M2(ψn+1

i+1/2,j − ψ
n+1
i−1/2,j)−M

2 ∆x

∆t

(
(ρu)n+1

i,j − (ρu)ni,j
)

+M2
(
(ρu2)n+1

i+1/2,j + πn+1
i+1/2,j − (ρu2)n+1

i−1/2,j−

πn+1
i−1/2,j + (ρuv)n+1

i,j+1/2 − (ρuv)n+1
i,j−1/2

)
.

Under Assumption (3.18) the above relation reduces to
ψn+1
i+1/2,j − ψ

n+1
i−1/2,j = O(M2).

With the definition of ψ from (3.12) and its relaxation equilibrium together again with the assump-
tion (3.18) there is

ψn+1
i+1/2,j =

pn+1
i+1,j + pn+1

i,j

2 +O(M2).
Therefore, we obtain

pn+1
i+1,j − p

n+1
i−1,j = O(M2).

By symmetry, from the equation for the y-momentum, we also have
pn+1
i,j+1 − p

n+1
i,j−1 = O(M2).

Equipped with these computations, we are now able to state the following result.
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Lemma 3.6. Consider the scheme (2.4)-(2.6)-(3.13) and denote by Nx and Ny the number of grid
points in the x and y direction respectively. Further assume that the pressure at the boundary is
determined by

∀j∈[1,Ny ] pn+1
0,j = pn+1

Nx+1,j = p0 and ∀i∈[1,Nx] pn+1
i,0 = pn+1

i,Ny+1 = p0. (3.22)

Then, if at least one of Nx and Ny is even, there is

∀i,j pn+1
i,j = p0 +O(M2). (3.23)

Proof. Consider the case that Nx is even. From (3.19), there is for any j and any integer k ∈ {1, Nx/2}
pn+1

0,j = pn+1
2k,j = p0 +O(M2). (3.24)

Conversely, we have

pn+1
Nx+1,j = pn+1

2k−1,j = p0 +O(M2). (3.25)

Since j was arbitrary and the same argument holds if Ny is even, this concludes the proof.

Lemma 3.7. Consider the scheme (2.4)-(2.6)-(3.13). Under the assumption (3.18) it holds that

div(u, v) = ∆x div(grad(u2, v2))γ − 1
γ

ρ0
2c +O(∆x). (3.26)

Proof. Consider the energy equation given by

En+1
i,j = Eni,j −

∆t
∆x

(
fE,n+1
i+1/2,j − f

E,n+1
i−1/2,j + gE,n+1

i,j+1/2 − g
E,n+1
i,j−1/2

)
, (3.27)

where we have set
fE,n+1
i+1/2,j = (u(E +M2π + (1−M2)ψ))n+1

i+1/2,j ,

gE,n+1
i,j+1/2 = (v(E +M2π + (1−M2)ψ))n+1

i,j+1/2.

We now focus on the following limit:
lim
M→0

(En+1
i,j − E

n
i,j)

(1.3)= lim
M→0


pn+1
i,j

γ − 1 −
pni,j
γ − 1︸ ︷︷ ︸

(3.23)
= O(M2)

+M2
(
ρn+1
i,j (u

2 + v2

2 )n+1
i,j − ρ

n
i,j(

u2 + v2

2 )ni,j

)
︸ ︷︷ ︸

assumption (3.18)
= O(1)

 = 0. (3.28)

Next, consider the numerical fluxes in the x-derivative. In the limit of M to 0, we get
fE,0i+1/2,j := lim

M→0
fEi+1/2,j = (u((ρe) + ψ))i+1/2,j . (3.29)

From (3.23) and by definition of ψi+1/2,j given by (3.12), we have
lim
M→0

ψi+1/2,j = p0. (3.30)
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Moreover, in the low Mach number limit, the numerical flux function is defined by the intermediate
centred states CL,R given by (3.12). As a consequence, we obtain

lim
M→0

ui+1/2,j = u0,i,j + u0,i+1,j
2 ,

lim
M→0

ρi+1/2,j = (ρ0 + ρ2
0(u0,i,j − u0,i+1,j)

2c+ ρ0(u0,i+1,j − u0,i,j)
),

lim
M→0

ei+1/2,j = (e0,i/i+1,j + p0
u0,i,j − u0,i+1,j

2c ).

Since, we reject the possibility of shocks in the low Mach number limit, therefore we have
∆u,i+ 1

2 ,j
:= u0,i,j − u0,i+1,j = O(∆x). (3.31)

After performing a expansion of ρi+1/2,j in ∆u,i+ 1
2 ,j

, up to second-order terms, we write the numerical
flux as follow:

fE,0i+1/2,j = u0,i,j + u0,i+1,j
2

(
γ

γ − 1p0 + ∆u,i+ 1
2 ,j

ρ0
2cp0

)
+O(∆x2),

= u0,i,j + u0,i+1,j
2

γ

γ − 1p0 −
u2

0,i+1,j − u2
0,i,j

2
ρ0
2cp0 +O(∆x2).

Then we immediately get
fE,0i+1/2,j − f

E,0
i−1/2,j =

u0,i+1,j − u0,i−1,j
2

γ

γ − 1p0 −
u2

0,i+1,j − 2u2
0,i + u2

0,i+1,j
2

ρ0
2cp0 +O(∆x2).

(3.32)

Since the analysis in the y-direction is analogous, from (3.28) and (3.32), we simplify (3.27) as follows:

0 = − 1
∆x(u0,i+1,j − u0,i−1,j

2
γ

γ − 1p0 −
u2

0,i+1,j − 2u2
0,i,j + u2

0,i−1,j
2

ρ0
2cp0)

− 1
∆x(v0,i,j+1 − v0,i,j−1

2
γ

γ − 1p0 −
v2

0,i,j+1 − 2v2
0,i,j + v2

0,i,j−1
2

ρ0
2cp0) +O(∆x).

According to suitable assumptions on the regularity of the dependent variables (3.31), we write

0 = − (u(xi, yj)x + v(xi, yj)y) + ∆x
(
u(xi, yj)2

x,x + v(xi, yj)2
y,y

) γ − 1
γ

ρ0
2c +O(∆x).

Therefore, in the low Mach number limit, the energy equation (3.27) reduces to (3.26).

It is worth noticing that the relation (3.26) gives the divergence constraint for the velocity field
with a diffusion term that vanishes in the limit of ∆x→ 0.

Therefore we can now state the following Theorem on the preservation of the asymptotic set (1.12).

Theorem 3.8. The numerical scheme defined by (2.4)-(2.6)-(3.13), under the assumptions of Lem-
ma 3.6, preserves the asymptotic preserving set (1.12).

Proof. The proof is a collection of the results of the Lemma 3.6 and 3.7.

Further we can now state the following on the limit behaviour of the numerical scheme.

Theorem 3.9. The numerical scheme defined by (2.4)-(2.6)-(3.13), under the assumptions of Lem-
ma 3.6, is asymptotic preserving when M tends to 0, i.e. it gives a consistent approximation of the
limit equations (1.7).

19



C. Berthon, C. Klingenberg, et al.

Proof. We investigate the limit of M → 0 of the numerical scheme. In order to get the limit
equation (1.7). The most difficult part is the divergence constraint of the velocity field, where this is
proven for Lemma 3.7. Concerning the limit equations for the velocity components we rely on the fact,
that the scheme is consistent with the compressible Euler equations. The equations for the velocities are
just reformulations of the momenta equations of the compressible Euler equations assuming sufficient
regularity of the solution. Therefore the numerical scheme is also consistent with the velocity equations
of (1.7).

Next, motivated by the analysis on the diffusion of the standard Suliciu relaxation in section 2 in
equation (2.18), let us exhibit the behavior of the numerical diffusion given by

D(wR − wL) = 1
2 (f(wL) + f(wR))− f(wL, wR), (3.33)

where D stands for the numerical diffusion matrix and f(wL, wR) is the numerical flux function defined
by (2.6)-(3.13).
Theorem 3.10. Consider the numerical flux define by (2.6)-(3.13). Under the assumption (3.18) and
the assumptions of Lemma 3.6 we have that

D =


O(1)
O(1)
O(1)
O(1)

 . (3.34)

Proof. In a first step, we adopt the rescaling (2.13) supplemented by the scaling of the new relaxation
variables as follows:

ψL = p0 +O(M2), ψR = p0 +O(M2),
ūL = u0,L +O(M), ūR = u0,R +O(M).

This is justified by the results of the Lemma 3.6 and 3.7. Arguing the definition of the intermediate
states, given by (3.12), the following scaling of the intermediate states directly holds:

uL∗ = u0,L +O(M), uR∗ = u0,R +O(M), (3.35)
ρL∗ = ρ0 +O(M), ρR∗ = ρ0 +O(M), (3.36)
ρCL = ρ0 +O(1), ρCR = ρ0 +O(1), (3.37)
πC = p0 +O(1), uC = u0,L/R +O(1), (3.38)
πL∗ = p0 +O(M2), πR∗ = p0 +O(M2), (3.39)
ψC = p0 +O(M2), ū = u0,L/R +O(1), (3.40)
eL∗ = e0,L +O(M), eR∗ = e0,R +O(M), (3.41)
eCL = e0,L +O(1), eCR = e0,R +O(1), (3.42)
vL∗ = vCL = v0,L +O(M), vR∗ = vCR = v0,R +O(M). (3.43)

A straightforward computation yields to the following asymptotic behavior satisfied by the numerical
flux function:

f(wL, wR) =


ρ0u0,L/R +O(1)

ρ0u
2
0,L/R + p0

M2 +O(1)
ρ0u0,L/Rv0,L/R +O(1)

(u0,L/R(E0 + p0)) +O(1)

 .
and therefore the result is achieved.
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As a consequence, the numerical viscosity of the derived numerical scheme (2.4)-(2.6)-(3.13) does
not depend on the Mach number. Put in other words, as M goes to zero, the numerical error does not
dominate the simulation at the discrepancy with the standard Suliciu relaxation scheme (2.4)-(2.6)-
(2.12).

4. Numerical results

Now, the proposed low Mach number scheme is tested for its practical applicability. In all test cases, an
ideal gas law is used with γ = 5

3 as well as an equidistant grid. The emphasis in these tests lies in the
comparison of the new relaxation scheme with respect to the standard Suliciu relaxation scheme. By
comparison between (2.11) and (3.12), it is clear that the standard scheme is recovered when choosing
Mloc = 1. The new relaxation scheme is denoted as SM while S1 denotes the standard relaxation
scheme.

In order to treat the relaxation source terms we use the relaxation projection method for the explicit
and the implicit timestepping technique. I.e. the initial condition to determine the numerical flux is
always considered at the relaxation equilibrium, as has been stated in the definition (2.6). For the
explicit time stepping this trivially results in the fact, that none of the newly introduced relaxation
variables is actually evolved in time. In the implicit timestepping case we have to solve the following
system, given for the sake simplicity in a semi-discrete form,

Wn+1 = Wn −∆t∇ · F (Wn+1), (4.1)
where the spatial derivatives have been defined in the sections 2 and 3.

Now, along the definitions of section 3, we define
W = (ρ, ρu, E, ρπ, ρû, ρψ)t,

W eq = (ρ, ρu, E, ρp, ρu, ρp)t,
QW = (ρ, ρu, E)t,

F = (fρ, fρu, fE , fρπ, fρû, fρψ)t,
QW = (fρ, fρu, fE)t,

(4.2)

and solve the implicit system (4.1) only for the physical variables, i.e. we solve

QWn+1 = QWn −∆t∇ ·QF (Wn+1,eq). (4.3)
This highly reduces the number of unknowns in the implicit system. Moreover we like to point out

that the system (4.3) is non-linear. Therefore we need to employ a Newton-Raphson iteration to find
the unknown QWn+1.

We implemented the respective schemes in the SLH code [25] and use the functionalities that
are implemented there. In each Newton-Raphson step a linear system has to be solved. We use the
PARDISO framework [9, 34, 24] to achieve this task. For higher order timestepping the implicit time
integration method ESDIRK34 from [20] is used. To ensure second order in space a minmod limiter
is applied to reconstruct the conserved quantities in each cell.

Even though the implicit time stepping is unconditionally stable, we introduce a time step restriction
in the following form

∆x

∆t
= 1

2 | u | . (4.4)

At last we define the definition of the parameter Mloc. When an implicit time-stepping is used we
determine Mloc as

Mloc,i+ 1
2 ,j

= min(max(Mloc,i,j ,Mloc,i+1,j), 1). (4.5)
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Figure 4.1. Numerical approximations to the Sod shock tube test for the schemes S1
and SM at different Mach numbers and at different resolutions at time 0.2. Top left:
M = 10−1. Top right: M = 10−2. Bottom center: M = 10−3.

In all the test cases, if not mentioned otherwise, the prescribed implicit timestepping procedure is
used.

4.1. Sod Shock Tube test

The first test case investigates the capability of the low Mach number scheme to deal with discon-
tinuities. To this end, the Sod shock tube test is concerned, see [30]. The computational domain is
D = [0, 1] and the initial conditions are set as

(ρ(0, x), u(0, x), p(0, x)) =
{

(1.0, 0, 1.0) if x < 0.5,
(0.125, 0, 0.1) if x > 0.5.

(4.6)

Only first order versions of the schemes S1, SM are concerned in order to investigate the influence
of the numerical flux function on the approximation. Moreover, in this test case an explicit time
integration is performed. Since the explicit time integration is stiff with respect to M,Mloc, the local
Mach number has to be controlled in order for the fastest eigenvalues in (3.10) to be bounded. Therefore
in this case we set M = Mloc that also satisfies (3.15). The results are shown in Figure 4.1.
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When looking at the numerical approximations with 100 cells and comparing them with the solutions
on higher resolutions, a similar behaviour on all the different Mach numbers can be observed. At first,
the low Mach number scheme seems to be more diffusive on the shock around 0.9. Both schemes show
a comparable performance on the contact discontinuity at 0.6, while the rarefaction wave is much
better captured by the low Mach number scheme. Moreover, both schemes are in good agreement in
all regimes when the resolution is increased.

4.2. Gresho Vortex test

A classical test case for low Mach number properties is the Gresho vortex. The Gresho vortex is an
axisymmetric steady state solution of the compressible Euler equations and the velocity field satisfies
the free divergence condition from the incompressible limit. Here the modified version from [26] is
considered. It is defined in polar coordinates and by axisymmetry only the radial component needs to
be specified. Denoting by uφ the angular velocity, it is set as

uφ(r) =


5r if 0 ≤ r ≤ 0.2,
2− 5r if 0.2 ≤ r ≤ 0.4,
0 if 0.4 ≤ r,

(4.7)

and the pressure distribution is given by

p(r) = p0 +


25
2 r

2 if 0 ≤ r ≤ 0.2,
25
2 r

2 + 4(1− 5r − ln 0.2 + ln r) if 0.2 ≤ r ≤ 0.4,
4 ln 2− 2 if 0.4 ≤ r,

(4.8)

where p0 = ρ
γM2 . The density ρ is considered as constant and the computational domain is D =

[−1, 1] × [−1, 1]. Fixing ρ, the reference Mach number M is used to scale the vortex to different
regimes. In order to see how the schemes perform on a low resolution the simulations are performed
on an equidistant grid in both spatial dimensions withNx = Ny = 40 and periodic boundary conditions
are imposed. The resulting distributions of the relative Mach number, i.e. Mrel(t, x, y) = Mloc(t,x,y)

M ,
after one rotation for different reference Mach numbers are shown in Figure 4.2.

The scheme S1 introduces an increasing amount of diffusion with decreasing Mach number; as can
be seen in the top row of Figure 4.2. In contrast to that, the new relaxation scheme SM preserves the
vortex structure on all Mach numbers equally good. This result is expected form the derivations of
the numerical diffusion of the upwind schemes S1 in (2.19) and SM in (3.34).

Another criterion to check the quality of the numerical approximation is the kinetic energy. Since
the vortex is a stationary solution, the kinetic energy also remains constant in the exact solution. The
evolution of the total kinetic energy in the computational domain is shown in Figure 4.3.

The scheme S1 shows an increasing diffusion of the kinetic energy by decreasing Mach number. Even
more, for Mach number 10−4, the scheme actually shows also convergence problems and the solution
becomes nonphysical. On the other hand the scheme SM shows only a small diffusion of the kinetic
energy and the diffusion of the total relative kinetic energy is practically identical at the different
Mach numbers.

Lastly we compare the CPU times that were needed for each scheme. The algorithm is run on a
single CPU of the type Intel(R) Core(TM) i5-4690 CPU with 3.50GHz on a 64-bit 4.4.176-96 linux
system. The CPU times are found in Table 4.1.

As can be seen the new scheme SM is also more efficient then the scheme S1. In all regimes the CPU
times are significantly smaller for SM then for S1. Moreover the CPU times for SM are also stable
when lower Mach number flows are concerned. However we would like to mention that the Newton-
Raphson iteration has a strong impact on the CPU time. For example, slightly different termination
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Figure 4.2. Local relative Mach number for the Gresho Vortex after one rotation at
different Mach numbers. Top: results for the scheme S1. Bottom: results for the scheme
SM .

Table 4.1. CPU times in seconds for the Gresho vortex test for the schemes S1 and
SM at different Mach numbers.

Scheme
Mach number 10−2 10−3 10−4

SM 124 124 120
S1 4885 42284 184980

criteria might lead to different CPU times. This is especially true for the scheme S1 which shows a
slow convergence behaviour.

4.3. Smooth Gresho Vortex

In this test investigate the stability of the order of the numerical scheme SM in the low Mach number
regime. Since we deal with a formal second order scheme, a smooth test problem is needed. The
standard Gresho vortex however does not admit a smooth distribution of the conserved quantities.
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Figure 4.3. Evolution of the total kinetic energies in the numerical approximation
of the Gresho vortex at different Mach numbers for different schemes. Shown is the
relative total kinetic energy, i.e. tKE(t)

tKE(0) .

Therefore we give here a smooth version of the above described vortex. We do this by interpolating
the velocity profile of the standard Gresho vortex at the points r = 0, r = 0.2, r = 0.4 by demanding
a smooth transition across the quadrature points. The resulting distributions are now given by

uφ(r) =


75r2 − 250r3 if 0 ≤ r ≤ 0.2,
−4 + 60r − 225r2 + 250r3 if 0.2 ≤ r ≤ 0.4,
0 if 0.4 ≤ r,

(4.9)

and

p(r) = p0 +


5625

4 r4 − 7500r5 + 31250
3 r6 if 0 ≤ r ≤ 0.2,

602
15 − 480r + 2700r2 − 29000

3 r3 + 80625
4 r4

−22500r5 + 31250
3 r6 + 16 ln 5r if 0.2 ≤ r ≤ 0.4,

16 ln 2− 154
15 if 0.4 ≤ r,

(4.10)

We now investigate the experimental order of convergence given in table 4.2. In fact the numerical
errors are practically invariant across all Mach numbers. And with this also the convergence rate is
robust with respect to the flow regime and a second order convergence is achieved. The only drop in
convergence rates is in the density. Here in fact the order is below 2.However the total error is really
low and finite precision problems influence the convergence rates.
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Table 4.2. L2 error and the estimated rate of convergence (EoC) at different Mach
numbers.

Res. ρ EoC ρu EoC ρv EoC E EoC

M = 10−2

40x40 2.93 e-06 - 1.89 e-02 - 1.89 e-02 - 1.33 e-02 -
60x60 8.23 e-07 2.10 8.26 e-03 2.04 8.26 e-03 2.04 6.06 e-03 1.98
80x80 4.00 e-07 2.50 4.02 e-03 2.50 4.02 e-03 2.50 3.07 e-03 2.36

M = 10−3

40x40 1.93 e-08 - 1.89 e-02 - 1.89 e-02 - 1.33 e-02 -
60x60 8.23 e-09 2.10 8.27 e-02 2.04 8.27 e-02 2.04 6.06 e-03 1.98
80x80 4.00 e-09 2.50 4.02 e-03 2.50 4.02 e-03 2.50 3.07 e-03 2.36

M = 10−4

40x40 2.43 e-10 - 1.89 e-02 - 1.89 e-02 - 1.33 e-02 -
60x60 1.53 e-10 1.14 8.26 e-02 2.04 8.26 e-02 2.04 6.06 e-02 1.93
80x80 1.10 e-10 1.14 4.02 e-03 2.50 4.02 e-03 2.50 3.07 e-02 2.36

Also we give again the CPU times for the numerical schemes where again the algorithm is run on
a single CPU of the type Intel(R) Core(TM) i5-4690 CPU with 3.50GHz on a 64-bit 4.4.176-96 linux
system, see 4.3.

Table 4.3. CPU times in seconds for the smooth Gresho vortex on different resolu-
tions and different Mach numbers.

Resolution
Mach number 10−2 10−3 10−4

40x40 115 115 115
60x60 519 520 519
80x80 1392 1397 1397

Again we see that on all resolutions the CPU times for the scheme SM are stable under variation
of the Mach number.

4.4. Kelvin Helmholtz Instability

The last test case concerns the approximation of a Kelvin-Helmholtz instability. The idea is to intro-
duce a non steady flow problem to further investigate the influence of the numerical diffusion on the
quality of the numerical approximations. The setup is also taken from [26], where the shear instability
is triggered artificially to enforce a specific behavior of the resulting vortexes. This gives the possibility
to compare the results for different schemes. Therefore the initial conditions are set as

ρ =


ρ1 − ρm exp(y−0.25

L ) if 0 ≤ y ≤ 0.25,
ρ2 + ρm exp(−y+0.25

L ) if 0.25 ≤ y ≤ 0.5,
ρ2 + ρm exp(y−0.75

L ) if 0.5 ≤ y ≤ 0.75,
ρ1 − ρm exp(−y+0.75

L ) if 0.75 ≤ y ≤ 1,
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Figure 4.4. Kelvin-Helmholtz Instability computed with the schemes S1 and SM on
a 128× 128 grid.

and

u =


u1 − um exp(y−0.25

L ) if 0 ≤ y ≤ 0.25,
u2 + um exp(−y+0.25

L ) if 0.25 ≤ y ≤ 0.5,
u2 + um exp(y−0.75

L ) if 0.5 ≤ y ≤ 0.75,
u1 − um exp(−y+0.75

L ) if 0.75 ≤ y ≤ 1,
and p = 2.5. The parameters are

ρ1 = 1.0 ρ2 = 2.0 ρm = ρ1 − ρ2
2 ,

u1 = 1.0 u2 = 2.0 um = u1 − u2
2 ,

and L = 0.025. The computational domain is D = [0, 1]× [0, 1] and periodic boundary conditions are
imposed. The instability is triggered by a perturbation in the vertical velocity as

v = 10−2 sin(2πx)

and the simulations are performed with a Mach number of M = 10−2. The results are depicted in
Figure 4.4 and Figure 4.5.
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Figure 4.5. Kelvin-Helmholtz Instability computed with the schemes S1 and SM on
a 128× 128 grid.

From Figure 4.5 we have that the flow regime is in the regime of a Mach number M ≈ 10−4. From
the Gresho vortex test we therefore expect a significant improvement by the introduction of the new
relaxation scheme SM . The superior performance can be seen in Figure 4.4. The resulting voices are
better resolved by the scheme SM then with the scheme S1.

As in the Gresho vortex test case we now also investigate the evolution of the total kinetic energy,
given in Figure 4.6. As can be seen from this picture, the scheme S1 has strong problems with the
convergence. In contrast to the scheme SM where the evolution of the total kinetic energy is stable.

5. Conclusion

In this work we are concerned with the low Mach number approximation of flows governed by the
compressible Euler equations. We have used the standard Suliciu relaxation technique and showed, that
it is not useful for the approximation of these flow regimes. Then we construct a modified relaxation
scheme and show, that the numerical diffusion of the upwind scheme is controlled in the low Mach
number case, that the relaxation scheme is robust with respect to the positivity of density and internal
energy and show the asymptotic preserving property of the new scheme. We then give numerical tests
to show the superior performance of the modified relaxation scheme compared to a standard scheme.
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Figure 4.6. Kelvin-Helmholtz Instability: Evolution of the normed total kinetic en-
ergy for the schemes S1 and SM on a 128× 128 grid.
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