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a b s t r a c t 
We introduce a general framework for the construction of well-balanced finite volume methods for hy- 
perbolic balance laws. We use the phrase well-balancing in a broader sense, since our proposed method 
can be applied to exactly follow any solution of any system of hyperbolic balance laws in multiple spatial 
dimensions and not only time independent solutions. The solution has to be known a priori, either as 
an analytical expression or as discrete data. The proposed framework modifies the standard finite vol- 
ume approach such that the well-balancing property is obtained and in case the method is high order 
accurate, this is maintained under our modification. We present numerical tests for the compressible Eu- 
ler equations with and without gravity source term and with different equations of state, and for the 
equations of compressible ideal magnetohydrodynamics. 

© 2021 Elsevier Ltd. All rights reserved. 
1. Introduction 

Several problems in engineering and science are modeled by 
conservation principles and lead to non-linear partial differen- 
tial equation which are hyperbolic. These equations can rarely be 
solved exactly and we must resort to some form of numerical ap- 
proximation. One successful numerical approach for solving hyper- 
bolic PDE is the finite volume method based on Godunov’s idea 
[1] . As soon as external forces enter the modeled system, a source 
term has to be added to the hyperbolic conservation laws turning 
these into hyperbolic balance laws. Although numerical methods 
for hyperbolic balance laws might admit some discrete stationary 
states, they are in general grid dependent and different from the 
stationary states of the PDEs. This gives rise to the need to develop 
so-called well-balanced methods, i.e. methods which are designed 
to be exact on special stationary solutions of the system. 

In the well-known shallow water equations with non-flat bot- 
tom topography, the most widely considered static state, which 
is the lake-at-rest solution, can be formulated in a closed form. 
This favors the construction of well-balanced methods for this sys- 
tem (e.g. [2–8] and references therein) and related systems like the 
Ripa model ( [9,10] and references therein). The relevance for meth- 
ods for non-static stationary states (e.g. [11] ) has been pointed out 
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in [12] . For the Euler equations with gravitational source term, 
on the other hand, static solutions have to be found by solv- 
ing a differential equation for density and pressure together with 
an equation of state (EoS). This makes the construction of well- 
balanced methods more challenging and typically restricts the re- 
sulting method to some special cases. Many methods have been 
developed for some classes of hydrostatic states assuming an ideal 
gas EoS (e.g. [13–21] and references therein) and there are also 
high order methods, see e.g. [22–24] . 

While the hydrostatic equation for compressible Euler equa- 
tions with gravity is basically one-dimensional, the spatial struc- 
ture of this relation is much richer for compressible ideal magne- 
tohydrodynamics (MHD) equations with gravity since it includes 
off-diagonal terms. In [25] , a well-balanced method for MHD is de- 
rived to compute waves on the stationary background. This method 
is designed to balance isothermal hydrostatic states of the Eu- 
ler equations together with a magnetic field, which satisfies cer- 
tain stationarity conditions and is known a priori. Part of this 
method, namely considering deviations to a background magnetic 
field, goes back to Tanaka [26] and is also used by Powell et al. 
[27] . To do so, the background magnetic field is assumed to be 
static and free of rotation as well as divergence. 

There are different approaches to obtain the well-balancing 
property. Some methods are based on a relaxation approach, in 
which the hydrostatic equation is included in the relaxation sys- 
tem [28–30] . Path-conservative methods are introduced in [31–33] . 
Another widespread idea is the application of hydrostatic recon- 
struction, i.e. the reconstruction of variables which are constant if 
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the system is in the considered stationary state. An early example 
of this method is [3] for the shallow water system; for Euler equa- 
tions, this approach has e.g. been used in [16–18,20] . These meth- 
ods for Euler equations are restricted to a certain EoS and certain 
classes of hydrostatic solutions. For astrophysical applications, for 
example, this restriction is a severe limitation since the equations 
of state describing physics in the stellar interior are much more 
complex than the EoS of an ideal gas. 

More general methods have been developed in [34–37] . The 
well-balanced methods introduced in these publications can be ap- 
plied for any EoS. They are exact on certain hydrostatic solutions, 
and in all other cases they balance a second order approximation 
of the considered hydrostatic solution. In [38,39] , a second order 
well-balanced method for Euler equations with gravity is intro- 
duced. This method can be applied for any hydrostatic solution of 
Euler equations with any EoS if the hydrostatic solution is known. 
The method is then exact up to machine precision and it has been 
extended to high order in [23] . Notably, there is also an exten- 
sion to stationary states with non-zero velocity in the same article. 
Similar techniques can be found in the context of numerical at- 
mospheric modeling (e.g. [17,40,41] ). Those well-balanced schemes 
strongly rely on the structure of the discretized equations or the 
static solutions to be well-balanced. 

The method we present in this paper is designed in the manner 
of the method in [39] . It uses the idea of hydrostatic reconstruction 
and a modification of the source term discretization to obtain the 
well-balanced property. The main point in which it differs from 
all of the methods mentioned above is that our method is not re- 
stricted to a certain system of hyperbolic balance laws. Instead, we 
present a general framework which modifies finite volume meth- 
ods for any hyperbolic conservation or balance laws such that they 
obtain the well-balancing property. Also, the method can be used 
to balance any known solution which is either given by an analyti- 
cal expression or as discrete data. Additionally, unlike the majority 
of the well-balanced methods mentioned above which deal with 
time independent hydrostatic solutions, our well-balanced method 
can be used to follow known time-dependent solutions exactly, 
as we will show in this paper. We will refer to the solution that 
is to be exactly captured by the scheme as the target solution. 
Depending on the application, the target solution can be a time- 
independent hydrostatic solution, or some general time-dependent 
solution of interest. Our method is also general in the sense that 
it is possible to combine it with other modules of a finite volume 
scheme: It can be applied on any grid system, with any numeri- 
cal flux function, reconstruction routine, source term discretization, 
and ODE solver for time-discretization. It allows for high order in 
the sense that, if all these components are high order accurate, the 
resulting method is also high order accurate. 

There are several applications in which the hydrostatic solution 
is known a priori, e.g. in stellar astrophysics, but the EoS is often 
given in the form of a table. Consequently, hydrostatic solutions 
can only be found numerically and are available in the form of 
discrete data. While methods which incorporate analytical expres- 
sions are not able to exactly maintain these hydrostatic solutions, it 
is very well possible with the methods in [23,39] and the method 
we present in this paper. Especially, if we consider the better ap- 
proximation of stellar structure which is given by a stationary state 
including rotation, our method can be applied to maintain this sta- 
tionary solution. Another example from astrophysical application 
are rotating Keplerian disks. These are two-dimensional disks of 
matter which follows Newton’s laws of motion in the gravitational 
field of a massive attractor. One way to describe this disk is a sta- 
tionary solution of Euler equations with gravity including non-zero 
velocities. Since the velocity is not zero in such a solution, conven- 
tional well-balanced methods cannot preserve this solution. A spe- 
cial method designed for this application is presented in [42] . In 

this paper, we will show that our method is also able to preserve 
this solution on different grids. Besides the applicability to any sys- 
tem of hyperbolic balance laws, the balancing of moving and time- 
depending solutions is one of the key features of our method. 

The rest of the paper is structured as follows. In Section 2 we 
introduce the standard finite volume framework for multi- 
dimensional systems of hyperbolic conservation laws on arbitrary 
grids. In Section 3 , we introduce our general well-balanced modifi- 
cation for this framework. The well-balanced property we claim for 
our method is then shown in Section 4 . The validity of the well- 
balanced property also depends on a consistent choice of bound- 
ary conditions. Therefore, we add a discussion about well-balanced 
boundary conditions in Section 5 . To emphasize how simple it is 
to add our method to an existing finite volume code, we com- 
ment on the implementation of the method in Section 6 . Finally, in 
Section 7 , we show a variety of numerical tests. The range of appli- 
cations goes from Euler equations to ideal magnetohydrodynamics 
(MHD) equations. They include classical well-balanced tests on the 
balance laws and also tests on the homogeneous hyperbolic con- 
servation laws. Different equations of state are used for the Euler 
equations. We include a test in which the well-balanced solution 
is not analytically known but has been obtained numerically. Also, 
we present tests in which the well-balanced solution depends on 
time. We verify high order accuracy for solutions close to and far 
away from the well-balanced solution numerically. A simple exam- 
ple for using a target solution which is obtained via numerical sim- 
ulation is given. The robustness of our approach is validated in a 
shock tube on a hydrostatic solution for Euler equations with grav- 
ity. To show the efficiency of the method, we present CPU time 
comparisons of simulations with and without the well-balanced 
modification in Section 8 . 
2. A standard finite volume method 

In this section we present the standard high order finite volume 
framework for three-dimensional hyperbolic balance laws [43,44] . 
Consider the 3-D system of hyperbolic balance laws 
∂ t q (x , t) + ∇ · F(q (x , t)) = s (q (x , t) , x , t) (1) 
with F = (f 1 , f 2 , f 3 ) , where f l is the flux in l-direction. The spatial 
domain is partitioned by a mesh consisting of N non-overlapping 
control volumes. For the i th control volume "i ( i ∈ { 1 , . . . , N} ), we 
define the cell-average 
Q i (t) := 1 

V i 
∫ 
"i q (x , t) dx , (2) 

where V i = | "i | is the control cell volume. Integrating Eq. (1) over 
"i , applying the divergence theorem, approximating fluxes by nu- 
merical fluxes, and applying quadrature yields the standard semi- 
discrete methods 
d 
dt Q i (t) = − 1 

V i ∑ 
k ∈ N(i ) 

( 
M ∑ 

j=1 ω j F (Q rec 
i (x ik j , t) , Q rec 

k (x ik j , t) , n (x ik j ) )
) 

+ 1 
V i I x ∈ "i [s (Q rec 

i , x , t )]. (3) 
Here, N(i ) is the set of indices of all control volumes sharing an 
interface with "i , M is the number of quadrature points at the in- 
terfaces, x ik j are the M quadrature points at the ik interface and ω j 
are the corresponding weights. F (·, ·, n ) is a numerical flux func- 
tion consistent with n · F , i.e. it is Lipschitz continuous in the first 
two arguments and the relation F (q , q , n ) = n · F(q ) holds for all 
unit vectors n . the reconstructed functions Q rec 

i , Q rec 
k are obtained 

using a consistent conservative reconstruction routine on the cell 
average values Q . Examples for popular consistent conservative re- 
construction routines can be found in [44–47] . The symbol I x ∈ "[ ·] 
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denotes a consistent discretization of the integral ∫ " · dx , which is 
realized by sufficiently high order accurate Gauß–Legendre quadra- 
ture rules in our numerical experiments. The source term dis- 
cretizations applied in our numerical experiments are described in 
Appendix A . 

The semi-discrete scheme Eq. (3) is k th order accurate if the ap- 
plied reconstruction routine, interface flux quadrature and source 
term discretization are all at least k th order accurate. It can then 
be evolved in time using a k th order accurate ODE solver to obtain 
a k th order accurate fully discrete scheme. 
3. The well-balanced modification of the standard finite 
volume method 

In this section we will introduce a well-balanced modifica- 
tion for the three-dimensional finite volume method presented in 
Section 2 . Reducing it to one or two spatial dimensions is straight 
forward. 

Let ˜ q be a given continuous and sufficiently smooth solution of 
Eq. (1) , which we refer to as target solution in the following. The 
equation 
∂ t $q (x , t) + ∇ · F( ̃  q (x , t) + $q (x , t)) − ∇ · F( ̃  q (x , t)) 

= s ( ̃  q (x , t) + $q (x , t) , x , t) − s ( ̃  q (x , t) , x , t) , (4) 
which is obtained by plugging ˜ q into Eq. (1) , subtracting it from 
Eq. (1) itself, and rewrite it in terms of the deviation $q := q −
˜ q from the target solution. Applying our discretization techniques 
to Eq. (4) instead of Eq. (1) yields the well-balanced semi-discrete 
scheme 
d 
dt ($Q i (t)) = − 1 

V i ∑ 
k ∈ N(i ) 

( 
M ∑ 

j=1 ω j $ ˆ F ($Q rec 
i (x ik j , t) , 

$Q rec 
k (x ik j , t) , ̃  q (x ik j , t) , n (x ik j ) )

) 

+ 1 
V i I x ∈ "i [s (($Q rec 

i + ˜ q )(x , t) , x , t) ]
− 1 

V i I x ∈ "i [ s ( ̃  q (x , t) , x , t) ] , (5) 
where $Q i is the cell-average of $q in the i th cell and the re- 
constructed deviations $Q rec 

i have been obtained using a consis- 
tent conservative reconstruction routine. Note that using a consis- 
tent reconstruction on the deviations $Q is equivalent to the ap- 
plication of a hydrostatic reconstruction as e.g. in [3,48] . A typical 
hydrostatic reconstruction consists of a transformation to hydro- 
static variables (i.e. a set of variables that is constant in the hy- 
drostatic case), a consistent reconstruction, and a transformation 
back to conservative variables. In our description of the method 
the deviations $Q correspond to the hydrostatic states. Hence, no 
transformation is required. 

The numerical flux difference approximation $ ˆ F is defined 
by 
$ ˆ F ($Q L , $Q R , ̃  q , n ) := F ($Q L + ˜ q , $Q R + ˜ q , n ) − n · F( ̃  q ) 

≈ n · (F($q + ˜ q ) − F( ̃  q )) , (6) 
where F (·, ·, n ) is a numerical flux function consistent with n · F . 

If the source term s is linear in the first argument, the following 
relation holds 
s (( ̃  q + $q ) ( t, x ) , x , t ) − s ( ̃  q ( t , x ) , x , t) = s ($q ( t, x ) , x , t) . (7) 
Due to the linearity of the corresponding source term discretiza- 
tions, this relation then also holds for the discretized source terms, 
which further simplifies the scheme. For example, this is the case 
for the gravitational source term in Euler or ideal MHD equations 

and the bottom topography source term in the shallow water equa- 
tions. 

As in the standard method, this semi-discrete scheme Eq. (5) is 
k th order accurate if the applied reconstruction routine, interface 
flux quadrature and source term discretization are all at least k th 
order accurate. It can then be evolved in time using an at least 
k th order accurate ODE solver to obtain a k th order accurate fully 
discrete scheme. 
Remark 3.1. In the description of the method, we assume the tar- 
get solution ˜ q to be smooth. In the case of discontinuous ˜ q , the 
two values ˜ q L and ˜ q R which are different if a discontinuity is 
present at the interface, have to be given instead of only one value. 
Eq. (6) has then to be modified to 
$ ˆ F ($Q L , $Q R , ̃  q L , ̃  q R , n )

:= F ($Q L + ˜ q L , $Q R + ˜ q R , n ) − F ( ̃  q L , ̃  q R , n ) , (8) 
i.e. the numerical flux function is also applied to the target solu- 
tion. If ˜ q is continuous, Eq. (8) reduces to Eq. (6) due to the con- 
sistency of the numerical flux function F . However, in the case of a 
discontinuous target solution ˜ q no high order convergence can be 
expected and the computational cost of the well-balanced modifi- 
cation increases. 
4. Proof of the well-balanced property 

In this section we show the well-balanced property of our 
method. 
Theorem 4.1. The modified finite volume method introduced in 
Section 3 

satisfies the following property: If 
$Q i = 0 ∀ i ∈ { 1 , . . . , N} (9) 
at initial time, then this holds for all t > 0 . Consequently, if the initial 
condition Q i (t = 0) , i = 1 , . . . , N, equals the cell averages of the tar- 
get solution ˜ Q i (t = 0) , i = 1 , . . . , N, the computed solution equals the 
target solution for all time. 
Proof. Let $Q i = 0 for all i ∈ { 1 , . . . , N} . The consistency of the 
applied reconstruction leads to $Q rec 

i ≡ 0 at all flux quadrature 
points. The flux consistency then yields 
$ ˆ F ($Q L , $Q R , ̃  q , n ) = $ ˆ F ( 0 , 0 , ̃  q , n ) = F ( ̃  q , ̃  q , n ) − n · F( ̃  q ) 

= n · F( ̃  q ) − n · F( ̃  q ) = 0 . (10) 
Now, consider the contribution from the source term: With $Q i = 
0 the source term discretization in Eq. (5) reduces to 
I x ∈ "i [s (($Q rec 

i + ˜ q )(x , t) , x , t) ] − I x ∈ "i [ s ( ̃  q (x , t) , x , t) ] 
= I x ∈ "i [ s ( ̃  q (x , t) , x , t) ] − I x ∈ "i [ s ( ̃  q (x , t) , x , t) ] = 0 . (11) 

We have shown that the right hand side in Eq. (5) vanishes and 
thus the initial data $Q i = 0 are conserved for all time. The second 
part of the theorem follows easily. !

Remark 4.2. If a stationary solution is chosen as target solution 
(which is the case for classical well-balancing applications), the 
time derivative of the target solution vanishes by definition. This 
leads to d 

dt Q i = d 
dt ($Q i ) . The described method can then also be 

used to directly evolve the Q i in time instead of $Q i . 
5. Boundary conditions 

The validity of the well-balanced property also depends on 
the correct choice of boundary conditions. In this section, we de- 
scribe some boundary conditions that are compatible with the 
well-balancing property and support the potentially high order ac- 
curacy of the scheme. Some of the proposed numerical boundary 
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conditions require knowledge of the target solution outside the do- 
main. If this is not available, one can simply extrapolate the target 
solution to the ghost cells using a sufficiently high order accurate 
extrapolation. The well-balanced scheme will in that case exactly 
balance the target solution including the extrapolated values. Con- 
sequently, this will neither affect the well-balanced property nor 
the order of accuracy. 

Extrapolation boundary conditions : High order extrapolation of 
data in the domain to ghost cells supports the high order accuracy 
of the applied scheme. In our method we extrapolate the devia- 
tions $Q such that the method is also well-balanced at the bound- 
aries. 

Wall and periodic boundary conditions: Periodic boundary con- 
ditions and wall boundary conditions as e.g. described in [49] can 
be applied to the deviations $Q whenever physically valid. It is 
easy to show that these choices of boundary conditions supports 
the well-balanced property. 
6. Notes on the implementation 

We have seen that our well-balanced method can be applied 
for a wide range of problems. In this section we will discuss an- 
other property useful for applications: The fact that the method is 
also easy to be implemented. This holds especially if there is an 
existing finite volume code evolving Eq. (3) . It can be easily modi- 
fied to evolve Eq. (5) and hence obtain a well-balancing capability. 
The changes that should be introduced in a typical finite volume 
scheme are the following: 

1. Implement a function able to return the target solution ˜ q in 
any point (x , t) , or a structure containing the cell averages 
and all the values needed at each quadrature point if ˜ q is 
time-independent. 

2. When the main routine receives the initial cell-averages Q i , 
it should transform it to the deviations $Q i = Q i − ˜ Q i and 
work directly with the deviation. 

3. In the routine evaluating the numerical flux, it has to be 
computed $ ˆ F ($Q L , $Q R , ̃  q , n ) instead of n · F($q + ̃  q ) . Ba- 
sically, this just means subtracting the exact flux after the 
evaluation of the standard numerical flux. 

4. This step is only necessary if the source term is not linear 
in q : Evaluate the source term at the states ˜ Q i + $Q i and ˜ Q i . 
The difference of these source terms is computed and used 
to evolve the approximate solution as described in Eq. (5) . 

Let us remind of Remark 4.2 and point out that an alterna- 
tive implementation could also evolve Q instead of $Q in time if 
˜ q is time-independent. In the computer implementation, this can 
be the easier and computationally efficient approach than evolving 
the deviations. 
7. Numerical tests of the scheme 
7.1. Hyperbolic systems used in the tests 

Since the well-balancing procedure introduced in this article is 
applicable to any hyperbolic balance law, we present numerical 
experiments for two different hyperbolic systems. They are intro- 
duced in the following. 
7.1.1. Compressible Euler equations with gravity source term 

The 2-D compressible Euler equations which model the balance 
laws of mass, momentum, and energy under the influence of grav- 
ity are given by 
∂ t 

⎡ 
⎢ ⎣ 

ρ
ρu 
ρv 
E 

⎤ 
⎥ ⎦ + ∂ x 

⎡ 
⎢ ⎣ 

ρu 
p + ρu 2 

ρu v 
(E + p) u 

⎤ 
⎥ ⎦ + ∂ y 

⎡ 
⎢ ⎣ 

ρv 
ρu v 

p + ρv 2 
(E + p) v 

⎤ 
⎥ ⎦ = 

⎡ 
⎢ ⎣ 

0 
−ρ∂ x φ
−ρ∂ y φ

0 
⎤ 
⎥ ⎦ (12) 

with ρ, p > 0 . Moreover, E = ρε + 1 
2 ρ| v | 2 + ρφ is the total energy 

per unit volume with the velocity v = (u, v ) T and specific internal 
energy ε. The scalar function φ is a given gravitational potential. 
An additional relation between density, pressure, and specific in- 
ternal energy is given in the form of an equation of state (EoS). 
In our tests we will use the ideal gas EoS law p = (γ − 1) ρε with 
γ = 1 . 4 if not stated explicitly. 

The 2-D Euler equations can be reduced to 1-D Euler equations 
by removing the y -flux and the ρv equation. It can be reduced to 
homogeneous Euler equations by removing the right-hand side of 
Eq. (12) . 
7.1.2. Homogeneous compressible ideal magnetohydrodynamics 

The 2-D compressible ideal magnetohydrodynamics (MHD) 
equations which model the conservation of mass, momentum, 
magnetic field, and energy are given by 

∂ t 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
ρu 
ρv 
B x 
B y 
E 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎦ + ∂ x 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎣ 

ρu 
ρu 2 + p + 1 

2 (B 2 y − B 2 x ) 
ρu v − B x B y 

0 
B y u − v B x 

u (E + p + 1 
2 B 2 y − 1 

2 B 2 x ) − v B x B y 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎦ 

+ ∂ y 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 
ρu v − B x B y 

ρv 2 + p + 1 
2 (B 2 x − B 2 y ) 

B x v − uB y 
0 

v (E + p + 1 
2 B 2 x − 1 

2 B 2 y ) − uB x B y 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎦ = 0 , (13) 

where B x , B y are the x - and y -component of the magnetic field. The 
total energy is E = ρε + 1 

2 ρ| v | 2 + 1 
2 (B 2 x + B 2 y ) . All other quantities 

are defined as for the Euler equations. We use the same EoS as for 
the Euler equations. 

One can also define 2-D compressible ideal MHD equations 
such that they include the ρw and B z components. This is in prin- 
ciple reasonable due to the genuine three-dimensional interactions 
between velocity and magnetic field. In our tests we set ρw and 
B z to zero and there is no difference if we omit the corresponding 
equations. 
7.2. Code and numerical methods 

We test the methods proposed in this paper using a finite vol- 
ume code implemented in Python. The code is built in a modular 
way, such that different schemes can be easily implemented. Note 
that our well-balanced method is not restricted to the methods we 
choose to use in the tests and one can for example also use other 
reconstruction methods or quadrature formulae. One can also ap- 
ply numerical flux functions designed for special problems (e.g. a 
low Mach number compliant method for Euler equations like in 
[50,51] ). 

Grids: The domain in two-dimensional problems is discretized 
using a structured grid and in some tests, we use curvilinear grids. 
Our implementation of curvilinear grids (see Appendix A.1 ) re- 
stricts the overall method to only second order accuracy. Note that 
our well-balanced modification can also be applied to high order 
accurate methods on curvilinear grids such as the ones described 
in [52,53] . Higher order accuracy is demonstrated on a Cartesian 
grid in our numerical experiments. 

Numerical flux function: As numerical flux function we use the 
local Lax–Friedrichs flux (e.g. [43] ), since it is simple and can be 
applied for any hyperbolic system. In some tests, we use the Roe’s 
approximate Riemann solver for Euler equations [54] to obtain 
more accurate results. 
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Table 1 
L 1 -errors for an isothermal hydrostatic solution of the Euler equations after time t = 2 computed using the standard 
(Std) and well-balanced (WB) methods with different orders of accuracy (O m for m th order). The setup is described 
in Section 7.3 . 

error in Std-O1 WB-O1 Std-O2 WB-O2 Std-O3 WB-O3 Std-O7 WB-O7 
ρ 1.19e-01 0.00e + 00 4.60e-04 0.00e + 00 9.72e-05 0.00e + 00 1.28e-09 0.00e + 00 
ρu 2.18e-02 0.00e + 00 7.24e-04 0.00e + 00 1.50e-04 0.00e + 00 1.40e-09 0.00e + 00 
E 1.64e-01 0.00e + 00 3.20e-03 0.00e + 00 3.92e-04 0.00e + 00 3.99e-09 0.00e + 00 

First order method: To formally obtain a first order method, we 
use constant reconstruction to obtain the interface values. The nu- 
merical fluxes are computed at the center of the interfaces and the 
source term is evaluated at the cell-center. For the gravity source 
term used in our tests, we need the gradient ∇φ of the given grav- 
itational potential which is evaluated at the cell center using ana- 
lytical differentiation. 

Second order method: To formally obtain a second order method, 
we use a conservative linear reconstruction (e.g. [44] ) with a min- 
mod limiter (e.g. [44] ) to obtain the interface values. This is the 
only difference to the first order method. 

Third order method: To formally obtain a third order method, we 
use a conservative CWENO3 ( [47] for 1-D, [55] for 2-D) reconstruc- 
tion to obtain the interface values. In the two-dimensional case, 
the numerical fluxes are evaluated at the Gauß–Legendre quadra- 
ture points. To compute the source term we multiply the CWENO3 
polynomials in momentum with the interpolation polynomial of 
∂ x φ or ∂ y φ respectively. This results in a polynomial function of 
the spatial variables whose cell average can be computed by ana- 
lytical integration. 

Seventh order method: To formally obtain a one-dimensional 
seventh order method, we use a conservative CWENO7 reconstruc- 
tion [56] to obtain the interface values. To compute the source 
term we multiply the CWENO7 polynomial in momentum with the 
interpolation polynomial of ∂ x φ. The resulting source term polyno- 
mial is cell-averaged using analytical integration. 

Boundary conditions: If the setup has periodic character we use 
periodic boundary conditions. Otherwise we extrapolate the states 
to ghost cells with a sufficiently high order using one- or two- 
dimensional polynomials. If we use the third order method, for ex- 
ample, we extrapolate using parabolas. 

Time-stepping: The first order accurate scheme is evolved in 
time using the explicit forward Euler method. For the second and 
third order accurate semi-discrete scheme we use the explicit third 
order, four stage Runge–Kutta method from [57] and the explicit 
tenth order, 17 stage Runge–Kutta method from [58] is used in the 
seventh order accurate method. Obviously, it would e.g. be suffi- 
cient to use a second order accurate Runge–Kutta method in the 
second order accurate method. However, this article is mainly con- 
cerned with spatial discretization and choosing different Runge–
Kutta methods can be expected to have few impact on the results 
if they are sufficiently high order accurate. 
7.3. 1-D isothermal hydrostatic solution of the Euler system with 
gravity 

We consider an isothermal hydrostatic solution of the 1-D com- 
pressible Euler equations with the ideal gas law and the gravita- 
tional source term given by 
φ(x ) = sin (2 πx ) , ˜ ρ(x ) = ˜ p (x ) = exp (−φ(x )) , ˜ u ≡ 0 . (14) 
We set these data on a 1-D grid with 128 grid cells on the do- 
main [0,1]. These initial data are evolved up to the final time t = 2 
using the first, second, and third order method with the standard 
method and the well-balanced method each. In the well-balanced 
method we set the initial data Eq. (14) as time-independent target 

solution. The L 1 -errors at final time compared to the initial grid 
can be seen in Table 1 . We see that there is no error when the 
well-balanced method is applied. 
Remark 7.1. Most other well-balanced methods balance fluxes 
against the source term which leads to machine errors. In our 
method we balance fluxes against fluxes and source term against 
source term. Thus, the differences can cancel out exactly and the 
error can be exactly zero. 
7.4. Perturbed 1-D isothermal hydrostatic solution of the Euler 
system with gravity 

We add a perturbation to the pressure such that our initial con- 
ditions are 
ρ(x ) = ˜ ρ(x ) , u (x ) = ˜ u (x ) , p(x ) = ˜ p (x ) + η exp (−100 (x − 1 

2 )2 )
(15) 

in the domain [0,1]. We choose η = 0 . 1 to test the convergence of 
our method. We evolve this initial setup up to time t = 0 . 2 using 
our well-balanced method (first to third order and seventh order). 
The results and convergence rates are shown in Table 2 . As a ref- 
erence solution we use a numerical solution computed with the 
seventh order standard scheme on a grid with 4096 cells. All con- 
vergence rates match our expectations. The convergence rate for 
the seventh order scheme drops in the last step, since the error 
approaches machine precision. In Fig. 1 , density deviations at time 
t = 0 . 2 for the test with η = 10 −5 are shown. The discretization er- 
ror on the hydrostatic background is significant and a rather high 
resolution is required in order to resolve the perturbation. On the 
other hand, it gets evident that the second order well-balanced 
method is capable of correctly resolving the perturbation even on 
a coarse grid. 
7.5. Riemann problem on a 1-D isothermal hydrostatic solution of 
the Euler system with gravity 

To test the robustness of our well-balanced methods in combi- 
nation with CWENO reconstruction we use the initial data 
ρ(x ) := {exp (− 1 

2 φ(x ) ) if x < 0 . 125 , 
exp (−φ(x )) if x ≥ 0 . 125 , 

p(x ) := {2 exp (− 1 
2 φ(x ) ) if x < 0 . 125 , 

exp (−φ(x )) if x ≥ 0 . 125 , u (x ) := 0 (16) 
with φ(x ) := −10 x . Eq. (16) describes a piecewise isothermal hy- 
drostatic solution with a jump, which includes all three waves 
of the Euler equations. We set these initial data on the domain 
[0,0.25] and evolve them to the final time t = 0 . 02 using our third 
and seventh order well-balanced method with CWENO reconstruc- 
tion and Roe’s approximate Riemann solver on 128 grid cells. As 
target solution for the well-balanced methods we choose 
˜ ρ(x ) := exp (−φ(x )) ˜ p (x ) := exp (−φ(x )) ˜ u (x ) := 0 . (17) 

The results at final time are presented in Fig. 2 . As a reference 
we use a result obtained with a first order standard method on 
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Table 2 
L 1 -errors and convergence rates in total energy for a small pressure perturbation on an 
isothermal hydrostatic solution of the Euler equations after time t = 0 . 2 . Different well- 
balanced methods are used. The setup is described in Section 7.4 . 

N WB-O1 WB-O2 WB-O3 WB-O7 
E error rate E error rate E error rate E error rate 

256 5.73e-03 0.9 5.98e-05 2.0 6.93e-05 2.6 1.32e-09 6.5 
512 3.08e-03 0.9 1.49e-05 2.0 1.18e-05 2.7 1.46e-11 6.6 
1024 1.60e-03 1.0 3.73e-06 2.0 1.78e-06 2.8 1.46e-13 4.1 
2048 8.15e-04 9.36e-07 2.53e-07 8.41e-15 

Fig. 1. Perturbation on a hydrostatic atmosphere. The test setup is described in Section 7.4 . The density deviation from the hydrostatic background is shown at time t = 0 . 2 
for the perturbation η = 1 e − 5 . The second order (if not stated explicitly) standard and well-balanced method are used with different resolutions. 

Fig. 2. Riemann problem on an isothermal hydrostatic solution test case from Section 7.5 . The three panels show numerical results at final time t = 0 . 02 as described in the 
text. 
8192 grid cells (left panel). Neither the third order method (cen- 
tral panel) nor the seventh order method (right panel) show signif- 
icant oscillations. The wave structure is captured correctly by both 
methods. 
7.6. 2-D numerically approximated hydrostatic solution of the Euler 
system with gravity 

In stellar astrophysics applications, the hydrostatic state of the 
star can often be given in a discrete form. In this test, we will show 
that our well-balanced method can be used if the target solution 
is given in the form of discrete data in a table. 

The thermodynamical quantities shall be related by the EoS 
for an ideal gas with radiation pressure, which is given by Chan- 
drasekhar [59] 
p = ρT + T 4 , ε = T 

γ − 1 + 3 
ρ

T 4 , (18) 
which relates temperature and pressure by an implicit relation. We 
assume the following data is given. Let the gravitational potential 
be φ(x ) = φ(x, y ) = x + y and the hydrostatic temperature profile 

is T̄ (x ) = 1 − 0 . 1 φ(x ) . Using Chebfun [60] in the numerical soft- 
ware MATLAB we solve the 1-D hydrostatic equation and EoS for 
density and pressure corresponding to the given temperature pro- 
file for the 1-D gravitational potential φ1-D (x ) = √ 

2 x . The data are 
stored as point values on a fine grid (10,0 0 0 data points). To ob- 
tain the 2-D hydrostatic data on the grid we apply the following 
procedure: 

We use a cubic spline interpolation to construct a continu- 
ous function q hs 

1 −D (x ) (e.g. [61] ) from the data points. Then we 
extend the one-dimensional hydrostatic solution q hs 

1 −D to a two- 
dimensional solution via q hs (x ) := q hs 

1 −D (x + y ) . The values for the 
target solution at interface quadrature points can then be evalu- 
ated pointwise as ˜ q (x , t) = q hs (x ) . The cell average values of the 
target solution are computed using a third order accurate 2-D 
Gauß–Legendre quadrature rule. 

We use a 64 × 64 grid to evolve the hydrostatic initial condi- 
tion to the final time t = 2 . For the conversion between pressure 
and internal energy we use Newton’s method to solve for the tem- 
perature. The L 1 -errors at final time are shown in Table 3 . In all 
tests using the well-balanced modification, there is no error at the 
final time. 
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Table 3 
L 1 -errors in total energy for the numerically integrated hydrostatic solution of the Eu- 
ler equations with radiation pressure after time t = 2 computed using different meth- 
ods. The setup is described in Section 7.6 . 

N Std-O1 WB-O1 Std-O2 WB-O2 Std-O3 WB-O3 
64 5.10e-03 0.00e + 00 4.38e-05 0.00e + 00 1.36e-07 0.00e + 00 

Fig. 3. Illustration for the double Gresho vortex test from Section 7.7 . The absolute velocity after subtraction of the constant advection velocity is shown for the initial (left 
panel) and final (right panel) time. The vortex which is included in the target solution (which is the bottom vortex in both panels) is preserved while the other one is 
diffused and deformed. 
7.7. Double Gresho vortex 

In this test we use a vortex for homogeneous 2-D Euler equa- 
tions first introduced in [62] . The pressure and angular velocity of 
this vortex in dependence of the distance to the center are given 
by 
(

ˆ u (r) , ˆ p (r) )
= 

⎧ 
⎨ 
⎩ 

(
5 r, 5 + 25 

2 r 2 ), if 0 ≤ r < 0 . 2 , (
2 − 5 r, 9 − 4 ln (0 . 2) + 25 

2 r 2 − 20 r + 4 ln (r) ), if 0 . 2 ≤ r < 0 . 4 , 
( 0 , 3 + 4 ln (2) ) , if 0 . 4 ≤ r, 

(19) 
The radial velocity is zero and the density is ρ ≡ 1 . In our test we 
set up the domain [0 , 1] × [0 , 2] with two Gresho vortices centered 
at (0.5,0.5) and (0.5,1.5) respectively. The vortices are advected 
with the velocity v 0 = (u 0 , v 0 ) T = (0 . 2 , 0 . 4) T and the boundaries 
are periodic. At time t = 5 the exact solution of this initial data 
equals the initial setup. We apply our well-balanced method on a 
64 × 128 grid to evolve the initial condition up to final time t = 5 . 
We use Roe’s numerical flux functions and a linear reconstruction. 
Only the vortex initially (and finally) centered at (0.5,0.5) is in- 
cluded in the target solution. The result is illustrated in Fig. 3 . 
7.8. 2-D Euler wave in gravitational field 

To demonstrate that we can follow time-dependent solutions 
exactly with our method we use a problem from Xing and Shu 
[22] and Chandrashekar and Zenk [63] which involves a known ex- 
act solution of the 2-D Euler equations with gravity given by 
˜ ρ(t, x, y ) = 1 + 1 

5 sin (π (x + y − t(u 0 + v 0 ))) , ˜ u (t, x, y ) = u 0 , 
˜ v (t, x, y ) = v 0 , 

˜ p (t, x, y ) = p 0 + t(u 0 + v 0 ) − x − y 
+ 1 

5 π cos (π (x + y − t(u 0 + v 0 ))) . (20) 
The gravitational potential is φ(x ) = x + y, the EoS is the ideal gas 
EoS. In accordance to Xing and Shu [22] and Chandrashekar and 
Zenk [63] we choose u 0 = v 0 = 1 , p 0 = 4 . 5 on the domain [0 , 1] 2 . 
We use the first, second, and third order accurate well-balanced 
method to evolve the initial data with t = 0 to a final time t = 0 . 1 
on a 64 × 64 Cartesian grid and the second order well-balanced 
method on a 64 × 64 polar grid. The L 1 -error in every component 
of the state vector is exactly zero in each of the tests. We omit 
showing a table since it does not provide additional insight. 
7.9. Perturbation on the 2-D Euler wave in gravitational field 

In this test we want to verify the order of accuracy for per- 
turbations to time-dependent target solutions if the well-balanced 
method is used. For this we use the initial setup from Eq. (20) and 
add a pressure perturbation: 
ρ(t = 0 , x, y ) = ˜ ρ(t = 0 , x, y ) , u (t = 0 , x, y ) = ˜ u (t = 0 , x, y ) , 

v (t = 0 , x, y ) = ˜ v (t = 0 , x, y ) , 
p(t = 0 , x, y ) = ˜ p (t = 0 , x, y ) 

+ η exp (−100 ((
x − 1 

2 
)2 

+ (y − 1 
2 
)2 ))

. (21) 
We evolve these initial data to time t = 0 . 1 using the third or- 
der standard and well-balanced method with η = 0 . 1 . The L 1 er- 
rors and corresponding convergence rates are presented in Table 4 . 
As reference solution for determining the error we use a numeri- 
cally approximated solution computed using the third order stan- 
dard method on a 1024 2 grid. In this test we use exact boundary 
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Table 4 
L 1 -errors and convergence rates in total energy for different pressure perturbations ( η = 0 . 1 , 10 −5 ) 
on the wave in a gravitational field solution of the 2-D Euler equations after time t = 0 . 1 . The third 
order standard and well-balanced method are used. The setup is described in Section 7.9 . 

grid cells η = 0 . 1 η = 10 −5 
Std-O3 WB-O3 Std-O3 WB-O3 
E error rate E error rate E error rate E error rate 

64 × 64 3.96e-04 2.8 3.84e-04 2.8 4.38e-05 2.7 9.38e-08 2.7 
128 × 128 5.81e-05 3.0 5.65e-05 3.0 6.68e-06 3.0 1.49e-08 2.9 
256 × 256 7.50e-06 3.1 7.30e-06 3.1 7.72e-07 3.1 1.93e-09 3.2 
512 × 512 8.50e-07 8.30e-07 5.46e-08 2.17e-10 

conditions for the standard method, which means that we evalu- 
ate the states in the ghost cells at any time from Eq. (20) . We see 
third order convergence for both methods. However, there seems 
to be no significant benefit from using the well-balanced method 
in this test. The choice of η = 0 . 1 leads to a large discretization er- 
ror in the perturbation which seems to dominate the total error. 
Choosing a large perturbation is necessary since we use a solu- 
tion computed from the standard method as a reference to com- 
pute the errors. For smaller perturbations the standard method 
fails to provide a sufficiently accurate reference solution. To yet 
show the improved accuracy of the well-balanced modification we 
add a convergence test with a small perturbation of η = 10 −5 for 
which a sufficiently accurate reference solution is produced using 
the third order well-balanced method on a 1024 2 grid. The errors 
and convergence rates for the third order accurate standard and 
well-balanced methods can also be seen in Table 4 and it gets ev- 
ident that the well-balanced method is significantly more accurate 
on the small perturbation. 
7.10. 2-D Keplerian disk 

Consider a stationary solution given by Gaburro et al. [21] 
˜ ρ ≡ 1 , ˜ u (x, y ) = − sin (α(x, y )) √ 

Gm S 
r(x, y ) , 

˜ v (x, y ) = cos (α(x, y )) √ 
Gm S 

r(x, y ) , ˜ p ≡ 1 (22) 
with the gravitational potential φ(r) = − Gm s 

r and r = √ 
x 2 + y 2 , 

α = arctan ( y x ) , G = m s = 1 . We use the initial conditions 
ρ(x, y ) = {2 if (x − 1 . 2) 2 + (y − 1 . 0) 2 < 0 . 15 2 

˜ ρ else (23) 
and u = ˜ u , v = ̃  v , p = ˜ p on the domain [ −2 , 2] × [ −2 , 2] . We chose 
the domain such that we omit the singularity in the velocity at 
(x, y ) = (0 , 0) . In Fig. 4 results of numerical tests are illustrated. 
The second order standard and well-balanced methods are ap- 
plied on a polar grid with 32 × 256 cells and a Cartesian grid with 
128 × 128 cells. In the Cartesian grid we take out the center with 
r < 1 using Dirichlet boundary conditions. We also use Dirichlet 
boundary conditions at all outer boundaries. Since there is a dis- 
continuity in the initial setup we apply a minmod slope limiter to 
the linear reconstruction of the conserved variables in the stan- 
dard method or the deviations in conserved variables in the well- 
balanced method. The density at time t = 2 . 5 for each simulation 
is shown in Fig. 4 together with the exact solution. Since this is 
an purely advective problem and there is no radial component to 
the velocity, the quantity ∥ (ρ − 1) r∥ 1 , which describes the average 
distance of the density perturbation to the center, is conserved for 
all time in the exact solution. For our simulations we measure the 
quantity d = ∥ (ρ(t = 2 . 5) − 1) r∥ 1 / ∥ (ρ(t = 0) − 1) r∥ 1 as a measure 
of the quality of the numerical solutions. For the exact solution we 

have d = 1 for all time. The values of d are shown in the center of 
the plots in Fig. 4 . 

In the tests with the standard method we see discretization 
errors in the Keplerian disk solution Eq. (22) . This introduces ra- 
dial velocities, the advection of the spot of increased density has 
a component towards the center. In the tests using our well- 
balanced methods the result is free of discretization errors in the 
Keplerian disk solution Eq. (22) . The advection is more accurate, 
the only errors are diffusion errors. The polar grid is more suit- 
able for this test problem, since it is adapted to the radial geome- 
try. The test using our well-balanced method on the Cartesian grid 
is more diffusive than the one on the polar grid, yet we see that 
the well-balanced modification improves the result significantly on 
both grids. 
7.11. Stationary MHD vortex - long time 

We consider the following exact solution of the homogeneous 
2-D ideal MHD equations: 

ˆ x = x − tu 0 , ˆ y = y − tv 0 , r 2 = ˆ x 2 + ̂  y 2 , 
u = u 0 − k p e 1 −r 2 

2 ˆ y , v = v 0 + k p e 1 −r 2 
2 ˆ x , ρ = 1 , 

B x = −m p e 1 −r 2 
2 ˆ y , B y =m p e 1 −r 2 

2 ˆ x , p =1 + ( m 2 p 
2 (1 −r 2 ) − k 2 p 

2 
)

e 1 −r 2 . 
(24) 

This setup describes a stationary vortex which is advected through 
the domain with the velocity (u 0 , v 0 ) . The domain is [ −5 , 5] ×
[ −5 , 5] . One vortex turnover-time is t turnover = 2 π√ 

e k p ≈ 3 . 81 
k p . In a first 

test we set m p = k p = 0 . 1 , u 0 = v 0 = 0 and run the test up to t = 
100 t turnover on a 32 × 32 grid. We use the well-balanced method 
and the target solution equals the initial data. The numerical er- 
ror at final time compared to the initial setup is exactly zero in all 
conservative variables. 
7.12. Stationary MHD vortex - numerical target solution 

In this test we present a simple application in which the result 
of a high-resolution simulation is used as target solution for low- 
resolution simulations. For this purpose, we once more use the sta- 
tionary MHD vortex test case described in Section 7.11 . The param- 
eters are k p = m p = 0 . 1 and u 0 = v 0 = 0 . 1 , the final time is t final = 
5 . First, we compute a target solution using our third order non- 
well-balanced method with 128 × 128 grid cells with parabolic ex- 
trapolation boundary conditions. Every time-step is stored. The dis- 
crete target solution is made available for low resolution simula- 
tions by mapping the data at each time step to the coarse grid 
with 
˜ Q i j (t n ) = 1 

˜ V i j 
∑ 

ˆ x kl ∈ ̃ "i j ˆ V kl ̂  Q n kl , (25) 
where all quantities with ˜ · correspond to the coarse grid and all 
quantities with ˆ · correspond to the fine grid. The values of ˜ Q i j at 
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Fig. 4. Mass advection on a Keplerian disk using second order standard (left column) and well-balanced (center column) methods on a Cartesian 128 × 128 grid (top row) 
and a polar 32 × 256 grid (bottom row). The setup is given in Section 7.10 . Results can be compared to the exact solutions shown in the right column. The meaning of d is 
described in the text. The domain shown in each panel is [ −2 , 2] 2 . The x -coordinate increases to the right, the y -coordinate increases to the top. 

Fig. 5. Pressure of the moving stationary MHD vortex as described in Section 7.12 at the final time. The target solution for the well-balanced method is the numerical solution 
computed with the standard method on a 128 × 128 cells grid (upper left panel). In the upper panels the standard method is used, in the lower panels the well-balanced 
method is used. Different columns correspond to different resolutions. 
intermediate times are obtained via a third order accurate interpo- 
lation in time. 

The value of the target solution at all quadrature points re- 
quired in the scheme are evaluated using a third order accurate 
interpolation on the cell-centered point values ˜ q rec (x i j ) that have 
been computed using a third order accurate conservative recon- 
struction on the cell-averages ˜ Q i j . 

The resulting pressure for well-balanced and standard methods 
on different Cartesian meshes is shown in Fig. 5 . All methods use 
CWENO3 reconstruction and parabolic extrapolation boundary con- 
ditions. On the 128 × 128 grid the solutions for the well-balanced 
and non-well-balanced method are exactly the same, since the 
solution from the standard method is used as target solution in 
the well-balanced method. For smaller resolutions the standard 
method is too diffusive to resolve the vortex. The quality of the 
results obtained with the well-balanced method is the same for all 
resolutions, since all of them use the same 128 × 128 simulation as 
target solution. 
8. Computational cost of the modification 

Well-balanced methods are constructed to improve the accu- 
racy with which solutions of balance laws are approximated. In the 
previous section we have shown that usage of our well-balanced 

modification can improve the accuracy of a simulation significantly. 
On the other hand, an increase of computational effort can coun- 
tervail the gain in accuracy, if it is too high. In this section we 
will compare the computation times of simulations using our well- 
balanced modification to simulations using the corresponding stan- 
dard method and show that the increase in CPU time is moderate. 
8.1. The procedure 

To compare the methods, we will run tests with different se- 
tups and grid resolutions using a standard method and the corre- 
sponding well-balanced method. We use the simple python code 
described in Section 7 on a single CPU. Each test is repeated 20 
times and the wall clock times are measured. We compute the av- 
erage wall-clock time and standard deviations of the single runs 
for every test. The ratio of average wall clock time for the well- 
balanced compared to the standard method is visualized depend- 
ing on the grid resolution. 

Note that we use final times that are significantly smaller than 
the final times used in the corresponding tests above. The reason 
for this is that after some time the solutions obtain with and with- 
out well-balancing differ. This results in different sizes for the time 
steps which significantly influences the wall-clock time necessary 
to reach the final time. Since we aim to compare the efficiency 
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Fig. 6. Ratio of the average wall-clock times for the well-balanced and the standard method. Values and errors are determined as described in Section 8.1 with N cells. Left : 
One-dimensional test case with static target solution from Section 7.4 Center : Two-dimensional test case with stationary target solution from Section 7.10 on a polar grid 
with N × 8 N cells. Right : Two-dimensional test case with time-dependent target solution from Section 7.9 on a Cartesian grid with N 2 cells. 
of the methods without taking the quality of the solution into ac- 
count, we use reduced final times. 
8.2. The tests 

To compare the runtimes we use test setups described in 
Section 7 using exactly the same methods. In a first test, we use 
the perturbed one-dimensional isothermal solution described in 
Section 7.4 with a final time t = 0 . 02 . The first, second, third, and 
seventh order 1-D methods are applied. The ratio of wall clock 
times for the tests with and without the well-balanced modifica- 
tion can be seen in the left panel of Fig. 6 . The target solution ˜ q 
used in the well-balanced modification is constant in time in this 
test case. It is hence computed once and stored in an array. From 
the figure we see that we can expect an increase in CPU time of 
about 20% for the first and second order accurate methods. The dif- 
ference in runtime reduces significantly for methods with higher 
order of accuracy. For the seventh order methods the increase in 
wall-clock time is only about 5% . 

As a second test setup we choose the Keplerian disk from 
Section 7.10 . We evolve it to time t = 0 . 01 with a first and second 
order method on a polar grid. As in the previous test, the target 
solution is time-independent and thus only computed once. The 
wall-clock time ratios are visualized in the central panel of Fig. 6 . 
We observe an increase in CPU time of less than 20% when using 
the first order well-balanced method and less than 10% when using 
the second order well-balanced method. 

To also test the increase of CPU time consumption for a simula- 
tion in which the target solution is time dependent, we use the Eu- 
ler wave in a gravitational field with perturbation from Section 7.9 . 
We evolve the solution up to the final time t = 0 . 01 with each 
method. In this test, the target solution is computed from a func- 
tion every time it is used (which happens in every intermediate 
step). The result of these tests can be seen in the right panel of 
Fig. 6 . We see an increase in CPU time of less than 30% if the well- 
balanced method is used. Note that, again, the wall-clock time ra- 
tio is smaller for methods with higher order accuracy. For the third 
order well-balanced method we only observe an increase of about 
15% in wall-clock time. 
9. Summary and conclusions 

We introduced a new general framework for the construction of 
well-balanced finite volume methods for hyperbolic balance laws. 
A standard finite volume method is modified such that it evolves 
the deviation from a target solution instead of the actual solution. 
This makes the scheme exact on the target solution. The finite vol- 
ume method can include any consistent reconstruction, numerical 
flux function, interface quadrature, source term discretization, and 
ODE solver for time discretization. Thus, it can be arbitrarily high 
order accurate and the method can be defined on any computa- 
tional grid geometry. One can view our method as a high order 

extension of [39] and [23] to all known solutions of all hyperbolic 
balance laws. 

In numerical tests with Euler and MHD equations on different 
grids we could verify that the method can successfully be applied 
to exactly maintain static and stationary solutions or even follow 
time-dependent solutions. For that, the solution has to be known 
either analytically or in the form of discrete data. The latter case 
is especially interesting for complex applications like stellar astro- 
physics, where static states of the Euler equations with gravity can 
be obtained numerically but only in few cases analytically. Also, for 
the case of differentially rotating stars, i.e. stars that are in a ro- 
tating stationary state with an angular velocity depending on the 
distance to the axis of rotation, our method can be applied for 
well-balancing since it can include non-zero velocities in station- 
ary states. High order accuracy has been confirmed in numerical 
experiments. Also, in a series of numerical tests we have shown 
that the increase in computational time is moderate. 

The proposed well-balanced method can be easily implemented 
in existing finite volume codes with minimal effort. However, there 
are applications in which the well-balanced solution is not known 
beforehand and the current method cannot be applied. In that 
case, another well-balanced methods existing in the literature for 
the balance law under consideration has to be applied, in case such 
a scheme exists. In all other cases, in which the well-balanced so- 
lution is known, our simple framework can be applied to obtain 
the well-balanced property. 
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Appendix A. Details of the applied finite volume schemes 

We use structured grids in all the numerical tests and hence in 
the description of the details, we restrict ourselves to structured 
grids. Some parts of the scheme, such as the reconstruction meth- 
ods, are applied to Q in the standard method but to $Q in the 
well-balanced method. We will denote the states with U ; depend- 
ing on the method we have U = Q or U = $Q . Analogously, we will 
use u to denote q or $q . 
A1. Curvilinear coordinates 

We define a 2-D curvilinear coordinate system. The coordinates 
in physical space are x = (x, y ) , the coordinates in computational 
space are ξ = (ξ , η) . The (i, j) th cell is denoted "i, j in the physi- 
cal space and by ˆ "i, j in the computational space. We can rewrite 
Eq. (12) in the computational coordinates as 
J∂ t q + ∂ ξ ˆ f + ∂ η ˆ g = Js , (A.1) 
where 
J : = det ( ∂x 

∂ξ
∂x 
∂η

∂y 
∂ξ

∂y 
∂η

)
, ˆ f := J (∂ξ

∂x f + ∂ξ
∂y g ), 

ˆ g : = J (∂η
∂x f + ∂η

∂y g ). (A.2) 
To solve Eq. (12) on the curvilinear physical grid, we can now solve 
Eq. (A.1) on a Cartesian grid. We construct the grid from the nodes 
and approximate the derivatives of the coordinate transformation 
using central differences on the nodal coordinates. This implemen- 
tation of curvilinear grids restricts the scheme to second order ac- 
curacy. We can achieve higher order accuracy only on Cartesian 
grids. More details on the finite volume method on a curvilinear 
mesh can be found in [39] . 

Polar grid : The polar grid can be defined by the function 
x ( ξ) := (ξ sin (η) 

ξ cos (η) 
)

(A.3) 
for ξ > 0 , η ∈ [ 0 , 2 π ) . Note, that this functions can not be inverted 
at ξ = 0 , i.e. x = 0 . Hence, the origin in physical coordinates has to 
be omitted, when this grid is used. 
A2. Source term discretization 

In some tests we use a gravity source term for Euler equations. 
The source term component in the momentum equation has to be 
approximated to sufficiently high order. 

Second order source term discretization : For the first and second 
order method, we use the second order accurate source term dis- 
cretization 
− 1 

$x 
∫ 
"i ρ(x ) g(x ) dx ≈ −ρ̄( "i ) g(x i ) (A.4) 

in the one-dimensional case and 
− 1 

| "i j | 
∫ 
"i j ρ(x ) g (x ) dx ≈ −ρ̄

(
"i j )g (x i j ) (A.5) 

in the two-dimensional case in the momentum equation. The cell- 
averaged density is denoted ρ̄ and the gravitational acceleration 
g = ∇φ is given exactly at the cell-center. 

Third and seventh order source term discretization in 1-D : For the 
one-dimensional methods with CWENO reconstruction we define 
S ρu 

i := − 1 
| "i | 

∫ 
"i ρrec (x ) g int (x ) dx, 

where ρrec is the density polynomial obtained from the CWENO 
reconstruction and g int is the gravitational acceleration interpolated 

from the cell centered values to third or seventh order respectively. 
Since the integrand is a polynomial, the integral can be computed 
exactly. 

Third order source term discretization in 2-D : Similar to the 1-D 
case we define the cell-averaged momentum source terms 
S ρu 

i j := − 1 
| "i j | 

∫ 
"i j ρrec (x ) g int 

x (x ) dx and 
S ρv 

i j := − 1 
| "i j | 

∫ 
"i j ρrec (x ) g int 

y (x ) dx 
where ρrec is obtained from the two-dimensional CWENO3 re- 
construction and g int = (g int 

x , g int 
y )

is the parabola that satisfies 
g int (x i j ) = g i j , g int (x i ±1 , j±1 ) = g i ±1 , j±1 , and g int (x i ±1 , j∓1 ) = g i ±1 , j∓1 
for the cell-centered point values in coordinate direction and ap- 
proximates the diagonal values g i +1 , j+1 , g i −1 , j+1 , g i +1 , j−1 , and 
g i −1 , j−1 in the least square sense. 
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