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Abstract

The numerical solution of kinetic partial differential equations (PDEs) usually exhibits
high computational costs and memory requirements. This problem can be overcome when
using numerical reduction techniques such as dynamical low-rank approximation (DLRA).
Its main idea consists in representing and evolving the solution to a given equation on a
low-rank manifold, thereby splitting up the solution of one high-dimensional problem into
lower-dimensional subproblems. Efficient fully discrete DLRA schemes must be carefully
constructed in order to account for the underlying structure of the problem and to ensure
numerical stability.

The first part of this thesis is devoted to the derivation of stable fully discrete DLRA
schemes for different linear PDEs. For the thermal radiative transfer equations (RTEs)
with Su-Olson closure, a provably energy stable and mass conservative DLRA algorithm is
proposed. For its construction an implicit coupling of particle density and internal energy
as well as a rank-adaptive augmented low-rank integrator and a suitable conservative
truncation strategy are used. In certain settings, a multiplicative splitting of the kinetic
distribution function is advantageous for the construction of an efficient DLRA scheme.
We first reconsider the thermal RTEs with Su-Olson closure with a multiplicative splitting
of the distribution function, giving rise to additional complexities in the proof of energy
stability and mass conservation for the DLRA scheme. In a second step, the gained
insights are transferred to the linear Boltzmann-Bhatnagar-Gross-Krook (BGK) equation.
Being different in structure, a distinct notion of numerical stability is required and new
ideas for basis augmentations and an appropriate truncation strategy are introduced into
the mathematically rigorous proof of stability. Various numerical experiments confirm the
efficiency and the accuracy of the proposed DLRA schemes and validate the theoretical
results.

In the second part of this thesis, the method of DLRA is applied to parameter iden-
tification inverse problems. For the reconstruction of the scattering coefficient in the
RTE, a PDE constrained optimization problem together with a gradient-based iterative
update scheme is formulated. The optimization procedure requires the solution of the
forward and the adjoint kinetic equations in each step of the algorithm, rendering numer-
ical computations especially in higher dimensions extremely expensive. For the reduction
of computational demands a DLRA approach is applied to the fully discrete forward and
adjoint equations. Its efficiency is further enhanced by using an adaptive choice of the
optimization step size and of the DLRA truncation tolerance. Numerical test examples
underline the applicability of DLRA to inverse problems and confirm the efficiency of the
proposed method.







Zusammenfassung

Die numerische Losung kinetischer partieller Differentialgleichungen (PDEs) erfordert in
der Regel umfangreichen Rechenaufwand und hohen Speicherbedarf. Eine Methode, die
zur Verringerung des numerischen Aufwandes eingesetzt werden kann, ist das Konzept
der dynamischen Niedrigrang-Approximation (DLRA). Dessen Hauptidee besteht darin,
die Losung einer gegebenen Gleichung auf eine Niedrigrang-Mannigfaltigkeit zu pro-
jizieren und dort in der Zeit weiterzuentwickeln. Dadurch reduziert sich die Losung eines
hochdimensionalen Problems auf mehrere niedrigdimensionale Teilprobleme. Effiziente,
vollstdndig diskretisierte DLRA Verfahren miissen jedoch sehr sorgfiltig konstruiert wer-
den, damit die zugrundeliegende Struktur des Problems berticksichtigt und numerische
Stabilitat garantiert werden kann.

Der erste Teil dieser Dissertation beschéftigt sich mit der Herleitung stabiler, vollstandig
diskretisierter DLRA Verfahren fiir verschiedene lineare PDEs. Zunéchst wird ein nach-
weislich energiestabiler and massenerhaltender DLRA Algorithmus fiir die thermischen
Strahlungstransportgleichungen (RTEs) mit Su-Olson-Abschluss konstruiert. Hierfiir sind
eine implizite Kopplung von Teilchendichte und innerer Energie sowie ein Rang-adaptiver
erweiterter Niedrigrang-Integrator und eine geeignete massenerhaltende Strategie zum
Abschneiden der Losung auf einen bestimmten Rang unerlasslich. Unter gewissen Voraus-
setzungen kann auch ein multiplikatives Aufspalten der kinetischen Verteilungsfunktion
von Vorteil sein, um ein effizientes DLRA Verfahren zu erhalten. Aus diesem Grund wer-
den die thermischen RTEs mit Su-Olson-Abschluss nochmals mit multiplikativer Struktur
der Verteilungsfunktion untersucht. Dies fithrt zu zusatzlichen Herausforderungen im Be-
weis der Energiestabilitdt und Massenerhaltung des DLRA Verfahrens. Mithilfe der aus
dieser Arbeit gewonnenen Einblicke wird darauthin die lineare Boltzmann-Bhatnagar-
Gross-Krook (BGK)-Gleichung betrachtet. Fiir diese werden aufgrund ihrer Struktur ein
anderer Stabilitdtsbegriff und neue Ideen zum Beweis der numerischen Stabilitat benotigt.
Die Effizienz und Genauigkeit der hergeleiteten DLRA Verfahren sowie die Ergebnisse
aus den theoretischen Betrachtungen werden in zahlreichen numerischen Testbeispielen
bestétigt.

Im zweiten Teil dieser Dissertation wird die DLRA Methode auf inverse Probleme zur
Identifizierung von Modellparametern angewendet. Hierfiir betrachten wir das Problem
der Rekonstruktion des Streuungskoeffizienten in der RTE, welches als restringiertes Op-
timierungsproblem formuliert wird und mit einem Gradienten-basierten iterativen Ver-
fahren gelost werden soll. Jeder Schritt des Verfahrens benotigt sowohl die Losung der
Vorwértsgleichungen als auch der adjungierten Gleichungen. Dies fiihrt vor allem in
hoheren Dimensionen zu erheblichem numerischem Aufwand. Um diesen zu reduzieren,
wird ein DLRA Ansatz auf die vollstandig diskretisierten Vorwérts-Gleichungen und ad-
jungierten Gleichungen angewendet. Dessen Effizienz wird durch eine adaptive Wahl der
Optimierungsschrittweite und der Toleranz zum Abschneiden der DLRA Lésung auf einen
gewissen Rang noch einmal gesteigert. Numerische Testbeispiele bestétigen die Anwend-
barkeit von DLRA Methoden auf inverse Probleme und die Effizienz des betrachteten
Verfahrens.
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Introduction

Many natural phenomena can be mathematically modeled by partial differential equa-
tions (PDEs). Classic examples are for instance bacterial movements [KKS70], medical
treatments such as radiation therapy [HMAS&1], radiation transport [Cha60], astrophys-
ical phenomena [Alf42], heat transfer [CN47], wave equations [d’A47] or gas dynamics
[Bol72]. The description of the underlying problem can hereby be given at different
physical scales [Gra49, Deg04, Son19]. The most detailed microscopic description traces
each particle of the considered medium individually, usually leading to a huge system of
equations which is expensive to solve. The mesoscopic or kinetic description makes use
of a distribution function that is based on the statistical repartition of the particles in
phase space and can be considered as a probability density. The macroscopic regime con-
tains less details. It depends only on macroscopic measurable quantities such as density,
mean velocity, temperature, pressure, energy etc. This thesis focuses on the intermediate
perspective, the class of kinetic equations.

Numerical solution of kinetic equations. For many systems described by kinetic PDEs,
the computation of an analytical solution, if existing, is highly involved. In such cases,
numerical approximations come into play, requiring a discretization of the system in
the time variable t € Rar, the space variable x € Qx C R%  and the velocity variable
v € Qy C R%. Depending on the number of space dimensions d, and d,,, respectively,
and the general complexity of the problem, the numerical solution of a kinetic equation
can be computationally expensive. To speed up simulations and save computational
effort and memory requirements, model reduction techniques such as dynamical low-rank
approzimation (DLRA) [KLO7] can be used.

Basic principles of DLRA. For the application of the DLRA method to a kinetic equa-
tion, the distribution function f is approximated by a low-rank representation of the
form

ft,x,v)~ Z X (t,x)Si5 (1) V (t,v), (1.1)

ij=1
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where {X; : i =1,...,7} denotes the set of orthonormal basis functions in space and {V} :
j =1,..,r} the set of orthonormal basis functions in velocity. The matrix S = (S;;) €
R"™" is called the coefficient or coupling matriz and r the rank of the approximation.
This splitting approach can be understood as a continuous analogue to the singular value
decomposition (SVD) of a matrix. However, the matrix S is not required to be diagonal.
The main idea of DLRA is to project the solution to a manifold of low-rank functions
of the form (1.1) and to constrain the solution dynamics there. Special time integrators
that are able to update the low-rank factors while not suffering from the curvature of
the low-rank manifold exist [LO14, CL22, CKL22, CKIL24]. This approach reduces the
solution of a high-dimensional problem to solving lower-dimensional subproblems.

Research contributions. The construction of fully discretized numerical schemes for
solving kinetic PDEs is challenging and requires careful consideration. Among the essen-
tial properties of a numerical scheme is its stability, meaning that approximation errors
do not increase unrestrictedly over time so that a reasonable solution of the underlying
physical problem is ensured. In this thesis, the concept of energy stability is used. This
approach gives bounds to the energy of a system, hereby making the numerical behavior
of a scheme predictable. Another difficulty arising from the application of reduction tech-
niques is the preservation of physical properties inherent in the underlying equations such
as for instance conservation laws. If physical conservation properties cannot be guaran-
teed, the reconstruction of the solution provided by the scheme may be inconsistent with
the governing physical principles and, consequently, be considerably less applicable to
realistic settings. In the first part of this thesis, we present DLRA schemes that explicitly
accomplish numerical stability and conservation properties.

The first research contribution presented in this thesis, which is published in [BEKK24a],
concerns the thermal radiative transfer equations (RTFEs). These equations form a system
of two coupled PDEs that models radiation particles moving through and interacting with
a background material. The Su-Olson closure is applied to obtain a linearized internal
energy model, called the Su-Olson problem. We derive an energy stable DLRA scheme
for the Su-Olson problem and provide a mathematically rigorous proof of energy stabil-
ity under a certain hyperbolic Courant-Friedrichs-Lewy (CFL) condition. The conducted
analysis allows for an optimal choice of the time step size, enhancing the computational
performance of the algorithm. For the derivation of the DLRA scheme the basis augmen-
tation step proposed by the rank-adaptive augmented basis update & Galerkin (BUG)
integrator [CKL22] is implemented and adjusted in a way that together with a conser-
vative truncation strategy as described in [EOS23] mass conservation can be ensured.
Numerical experiments confirm the derived theoretical results.

It has been shown, for instance in [EHY21] for the non-linear isothermal Boltzmann-
Bhatnagar-Gross-Krook (BGK) equation, that for the construction of efficient DLRA
schemes a multiplicative splitting of the distribution function can offer advantages in
reducing the computational effort. To investigate these schemes from an analytical per-
spective, we reconsider the Su-Olson problem together with a multiplicative splitting of
the distribution function. The multiplicative structure poses additional challenges for the




construction of an energy stable DLRA scheme for the Su-Olson problem. For instance,
careful consideration must be given to the discretization of the spatial derivatives and
additional basis augmentations are required to ensure the exactness of the projection op-
erators in the mathematically rigorous proof of energy stability. Mass conservation can
be guaranteed similarly to the Su-Olson problem without multiplicative splitting when
using a suitable low-rank integrator and a conservative truncation strategy. Numerical
test examples confirm the properties of the derived DLRA scheme. The corresponding
results can be found in [BEKK25b].

To extend the gained insights to more complicated problems such as the non-linear
isothermal Boltzmann-BGK equation considered in [EHY21], further investigations on
the multiplicative structure of the distribution function are conducted. In [BEKK24b], a
multiplicative DLRA scheme for the linear isothermal Boltzmann-BGK equation is pro-
posed. Within an appropriate stability framework, we perform a mathematically rigorous
stability analysis and derive a concrete hyperbolic CFL condition. To ensure the ana-
lytical correctness, additional basis augmentations in the rank-adaptive augmented BUG
integrator as well as a specifically designed truncation strategy are required. Various nu-
merical experiments underline the theoretical results and the efficiency of the proposed
DLRA scheme.

Computational advantages of the DLRA method can be especially observed in higher-
dimensional settings. A classic problem requiring the solution of a considerable number
of potentially high-dimensional kinetic equations, is the parameter identification in inverse
problems. The second part of this thesis is devoted to the application of DLRA for the
reconstruction of searched-for parameters in inverse problems. Following the presentation
in [BEKK25a], we consider the RTE with a spatially dependent scattering coefficient. For
its reconstruction, a PDE constrained optimization procedure with gradient-based update
formula is applied, requiring the solution of the forward as well as of the adjoint equations
in each step of the iterative scheme. For the numerical reconstruction, we propose a DLRA
solver for the forward and the adjoint equations. An adaptive choice of the step size in
the gradient-based iterative scheme and of the DLRA rank truncation tolerance lead to
further improvements in efficiency. Numerical test examples show promising results for
the combination of DLRA methods and parameter identification inverse problems.
Altogether, this thesis covers two main topics to which it contributes new results:

(i) Stability analysis (and conservation properties) for (multiplicative) DLRA schemes.

(ii) Application of DLRA to parameter identification inverse problems.

Structure of the thesis. After the introduction in Chapter 1, we review some funda-
mentals on kinetic theory in Chapter 2. These include a detailed overview of established
possibilities for describing processes on different physical scales with a focus on the kinetic
perspective as well as the important Boltzmann and simplified Boltzmann-BGK equation.
Chapter 3 provides an introduction to the topic of numerical discretization in the space,
time and velocity variable and recalls important concepts for numerical stability. Chapter
4 is devoted to the method of DLRA, which is at the center of this thesis. It formalizes
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the basic idea of DLRA, explains different exact and robust time integrators and reviews
results concerning stability and conservation properties of DLRA schemes. Part I of this
thesis provides rigorous stability results for DLRA schemes applied to different problems.
In Chapter 5 an energy stable and mass conservative DLRA scheme for the Su-Olson
problem is proposed. Chapter 6 reconsiders the Su-Olson problem with a multiplicative
splitting of the distribution function, posing further challenges in the construction of an
appropriate energy stable and mass conservative DLRA scheme. Chapter 7 is devoted to
the derivation of a provably stable DLRA scheme for the linear Boltzmann-BGK equa-
tion. Part II concerns the application of the DLRA method to inverse problems. Chapter
8 provides basic information for the numerical solution of parameter identification inverse
problems, including their definition, the formulation of a corresponding optimization prob-
lem and techniques for its efficient solution. In Chapter 9 the application of an adaptive
DLRA solver for the reconstruction of the scattering coefficient in the RTE is presented.
Chapter 10 draws a short conclusion and provides an outlook for future research.




Fundamentals on kinetic theory

When modeling natural phenomena by PDEs, different physical scales containing more
or less details may be considered. In Section 2.1 we provide a short overview of common
approaches. Section 2.2 focuses on the kinetic description and provides basic principles,
including a formal definition of the distribution function and the general form of a kinetic
equation. Section 2.3 is devoted to the Boltzmann equation, which is a crucial equation
in kinetic theory that continues to be actively studied [UA82, Per90, BGL0O0O, FHJ12].
Section 2.4 introduces a simplification of the Boltzmann collision operator, namely the
BGK collision operator. The following sections rely mainly on introductory work on
kinetic theory and on the Boltzmann equation, in particular [Cer88, CIP94, CC90, Gra49,
DP14].

2.1 PDE models in different physical regimes

Depending on the level of accuracy required in describing physical processes, different
models are available. Since the models are intended to represent real-world applications,
we use three-dimensional (3D) Cartesian coordinates, i.e. we consider x € 5 C R? and
v e, CR3.

Microscopic description. In the microscopic regime each particle of the corresponding
medium is considered individually. The fundamental principles of particle dynamics in
classical mechanics can be derived from Newton’s laws of motion given in [New87]. Let
x; for = 1,..., N be the position of the i-th particle of a medium consisting of N such
particles and v; its velocity. The time evolution of this particle is determined by Newton’s
equations

Xz(t) =V; and mlvz(t) = Fz (Xl, ceey XN) y (21)




2. Fundamentals on kinetic theory

where m; denotes the particle mass and F; the force acting on the i-th particle. In general,
the force term F; includes both the force that is exerted on the i-th particle by other
particles as well as external forces, such as gravity. Determining the time evolution of an
N-particle system using equations (2.1) requires the solution of 6N differential equations.
For a huge number of particles N (as for instance a number of O (10%*) particles such as
described by the Avogadro constant to be contained in one mole of a gas) this approach
is usually infeasible.

Kinetic description. A less detailed description is given in the mesoscopic or kinetic
regime. The idea of using a particle density distribution function instead of tracing each
single particle of a rarefied monatomic gas goes back to Boltzmann. He presented the
famous Boltzmann equation in [Bol72]. More information on the Boltzmann equation and
on the basic assumptions for its derivation from the microscopic description can be found
in Section 2.3. His work was inspired by previous considerations made by Maxwell [Max67]
who gave a heuristic derivation of the particle density distribution function for a gas in
thermodynamic equilibrium, the so-called Mazwell-Boltzmann or Mazwellian distribution.
Important historical contributions for the solution of the Boltzmann equation were also
made by Hilbert [Hil12], Chapman [Chal6] and Enskog [Ens17]. The idea of using a
distribution function spread from the field of rarefied gas dynamics to other areas of
research such as radiative transfer, neutron transport or quantum effects in gases [CC90].

Macroscopic description. Under certain limiting assumptions (see for instance [BGLI1,
Deg04, EP04]), it is possible to derive macroscopic or fluid equations from the kinetic
regime. Historically, those equations go further back than kinetic ones as they only rely on
observable macroscopic quantities such as density, mean velocity, temperature, pressure,
energy etc., which are measurable quantities in experiments. Important macroscopic
systems of PDEs are for instance the Euler equations [Eul57] and their more general
extension to the Navier-Stokes equations, which include effects of viscosity [Nav22, Nav27,
Sto45]. The Euler equations constitute a system of hyperbolic conservation laws, for which
we provide a general definition.

Definition 2.1 (Conservation law, [LeV92]). Let u(t,x) : Rf x R® — R™ denote an
m-~dimensional vector of conserved quantities. The differential form of a conservation law
is given by

Byu (£, %) + Vi - F (u (t, %)) = 0, (2.2)

where F = (]:1,]:2,]:3)T € R3™ denotes the flux vector containing the flux functions
Fi: R™ — R™ for i = 1,2,3. For m = 1, equation (2.2) is called a scalar conservation
law, for m > 2 a system of conservation laws.

Note that we do not specify the regularity of a solution to (2.2) here. For more information
on different solution concepts of conservation laws the reader is referred to literature such
as [EvalO, LeV02, Dafl6, Mar21]. Equation (2.2) can be rewritten in the quasi-linear
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form

3
Opu (t,x) + Y Adzu (t,x) =0,

=1

where A; := VuF; (u) € R™*™ denotes the flux Jacobian matrices. We focus on a special
class of equations, the hyperbolic equations.

Definition 2.2 (Hyperbolicity, [LeV92]). The conservation law (2.2) is called hyperbolic
if the matrix A := Z?:l a; A; with «; € R has only real eigenvalues A, ..., Ay, and is
diagonalizable, i.e. a full set of m linearly independent eigenvectors exists. If A has m
distinct eigenvalues, (2.2) is called strictly hyperbolic.

Using equation (2.2), the time evolution of the function u (¢, x) can be determined. Adding
information in the form of a suitable initial condition

u(0,x) = u’ (x) (2.3)

complements the solution. Equation (2.2) together with (2.3) is called a Cauchy or initial
value problem (IVP).

Choice of a suitable description. Figure 2.1 provides an overview of the descriptions
introduced for PDE models on different physical scales. This illustration is inspired by the
one given in [War22]. The decision on a model of appropriate accuracy can be challenging.
A helpful indicator can be the Knudsen number Kn of the particular system. The Knudsen
number Kn represents the ratio of the mean free path, i.e. the distance that a particle
travels on average until it collides with another one, and a characteristic length scale of
the corresponding system. In [Str05] a rough classification for an appropriate description
depending on the Knudsen number is provided. For our purpose, a microscopic description
is clearly infeasible as the considered systems consist of large numbers of particles. A
macroscopic description potentially loses too much information as it only accounts for
velocity-averaged quantities. For this reason, we focus on kinetic hyperbolic models in
this thesis.

Figure 2.1: Possibilities for the description of natural phenomena on differently detailed physical scales.
Left: Microscopic description: The trajectory of each single particle is considered individually. Middle:
Kinetic description: Statistical repartition of the particles using a distribution function f, which tends
to a Maxwellian distribution M in equilibrium. This illustration is described more precisely in Figure
2.2. Right: Macroscopic description: Only measurable quantities such as the density are available.




2. Fundamentals on kinetic theory

2.2 Basic principles for the kinetic description

When determining the time evolution of a system consisting of a large number of particles,
a statistical description based on a distribution function can be useful. The concept of
using distribution functions in kinetic theory arises from probability theory and we refer
to [Cer88] for further reading. We provide the following definition.

Definition 2.3 (Distribution function and phase space, [CC90, Pirl8]). An integrable
function f : Rg x R? x R® — RY, (t,x,v) — f(t,x,v) is called a distribution function if
and only if fdxdv is the probable number of particles which are situated in the volume
element (x,x + dx) and have velocities in (v,v 4+ dv) at time ¢. The set of all possible
physical states (x,v) of a particle at time ¢ is called the phase space.

Under the common assumption of a normalization to one, the distribution function
f (t,x,v) describes the probability of finding a particle at the position (x,v) in phase
space at time t. We use this concept to introduce the general form of a kinetic equation.

Definition 2.4 (General kinetic equation, [DP14]). Let f (t,x,v) be a distribution func-
tion. The general form of a kinetic equation is given by

of(t,x,v)+ v -Vxf(t,x,v)+

F (;;x) Vof (t,x,v) = Q[f] (t,x, V), (2.4)

where m denotes the particle mass, F the effects of external forces, and Q [f] the collision
operator describing the effects of internal forces due to particle interactions.

Note that in this thesis only problems without external forces, i.e. F = 0, are consid-
ered. Given the distribution function, important macroscopic quantities can be derived
by taking moments in the velocity variable v.

Definition 2.5 (Macroscopic quantities, [Pir18]). Let f (¢,x,Vv) be a distribution function
and the subsequent integrands be in L' (dv). Then the following macroscopic quantities
are defined.

(i) Let m denote the particle mass. The functions
n(t,x): R x R® — RY, (t,x) — f(t,x,v) dv and
R3

p(t,x) : R x R®* = R, (t,x) »m [ f(t,x,v)dv
R3

are called the number density and the mass density, respectively, and it holds
p (t,x) = mn (t,x).

(ii) We define the function

n(t,x)0(t,x) : Ry x R — R3, (t,x) — ft,x,v)vdv
R3

and, for n (t,x) > 0, call a (¢,x) the mean velocity.
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(iii) The function
E(t,x) : RI x R* = R{, (t,x)»—>7;l/ f(t,x,v)|v]? dv
R3

is called the energy density.

(iv) The energy density can be split into two parts, the kinetic energy FEyi, (t,x) =
sp(t,x)|u (t,x)|* and the internal energy

e(t,x) : Ry x R? — RT, (t,x) — E(t,x) — Fyin (t,%)

m

=2/Rsf(t,x,V) v - (t,x)? dv.

(v) Using the ideal gas law, for n (t,x) > 0, the temperature can be derived as

2e (t,x)
3n (t,x) ks

m — 2
= t —u(t d
3n<t,x)kB/Rsf<vx7V>’V u () dv,

T (t,x): R xR* = RS, (,%) —

where kg denotes the Boltzmann constant. The pressure is obtained as p (¢,x) =
n (t,x) kT (t,x).

Having F = 0 in (2.4), the collision operator Q [f] should, in general, be designed to
preserve the conservation properties of the physical system, i.e. it should satisfy

L, S X V)@ (v) dv =0, (2.5)

where ¢ (v) = 1,v, |v|? characterizes the conservation of mass, momentum and energy,
respectively. Under this assumption, integration of (2.4) against ¢ (v) with respect to v
yields the following system of local conservation laws

&g/ ft,x,v)p(v) dv—l—/ v Vxf (t,x,v)p(v) dv = 0. (2.6)
R3 R3
If it holds
8,5/ ft,x,v)p(v) dvdx =0, (2.7)
R3 JR3

the corresponding global conservation laws are fulfilled.

System (2.6) is not closed since the second term depends on higher order moments in v.
For the derivation of a closed set of equations, an additional assumption on the collision

operator involving the Maxwellian equilibrium distribution is made.
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Definition 2.6 (Maxwellian distribution, [CC90]). A distribution function of the form

n (t,x) v —i(t,x)
o _ _voul,x)p 2.
[f] (t,X,V) (ZWM)3/2 €Xp ( 2kBTT(t,X) ( 8)

is called Mazwellian distribution.

The Maxwellian distribution describes a system that is in thermodynamic equilibrium.
This relation shall be incorporated in the collision operator so that it fulfills

Q[f]=0 ifandonlyif f=M][f]. (2.9)

Both the Boltzmann collision operator Qp, [f] and the simplified BGK collision operator
Opck [f], which are introduced in the next sections, accomplish the two properties (2.5)
and (2.9). Note that from now on the particle mass m as well as the Boltzmann constant
kg are set to one.

2.3 Boltzmann equation

The Boltzmann equation may be considered the most important equation in kinetic the-
ory. It describes the time evolution of a perfect monatomic dilute gas. For its derivation
from the microscopic description a considerable number of assumptions are made. A well-
structured overview is provided in [Vil02]. First of all, only binary collisions of identical
gas particles are assumed, meaning that interactions involving more than two particles
are neglected. Second, the collisions are supposed to be purely local and instantaneous
in time, i.e. they happen at a given time ¢ and a given position x and have a very short
duration compared to the typical time scale of the system. Third, the collisions are as-
sumed to be elastic. This means that for two particles with velocities v/ and v, before the
collision and velocities v and v, after the collision the following corresponding relations
for the microscopic conservation of momentum and energy shall hold:

/ / .
V4V, =v+v, (conservation of momentum),

‘V/‘Q + ’V;‘Q = [v[* + v (conservation of energy).

Fourth, the collisions shall be reversible in time at a microscopic level. This assumption
implies that changing the velocities from (v’,v.) to (v,v,) is as probable as changing
the velocities from (v, v,) to (v/,v%). The fifth assumption is referred to as Boltzmann’s
molecular chaos assumption or Stosszahlansatz. It states that the velocities of the par-
ticles that are about to collide are statistically uncorrelated. Indeed, the velocities of
the particles that have just collided are statistically correlated. This asymmetry bridges
the gap between the time reversible microscopic and the time irreversible kinetic and
macroscopic description. We can now present the following formulation of the Boltzmann
equation.

10



2.3. Boltzmann equation

Definition 2.7 (Boltzmann equation, [Gol05, Cer88]). In terms of a distribution function
f, the Boltzmann equation reads

Of (t,x,v)+v-Vxf(t,x,v) = QOpa [f] (t,%x,V), (2.10)

with Opo [f] being the quadratic Boltzmann collision operator

Opol [f] (t,x,v) /]1@3/52 txv f(txv)—f(t,x,v)f(t,x,v*))

(v — vy, n) dpdvy,

where 1 € S? denotes an arbitrary unit vector contained in the 3D unit sphere S? and
B (v — vy,n) is called the collision kernel.

The exact form of the collision kernel B depends on the considered setting. Common
assumptions for the particle interactions are hard sphere collisions or interactions due to
a central force in a smooth potential. In both cases, the collision kernel can be explicitly
stated. More information on the choice of an appropriate collision kernel can be found
n [Vil02, Gol05, Cer88]. In this thesis, we follow [Gol05] and assume B to be locally
integrable on R3 x S2. In addition, we assume the distribution function f to be continuous
with compact support in the velocity variable. Then the Boltzmann collision operator
Opol [f] can be rewritten as

QBol [f] (t7 X, V) = ngl [f] (t’ X, V) - 91501 [f] (t7 X, V) )

where
Qb L1 (t, %, v) = / /5 [ (%, V') f(6,x,V)) B(v —v,n) dypdv, and
R3 2
Q]gol [f] (t,X,V) = /R3 52 f (t,X,V) f (t,X,V*) E(V - V*vn) dUdV*

are called the gain term and the loss term, respectively. The gain term accounts for
particles having velocities (v/, v.) that change their velocities to (v, v,) after the collision.
In this sense, particles with velocity v are gained in the volume element dv centered
around v. The loss term instead accounts for particles having velocities (v, v,) that
change their velocities to (v/,v/,) after the collision. In this sense, particles with velocity
v are lost in the volume element dv centered around v.

The Boltzmann collision operator fulfills important physical properties. For instance, it
guarantees the conservation of mass, momentum and energy.

Theorem 2.8 (Conservation properties for the Boltzmann equation, [Gol05]). Let f =
f(v)ecC, (]R3) and B € L} (]R3 X 82). Then, for i = 1,2,3, the Boltzmann collision

loc

11



2. Fundamentals on kinetic theory

operator Qpo [f] fulfills

/ Qpo[f] (t,x,v) dv =0 (conservation of mass),
R3

/ Qpolf] (t,x,v)v;dv =0 (conservation of momentum,),
R3
/ Qo [f] (t,x,v) |v]* dv =0 (conservation of energy).

R3

Proof. See for instance [Gol05, Cer88]. O

Remark 2.9. Note that the assumption f = f(v) € C; (R®) in Theorem 2.8 is quite
strong and can be weakened under additional assumptions [Gol05].

According to the second law of thermodynamics, the entropy of a thermodynamical system
is non-decreasing, explaining that such processes are irreversible in time. This behavior
is mirrored in Boltzmann’s H-theorem.

Theorem 2.10 (Boltzmann’s H-theorem, [Gol05]). Let f = f(v) € C (R?) be positive
and rapidly decaying at infinity and B € LlloC (]R3 X 82). Further, assume that there exists
m > 0 such that

/ B(v,n)dn+|Inf(v)|=0(v|™) as |v| = +oo.
82
Then the following inequality holds

/ QBOZ [f} (t) X, V) In f (t7 X, V) dv < 0,
R3

with equality if and only if f is a Maxwellian distribution.
Proof. See for instance [Gol05, Cer88]. O

The proof of Boltzmann’s H-theorem also reveals the special Maxwellian structure of the
equilibrium.

Corollary 2.11 (Structure of the equilibrium, [Gol05]). Let the assumptions of the pre-
vious theorem hold. Then the Boltzmann collision operator satisfies

Qpoilf] (t,x,v) =0 forall veR3 ifandonlyif f(t,x,v)=DMI[f](t,x,v).

2.4 Boltzmann-BGK equation

For practical implementations, the solution of the full Boltzmann equation (2.10) is, in
general, computationally expensive. Simplifications of the Boltzmann collision operator
that maintain its key properties while being numerically less demanding are sought. A

12
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v

Figure 2.2: Relaxation of the distribution function f towards the Maxwellian distribution M in the
space homogeneous case. The arrows depict the time derivatives of f with respect to the evolution
equation (2.11).

widely used collision model is the Bhatnagar-Gross-Krook (BGK) collision operator. It
was proposed by Bhatnagar, Gross and Krook [BGK54] and is sometimes referred to as
the Krook operator. We replace the Boltzmann collision operator Qpo [f] in (2.10) by the
BGK collision operator Qpgk [f] and obtain the Boltzmann-BGK equation.

Definition 2.12 (Boltzmann-BGK equation, [BGK54]). The Boltzmann-BGK equation
reads

Of (t,x,v)+v-Vxf(t,x,v) = OQpak [f] (t,%x,V), (2.11)
where the BGK collision operator is given by
9BcK [f] (tv X, V) =0 (tv X) (M [f] <t7Xa V) —f (t7 X, V)) ) (212)

and o = o (t,x) > 0 denotes a prescribed collision frequency.

The Boltzmann-BGK equation (2.11) describes the relaxation of the distribution function
f towards the corresponding Maxwellian distribution M when the system is close to
thermodynamic equilibrium. For this reason, the BGK collision operator (2.12) is also
called a relaxation operator. Figure 2.2 illustrates this behavior. The BGK collision
operator (2.12) maintains important properties of the full Boltzmann collision operator.

Theorem 2.13 (Properties of the BGK collision operator, [Pirl8]). Let f = f(v) €
C (]R3) be positive and rapidly decaying at infinity. Then the BGK collision operator
Qpck |f] has the same main properties as the Boltzmann collision operator Qpylf],
namely the conservation of mass, momentum and enerqy, the H-theorem, and the struc-
ture of the equilibrium.

Proof. See for instance [Pirl8, Str05]. O

The existence and uniqueness of solutions to the Boltzmann-BGK equation (2.11) has
been proven in [Per89, PP93]. The Boltzmann-BGK equation is a simplified model of the
Boltzmann equation that is widely used in research in its original as well as in modified
forms, allowing, for example, for the reproduction of a correct Prandtl number [Hol66,
ATPPO0] or for velocity-dependent collision frequencies [Str97, HHK ' 21].
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Discretization and numerical stability

In order to obtain a numerical solution of PDESs, their continuous formulation must first be
transformed into a fully discretized representation. For deriving the theoretical concepts
of discretization and numerical stability, we follow the explanations given in [LeV92] and
restrict our considerations to one-dimensional (1D) linear advection equations of the form

Owu (t, z) + adyu (t,z) =0, (3.1)

where u (t,x) : [0,T] x Q; — R is assumed to be sufficiently regular and a € R denotes
a constant value. Combined with an appropriate initial condition u (0,z) = u° (), the
solution of (3.1) admits the explicit form u (¢, z) = u® (z — at). Consequently, the solution
u (t,x) at any fixed point (¢, ) solely depends on the initial condition evaluated at x — at
and is constant along each characteristic curve described by z° = 2 — at. The set

D (t,z) = {x — at} (3.2)

is called the true domain of dependence of the PDE. In Figure 3.1 the characteristic curves
as well as the solution to the linear advection equation (3.1) are sketched for a > 0.

Section 3.1 presents techniques for the spatial and temporal discretization commonly
used for problems of the form (3.1). Section 3.2 is devoted to stability considerations.
Section 3.3 relates kinetic equations to the previously discussed methods by introducing an
appropriate discretization in the velocity variable. A selection of introductory literature
used for Sections 3.1 and 3.2 can be found in [Tho95, LeV92, LeV07, Str04, RM67].

J; u (t, )
S
L u® (x)

Figure 3.1: lllustration of the initial condition u° (x), the solution to the linear advection equation
u (t,z) and the characteristic curves depicted by arrows for a > 0.
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3. Discretization and numerical stability

3.1 Discretization in space and time

The linear advection equation (3.1) depends continuously on space and time. For the
derivation of a numerical scheme, a discretization in both the spatial variable z and the
temporal variable ¢ must be performed. We begin with a discretization in the spatial
variable in Section 3.1.1, leading to a semi-discrete representation, before the system is
rendered fully discrete through a temporal discretization presented in Section 3.1.2.

3.1.1 Spatial discretization

Regarding the discretization of the spatial domain €2, , we construct a uniform spatial grid
consisting of a finite number of grid cells NV, € N. The grid points xg, z1, ..., xn, € (), are
assumed to be uniformly distributed with equidistant spacing Az = Niz An approximate
solution u (t) € R to (3.1) on the spatial grid is obtained by evaluating u (t,x) at the
end point of each grid cell, i.e. by computing

uj (1) = u(t,xj) for j=1,...,N,.

The linear advection equation (3.1) involves spatial derivatives. Different approaches for
their numerical approximation are available. In this thesis, we focus on centered finite
difference (FD) schemes.

Numerical differentiation. For the derivation of a centered FD scheme for equation (3.1)
we consider the following Taylor expansions of its continuous solution:

w(t,z + Az) = u(t,z) + Awdyu (t, ) + (A)’, u(t,z) + 0 ((Az)?) (3.3)
) - ) X ) 2 xxr ) M .

2
u(t,z — Az) = u(t,z) — Azdyu (t, x) + (A;")amu (t,2) — O ((Ax)). (3.4)

Subtracting equation (3.4) from equation (3.3) allows for the formulation

Ot (1 ) = u(t,l‘—l—Al’;;;(t,:ﬂ—Al‘) +O((A:U)2).

This approach is used for the approximation of first-order derivatives as

deu(t)|,_, ~ Uj+1 (t)zgjj—l (t) (3.5)

At the grid points zy, and zp, formula (3.5) involves the evaluation of un,; (f) and
ug (t), respectively. Periodic boundary conditions can be introduced, determining

uo (t) :== un, (t) and un,+1 (t) = uq (). (3.6)
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3.1. Discretization in space and time

Then the following semi-discrete time-continuous form of the advection equation (3.1)

can be derived as

) a

i (1) = — 5 (g (1) — i (1). (37)
Expression (3.7) can be reformulated as

u(t) = —aD"u(t),

where the matrix D* € RY=*Nz with entries

+1 -1 1
e L e - D% o= 3.8
3L T 9 Ay’ LNz = oAy’ Nesl ™ oA (3.8)

incorporates a centered FD approximation for first-order spatial derivatives 9, as well as
periodic boundary conditions.

Extension to second-order derivatives. Although equation (3.1) involves no spatial
derivatives beyond the first order, adding a second-order diffusion term to the spatial
discretization can be beneficial for its numerical stability [LeV02]. For the derivation of a
centered FD approximation for second-order derivatives, the Taylor expansions given in
(3.3) and (3.4) are reconsidered. Adding these equations leads to the expression

u(t,z + Ax) — 2u(t,z) + u(t,x — Ax)

Ozzu (B, x) = + 0 ((Az)?).
(t, ) Do) ((Az)?)
Similarly to the first-order case, approximations of second-order derivatives can be ob-
tained as
i t) — 2u; (t i1 (2
Ougu(t,) |, w1 B =25 () F o () (3.9)
T (Ax)

Instead of (3.7), an advection-diffusion equation of the form

a la|

’[Lj (t) = —E (Uj+1 (t) — Uj—1 (t)) + (Ax)2

(w1 (6) = 2u; (1) + w1 (1) (3.00)

is numerically solved. Expression (3.10) can be reformulated as
u(t) = —aD"u (t) + |a| D*™u (t),

where the matrix D?* € RV=*Nz with entries

2 1 1

w2 w1 U, . 3.11
2, (Ax)2 7,1 (ACU)2 1,Ng Ngz,1 (Ax)z ( )

incorporates a centered FD approximation for second-order spatial derivatives d,, as well

as periodic boundary conditions.
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3. Discretization and numerical stability

Properties of the differentiation matrices. The spatial stencil matrices D¥ and D**
exhibit useful properties. For instance, the discrete counterpart of the continuous inte-

gration by parts method can be shown.

Lemma 3.1 (Summation by parts). Lety,z € RN+ be vectors with indices i,j =1, ..., Ny.
In addition, we define yo := yn, and yn,+1 = y1 as well as zp := zn, and zn,+1 = 21
to account for periodic boundary conditions. Then the stencil matrices D* and D™ fulfill

the following properties:

Ny N, Ng
Yo yiDfiz=—) zDjwi, Y #Djizi =0, Z Y Dji'zi = Z % Dji i

t,j=1 t,j=1 t,j=1 t,j=1 i,j=1
Moreover, consider the stencil matric Dt € RN+*Ne ' defined by its entries
3d T Ay’ 3L T AL’ Nzl ™ A’

Then,

N, No /[ Na 2

DrT,. _ _ +..
E z]Dji Zi = E E DjizZ .
ij=1 j=1 \i=1

Proof. The assertions follow directly by inserting the definitions of the spatial stencil
matrices and by properly rearranging the expressions. In detail, we obtain

N

Ne
. 1 - 1

2wl = gy 2 v (i = 2m0) = =g, D 2 (i~ i) IR

1,j=1 j=1 Jj=1 ,j=1

Ny Ny

Z ZjD;-:iZi - Z ZjD;-UiZZ' = 0,

',j—l 4,j=1

Z y; D 2 Z?UJ zj + Zya Zj+1 + 2j-1)

t,j=1 Ax) Jj=1

Nz
(Ba)? Z Zjyj + )2 ZZ] yirr+yi-1) = Y %Dy,

7j=1 ,j=1
S gDy = 5N 2 sz (zj+1 + 2j-1)
ij=1 (Az) j=1 (Az) J=1
1 & R
2 2 2
=——= (Z» — QZ]'Z]'_H + Z'—H) EURY) (Zj - Zj+1)
(Az) ; ! ! (Az) ;

(8o
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Extension to two dimensions. The theoretical stability analysis in this thesis is con-
ducted in one spatial dimension, represented by the spatial variable x. However, nu-
merical experiments will be performed in two-dimensional (2D) spatial settings involving
dependencies on the variable x = (z, y)—r € R?. Therefore, we extend the centered FD
framework to equations of the form

O (t, z,y) + adyu (t,x,y) + boyu (t,z,y) = 0, (3.12)
equipped with an appropriate initial condition

u(0,z,y) =u’ (z,y),

where the function u (¢, z,y) : [0, T]xQ; %€, — R is assumed to be sufficiently regular and
a,b € R denote constant scalar values. The spatial domain 2, is discretized analogously
to €, i.e. by construction of a uniform spatial grid with a finite number of grid cells
N, € N and equidistant spacing Ay = N%, A spatially discretized approximation to (3.12)
is obtained by evaluating u (¢, z,y) at the grid points (z;,y;) € 2 x §, and setting

Ui (t) ~ u(t,xj,yi) for j=1,..,N;, i =1,...,N,.

For the approximation of first-order spatial derivatives we perform a dimensional splitting
as proposed in [LeV02] and apply a centered FD scheme to each spatial direction, i.e. we
approximate

Ui () —uj—1 (2)

axu (t7 €T, y) |(z7y):($jayi) ~ QA.%' and
N Ujit1 (t) — Uji—1 (t)
Oyu (t,z,y) |(g:,y)=(-’ﬂj,yi) - 2Ay

This leads to the semi-discrete time-continuous reformulation of equation (3.12) as

i (8) = = 5 (703 (8) = 52 0) = 5 (i () = w3001 ().

Analogously to the 1D case, the spatial stencil matrices D* and DY approximating first-
order spatial derivatives J, and 0y, respectively, and incorporating periodic boundary
conditions can be constructed. To account for numerical stability, second-order spatial
stencil matrices D* and DYY, which are derived similar to the 1D setting, can be added.

Alternatives to the centered FD method. Alternative methods for the spatial dis-
cretization of PDEs exist. Concerning the FD method, the one-sided forward or backward
FD approximation shall be mentioned. Compared to the second-order accurate centered
FD scheme, these approximations are only first-order accurate and therefore not consid-
ered in this thesis. Frequently used approaches are also finite volume methods and finite
element methods, for which the reader is referred to standard textbooks such as [LeV02]
and [ZT7Z13].
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Figure 3.2: Space-time grid with N, grid cells of width Az in the spatial variable and N; grid cells
of width At in the temporal variable.

3.1.2 Temporal discretization

The derivations presented thus far have yielded a semi-discrete time-continuous form of
the hyperbolic advection equation (3.1). To retrieve established theoretical concepts for
PDEs in the next section, a discretization in the temporal variable is required. For the
discretization of the time interval [0, 7] we construct a uniform temporal grid with a finite
number of grid cells N; and prescribed grid size At. The number of equidistant grid cells
N; is determined from the relation Ny = (%] An approximation of the semi-discrete
time-continuous solution u; (¢) on the temporal grid is obtained by evaluating

u;l ~ U (tn, ;) for t, = nAt, n=20,..., N

The resulting space-time grid is illustrated in Figure 3.2. The linear advection equation
(3.1) involves temporal derivatives. In this thesis, we focus on Euler methods for their
approximation.

Explicit forward Euler method. An elementary strategy is the application of the forward
FEuler method. Its basic idea was first introduced in [Eul68] and relies on a Taylor expan-
sion in time. For the linear advection equation (3.1) the fully discrete update formula

alt

f U~ AL (uffyy —uj_y) (3.13)

can be derived from the centered FD discretization given in (3.7). This is a first-order
accurate scheme in time and a second-order accurate scheme in space. Note that the time
update from time ¢, to time t,41 = t,, + At described in (3.13) only requires knowledge
of quantities evaluated at time ¢,. Such schemes are called explicit methods.

Implicit and implicit-explicit methods. Numerical schemes, on the other hand, that for
a time update require the evaluation of quantities at time t,,+1 (as e.g. the backward Euler
method) are called implicit methods. They are often used to handle a potential stiffness,
which can introduce numerical instabilities, leading to unacceptably small time step sizes.
Implicit methods usually exhibit an improved stability behavior for stiff problems but
generally require the numerical solution of more complicated systems, which can involve
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coupled dependencies [HW96]. Also the combination of explicit and implicit methods is
possible. Such schemes are called implicit-explicit (IMEX) methods.

3.2 Numerical stability

This section is devoted to the concept of numerical stability for fully discrete FD schemes.
We provide a definition of stability in Section 3.2.1 and introduce necessary and sufficient
conditions for the stability of FD schemes in Sections 3.2.2 and 3.2.3. Section 3.2.4
explains the concept of strong stability, which is often related to the energy of the system.

3.2.1 Consistency, convergence and stability
We consider one-step FD schemes of the form

ntl

t;

= NAtAxu?, (3.14)

where Mag, a5 denotes an FD update operator associated with a given temporal and spatial
grid. The indices At, Ax refer to the fixed grid sizes.

Example 3.2. The FD update operator associated with the fully discrete scheme (3.13)
for the linear advection equation (3.1) applied to a sufficiently regular function ¢ has the
form

A
Nataw (8] (tn ) = 6" — 225 (g2, — 62,).

2Ax
Consistency. An important property of a numerical scheme is its consistency with the
differential equation. This means that the numerical update operator shall approximate
the solution to the continuous equation well locally. This behavior can be quantified by
the local truncation error.

Definition 3.3 (Local truncation error, [LeV92]). For one-step FD schemes associated
with an update operator Maga, such as given in (3.14) the quantity 7" = (T]”) € RN=
with

1
7"77-1 = Kt (U (tn+1,$j) _NAt,ACE [’U/} (tr“xj))

is called the local truncation error.
The local truncation error is used to define the consistency of a numerical scheme.

Definition 3.4 (Consistency, [LeV92, Tho95]). A one-step FD scheme associated with
an update operator Na¢ a, such as given in (3.14) is called consistent if, in an appropriate
norm ||-||, it holds

I7"] — 0 as At, Az — 0. (3.15)
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3. Discretization and numerical stability

Condition (3.15) provides no information on the rate of convergence. More details are
included in the concept of accuracy.

Definition 3.5 (Accuracy, [LeV92, Tho95]). A one-step FD scheme associated with an
update operator Mataz such as given in (3.14) is called accurate of order p in time and of
order q in space if for any sufficiently regular solution w (¢, ) with compactly supported
initial condition u° () it holds

17" = O ((At)") + O ((Az)T).

Remark 3.6. Accurate schemes of order p,q > 1 are consistent [Tho95].

Convergence. Another important property for the construction of numerical schemes is
the pointwise convergence of the numerical solution to the true solution of the PDE as
the grid sizes become arbitrarily small.

Definition 3.7 (Convergence, [Str04]). A one-step FD scheme associated with an update
operator NMaga, such as given in (3.14) is called convergent if for any solution to the
continuous PDE u (¢,z) and solutions to the FD scheme v, such that u? converges to

n

7 converges to u (t,x) as (nAt, jAx) converges to

u® (z) as jAx converges to x, then u
(t,z) as At, Ax converge to zero.

Stability. The first part of this thesis focuses on the stability of numerical schemes. This
concept ensures that errors, which are for instance introduced in the initial condition, do
not increase uncontrollably over time and dominate the true behavior of the solution.

Definition 3.8 (Stability, [Tho95, LeV02]). A one-step FD scheme associated with an
update operator NMa;,a, such as given in (3.14) is stable in a stability region A with respect
to an appropriate norm ||-|| if, for each time 7', there is a constant Cp > 0 such that

[NMRiaell < Cr forall 0 <n <N, with (At, Az) € A. (3.16)

Relation between the concepts. For linear FD schemes approximating linear PDEs,
for which the corresponding IVP is well-posed, the following relation between the above
concepts exist. A rigorous definition of well-posedness of an IVP can be found in [Str04].

Theorem 3.9 (Lax-Richtmeyr equivalence theorem, [Str04]). A consistent and linear FD
scheme for a linear PDE, for which the corresponding IVP is well-posed, is convergent if
and only if it is stable.

Proof. See for instance [LR56, Str04]. O

Briefly summarized, the Lax-Richtmeyr equivalence theorem states that for linear PDEs
and linear FD methods it holds

consistency 4+  stability = convergence.
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3.2. Numerical stability

tg "--0---L 0--6--6--6---V0--0--1-
Tj—n a>0 Z a<0 Tj4n alt

Figure 3.3: Visualization of the numerical domain of dependence and of the CFL condition for the
linear advection equation (3.1). Left: The numerical domain of dependence for a time-explicit three-
point method is depicted exemplarily for the point (¢,,z;) in blue. The characteristic curves for the
linear advection equation (3.1) are added in violet-red for a > 0 and a < 0. For the FD scheme
to satisfy the CFL condition, the characteristic curves must lie inside the blue numerical domain of
dependence. Right: Zoom into one grid cell, illustrating the concrete CFL condition given in (3.17).

3.2.2 CFL condition

For many schemes showing boundedness of the FD update operator as described in (3.16)
is a non-trivial problem. A necessary condition for the stability of FD schemes, which
is usually easier to derive, was discovered by Courant, Friedrichs and Lewy in [CFL28].
Analogously to the analytical true domain of dependence, given for instance in (3.2) for
the linear advection (3.1), the numerical domain of dependence can be defined. For a
fixed grid point (t,,z;), it contains all grid points z; at the initial time ¢t = 0 for which u?
has an impact on the solution u?. The Courant-Friedrichs-Lewy (CFL) condition relates

the true and the numerical domain of dependence.

Theorem 3.10 (CFL condition, [LeVO07]). A numerical method can only be stable (and
hence convergent) if its numerical domain of dependence contains the true domain of
dependence of the PDE, at least in the limit as At and Ax go to zero.

Proof. See for instance [CFL28, Str04]. O

In Figure 3.3 the numerical domain of dependence for a time-explicit three-point FD

n+1

scheme is displayed. The computation of u; requires knowledge of u”’

j-b
For the linear advection equation (3.1) together with an explicit FD scheme, the CFL

n n
uy and uf .

condition translates to

aldt| (3.17)

Ccrr = AL

where Ccpr, is called the Courant number. This concrete condition is also illustrated
in Figure 3.3. With the insights gained from the derivation of the CFL condition the
following theorem was first proven in [CFL28].

Theorem 3.11. There are no explicit, consistent, unconditionally stable FD schemes for
the solution of hyperbolic PDEs.

Proof. See for instance [CFL28]. O
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3. Discretization and numerical stability

Note that the CFL condition is a necessary condition for stability (and convergence). To
guarantee numerical stability, a thorough stability analysis is still required.

3.2.3 Von Neumann stability

A further method for deriving necessary or even sufficient conditions for the stability of
linear FD schemes, which is generally more feasible than the criterion given in (3.16), relies
on the application of Fourier analysis. This approach goes back to [CN47, CFvN50] and
is commonly referred to as the von Neumann stability analysis. The basic idea of Fourier
analysis, introduced in [Fou08, Fou22], consists in expanding generally complicated func-
tions in terms of simpler trigonometric expressions. Around this concept an entire theo-
retical framework has been constructed. More information, for instance on the continuous
Fourier transform, can be found in standard textbooks such as [Yos95, Tit48]. In this
thesis, we restrict our considerations to grid functions u = (..., u_1, ug, u1, )T €2

Definition 3.12 (Fourier transform of a grid function, [Tho95]). The Fourier transform
of a grid function u € £? is the 27-periodic function u € L? [~, 7] defined by

1
u(l) =— e Uy, for £ € [—m, 7],
j=—o00
where ¢ € C denotes the imaginary unit.

Given the Fourier transform @ € L?[—m, 7], the original grid function u € #2 can be
uniquely recovered.

Proposition 3.13 (Fourier inversion formula, [Tho95]). Let u € ¢? and @ € L?[—7, 7]
be its Fourier transform. Then,

uj=——= [ €¥u(¢) dé. 3.18
Proof. See for instance [Tho95, Tit48]. O

A fundamental result, motivating to work within the L?-space in Fourier analysis, is
Parseval’s identity.

Proposition 3.14 (Parseval’s identity, [Tho95]). Let u € ¢? and u € L?[—7, 7] be its
Fourier transform. Then,

[ally = [hully -

Proof. See for instance [Tho95, Tit48]. O

Stability of linear FD schemes. Concerning stability considerations of linear one-step
FD schemes, we insert a Fourier approach as proposed in (3.18) into the update formula
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3.2. Numerical stability

given in (3.14), which is assumed to be extended to infinitely many indices —oo < j < 0.
This leads to an equation of the form

aH(E) =g () u" (€,

where the scalar value g (§) is called the amplification factor. The obtained representation
is decoupled from all other Fourier modes [RMG67].

Theorem 3.15 (von Neumann condition, [Tho95, MMO5]). Let us consider a linear FD
scheme approximating a linear PDE. A necessary condition for its stability in a stability
region A\ is that there exists a constant K such that

lg(§)| <1+ KAt for all & € [—m, 7] and (At,Ax) € A. (3.19)

For a linear system of equations the amplification factor takes the form of a matriz, which
1s called the amplification matriz. The von Neumann condition translates to

Al <14 KAt for all 1,

where \; are the eigenvalues of the amplification matriz G (§).

Proof. See for instance [Tho95, MMO5]. O

Remark 3.16. It can be shown that a discretization of the linear advection equation
(3.1) obtained from a centered FD method in the spatial variable and an explicit forward
Euler step in the temporal variable is not von Neumann stable [Str04].

The von Neumann condition is a necessary but generally not sufficient condition for the
numerical stability of linear FD schemes. However, under certain assumptions it becomes
sufficient to ensure stability. The following two results are taken from [RM67].

Theorem 3.17. If the amplification matriz G (§) is a normal matriz, the von Neumann
condition is a sufficient condition for the stability of linear FD schemes.

Proof. See for instance [RM67, MMO5]. O

Corollary 3.18. In particular, a linear one-step F'D scheme approximating a linear scalar
PDE with constant coefficients such as the linear advection equation (3.1) that satisfies
the von Neumann condition (3.19) is stable.

Note that the concepts presented in this section have formally been derived for grid
functions u with unrestricted index. For practical applications, limitations to finite sets
of grid points are imposed. The above results equivalently translate to this setting [Tho95,
Str04].

3.2.4 Energy stability

Another approach for showing the stability of FD schemes, which is also applicable to
problems with variable instead of constant coefficients or problems with non-periodic
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3. Discretization and numerical stability

boundary conditions, is the concept of energy stability. Its essential idea consists in
deriving a suitable norm for the solution vector u € R¥+ so that the norm of the solution
stays uniformly bounded over time. In general, the identification of an appropriate norm
is a challenging task. In many cases the physical energy associated with the system
provides a natural candidate. A comprehensive introduction to energy methods as well as
possible generalizations and further results can be found in [RM67, GKO13]. We begin
with the definition of strong stability of an FD scheme.

Definition 3.19 (Strong stability, [RM67]). Let Hat A, be an operator acting on u and
K; and K5 be some fixed positive constants. An FD scheme is called strongly stable if
the following conditions hold:

(i) For every fixed At the operator Ha¢ Ay is well-defined and it holds
=l < Jlul, < Ko ),
K, - H =

where ||u|]3{ = Zj\/:zl UjHAL AU
(ii) The solution of the FD scheme satisfies

[0, < (1 + KAL) [u®(l,, . (3.20)

It can easily be seen that strong stability implies the classic stability given in Definition
3.8. Since it explicitly depends on the H-norm, which is typically associated with the
energy of the system, we also refer to it as energy stability.

For one-step FD schemes associated with an update operator NAt,Am such as given in
(3.14) the condition imposed in (3.20) translates to

INat,Aelly <1+ KAL,

which is consistent with the boundedness required for stability in (3.16) introduced in
Definition 3.8. In general, it can be shown that for problems with constant coefficients
and periodic boundary conditions Definition 3.19 is equivalent to Definition 3.8 [RM67].
Further important contributions using the method of energy stability can be found in
[Fri54, Lee60, Lax61, Kre63]. In more recent work such as [SN14] for example summa-
tion by parts schemes for non-periodic boundary conditions are studied using the energy
method.

3.3 Discretization in velocity

In contrast to the macroscopic linear advection equation given in (3.1), kinetic equations
as proposed in (2.4) exhibit an additional velocity dependence. To obtain fully discrete nu-
merical schemes for kinetic equations, a discretization in the velocity variable is required.
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3.3. Discretization in velocity

We restrict our considerations to a 1D setting and to equations of the form
of (t,x,v) + v, f (t,z,v) = Q[f] (t, z,v),

where f (t,z,v) : [0,T] x Q, x Q, — R} denotes a distribution function. Section 3.3.1
introduces a modal approach making use of a pointwise approximation of the solution.
Section 3.3.2 is devoted to a modal approach, expanding the distribution function in
terms of orthogonal basis functions. Having performed a discretization in the velocity
variable, a discretization in the spatial and the temporal variable as well as stability
considerations can be conducted as described in the previous sections.

3.3.1 Nodal approach

For applying the nodal approach we discretize the velocity domain €2, by constructing
a wvelocity grid with a finite number of grid points N, € N. An approximation of the
distribution function in the 1D velocity variable v is obtained by evaluating f (¢, z,v) at
each grid point vy, ...,vn, € €y, i.e. by computing

e (t,x) = f(t,x,vx) for k=1,...,N,.

Numerical integration. According to Definition 2.5, macroscopic quantities such as the
density, mean velocity or temperature are obtained by taking moments of the distribution
function. This process involves the evaluation of integrals with respect to the velocity
variable v. Let a,b € R and let us consider integrals over the interval [a,b] C €, of the
form

where w (v) is a given non-negative weight function on [a,b]. Note that this interval may
also be infinite. In accordance to [SB02, Atk89], the weight function w : [a,b] — Ry must
accomplish the following properties:

(i) w(v) is measurable on the finite or infinite interval [a, b].

(ii) All moments f; v"w (v) dv exist and are finite for all n > 0.

(iii) Suppose that

b
/ w(v)g(w)dv=0
a
for some non-negative continuous function g (v). Then g (v) =0 on [a, b].

For the approximation of the integral I (f) with an appropriate weight function w (v), a
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3. Discretization and numerical stability

quadrature rule of the form

Ny
I(f)=) wife (3.21)
k=1

is sought. The points vy, ..., vy, are called the quadrature nodes and wy, ..., wn, the associ-
ated quadrature weights. There are multiple options for the distribution of the quadrature
nodes in the scalar case. An intuitive approach is to consider equidistant spacing, anal-
ogously to the spatial grid constructed in Section 3.1.1. Examples of this include the
Newton-Cotes formulae such as the trapezoidal rule or Simpson’s rule. More information
on this topic is provided in [Atk89, IK66]. However, more accurate approximations of
the integral I (f) can be obtained by allowing the quadrature nodes to be non-uniformly
distributed. This leads to Gaussian quadrature rules for which the nodes are determined
as the roots of orthogonal polynomials. This choice ensures that polynomials up to degree
2n—1 can be exactly computed [SB02]. Depending on the interval [a, b] and on the weight
function w (v), different orthogonal polynomials are considered. An overview of common
choices can be found in [DR&84], a tabular list of numerical values in [AST72].

Gauss-Hermite quadrature. In this thesis, we are interested in integrals evaluated over
the whole real line R of the form

v2

with weight function w (v) = e™¥". The set of orthogonal polynomials associated with

this special weight function are the Hermite polynomials {H,} which are defined as

neNg?

v2 dn 2

—v
do™

H,v)=(-1)"e e
Let N, be the desired quadrature order of the numerical scheme. Then the quadrature
nodes vy, ...,vy, are determined as the roots of the Hermite polynomial Hpy, and the
corresponding quadrature weights are obtained by

2NN, |

W = —v\/i for k=1,...,N,.

[HN,+1 (vk)]
This choice for the approximation of the integral I (f) in the form as given in (3.21) is
called the Gauss-Hermite quadrature rule.

Extension to two velocity dimensions. For numerical experiments performed in 2D
settings also the approximation of 2D integrals of the form

I(f)—/RxRe"VQf(V) dV—/R/Re(”Q*wz)f(u,w) do dw (3.22)
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3.3. Discretization in velocity

with v = (v, w)T € R is relevant. Regarding the discretization of the velocity domain
Q, x Qy, we construct a velocity grid with N,, € N grid points in the v direction and N,, €
N grid points in the w direction. The quadrature nodes in each single velocity dimension
is assumed to be derived from the 1D Gauss-Hermite quadrature rule. An approximation
of the distribution function f (¢,z,v,w) at each grid point (v, wy) € Q, X €, is obtained
by evaluating

fre (t,x) = f (t, x, v, wy) for k=1,...N,, £=1,...,N,.

Concerning the approximation of the integral (3.22), we follow the ideas presented in
[Jac05] and compute

Ny Ny

I(f) =Y ) wrwrfus

k=1 (=1

where wg, wy are the corresponding Gauss-Hermite quadrature weights. More information
on multivariate Gauss quadrature can be found in [DR84, Str71].

3.3.2 Modal approach

In a modal framework the distribution function is expanded in the velocity variable in
terms of orthogonal polynomials, which represent the modes of the solution. We restrict
our considerations to the interval [—1,1]. This is a common choice for radiative transfer
problems to which frequently the modal Py method is applied. More information (also
on alternatives such as the nodal discrete ordinates Sy method) can be found in [BG70,
CZ67]. The Py method makes use of the orthogonal Legendre polynomials {JA:’;L}

. neNp ’
which are defined as

B GO
P (v) = 2nnl don (1_U2) '

Together with their standard normalization in L? [—1,1], they satisfy an orthogonality
condition of the form

1
~ 2
Py, (v) Py (v) dv = 720mn ith 72 = ———. 3.23
[ Pu@Pu) o=t with 9 = (323)

In addition, the Legendre polynomials fulfill the recurrence relation
(n+1) Poy1 (v) = (2n+ 1) 0By (v) = nPy1 (v).

In this thesis, we perform a rescaling of the Legendre polynomials by setting P, = % to
translate the orthogonality condition (3.23) into an orthonormality condition given by

/ P (0) Py (0) dw = G, (3.24)
1
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3. Discretization and numerical stability

This rescaling implies a rescaled Legendre polynomial of degree zero Py = % as well as
a rescaled recurrence relation given as

(TL + 1) Yn+1 NYn—1

_.I_
(2n + 1) Tn i (

vP, (v) = Y
n () 2n+1) v,

Py_1. (3.25)
Then the Py method employs of a finite expansion of the distribution function f (¢, z,v)
in the velocity variable v with N, expansion coefficients wu, (¢,z), called the moments, of
the form

Ny—1

ftzv)~ f, (ta,0) = Y up (t,2) Py (v),

n=0

and relies on this expansion to derive the evolution equations for the moments.

Numerical integration. For the computation of integrals with respect to the velocity
variable v, the orthonormality (3.24) of the rescaled Legendre polynomials as well as the
recurrence relation (3.25) are used. In preparation for later chapters, we introduce the
matrix A € RN*No with entries

1

A ::/ vPy, (v) P, (v) dv. (3.26)
~1

Note that the matrix A is symmetric and diagonalizable in the form A = QMQ' with

Q being orthogonal and M = diag(oy, ..., 0n,_1). Further we define |A| = QM|Q.

Extension to two angular dimensions. Besides the 1D analysis presented in this thesis,
numerical experiments are performed in higher dimensions. We consider a velocity vector
v € R3 and perform the splitting

v =|v| €,

where |v| denotes the absolute value of the velocity and 2 € S? a unit vector in the
direction of motion. The unit vector €2 is usually given in spherical coordinates, depending
on the polar angle 6 € [0, 7] as well as the azimuthal angle ¢ € [0,27). We refer to this
expression as the 2D angular representation. The corresponding 3D Cartesian coordinates
can be derived from the angular representation as

Q, = sinf cos ¢, 1y = sinfsin p, Q, = cos¥.

For an application of the Py method to an equation including a 2D angular variable
Q = (0, ), we introduce the associated Legendre polynomials of degree n € Ny and order
m =0, ...,n. They are defined as

P () = (1) (1 — %)™ i}iﬁn (v) with v € [-1,1].

n
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3.3. Discretization in velocity

This definition can be generalized to negative integers —n < m < 0 by

S—m (L m(n_m)'Nm
B (v) = (1) TP o),

The associated Legendre polynomials satisfy the orthogonality condition

" Fm 2 (n+m)!
/1P (W B (v) dv = 2n+1(n—m)15’m’ (3.27)

as well as the recurrence relations

(n—m+1) Py (v) = 2n+ 1) 0P, (v) = (n+m) B, (v) (3.28)
and
(v —1) %an (v) = nvP™ (v) — (n+m) P, (v). (3.29)

The associated Legendre polynomials are used to derive the complex-valued normalized

spherical harmonics, which can be given as

Y () = \/ B (cost) e

The spherical harmonics fulfill the orthonormality condition
2m L
/ / Ynm (Q) Yn’m/ (Q) dCOS 0 d(p == 6nn/5mm/’
0 J-1

where Y, denotes the complex conjugate of Yj,,,, which can be determined from the
relation

Yo -m () =(=1)"Ynm ().

In the context of this thesis, similar to the approach used in [Kus20], we employ a real-
valued spherical harmonics basic of the form

—~ V2
Yom () = { Y0 (Q), m =0,
(7§)i (Yo () = (=1)" Yoy (), m > 0.

Then a finite spherical harmonics expansion of the distribution function f (¢,x, ) in the
angular variable  with (Ng + 1)? expansion coefficients uy,, (£, %) is obtained by

ft,x,Q)~ fng (t,x,9) Z Z W ( tx m (S2).

n=0m=—n
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3. Discretization and numerical stability

Integrals with respect to the angular variable £ are evaluated using the orthogonality of
the associated Legendre polynomials given in (3.27) as well as the recurrence relations
stated in equations (3.28) and (3.29).
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Dynamical low-rank approximation

The numerical solution of kinetic equations is computationally demanding due to their
high dimensionality. An approach to reduce the computational costs and memory require-
ments is the method of dynamical low-rank approximation (DLRA) [KLOT7]. It provides
accurate and efficient approximations of the solution to kinetic PDEs and has recently
been applied in various fields of research. For instance, contributions on radiation trans-
port [BEKK24a, FKP25, PMF20, YEHS24], radiation therapy [KS23], plasma physics
[EL18, EOP20, EOS23], chemical kinetics [EMP24, PEL23] or Boltzmann type transport
equations [BEKK24b, EHY21, DL21, HW22] are available. The review article [EKK"25]
provides an overview of recent developments on low-rank methods in kinetic theory.

In Section 4.1 the basic idea of DLRA is explained in a semi-discrete time-continuous
matrix setting. Section 4.2 provides an overview of frequently used time integrators,
which accomplish the important properties of being exact and robust to small singular
values. In Section 4.3 the idea of DLRA is reformulated in a fully continuous setting
as the order of discretizing and applying the DLRA method may affect theoretical and
numerical results. Section 4.4 is devoted to linear stability results for DLRA schemes and
the conservation of physical invariants.

4.1 Basic idea of DLRA

We follow the explanations in [KL07], where the concept of DLRA has been introduced in
a semi-discrete time-dependent matrix setting. Let f (¢) € RV+*Nv depending smoothly
on the time parameter ¢, be the solution to the matrix differential equation

ft)=F@f@1), fto)=1£"  t>to, (4.1)

for which the right-hand side is denoted by F (¢, (¢)) : [0, T] x RNeXNe 5 RNaXNo - Then
we seek an approximation f,. (t) € RMe*Nv of rank r with 7 < min{N,, N, } of the matrix
f (t) € RN=>Ne_ The set of matrices of rank r constitutes a differentiable manifold, which
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4. Dynamical low-rank approximation (DLRA)

Figure 4.1: lllustration of the basic idea of DLRA. The low-rank manifold M, containing a time-
dependent low-rank function f,. (¢) is depicted in dark green. The tangent plane ’7}T(Z)M,« atf, (f) at

some fixed time ¢ is depicted in light green. The derivative f, (f) is required to stay on the tangent
plane. This behavior is ensured by an orthogonal projection of F (f, f. (f)) onto the tangent plane.

we denote by M, [Pial9, Sch22]. Its corresponding tangent space at f,.(t) is denoted by
T¢, (1) M. The searched-for approximation f.(t) € M, is determined such that at all times
t the minimization problem

Comin &) - F @£ ) (4.2)
£ (6)E€Tg, (1y Mo F
is fulfilled. Here, ||-||; denotes the Frobenius norm. The low-rank approximation f;(t)

is complemented with an initial condition f, (to) = f°, which ideally satisfies £f° = f0. If
this is not the case, f is usually computed as a low-rank approximation of f using a
truncated SVD. Following [KL07], the minimization constraint (4.2) on the tangent space
is equivalent to determining

£ (t) =P (£ () F (L£ (1), (4.3)

where P denotes the orthogonal projector onto the tangent space T¢, ;) M. This approach
is visualized in Figure 4.1, which has been created similarly to [Pial9]. Each matrix
f-(t) € M, can be decomposed into low-rank factors as

() =XHSEHVEH, (4.4)
where the matrices X (t) € RM=*" and V () € RN**" have r orthonormal columns, i.e.
X)Xt =I and V@®'V(@®)=1I,

where I € R™*" denotes the identity matrix. The matrix X (¢) contains the orthonormal
basis functions in space and V (t) the orthonormal basis functions in velocity. The matrix
S (t) € R™" is assumed to be nonsingular and called the coefficient or coupling matriz,
containing the coefficients of the approximation. Note that S (t) is not required to be
diagonal and that the representation given in (4.4) is not unique. The orthogonal matrices
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4.1. Basic idea of DLRA

X (t) and V (t) are contained in the following manifold.

Definition 4.1 (Stiefel manifold and its tangent space, [AMS08, Bou23]). The set of
matrices with orthonormal columns

VN = {X eRN>: XTX =1}

constitutes an embedded submanifold of R™¥+*" and is called Stiefel manifold. Its tangent
space at X € Vy, , is given as

TxVn,r = {X e RN XX + XX =0} .

It can be shown that for time-dependent orthogonal matrices X (t) € Vy, , their corre-
sponding time derivative is contained in the tangent space Tx)Vn, at X (t) [Sch22].
Let X (t) € Tx() VN, be the time derivative of X (¢) and V (t) € Ty Vn,,» be the time
derivative of V (t), respectively. If for representation (4.4) the additional orthogonality
constraints

X)Xt =0 and V@) V(@#) =0
are imposed, the elements f, (t) € T, ()M, are uniquely determined and of the form

Te,pMr = {f, (t) € RN=>No .
£ =XOSOVEH +XOSOVE) +XE)SEHVEH)"
with S € R™" X € TxVn,r, V € TwVn,, and X'X =0,V'V =0}.

It has been proven in [KL07] that deriving a low-rank approximation f, (¢) € M, of
the form given in (4.4), which fulfills the minimization constraint on the tangent space
stated in (4.2), is equivalent to determining f,. (¢) € Ts, (tyM,, for which the corresponding
low-rank factors are evolved according to

X(t)=I-X0X®)FtE0)VEHSEH, (4.5a)
V) =I-VOV®)F(LE®) XH)SEH ™, (4.5b)
SH) =X )" F(t,f (1) V(). (4.5¢)

This leads to unique low-rank factors X (¢),S (¢) and V (¢) and a unique representation
of the expression given in (4.4). Then the orthogonal projector P onto T, ;) M, for the
solution of (4.3) can be explicitly derived as

P (fr (t)) F (t7 £, (t)) = XX'F (t, £, (t)) - XX'F (t, £, (t)) Vv’ (46)
+F (1,5 (1) VVT,
where we omit the time-dependency of X (¢) and V (t) for a better readability.

In the case of very small singular values the matrix S (¢) becomes nearly singular. When
solving the evolution equations (4.5) with standard numerical integrators (as e.g. Runge-
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Kutta methods) the inversion of the matrix S (¢) in (4.5a) and (4.5b) leads to thorough
computational challenges, imposing severe step size restrictions and rendering the al-
gorithm highly unstable. To overcome this problem, different exact and robust time
integrators which are able to evolve the low-rank solution on the manifold M, while not
suffering from potentially small singular values have been introduced. An explanation of
two of them is provided in the upcoming section.

4.2 Exact and robust time integrators

For an exact and robust DLRA scheme the implementation of a suitable time integrator is
essential. Different such integrators are available [LO14, CL22, CKL22, CKL24]. Section
4.2.1 focuses on the projector-splitting integrator introduced in [LLO14], whereas Section
4.2.2 is devoted to BUG integrators [CL22, CKL22, CKL24], especially the rank-adaptive
augmented BUG integrator presented in [CKIL22].

4.2.1 Projector-splitting integrator

In [LO14] the projector-splitting integrator is introduced. Rather than solving the evolu-
tion equations (4.5) directly, it relies on the orthogonal projection (4.6) onto the tangent
space Tg, ()M, Its main idea is based on the application of splitting methods and the
subsequent solution of three subprojections, each of which constitutes a simpler problem
than that posed by the original equation. A first-order Lie-Trotter splitting is proposed in
[KLOT7] but also higher-order extensions (e.g. to a second-order Strang splitting scheme)
are possible using standard splitting techniques as described in [HLWO06].

The projector-splitting integrator evolves the low-rank factors as given in decomposition
(4.4) for the solution of the minimization problem (4.2) in the following alternating way:
In the first step, the velocity basis V is fixed while the spatial basis X and the coefficient
matrix S are updated forward in time. In the second step, the coefficient matrix S is
updated backwards in time with fixed updated spatial basis X and fixed prior velocity
basis V. In the third step, the updated spatial basis X is fixed while the velocity basis V
and again the coefficient matrix S are updated forwards in time. In detail, the projector-
splitting integrator evolves the low-rank solution from f? = X"S"V™T at time ¢, to
frtl = XnHgntlyntlLT at time t,11 = t, + At as follows:

K-Step: We fix the velocity basis V" at time t,, denote K (t) = X (t)S (t) € RN=x"
and solve the PDE

K(t)=F(tLK@GH V") V", K(t,) = X"S".

Then the spatial basis X" is updated to X"+ € RN+*" with orthonormal columns by a
factorization of K (t,41) = X"*1S"H! where S"*! € R"™", e.g. by QR-decomposition.

S-step: We fix the spatial basis X"*! at time ¢, 1, the velocity basis V" at time t,,, and
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solve the ordinary differential equation (ODE)

S(t) = -X"TF (6, XS () VT Ve, S (t,) =S

Then the coefficient matrix S**! is updated to S” € R™" by setting S™ = S (tn41).
L-Step: We fix the spatial basis X! at time ¢, 1, denote L (t) = V () S(¢) " € RNvx",
and solve the PDE

. T =~
Lt)=F(t,X""L@)") X" L(t,) =Vv"s™'.

Then the velocity basis V" is updated to V"1 € RNv*" with orthonormal columns by a
factorization of L (t,11) = V*1S" LT where S"*! € R™*" e.g. by QR-decomposition.
Altogether, the update of f! = X"S"V™T after one time step is given by I+ =
Xn-i-lsn-&-lvn—&-l,T‘

The proposed projector-splitting integrator has favorable properties compared to the di-
rect solution of the evolution equations (4.5). One of these is the following exactness
result for matrices f (¢) of rank r and right-hand sides F = F (¢).

Theorem 4.2 (Exactness property of the projector-splitting integrator, [LO14]). Let
f(t) € RN=*Nv be o matriz of rank r for t, <t < t,,1, so that £ (t) has a factorization
£(t) =X (1)S() V() as given in (4.4) and let X (tne1)' X (tn) and V (tnp1) V (tn)
be invertible. With the initial value £ = f(t,), the projector-splitting integrator for
f.(t) =P (£ ()£ (t) with f (t) = F (t) is exact, i.e. it holds £ = £ (t,41).

Proof. See [LO14]. O

When computing low-rank approximations only small singular values are allowed to be
neglected in the approximation in order to prevent important information from getting
lost and to retain a good accuracy of the approximation. Let us assume that for a pre-
scribed truncation tolerance parameter 9 all singular values smaller than 1 are discarded.
Then the smallest retained singular value cannot be expected to be much larger than the
largest discarded one as a distinct gap in the singular value distribution cannot be gen-
erally assumed. This implies that the coefficient matrix S still contains entries of order
O (¥), where ¥ is potentially very small. In contrast to standard numerical integrators
the projector-splitting integrator is insensitive to small singular values and the following
robust error bound can be shown.

Theorem 4.3 (Robust error bound for the projector-splitting integrator, [KLW16]). Let
f(t) € RN=*No be the solution to the matriz differential equation (4.1) and £0 € M, the

initial value of the low-rank approximation. Assume further that the following conditions
hold:

(i) F is Lipschitz continuous and bounded, i.e. there exist constants L, B > 0 such that
for all £. (), f. (t) € RN=>*Nv qnd 0 <t < T it holds

[Pt @) -F(LE®)| <z

£O-£@|,  od [FE )< B
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(i) The non-tangential part of F (t,f, (t)) is e-small, i.e. it holds
=P & O)F L (O)p<c  with ¢>0
for all £, (t) € M, in a neighborhood of £ (t) and 0 <t <T.

(iii) The error in the initial data is §-small, i.e. it holds

£ — £, <6 with §>0.

Then the error of the projector-splitting integration scheme at time t, = nAt is bounded
by

17 — £ (tn) || p < K16 + Koe + KsAt — for t, < T, (4.7)

where the constants K; for i = 1,2,3 only depend on L,B and T. In particular, the
constants K; are independent of the singular values of the exact solution and its low-rank
approxrimation.

Proof. See [KLW16]. O

In addition, it is shown in [KLW16] that in the case of inexact solutions of the differential
equations in the substeps of the splitting scheme, the overall error is bounded similarly
as in (4.7). In particular, the bound is independent of the singular values.

Being exact and robust to small singular values are two important properties, distinguish-
ing the projector-splitting integrator from other integration techniques. However, the in-
tegration backwards in time in the S-step can lead to numerical instabilities for strongly
dissipative problems. Alternative integrators that avoid an integration backwards in time
are available and introduced in the next section.

4.2.2 Rank-adaptive augmented basis update & Galerkin integrator

Other integrators that are frequently used for the DLRA approach are the basis update &
Galerkin (BUG) integrator presented in [CL22] and the rank-adaptive augmented BUG
integrator introduced in [CKL22]. They both compute all substeps forward in time.
In addition, they update the spatial basis functions in the K- and the velocity basis
functions in the L-step in parallel, enabling for enhanced parallelization structures and
a faster computation of the solution. In contrast to the fixed-rank integrator described
in [CKL22], the rank-adaptive augmented BUG integrator discussed in [CKL22] makes
uses of certain basis augmentations, hereby allowing for an adaptive choice of the rank
in each time step of the evolution. This procedure assists in overcoming the question of
identifying a suitable fixed rank, which usually cannot be answered a priori. Also, the
required rank may vary over time. Computing with a too small fixed rank leads to poor
accuracy results, while for computations with a too large fixed rank too much information
is carried and the computational performance deteriorates. In addition, the rank-adaptive
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augmented BUG integrator is flexible to basis augmentations, facilitating for instance the
implementation of conservation properties.

The rank-adaptive augmented BUG integrator will be used for the subsequently presented
DLRA schemes. It evolves the low-rank factors as follows: In the first two steps, it
updates and augments the spatial basis X and the velocity basis V in parallel, leading to
an increase of rank from r to 2r. Note that augmented quantities of rank 2r are denoted
with hats. Having the augmented bases at hand, a Galerkin step for the coefficient
matrix S is performed. In the last step, all quantities are truncated back to a new rank
rn+1 < 2r, which is adaptively chosen depending on a prescribed error tolerance. In detail,
the augmented BUG integrator evolves the low-rank solution from f? = X"S"V™ T at
time ¢, to fﬁ“‘l = XnHigntlyntlT gt time tni1 =ty + At as follows:

K-Step: We fix the velocity basis V" at time t,, denote K (t) = X (t)S (t) € RN=x",
and solve the PDE

K@) =F(tLK@HV")V",  K(t,)=X"S"

Then the spatial basis X" is updated to Xl ¢ RNex2r by determining X" as an
orthonormal basis of [K(t,41),X"] € RN=*?" e.g. by QR-decomposition. We compute
and store M = X*+1LTX" ¢ R2rx7,

L-Step: We fix the spatial basis X" at time ¢, denote L (t) = V (¢) S(¢) " € RN**" and
solve the PDE

L(t)=F (t,X"L (t)T)T X", L(t,)=V"s"'.

Then the velocity basis V" is updated to V1 € RNoX2" by determining V™! as an
orthonormal basis of [L (t,11), V"] € RY*?" e.g by QR-decomposition. We compute
and store N = VL Tvn ¢ R2rxr,

S-step: We fix the updated spatial basis X"! and the updated velocity basis V! at
time t,41, respectively, and solve the ODE

S(t) =X"tLTF (£, XIS (1) VL) Vit S (t,) = MS™NT.
Then the coefficient matrix S™ is updated to Sntl ¢ R2rx2r by setting Sntl = § (tnt1)-

Truncation: We compute /ﬁEQT = svd (§"+1) from an SVD, where ﬁ, /(3 € R?"%27 are
orthogonal matrices and ¥ € R?"*?" is the diagonal matrix containing the singular values
01, ...,09r. The new rank r,41 < 2r is determined such that

1/2
2r /

> ) <o

j=rp+1+1

where ¥ denotes a prescribed tolerance parameter. Then we set SPT1 ¢ RIm+1X7n+1
to be the matrix containing the 7,41 largest singular values of S"*! and the matrices
Pl Qntl € R?7X"+1 to contain the first 7,41 columns of P and Q, respectively. Finally,
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we compute X"t = XnHipntl ¢ RNeXTn41 apd Vitl = \A/'”HQ"‘H € RNvXrn+1,
Altogether, the update of f? = X"S"V™T after one time step is given by fi*! =
X HlgntlyntLT - Note that we do not explicitly include the new rank r,,; in the
notation of the updated low-rank approximation f2*1.

The rank-adaptive augmented BUG integrator accomplishes the important property of

exactness for matrices f (¢) of rank r and right-hand sides F = F (¢, f (¢)).

Theorem 4.4 (Exactness property of the rank-adaptive augmented BUG integrator,
[CKL22]). Let f(t) € RNa*No be q matriz of rank r for t, < t < t,i1 so that a
factorization £(t) = X #)SE) V()" as in (4.4) exists and let X (tnr1)' X (tn) and
V (tns1) " V (tn) be invertible. Assume further that the truncation tolerance ¥ is smaller
than the r-th singular value of £ (tn41). With the initial value £ = f(t,,), the rank-
adaptive augmented BUG integrator for f, (t) = P (£, (1)) f (t) with £(t) = F (t,f(t)) is
exact, i.e. it holds £7! = f (t,41).

Proof. See [CKL22]. O

Beyond that, the rank-adaptive augmented BUG integrator is robust to small singular
values and the following robust error bound can be given.

Theorem 4.5 (Robust error bound for the rank-adaptive augmented BUG integrator,
[CKL22]). Let f(t) € RN=*Nv be the solution to the matriz differential equation (4.1)
and £ € M, the initial value of the low-rank approzimation. Assume further that the
following conditions hold:

(i) ¥ is Lipschitz continuous and bounded, i.e. there exist constants L, B > 0 such that
for all £. (t) ,f,. (t) € RN=>Nv qnd 0 <t < T it holds

[Pt -F(LEm)| <z

£ -5@|,  od [FEE O <B

(i) The non-tangential part of F (t,f, (t)) is e-small at rank r,, for f. (t) near f (t) and
t near ty, i.e. it holds

I =Pr, (£ () F (&£ @)p<e  with >0

for all £, (t) € M, in a neighborhood of f(t) and t near t,, where P, denotes
the orthogonal projector onto the tangent space Tg, ()M, of the manifold M., of
matrices of rank r, at £, (t) € M, .

(iii) The error in the initial data is §-small, i.e. it holds

£ — £, <6 with §>0.

Then the error of the rank-adaptive augmented BUG integration scheme at time t,, = nAt
is bounded by

£ — £ (tn)]| p < K10 + Koe + K3At + Kqno for t, <T, (4.8)
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where the constants K; for i = 1,2,3,4 only depend on L,B and T. In particular, the
constants K; are independent of the singular values of the exact solution and its low-rank

approximation.

Proof. See [CKL22]. O

In addition, it can be shown similarly as done in [KLW16] for the projector-splitting
integrator that in the case of inexact solutions of the differential equations in the substeps
of the splitting scheme, the overall error is bounded similarly as in (4.8). In particular,
the bound is independent of the singular values [CKL22].

In [CKL24] the parallel BUG integrator has been presented. Its update strategy is similar
to the rank-adaptive augmented BUG integrator but allows for a solution of all three
substeps fully in parallel. Compared to the presented rank-adaptive augmented BUG
integrator, it does not require the basis augmentations to rank 27 in the K- and L-step
and the solution of a 2r x 2r differential equation in the S-step of the scheme. The
enhanced parallelization of all three substeps as well as the reduction from rank 2r to r
renders this integrator even more efficient. However, the exactness property is not fulfilled
but a first-order robust error bound can be established [CKL24].

Extensions to schemes with proven second-order robust error bounds have been proposed
in [CEKL24] for the rank-adaptive augmented BUG and in [Kus25] for the parallel inte-
grator.

4.3 DLRA in a fully continuous setting

Thus far, the concept of DLRA has been discussed in a semi-discrete time-dependent
matrix framework, in which it was originally introduced in [KL07]. This means that, con-
cerning the space and velocity discretization, a “first discretize, then low-rank” approach
has been pursued. In contrast to that, the authors of [EL18] employ a “first low-rank,
then discretize” strategy and derive the evolution equations for the low-rank factors in
a fully continuous setting. We additionally present this approach as it is used in the
subsequently presented work on the thermal RTEs with Su-Olson closure [BEKK24a].
Let the distribution function f (¢,x,v) : [0,T] x Qx x Qy — R be the solution to a given
equation

8tf(t,X,V) ZF(t,f(t,x,v)), f(t(),X,V) :fo (va)a t = to.
We aim for a low-rank approximation of f of the form
fr(tx,v) = X (t,%) Sij (1) V; (t,v), (4.9)
ij=1

where {X; (t,x) : i =1,...,7} denotes the set of orthonormal basis functions in space and
{V; (t,v) : j =1,...,r} the set of orthonormal basis functions in velocity. They accomplish
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the orthogonality relations
(X; (t,x), Xi, (t,%)), = 6, and (Vi (£,v), Vi (£, V), = 050,

where (-,-), are the inner products on L? () and L? (£), respectively. As

and <’7 ‘>v
the representation given in (4.9) is not unique, the additional Gauge conditions

(0:X; (t,%), Xp (£,%)), =0  and 0V (t,v), Vi (t,v)), =0

are imposed. Then it can be derived that {X; (¢,x)} and {Vj(t,v)} are uniquely de-
termined for invertible S (t) = (S;; (t)) € R™" [EL18]. This implies that we seek an
approximation of f that for each time ¢ lies in the manifold

My ={f, € L2 (0 x Q) fy (5x,v) = 30 X (%) Sij () V; (-, v) with invertible
ij=1
S =(S;) ER™", X; € L* (), V; € L? () and (X;, Xi), = dik,

(V3 Vi), = dye .
Let f, (t,-,-) be a path on M,.. A formal differentiation of f, with respect to t leads to

Frtt) = 37 (K (42) S5 (Vi (8) + X (8) S5 (0 V5 (1)

ij=1
X (6) Sy (D V5 (89) ).
These functions restrict the solution dynamics to the low-rank manifold M, and constitute

the corresponding tangent space, which for fixed time t together with the Gauge conditions
reads

7}r(t)M7" = {fT € L2 (Qx X QV) : f?" (-,X,V) = Z (XZ (-,X) Sij () VJ ('7V)
ij=1
X3 (3 85 () V3 (9) + X (%) Sy () Vi (- v)) with
Sy € R X; € L2(Q),Vj € L2 () and (X, Xi) =0, (V}, Vi) = o}.
Having defined the low-rank manifold and its tangent space, the next objective consists
in determining f (¢,-,-) € M, such that the minimization problem

i Oufy (t,,) = F (L, fr (t,-, - 4.10
B0 () = (6 b D 20 (410

is solved. For the time evolution of the low-rank factors the following differential equations
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can be derived [EL18]:
stat = (Vj, F (t, )y Zxat i

Zszjat XuF t fr ZatSZjVja
¢S5 = <Xi‘/j7F(t7fT)>x7v

Note that we suppress the arguments for a better readability. Then the minimization
constraint (4.10) can be reformulated as the problem of determining f (¢,x,v) such that

Opfr (t,x,v) =P (fr (t,%,V)) F (fr (£,%,V)),

where the orthogonal projector P onto the tangent space Ty, ;) M, can be explicitly given
as

r

PUNF(f) = (Vi F(t ) Vi— > Xi{XiVj, F () Vi

=1 ij=1
r
+ ZXz <X1> F (ta f'l’)>x
=1

The derivations of the continuous projector-splitting as well as of the continuous (rank-
adaptive augmented) BUG integrator are straightforward. An explicit formulation can
be found in [EKKT25].

4.4 Linear stability and conservation of physical invariants

A naturally arising question when considering DLRA schemes concerns their numerical
stability as well as their behavior related to physical invariants. Section 4.4.1 is devoted
to existing linear stability results. In Section 4.4.2 an overview of globally and locally
conservative DLRA schemes is provided and a mass conservative truncation strategy is
presented.

4.4.1 Linear stability

We begin with an analysis of linear stability of DLRA schemes. At this point, we do
not distinguish between the “first discretize, then low-rank” and the “first low-rank, then
discretize” approach. Even if the underlying PDE is linear in f, the coupled evolution
equations for the low-rank factors, as for instance given in (4.5), are non-linear in X, S
and V and it is per se not clear if linear stability concepts can be applied. In [KEC23] it
has been shown that the projector-splitting as well as the BUG integrator approximate
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the non-linear evolution equations for X,S and V as a series of linear equations due
to the fact that in each substep all but one low-rank factor is fixed. In addition, it
is known that QR-decompositions and possible truncation steps that are based on an
SVD approach are stable in the L2-norm [EKK25], making the concepts of linear von
Neumann stability analysis as described in Section 3.2.3 applicable. This enables us to
derive the stability region of the corresponding DLRA scheme, allowing for a comparison
of the DLRA stability region and the stability region of the full-rank problem and for the
choice of an optimal time step size, leading to a reduced computational effort.

Linear stability of the presented integrators. Following [KEC23], the order of dis-
cretization and application of the DLRA approach makes a crucial difference for the
projector-splitting integrator. While the “first discretize, then low-rank” approach is
shown to be L?-unstable due to the discrete S-step backwards in time, the “first low-
rank, then discretize” approach, under a certain CFL condition, can lead to an L?-stable
discretization. Indeed, as proven in [KEC23], the BUG integrator is shown to be L2-stable
independently of the order of discretization and derivation of the DLRA equations. This
result directly translates to the rank-adaptive augmented BUG integrator [EKK™25].

Energy estimates. Existing work on the stability of DLRA schemes often takes energy
estimates as a complementary approach to classic stability considerations into account.
Accordingly, in [KS23] an L2-stability result for radiation therapy is derived. The concept
of energy stability, which has been introduced in Section 3.2.4, is treated in [EHK24,
FKP25] in the context of DLRA schemes for linear RTEs. This method is not limited to
linear equations and a stability result for non-linear thermal radiative transfer is presented
in [PK25]. The contributions of this thesis on low-rank discretizations for linear thermal
radiative transfer published in [BEKK24a, BEKK25b] and on the linear BGK equation
[BEKK24b] also make use of the concept of showing stability estimates in a suitable norm,
which may be related to the energy of the underlying system.

4.4.2 Conservation of physical invariants

Since DLRA is a numerical reduction technique it cannot be expected to preserve all
relevant information related to the physical system over time and important information
ensuring the conservation of physical invariants may get lost. To overcome this problem,
techniques for the preservation of conservation properties have been introduced. We
distinguish between local and global conservation laws. While global conservation ensures
the preservation of macroscopic quantities such as total mass, total momentum or total
energy as described in (2.7), the concept of local conservation guarantees the validity of
a local conservation laws as given in (2.6). Global conservation is easier to achieve and is
obtained from local conservation by integration over the spatial domain [EL19].

Globally conservative DLRA schemes. A result on the global conservation of mass for
the RTE can be found in [PMFEF20]. In this research article a rescaling of the solution is
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performed in each step of the DLRA scheme to ensure the result of the algorithm to match
the expected mass that is computed from the underlying equation. This approach is only
available for the zeroth order moment. For the preservation of higher order moments the
evolution equations have to be adjusted. In [EL19] a DLRA scheme conserving global
mass and momentum is proposed for the Vlasov equation. The results derived in [PM21]
guarantee global mass and global momentum conservation for the RTE under a suitable
modification of the evolution equations.

Locally conservative DLRA schemes. The local preservation of conservation proper-
ties is significantly more demanding than the global one as stronger constraints on the
dynamics of the system have to be fulfilled. In [EJ21] a weighted L2-space with a cor-
responding modification in the L-step of the projector-splitting integrator is introduced,
ensuring local conservation of mass, momentum and energy on a continuous level for the
Vlasov equation. The proposed integrator is not stable with respect to small singular
values but the ideas for its construction have influenced further research. For instance, in
[EOS23, GQ24, EKS23] locally conservative DLRA algorithms for the Vlasov equation as
well as for the RTE, which incorporate a conservative truncation step, are presented. In
this thesis, we employ the rank-adaptive augmented BUG integrator, which is flexible to
basis augmentations. In this setting, different from the considerations in [EOS23] and as
explained in [EKS23], we do not need to adjust the L-step equation but solely include the
basis functions related to the preserved quantities (for instance v — 1 for mass conserva-
tion) in the velocity basis and implement a conservative truncation step. However, this
procedure requires an explicit forward Euler step in at least the S-step of the scheme.

Mass conservative truncation strategy. In the following two chapters, we focus on mass
conservative DLRA schemes, for which the additional basis augmentations

X+l [u8+1’}/in+1} € RN=x(2r+1) and vl — [el’{}n—&-l} c RNvx(2r+1)

are applied. The vector ug'H denotes the updated zeroth order moment and e; the first
unit vector in RM>. They are both stored in the first column of the updated X"+ and
\A/'”“, respectively. Also the coefficient matrix has to be updated to Sn+l ¢ REr+1)x(2r+1)
accordingly. In detail, the concrete form of the corresponding updated S will be ex-
plained in Chapter 5 and Chapter 6, respectively. An extension ensuring the preserva-
tion of further physical invariants is straightforward and can be achieved as described in
[E0S23, EKS23]. The mass conservative truncation strategy proceeds as follows:

(i) We set K"t = Xn*+18n+1 and split it into two parts K"+! = [I/i’”l’cons, I/E"H’rem},
where Kn+1cons corresponds to the first and K7 lrem ¢4 the remaining columns
of K"*1. Analogously, we split V"1 into Vil = [Vntleons yndlrem) yhere
Vrtlicons corresponds to the first and Vrtlrem g the remaining columns of vt

ﬁn—i—l,cons

inJrl,cons —

(ii) We compute and Sntlcons — HK”*LCOHS

Hﬁn-{—l,cons
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(iii)
(iv)

(v)

(vi)

We perform a QR-decomposition to obtain Xn+lremGntlrem — (I/E"H’rem).

We compute ﬁE@T = svd (g’”l’rem) from an SVD, where ﬁ,@ € R?™?" are
orthogonal matrices and 3 € R?"*?" is the diagonal matrix containing the singular
values o1, ...,09,. The new rank 7 < 2r is determined such that

1/2
2r /

S i) <o

j=r+1

where 9 denotes a prescribed tolerance parameter. Then we set S7HLrem ¢ R7XT g
be the matrix containing the 7 largest singular values of S?T1™™ and the matrices
Prem Qrem ¢ R27XT to contain the first 7 columns of P and Q, respectively. Finally,

we Compute XnJrl,rern — in+1,rem§rem c RNIXF and VnJrl,rem — §n+1,remarem c
RNUX?

We set /)v(n—i-l — [in—l—l,cons’ Xn—i—l,rem} and /‘v[n—i—l i[i\[n—i-l,cons’ Vn+1,rem] and pfrform
a QR-decomposition to obtain X" R! = qr (X”+1) and V'TIR? = qr (V”+1),
respectively.

‘We compute

)

gntl _ Rl [SHH’COHS 0 ] 2T

0 Sn+1,rem

Then the new rank r,4 is given by 7,41 =7 + 1.

Altogether, this leads to the updated solution f+! = X+1§n+HIVr+LT after one time

step at time t, 11 = t, + At.
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A DLRA scheme for the Su-Olson problem

Thermal radiative transfer problems are a class of kinetic transport equations modeling
the motion of particles that move through and interact with a background medium, for
instance by scattering or absorption. By this interaction the background medium can
heat up and itself emit new particles, enforcing the exchange of energy between particles
and the background material.

In this chapter, we focus on the thermal radiative transfer equations (RTEs) with Su-Olson
closure, leading to a linearized coupled internal energy model, for which the corresponding
background information is given in Section 5.1. In Section 5.2 the method of DLRA is
applied to this system and the continuous DLRA evolution equations obtained with the
rank-adaptive augmented BUG integrator are derived. Section 5.3 discretizes the resulting
equations in angle and space and provides an energy stability result for the semi-discrete
time-continuous system. The main method is presented in Section 5.4, where a provably
energy stable space-time discretization is proposed. Local mass conservation, proven
in Section 5.5, is achieved by additional basis augmentations and the implementation
of a conservative truncation strategy. Numerical experiments explained in Section 5.6
underline the theoretical properties before Section 5.7 provides a short summary and
conclusion. The results of this chapter closely follow the presentation in [BEKK24a].

5.1 Thermal radiative transfer equations

The process of thermal radiative transfer is modeled by two coupled equations, the thermal
RTFEs. With absorbing background material they are given in 1D slab geometry by

SO (1, 0) 0 (1,2,0) = 7 (B (t,2) = ()
e (t,x) =o (f (t,z,u) — B (t,x)>#,

where the distribution function f (¢, z, ) describes the particle density and e (¢,z) the
internal energy of the material. The variable t € Rt denotes time, z € Q, C R represents
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5. A DLRA scheme for the Su-Olson problem

the spatial and p € 0, = [—1,1] the angular (or directional) variable. When restricting
the 1D velocity variable to the interval [—1, 1], using y instead of v corresponds to common
notation. The opacity ¢ encodes the rate at which particles are absorbed by the medium
and we use brackets (-),, (-), to indicate an integration over the spatial and the angular
domain, respectively. Moreover, the speed of light is denoted by ¢ and the black body
radiation at the material temperature 7' is denoted by B (7). It can be described by the
Stefan-Boltzmann law

B(T) = acT?,

where a = 4"% is the radiation density constant and ogp the Stefan-Boltzmann constant.
Further information on the thermal RTEs and their relevance in physics can be found
in [Pom73, BG70, HMDS20]. The above set of equations is not closed and different
closures exist to determine a relation between the temperature 7" and the internal energy
e [OAHO00]. We follow the ideas of Pomraning [Pom79] and Su and Olson [SO97] and set
e(T) = aB(T). From this point on, we call aB(T) the internal energy of the material.
Further, we perform a rescaling 7 = é and by an abuse of notation write ¢ instead of 7 in
the remainder. This leads to the system

o f (ta xnu) + 0Oy f (t7x>ﬂ) =0 (B (t,.ﬂ:‘) —f (tv £, :u)) ) (5'13)

OB (t,x) =0 (f (t,x,un) —B(t,m)>“, (5.1b)
where without loss of generality we assume o = 1. This system is a closed linearized
internal energy model, which is analytically solvable and serves as a common benchmark
for numerical considerations [MELD08, MHB08a, MHBO8b]. In the remaining thesis, we
call equations (5.1) the Su-Olson problem. Note that for the moment we omit initial and
boundary conditions. In subsequent considerations, our studies include the conservation
properties of the derived numerical scheme. For the Su-Olson problem, the mass and the
momentum of the system are defined as follows.

Definition 5.1 (Macroscopic quantities). The mass and the momentum of the Su-Olson
problem are defined as

pltca) = [Ftop)du+ Blea)  and alta) = [ af (o) d
In particular, the Su-Olson problem satisfies the local conservation law
Op (t,2) + Oyt (t,x) = 0. (5.2)

Numerical solution of the thermal RTEs. Constructing numerical schemes for the so-
lution of the Su-Olson problem (5.1) is challenging. First, the potentially stiff opacity
term on the right-hand side of both equations presented in (5.1) must be treated by an
implicit time integration scheme. Second, for 3D spatial domains the computational costs
and memory requirements for finely resolved spatial and angular discretizations become
prohibitive. A widely used strategy to address this issue is to choose coarse numerical
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discretizations and mitigate numerical artifacts [Lat68, Mat99, MWLPO03] which arise
due to the insufficient resolution, see e.g. [CFKK19, FKCH20, ASO1, Lat71, Tenl6]. De-
spite the success of these approaches in a large number of applications, the requirement
of picking user-determined and problem dependent tuning parameters can render them
impracticable.

Thermal RTEs and DLRA. Another approach to deal with the high dimensionality
of the problem is the application of DLRA methods, which are able to yield accu-
rate solutions while not requiring an expensive offline training phase. Earlier work on
radiative transfer with DLRA methods has focused on asymptotic-preserving schemes
[EHW21, EHK24, FKP25], mass conservation [PM21], stable discretizations [KEC23],
imposing boundary conditions [KS23], and implicit temporal discretizations [PM23]. A
discontinuous Galerkin discretization of the DLRA evolution equations for thermal radia-
tive transfer has been proposed in [CFK22]. In this chapter, we focus on energy stability
and mass conservation results for the thermal RTEs with Su-Olson closure.

5.2 Continuous DLRA equations for Su-Olson

We begin with a formulation of the continuous DLRA equations for the Su-Olson problem
presented in (5.1). The distribution function f is approximated as

f (tvl'nu) ~ Z Xm (t,él?) Smn (t) VT] (t7/~j’) ’
m,n=1

where {X,, (t,z) : m = 1,...,r} are the spatial orthonormal basis functions and {V,, (¢, i) :
n =1,...,r} are the angular orthonormal basis functions. To simplify notation, we identify
f with its low-rank approximation f, and, throughout the following considerations, denote
both the full rank and the low-rank solution by f. All theoretical considerations are
performed in one spatial and one angular variable. However, an extension to higher
dimensions is straightforward.

The rank-adaptive augmented BUG integrator introduced in Section 4.2.2 is employed in
its continuous formulation and the corresponding evolution equations for system (5.1) are
derived. In the first step, the DLRA evolution equations for the particle density (5.1a)
are given as follows:

K-step: We write K, (t,x) = Y, _ X (t,2) Spyy (t). This leads to the representation
f o, ) =321 Ky (t,2) V' () for the low-rank approximation of the solution, where
{Vn” (u)} denotes the set of angular orthonormal basis functions, which is kept fixed in
this step. Inserting this representation of f into (5.1a) and projecting onto V' (1) yields
the PDE

0K, (t,z) = — Z 0. Iy (t, ) (V' ,an”>u +0 (B(t,x) (Vy")u — Kp(t, z)) . (5.3a)
n=1
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5. A DLRA scheme for the Su-Olson problem

Together with the initial condition K, (t,,z) =, n(x)Sn

me1 X, mn» the spatial basis func-

tions X" (z) with m = 1,...,7 are updated to X”“( ) with m = 1,...,2r by applying
Gram Schmidt to [K,(tn+1,2), X0 (x)] = 227" Xt (x ) R;,,- Note that R}, is dis-
carded after this step. We compute and store Mmq <X ntl X ”> .

L-step: We write L, (t,1) = 3271 Smy (t) Vi (£, ). This leads to the representa-
tion f(t,z,p) = > 1 X () L, (t, ) for the low-rank approximation of the solution,
{X" (z)} denotes the set of spatial orthonormal basis functions, which is kept fixed in

this step. Inserting this representation of f into (5.1a) and projecting onto X} (x) yields
the PDE

Or Ly = —pu Z <X” —X”> Ly (t,p) +0 (<X;},B(t,x)>x — L, (t,p)). (5.3b)

Together with the initial condition Ly, (t,, u) = 22:1 Sy Vo' (1), the angular basis func-
tions V' (u) with n = 1,...,r are updated to /‘Z]"H (p) with n = 1, ..., 2r by applying Gram
Schmidt to [Ly, (tny1, 1), Vi ()] = Z% Vot (u) B2, Note that R7, is discarded af-
ter this step. We compute and store an <V”+1 V”> .

Lastly the augmented Galerkin step of the rank-adaptive augmented BUG integrator is
constructed according to:

S-step: We fix the updated spatial basis functions )?gjl with m =1, ..., 2r and the up-
dated angular basis functions ?n"“ withn =1, ..., 2r and introduce the notation gm,, (t) =
> gp=1 Mquqp( ) np- For an update of the entries Sj, of the coefficient matrix with
¢,p = 1,...,r we insert the representation f (¢, z,p) = S X”+1 (x )Smn( )?n"*l (1)

m,n=1
into (5.1a) and test against X/ () and V**! (u). This yields the ODE

2r
g v d vn q in in
Sgp (1) = — Z <Xq+1, @Xm+1> S (t) <Vp i wVy H>u (5.3¢)
m,n=1 T

o (<5€;+1,B (t2)) Vit — 8, (t)) .

0

Together with the initial condition SW7 (tn) = >0 p=1 Mqu an we obtain the updated
augmented quantities Sgp“ with ¢,p =1, ..., 2r.

For the evolution equation of the internal energy we insert all augmented low-rank factors
into (5.1b) and obtain the PDE

2r
aB(ta)=c| > Xt (x)Smy () @W}# —2B(t,z) |. (5.3d)
m,n=1

Before repeating this process and evolving the subequations further in time, we truncate
the augmented quantities to a new rank r, 1 < 2r by using a suitable truncation strategy.
Note, when employing the rank-adaptive augmented BUG integrator we are not limited
to augmenting with the old basis in the K- and L-step.
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5.3 Discretization in angle and space

Having derived the K-, L- and S-step of the rank-adaptive augmented BUG integrator
for the Su-Olson problem, Sections 5.3.1 and 5.3.2 are devoted to the angular and spatial
discretization of the evolution equations. This leads to a semi-discrete time-continuous
system, for which energy stability is proven in Section 5.3.3.

5.3.1 Angular discretization

For the angular discretization a modal representation with normalized rescaled Legendre
polynomials Py (p) as introduced in Section 3.3.2 is employed. The rescaled Legendre
polynomials constitute a complete set of orthogonal functions on the interval [—1, 1] and
satisfy (Pg (1) , Py (1)) = 6ge. We approximate

N,—1 N,—1

Lp)~ > Vg () Pe(p), L ()~ Y Lo (1) Pe(p),
£=0 =0

and insert these representations into the evolution equations (5.3). We multiply (5.3b)
with Py (1) and integrate over p. In addition, we exploit the fact that with A € RNu*Nu

as defined in (3.26) we can rewrite (V," (u), V" ('LL)>M = ]iv*lj:_& Vir AkeVy,- Then the
evolution equations with angular discretization are given by
N,—1
K, (t,x Za Ky (t,2) Y VAV +o (V2B (t,2) Vi, — Ky (t,7)) ,  (5.4a)
n=1 k=0
Liy (8) = — Z <Xn *Xn> Z Ly, (t) Are (5.4b)
m=1
+O—(<X;7 757',B)>m Oko _Lk’p( ))
2r
o n d < ¥n A n in
Sp(t) == > <Xq+1 =X +1> Z Vit A vt (5.4c)
m,n=1 k=0

+o (V2(X T B(t,2) Vo' =S, ().

For the angular discretization of (5.3d) we obtain the equation

OB (t,z) =0 fonH ) Sy (8) Vgt = 2B (t, ) | . (5.4d)

m,n=1

5.3.2 Spatial discretization

To derive a spatial discretization, we construct a spatial grid with N, grid cells and

equidistant spacing Ax = N%E Spatially dependent quantities are approximated at the

53



5. A DLRA scheme for the Su-Olson problem

grid points z; for j = 1,..., N, and denoted by

Xjp(t) = X (t,25),  Kjp(t)= Ky (t,z;),  Bj(t)~= B(t,z;).

Assuming periodic boundary conditions, first-order spatial derivatives 0, are approxi-

mated using the centered FD method. For stability reasons, a diffusion term involving

second-order derivatives 0., is added. This term is also approximated by the centered
FD method. We employ the tridiagonal stencil matrices D* € RV=*Ne given in (3.8) and
D** ¢ RNe*Ne defined in (3.11). Recall that the symmetric matrix A is diagonalizable
in the form A = QMQ" with Q being orthogonal and M = diag(oy, ..., on,—1) and that

we have defined |A| = Q|M|Q". The following matrix ODEs are obtained:

Ny—1
ZD ZKm > Vi AueVi
k=0
Ny—1
ZD ZKZW Z Vén |A|k€ Vkp
k,0=0

+o (\@Bj (t) VOp — Ky (1)),

N‘u*l r

Nz
Lkp (t) = — Z Aké Z Lfm (t) Z X’Z:anijnp
(=0 m

—1 ij=1
Nu 1

Z 1Al Z Ly, (t Z Xp,DEX

i,7=1

+o 6kOZB Lk’p() 3

N, o Nu—1
_ vn+l e vn+lag I n+1 Trn+1
- E X, Dj; E . X S (1) Z Viy  AreVi,

3,7=1 m,n=1 k=0
N, 2 N,—1
Ax 4 -

IRl SRR SRR
2,7=1 m,n=1 k=0

+o fz Xn+1B Vn+1 §qp (t)
Lastly, for the internal energy B we receive the spatially discretized equation

B;(t) =0 | V2 Z XSy (1) Vautt — 2B; (1)

m,n=1

= o (V2uiit (1) - 2B; (1)),

where we use the notation Z X"HS n (1) VnJrl = U?;;H ().

m,n=1

(5.5a)

(5.5b)

(5.5¢)

(5.5d)
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5.3.3 Energy stability of the semi-discrete system

The aim of this section is showing energy stability of the semi-discrete time-continuous
system (5.5). First, a formal definition of the total energy of the system is presented.

Definition 5.2 (Total energy). Let us denote u™! (t) = (u”,jl( )) € RNe*Nu for the
particle density and B (t) = (B; (t)) € R™= for the internal energy. The quantity

B(1) = [l 0% + 5 1B O]

where ||| » denotes the Frobenius and ||| ; the Euclidean norm, is called the total energy
of the system (5.5).

Then, dissipation of the total energy can be shown for system (5.5).

Theorem 5.3 (Energy stability of the semi-discrete system). The semi-discrete time-
continuous system (5.5) is energy stable, i.e. it holds E(t) < 0.

Proof. Let us start from the S-step presented in (5.5¢), which is given by

. Ng 2r Nu—l
° _ v+l e vn+l1a I-n+1 Tn+1
Sop (1) = — Z X Dy Z X Smn (1) Z Vin AV,

ij=1 moa=1 k(=0

Azx Ny 2r Ny—1

vn+l nae vn+lg 1n+1 In+1
t Z X Dji Z Xy Smn (1) Z Ver 1Al Vi
1,7=1 m,n=1 k,0=0

+o szn+1B n+1 §qp (t)

We multiply with X\g;lf}éyl, where o = 1,..., N, and 8 = 0,..., N, — 1, and sum over
q and p. Further, the projection operators Po){g-nﬂ = erzl )A(g;r 1)?}2“ and PIZ;H =
Z Vk’;'HV"Jrl are introduced. We obtain the representation

N,—1
3 == 55 PEDL Y a0 Akl
5,j=1 k=0
A N, N,—1
X xn+l Vn+1
+ 5 2 Pa D > w0 Al By
i,j=1 k=0
Na: 1 1
n+ n+4
+o | V2Y PXTUB (1) dPyy —ulh (1)
j=1

In the next step, we multiply with ungl (t) and sum over a and 3. Note that it holds

N,—1

ZPX”“ Ml =ulf' (1) and Z Pl () = ult ().
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5. A DLRA scheme for the Su-Olson problem

This leads to

N, Nu—1
1d
5&”“”“ (ﬂ”?: Z Z ulhtt (8) DF ™ () Age
1,5=1 k=0
N, Np—1
Z Z un—i—l Dmc n-l—l( )’A‘ké
i,j=1 k £=0

+o fzunﬂ (t) xo — [0 (1)

Recall that the matrix A can be decomposed as A = QMQ' with Q being a orthogonal
matrix and M = diag(oy, ..., UNN_l). Inserting this representation gives

1d ) N, Nu—1 N,—1
5& Hun—H (t)HF Z Z un+1 D;gz ;l£+1 ) Z Qﬁmakam
1,j=1 k,£=0 m=0
N,—1
Z Z TL—H Dxx n—l—l ) Z Q€m|am|ka
1,j=1 k=0 m=0
e \[Zun—kl )5k0 . ||un+1 (t)Hi7
N,—1
=— Z O Z antt (t) DI (1)
i,7=1
Nu 1
Z onl 3 5 (0 D7 0
i,j=1

+o \fzun“ (1) 3o = 0™ )7 ] »

n—l—l() ZNH 1 n+1

where u Ko Wik (t) Qgm- Using the properties of the stencil matrices shown

in Lemma 3.1, we obtain

N’I‘ NH 1 Nr

1d A
sl =52 > (X Z D (1) 1Al (5.6)
j=1 =0 \i=1 k=0

Ny
V2 u (1) 30 — [[u™* (8)] 7
Jj=1

In the following step, we consider equation (5.5d). Multiplication with Bj () and sum-
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mation over j yields

33 BOIE =0 qu”“ (1) 2B @3 . (5.7)

Adding the evolution equations (5.6) and (5.7) and using the concept of the total energy
provided in Definition 5.2, leads to

N, Nu—=1 / N, Nu—1 2
- =530 3N DID PRSI0

j=1 ¢=0 \i=1 k=0
+o| V2 Zu"“ () = [0 @)
+o qu"“ (t) - 2|B ()%

N, Nu—1 N, Nu— 2

Z RS Z Dfuntt (1) |4l

j=1 ¢=0 \i=1 k=0

Ny N, )
- Z(“%Fl () - ) Z ( e t)) (1 —6ro) | <0,

Jj=1 j=1 k=0

2
where in the last step we have rewritten ||u™*! (t)HQF = Z] 1 ZN“ ! ( ;"H (t)) and

IB(1)||5 = Z;V:ﬂ”l (Bj (t))?. The expression obtained is non-positive, which means that £

is dissipated in time. Hence, the system is energy stable. O

5.4 Discretization in time

The aim of this section is the construction of a conservative DLRA scheme that is energy
stable under a sharp time step restriction. First, the definition of the total energy is
extended to the fully discrete framework.

Definition 5.4 (Fully discrete total energy). Let u™ = (u’;k) € RN=*Nu with entries
(S Zmn 1 X7mSm, nViy and B" = (B]”) € RNz, The quantity
1 2 1 2
Bt + 5 B
is called the fully discrete total energy at time t,.

Constructing temporally discretized schemes that preserve the energy dissipation shown
in Theorem 5.3 while not suffering from the potentially stiff opacity term is not trivial.

57



5. A DLRA scheme for the Su-Olson problem

In fact, as shown in Section 5.4.1, a naive IMEX time discretization may increase the
total energy. This unphysical behavior is overcome by carefully constructing an energy
stable space-time discretization in Section 5.4.2, for which rigorous mathematical proofs
are given.

5.4.1 Naive temporal discretization

The analysis starts from system (5.5) which still depends continuously on time. For the
temporal discretization, a naive IMEX Euler scheme performing a splitting of internal
energy and radiation transport is applied. This means that we use an explicit Euler step
for the transport part of the evolution equations, treat the internal energy B explicitly
and apply an implicit Euler step for the radiation absorption term. The evolution from
time t,, to time t, 11 = t, + At is described as follows:

N,—1

Ny r
Kt = G, = Aty D5y KG S Vi AV,
=1

n=1 k=0

Nu—1
+ At— Z DI Z D VAl Vi, (5.8a)

i=1 n=1 k=0
+oAL(V2BIVE, — K0,
N,—1
n+1 __ n T yn
Lyttt = Ly, — At Z Ape Z Ly Z Xp. DEXT
t,j=1
Nu 1
+ At— Z 1Al Z Ly Z X}, DEEXT, (5.8b)
t,j=1
Ng
+ oAt | S0 Y By Xp, — Lt
j=1

The augmented and time-updated spatial basis 5(\?;1 and velocity basis /‘7};)“ are obtained
from a QR-decomposition of the augmented quantities )?}Lpﬂ = qr ([K?pH’X;lpD and

/‘/\}g’?l = ([LZ;’l,VkTIL)D, according to the rank-adaptive augmented BUG integrator.
Lastly, a Galerkm step for the augmented bases is performed according to
Ny 2r N,—1
on+l _ an vn+l ez vn+lan 17n+1 17n+1
Sqp = = Sgp — A Z Xiq Dji Z Xim  Smn Z ey AktVig,
i,j=1 m,n=1 k=0
Az N, 2r
v+l vntla 1 1n+1
A== Y XEHRDEE Y L XS, Z Vot Al Vit (5.8¢)
i,j=1 m,n=1 k=0

+ oAt \/§ZX“+1B"V”+1 Set ],
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where §}}m = Z;V:zl kNj 0 ! > ap=1 X\;ﬁ: 1X%SQPV,$A,€’:7+1. The internal energy B is up-
dated through

2r
+1 _ vn+1lgn+17,n+1 +1
BMf' = BP +oAt| V2 Y XpHtSitivett —oB! (5.8d)
m,n=1

— +1 +1
= B} + oAt (Vaulf! — 2Bt .

However, in Theorem 5.5 we prove that this numerical method exhibits the undesirable
property of potentially increasing the total energy during a single time step. This behavior
is inconsistent with the governing physical principles.

Theorem 5.5. There exist initial value pairs (u™,B™) and time step sizes At such that
the naive scheme (5.8) results in (u”+1,B”+1) for which the fully discrete total energy
increases, i.e. for which Entt > E™,

Proof. We multiply the S-step equation given in (5.8¢c) with X Z; 1/‘7&“ and sum over ¢
and p. Together with the projection operators Pjg.nﬂ = Zi;l )?g;rl)??qﬂ and Pk‘gnﬂ =

Zigl @ZH?"H and the definition of §,i,lln, we obtain

Bp
Ne N,—1
n+1 n+1
i =y - A0S REDL Y Al
ij=1 k,0=0
A Ny N,—1
X Xn+l V7L+1
+ At~ > PXTIDEE Y uf Al Pl (5.9)
ij=1 k,0=0
N, Ny—1
~yn+1 P
+olAt | V2Y N P B P - ulh!
j=1 k=0

Let us choose a solution u and an internal energy B which at all times are constant in
space. Then all terms in (5.9) containing the stencil matrices D* and D** drop out. In
addition, we conclude that all projections in the last term of (5.9) are exact since B} is
constant in space and Jyg lies in the span of the basis. Hence, it follows that

uggl = Upg + oAt (\@Bgégo — ugzgl) . (5.10)

Let us now set By*! = B"*! and “ZJﬁrl = u""1§g9. The scalar values B"™! and u"*! are

chosen such that B"+! = %u”“ + 7, where

2v/20 At oyt
2+ 30At + 402 (At)* + 403 (AL)>

0<y<

It can be verified that the chosen values for B»*1 and uzgl are retrieved after a single
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step of the scheme (5.8) when using the initial conditions

1
—u"T v (1 +20A1), (5.11a)

V2
up g = (U"H + o At(u" T — \/iBZ)) dpo = (U"H — V20 Aty (1 + QUAt)) dgo. (5.11b)

ap

B = B"" 4 20 Aty =

Inserting the initial values (5.11) into (5.10), we directly obtain uggl = u"*1§g0. Similarly,

by inserting (5.11) into (5.8d) we obtain B2+ = B"*!. Then we square both of the initial
terms (5.11). This leads to

(B)? = (B"™)? + 40 AtyB™ + 40 (AL)? 42
1
— (B")? + 40ty (ﬂu”+1 + v) +40% (At)* 42,
(unﬁ)2 = ((u”“)2 — 2V 20 Aty (1 4 20At) + 202 (A)* 42 (1 + 20At)2) d50.

Q.

Summing the first equation over «, the second equation over o and 3, adding the two
terms, and multiplying with %, together with Definition 5.4 yields

Ng
Et = B4 % > (20Aty (2V20 A — 4 (24 204t + oAt (1 + 20A1)°) ) .

a=1

Note that E"t! > E™ if
2V20 At — 4 (24 200t + 0 AL (1 + 20At)°) > 0.

Rearranging the inequality gives

2v/20 At il
u"

<
TS 0 30 AL+ 402 (A1) 1 403 (A1)

This is exactly the domain 7 is chosen from. Hence, we have E"™! > E™ and the
unphysical behavior of the scheme (5.8) is proven. O

5.4.2 Energy stable space-time discretization

The naive scheme presented in (5.8) can increase the total energy in one time step. The
main goal of this section is to construct a novel energy stable time integration scheme
for which the corresponding analysis leads to a classic hyperbolic CFL condition which
enables operating up to a time step size of At = Cery, - Ax.

Energy stable DLRA scheme for Su-Olson. For constructing this energy stable scheme,
the original equations are split in two parts, followed by a basis augmentation and a
correction step.
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In detail, we first solve

Na r N,—1
= Kj, — AtZDﬁ ZKZZ Z VinAke Vi (5.12a)
=1 n=1 k£=0
N,—1
+At—ZD“Z Z WT;,]A]M Vkern
n=1 k,0=0
N,—1
Ly, = Li, — At Z Age Z Ly, Z XnDEXT (5.12b)
1,j=1
N# 1
+ Atf Z Al Z Ly, Z Xp,DIEXT,.
1,5=1

The updated bases X* of rank 2r and V* of rank 2r are obtained from a QR-decomposition
of the augmented quantities X* = qr ([K*,X"]) and V* = qr([L*,V"]). Using the
notation Sy, = S e gial > ap=1 Xr Xngn VipVin» we solve the S-step equation

Jj=1 Jm**jq~qp
_ Ny 2r N,_L—l
* _ qQn Tk x x Qn * *
Spy= S0, — At > X505 ST X, Sn S Vi Ak, (5.12c)

i,j=1 m,n=1 k,6=0
2r _ Ny—1

+ Ati Z XJ*qD;Ulz Z X;msgm Z sz | Al V;p'
5,j=1 m,n=1 k,0=0

Second, we solve the coupled equations for the internal energy B € R+ and the zeroth
order moment uj ! = (u%r 1); € RNz according to

© 2r Ny—1
T XS AL Y o, S T
m,n=1 i=1 m,n=1 (=0
2r . Ny—1
+AthD D2 XinSi D Vi lAlyg + ot (V2B =)
m,n=1 =0
Byt = B + oAt (\f wngt — 2Byt (5.12¢)

Following [KEC23], we perform the opacity update only on L = if\*/S\*, i.e. we compute

*,ab: 1

We perform a QR-decomposition VabsGrabs T qr (L*vabs) to retrieve the factorized

basis V*25 and the coefficients contained in the matrix S*2*5. In the next step, we
augment the basis matrices according to
Xn+1 = qr ([ n+1 X*}) and {\/-nJrl = qr ([el’{\/*,abs}) ’ (512g)
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5. A DLRA scheme for the Su-Olson problem

where e; denotes the first unit vector in R™V+. Third, the coefficient matrix is updated to
Sntl ¢ R2r+1)x(2r+1) through

§n+1 _ in—l—l,Ti*’S\*,abs{\/*,abs,T (I _ ele]—) {\fn—i-l + )/En—&—l,'l'ﬁg-i-leifﬁn—&-l' (5.12h)

The updated solution u € RN=*Nu is obtained as u"*! = X187 +1V+1, Lastly, we
truncate the augmented quantities X"+!, §"+! and V™! from rank 2r + 1 to a new rank
rpt1 Dy using a suitable truncation strategy such as proposed in Section 4.4.2. This
finally leads to the low-rank factors X"*! 8"+l and V**!. To provide an overview of the
scheme, its main steps are visualized in Algorithm 1.

Proof of energy stability of the proposed low-rank scheme. For showing energy sta-
bility of the DLRA scheme given in (5.12), we first provide the following auxiliary results.

Lemma 5.6 (Young’s inequality, [CR16]). Let 1 < p < q < oo be such that % + % =1
and let a,b € RT. Then it holds

a? bl
abg 7+77
p q

with equality if and only if aP? = b9.
Proof. See for instance [CR16]. O

A practically useful result within the framework of Fourier analysis is obtained following
the ideas presented in [KEC23].

Lemma 5.7. Let us define the matriz E € CNe>*Ne with entries

Ax

Ejo =
V1|

exp (2miax;) , for j,a=1,..., Ng,

where |Qy| denotes the length of the domain Q.. Then, E is a unitary matriz, i.e.
EEH = EfE =1, where the superscript H denotes the complex transpose and I € RN=*Nz
represents the identity matriz. In addition, it diagonalizes the stencil matrices

D'E = EA” with v € {x,xx,+},

and AV € CNe*Ne gre the diagonal matrices with entries

z 1 2miaAx —2miaAz\ __ v :
Ada = 2Az (e — e ) T A (a),
] 4 . 2
)\goixa _ e27rszx —24 67271'104Az = —(cos(vy) — 1 ,
(Axz)? ( ) (Az)? (costve) = 1)
1 . 1
A= N (emiede 1) = ~; (0s(va) +isin(va) —1),

where v, 1= 2razT.
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5.4. Discretization in time

Algorithm 1 Flowchart of the energy stable and mass conservative DLRA scheme (5.12).

e internal energy at time ¢,,: B}
input e low-rank factors at time t,: X s St V,g]
e rank at time t,,: r
|
[update bases according to (5.12a) and (5.12b)]

%
ij’

*
Ly,

(augment bases with X7 . Vkﬁ]]

\

~

/\* *
ij’ an

[update coefficient matrix according to (5.120)]

/\*
S

[update zeroth order moment and internal energy according to (5.12d) and (5.126)}

Bn+1 ~n+1
J

[perform absorption step according to (5.12f)] s Ui

o*,abs 7r7x,abs
Swa® Vi

{augment bases with @™ and e; according to (5.12g)

)
)

vn+1l {rn+l
ij ) an

[adjust coefficient matrix Sy3™ according to (5.12h)}

an+1
Som

vn+1 an+1 I-n+1
‘truncate factors ij o ,an ’

e internal energy at time t,,1: B;LH

output e low-rank factors at time t,,,1: X7 SQ{;I, V,g;rl

jm >
e rank at time t,11: T
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5. A DLRA scheme for the Su-Olson problem

Proof. The assertions follow directly by inserting the definitions of the matrix E, the
spatial stencil matrices D7 and the diagonal matrices A” for v € {x,zx,+}, assuming
periodic boundary conditions. ]

Also the following lemma is indispensable for the proof of energy stability.
Lemma 5.8. Under the time step restriction At < Ax it holds

A

2 2
At ”Dxu”“A - 7“’““Dmu"+1 \A\H ~ Az HDmn+1 yAyl/ZHF <0. (5.13)
F

Proof. We employ a Fourier analysis similar to [KEC23] and use Lemma 5.7 introducing
the matrices E and A”. Moreover, we recall that the matrix A can be decomposed as
A = QMQ' with Q being orthogonal and M = diag(oq, ..., UN# 1). Let us denote

utt = (unfl) € CNoxNu with entries uy! = ZJ 1 ZN“ 'E a]u]k 'Qm- By applying

Parseval’s identity as stated in Proposition 3.14, we obtain

A

2
At Dxun-‘rlA o ;Dmxun+1 |AH — Az HD+UTH_1 |A|1/2Hi
F

Al’ Aa:x/\n+l

2 2
— At EAxﬁn+lMQT — Az HEA+ﬁn+1 ’M|1/2 QTHF
F

A 2 2
iAma”H yM|H ~ Az HA+a”+1 yM|1/2H
2 I F

N, N.—1
o] lom| e
_22 Z (At = 2|1—cos(1/a)|— e |1 cos (va)| | |up "+1

a=1 m=0

= At [|A"a" M~

A sufficient condition to ensure negativity is that for each index m it must hold

At(’Zm)z |1 — cos (V)| < |A93| |1 — cos (vy)] -
Hence, for At < | -7, equation (5 (5.13) holds. Since |o,,| < 1, we have proven the lemma.

O]

We can now show energy stability of the proposed scheme.

Theorem 5.9 (Energy stability of the proposed DLRA scheme). Under the time step
restriction At < Ax the fully discrete DLRA scheme presented in (5.12) is energy stable,

e. it holds
1

HBn+1 H?ﬂ HXn—HSn—HVn—H T
2

1 n nQnysn, I 2
) <5 IB% + HX smV™ HF (5.14)

Proof. First, we multiply equation (5.12¢) with B;LH and obtain

(B;L+1) _ B”B”“ 1 oAt (fun+an+1 (B]nﬂ)?) .
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5.4. Discretization in time

Let us note that
BrBIH! = % (B;.L“)2 + % (B1)? - % (B! - B;?)Q. (5.15)

Inserting this relation and summing over j leads to

1 n2 1 Ak s 1= 1 2
2 (B) =3 (B =5 > (5 - B)) (5.16)
Jj=1 j=1 j=1

+0Atz< NeTinay:ias (B;L“f).

2 ~ o~
To obtain a similar expression for (u;‘,:r 1) , we multiply (5.12c) with X} Vﬁ*p and sum
Xr S Vﬁ*p and

over ¢ and p. For simplicity of notation, let us introduce uzﬁ = Z a.0=1 Xaq e

Upg = qu 1 X;qsgpvgp as well as the projection operators Pjg- = Z X;qX;q and
P,;g = Z Vkpvﬁp Then we obtain
N, N,—1
uhg = ups — At Y P DY Z uy Awe Pl (5.17)
ij=1 k,£=0
A N, Ny—1
X X* Vo
+ At~ > PX DI uf Al Pl
4,j=1 k=0

Note that with uggl = Eg;zl X o 1§;‘J 1%“ and by construction it holds

un-i—l — ugﬁ(l — 660) ~n+15 50-
of 1+ oAt

Hence, inserting the schemes for uj, 5 and u a'tt ie. equations (5.17) and (5.12d), leads to

N, N,—1
(1+oAt)ult' = (ugﬁ — At > PX D5, Z uly APl
ij=1 k,0=0

N,—1
+ At— Z P DI uly| Al P,XB> (1—650)

1,7=1 k=0
Ny N,—1

(- 203528 3 st
i=1 /=0

N,—1
+At—ZD > u&|A!0€+\/§aAtB;‘+1>550.

=0
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5. A DLRA scheme for the Su-Olson problem

In the next step, we multiply with uggl and sum over « and 3. Note that it holds

N, Ny—1

X* ngl _ 1 ontl
> Paugst=up(t)  and Z AT T
a=1

To be consistent in notation, we change the summation indices in the corresponding terms

from « to j and from f to k. Let us note that

N, Ny—1 N, Np—1 1 ) 1 5
>N et =30 Y (5 () 5 )’ - 5 (i — ) ) 6a1)
j=1 k=0 Jj=1 k=0
This results in
-1 | No Nu—l , 1 N,—1 )
*Z 3 () =5 ()" =5 (i = k)
j=1 k=0 j=1 k=0 j=1 k=0
N,—1 N, N,—1
Z Z un-i—lD;cZ zZAkf—’—Ati Z Z un—‘rlec Z’A’M
1,j=1 k£=0 1,5=1 k=0
N, Np—1
+O’Atz Z n+1 ([Bn—i-lé n—‘,—l) )
7j=1 k=0

N,—1
Let us now add the zero term At Z” 1 k’g 0 "HD;”Z ?ZHAM and add and subtract
the term At4L Z” 1 fo‘g 01 ;‘,lem utH|Al,,. This yields

N, N,—1 N, N,—1 N, N,—1
1 C n+1 2 1 S n \2 1 S n+1 n 2
B Z (u]k ) =3 () ) Z (“Jk _“Jk)
j=1 k=0 j=1 k=0 j=1 k=0
un+lDa: n uzﬂe—&-l) Aké (I)
1,j=1 k,£=0
N, Nu—1
+At7 Do > ui D (ull — ) Al (I1I)
4,7=1 k£=0
N, Np—-1
—I—Ati Z Z un+1D:rw n—i—l |A|ké (III)
1,j=1 k. £=0
N, Nu—1
+0Atz Z n+1( Bn+15 7u?k+1).
7j=1 k=0

We proceed by analyzing the terms (I), (II), and (III) separately. Let us start with (I)
and (IT) and apply Young’s inequality given in Lemma 5.6. For the sum (I) 4+ (II) this
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5.4. Discretization in time

results in

N, Np—1 N, Nu—1
1 1
— ALY Y Dy (g — )Akg—l—At—Z > ulkT DR (ufy — ufpt) [ Al
1,j=1 k¢=0 2,j=1 k£=0
N, Np—1 N, Nu—1 A
X
—— Ay > () (0 Y (Dp e - S0 )
i=1 (=0 j=1 k=0
1 N, Np,—1
n n+1
< 5 Z (UZZ Usp )
=1 ¢=0

N,—1 N, N,—1
i 1 x M AfU

(At)Q Al x, n+l T n+1
+TZ Z Z (D]Z wi Ape — fD |AW)

i=1 (=0 \ j=1 k=0

For (III) we exploit the properties of the spatial stencil matrices given in Lemma 3.1.
This leads to the equality

2

Ny N,u 1 A Nz N# 1 Nz NM 1
n+1 xx n+1 L + n+1 1/2
MEE YD 3 D Al = A0 > 2 D Al
i,j=1 k=0 j=1 ¢=0 \i=1 k=0

Hence, inserting these relations, yields

1 Qe Nt IR R
1 n+ L
5o > () <3 Z
j=1 k=0 j=1 k
N,—1 N, N,—1
At 2 Nz I x 122
2 ( (D" A
i=1 (=0 \j=1 k=0
2
A
- D m@) (5.19)

n—1 N, Nu—1 2

—Atfz Z > Dfuit Al
j=1 ¢=0 i=1 k=0
w Nu—1

+0Atz n+1 (\anHé n—i—l)'

j=1 k=0

As for the continuous case, we add equations (5.19) and (5.16) to obtain a time update
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5. A DLRA scheme for the Su-Olson problem

for the total energy introduced in Definition 5.4. This establishes the inequality

2 Ny Nu— 2

En+1 < E™ (At) DZ. n+1A o ngx n+1 A

—+2§D:ZZ i A [Ales
=1 ¢=0 7j=1 k=0

2
N, Nu—1 N, Nu,—1

RIS S (03 pt g

j=1 £=0 \i=1 k=0

+0At (\fu”HB”Jrl (u?,jl)2>

—72(3"“ By +0AtZ( VauI B - (B;L“)Z).

We estimate the opacity term and derive

2 N N, Np—1 Ax 2
g B SS S (523 (ot - ozt )
—1 (=0 \j=1 k=0

2
x NH_]' T Nl—L 1

N,
SAEES Y (Y DA
j=1 ¢=0 \ i=1 k=0

Ny Nu—1 9 1 Ny
— ALY (\@B;‘“— n+1) -
j=1 k=0 2]:1

(B —By)°.

With Lemma 5.8 we obtain

N, Ny—1

Aty > i

N,—1 A
z, ntl z T n+1

(D]z ]k AkZ D A|kl)

i=1 £=0

2

Dﬁ uif AL | <o

N, Ny—1
—A.TUZ Z

k=0
NM
j=1 ¢=0 \i=1 k=0
for At < Ax. Since the truncation step is designed to not alter the zeroth order moment,
this means that E"*! < E" and we can conclude that the full scheme is energy stable

under the time step restriction At < Azx. O

5.5 Mass conservation

A drawback of the DLRA method using the integrators introduced in Section 4.2 is that
physical invariants are not preserved. This problem can be overcome when implement-
ing the rank-adaptive augmented BUG integrator introduced in [CKL22| together with

68



5.5. Mass conservation

suitable basis augmentation steps and a conservative truncation strategy as described in
Section 4.4.2. We first translate the macroscopic quantities given in Definition 5.1 to the
fully discrete setting.

Definition 5.10 (Fully discrete macroscopic quantities). The mass and the momentum
of the fully discretized Su-Olson problem at time ¢, are defined as

N,—1

= \@u% + B} and uy = V2 Z uiy Aop-
=0

Then we can show that besides being energy stable our DLRA scheme ensures local
conservation of mass.

Theorem 5.11 (Mass conservation of the proposed DLRA scheme). The DLRA scheme
(5.12) together with the conservative truncation strateqy described in Section 4.4.2 is lo-
cally mass conservative, i.e. it fulfills the local conservation law

1

x (V2ort 4+ B — (V2e) + BY)) (5.20)
N, Nu—1 N, Nu—1
:_WZZD]z zﬁAOf+fzszm n’A|0£7
i=1 (=0 i=1 (=0

where %} = Zrmn 1 XG0Sy Vor, and <I>;l+1 =l X”JrlS"HV"+1 As done before,

we denote ulh = Zmn 1 XS Vien- This is a dzscretzzatwn of the continuous local

conservation law given in (5.2).

Proof. The conservative truncation strategy is designed to not alter the zeroth order

moment, i.e. it holds er:n 1X"HS”+1V"+1 = u%rl. In addition, the basis aug-

mentations performed in (5.12g) and the adjustment step stated in (5.12h) ensure that
2127:,17 1X"‘*‘RS’Z}J#V”“‘1 = St X"HS”“V”H. Combining both, this leads to the

m,n=1
equality
Tn41 2r
n+l __ n+1 n+1 n+l _ n+1an+17,n+1 n+1
ottt = Ny xpHsmlvy ST XpHSV =
m,n=1 m,n=1

We insert this relation into the coupled equations (5.12d) and (5.12¢) and multiply (5.12d)
with v/2. This yields

N,—1
V2ot = V297 — V2 AtZD Z XS S Vi Ao (5.21a)
£=0

=1 m,n=1
2r N#—l
* an 7% n+1 n+1
NN ZD > X5Sn, Y V1Al + oAt (2B — V200
m,n=1 =0
n+1 n n+1 n+1
B! = BY + oAt (\/icpj —2B711) . (5.21D)
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5. A DLRA scheme for the Su-Olson problem

Due to the basis augmentations with X" and V" introduced by the rank-adaptive aug-
mented BUG integrator it can be concluded that

2r
x an n o Qn n__,mn
Z szsmn‘/En Z Ximsmn‘/ﬁn_uif‘
m,n=1 m,n=1

We insert this relation into (5.21a), add equations (5.21a) and (5.21b), and rearrange
the obtained expression. This leads to the local conservation law (5.20), ensuring local
conservation of mass. O

Hence, equipped with a conservative truncation step, the energy stable DLRA algorithm
presented in (5.12) locally conserves mass.

5.6 Numerical results

In this section, we provide numerical results to validate the energy stable and mass conser-
vative DLRA scheme proposed in (5.12). Sections 5.6.1 and 5.6.2 are devoted to commonly
considered 1D test examples in radiative transfer before in Section 5.6.3 an experiment
in two spatial dimensions is presented.

5.6.1 1D plane source

We consider the thermal RTEs as described in (5.1) on the spatial domain Q, = [—10, 10]
and the angular domain €, = [—1,1]. As initial distribution we choose the cutoff Gaussian

2

u(t=0,2) =max | 1074, _ exp (—@;_21))

with constant deviation o;c = 0.03. Particles are initially centered around x = 1 and
move into all directions p € [—1,1]. The initial value for the internal energy is set to
B% = 1 and the opacity to the constant value ¢ = 1. For the low-rank computations an
initial rank of r = 20 is prescribed. Note that this setting is an extension of the so-called
plane source problem, which is a common test case for the RTE [GBD 01, Gan08]. In the
context of DLRA it has been studied for instance in [CKL22, KEC23, PMF20, PM21].
We compare the solution of the full coupled-implicit system

Nz Nﬂ 1 NI N[,L 1
ulttt =l — ALYy DﬂuMAkg+At—Z > Diuf| Al (5.22a)
=1 ¢=0 =1 ¢=0
+ oAt (\an-I—lék n+1)’
Byt = By + oAt (V2ulyt — 2B, (5.22b)
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5.6. Numerical results

to the solution obtained from the energy stable and mass conservative DLRA scheme
given in (5.12). We refer to (5.22) as the full system. The total mass at time ¢, is defined
as m" := Ax Zévjl (\/Qu% + By) As computational parameters we use N, = 1000 cells
in the spatial domain and N, = 500 moments to represent the angular variable. The time
step size is chosen to be At = Ccpr, - Az with a CFL number of Ccpr, = 0.99.

In Figure 5.1 we present the computational results for the solution f (z,u), the scalar
flux ® = % (f) " and the dimensionless temperature T = Vv/B at the end time tenq = 8.
Further, the evolution of the rank r in time and the evolution of the relative mass error
’mrrgor‘n i in time are shown. It is observable that the DLRA scheme captures well the
behavior of the full system. For a chosen tolerance parameter of J = 107! ||2|| » the rank
increases up to r = 23 before it significantly decreases again. The relative mass error
is of order O (10_13). Hence, our proposed scheme is mass conservative up to machine

precision. These results confirm our theoretical considerations.

5.6.2 1D external source

For the next test problem, a source term @ (x) is added to the previously investigated
equations, leading to

Of (tyw, p) + pdo f (t,w,p0) = 0 (B (t,x) — f(t,z, 1) + Q(2),

WB (t,x) =0 (f(t,z,n) — B(t,2)),-
This source term generates radiation particles moving through and interacting with the
background material. The interaction is driven by the opacity ¢. In turn, particles heat
up the material, leading to a traveling temperature front, also called a Marshak wave
[Mar58]. Again this traveling heat wave can lead to the emission of new particles from
the background material, generating a particle wave. In our example we use the source
function @ (z) = X[—0.5,0.5 (z) /a with a = 4"% being the radiation and x[_o.5,0.5 (7)
denoting the indicator function on [—0.5,0.5]. The initial value for the internal energy is
set to B® = 50. All other initial settings and computational parameters remain unchanged
from the previous test example given in Section 5.6.1.

In Figure 5.2 we display the numerical results for the solution f (x, 1), the scalar flux ® =
% <f>u and the temperature T' = VB at a given time point tgpq = 3.16. We add the same
source term to the full coupled-implicit system (5.22) as well as to the presented energy
stable and mass conservative DLRA scheme given in (5.12) and compare the solution.
Further, the evolution of the rank in time is presented for a chosen tolerance parameter
of ¥ = 1072 ||X|| . Again we observe that the proposed DLRA scheme approximates well
the behavior of the full system. In addition, a very low rank is sufficient to obtain accurate
results. Note that due to the additional source term there is no mass conservation in this

example.
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Figure 5.1: Top row: Numerical results for the solution f (z, i) of the plane source problem at time
tend = 8 computed with the full coupled-implicit solver (left) and the DLRA scheme (right). Middle
row: Scalar flux ® (left) and temperature T' (right) for both the full solver and the DLRA scheme.
Bottom row: Evolution of the rank in time for the DLRA method (left) and evolution of the relative

mass error in time compared for both methods (right).

5.6.3 2D beam
To approve computational benefits of the presented DLRA algorithm, we extend it to a

2D spatial and a 2D angular setting. The corresponding set of equations becomes

Ouf (1, %, Q) + Q- Vyuf (t,x,Q) =0 (B (t,x) — f (t,x,Q)),
OB (t,x) =0 (f (t,x,Q) — B(t,X))q -

For the numerical experiments let x = (z,y) € [-1,1] x[~1,1] and = (2,9, Q) € S*
be represented in 3D Cartesian coordinates as explained in Section 3.3.2. The initial
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Figure 5.2: Top row: Numerical results for the solution f (z, ) of the external source problem at
time teng = 3.16 computed with the full coupled-implicit solver (left) and the DLRA scheme (right).
Middle row: Scalar flux ® (left) and temperature T' (right) for both the full solver and the DLRA
scheme. Bottom row: Evolution of the rank in time for the DLRA method.

condition of the 2D beam is given by

1 <] 1 (2 — Q)% 4 (2. —)?
t= Q) =10 — U iel I I -
f(#=0,%9) =10 202 P ( 202 210}, P 202, ’

X X

where Q* = % and ox = o = 0.1. The initial value for the internal energy is set to
B =1 and the opacity to the constant value o = 0.5. The low-rank computations are
performed with an initial rank of » = 100. The total mass at any time ¢, is defined as
m" = AzAy Z?f:‘”iNy (u?o + BJ”) We perform our computations on a spatial grid with
N, = 500 cells in z and Ny, = 500 cells in y. For the 2D angular discretization, we use
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Figure 5.3: Numerical results for the scalar flux ® and the temperature T for the 2D beam problem
computed with the full coupled-implicit solver (left) and the DLRA scheme (right) at time tenqa = 0.5.

the spherical harmonics method introduced in Section 3.3.2. We consider a polynomial
degree of Ng = 29, corresponding to 900 expansion coefficients in angle. In general, the
polynomial degree shall be chosen large enough to ensure a correct behavior of the scheme
but still small enough to stay in a reasonable computational regime. The time step size is
chosen to be At = Cgpr,- Az with a CFL number of Cqpr, = 0.7. We compare the solution
of the 2D full system corresponding to (5.22) to the solution obtained from the 2D DLRA
scheme corresponding to (5.12). The extension to two dimensions is straightforward.

In Figure 5.3 we show numerical results for the scalar flux ® = [, f (¢,x, Q) dQ and the
temperature T' = 4mv/2 v/B at the end time tenq = 0.5. We again observe the accuracy of

the proposed DLRA scheme. For the evolution of the rank r in time and the evolution of

mo—m"|

the relative mass error in time we consider a time interval up to teng = 1.5. In

mo
Figure 5.4 one can observe‘ th|at for a chosen tolerance parameter of ¥ = 5-10~*||3||¢ the
rank increases but does not approach its maximal allowed value of ry.x = 100. Further,
the relative mass error stagnates at order O (10_11) and the DLRA method shows its mass
conservation property. For this setup, the computational benefit of the DLRA method is
significant. The scheme is implemented in Julia v1.7 and performed on a MacBook Pro
with M1 chip, resulting in a decrease of run time by a factor of approximately 8 from

20023 seconds to 2509 seconds.
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Figure 5.4: Evolution of the rank in time for the 2D beam problem for the DLRA method (left) and
evolution of the relative mass error in time compared for both methods (right) until time teng = 1.5.

5.7

Summary and conclusion

We have introduced an energy stable and mass conservative DLRA scheme for the Su-

Olson problem. The main research contributions are:

(i)

(iii)

An energy stable numerical scheme with rigorous mathematical proofs: We have
shown that a naive IMEX scheme fails to guarantee energy stability. To overcome
this unphysical behavior, a DLRA scheme which advances radiation and internal
energy in a coupled-implicit way has been proposed. In addition, a classic hyperbolic
CFL condition has been derived, enabling to operate up to an optimal time step
size of At = CCFL <Az,

A mass conservative and rank-adaptive augmented integrator: We have employed
the basis augmentation step described in [CKL22] as well as an adaption of the
conservative truncation strategy presented in [EOS23, EKS23] to guarantee local

mass conservation and rank adaptivity.

Numerical test examples confirming the theoretical properties: We have compared
the numerical results obtained from the DLRA scheme with the solution of the
full system for different test examples both in 1D and 2D, underlining the derived
properties while showing significantly reduced computational costs and memory
requirements, especially in the 2D setting.

Altogether, we have proposed a novel coupled-implicit energy stable DLRA scheme from

which conclusions on an appropriate discretization strategy regarding stability can be

drawn. For future work, we propose to implement the parallel integrator described in
[CKL24] for further enhancing the efficiency of the DLRA method.
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A multiplicative DLRA scheme for the
Su-Olson problem

For the construction of efficient DLRA schemes the structure of the underlying problem
has to be taken into account. For instance, it has been shown in [EHY21] that for deriving
an efficient DLRA scheme for the non-linear isothermal Boltzmann-BGK equation it is
advantageous to consider a multiplicative splitting of the distribution function. This
allows for a separation of a generally not low-rank Maxwellian from a remaining low-rank
function, to which the DLRA scheme is subsequently applied. To transfer knowledge
about the construction of efficient DLRA schemes from the Su-Olson problem considered
in Chapter 5 to more general kinetic equations such as given in [EHY21], we reconsider
the Su-Olson problem in this chapter and decide on a multiplicative splitting of the
distribution function. One difficulty arising in this context is the treatment of the spatial
derivatives. For the temporal discretization again the potentially stiff opacity term has to
be taken into account, leading to a coupled-implicit scheme, which is complicated to solve.
In addition, the multiplicative splitting poses further challenges for the proof of energy
stability and for the construction of a DLRA scheme to which we account for instance by
pursuing a “first discretize, then low-rank” approach.

The structure of this chapter is as follows. In Section 6.1 we explain the considered mul-
tiplicative structure and derive two possible systems for the thermal radiative transfer
equations (RTEs) with multiplicative splitting, which in the continuous setting are equiv-
alent. In Section 6.2 a discretization of both systems in angle, space and time is given.
Section 6.3 is devoted to the subject of energy stability. We show that the advection form
of the multiplicative Su-Olson problem is generally not stable in the sense of von Neu-
mann, whereas for the conservative form an energy estimate can be derived under a classic
hyperbolic CFL condition. In Section 6.4 an energy stable DLRA scheme is presented. In
addition, mass conservation is shown in Section 6.5 when additional basis augmentations
and a suitable truncation strategy are used. The numerical results in Section 6.6 confirm
the derived properties before in Section 6.7 a brief summary and conclusion are given.
The results of this chapter closely follow the presentation in [BEKK25b].
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6. A multiplicative DLRA scheme for the Su-Olson problem

6.1 Thermal radiative transfer equations with multiplicative
splitting

We start from the Su-Olson problem given in equations (5.1) and decide on a multiplicative
splitting of the distribution function f of the form

f(t,z,p)=B(t,z)g(t,x,u). (6.1)

Similar to [EHY21], we apply a DLRA approach to the function g. For this system, we de-
rive a mathematically rigorous proof of energy stability and a hyperbolic CFL condition.
As resembling in structure, this chapter can be understood as an intermediate step from
the Su-Olson problem treated in Chapter 5 towards more complicated Boltzmann-BGK
problems with multiplicative splitting as treated in [EHY21], where the time step size of
the proposed algorithm is not theoretically determined by means of analytical consider-
ations but experimentally chosen small enough to ensure good agreement in numerical
experiments. We insert the multiplicative splitting (6.1) into the continuous Su-Olson
problem (5.1) and obtain the set of equations

atg (t7x7:u’) == Mamg (t,[IZ, M) to (1 -9 (ta T, M)) - maﬁB (t,l') (623‘)
gtz p)
- /imaxB (t,z),
0B (t,x) = 0B (t,) (g (t,z, 1)), — 2), (6.2b)

which is called the advection form of the multiplicative system. Using the product rule,
it splits up the spatial derivatives for B and ¢ in (6.2a). This corresponds to the form
in which the multiplicative splitting in [EHY21] is applied to the non-linear isothermal
Boltzmann-BGK equation. Equation (6.2a) can be equivalently rewritten into a con-
servative form, leaving the spatial derivative of Bg together and leading to the system

Qg (8,0, 1) = — %ax (B(t.z)g(t,z,p)+o(1—g(t,z,m)  (6.3a)
- O o 1,0).
0B (t,x) = 0B (t,z) ({g (t,z,p)), —2). (6.3b)

Note that for both systems we omit initial and boundary conditions for now. In subsequent
considerations, our studies include the conservation properties of the derived numerical
scheme. The mass and the momentum of the multiplicative system are defined as follows.

Definition 6.1 (Macroscopic quantities). The mass of the multiplicative Su-Olson prob-
lem is defined as

p(t,x) ::/f(t,x,,u)d,u—i-B(t,x):B(t,:c)/g(t,x,,u)du—i—B(t,x).
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6.2. Discretization of the multiplicative system

The momentum is given by

a(ta)i= [ uf (ton) du =B ) [ g (b2, dn
In particular, the multiplicative Su-Olson problem satisfies the local conservation law
Op (t,x) + 0zu (t,x) = 0. (6.4)

In the following sections, we discretize both sets of equations (6.2) and (6.3) to compare
them in terms of numerical stability. We derive an energy stable DLRA scheme and give
a concrete hyperbolic CFL condition. Note that in contrast to Chapter 5 and to [EHY21],
we first discretize the equations and then apply a DLRA approach here.

6.2 Discretization of the multiplicative system

In this section, we fully discretize the advection form (6.2) as well as the conservative
form (6.3) of the multiplicative Su-Olson problem. We start with the angular and spatial
discretizations in Sections 6.2.1 and 6.2.2, followed by the temporal discretization in
Section 6.2.3.

6.2.1 Angular discretization

For the angular discretization a modal approach with normalized rescaled Legendre poly-
nomials Py (1) as introduced in Section 3.3.2 is applied. The rescaled Legendre polyno-
mials constitute a complete set of orthogonal functions on the interval [—1, 1] and satisfy
(Pr (1) , Py (1)) = Oke. We approximate the distribution function g in terms of a finite
expansion with N, expansion coefficients of the form

N,—1

g(taxaﬂ) ~ 9N, (t,x,,u) = Z Ui(tvx)PZ (M)
=0

We insert this representation into the advection form (6.2), multiply (6.2a) with Py (u)
and integrate over u. Together with the matrix A € RNu>*Ne defined in (3.26) we obtain
the angularly discretized equations

N,—1
Oow (1) = — Y Oave (t,2) Ape + 0 (V2050 — v (£, 7)) — ’g((z;”; 8B (t,x) (6.5a)
£=0 ’

)
Ve , L
_ ; B(t,x)&”B (t,(E) Ay,

0B (t,x) = 0B (t,z) (V2uo (t,2) — 2). (6.5b)
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6. A multiplicative DLRA scheme for the Su-Olson problem

Analogously, we obtain for the conservative form (6.3) the following equations

Ay, (t, ) = 0w Z 0x (B (t,x) vy (t,7)) Ape + 0 (V2010 — vk (t, 7)) (6.62)

— ( ’x)GtB(t,:n),
0B (t,7) = 0B (t,z) (V2uo (t,x) — 2) . (6.6b)

6.2.2 Spatial discretization

For the spatial discretization we construct a spatial grid with N, grid cells and equidistant

spacing Az = N%c Spatially dependent quantities are approximated as
B; (t) %B(t,xj), Vjk (t) =~ v (t,:vj) for j=1,...,N,.

Assuming periodic boundary conditions, first-order spatial derivatives 0, are approxi-
mated using the centered FD method. For stability reasons, a diffusion term involving
second-order derivatives 0., is added. This term is also approximated by the centered
FD method. We employ the tridiagonal spatial stencil matrices D* € RY+*Nz given in
(3.8) and D™ € RN+*Nz defined in (3.11). Recall that the symmetric matrix A is diago-
nalizable in the form A = QMQ" with Q being orthogonal and M = diag(oy, ..., ON,—1)
and that we have defined |A| = Q|M|QT. We insert the proposed discretization into the
advection form (6.5) and add a second-order stabilization term for d,v. This leads to

N, Ny—1 N, Ny—1
Wik (1) = — Dfvie (t) Are A Z > DiFvig (t) | Alre (6.7a)
i=1 /=0 =1 ¢=0
t No Nul t
+0 (V2010 — v3i (1)) — B] R ; Z: & 5B (0) A
B; (t) = 0B; () (V2ujo (t) — 2) . (6.7b)

Inserting the discretization into the conservative form (6.6) and adding a second-order
stabilization term to 0, (Bv) gives

Na Ny Nu—1

D (t Z Z ) vie () Age + *72 > DI Bi () vie (t) |Alwe
=1 /=0 =1 /=0

(f G — 0 >)—gj<(f))3j ). (6:80

B; (t) = oB; (1) (V2vjo (t) — 2) . (6.8b)

Note that due to the different structure of the equations the stabilization term in (6.7a)
is applied to d v, whereas in (6.8a) it is added for 9, (Bv).
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6.3. Energy stability

6.2.3 Temporal discretization

In Section 5.4 it is shown that constructing a fully discrete energy stable scheme for the
Su-Olson problem is challenging. For the advection form we begin with equations (6.7)
and apply an explicit Euler step to the transport terms. The potentially stiff absorption
term is treated implicitly and the time derivative 0;B is approximated by its difference
quotient. We obtain the following fully discrete space-time discretization

DARES Atz Z D¥w MA,@HAth Z Dl Al e (6.9a)

=1 (=0 i=1 (=0
n+1 N, Nu,—1 oh
o (VO — i) = e (BT = B)) = A3 S BB A
i=1 ¢=0 J
BT = BY + o AtBIT (Vv - 2), (6.9b)

which describes one time step from time t, to time t,11 = t, + At. For the conservative
form (6.8), we again apply an explicit Euler step to the transport parts, treat the absorp-
tion term implicitly and approximate 9;B by its difference quotient. In addition, we add

n+1
the factor == in the absorption term of (6.8a). This gives the fully discrete scheme
J
N, Nu—1 Az 1 N, Ny—1
x
U= = A S Y DEBI A+ AT S Y DB Al (6.100)
J i=1 £=0 J i=1 ¢=0
n+1 n]:—l
+1 Y +1
coad D (i) B (),
Bj J
B;-H'l B" + UAtB"'H (\[fu”“ — 2) (6.10D)

Note that the evolution equations (6.9b) and (6.10b) for the internal energy B are the

same in both schemes. The main difference of (6.9a) and (6.10a) consists in the distinct
n+1

B"
second-order stabilization terms and the additional factor —%— in (6.10a), which will be
J

explained later in the proof of energy stability.

6.3 Energy stability

The goal of this section consists in investigating energy stability of the derived schemes.
Note that this section is closely related to the considerations in Section 5.4. We first
introduce the following notations.

Definition 6.2. In the following considerations, we denote u”k == Bjvj - Note that
u” = (u ; k) RN=XNu corresponds to the angularly and spatially discretized f (¢, z, 1) at

time ¢, and v" = (vjk) € RN+*Nu corresponds to the angularly and spatially discretized
g (t,x, ) at time ¢, in representation (6.1).
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6. A multiplicative DLRA scheme for the Su-Olson problem

Then the definition of the total energy of a fully discrete system can be given.

Definition 6.3 (Fully discrete total energy). Let u” € RN=*Nu be the fully discrete
angular solution to the full Su-Olson problem at time ¢, and B" = (BJ”) € RN= the
internal energy at time t,. The fully discrete total energy at time t, is defined as

1 2 1 2
E" = o aF 4 5 1B

where ||-|| > denotes the Frobenius and ||| ; the Euclidean norm.

In Section 6.3.1 it is shown that the advection form (6.9), in general, is not numerically
stable. Section 6.3.2 presents a proof of energy stability for the conservative form (6.10).

6.3.1 Advection form

We begin with the advection form (6.9) of the Su-Olson problem, which is comparable
to the considered DLRA discretization in [EHY21] for the isothermal Boltzmann-BGK
equation in the sense that the term 0, (Bv) is split up into the sum of Bd,v and v0,B.
We can show that this scheme is, in general, not von Neumann stable.

Theorem 6.4. There exist initial values v?* € RN=*Ne gnd B™ € RNe such that the
advection form (6.9) of the Su-Olson problem for o =0 is not von Neumann stable.

Proof. Let us assume a solution vl that is constant in space and direction, e.g. v, = 1.
For this solution all spatial derivatives are zero and the terms containing D*v"™ and D**v"
in (6.9a) drop out. We further assume that for the opacity it holds ¢ = 0, i.e. the Su-
Olson problem reduces to a simple advection equation. From (6.9b) we thus derive the
B;Hrl

equality = B;‘ = Bj, i.e. the internal energy is constant in time. We insert these

results into (6.9a) and obtain

N, N,—1
VI =1 - ALY Z D . BiApe.
i=1 /=0
Multiplication with Bj leads to
N, Npy—1
= MY D
i=1 /=0

This is a discretization of dyu + pud,u = 0 with an explicit Euler step forward in time and
a centered FD scheme in space. According to Remark 3.16 this discretization is not von
Neumann stable. O

The consideration of this special case demonstrates that for the fully discrete advection
form (6.9) of the multiplicative Su-Olson problem numerical stability in the sense of von
Neumann as described in Section 3.2.3 cannot be guaranteed. In this sense, Theorem 6.4
serves as a motivation to seek a generally stable numerical discretization as done in the
next section.
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6.3. Energy stability

6.3.2 Conservative form

For the conservative form (6.10) we are able to derive a hyperbolic CFL condition and to
show that under this time step restriction the total energy of the system dissipates.

Theorem 6.5 (Energy stability of the fully discrete system). Under the time step restric-
tion At < Ax the fully discrete system (6.10) is energy stable, i.e. it holds E™*1 < E™.

Proof. The proof of this theorem is similar to the proof of Theorem 5.9. We start with
equation (6.10b) and multiply it with B;"H. This gives

(B;H—I)Q _ B;lB;L+1 L oAt (B;H-l) (\f,un—I—l )

We insert relation (5.15) and sum over j, leading to

1 Ak n+1 2 1 ok n\2 1 ks n+1 n 2 ok n+1 n+1l
2Z;(Bj ) :2;(@.) —22(% - BY) +0Atz;(Bj )’ (Vo' —2).

(6.11)

2
To obtain a similar expression for (u?]j 1) , we multiply (6.10a) with B”HB;1 ;L,j ! sum

over j and k, and use the notation u7, = Bivj;. We obtain

N, N,—1 N, Nu—1 N, Np—1
Z Z Bn+1Bjn< n+1) Z Z u]kunJrl At Z Z un+1Dﬂ ngk;e
j=1 k=0 j=1 k=0 1,7=1 k4=0
+At— Z Z ult T DI Al (6.12)
1,j=1 k£=0
N, Ny—1
+oatd Y (B"“) (V200 — v )
1 k=0
N
_Z Z Bn+1( n+1) (B;-H—l _Bjn) )
7j=1 k=0
n+1

Note that for this step the additional factor Bén in (6.10a) is crucial. We insert relation
J
(5.18) into (6.12), put the last term of (6.12) to the left-hand side and rearrange. Then,

N, N,—1

Ny - Ny
,Z Z ( n+1)2 %z kz_: 2 ;2 k ( n+1 u;?k)z (6.13)

j=1 k=0 =1 =0

Z Z un+1D]xZ zzAkZ‘i'Ati Z Z un+1Dxx 5|A|k£

.

i,j=1 k(=0 i,j=1 k(=0
N, Np—1

+oaty Y (B”“) L (Vas — o).
j=1 k=0
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6. A multiplicative DLRA scheme for the Su-Olson problem

In the next step, we add artificial zero terms to the equation. Adding the zero term

Atz ZH_l "+1D;”Z "+ Age and adding and subtracting the second-order term

Atm: Zzg 121@# ! n+1Dm n+1]A\kg leads to

Ne Nur 2 1 Qe N 2 1 Qe Nl 1 2
22 (’”) 522 =520 > (wpt =)
j=1 k=0 J=1 k=0 Jj=1 k=0
N, Np—1
ALY ul D (ufy — ulyt™t) Age (1)
i,j=1 k,l=0
N, Np—1
+At—z > wi DR (ufy — ulyt) Al (II)
4,5=1 k,£=0
N, Np—1
—f—Ati Z Z unJrngmc n+1|A|k£ (III)
i,j=1 k=0
Ny Nu—1
+0Atz Z (Bn+1) n+1 (\[51@ _Un+1).
7=1 k=0

We proceed by analyzing the terms (I), (II), and (III) separately. Let us start with (I)
and (IT) and apply Young’s inequality given in Lemma 5.6. For the sum (I) 4+ (II) this

results in
N, Np—1 N, Np—1
n+1 T (T n+1 n+1 T (,n n+1
Ay w DY (u — ul )Ak4+At—Z > wi DR (ufy — ult) Al
1,j=1 k,£=0 1,j=1 k,£=0
N, N,—1 » Nu— A[E
AP Y () (33 (D - A0z
i=1 (=0 j=1 k=0
1 N, N,—1 )
n n+1
< 5 (uif — Uy )
i=1 /=0

2

' Az
+ 8 > Y (Dpu - Dz 1Al

For (III) we exploit the properties of the stencil matrices given in Lemma 3.1. This leads
to the equality

N;C Nu 1 Ngc NH 1 Nr 2
n+1 Tz n+1 +ontl 1/2
At* E E ugy Dji | Al = _AtTE : E , § , § : Dijuie Al
1,j=1 k,£=0 j=1 /=0 i=1 k=0
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6.3. Energy stability

We insert both relations and obtain

1 N Nel s 1
n+1 n \2
5 > (W) <5 (k)
j=1 k=0 j=1 k=0
N, —1 N, N,—1
At 2 Nz H x I3
+ 2) (Dgu Age
i=1 =0 \j=1 k=0

2

Aaj .rx n

5 —Dj H ’A’M))
2

S S (55 ppt
j= k=0

N, Nu—1
BTL-H) n+1 (\[5 _ v;z]:—l) )

Ny Nu—1 1 Ny Nu—1
,Z N n+1) 5 (u)” (6.14)
j=1 k=0 j=1 k=0
Ny N,—1
+ oAt (B;H-l) n+1 (\[5% n+1) '
7j=1 k=0

To obtain an expression for the total energy of the system given in Definition 6.3, we add

equations (6.14) and (6.11). This yields

n+1 n 1 Ak n+1 n A n+1 n+1 n+1
E SE—§Z(B B)+0At]ZIkZO(B ) (V280 — v

j=1
Ny

+aAtZ(B§‘“) (Vv —2).
j=1

2
(B"Jrl - BT-L) is non-positive. The remaining two terms on the right-

The term —% Z;V:ﬂ
hand side can be rewritten and bounded as follows:

N, Ny—1
UAtZ Z (B"H) ”+1 (\[5 kO — v"+1) + UAtZ (B"+1) (\fv’”l )

j=1 k=0 j=1
N, Ny—1 5

< O’Atz Z (Bn—H) (— (U?,;H) + 2\[27)?];’_15]60 — 25k0>
7j=1 k=0

N, N,—1

—aAtZ Z (B”“) ( et \ffsko)

7j=1 k=0




6. A multiplicative DLRA scheme for the Su-Olson problem

Hence, we have shown that under the time step restriction At < Az it holds E"*! < E™,
and the system is energy stable. O

6.4 Energy stable DLRA scheme for multiplicative Su-Olson

Having attained an energy stable discretization of the multiplicative Su-Olson problem,
its practical implementation can still pose numerical challenges such as large memory
demands and computational costs, especially in higher-dimensional settings. To overcome
these problems, we apply the concept of DLRA to the energy stable conservative form
(6.10) of the Su-Olson problem to evolve v = (ank) to vl = (v]",jl) First note
that for the derivation of the DLRA scheme we rewrite the equations given in (6.10). In
(6.10a), we put all terms containing U"H to the left-hand side and divide by 1 4+ oAt.

Further, we multiply (6.10b) with 2. ThlS establishes the system
J

J n+1 DT By A 6.15
BJ’} vjk 14+ oAt Jk 1 —i—UAt Bn Zl g i Vg Akl ( a)
Ny Nu—1 n+1
At Az 1 \[O‘At
+1+0At28?;£z; Ui Alke + 1+ 1+ oAt B” KOs
n+1 n+1
én =14+ 0At j (\fv”“ ) (6.15h)
J

In what follows, we derive an energy stable and mass conservative DLRA discretization
for equations (6.15) which makes use of the rank-adaptive augmented BUG integrator
described in [CKL22] together with additional basis augmentations and a conservative
truncation strategy. In detail, the DLRA scheme works as follows.

In the first step of the scheme, an update of the quantity v?k = Z:nn 1 XGmSm Vk’%

Bn+1
to Bn vl = 247”77 1 5 V* is performed for k£ # 0. We introduce the notation

Jm m
K no=>5" _ X% S and solve the K-step equation

m=1“*jm"~mn

N,—1

. 1 At
Kjp = 1+ JAtKjT;’ 1+ oAt B” Z D3B! 7722 K k;o WZAMVIS) (6162
N, N,—1
At Az 1
Djr B} Vir|Alke Vi,
Tivoar 2 B”ZZ ; HZO ol Alke Vi

The updated basis X* of rank 27 is derived from a QR-decomposition of the augmented
quantity X* = qr ([K*,X"]). Moreover, we perform an additional basis augmentation
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6.4. Energy stable DLRA scheme for multiplicative Su-Olson

step according to

= —~ 1 1

X* =qr ({X*, B ©D*(B" o X"), B oD"™(B" 0o X”)}) , (6.16b)

which ensures the exactness of the corresponding projection operators in the proof of

energy stability of the DLRA scheme. The symbol ® denotes a pointwise multiplication

and the vector ﬁ € RM is defined to contain the elements ﬁ for each j = 1, ..., V,.
J

In addition, we compute and store M = X*TX". Note that for this scheme we perform
full rank updates, leading to an increase from rank 2r to 4r. Quantities of rank 27 are
denoted with one single hat and quantities of rank 4r with double hats.

The L-step can be computed in parallel with the K-step. We introduce the notation

km = Z;Zl Sﬁka’; and solve
Nu—1
= 1+ At Liop = 1+ O'At Z Ape Z L Z XimBi' Z DﬁﬁX" (6.16¢)
LNt

At

+1+0At 2 Z ’AWZL ZXZ;”B”ZDﬂ B"

The updated basis V* of rank 2r is derived from a QR-decomposition of the augmented
quantity V* = qr ([L*, V"]). Moreover, we perform an additional basis augmentation
step according to

=

Vi =q ([V, ATV AT VT]), (6.16d)

leading to a new augmented basis \kf”H of rank 4r. This basis augmentation again
ensures the exactness of the corresponding projection operators and will be made clear
in the /proof of energy stability of the DLRA scheme later. In addition, we compute and
store N = V*TVn,

For the S-step, the previously computed solutions obtained in the K- and L-step are
used. We introduce the notation SW7 Zy,k 1 Mm]S ank and solve the equation

EN 1 —
o p——
@1 +oAt ®
At Q= 4r N1
1+0Atz ]anZDﬁ-Bf Z X;kmsr?m Z VZnAMVkp (6.16¢e)
) i=1 m,n=1 k=0
At Ny—1
oAt 1+ oAt 2 Z:X”B”z:l)x:]cBn Z X* Snn Z VZU|A’k€Vkp
J =1 m,n=1 k=0

In the next step, we consider the equations for £k = 0. In this case, the expressions for
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BT:I/+1 Bn+1
= 5%r and A7 are coupled and we solve the system

J

B;H—lfwn—l-l Z xXn gn yn
By 1+0At gm =m0

Nuy—1

At 1 X .
“Troaimy 2 D S %15 > ViAw (6160
J =1 m,n=1
Ny Nu—1
At Az 1 .
ot 2 B 2 DB > %5, > Vil
m,n=1
V20 At B;-H_l
1+ oAt B} ’
n+l Bn+1
1
b7 :‘“”mté (vVamyt —2). (6.16g)

J

Using equations (6.16f) and (6.16g), vi ' = (E;LOH) and Bt = (B;LH) can be retrieved.
n+1 PS

B’
The latter is used to multiply the DLRA expression of é—?v;.‘k = Zi:m 1 S* :

. B . . .
with the factor BTJ‘“ in the form of a transformation step given by
j

n

BT
*,trans __ ] *
K5 = o Ky (6.16h)

From a QR-decomposition we obtain X*ansg#trans — qp (K*a1%) - Then we perform an

additional basis augmentation step according to

P

Xn—l—l =qr (|: n+1 X*,trans]) and @n-&-l =qr ([eb {?*]) , (6161)

where we add V0+1 to the updated spatial low-rank basis since the mass of the system
"+1. In the directional basis, we add e; € RN,
Again, these basis augmentations ensure the conservation of mass of the DLRA scheme.
Finally, we have to adjust the coefficient matrix from Setrans 1o §ntl g RUr+1)x(dr+1)

is given by the zeroth order moment v,

Qntl _ xn+1,Txx trans g transy (I _ eleil'> vl 4 Xn+1,—|—§61+1e;vn+1‘ (6.167)

We obtain the updated solution v = §”+1§”+1§"+1 € RN=*Nu_ In a last step, we
truncate the augmented quantities X"+!, S"+1 and V™! from rank 4r + 1 to a new rank
rn+1 by using a suitable truncation strategy such as proposed in Section 4.4.2. This
eventually gives the low-rank factors X"*! 8"*! and V"*!. To provide an overview
of the DLRA scheme, its structure is visualized in Algorithm 2. Note that this scheme
is significantly different from the one presented in Section 5.4.2 as the multiplicative
structure leads to additional basis augmentations introduced in (6.16b) and (6.16d) as
well as to a different solution of the coupled equations given in (6.16f) and (6.16g).
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Algorithm 2 Flowchart of the energy stable and mass conservative multiplicative DLRA

scheme (6.16).

e internal energy at time ¢,: B}
input e low-rank factors at time ¢,,: X% , S V,g?

gms =map
e rank at time t,: r
|
[update bases according to (6.16a) and (6.160)]
K Ly

[augment bases with X7, ,g%]

—~

/\* *
ij’ an

augment bases with % vazzl D% B X}
J

m’ )

1 Nz pzzpnyn
BT Y DEEBEX L,

~—

and Zévz"o ApeVip, Zévz“o | Al Vi, according to (6.16b) and (6.16d)

=

Q>0< *
ij’ kn

[update coefficient matrix according to (6.16e)]

Q>)<
Sn

[update zeroth order moment and internal energy according to (6.16f) and (6.16g)}

[perform transformation st

ep according to (6.16}1)]

= EN

*,trans *,trans
X jm Smm

Sn+1

{augment bases with v(j™" and e; according to (6.16i)

n+1 ~n+1
Bj s Vjo

)
)

=

Qn—&—l n+1
X" an

*

[adjust coefficient matrix gn;tnra”s according to (6.16_]')}

QnJrl
S

‘ truncate factors X

ntl Qntl Trntl
jm 7Sm77 7Vk7] ’

!

e internal energy at t

output e low-rank factors at
e rank at time t,41:

. . n+1
ime t,41: Bj

: . n+1 +1 y/n+1
time tpy1: X St > Vi

Jjm 2 =mn o
T'n+1
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6. A multiplicative DLRA scheme for the Su-Olson problem

Proof of energy stability of the proposed multiplicative low-rank scheme. It can be
shown that the DLRA scheme proposed in (6.16) preserves the energy stability of the full
system given in Section 5.4.2. The rewriting of equations (6.10) into (6.15) as well as the
basis augmentations introduced in (6.16b) and (6.16d) differentiate this DLRA method
from the existing scheme in Section 5.4.2 and are crucial for the proof.

Theorem 6.6 (Energy stability of the proposed multiplicative DLRA scheme). Under
the time step restriction At < Az the fully discrete multiplicative DLRA scheme (6.16)
is enerqy stable, i.e. it holds E"t1 < E™.

Proof. Similar to the proof of Theorem 6.5, an estimate for the fully discrete energy
introduced in Definition 6.3 is sought. We begin with the internal energy B and multiply
equation (6.16g) with B;‘B;"H. This leads to

2 2
n+1 _ n pn+1 n+1 n+1
(Br )" = ByBrt + oat (ByTY) (Vaulyt - 2).
We insert relation (5.15) to rewrite the product B;LB;‘“ and sum over j, rendering the
expression
Ny Nz

§Z<B?+1)2 ;g ) % (Br+ - Br)’ (6.17)

7=1 =1

—_

<.

oarS (B (Va - 2).
j=1

This is the same equation as stated in (6.11) in the proof of Theorem 6.5. To obtain

2 = A
a similar expression for (u’;,j 1) , we multiply equation (6.16e) with X} V; and sum

over ¢ and p. For simplicity of notation, we introduce vgﬁ = Zq 1 XZqSZpV/gp and
Uag = Z gp=1 XZngpV* as well as the projection operators Paj = Z X* X* and
Pk‘g = E V* V* We obtain
. 1 At pxe 1 Nop el b
Yob = T4 oAt Vag ~ 1+ oAt Z aj B]" ;D B kéo Vi AkePrg (6.18)

fl.

At A 1 Nu—1
X X* Ve
D3B! nAl, PV
T iToAr 2 ; aj B;z; gzzow ke Prg

Further, we denote v”gl = ng;r_l X”JFISWH'IV"'H From equation (6.16j), we can derive

the equation

Bn+1 n+1 * Bg+1 ~n+1
5 Uag = Vap (1 —6g0) + B d30-
o

«

Hence, inserting the schemes for v}, ; and o4, ie. equations (6.18) and (6.16f), establishes
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the expression

B;LJFI n+1 " i X* 1 i T RN R n %
@ j=1 J =1 k=0
A.T: « 1 Nu 1 *
+ At Zpgg B ZD;;B; > ol Alee P ) (1 — ds0)
j=1 i=1 k,6=0

N,—1
( Atz 7fo B > v A

=0

—|—At—ZB D7y B; Z vl | Aloe + V20 At Bn 930-

We proceed by employing the fact that we have augmented the spatial basis according
o (6.16b) and (6.16d). This allows us to write any function A € span (X]") and iz? €
span (V") as

Nz TR N,—1 N,—1
> PN — i > DiBrh} = — ZDfE BPh and Y hjAwDPly = > hjAg,
j=1 J =1 k,¢=0 £=0

Ny 1 Ny 1 Ny
> Py B > Dy Bh} = B > DIBh}  and Z W |Alke Py = Z R | Alge-
j=1 J =1 @ =1 k,£=0

To be consistent in notation, we change the indices from « to j and from S to k at
this point. The basis augmentations as well as the properties of the projection operators
enable us to obtain a representation of the form

7?+1 Bﬂ+l
]Jgn VI (14 0At) = F (1= 6ko) + Fopo + V20 At én 8o

J J

with
N,-1 Ar 1 N, N,-1
x
At*ZD”” B Y i+ ASE LS e 3 un A

.7 i=1 =0 J i=1 =0

On the right-hand side the factor F'dgy cancels out. This yields the equation

ntl N,—1
Z VI (14 oAt) = At—ZDl’ B Y A
b J i=1 =0
N N,—1 n+1
Az 1 B;
+At7ﬁ2D;fo > i Al + V20 At— 6o,
J =1 =0

In the next step we multiply this expression with B;HB? ;‘Ij ! sum over j and k, rear-

range the obtained equation, use the notation w7, = Bjv, and insert relation (5.18).
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6. A multiplicative DLRA scheme for the Su-Olson problem

This leads to

1 N, Np—1 ) 1 N, Nu—1 ) L N,—1 )
3o 2 () =520 > (W) -3 (" = i)
j=1 k=0 j=1 k=0 j=1 k=0
Nz Np—1 N, Nu—1
— At Z > wh Dhu MAMJrAt— Z > uli DI | Al
i,j=1 k=0 i,j=1 k=0
N, Nu—1
+0Atz Z (Bn-i-l) n+1 (\[5 0 — n+1)7
7j=1 k=0

which is the same expression as in equation (6.13) in the proof of Theorem 6.5. We apply
the same estimates as in the proof of Theorem 6.5 and add the resulting equation and
equation (6.17). Analogously to the proof of Theorem 6.5 and due to the fact that the
truncation step does not alter the zeroth order moment, we obtain energy stability of the
multiplicative DLRA scheme under the time step restriction At < Auz. O

6.5 Mass conservation

The multiplicative DLRA scheme described in (6.16) can be shown to be locally mass
conservative when using a suitable truncation strategy. For instance, the truncation
strategy presented in Section 4.4.2 can be easily adjusted to the considered framework,
which includes quantities of rank 4r instead of 2r. We translate the macroscopic quantities
introduced in Definition 6.1 to the fully discrete setting.

Definition 6.7 (Fully discrete macroscopic quantities). The mass and the momentum
of the fully discrete multiplicative Su-Olson problem at time ¢, are defined as

N,-1
= V2B, + B}  and @ :=vV2B} Y vl Aw.
£=0

It can be shown that the DLRA algorithm proposed in (6.16) together with the conser-
vative truncation strategy fulfills the following local conservation law.

Theorem 6.8 (Mass conservation of the proposed multiplicative DLRA scheme). The
DLRA scheme given in (6.16) together with the conservative truncation strategqy presented
in Section 4.4.2 is locally mass conservative, i.e. it fulfills the local conservation law

N (\[Bnﬂq)nﬂ _|_Bn+1 (\@B;zq)? + B]”)) (6.19)
N,—1 N N,—1

V2 ZDfB” > iAo+ V2> DiTBE Y vl Al
=0 i=1 £=0

where @ =0 X7 Sh Ve and @?H =YL 1X”“S”“V"Jrl As done before,
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we denote v = Z:nn 1 XS Vi This is a discretization of the continuous local

conservation law given in (6.4).

Proof. The conservative truncation strategy is designed to leave the zeroth order moment

unchanged, i.e. it holds Zi:n 1 X ”HS"“V’”rl = U;LOJF ! In addition, we know from the

basis augmentation performed in (6 161) and the adjustment step stated in (6.16j) that
it holds S% _ 23;13%1?3;1 =Yt X"JrlSnJer”+1 Combining both equalities,

m,n=1 m,n=1
we obtain
Trn+1 4ar
(I)gL+1 _ Z Xn+1Sn+1Vn+1 Z Xn+15«n+1vn+1 ;LOJrl
m,n=1 m,n=1

We insert this relation into the coupled equations (6.16f) and (6.16g). We multiply (6.16f)
with v/2 (1 + oAt), rearrange it, and multiply both equations with B}L. This leads to

Ar Nu_lA
V2Bt = V2Bren — V2 AtZD’” B > ijS?nn > Vi Aw
=0

77]:1
Ny—1
NI ZD;;CB;L Z X5 St Z VZ,]|A|OZ (6.20a)
m,n=1
n+1 n+1
+oALB] (2—\/§<Ej ),
n+1 n n+1 n+1
Byt = BY + oAtBT (V2 —2). (6.20D)

Due to the basis augmentations with X" and V" introduced by the rank-adaptive aug-
mented BUG integrator it can be concluded that

4r
x  Qn n o Qn n__,n
Z szsmnvfn Z szsmn‘/fn_vif‘
m,n=1 m,n=1

We insert this relation into expression (6.20a), add equations (6.20a) and (6.20b), and
rearrange the result. This leads to the local conservation law (6.19), ensuring the local

conservation of mass. O

Hence, equipped with a conservative truncation step, the energy stable DLRA algorithm
presented in (6.16) locally conserves mass.

6.6 Numerical results

In this section, we compare the solution of the DLRA scheme (6.16) to the solution of
the full equations (6.15). We provide different test examples in 1D which validate our
theoretical results. Section 6.6.1 reconsiders the 1D plane source problem, whereas Section
6.6.2 is devoted to the 1D Marshak wave problem with external source. Note that in this
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6. A multiplicative DLRA scheme for the Su-Olson problem

chapter we focus on the theoretical difficulties arising for a multiplicative splitting of the
distribution function and on proper theoretical results. For this reason we refrain from
higher-dimensional examples but expect the DLRA scheme to equally provide accurate
and efficient solutions similar to the 2D result given in Section 5.6.3.

6.6.1 1D plane source

We first examine the 1D plane source test case. This is a common test example for
thermal radiative transfer and has already been treated in Section 5.6.1 for the non-
multiplicative Su-Olson problem. We consider the spatial domain €2, = [—10, 10] and the
angular domain €, = [—1,1]. The initial distribution is chosen to be the cutoff Gaussian

1 1 —1)?
v(t=0,2) = —; max 1074, ——— exp (_(m)) )

Bo . 271'0120 2‘7120

with constant deviation orc = 0.03. The traveling particles are initially centered around
x = 1 and move into all directions p € [—1,1]. The initial value for the internal energy
is set to BY = 1 and for the opacity to o = 1. For the low-rank computations an initial
rank of r = 10 is prescribed. This value is chosen smaller than in Section 5.6.1 as we
are concerned with quantities of rank 4r 4+ 1. The total mass m™ at time ¢, is defined
as m" = Az Zjv;”l (\/§B§Lv§”0 + Bj") As computational parameters we use N, = 1000
cells in the spatial and IV, = 500 moments in the angular variable. The time step size is
determined by At = Ccpr, - Ax with a CFL number of Ccpr, = 0.99.

In Figure 6.1 we compare the solution of the DLRA scheme with the solution of the full

system. It is observable that the solution f (x,u) as well as the scalar flux & = % (fu

and the dimensionless temperature 7" = Vv/B at the end time topq = 8 are captured well
by the DLRA scheme. For a chosen tolerance parameter of 9 = 107!||X|/¢ the rank r
increases up to r = 23 before it significantly decreases again. The relative mass error
|m;;:|1 | is of order O (10*13), i.e. the proposed DLRA scheme is mass conservative up
to machine precision. These results confirm our theoretical considerations and match the

results of the non-multiplicative Su-Olson problem described in Section 5.6.1.

6.6.2 1D external source

In a second example, an external source term @ (x) is added to the conservative form of
the Su-Olson system (6.3), leading to
Org (t, ;) = — %&n (B(t,x) g (t,x,p) + 0 (1 =gt z,p)

g(t,z, p)
— W(%B (t, .’IJ) +

0B (t,x) = 0B (t,x) ({g (t,z, 1)), — 2) .
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Figure 6.1: Top row: Numerical results for the solution f (x, i) of the plane source problem at time
tend = 8 computed with the multiplicative full solver (left) and the multiplicative DLRA scheme (right).
Middle row: Scalar flux @ (left) and temperature T (right) for both the multiplicative full solver and
the multiplicative DLRA scheme. Bottom row: Evolution of the rank in time for the multiplicative
DLRA method (left) and evolution of the relative mass error in time compared for both methods

(right).

This test example is known as the Marshak wave problem [Mar58] and has already been
considered in Section 5.6.2 for the non-multiplicative Su-Olson problem. In our example,
we use the source function @ (z) = X[—0.5,0.5 (7) /a With a = 4"% being the radiation
constant and x[_g.5,0.5) (*) denoting the indicator function on [-0.5,0.5]. The initial value
for the internal energy is set to B® = 50. All other initial settings and computational

parameters remain unchanged from the previous test example given in Section 6.6.1.

In Figure 6.2 we compare the solution of the full equations (6.15) to the solution obtained
from the DLRA scheme presented in (6.16). Both schemes are adjusted to take the
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6. A multiplicative DLRA scheme for the Su-Olson problem

additional source term into account. The numerical results for the solution f (z,u), for
the scalar flux ® = % (f) ., and for the dimensionless temperature 7" = VB at the end
time teng = 3.16, computed with both solvers, are shown. We again observe that the
DLRA scheme captures the solution of the full system. For a chosen tolerance parameter
of ¥ = 1073||X||r the rank 7 increases up to a value of r = 23. Due to the additional
source term, there is no conservation of mass in this test example. These results confirm
our theoretical considerations and match the results of the non-multiplicative Su-Olson
problem described in Section 5.6.2. However, note that for an accurate solution of the
DLRA scheme a smaller truncation tolerance parameter ¢ as well as a higher rank r
are required, indicating that the multiplicative structure numerically poses additional

challenges.

6.7 Summary and conclusion

We have presented a DLRA discretization for the multiplicative Su-Olson problem that
is energy stable and mass conservative. The main research contributions are:

(i) A multiplicative splitting of the distribution function: Based on the insights gained
in [EHY21] we have considered a multiplicative splitting of the distribution func-
tion for which the spatial discretization had to be carefully derived. Further, the
multiplicative splitting has required additional modifications in the DLRA scheme
in order to obtain an energy stable numerical discretization of the problem.

(ii) An energy stable numerical scheme with rigorous mathematical proofs: We have
given rigorous mathematical proofs for the energy stability of the derived DLRA
scheme, enabling to deduce a classic hyperbolic CFL condition. This allows to com-
pute up to a maximal time step size of At = Ccpr, - Az, enhancing the performance
of the algorithm.

(iii) A mass conservative and rank-adaptive augmented integrator: We have implemented
the rank-adaptive augmented BUG integrator presented in [CKL22]. Since this
integrator allows for further basis modifications, we have included additional basis
augmentation steps that ensure the exactness of the projection operators needed for
the theoretical proof of energy stability as well as the local conservation of mass,
which has been guaranteed in combination with a suitable truncation strategy as
described in [EOS23, EKS23].

(iv) Numerical test examples confirming the theoretical properties: We have compared
the numerical results obtained from the DLRA scheme with the solution of the
full system for relevant test examples from the literature, validating the derived
properties as well as the accuracy of the proposed DLRA method.

However, the extension of the considered stability analysis from a linear to a non-linear
problem, for example the isothermal Boltzmann-BGK equation treated in [EHY21], poses
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Figure 6.2: Top row: Numerical results for the solution f (z, ) of the external source problem at
time teng = 3.16 computed with the multiplicative full solver (left) and the multiplicative DLRA scheme
(right). Middle row: Scalar flux ® (left) and temperature T (right) for both the multiplicative full
system and the multiplicative DLRA scheme. Bottom row: Evolution of the rank in time for the
multiplicative DLRA method.

additional challenges as the general theoretical setting is significantly more difficult. Nev-
ertheless, the analysis performed for the multiplicative Su-Olson problem provides valu-
able insights into the choice of a suitable spatial discretization and stabilization when
considering a multiplicative splitting of the distribution function. This splitting approach
can be extremely useful for the construction of DLRA schemes for more complicated
problems.
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A multiplicative DLRA scheme for the
linear Boltzmann-BGK equation

The Boltzmann equation is a fundamental model in kinetic theory describing a gas that
is not in thermodynamic equilibrium. In its full formulation with quadratic Boltzmann
collision operator as given in (2.10), numerically solving the Boltzmann equation is highly
demanding. Instead, the Boltzmann-Bhatnagar-Gross-Krook (BGK) equation (2.11) can
be considered. It simplifies the collision term while maintaining the key properties of the
original equation. Still, especially in higher-dimensional settings occurring in practical
applications, its solution can lead to prohibitive numerical costs. To overcome this last
problem, the method of DLRA is applied to the Boltzmann-BGK equation in this chapter.
Inspired by [EHY21, KS16], a multiplicative splitting of the distribution function of the
form f = Mg is considered, splitting a generally not low-rank Maxwellian M from a
remaining distribution function g. In [EHY21], it has been shown that for the Boltzmann-
BGK equation the remaining function g is of low rank even if the distribution function
f is not (which is not true for the classic additive micro-macro decomposition). Hence,
in order to obtain an efficient scheme, the DLRA approach is applied to the low-rank
distribution function g. Difficulties may arise in the discretization. With the knowledge
gained in Chapter 6 an advection and a conservative form of the evolution equation
for g are derived and a “first discretize, then low-rank” approach is pursued. Further,
the potentially stiff collision term is treated with an implicit temporal discretization.
However, different from Chapter 6, the Boltzmann-BGK equation requires another notion
of stability, giving rise to additional complexities in the proof of numerical stability. In
addition, for the construction of the DLRA scheme new ideas for the basis augmentations
as well as an adjusted truncation strategy are necessary.

The structure of this chapter is as follows. In Section 7.1 two possible systems for the linear
Boltzmann-BGK equation with multiplicative splitting are derived. Both systems are
equivalent in the continuous setting. In Section 7.2 a discretization in velocity, space and
time is performed, leading to two different fully discretized schemes. It is shown in Section
7.3 that the advection form of the multiplicative linear Boltzmann-BGK equation can lead
to a numerical scheme that is not von Neumann stable, whereas for the conservative form
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numerical stability can be guaranteed. Section 7.4 is devoted to the derivation of a DLRA
scheme which together with a suitable truncation strategy is shown to be numerically
stable. Numerical experiments both in 1D and 2D, given in Section 7.5, confirm the
derived results before Section 7.6 provides a brief summary and conclusion. The results
of this chapter closely follow the presentation in [BEKK24b].

7.1 Linear Boltzmann-BGK equation with multiplicative
splitting

We start from the Boltzmann-BGK equation given in (2.11) and restrict it to a 1D setting
of the form

Of (t,x,v) + v, f (t,z,v) = o (M [f](t,x,v) — f (t,z,v)), (7.1a)

where f (t,z,v) denotes the distribution function depending on the time ¢ € R, the
spatial variable x € €0, C R and the velocity variable v € R. The collision frequency
of the particles is set to a constant scalar value . In the definition of the Maxwellian
equilibrium distribution M [f] as provided in (2.8), the number density n (¢,z) can be
replaced by the mass density p (¢, x), which under the assumption of a unity mass m are
the same. We refer to this quantity as the density p (¢t,x). An evolution equation for the
density is obtained by integrating (7.1a) with respect to v, resulting in

Op (t, ) = —8x/vf (t,z,v)dv. (7.1b)

Following the considerations presented in [EHY21], we employ the multiplicative decom-
position

ft,x,v)=MIf](t,z,v)g(t,x,v), (7.2)

which is advantageous for the construction of an efficient DLRA scheme as g is low-rank
even if this is not the case for the Maxwellian. In this thesis, we consider an isothermal
Maxwellian without drift, i.e.

MIf] (t,2,0) = p\(/tg) exp (_”22) .

This results in a linear model, which we call the linear Boltzmann-BGK equation. This lin-
ear model has been extensively studied in the PDE community [Eva2l, CCEY20, AACI6]
as well as from a numerical point of view [BCHR20]. In the following considerations, we

provide a stability analysis in the context of DLRA simulation using a multiplicative
decomposition as proposed in (7.2). The stability analysis for the simplified problem
provides insight into the numerical scheme that has been used in the literature [EHY21]
dealing with the Boltzmann-BGK equation. In particular, our analysis explains why
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such multiplicative schemes need to take relatively small time step sizes even though the
collision operator is treated implicitly.

We first insert the multiplicative approach (7.2) into the definition of the density and
obtain

piter) =2 [ tam) e au,

which can be equivalently rewritten as the identity

%271/ (t,z,v) e V" 2qu. (7.3)

Then we insert the multiplicative approach (7.2) into equations (7.1a) and (7.1b), yielding

Oug (t,2,v) = — v0,g (t,2,0) + o (1 — g (t, ,v)) — W@m (t,z) (7.4a)
_g(tzv) .
o) Oep (L, ) ,
Op (t,x) = — \/12?896 /p (t,z)g(t,z,v) ve U 2dy. (7.4b)

This set of equations is called the advection form of the multiplicative system. It corre-
sponds to the way the equations are treated in [EHY21]. We can rewrite equation (7.4a)
into a conservative form, leading to the system

Oy (t,z,v) = ( o0 O: (p(t,x) g (t,x,v)) +0(1—g(t,x,v)) (7.5a)
g (t,z,v)
~ p(ta) FICO R
Op (t,x) = — \/127895//) (t,z) g (t,z,v) ve "2 qu. (7.5b)

Note that for both systems we omit initial and boundary conditions for now. In the
following considerations, we discretize both sets of equations (7.4) and (7.5) to compare
them in terms of numerical stability. We derive a stable DLRA scheme and give a concrete
hyperbolic CFL condition. Similar to Chapter 6, we first discretize the equations and then
apply a DLRA approach.

7.2 Discretization of the multiplicative system

In this section, we provide a full discretization of both versions (7.4) and (7.5) of the mul-
tiplicative system. Sections 7.2.1 and 7.2.2 discretize equations (7.4) and (7.5) in velocity
and space, leading to semi-discrete systems. In Section 7.2.3 a temporal discretization is
presented, rendering fully discrete schemes.
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7.2.1 Velocity discretization

For the discretization in the velocity space a nodal approach as described in Section
3.3.1 is employed. We prescribe a certain number of grid points N, and determine the
quadrature nodes vy, ..., vy, and weights wy, ...,wy, using the Gauss-Hermite quadrature
rule. This choice accounts for the special structure of equations (7.4b) and (7.5b) and
enables an approximation of the following integrals as

Ny

/ e—v29 (taZEa U) dv =~ Zwkg (t,CL',’Uk) :
R

k=1

An approximation of the velocity-dependent distribution function g (¢,x,v) is obtained
from an evaluation at each grid point, i.e. by computing

gk (t,x) =~ g (t, =, vg) for k=1,...,N,.

Considering the advection form (7.4), this leads to the system

Oug (1.0) =~ 00, (t.2) + 7 (1 g (1)~ L 00) (160)

9k (tv J})
ot 0

Op (t, ) p(t,x) gr (t, x))vkwkevlz/z, (7.6b)

mza

which is discretized in the velocity variable. Analogously, for the conservative system
(7.5) the following set of equations is derived:

Oug (1.0) == 0, p(.0) 9 (02) +0 (1 g ()~ % D oup 1.0), (170
Ny

Oep (t,x) \/12? Oz (p (t, ) gr (¢, x))’ukwke”k/Q (7.7b)
k=1

7.2.2 Spatial discretization

Regarding the discretization of the spatial domain §2,, we construct a uniform spatial grid
with N, grid cells and equidistant spacing Az = Niz Spatially dependent quantities are
approximated as

pi (t) = p(t,z;) and gk (t) = g (t, x5) for j=1...,N,.

Assuming periodic boundary conditions, first-order spatial derivatives 0, are approxi-
mated using the centered FD method. For stability reasons, a diffusion term involving
second-order derivatives 0., is added. This term is also approximated by the centered
FD method. We employ the tridiagonal spatial stencil matrices D* € R¥+*Nz given in
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7.2. Discretization of the multiplicative system

(3.8) and D** € RN=XNe defined in (3.11).

We insert the proposed spatial discretizations into the advection form (7.6) and add a
stabilizing second-order term for 0,¢. This corresponds to the method used in [EHY21]
for the non-linear isothermal Boltzmann-BGK equation and leads to the semi-discrete
time-continuous system

Az &=
gjik (t Z Diigix (t) v + —- Z D37 gir () vk (7.8a)
=1
J t . J t ok x

p] (t = \/7 Z Z D]zpz ik ( ) vkwkevk/2 (78b)

=1 k=1

NI 'U
2
QMZZDM ) git: (t) [vg| wie /2.

=1 k=1

For the conservative form (7.7) the second-order stabilization term is applied to 9, (pg).
We obtain the semi-discrete time-continuous system

Nz

Az 1 -
gjk Z Dﬂpz gzk ) Vg + 7/}7@) Z Dji Pi (t) ik (t) "Uk‘ (79&)
J i=1
gik (1) .
+o(1—gj(t) — pj (),
’ pj (t) "7
. . 32 1) U2/2
pj (t z Z D3pi (1) gir (t) vpwye’ (7.9b)
\/ﬂ =1 k=1
Nx 'U 9
D% p; i v |wrpel /2.
2@;;1 ]zp gk )|k|k

Note that due to the different structure of the equations the stabilization term in (7.8a)
is applied to 0g, whereas in (7.9a) it is added for 0, (pg). This marks an important
difference between both presented schemes.

7.2.3 Temporal discretization

The temporal discretization has to be carefully derived to obtain a possibly numerically
stable scheme. We start with the semi-discrete advection form presented in (7.8) and
perform an explicit Euler step for the transport part in (7.8a) as well as in (7.8b). The
potentially stiff collision term is treated implicitly. This is a reasonable approach and
for instance explained in Section 3.1.2. For approximating the time derivative O0;p the
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

corresponding difference quotient is used. We obtain the fully discrete scheme

g;llj_l g]k At Z D]zgzkvk =+ At Z Dxxgzk‘vk‘ (7108,)
=1
gn]:-l g, Na
Fos (1) B ) - 6 S g,
p] Pj =
p;LJrl - p] At Z ZD]zpz gzkvkwke vi/? (710b)
=1 k=1
NI U
2
e e
i=1 k=1

which describes one time step from time t, to time t,+1 = t, + At. Considering the

conservative form (7.9), we again perform an explicit Euler step for the transport part
ntl

n (7.9a) as well as in (7.9b). The collision term is treated implicitly and a factor pi) o
J

is added. The special form of this factor will be explained later in the proof of numer-

ical stability. As done before, the time derivative d.p is approximated by its difference
quotient. This leads to the fully discretized equations

Az 1
g‘;lk-:i—l g_]k Z D]zpz g@kvk + Atii Z Dxxp?glk‘?}k‘ (7113)
.7 =1 -7 =1
pn+1 gnlj—l
J +1 Jik +1
toA=S (1-g5") - o (5= 7).
J J
P =0 - Ati Z Z D% pl g vpwye s/ ? (7.11b)
i=1 k=1
Nl ’U
2
Z Z D_]’L Pi glk‘vk‘wkevk/z'
i=1 k=1

Note that the discretizations for p given in (7.10b) and (7.11b) are exactly the same.
The main differences between the naive discretization of the advection form (7.10) and

the proposed scheme (7.11) for the conservative form are the stabilization of 9, (pg) in
(7.111a), opposed to a stabilization of 0,9 as done in (7.10a), and the additional factor
n+

2~ in the collision term of (7.11a).
J

7.3 Numerical stability

Although the derivation of the equations proposed in (7.10) and (7.11) is similar, both
systems differ drastically in terms of numerical stability. We first introduce the following
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7.3. Numerical stability

notations for the fully discrete setting.

Definition 7.1 (Fully discrete solution and Maxwellian). The fully discrete solution f
at time t,, is given by f" = ( J"k) € RNexNo with entries

n.on —v?/2

n 1
Jjk — \/ij g]ke

The fully discrete Mazwellian at time t, is denoted by M" = ( ]”k,) € RN=xNo with
entries

1 2 2
Mﬁ o ,OTL v/

In this section, both fully discrete schemes presented are compared. In Section 7.3.1 it is

shown that the advection form (7.10) is generally not von Neumann stable whereas for

the conservative form (7.11) a proof of numerical stability is established in Section 7.3.2.

7.3.1 Advection form

We begin with the fully discretized advection form (7.10), which is comparable to the
discretization chosen in the article [EHY21] as the term 0, (Mg) is split up into the
sum of Md,g and g0, M. In [EHY21], numerical experiments are given but no explicit
stability analysis is conducted. In the following part, we provide an example showing that
numerical stability in the sense of von Neumann cannot be guaranteed.

Theorem 7.2. There exist initial values g™ = (g?k) € RNeXNv gnd p" = (p;”) e RNw

such that the advection form (7.10) of the linear Boltzmann-BGK equation for o = 0 is
not von Neumann stable.

Proof. Let us assume a solution gj), that is constant in space and velocity, e.g. g7 = 1.
For this solution the terms containing D*g™ and D**g™ in (7.10a) are zero. Let us further
assume that there is no collisionality, i.e. ¢ = 0. We insert this information into (7.10a)

and derive
gn+1
k
it =1 B () - ek S g
J ] =1

After rearranging the equation, we obtain
1 n+l
P = - A3 Dt

RT . . 1 7v2/2
Multiplication with Noridil leads to

fn+1 jk‘ — At Z ‘Djz k.’Uk; (712)
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

This expression corresponds to a discretization of the linear advection equation of the form
O f +v0, f = 0 with an explicit Euler step forward in time and a centered FD method in
space. According to Remark 3.16 this discretization is not von Neumann stable. ]

Indeed, it can be shown that the discretization given in (7.12) is not von Neumann stable
but stable in the sense of Definition 3.8 for relatively small time step sizes [LeV07]. This
matches our numerical insights gained from [EHY21], where the spatial discretization is
comparable to (7.10) and small time step sizes are required.

7.3.2 Conservative form

Having found out that for a certain choice of the initial values the system of equations
(7.10) is not von Neumann stable, we now consider equations (7.11) in terms of numerical
stability. We observe that the advection terms are treated explicitly, whereas the collision
term is treated implicitly. As explained in Section 3.1.2, this leads to a removal of the
potential stiffness caused by a large number of collisions. We seek a rigorous proof of
stability under a classic hyperbolic CFL condition, which will be derived in the following

norm.

Definition 7.3 (Stability norm). For £ = (f7}) € RN=XNv “the s#-norm is defined as

Nz Ny

€15 = vam 337 (£5) w2,

j=1 k=1

This corresponds to a Frobenius norm ||-|| , with weights v/ Dwye3vi/2,

The choice of this norm is inspired by the analysis in [AACI16], where hypocoercivity
for the linear Boltzmann-BGK equation is shown. Different from the considerations in
[AACI16], we use a fully discrete analogue to the considered weighted L?-norm which also
takes the Gauss-Hermite quadrature into account. Note that the factor v/27 does not
affect the stability but is added for consistency.

At each time step the fully discrete distribution function f and the fully discrete density
p are required to fulfill the discrete counterpart of its definition given in Definition 2.5,
namely the identity

Ny
pj = Z f;}cwke”i for all n € N.
k=1
With relation (7.3) this identity can be rewritten in a equivalent formulation as
1
l=— Zg”kwke”zﬂ for all n € N. (7.13)
J
V2 —

We are able to show that the equality given in (7.13) holds for the conservative equations
(7.11) under a suitable choice of the initial condition.
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7.3. Numerical stability

Lemma 7.4. Let us assume that the initial condition for g satisfies

N,
1 v
= E g g?kwke”%/2 forall je{l,..,N;}.
k=1

Then, for all n € N, the equality given in (7.13) holds.

Proof. The proof follows by induction. For the induction assumption let us assume that
the relation 1 = \/% Z]kvil g;‘kwke”l%/ 2 holds for one n € N. For the induction step we
begin with equation (7.11a), put the terms containing g?,j ! to the left-hand side and
multiply with an This results in

N, N
(14 cAt) ”+1g;1,j1 = pj g, — At E Djip} gix vk + AtT E D3 o7 gik v + UAtp”+1
i—1 i=1

Multiplication with \/%wke”i/ 2 and summation over k leads to

(1+oAt)p "H Zg?,jlwke”kﬂ

_ P? o n v2 /2 AL v2/2
= kzlgjkwke R — At— Z Z D3ipi gy vpwr e’

zlkl

N N
T 'U 1 v
Z > DI R gl fvlwre 2 + oAt T —= 3 w2,
—1 k=1 Bt

We insert the induction assumption as well as \/#27 Zgil wke’”i/ 2 = 1. Then, together
with equation (7.11b), this establishes

(1+o0At) pf™! FZ I wpett? = (1 + oAbt

Canceling with (1 + aAt) "1 gives the desired equality for n + 1, and completes the
proof. O

Also the following inequality is indispensable to show numerical stability of the conserva-
tive system (7.11).

Lemma 7.5. Under the time step restriction maxy, (|vg|) At < Az it holds

A 2

At HDIf”Jrl diag (vg) — 7CCD‘““"f"Jrl diag (|vg|)
H

(7.14)
“ Az HDH?”+1 diag (|vk|1/2>H; <0

Proof. We employ a Fourier analysis similar to [KEC23] and use Lemma 5.7 introducing
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

the matrices E and A7 that diagonalize the stencil matrices according to
D'E = EA” with v € {z,zz,+},

where E are unitary and A7 are diagonal matrices. Let us denote frtl — ( f"“)
CNe*Nv with entries fgg ! Z 1 Eajf; "H. With Parseval’s identity given in Proposition
3.14 we obtain

A 2
At ||D*f" ! diag (vg) — Tlpof"+1 diag (Jvk|)
H

— Az HD+fﬂ+1 diag (|” |1/2) Hyf

Ax

2
= At |D*f" diag (vkw;/ze?’vz/‘l) Dg“’“"f”‘"1 diag (|vk|w /2 3“k/4)

— Az HD“‘f"'H diag (|vk|1/2w;/263”§/4) H

F
~ A 2
= At [|[ATf T diag (vkw;/z(g?’vi/‘i) an:zfn-&-l diag (‘”k‘w /2 3“k/4))
F
i 2
— Ax HAJrfnJrl diag (|Uk|1/2w11/2€3vi/4) H
22323 At |Uk| |1 — cos(va)| — |vk| |1 — cos(Va)| 3v/2 | ntl 2
B o Wke fak
a=1k=1

A sufficient condition to ensure negativity is that for each index k it must hold

[
At
(Az)

|1 — cos(vq)| < ’Z;’ |1 — cos(vq)| -

Hence, for maxy (|vg|)At < Az, equation (7.14) holds and we have proven the lemma. [

Using the above results, numerical stability of the conservative form of the equations
proposed (7.11) in the .##-norm can be shown.

Theorem 7.6 (Energy stability of the fully discrete system). Under the time step re-
striction maxy, (|vg|) At < Ax the fully discrete system (7.11) is numerically stable in the
FC-norm, i.e. it holds

[£7+1)1%, < IE71%, -

Proof. We multiply (7.11a) with p"'H p?g?,j 1 and put the last term of the equation from
the right-hand to the left-hand 81de This results in

1 1 1 1 1 1
(i gt ) = phgiei gt — Attt g ZDﬂpz 9l VK

Ax
+ At ;Prl n+1 Z Djmlr nng |'Uk| + O_Atanrlg;lkJrl <p;L+1 p;l+1g;1k+1> )
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2
Multiplication with 2 (\/#2?6_”2/ 2) leads to

(1) = 2 2807 D+ A S D5
+ 2aAtf”H (Mn+1 fn+1) )
Note that it holds

fn+1 (fn+1) (f ) <fn+1 n)2‘ (7.15)

We insert this relation and obtain

(fn-H) _ ( ) (fn+1 ﬁ:) 2Atfn+12D;Ui Z]ZU}C—FAtAZL'fn—HZDxI n |'Ul<:|

=1
+ 20’Atfn+1 (Mn—i-l fn+1) )

In the next step, we multiply with / 27rwke3”§/ 2 and sum over j and k. This yields

an—l-lH}f _ an”f FZZ( n+1 f;Lk)QWk€3vi/2

7=1 k=1
Nz Ny
2
—2V2mAt Z Z fﬁ:’lDﬁ 7 opwpe k2 (7.16)
i,j:l k=1
+ vV2rAtAz Z Z ”HD“ i \vk\wke?’”zﬂ
1,j=1 k=1
+ Q\ﬁUAtZZ n+1 (Mn—H fn-i-l) wke?’”iﬂ.
7=1 k=1

n+1 1

wgelh = ,0”Jr . Hence, we
can conclude that the term 2v/2mo At ZJ DI M"Jrl (M”‘*‘1 f”‘H) wge3Ui/2 which
is added in the next step, is equal to zero. Lemma 3.1 implies that also the term
221 At Z” i Z "HD”E f"“vkwke?)”z%/z, which is subtracted in the next step, is
equal to zero. Furthermore we add an artificial zero to the equation given in (7.16) by

adding and subtracting the expression v/ 2r AtAx sz‘vle f”HDm 2L || wipedvE/2

According to Lemma 7.4, we can use the equality ZN”
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This leads to

||fn+1ij_ an”jf \ﬁzzzv( nt+l n)kaeguﬁ/z

7j=1 k=1
OWOTYN Z Z n+le n fn-i-l) vkwk63vi/2
1,j=1 k=1
.7/' N’U
2
+ / TALAT Z Z n+1D;cZac zTIlc fn+1) |Uk|wke3vk/2
1,7=1 k=1
+ /O AtAx Z Z n—l—lDoc:c n+1 ]vklwke%kﬂ
1,=1 k=1
Cl? ’U 2
_9 ﬁUAtZZ( n+1 Mjnl:rl) wk63vi/2.
7=1 k=1

Now we analyze the terms (I), (II) and (III) separately. Let us start with (I) and (II) and

apply Young’s inequality proposed in Lemma 5.6. For the sum (I)

. 2\/7At Zz: ZU: n-i-lD:v n fn+1) Ukwke?wi/Z

i,=1 k=1

+ rAtAx Z Z n+1Dza: zrllc _ fn+1) ‘vk‘wke&zzﬂ

S

i=1 k=1

i,7=1 k=1

n n+1) \/7631)’@/4)

A
fﬁAtZ( 2, Jnk—&—I - isz n—&-l‘vk‘) FeSvk/4

S

=1 k=1

IN

+ V27 (At)

2
- n+1 wkeSUk/Z

2

ii Z( x n+1vk_A7Dm n+1|vk|) wke3v§/2'

i=1 k=1 7j=1

+ (II) this leads to

For (III) we exploit the properties of the spatial stencil matrices given in Lemma 3.1. We

derive the equality

rAtASL' Z Z n+1Dxx n+1 |Uk|wke3v,€/2

i,j=1 k=1

2
:—FAtAxZZ <ZD "+1|vk|1/2> wye k2,

=1 k=1
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We insert both relations and obtain

I 'U A
||fn+1||f < anij_’_r At) ZZ Z D%, n+1vk _ iD:m n+1 vk | wke3vi/2

i=1 k=1 7=1

No No [ Na 2
—\ﬁAtAwZZ (Z "H]v ]1/2> w3/

7=1 k=1

oV At SO S (7 - A e

7=1 k=1

Together with Lemma 7.5 we can conclude that under the CFL condition maxy, (|vg|) At <
Az it holds ||+ ||2/f < ||f”\|2% Hence, under this time step restriction the proposed fully
discrete system (7.11) is numerically stable in the #-norm. O

In principle, we have shown energy stability according to Section 3.2.4 for equations
(7.11). However, as the considered .#-norm is not directly related to the physical energy
of the system, we refer to it as numerical stability in the sense that the solution remains
bounded over time.

7.4 Stable DLRA scheme for multiplicative linear
Boltzmann-BGK

In practical applications, the implementation of the full system given in (7.11) may lead
to prohibitive numerical costs, especially when computing in higher-dimensional settings.
To reduce computational and memory demands, we apply a DLRA approach to the
distribution function g. We first rewrite the conservative form of the equations. In
(7. 11@) we put all terms containing g"+1 to the left-hand side and multiply the equation

with p +1 Then equations (7.11) can be written in the equivalent form
J

N
Py 1 & n
gt (L oAt) = gt — At—— > DE (o glh) v (7.17a)
Pj L
N
Axr 1 =
+ At? P D3 (pi'gir) lve| + oAt
L
it = - Ati Z Z DS} g vpwpes/? (7.17b)
=1 k=1
NI 'U
Z > DI ol gl ok lwoe 2.
z—l k=1
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

We propose a numerically stable DLRA implementation that uses the rank-adaptive aug-
mented BUG integrator presented in [CKL22] for equation (7.17a) together with addi-
tional basis augmentations and a suitable truncation strategy. Note that the scattering
term 1 4+ oAt is only applied in the S-step as it does not affect the span of the basis
functions derived in the K- and L-step. In detail, the DLRA scheme works as follows.

We first substitute g% = >, _; X7, 57, nVim into the update equation (7.17b) and obtain

T

Pt = pj - ZDm S XS S W (115
m,n=1 k=1

A Ny T Ny

235D 3 Xt 3 et

iz k=1

m,n=1

For the K-step, we introduce the notation Kj, = S XSy and solve

m=1

I -
ZHK — At—— +1 Z Do Z 4 Z VLoV (7.18Db)
J n=1 k=1

Aa;l No

n+1 ZD” "ZKWZV,m |ve| Vi, +0AtZVkp.
n=1

n+1 __
ij -

We derive the updated basis X7+ of rank 2r from a QR-decomposition of the augmented
quantity X"t = qr ([K"H, X"]) In addition, we augment the basis according to

X+l — qr ([in—l—l’ (pn+1)2 }/ZnﬂD . (7.18¢)

This basis augmentation ensures the exactness of the corresponding projection operators
in the proof of stability of the /Qroposed scheme. Its explicit form will be made clear later.
We compute and store M X+LTX", Note that for this scheme we perform full rank
updates, leading to an increase from rank 2r to 4r. Quantities of rank 2r are denoted
with one single hat and quantities of rank 4r with double hats.

For the L-step, which can be computed in parallel with the K-step, we write L} =
> n=1 Smn Vi, and solve

Lt = ZL nym ZfHX” AtivkL Z nop Z z n+1X” (7.18d)
+ Ati Z |1)k’ Lkaszpz ZDxxanrl + JAtZ

7=1 J

We derive the updated basis V7+1 of rank 2r from a QR-decomposition of the augmented
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7.4. Stable DLRA scheme for multiplicative linear Boltzmann-BGK

quantity Vil = qr ([L"‘H, V"]) In addition, we augment the basis according to
vl = qr ([?"H,we‘ﬂﬂ?”“}) (7.18e)

leading to a new augmented basis V7+1 of rank 4r. This basis augmentation again ensures
the exactness of the corresponding projection operators and will be made clear later in
the proof of numerical stability. We compute and store N = V”Jrl v,

For the S-step, the prev1ously computed solutions from the K- and L-step are used. We
introduce the notation Smn = ZJ el Mm]S ank and solve

N

2 1 = I
+1 _ +1_"J +1 +1Tn+1

S e T 3 R, T

Jj=1 m,n=1

At e n+1 Sn+laon n+1 n+1
" T o 2 n+1ZDﬂm > s nZV (7.186)
m,n=1

4r
At Az +1 +1 1| +1
T oA 2 >R, n+1ZD§”?p? > X S”nZV” Vi
J=1

m,n=1
oAt n+1 n+1
Vi
+1+0At2 Z

The last step consists in truncating the augmented quantities i"“, VL and S™*! from
rank 4r to a new rank r,+;. We use a modification of the truncation strategy described
in Section 4.2.2 that ensures that the equality \/% I — Zi\ll X;LmSﬁka’}]wkevim =1
stays valid in each time step and works as follows:

(i) We set Z = (Z;) € RNe with entries Z; = \/%wke”iﬁ and z = ﬁ, where

||| ; denotes the Euclidean norm. Further, we set Hy = X181V 7777 and

H, = §”+1§"+1§"“’T (I — zzT) in order to ensure
1 = XnHgntiyn+lTy,
= <§”+1§"“§"+1’TZZT + §"+1§”+1§"+1’T (I — zzT)) Z
= (H; + Hy) Z,
where I € RNv*No represents the identity matrix and 1 € RN+ the vector containing

the value one at each entry. H; is a matrix of rank one and for Hs it holds that
H,Z = 0.

(ii) We compute XH1SH1VHLT — gyq (§”+1§”+1’Tzz—r> from an SVD, where X1 ¢
RY SH1 ¢ R, and VH! € RNo,

(iii) We compute PEQT =svd <§”+1) from an SVD, where P, Q € R¥*4" are orthog-

onal matrices and ¥ € R¥*4" is the diagonal matrix containing the singular values
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01, ...,04r. The new rank 7 < 4r is determined such that

1/2
4r /

> ) <o

j=r+1

where ¢ denotes a prescribed tolerance parameter. We set SHz ¢ ]RTX’" to be the
matrix containing the 7 largest singular values of S”+1 and the matrices PH2 QH2 €
]R‘“"XT to contain the first 7 columns of P and Q, respectlvely Finally, we compute
XHz = XnH1PHz ¢ RN and VHz = (1—z77) " Vo+iQHe ¢ RN,

(iv) We combine both parts and perform a QR-decomposition to obtain

X"HIR! = r ([§”+1XH1,XH2]> and  V'IR? = qr ([VH, VHE]).

(v) We compute

gntl _ Rl [SH1 0 ] R2T
0 SH2

Then the new rank r,11 is given by r,11 =7 + 1.

Altogether, this leads to the updated solution g"t! = X?+t18n+1Vn+LT after one time
step at time t,+; = t, + At. To provide an overview of the structure of the proposed
DLRA scheme, its working principle is visualized in Algorithm 3. Note that the notation
using brackets refers to a simplification of the algorithm that is explained later in Section
7.5.1.

Proof of stability of the proposed multiplicative low-rank scheme. It can be shown
that the DLRA scheme proposed in (7.18) preserves the numerical stability of the full
conservative system presented in (7.11), which has been shown in Theorem 7.6. The
rewriting of equations (7.11) into (7.17), the basis augmentations in (7.18c) and (7.18e)
and the implementation of the described truncation strategy are crucial for the proof. We
begin with the following definition.

Definition 7.7 (Low-rank approximation of the fully discrete solution). The low-rank
approzimation of the fully discrete solution f at time t, is given by f" = ( ]k) RNwxNo

with entries

n n n _—v2/2
Nl Z XS Vie ™ /2.
m,n=1

Note that in this notation we do not distinguish between the full solution f” and its low-
rank approximation f at time ¢,. Then we can show that the DLRA scheme (7.18) is

numerically stable.
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7.4. Stable DLRA scheme for multiplicative linear Boltzmann-BGK

Algorithm 3 Flowchart of the (simplified) stable multiplicative DLRA scheme (7.18).

e density at time t,: p7

input e low-rank factors at time ¢,,: X% S

n
g Smns Viey

e rank at time t,: r

!
[update density according to (7.18a)]

n—+1
Pj

[update bases according to (7.18b) and (7.18d)}

n+1 n+1
K. Ly,

jm >
{augment bases with X7, V,g}]]
n+1 n+1
ij ’an

_ 2 =~ A
augment bases with (p;.”“l) X]’-‘;{l and wke”kﬂVkT;H

(Xn+1 V]g;rl)
according to (7.18c) and (7.18e)

Jm >

{update coefficient matrix according to (7.18f)}

Syt (or S;,‘jgl)

=

truncate factors X;Lnfbl, S, VZUH (or X]’?ntl, St Vk':;rl ) ’

|
e density at time t,,11: pg”rl

: . n+l gn+l1 yn+1
output e low-rank factors at time tn41: X770, S Vi

e rank at time t,41: Tnt1
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

Theorem 7.8 (Numerical stability of the proposed multiplicative DLRA scheme). Under
the time step restriction maxy(|vg|)At < Az the fully discrete DLRA scheme (7.18) is
numerically stable in the 7€ -norm, i.e. it holds

2 2
£ < 17115 -
Proof. We begin with the S-step given in (7.18f), multiply it with X "“V"+1 and sum

over ¢ and p. For simplicity, the notation g”El = Z ap=1 X o ”“S”“V"Jrl as well as

the projection operators Poé)gn+ 247" X"“X”+1 and Pvn+1 Z ”H ”H are
introduced. This leads to

n+1 P n+1
nH ZPX nil E:gykpv
Pj

N,
At = Xn+1 U Vn+1
- 1+ oAt a] n+1 ZD]zpz Zgﬁvkpkﬁ
Jj=

At Am’ Xn+1
+1+aAtTZ aj n+1ZDﬂxPz Zgzk|vk|Pk,8
7=1
Xn+1 Vn+1
1 + aAt Z Z ’

We multiply with (1 + o At) —2 (pgﬂ)2 ggzglwge”l%ﬂ and sum over « and 3. Then,

"3

(14 oAt) — szv( n+1 n+1) 56”?3/2

a 15=1

2 N v P

_ Z PD‘an+ 7 n+1 Zg ZP gn-i-lw e”UB/Q

/ J n+1 Jk kB af WB

2 ja=1 Pj k=1

2Nt 1 .2

=" Pci(-n-H (pn+1 Z ! Zg v Z Vn+1 TL+1 e ﬁ/2

j 1 « jiti ikVk kB gaﬁ

V2T j,a:l '0? =1 k=1

n+1 2 2
putt) ZD]fpz Zgzk |0k ZPVg gt wges!

PXn+1 n+1 Zgn+1wﬁevﬁ/22 Vn+1'

Using the basis augmentations given in (7.18c) and (7.18¢), we can deduce that the
equalities

Xn+1 +1 n+1 _ +1 +1 vn+1 +1 2 _ 2
ZP (o) gust = () gt and Z b g5 wae? = g et/
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7.5. Numerical results

hold. We insert these relations and, to be consistent in notation, change the summation
indices on the left-hand side from « to j and from 3 to k. This leads to

9 Ny Ny
2
(14 oAt) Wors ( ”'Hg?,jl) wres/?
j:l k=1
N,
o 2AL o - >
n_n n+l n+l vy /2 n+1 n+1 T n.n vy /2
ZZ%%M 9jk Wk€ o2 ZZ Pi Gk ZDﬂPigz‘kvkwke 4
] 1 k=1 ] 1 k=1 i=1

n+1 +1 2/9
WZZ ; ZD]Z P g [u| wet/
7=1 k=1

20At ii( n+1) g?;jlwkev’ﬁ-

j 1 k=1

We rearrange the equation, insert the notations from Definition 7.1 and use the relation
stated in (7.15), yielding

an-l-lH = an”jﬂ rii ( ntl _ ¢n )2wk63vz/2

7=1 k=1
_2\/7At Z Z n+1l):cZ 'r];vkwke3vz/2
i,j=1 k=1
+ /O AtAx Z Z n-‘rlD:r::r: n ‘Uk‘wke?w,%/Z
1,j=1 k=1
Nz Ny
2
4 2 /27TO'AtZijT;:—1 (M;lk-i-l fn—i-l) wke3vk/2’
j=1 k=1

which is exactly expression (7.16) dealt with in the proof of Theorem 7.6. As the trun-
cation step is specifically designed to leave these expressions unchanged, we can con-
clude analogously to the proof of Theorem 7.6 that the proposed DLRA scheme de-
creases the JZ-norm and hence is numerically stable under the time step restriction
maxy(|vg]) At < Az. O

7.5 Numerical results

To validate our theoretical considerations, we compare the solution of the full equations
(7.17) to the solution obtained by the DLRA scheme given in (7.18) for different nu-
merical test examples. Section 7.5.1 reconsiders the 1D plane source problem, before in
Section 7.5.2 a 1D tanh problem with more challenging initial distributions is considered.
In Sections 7.5.3 and 7.5.4 2D test examples are presented in order to investigate the
computational benefit of the DLRA scheme in higher-dimensional settings.
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

7.5.1 1D plane source

We begin with the 1D plane source test problem, which has already been treated in
Sections 5.6.1 and 6.6.1 for the (multiplicative) Su-Olson problem. We consider the spatial
domain 2, = [—10, 10] and choose the initial density p to be the cutoff Gaussian

1 2
p(t=0,2) = max 1074, ———exp (—%)
27r012C 201¢

with constant deviation oyc = 0.3. The initial distribution function g is assumed to be
constant in space and velocity and we prescribe

g(t=0,z,v)=1.

We consider a relatively large collisionality by choosing ¢ = 10. For the low-rank com-
putations an initial rank of r = 20 is prescribed. As computational parameters we use
N, = 1000 grid cells in the spatial as well as N,, = 500 grid points in the velocity domain.
Based on this choice, we obtain maxy, (Jvx|) ~ 31.05, which is adjusted to the next larger
integer. The time step size is determined by At = Ccypy, - % with Ccrr, = 0.99, according
to the corresponding CFL condition.

Practical implementations show that the basis augmentations to rank 4r performed in
(7.18¢) and (7.18e), which are needed for the theoretical proof of numerical stability, may
not be necessary for numerical examples and that the standard basis augmentations to
rank 2r provide similar solutions while being significantly faster. For this reason, we
propose to leave out the basis augmentations presented in (7.18c) and (7.18¢) in practical
applications. In this case, all quantities with double hats related to rank 4r decrease to
quantities of rank 27 with one single hat. The simplified scheme with rank 2r is also
visualized (in brackets) in the flowchart of Algorithm 3.

In Figure 7.1 we compare the results for the solution f (¢, x,v) computed with the multi-
plicative full solver, the simplified multiplicative DLRA scheme with rank 2r and the basis
augmented multiplicative DLRA scheme with rank 47 at different times up to tgnq = 6.
We observe that the reduced as well as the augmented multiplicative DLRA algorithm
capture the main characteristics of the full reference system. This is also true for the
computational results for the density p (¢, z) displayed in Figure 7.2. Figure 7.3 shows the
evolution of the rank in time, which for a chosen tolerance parameter of ¥ = 107° ||X|| »
increases up to r = 75 before it significantly decreases over time. Note that the evolu-
tion of the rank for the reduced as well as for the basis augmented multiplicative DLRA
algorithm show good agreement as the new rank is displayed after the corresponding trun-
cation step. Further, the evolution of the norm ||f]|%, in time is illustrated. As expected
from the theoretical results, its value decreases smoothly over time for all considered
systems. Additionally, we display the quantities k™ := max; (\/%7 S gjkwke”i/ 2) and
K~ 1= min; (\/% ZkNi1 gjkwke”ﬁﬂ). According to Lemma 7.4, it is essential that they are
both equal to 1, which for the DLRA schemes is ensured by the adjusted truncation step.
It can be observed that this property is fulfilled up to order O (10_10).
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Figure 7.1: Numerical results for the solution f (¢,z,v) of the 1D plane source problem at time ¢t =0
(first column), ¢t = 2 (second column), ¢t = 4 (third column), and ¢ = 6 (fourth column), computed
with the multiplicative full solver (first row), the reduced multiplicative DLRA scheme (second row),
and the basis augmented multiplicative DLRA scheme (third row).

7.5.2 1D tanh

For the next 1D test problem, a more challenging initial density distribution is considered.
The initial density p is chosen to be

tanh(x) for x < -1,
p(t=0,2)=1¢1 for =€ [~1,1],
coth(z) —2 for x> 1.

The initial distribution function g is assigned to be constant in space and velocity and we

prescribe
g(t=0,z,v)=1.

All other initial settings and computational parameters remain unchanged from the pre-
vious test example given in Section 7.5.1.

In Figure 7.4 a comparison of the numerical results for the solution f (t,z,v) computed
with the three different solvers up to tgnqg = 6 is given. We observe that both DLRA
algorithms are able to reproduce the full solution. This is also true for the computational
results for the density p (¢,x) displayed in Figure 7.5. In addition, Figure 7.6 shows the
evolution of the rank in time, which for a chosen tolerance parameter of ¥ = 107° ||X|| »
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Figure 7.2: Numerical results for the density p (¢,2) of the 1D plane source problem at time ¢ = 0,
t=2,t=4, and t = 6, computed with the multiplicative full solver, the reduced multiplicative DLRA
scheme, and the basis augmented multiplicative DLRA scheme.
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Figure 7.3: Left: Evolution of the rank in time for the 1D plane source problem for the reduced
multiplicative DLRA scheme and the basis augmented multiplicative DLRA scheme. Middle: Evolution
of the sZ-norm in time for the multiplicative full solver, the reduced multiplicative DLRA scheme, and
the basis augmented multiplicative DLRA scheme. Right: Evolution of s in time for the multiplicative
full solver, the reduced multiplicative DLRA scheme, and the basis augmented multiplicative DLRA
scheme. The line corresponding to the full system has the constant value 1.

increases up to r = 93 before it significantly decreases over time. Again, the evolution
of the rank for the reduced and for the basis augmented multiplicative DLRA algorithm
nearly coincide. Further, the evolution of the norm ||f Hif in time is illustrated. Its value
decreases smoothly over time for all considered systems. Additionally, we display the
quantities k* and xk~ defined in Section 7.5.1, which are required to be equal to 1. This
property is fulfilled up to order O (10_8) for all schemes.

120



7.5. Numerical results

f full f full

10 10
0.25 ’ 0.0
0.00
000 = 0 : = 0
0.2
095 —0.25
0555 00 25 0555 00 25
x xX
f DLRA 10 DLRA
0.0
>
—0.2

—-25 0.0 2.

f DLRA BasisAug

x
10
0.25
000 = 0
—0.25
0 25 -0

f DLRA BasisAug

10
; 0-
-10

=25 0
z

10
0.25 )
0.00 = 0 -
—0.25
0555 00 25
x
0 25

2. X .
x
f DLRA BasisAug 10

0.25

0.00 -

—0.25

0 25 055 0
x

=25 0
x

Figure 7.4: Numerical results for the solution f (¢,z,v) of the 1D tanh problem at time ¢ = 0 (first
column), ¢ = 2 (second column), ¢t = 4 (third column), and ¢ = 6 (fourth column), computed with
the multiplicative full solver (first row), the reduced multiplicative DLRA scheme (second row), and
the basis augmented multiplicative DLRA scheme (third row).
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Figure 7.5: Numerical results for the density p (¢,x) of the 1D tanh problem at time ¢t = 0, ¢ = 2,
t = 4, and t = 6, computed with the multiplicative full solver, the reduced multiplicative DLRA
scheme, and the basis augmented multiplicative DLRA scheme.
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Figure 7.6: Left: Evolution of the rank in time for the 1D tanh problem for the reduced multiplicative
DLRA scheme and the basis augmented multiplicative DLRA scheme. Middle: Evolution of the
J€-norm in time for the multiplicative full solver, the reduced multiplicative DLRA scheme, and the
basis augmented multiplicative DLRA scheme. Right: Evolution of x* in time for the multiplicative
full solver, the reduced multiplicative DLRA scheme, and the basis augmented multiplicative DLRA
scheme. The line corresponding to the full system has the constant value 1.

7.5.3 2D plane source

To highlight the computational advantages of the DLRA scheme, a 2D version of the
plane source problem considered in Section 7.5.1 is presented. The corresponding 2D
conservative form of the equations established in (7.5) is given by

p(t,x)

1
Op (t,x) = —%Vx : /p(t,x)g (t,x,v) ve M4y,

g(t,x,v)
p(t,x) o

8tg(t,x,v):— -Vx(p(t,x)g(t,x,v))—l—a(l—g(t,x,v))— p(t,X),

where x = (z,y) € Qx C R? and v = (v,w) € R?. For the numerical experiments, we
consider the spatial domain 2y = [—3,3] x [—3,3]. The initial density p is chosen to be

the cutoff Gaussian

1 102 2
p(t=0,x) = —max (107!, 5 €XP —%
4 droic doic

with constant deviation o;c = 0.3. The initial distribution function g is assumed to be

constant in space and velocity and we prescribe
g(t=0,x,v)=1.

A large collisionality of ¢ = 100 is chosen. For the low-rank computations an initial rank of
r = 20 is considered. Computations are performed on a spatial grid with N, = N, = 128
grid cells in both spatial directions. For the velocity grid, N, = N, = 32 grid points
are prescribed in both velocity directions. Based on this choice, we obtain maxy, (|vi|) ~
10.08, which is adjusted to the next larger integer. The time step size is determined by
At = Ccyr, - % with a CFL number of Ccpr, = 0.7 in order to guarantee numerical
stability. We compare the solution of the 2D conservative full system corresponding to
(7.17) to the solution obtained from the 2D DLRA scheme corresponding to (7.18). The

extension to two dimensions is straightforward.
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Figure 7.7: Numerical results for the density p (¢,x) of the 2D plane source problem at time ¢t = 0
(first column), ¢t = 1 (second column), ¢ = 2 (third column, and ¢ = 3 (fourth column), computed with
the multiplicative full solver (first row) and the reduced multiplicative DLRA scheme (second row).

Figure 7.7 displays the density p (¢, z) at different times up to tgng = 3.0 computed with
the multiplicative full solver and the reduced multiplicative DLRA scheme with rank
2r. Note that we refrain from computations with the basis augmented 4r scheme as
in two space and velocity dimensions this would lead to extremely increased computa-
tional costs while obtaining good agreement also for the reduced multiplicative DLRA
scheme with rank 2r. We observe that at all times the solution of the reduced DLRA
scheme matches the solution of the full system. To determine the evolution of the
rank, we use a tolerance parameter of ¥ = 107°||X| . In Figure 7.8 we observe an
increase of the rank up to r = 73 before it decreases over time. Further, the evo-
lution of the norm ||f H;f in time is displayed. As expected from 1D theoretical re-
sults, its value decreases smoothly over time for all considered systems. In addition,
we plot the quantities kT := max; (% le Zévzwlg(t7xj,vk,wg)wkwge(”'€+“’§)/2> and

K~ = min; (% SN SN g (%, gy we) wkwge(”%wtg)/?). According to 1D theoretical
results, it is essential that they are both equal to 1. This property is fulfilled up to order
o (10_10). For this setup, the computational benefit of the DLRA method compared to
the full solver is significant. The scheme is implemented in Julia v1.11 and performed on
a MacBook Pro with M1 chip, resulting in a decrease of run time by a factor of approx-
imately 10 from 2315 seconds to 235 seconds, confirming the computational advantages

of the DLRA scheme.

7.5.4 2D beam

As a second 2D test example, we consider a beam in the spatial domain Qx = [—5,5] x
[—5, 5] starting at the point (0,0) in the middle of the spatial plane and moving to the
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Figure 7.8: Left: Evolution of the rank in time for the 2D plane source problem for the reduced mul-
tiplicative DLRA scheme. Middle: Evolution of the Z-norm in time for the multiplicative full solver
and the reduced multiplicative DLRA scheme. Right: Evolution of x* in time for the multiplicative
full solver and the reduced multiplicative DLRA scheme. The line corresponding to the full system has
the constant value 1.

bottom left. As initial conditions we prescribe the density p to be the cutoff Gaussian

1 102 2
p(t=0,x) = —max (107!, 5—exp | — ’X2| ,
47 47T0'Icp 4010’0

where o1¢,, = 0.2 denotes a constant deviation, and the distribution function g to be

K 106 _ 2
g (t = O7X; V) = — max 10_14’ ——F— €exp _w
4 47"'0'2 40.2
IC,g IC,g

with constant deviation oy¢y = 0.01 and K being a normalization constant such that the

2D analogue to Lemma 7.4 is fulfilled. The beam velocity vpeam i set to

—1
Vbeam = 1

and the collisionality to a constant value of ¢ = 1.5. All other initial settings and compu-
tational parameters remain unchanged from the previous test example given in Section
7.5.3.

Figure 7.9 displays the numerical results for the density p (¢, x) at different times up to
tgnd = 3.0 computed with the multiplicative full solver and the reduced multiplicative
DLRA scheme with rank 2r. At all displayed time steps the DLRA solution captures the
solution of the full system. In Figure 7.10 the evolution of the rank in time is shown. We
use a tolerance parameter of ¥ = 1074 ||X||» and allow a maximal rank of » = 200. Due to
the choice of o, the solution of the problem is not low-rank and a very high rank is required
for an accurate approximation. For this reason, we observe an increase of the rank up to
the maximal allowed value. Also, the evolution of the norm ||f H?%p in time is illustrated.
As expected, it decreases smoothly over time for all considered systems. In addition, we
plot the quantities k™ and x~ defined in Section 7.5.3. It is essential that they are both
equal to 1. This property is fulfilled up to order O (10_9). Due to the high rank, the
computational benefits of the DLRA scheme are diminished compared to the previous
test case. The scheme is implemented in Julia v1.11 and performed on a MacBook Pro
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Figure 7.9: Numerical results for the density p(¢,x) of the 2D beam problem at time ¢ = 0 (first
column), t = 1 (second column), ¢t = 2 (third column, and ¢t = 3 (fourth column), computed with the
multiplicative full solver (first row) and the reduced multiplicative DLRA scheme (second row).
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Figure 7.10: Left: Evolution of the rank in time for the 2D beam problem for the reduced multiplicative
DLRA scheme. The rank increases up to the maximal allowed value of » = 200. Middle: Evolution
of the #Z-norm in time for the multiplicative full solver and the reduced multiplicative DLRA scheme.
Right: Evolution of x* in time for the multiplicative full solver and the reduced multiplicative DLRA
scheme. The line corresponding to the full system has the constant value 1.

with M1 chip, resulting in a decrease of run time by a factor of approximately 1.5 from
1220 seconds to 845 seconds. This example illustrates the relation between the choice of
o and the low-rank structure of the solution. It is expected that for larger values of o the
solution becomes low-rank and hence the computational benefits of the DLRA scheme
are enhanced.

7.6 Summary and conclusion

We have proposed a multiplicative DLRA discretization for the linear Boltzmann-BGK
problem that is numerically stable. The main research contributions are:

(i) A multiplicative splitting of the distribution function: Asthe Maxwellian equilibrium
distribution M is generally not a low-rank function, we have considered a multiplica-
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(iii)

(iv)

tive splitting f = Mg of the distribution function. The remaining function g can
be considered as a deviation from the equilibrium distribution and in [EHY21] it
is shown to be of low rank. For deriving an efficient and stable DLRA scheme the
spatial discretization had to be chosen in a conservative form and additional basis
augmentations have been required.

A stable numerical scheme with rigorous mathematical proofs: We have shown that a
stable discretization had to be carefully derived to obtain a rigorous analytical proof
of stability under a specifically designed truncation strategy. A classic hyperbolic
CFL condition has been deduced, enabling the choice of an optimal time step size
and thereby reducing the computational effort.

A rank-adaptive augmented integrator: We have implemented the rank-adaptive
augmented BUG integrator introduced in [CKL22], which is flexible to additional
basis augmentations. Compared to the projector-splitting integrator proposed in
[LO14], which is used for the non-linear isothermal Boltzmann-BGK equation in
[EHY21], this choice allows to adaptively determine the rank in each step, avoiding
the a priori determination of a certain fixed rank.

Numerical test examples confirming the theoretical properties: We have presented a
number of numerical test examples in both 1D and 2D which validate the stability
and the accuracy of the DLRA scheme while showing a significant reduction of
computational and memory requirements compared to the full method.

Altogether, the insights gained in this chapter can be helpful for future work as the

employed multiplicative splitting is attached to the investigation of more complicated

equations, e.g. the non-linear Boltzmann-BGK equation treated in [EHY21], for which

we propose to reconsider the chosen discretization in terms of stabilization.
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Part 11l

Application of DLRA to inverse
problems






Numerical solution of parameter
identification inverse problems

Many practical applications involve non-observable quantities that shall be inferred from
related observations and measurements. In medical imaging, for example, a classic prob-
lem consists in the non-intrusive reconstruction of properties of an examined tissue from
measurements [Nat86]. In geophysics, information on the Earth’s history is collected from
lake and sea sediment analyses [[LO84] or subsurface structures are analyzed by seismic
imaging for the detection of oil and gas deposits [Nol87]. Image reconstruction and im-
age deblurring techniques allow for the reconstruction of sharp images in projectors and
cameras [Gro93, BBM21]. In wave propagation, the characteristics of antennas such as
reflective surface mesh shapes are estimated from radiation patterns [BLA86]. A wide
variety of further applications can be found in [BK89, Gro93, Kir21, Vog02] and the
references therein. All aforementioned settings are examples of inverse problems.

In Section 8.1 we give an introduction to the theory of inverse problems. Section 8.2
provides methods for the numerical optimization with PDEs, which can be applied for
the reconstruction of unknown parameters.

8.1 Inverse problems

We have already introduced some descriptive examples for inverse problems. The goal
of this section consists in considering them from a mathematical point of view. In Sec-
tion 8.1.1 we formalize the definition of inverse problems. Section 8.1.2 introduces PDFE
parameter identification inverse problems, relating inverse problems and PDEs.
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8. Numerical solution of parameter identification inverse problems

8.1.1 General formulation

We begin with a formal, general definition of direct and inverse problems in a noise-free
setting.

Definition 8.1 (Direct and inverse problems, [Gro93, Kir21]). Let X and Y be normed
vector spaces (typically Banach or Hilbert spaces) and F': X — Y be an operator acting
on a cause x € X so that for the effect y € Y the relation F' (x) = y holds. The corre-
sponding problems are classified as follows:

Direct problem: Given z and F, evaluate F' (z) = y.
Inverse problem of causation: Given y and F, solve F (z) =y for x.

Inverse problem of model identification: Given x and y, solve F (x) =y for F.

Hence, a direct problem consists in evaluating the consequences of a given cause whereas
for an inverse problem the unknown cause or unknown model parameters for a given
observation must be determined.

Hadamard’s concept of well-posedness was originally introduced for direct problems in
[Had02, Had23]. It directly translates to inverse problems.

Definition 8.2 (Well-posedness and ill-posedness, [Kir21]). Let F': X — Y with X and
Y being normed vector spaces. The inverse problem F (x) = y is called well-posed if the
following properties are satisfied:

(i) There exists a solution to the problem (existence).
(ii) There is at most one solution to the problem (uniqueness).
(iii) The solution continuously depends on the data (stability).
If at least one of the conditions is violated, the corresponding problem is called ill-posed.

The first two properties depend directly on the vector spaces X and Y and on the operator
F. The stability property relies on the choice of the norms and, following [Ball9], can
be considered to be subjective as, according to the setting, different conditions for the
acceptance of the translation of errors from the measurements y to the data x are possible.

Regularization of ill-posed problems. While direct problems are usually well-posed, the
corresponding inverse problems are often ill-posed [BBM21]. This ill-posedness can be
overcome by regularization techniques. Common strategies are Tikhonov regularization,
filtering and truncated SVD approaches, iterative methods such as Landweber iteration
or the conjugate gradient method, stochastic models such as Bayesian inversion, and
projection methods. A precise description of regularization and related techniques can be
found in [Lou89, Kir21, Gro93].
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INPUT DATA EVOLUTION MEASUREMENT OUTPUT DATA

[initial configuration fin] [ EXPERIMENT ] [ detector ] [ y?':s ]
| PDE MODEL !

[ initial condition fi, ] i with unknown i [ operator M ] [ M (fr.0) ]

model parameter o

g !

Figure 8.1: lllustration of the structure of a parameter identification inverse problem. The first row
is related to real-world experiments. The second row is related to the mathematical simulation using
a PDE model. Controllable (known) quantities are depicted in blue. Unknown quantities are depicted
in purple. The PDE model, which is known except for the parameter o, is depicted in gray.

8.1.2 PDE parameter identification

This thesis is concerned with inverse problems related to model identification, specifically
parameter identification inverse problems in physical processes that are described using
kinetic PDEs. Let o be the unknown model parameter and F' : U — Y be a forward
operator with F' (o) = y. Usually, o is chosen from an admissible parameter set Uyq C
U that incorporates physically motivated constraints on the model parameter [BK89].
The problem is equipped with input data fi, from the initial configuration, to which we
account by denoting Fy, (o) = yy,,. The output data yy, is assumed to be known from
observations or measurements. Then the parameter identification inverse problem reads:

Given fi, and yy,, , solve Fy, (o) =y, for o.

On a mathematical level, the evolution characterized by the forward operator is described
by a kinetic PDE model depending on the unknown model parameter . The PDE model
is equipped with an initial condition f;, and we denote fy, . for the solution of the PDE.
The output data is generated by measurements of the distribution function M (f, »),
where M denotes a measurement operator, which is assumed to be known. As shown
in Figure 8.1, one seeks to align the experimental output data y?}f which is obtained
from detector observations in real-world experiments and the synthetic data M (f, »)
generated from the mathematical PDE model. The illustration is inspired by the one

given in [Hel25].

Measurement models and noise. For simplicity, in the above setting we assume that,
both in real-world experiments and in the PDE model, the output data can be perfectly
derived from the measurements taken with the detector and from the measurement opera-
tor M, respectively. For practical applications this is clearly not realistic since all physical
measurements are affected by errors. A common choice consists in adding statistical noise
of Gaussian type to the output data [Tar05]. Also the construction of the measurement
operator M and the choice of an optimal set of experiments are challenging questions
which are subject to current research. More information can be found for example in the
review articles [Renl10, HIM24, Ale21].
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8. Numerical solution of parameter identification inverse problems

Output least squares minimization. A common strategy to align the results from the
experimental observations and the computed solutions from the PDE model is the out-
put least squares minimization [Vog02, Gro93, BK89]. In this approach, one solves the
optimization problem

2

argmin J (o) with J (o) = % H./\/l (ffino) — y?ﬂs (8.1)

ocU

Y7

where f , is generated from the solution of the PDE with the considered parameter
value 0. The functional J measures the mismatch between the observed data y%]zs and
the computed data M (f, ») that is obtained when solving the PDE. Note that in (8.1)
usually a regularizing penalty term is added. We refrain from this but emphasize that
this extension is straightforward. In addition, we do not pose additional physically mo-
tivated constraints on the parameter o and the PDE solution fy , but emphasize their
importance for showing theoretical results as for instance done in [HPUUOS].

8.2 Numerical optimization with PDEs

In this section, techniques for solving optimization problems such as (8.1) are presented.
We consider the following general non-linear minimization problem

argmin J (f,0) subject to G (f,0) =0, (8.2)
(f,0)eXxU

where J : X x U — Rg and G : X x U — Z are continuous with Banach space Z
and reflexive Banach spaces X and U. The state variable f is dependent on the control
variable o through the equation G (f, o) = 0, which is also called the state equation.
Section 8.2.1 reformulates the optimization problem (8.2) in a reduced form and intro-
duces the adjoint state method, which allows for an efficient calculation of the gradient
in gradient-based iterative solution schemes. Section 8.2.2 considers the optimization pa-
rameters, for which the size of the parameter space can be significantly reduced by spline
approximation. In Section 8.2.3 the gradient descent method for the reduced minimization
problem with spline-approximated optimization parameters is given.

8.2.1 Adjoint state method for a gradient-based solution

For an efficient gradient-based iterative solution of (8.2) the adjoint state method can be
applied. We first recall the following theoretical background.

Definition 8.3 (Lagrangian, [HPUUO08|). The Lagrange function or Lagrangian £ : X X
U x Z* — R for the minimization problem (8.2) is defined by

L(f.0.9)=J(f,0)+(9,G(f.0)) 10 7 (8.3)
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8.2. Numerical optimization with PDEs

where Z* denotes the dual space of Z and (,-), ,. the corresponding dual pairing. The
quantity g € Z* is called a Lagrange multiplier or an adjoint state.

The Lagrangian formulation allows to rewrite constrained optimization problems so that
methods from unconstrained optimization can be applied. Additional information can be
found in standard textbooks on numerical optimization such as [NW06, UU12] and more
specifically for numerical optimization in PDE settings in [BS00, Tr610]. Further, we gen-
eralize the notion of differentiability, allowing to consider continuous infinite-dimensional
optimization settings.

Definition 8.4 (Fréchet differentiability, [HPUUO08]). Let F': U C X — Y be an operator
between Banach spaces X and Y and let U C X be a non-empty open subset. The

operator F' is called Fréchet differentiable at x € U if there exists a linear and bounded
operator F’ (z) € L (X,Y) such that

|F (z+h) = F (x) = F'(z) hl|y = o (|Ih]lx) for {|a]lx — 0.

If F' is Fréchet differentiable at every x € V with V. C U open, F' is called Fréchet
differentiable on V and F' : V — L (X,Y), x — F'(z) is called the Fréchet derivative of
FonV.

For the derivation of the adjoint state method we follow the explanations in [HPUUOS,
Ple06]. Let J and G be continuously Fréchet differentiable and the solution operator
oc€Uw f(o0)=fs € X be uniquely defined and continuously Fréchet differentiable. We
first rewrite the full constrained optimization problem (8.2) as its corresponding reduced
problem by inserting f (o). We obtain the formulation

aragenlfjlin J(o):=J(f(0),0), (8.4)

for which J : U — Ra“ is called the reduced functional. In order to apply a gradient-based
optimization procedure, we are interested in the computation of its Fréchet derivative
J' (o). A direct evaluation gives

T (0) = f'(0)" 05T (f (0),0) + 0uT (f (0),0), (8.5)

where f’ (o) denotes the adjoint of f’ (). From a numerical point of view the compu-
tation of f’ (o) tends to be quite expensive and we seek a more sophisticated approach.
We insert f (o) into the Lagrangian (8.3) for the minimization problem (8.2). This yields

£(f(0),0,9) = T (f(0).0) + (9. G (f (0),0)) 7 (8.6)

with arbitrary ¢ € Z*. On the solution manifold with f = f (o) the state equation is
fulfilled and we obtain the equality
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8. Numerical solution of parameter identification inverse problems

Differentiating this expression with respect to ¢ leads to

J'(0) = 0pL(f (0),0,9) f'(0) + 0L(f (0),0,9). (8.7)

To avoid the computation of f’ (o) appearing in the first term, we choose a special g, € Z*
such that

0¢L(f(0),0,95) =0. (8.8)

From (8.6) we can conclude that this is exactly the case if

091G (f(0),0)" 9o = =05 (f (0) ,0).

This equation is called the adjoint equation. With the special choice g,, we obtain from
(8.7) that the Fréchet derivative of J (o) can be computed as

J (0) =0,L(f (0),0,95) = 0sJ (f (0),0) + 0,G (f (0),0)" go. (8.9)

Numerically, the evaluation of this expression is usually much less expensive than the
direct evaluation of (8.5).

Summary of the adjoint state method. We summarize the adjoint state method for an
efficient computation of J' (o) as follows:

(i) Set up the Lagrangian £ for the problem as done in (8.3).
(ii) Compute the adjoint state g, by solving (8.8).

(iii) Compute J' (o) by evaluating (8.9).

8.2.2 Spline approximation of the optimization parameters

In the optimization problem (8.2) and its reduced formulation (8.4) the function o is
chosen from a reflexive Banach space U. Let us denote 0 = ¢ (x) and assume that for
a numerical solution a relatively fine grid in the spatial variable x is prescribed. When
evaluating the scattering coefficient o (x) at each point of the spatial grid and taking these
values as the parameters to be optimized, there are several computational disadvantages.
For instance, a huge parameter space is obtained and very rough functions are part of the
ansatz space. To avoid this, we consider the parametrization of o (z) by splines. A lot of
profound literature on splines is available [dB78, Sch07, Sch15, HH13] but the topic is also
covered in several introductory textbooks on numerical analysis such as [SB02, QSS02].
We restrict our considerations to a 1D setting and consider the spatial domain 2, = [a, b].
Let A ={a =1 <7 <..<7n, =b} be a partition of the interval [a,b] with N, + 1
pairwise different knots.
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8.2. Numerical optimization with PDEs

Definition 8.5 (Spline (function), [QSS02]). A spline (function) sj (x) of degree k on A
is a function s : [a,b] — R with the following properties:

(i) sk (x) € C*1a,b], i.e. the function s, () is k — 1 times continuously differentiable
on the interval [a, b].

(ii) On every subinterval [7;, 7i41],7 =0, ..., N. — 1, the function si (x) coincides with a
polynomial of degree at most k, i.e. s (z) ’[T. ] € Py.

The set of all spline functions of degree k on A is denoted by Sy .

The properties given in the definition are not sufficient to uniquely characterize a spline
function of degree k. It can be shown that N. + k£ degrees of freedom are left and thus
dim (Sk,a) = Ne + k [QSS02]. Finding a suitable basis representation for sy () is crucial
for numerical applications as intuitive choices can for instance lead to ill-conditioning or
require a large number of numerical operations for the evaluation of sj (z) [Cox72, Sch07].
We introduce the following set of spline functions.

Definition 8.6 (B-spline (function), [QSS02, SB02]). The normalized B-spline (function)
B; i1 (x) of degree k on A is defined as

Bi k41 () = (Tigkr1 — ) B [Tiy ooy Tithr1]

where

hiz)=(z—2)f = z €R,
(e =( S+ 0 for z <z,

{(z$)k for z >z,

and h [7i, ..., Titk+1] are the divided differences of the real function h, which are recursively
defined by h[r;] = h(7;) and

hT'l... T‘kl—h’r' cees Tid ke
R Tiy ey Titks1] = [Tit1, ’71.—,:_;_3_7.,[“ aH-].
K 1

A recursive computation of the normalized B-spline functions is possible through the
following recursion formula.

Lemma 8.7 (Cox-de Boor recursion formula, [Cox72, dB72]). The normalized B-spline
Bi ji+1 () of degree k on A can be obtained from the recursion

1 g T € |Ti, Tit1],
Bi,l (x) _ f [ i H—l]
0 else,
Tr —T; Tit+k — X
Bijs1 (2) = ———— By (2) + — 2 Bk (2), k> 1.
Titk — Ti Titk+1 — Tit+1
Proof. See for instance [SB02]. O

The normalized B-spline functions exhibit useful properties making them well-suited for
numerical applications.
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8. Numerical solution of parameter identification inverse problems

Lemma 8.8 (Properties of B-splines, [SB02]). The normalized B-spline functions intro-
duced in Definition 8.6 fulfill the following properties:

(i) Bjjpy1(x) =0 for x & [, Tizrial],

(it) Bjjy1(x) >0 for T <x < Titky1

(iii) For all x with inf{r;} < x < sup{n;} it holds ), B;p+1(x) = 1, and the sum
contains only finitely many non-zero terms.

Proof. See for instance [SB02]. O

From the recursion formula given in Lemma 8.7 we can conclude that with respect to
the partition A only N, — k linearly independent normalized B-splines of order k£ can be
constructed. This can be overcome by considering an extended partition Aext, i.e. by
adding 2k knots such that

T, < T 1 <. <721 <79 =a, (8.10)

Then the normalized B-splines B; j41 (x) for ¢ = —k,...,—1 and i = N. — k, ..., N. — 1
can also be constructed and we obtain a unique basis representation of sy (z) in terms of
normalized B-splines.

Theorem 8.9 (B-spline basis of Sy A, [Sch07]). The normalized B-spline basis functions
B 11 () of degree k on the extended partition Ay constitute a basis of S, i.e. for
each spline sj, (x) € Si A there exists a unique representation

Ne—1
sk (x) = Z ¢iBi g+1 () with ¢; € R,
i=—k
and the real numbers ¢; with i = —k, ..., N. — 1 are called the B-spline coefficients.
Proof. See for instance [Sch07]. O

Periodic splines. In many practical applications periodic functions are of importance.
For these, a suitable approximation can be derived in terms of periodic splines.

Definition 8.10 (Periodic spline (function), [Sch07]). A spline function sj (z) € Sy a of
degree k on A which satisfies

Sl(gj) (CL):S](Cj) (b) for 7=0,1,....k—1

is called a periodic spline (function). The set of all periodic spline functions of degree k
on A is denoted by ék,A-
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8.2. Numerical optimization with PDEs

For the representation of periodic spline functions with normalized B-splines we set the
2k additional knots from (8.10) to be periodically extended such that

T_i=TN,—i —b+a and TN4i=Ti+b—a for i=1,..,k. (8.11)

Then we can give the definition of periodic B-splines. We restrict the definition to the
case N. > k but an extension for N, < k is also possible [Sch07].

Definition 8.11 (Periodic B-spline (function), [Sch07]). With the periodically extended
knots given in (8.11) the normalized periodic B-spline (function) B%kﬂ () of degree k
on A is defined as

o

Bi,k+1 (a;) = B¢7k+1 (ac) for ¢ = O, cony Nc —1—-k

and

Bi,k+1 (1‘) = for ¢ = —k‘, ceny —1.

: Bi g1 (x) for a <2 < Tp4144,
BN tik+1(z)  for 71 <o <D,

Having the normalized periodic B-spline functions at hand, we can use them to express
a periodic spline s;, € S A.

Theorem 8.12 (Periodic B-spline basis of gk,Aa [Sch07]). The normalized periodic B-
spline basis functions éi’k+1 (z) of degree k on the extended partition Ay with knots as
given in (8.11) constitute a basis of S'k,A, i.e. for each spline si (x) € gk,A there exists a
unique representation

N.—1-k
sp(@)= Y ¢Bigs () with ¢; € R. (8.12)
i=—k

Proof. See for instance [Sch07]. O

With the definition of the periodic B-spline functions we can also rewrite the basis rep-
resentation (8.12) of s () with non-periodic normalized B-splines.

Corollary 8.13 (B-spline basis of gk,Aa [Sch07]). The unique representation of a periodic
spline sy, (x) € gk,A given in (8.12) can be equivalently written in terms of non-periodic
normalized B-splines as

Ne—1
sk (x) = Z ¢;Bi 41 () with en,—1-; = c—i—1 for i=0,....,k—1.
i=—Fk
Proof. See for instance [Sch07]. O

Spline interpolation. A common field of application of spline functions is spline interpo-
lation. Let o (x) be a prescribed function that can be evaluated on the considered interval
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Figure 8.2: Normalized cubic periodic B-spline basis functions EQB,»A (z) for i = —3,...,N. — 4 for
N. = 3 (left) and N. =5 (right) on different spatial domains.

O, = [a,b] and denote og = o (19), 01 = 0 (11), .., ON, = 0 (TN.). An interpolating spline
function sy (x) € Sp A of degree k on A additionally satisfies

sk (1) = 0y for i =0,...,N.— 1.

For spline interpolation, especially cubic splines play an important role as they provide
C?-approximations, which are particularly useful in practical applications. For more
information on (cubic) spline interpolation we refer to literature such as [dB78, SB02].
Coming back to the model parameter function o () € U of the optimization problem (8.2)
and its reduced formulation (8.4), it can be shown that for U being the Sobolev space
W2 a suitable interpolation of o (x) with cubic B-splines can be given. Corresponding
error estimates can be found in [BK89].

Spline approximation of . In this thesis, we assume that the model parameter function
is well-approximated by a representation with normalized cubic periodic B-splines with
equally spaced knots, i.e. we set

N.—4
o(z)~ Y ¢iBia(v) with ¢ = (¢;) € R, (8.13)
i=—3

This assumption is justified by considering for instance a suitable interpolation of a given
parameter function o (x). The set of normalized cubic periodic B-splines for N, = 3
and for N, = 5 on different spatial domains is illustrated in Figure 8.2. The reduced
optimization problem (8.4) is solved on the smaller parameter space R™e of dimension N,
and translates to

argmin J (c) = J (f (c),c), (8.14)

for which J : RNe — ]Rar is called the cost function.
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8.2. Numerical optimization with PDEs

8.2.3 Gradient descent method

For the solution of the reduced optimization problem (8.14) with cost function J €
ct (RNC) a gradient-based approach is pursued. A simple method consists in applying
the gradient descent method, which is a standard technique in unconstrained numerical
optimization and has been extensively treated in literature, e.g. in [GK99, Nes04, NWO06,
WR22]. We begin with the definition of a descent direction.

Definition 8.14 (Descent direction, [WR22]). A vector d € R¢ is called a descent
direction of J at c if, for all n > 0 sufficiently small, it holds

J(c+nd) < J(c).

Let c® € RY¢ be a starting value of the optimization procedure. Then the gradient descent
scheme generates an iterative sequence according to

"t =" — "V J (") for n=0,1,... (8.15)

where ™ > 0 denotes an adaptively chosen step size. The descent direction d" =
—VeJ (c™) is the direction of steepest descent, explaining why this method is also called
the steepest descent method. Without additional assumptions on the cost function J con-
vergence of the scheme (8.15) cannot be guaranteed. We introduce the following concepts.

Definition 8.15 (L-smoothness and m-strong convexity, [WR22]). The function J €
ct (RNC) is called L-smooth if its gradient is Lipschitz continuous, i.e. if there exists a
constant L > 0 such that for all ¢i,co € RMe it holds

IVJe(€1) = Ve (e2)llp < Lljer — eallg

where ||| ; denotes the Euclidean norm. The function J € C* (R™*) is called m-strongly
convez if there exists a constant m > 0 such that for all ¢, ca € R™e it holds

m
Je(€2) > Je (1) + Ve (c1)' (ca —c1) + 0 e — 1|7

The constant m is called the modulus of convezity.

Then, convergence of the gradient descent method to a unique global minimum c* € RMe
can be established.

Theorem 8.16 (Convergence of the gradient descent method, [Nes04]). Let J € C* (RVe)
be L-smooth and m-strongly convex. Then, for n* = n < miJrL, the gradient descent
method (8.15) generates a sequence {c"} such that

2nmL\"
o - el < (1= 22 ) o0 — e

where c* € RNe denotes the unique global minimum. Optimal convergence is obtained for
2

n= m—+L "
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Proof. See for instance [Nes04]. O

L-smoothness and m-strong convexity are strong restrictions on the cost function J. The
assumption of m-strong convexity can be weakened when imposing the Polyak-Lojasiewicz
inequality instead. Further reading can be found in [Pol63, KNS16].

Step size strategies. There are different strategies on how to determine the step size n"
in each step of iterative descent schemes. We focus on line search methods that determine
the length of the step size when the descent direction d™ is given. Often, a step size is
considered acceptable if the Armijo condition

J (& +n"d") < J (") 4+ hin"VeJ (™)' d” (8.16)

with constant hy € (0, 1) is satisfied. To find an appropriate step size in practical appli-
cations, one can choose an initial guess 77 and a step size reduction factor p € (0,1) and
determine the first value in the sequence 7, pij, p>7, p°7, ... such that condition (8.16) is
fulfilled. This approach is called backtracking line search with Armijo condition [Arm66].
Alternative step size conditions are for instance the (strong) Wolfe conditions, the Gold-
stein conditions or methods involving the Hessian if the cost function J is in C? (]RNC).
More information on step size strategies is available in [NW06, WR22].

Alternative gradient-based iterative methods. There are various alternatives to the
simple gradient descent method described in (8.15), exhibiting faster convergence proper-
ties or requiring less computational effort. Stochastic gradient descent methods reduce the
computational complexity when the evaluation of multiple gradients instead of only one
gradient is required. For twice continuously differentiable cost functions the convergence
can be improved by taking evaluations of the Hessian into account. This leads to Newton-
and quasi-Newton methods. Conjugate gradient methods are especially useful for the so-
lution of large linear and non-linear systems of equations. A more detailed description of
alternative gradient-based iterative methods is given in [NW06, GK99].
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An adaptive DLRA optimizer for parameter
identification inverse problems

A classic inverse problem arising in medical imaging is the reconstruction of proper-
ties of an examined tissue from measurements without doing harm to the human body.
We consider a model using the time-dependent radiative transfer equation (RTE) with
an unknown scattering coefficient incorporating properties of the background medium.
The associated inverse problem considers the reconstruction of the scattering coefficient
from measurements. This parameter identification inverse problem shall be solved by us-
ing PDE constrained optimization. Similar to recent papers [LWY23, CLL18, HKLT25,
ELWY24], we deploy a gradient-based approach for which in each iteration the evaluation
of both the forward and the adjoint problem is required. Obviously, this can numerically
become very costly, especially in higher-dimensional settings, which is overcome by using
a dynamical low-rank approximation (DLRA) approach. We pursue the following strat-
egy: “first optimize, then discretize, then low-rank”, i.e. we first perform the optimization
in a continuous setting before the resulting equations are discretized and the method of
DLRA is applied.

The structure of this chapter is as follows. Section 9.1 recalls the 1D formulation of
the RTE and the associated inverse transport problem. In Section 9.2 we apply a PDE
constrained optimization procedure for the solution of the parameter identification inverse
problem and derive the adjoint equations using a Lagrangian reformulation. For the
scattering coefficient a normalized cubic periodic B-spline approximation is introduced
and a gradient descent step for updating its coefficients is formulated. Section 9.3 is
devoted to the discretization of the forward and the adjoint equations as well as of the
gradient in angle, space, and time, leading to a fully discrete gradient descent scheme.
In Section 9.4 the method of DLRA is applied to the forward and adjoint equations and
a backtracking line search method for an adaptive refinement of the gradient descent
step size and the DLRA rank tolerance is presented. Numerical results given in Section
9.5 confirm the accuracy and efficiency of the DLRA scheme compared to the solutions
computed with a full solver. Finally, Section 9.6 provides a brief summary and conclusion.
The results of this chapter closely follow the presentation in [BEKK25a].
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9. An adaptive DLRA optimizer for parameter identification inverse problems

9.1 Radiative transfer equation

In optical tomography, the propagation of near-infrared light through tissue can be mod-
eled by using the RTE [RBH07, KNBH02, KH02]. Neglecting boundary effects, the time-
dependent form of this kinetic PDE can be given in 1D slab geometry as

Ouf (t,e, ) + pduf (b2, ) =0 (2) (g (F (t2 ) = f (h2 )

(9.1)
f(t:()vl‘a/") :fin(l',,u),

where f (¢, 2, 1) : R x Q, x Q, — R denotes the distribution function which describes
the repartition of photons in phase space. Here, t stands for the time variable, x € Q, C R
for the space variable and p € Q, = [—1, 1] for the angular variable. An integration over
the corresponding domain is denoted by brackets (-) and |,| measures the length of
the domain €. The function o () represents the properties of the background medium,
indicating the probability of particles at position x to be scattered into a new direction.
We refer to it as the scattering coefficient. At the initial time ¢ = 0 the function fi, (x, 1)
is prescribed for the distribution function. The inverse problem associated with the RTE
presented in (9.1) consists in reconstructing the scattering coefficient o (z) from output
data that is generated from measurements. For more general information on the inverse
transport problem we refer to the review articles [Bal09, Ste03].

9.2 PDE constrained optimization

In practical applications, optical tomography commonly relies on a multitude of mea-
surements from different positions. To be close to realistic settings, we take a number of
Nic measurements for the reconstruction of the scattering coefficient o () into account.
Furthermore, we assume the measurements to be generated by a measurement operator
M acting on the angle-averaged solution of the RTE at the final time ¢ = T', which has
been computed with the corresponding initial condition fi,,, for m = 1,..., Nic. The

restriction to angle-averaged measurements is a common choice for modeling real-world

obs

problems [BJ09, CLW18]. For simplicity, the experimentally observed data y9>% is as-

sumed to be close to the measurements of the angle-averaged solution that is obtained
with the ground truth parameter, i.e.

Yot (z) ~ M ({fom (t =T, 2, 1)) ) for m=1,..., Nic,

where f; ., (t,z, ) denotes a solution of

Ot fm (t"TMU’) + /Laa:fm (tvxvﬂ) = O-(x) (ﬁ(fm (t’xvu)»u — fm (t’xnu)) ,

9.2)
fm (t:0>$;ﬂ) :fin,m('r’:u)a
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9.2. PDE constrained optimization

computed with the corresponding scattering coefficient o (). For notational brevity, we
refrain from explicitly denoting the dependence of the distribution function and of the
experimentally observed data on the initial condition fi, .

For the solution of the PDE parameter identification inverse problem associated with (9.2)
one tries to minimize the square loss between the measurements of the angle-averaged
distribution function satisfying (9.2) and the experimentally observed data, i.e. one tries
to solve the minimization problem

argmin  J (fi, s fNi» 0)

fl,...fNIC,a'
- 1 Nig 2
with J(f1, s i @) =5 D <(M ((fmlt =Ty, )),,) — w2 (x)\ > NCE)
m=1 T

subject to (9.2).

This can be reformulated in a reduced form by inserting the solution fo ,, simulated from
(9.2). Then the reduced minimization problem is given by

1 Nic
argmin J (o) with J (o) =

) o) =5 3 (M (Uomlt =T, m),) v @) - (00
m=1

T

Note that this setup is close to realistic applications in the sense as described above. For
real-word applications we point out that the considered setting with one spatial and one
angular variable may not be sufficient. In addition, it is assumed that there is no noise in
the measurements, which in practical applications is clearly infeasible. Nevertheless, the
results gained from the considered setup provide valuable insights into the combination of
parameter identification and DLRA and can be directly extended to higher-dimensional
settings.

Section 9.2.1 derives the adjoint equations associated with the forward problem (9.2),
before in Section 9.2.2 an explicit gradient descent step is formulated.

9.2.1 Lagrangian formulation and adjoint problem

For the derivation of the adjoint problem as described in Section 8.2.1, we reformulate the
PDE constrained minimization problem (9.3) using the method of Lagrange multipliers.
We aim for a solution of

arg min £ (fh "'lecvgla -5 YNics )‘1, Sz} )‘Nlca U) ;
S f N[ G915 N AL AN O
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9. An adaptive DLRA optimizer for parameter identification inverse problems

where
£ = T Ui i)+ 3 (b e ) (= 1))
1y -9 JN1C) ] my UtSm zJm |Qu| m/y, m v
Nic
+ Z <)\m7fm (t = O,JI,,U,) - fin,m (JJ,M»LW
m=1

and g, (t, x, ) and A\, (z, u) are the Lagrange multipliers with respect to fy, (t,x, u) and
finm (z, ) for m =1, ..., Nic, respectively. Applying integration by parts and assuming
periodic boundary conditions, the Lagrangian can be rewritten as

Nic

N 1
QZJ g veoy Co m,—a m — aa: m T m — 9m
(fi,or v U)+mZ::1<f t9m — 1Ozg U(m)(mul mlyu =9 >>t,z,u
Nic
+ Z <gm(t - Taxvu)7fm(t = T,[L’,/J/)>z7u
mil
Nic
B Z <gm(t:07$7#)7fm (t:O’x’M)>zvu
m=1
Nic
+ Z <)‘m7fm (t = O,x,,u) - fin7m (l"’u’»x,ﬂ ’
m=1

The corresponding adjoint or dual problems associated with (9.2) can be derived by setting

Of

m

£ =0 for m=1,..., Nic. By straightforward calculation one obtains

1

—0igm (t, 2, 1) = pOugm (2, 1) =0 () (10

<gm (ta 1‘,/,1,)>'u —9m (tvxa M)) )
T,z, 1)), + yp® () .

S

(9.5)

The notation g, (¢, z, 1) indicates that g, (¢,z, ) fulfills equations (9.5). On the so-
lution manifold with f5 ., (t,2, 1) satisfying the PDE constraints (9.2) and gy, (t, z, 1)
satisfying the adjoint equations (9.5) for m = 1, ..., Ni¢, the following equality holds

'g (fa',la ety fO',N107gU,].) "'790‘,1\710) )\13 crey >\N107U) = J (fO',l? (A fU,Nlc7O-) = J (U) )
translating to the derivatives such that

J/ (O') o dg (fa’,ly cevy fo’,NlcagO',la -y 9o, N1c s A17 ceey )\N[ca U)

_ - (9.6)
Nic AL

_ Z ( 0L Ofom n 0L 09om n oL O\, . (972) _ 8£
Pt Ofsm Oc 09om Oo O\, Oo Oo — do’

where the first three terms vanish since (9.2) and (9.5) are fulfilled. This can be used for
an efficient computation of the gradient in the following gradient descent step.
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9.3. Discretization

9.2.2 Optimization parameters and gradient descent step

To avoid computational disadvantages from a large optimization parameter space, the
function o (z) is approximated using splines. We follow the considerations performed in
Section 8.2.2 and use a number NN, of normalized cubic periodic B-spline basis functions

B; 4 () with equally spaced knots as illustrated in Figure 8.2. As given in (8.13), we
obtain the representation

Ne—4
o(x)~ Z ¢;iBis (x) with ¢ = (¢;) € RYe, (9.7)
i=—3

where the vector ¢ contains the coefficients of the approximation. With prescribed initial
values ¢ € R¥e the gradient descent step for the solution of the minimization problem

n+1

(9.4) updates the coefficients from c¢™ to c in each step by determining

"t =" — "V J (c") for n=0,1,..., (9.8)

where " > 0 denotes an adaptively chosen step size. From expression (9.6) we can derive
an explicit formulation for the components of the gradient of the cost function as

Nic

0J(c) & oagos RS .
aci - Z 370'8761 - mz::l < |Q#| <<fo‘,m>ua <ga,m>u>t + <f0',m7ga,m>t“u> BZ,47 (99)

depending on the solutions of the forward and the adjoint equations as well as on the
B-spline basis functions and allowing for an efficient computation of the gradient in
the gradient descent step (9.8). Note that from now on we write fp, (¢, 2z, ) instead

of fom (t,x, ) and g (t,x, ) instead of go m (t,, ).

9.3 Discretization

For the numerical implementation we discretize the forward problem (9.2), the adjoint
problem (9.5) and the components of the gradient (9.9) in Sections 9.3.1, 9.3.2 and 9.3.3
in angle, space and time. This leads to a fully discrete scheme. Section 9.3.4 summarizes
the fully discrete gradient descent method.

9.3.1 Angular discretization

For the discretization in angle we choose a modal approach making use of the normal-
ized rescaled Legendre polynomials Py (¢) introduced in Section 3.3.2. This is a standard
approach which is commonly used for radiative transfer problems and has also already
been adapted in the inverse setting [WSAO7]. The normalized rescaled Legendre poly-
nomials Py (p) constitute a complete set of orthonormal functions on the interval [—1, 1]
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9. An adaptive DLRA optimizer for parameter identification inverse problems

and satisfy (P (1), P2 (1)), = ke We expand the distribution functions fy, (¢, z, ) and
gm (t,z, 1) for m = 1, ..., Njo in terms of the rescaled Legendre polynomials and obtain
the approximations

N,—1 N,—1
m (t,x, 1) ~ Zugmt:ch() and  gm (t,z,p) =~ szmtng(), (9.10)

where uy (¢, z) and wy (¢, z) are the corresponding expansion coefficients. We insert these
representations into the forward problem (9.2) as well as into the adjoint problem (9.5),
multiply with Py () and integrate over the angular variable u. With the matrix A €
RNuXNy defined in (3.26), and the orthonormality condition from above we obtain

Ot (6:2) = =Ty Outem (6:2) At + 0 (@) i () (B0 = 1)y o))
Ukm (t =0, l') = Uin,km (!T) y

for the forward equations and
—Opwpm (1) = S0t Dy (t,7) Ape + 0 () Wen (£, ) (650 — 1), 9.1
WEm (t =T, 'T) = ( 2Uom (t =T, :E) + \/>y0b5 (x)) Oro,

for the adjoint equations for m = 1, ..., Nic. For the angular discretization of the gradient
of the cost function we insert the representations (9.10) into (9.9) and derive

Nic

801 “‘Z( {wom (t, ), wom (t, 7)), (9.13)

N,
+ Z (ukm (&, ) W (£, 7)), ) Bia ().
k=0

9.3.2 Spatial discretization

The discretization in the spatial variable is performed on a spatial grid with N, grid cells

and equidistant spacing Az = N%C Spatially dependent quantities are approximated at

the grid points z; for j = 1,..., N, and denoted by

Ujkm () = Upm (L, 2}), Wikm (1) = W (t,25) ,
o = o (xj), Yoms m yors (x5) Bjia = B4 (zj).

Assuming periodic boundary conditions, first-order spatial derivatives 0, are approxi-
mated using the centered FD method. For stability reasons, a diffusion term involving
second-order derivatives J., is added. This term is also approximated by the centered
FD method. We employ the tridiagonal stencil matrices D € RN+*Ne given in (3.8) and
D*® ¢ RNe*Ne defined in (3.11). Recall that the symmetric matrix A is diagonalizable
in the form A = QMQ" with Q being orthogonal and M = diag(oy, ..., on,—1) and that
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9.3. Discretization

we have defined |A| = QM|QT. Then the spatially discretized forward equations with
centered FD method and an additional second-order FD stabilization term are obtained
from (9.11) as

N,—1
Otijrm (1) = = 2005 o0t D¥ i (t) Age
N,
+ A SN Y D i (1) |Al + 0t (£) (0o — 1), (9:14)
Ujkm (t = 0) = Uin,jkm,

and the spatially discretized adjoint equations from (9.12) as

N, —
—ﬁtwjkm (t) = ZNII Y] HO ! D;clwigm ( ) Akﬁ
1‘ N xTxr
A S N S DEF wig, (1) | Al + 0wk (8) (050 — 1), (9.15)
Wik (t=T) = (—2uj0m (t="T) + 2y do.

Using the expression given in (9.13), we derive the equation

Nic N,—1 )
ac ~ Z — (wjom (), wjom (), + > (tjkm (), wikm (£)), | Bjia  (9.16)
v k=0

for the spatial discretization of the gradient of the cost function. The spatially discretized
scattering coefficient o = (0;) € RNz can be computed as

N
0j ~ Z CiBjiA- (917)
1=—3

9.3.3 Temporal discretization

To obtain a fully discrete system, the time interval [0, 7] is equidistantly split into a finite
number N; of time cells. An update of the forward equations (9.14) from time ¢, to time
tnt1 = tn + At is computed using an explicit Euler step forward in time according to

1
u?l:rm = ugkm - At Z Zé 0 ]z zZmAM
+ AtA:): Z v évuo 1 Hex u ’A‘kﬁ + U]Atujkm (6o — 1), (9.18)

ji Wipm
0

Uikm = Uin,jkm-
For the adjoint equations (9.15) we start computations with an end time condition after
N; steps and evolve the solution from time ¢, to time ¢, 1 = t, — At by an explicit Euler
step backwards in time according to

-1 N,—1
w?km jkm + At Zz 1 Y4 HO jzz ngAkﬂ
+ At5E Y z ‘o Dm Wi | Alge + o A0WT,, (00 — 1), (9.19)
w%tm = ( 2u%§n + fyObS) Ok0-
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9. An adaptive DLRA optimizer for parameter identification inverse problems

The fully discrete gradient of the cost function can be obtained from (9.16) by approxi-
mating the integrals with respect to time by step functions, which yields

Nic N Nu,—1

dJ (c) .
e Nt +1 Z Z _U?Omw?Om + Z u?kmw?km Bji74' (920>
v m=1n=0 k=0

9.3.4 Fully discrete optimization scheme

The strategy for the fully discrete gradient descent method for the solution of the PDE pa-
rameter identification problem is summarized in Algorithm 4. Note that for the stopping
criterion an error estimate estimated-err for the deviation of the computed coefficients
from the true coefficients is required to run the algorithm. In practical applications, a
stopping criterion depending on the amount of progress that is still made in the optimiza-
tion procedure can be used.

Algorithm 4 Gradient descent method for the PDE parameter identification.

Input: measurements yo>s = (yjkf) € RN+ for m =1, ..., Nic,

initial data u?, = (u?km) € RN=*Nu for m =1, ..., Nic,

initial guess for the coefficients ¢ = (') € RNe,
initial step size n° > 0,
estimated error estimated-err,
error tolerance errtol,
maximal number of iterations maxiter
Output: optimal coefficients c°Pt = ( oPt) € RMe within the prescribed error tolerance

while estimated-err > errtol and n < maxiter do
Compute o” = (U;L) € RM= from the given coefficients c™ according to (9.17);
Solve the forward problem according to (9.18) for each m = 1, ..., Ni¢;
Solve the adjoint problem according to (9 19) for each m =1, ..., Ni¢;

Compute the components of the gradient a( D) using (9.20) and the solutions of (9.18) and
(9.19);
Update the coefficients according to (9.8): ¢! = ¢ — n"V.J (c"), where 5" is adaptively
determined by line search;

end while

9.4 Adaptive DLRA scheme for the fully discrete optimization
problem

For the solution of the PDE parameter identification problem the coefficients ¢ of the
spline approximation (9.17) of o are updated several times in the gradient descent step
(9.8). For each iteration the solution of the fully discrete forward equations (9.18) as well
as of the fully discrete adjoint equations (9.19) have to be computed and stored in order
to compute the fully discretized gradient of the cost function as given in (9.20). This can
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9.4. Adaptive DLRA scheme for the fully discrete optimization problem

be computationally expensive. To reduce computational and memory requirements, the
method of DLRA is applied to the fully discrete optimization procedure for the inverse
transport problem proposed in Algorithm 4. We reformulate the forward equations (9.18)
as well as the adjoint equations (9.19) using the rank-adaptive augmented BUG integrator
introduced in [CKL22].

For the forward equations (9.18), the initial low-rank factors xfor g0for ynd VO are

obtained by an SVD of u?, = (U9km) € RNe*Nu where the number of singular values is

truncated to the initial rank 7. In each time step, the low-rank factors X%, S%®°r and
VT are evolved according to the following scheme.
First, we denote K?,{for = X%forS?,{for as well as L?,{for = VZ{forS%for’T and solve in parallel

the equations

ng+17for — K%for AtDa;Kn forVn for TATVn for + AtA DacacKn forVn for, T |A|Tvn Jfor
+ At diag(o) Ky vison THV T, (9.21a)

L:ln-ﬁ-l,for — L:ln,for AtALn foan for TDx TXn for + At ’A’Ln foan for TDxx TXn for
+ AtHL%rXmon T diag (o) Xmfor, (9.21b)

where H = diag([0,—1,...,—1]). In the next step, we derive the augmented and time-
updated bases XFbr and VT from a QR-decomposition of the augmented quanti-
ties XLHbor — p ([K%H’for, X%for]) and VIEHHOT — ([L”m+1’for, V?,;for}), respectively.

For the S-step, we introduce the notation S = Xurbfor, Txnforgn.fory,n.for, TysnA1 for
P,

and compute

§n+1,for — gn,for o Atin—f—1,for,TDxin—i—l,forgn,forﬁn—s—l,for,TATﬁn—s—l,for
m m

+ AtA Xn+1 for TDxxXn-l—l forsn forvn+1 for, T|A’Tvn+1 for (921C)

+ AtX:LnJrl,for,T diag(O’)X:LnJrl’forngforV?nJrl’for’THV?nJrl’for.

Finally, we truncate the time-updated augmented low-rank factors for each m = 1, ..., Ni¢
to a new rank 7,41 < 2r by using a suitable truncation strategy such as proposed in
Section 4.2.2. Then the time-updated numerical solutions of the forward problem are
glven by un+1 X%—l—l,for rnzl—&—l,for Zl—s—l,for,'l' c RNIXN,U,'

For the adjoint equations (9.19), we perform an SVD of the end time solutions wit =

(w%tm) € RN=*Nu  truncate to the prescribed initial rank r, and obtain the low-rank

Niadj @Ne,adj Ny ,adj . j j
factors th’adj, SNeadi and VA2 Then, in each step, the low-rank factors X424, gmadi
and V%29 are evolved backwards in time as follows.

First, we denote K%adj = X%adJS%adJ as well as L:,L{ad“' = V?,{adJSﬁ{adJ’T and solve in

parallel the equations

Az

Kn l,adj __ Kn ,adj + AthKn adJVn adj, TATVn adj + At Dac;tKn adJVn adJ,T|A|TVn ,adj

: djysnsadj, T dj
+ At diag(o)K v eadi Ty mad)
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9. An adaptive DLRA optimizer for parameter identification inverse problems

n—1l,adj _ 1 n,adj n,adjyn,adj, T yz, T wn,adj n,adjyn,adj, T 7yzx, T wn,adj
Lyl = LW 4 ALAL X TD5 X 4 Ar= AL X TDe X

dixnadi, T q; dj
+ AtHL?2I X240 T diag (o) X724,

In the next step, we derive the augmented and time-updated bases ifnfl’adj and \Af?nfl’adj
from a QR-decomposition of the augmented quantities X% Y = qr ([K&fl’adJ,X%adJ])
and VI b — p ([Lﬁfl’adj, Vf,gadj}), respectively.

For the S-step, we set Sradi _ xn-ladj,Tynadjgnadiynadj, Tyyn=ladj o4 compute
Qn—1l,adj __ Qn,adj xn—1,adj, T e n—1,adjqn,adjxrn—1,adj, T A Tx7n—1,adj
Sn—tadj — gnadi | A¢X"- DX n-ladignadiyn: ATV
Ax—~ _ . ~ i~ i~ . ~ .
+ At 5 le 1,adJ,TDxxXnm 1,adJS:Lr£adJVZI 1’adJ’T|A|TV% 1,ad]j

+ AtX:Lnfl,adJ,T diag(o_)X:Lnfl,adJS:eradjv;lnfl,adj,THvzlnfl,adJ'

Finally, we truncate the time-updated augmented low-rank factors for each m =1, ..., Ni¢
to a new rank r,411 < 2r by using a suitable truncation strategy such as proposed in
Section 4.2.2. Then the time-updated numerical solutions of the adjoint problem are
given by wii, 1 = X badignrtady b Tadl ¢ gNexNy,

Having determined the low-rank solutions of the forward and the adjoint problems, we can
use them to compute the gradient as proposed in (9.20). For the update of the coefficients
according to (9.8), we adaptively determine the step size by a backtracking line search
approach with Armijo condition similar to [SEKM?25] and as described in Algorithm 5.
The line search method works as follows: For a given step size 1" the B-spline coefficients

+1 and o.n+1

and the scattering coefficient are updated to c” , respectively. Then the
truncation error tolerance ¥ is adjusted using the given step size n™ and the maximal
absolute value of V¢J (c™). We add some safety parameters hy and hg as well as a lower
bound h; for the truncation tolerance. In the next step we compute the value of the cost
function J with the low-rank factors of the forward problem at hand and denote it with
J". Then we solve the forward problem (9.21) with ¢"*! and the updated value of ¥
and use the obtained low-rank factors for another evaluation of the cost function J, for
which the result is denoted by J " While the difference between J™ and J ' is larger than
a prescribed tolerance depending on the Euclidean norm ||-||; of the gradient of the cost
function, the gradient descent step size is reduced by the step size reduction factor p and

the procedure is repeated.

9.5 Numerical results

We consider the following test examples in one space and one angular dimension to show
the computational accuracy and efficiency of the proposed DLRA scheme compared to
computations with full solvers for both the forward and the adjoint equations. In Section
9.5.1 initial distributions of Cosine type are treated. Section 9.5.2 presents numerical
results for Gaussian initial distributions.
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Algorithm 5 Backtracking line search method for the adaptive refinement of the gradient descent
step size and the DLRA rank tolerance.

Input:  cost function J,
coefficients ¢,
gradient VJ (¢™) computed using (9.20),
low-rank factors X for §n.for yn.for of the forward problem (9.21) for m = 1, ..., Nic,
step size n™ > 0,
rank error tolerance 1,
step size reduction factor p € (0,1),
constants hq, ho, h3, hy
Output: refined step size n" 1, refined rank error tolerance ¥, updated coefficients ¢*1

Update the coefficients according to (9.8): ¢"™! = ¢" — n"VJ (c");
Compute o™ from the updated coefficients ¢! according to (9.17);
Update ¥ = max (hy, min (he,n"h3 [|VeJ (c™)]));

n _ n,for gn,fory rn,for n,for gn,fory 7n,for
Compute J" = J (X rsplorvpr | xplorgiorypior),

< n,for zn,for—n,for

Compute X, S,, V,. from (9.21) for m = 1,..., Nic with ¢"*! and the updated ¥;
Compute J" = J (X[ ™"81 V™", .. nggfs"Nfgrvangf),

while J" > J" — 5" hy | VeJ ()] do
Update n"*t = pn™;

Update the coefficients: ¢t = ¢ — "1V J (c");
Compute o™ from the updated coefficients ¢! according to (9.17);
Update ¢ = max (hy, min (h,n" ' hs ||VeJ (€?)]|)):

< n,for zn,for—mn,for

Compute X, S,, V,, from (9.21) for m = 1,..., Ni¢ with ¢"*! and the updated ¥;
Compute J" = J (X[ ™87 V™", . xzfgfs;fgfv}fgf),
Set n" = nntl;

end while

9.5.1 1D cosine

For the first numerical experiment the spatial as well as the angular domain are set to
Q, =, = [—1,1]. We consider Nic = 3 initial distributions of Cosine type of the form

2m
um(t:O,x):Q—I—cos((x—?)w) for m=1,2,3.
The true and the initial B-spline coefficients for the approximation of the scattering
coefficient o are chosen as

Cirue = (2.1,2.0,2.2)7 and Cinit = (1.0,1.5,3.0)"

and we consider normalized cubic periodic B-spline basis functions BZA () with equally
spaced knots. For the low-rank computations, we start with an initial rank of r = 5 in
the forward as well as in the adjoint problem. The maximal allowed value of the rank in
each step is restricted to 20. As computational parameters we use N, = 100 cells in the
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9. An adaptive DLRA optimizer for parameter identification inverse problems

spatial domain and IV, = 250 moments in the angular variable. The end time is set to
T = 1.0 and the time step size of the algorithm is chosen according to At = Ccrr, - Az
with a CFL number of Ccprr, = 0.99. We begin the gradient descent method with a step
size of n° = 5-10° and a truncation error tolerance of ¥ = 1072 ||X|| 5, where X € R**2"
represents the diagonal matrix that is obtained from the SVD in the truncation strategy
described in Section 4.2.2 and ||-|| » denotes the Frobenius norm. For the rescaling of the
gradient descent step size and the DLRA rank tolerance we use the step size reduction
factor p = 0.5 as well as the constants hy = 1073 ||2|| for a lower bound of the rank
tolerance and hy = 0.1 ||X|| 7, hs = 0.1 ||X||» as safety parameters. Also hy = 0.5 is added
as a safety parameter to ensure a reasonable difference between J™ and J' in Algorithm
5. The whole gradient descent procedure is conducted until the prescribed error tolerance
errtol = 10~ or a maximal number of iterations maxiter = 500 is reached.

In Figure 9.1 we compare the solutions of the parameter identification problem computed
with the full solvers and the DLRA solvers for both the forward and the adjoint equations.
Corresponding to the number of initial conditions, we plot three curves for the scalar flux
o = % (f) ., and display the results that are obtained from the true coefficients and
at the end of the gradient descent optimization procedure, evaluated with both the full
and the DLRA solver. We observe that the DLRA solution captures well the behavior
of the full solution and that they both approach the solutions computed with the true
coefficients. In addition, the parameter reconstruction inverse problem for determining
o is accurately resolved with both solvers. It can be observed in the bottom row that
beginning with on;z both the full and the DLRA method converge to the true solution
Otrue- The DLRA reconstruction closely resembles the reconstruction computed with
the full solvers. Further, the evolution of the rank r in time for the DLRA method is
illustrated, where we have averaged the ranks of the forward equations computed with the
different initial conditions to obtain 7" and the ranks of the adjoint equations computed
with the different initial conditions to obtain 72 and finally set r = % (rfor + radj). We
notice that in the beginning of the optimization process the averaged rank decreases as
the initial rank was chosen larger than required. From then on, we observe a relatively
monotonous increase until it stays at approximately » = 9. This evolution of the rank
reflects the fact that in the beginning of the optimization the error tolerance ¥ is chosen
quite large as the computed solution is still comparably far away from the true solution.
As the optimization algorithm approaches the true coefficients, the DLRA rank tolerance

1 is decreased, resulting in a higher averaged rank.

For the considered setup, the computational benefit of the DLRA method compared to
the solution of the full problem is significant. The scheme is implemented in Julia v1.11
and performed on a MacBook Pro with M1 chip, resulting in a decrease of run time by a
factor of approximately 2.5 from 139 seconds to 56 seconds while retaining the accuracy
of the computed results. Concerning the memory costs, the solutions of the forward
problem and of the adjoint problem have to be stored in order to compute the gradient.
For each initial condition, the storage of the solution of the forward problem corresponds
to a memory cost of 8 (N; + 1) Ny N, which for the DLRA method can be lowered to
8 (Nt +1) (TNI +7rN,+ 7"2), where r is the maximal averaged rank in the simulation.
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Figure 9.1: Top left: Numerical results for the scalar flux ® of the 1D Cosine problem, computed
with the full solvers and the DLRA solvers, both with the true coefficients and with the optimization
gradient descent scheme. Top right: Evolution of the averaged rank r for the DLRA method. Bottom
row: lterations for the reconstruction of the scattering coefficient o computed with both the full solvers
(left) and the DLRA solvers (right).

9.5.2 1D Gaussian distribution

In a second test example, we prescribe €, = [0, 10] for the spatial and Q, = [-1,1] for
the angular domain. We consider Nic = 5 Gaussian initial distributions of the form

U, (t =0,2) = max [ 1078, for m=1,2,3,4,5,

1 ( (x — m0)2>
e
\/2mod, 201¢
which are centered around equidistantly distributed xy and periodically extended on the
domain €2,. The standard deviation is set to the constant value oyc = 0.8. The true and

the initial B-spline coefficients for the approximation of the scattering coefficient o are
chosen as

Cirue = (2.1,2.0,2.2,2.0,1.9)"  and  cpy = (2.8,1.5,3.0,2.1,1.2) ",

and we consider normalized cubic periodic B-spline basis functions éiA () with equally
spaced knots. All other settings and computational parameters remain unchanged from
the previous test example given in Section 9.5.1.

In Figure 9.2 we compare the solutions of the parameter identification problem computed
with the full solvers and the DLRA solvers for both the forward and the adjoint equations.
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Figure 9.2: Top left: Numerical results for the scalar flux ® of the 1D Gauss problem, computed with
the full solvers and the DLRA solvers, both with the true coefficients and with the optimization gradient
descent scheme. Top right: Evolution of the averaged rank r for the DLRA method. Bottom row:
Iterations for the reconstruction of the scattering coefficient ¢ computed with both the full solvers
(left) and the DLRA solvers (right).

Corresponding to the number of initial conditions, we plot five curves for the scalar flux
o = % (f), and display the results that are obtained from the true coefficients and at
the end of the gradient descent optimization procedure, evaluated with both the full and
the DLRA solver. Again we observe that the DLRA solution captures well the behavior
of the full solution and that they both approach the solutions computed with the true
coefficients. For the reconstruction of the scattering coefficient o, it can be observed in the
bottom row that beginning with ojn;; both the full and the DLRA method converge to the
true solution oye and that the DLRA reconstruction closely resembles the reconstruction
computed with the full solvers. The averaged rank r first decreases as the initial rank was
chosen larger than required. From then on, we observe the expected relatively monotonous
increase until it stagnates at a value of approximately r = 11.5.

The scheme is implemented in Julia v1.11 and performed on a MacBook Pro with M1 chip,
resulting in a decrease of run time by a factor of approximately 2 from 11.5 seconds to 6
seconds. Again, for each initial condition, the memory costs reduce from 8 (IV; + 1) N, N,
for the full solvers to 8 (N; + 1) (rNg + 7Ny, + r?) for the DLRA solvers, underlining the
computational efficiency of the DLRA scheme.
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9.6. Summary and conclusion

9.6

Summary and conclusion

We have presented a fully discrete DLRA scheme for the reconstruction of the scattering

coefficient in the 1D RTE making use of a PDE constrained optimization procedure. The

main research contributions are:

(i)

(i)

(iii)

(iv)

An application of DLRA to a PDE parameter identification inverse problem: The
scattering coefficient o (x) has been determined by PDE constrained optimization,
for which after the discretization a DLRA approach has been used. To our knowl-
edge, this is the first research contribution that combines inverse problems and
DLRA, allowing for a reduction of computational effort and memory requirements
in a computationally demanding setup where in each step of the optimization pro-
cedure both the forward and the adjoint equations have to be solved.

A setup close to realistic applications: In most applications, measurements are not
able to access the full distribution function but at most angle-averaged quantities,
i.e. its moments. We have considered such a setup here, where we have assumed
that only the first moment is accessible by measurements. In addition, in optical
tomography usually measurements from different positions are taken into account,
which we have incorporated by probing as many initial values as coefficients to be
reconstructed, enriching the underlying data set.

An adaptive gradient descent step size and a rank-adaptive augmented integrator:
For the minimization we have used a gradient descent method which updates the
coefficients of a normalized cubic periodic B-spline approximation of o (x). Simi-
lar to [SEKM25], the step size has been adaptively chosen by a backtracking line
search approach with Armijo condition. Also the rank of the DLRA algorithm has
been adaptively determined by using the rank-adaptive augmented BUG integrator
presented in [CKL22] combined with an adaptively chosen truncation error toler-
ance. As a result, this has enabled us to begin the optimization procedure with
a comparatively small rank (when the solution is still far from the minimum) and
gradually increase the rank as the optimization progresses and more accuracy is
required, again enhancing the performance of the DLRA scheme.

Numerical test examples showing good agreement: We have given a number of 1D
numerical test examples confirming that for the reconstruction of the scattering
coefficient in the inverse transport problem the application of DLRA shows good
agreement with the full solution while being significantly faster and saving memory
demands.

Altogether, the application of DLRA methods to parameter identification inverse prob-

lems provides promising numerical results, motivating for future investigations in this

area of research.
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Conclusion and outlook

The construction of an appropriate numerical scheme for the solution of kinetic PDEs is
challenging. Due to the, in general, high dimensionality of kinetic equations, numerical
reduction techniques such as DLRA are advantageous to reduce the computational effort
and memory requirements. While DLRA has been shown to provide efficient and accurate
approximations to the solution of various kinetic equations, it can be considered a rather
destructive method regarding conservation properties as the preservation of important
physical invariants can often not be guaranteed when reducing the general complexity
of the solution. In addition, deriving stability estimates is demanding as the low-rank
structure (4.4) imposes non-linear dependencies in the evolution equations for the low-
rank factors X, S, and V, even for linear equations. Using suitable time integrators,
these nonlinearities can be decoupled by subsequently solving update equations in which
all but one low-rank factor is fixed. Then, for linear equations, concepts of von Neumann
stability analysis can be used to deduce estimates, for instance on the energy of the
system, contributing to the stability considerations.

Part |. Stability analysis for DLRA schemes. In the first part of this thesis, the topic
of (energy) stability and conservation properties for DLRA schemes was addressed, be-
ginning with the thermal RTEs with Su-Olson closure. This closure led to a linearized
internal energy model, called the Su-Olson problem. In Chapter 5, a “first low-rank, then
discretize” approach was pursued and, based on an implicit coupling of the equations, a
provably energy stable DLRA scheme was derived. Together with suitable basis augmen-
tations and an adjusted truncation strategy, mass conservation was ensured. In Chapter
6, a multiplicative splitting of the distribution function was imposed. This multiplicative
structure gave rise to further complexities such as the question of an adequate discretiza-
tion of the spatial derivatives. Additional basis augmentations were required for a rigorous
proof of energy stability of the DLRA scheme. In addition, the structural order had to
be changed into “first discretize, then low-rank” to obtain thorough theoretical results.
Again, it was possible to show mass conservation under the same proper treatment as
done before. In Chapter 7, the linear Boltzmann-BGK equation was considered. For the
translation of knowledge on the construction of efficient DLRA algorithms to more compli-
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cated (potentially non-linear) settings, again a multiplicative structure of the distribution
function was assumed. The first difficulty consisted in determining a suitable stability
norm, which in this case was not directly related to the physical energy of the system.
For the proof of numerical stability of the proposed DLRA scheme, additional basis aug-
mentations (different from the ones in the previous chapter) as well as a “first discretize,
then low-rank” approach were necessary. Further, a specifically designed truncation strat-
egy had to be implemented. Altogether, a rigorous stability analysis was conducted for
three efficient and accurate DLRA schemes for linear equations, giving insights into the
structural difficulties of DLRA algorithms and proposing solution strategies.

Part Il. Application of DLRA to inverse problems. The second part of this thesis was
devoted to the application of the DLRA method to parameter identification inverse prob-
lems. In Chapter 9, the combination of DLRA and inverse problems was experimentally
examined in numerical test problems for the reconstruction of the scattering coefficient in
the RTE. For the numerical optimization, a gradient descent approach on a comparably
small parameter space obtained from a spline approximation of the scattering parameter
was pursued. In the sense of a “first optimize, then discretize, then low-rank” ansatz, a
low-rank solver was implemented for the solution of the fully discrete forward and adjoint
equations in each step of an iterative gradient descent scheme. In this chapter, no theoret-
ical results were provided but numerical examples demonstrated good solution properties
of the proposed DLRA scheme.

Outlook. For future research, various open questions are left. Concerning stability es-
timates for DLRA schemes, a general difficult task consists in finding a suitable notion
of stability depending on the underlying problem. In addition, the stability estimates get
much more complicated when refraining from periodic boundary conditions, which were
assumed throughout this thesis. Even though this thesis has proposed strategies for the
construction of provably stable DLRA algorithms for linear equations, a direct transition
of knowledge to the corresponding non-linear equations is hardly possible. The main rea-
son for that is that in the non-linear case most of the theoretical concepts applied such
as the von Neumann stability approach are not available, making the analysis much more
difficult. Hence, for non-linear equations a different strategy for the proof of stability must
be used. In addition, we have seen that for the multiplicative splitting a discretization
of the conservative form of the equations was necessary to obtain a numerically stable
algorithm. For the non-linear Boltzmann-BGK equation such a discretization, i.e. by not
splitting up the term 9, (Mg), is possible but cannot be efficiently implemented as the
Maxwellian M is generally not of low rank. Thus, the question of provable stability results
for an efficient DLRA scheme for the non-linear Boltzmann-BGK equation with multi-
plicative splitting remains subject to future research. Moreover, further investigations on
the structural order of discretizing and applying the DLRA method are of interest as we
have seen that this ordering plays an important role when deriving stability estimates for
a multiplicative splitting of the distribution function and had to be changed in Chapter

6 and 7 compared to Chapter 5. Regarding conservation properties, we have used that
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the rank-adaptive augmented BUG integrator presented in [CKL22] allows for additional
basis augmentations, ensuring that certain physical quantities are conserved in the bases
over time. This approach is well-studied [EKS23] but not generally applicable as for
example a specific choice of the temporal discretization is required.

Concerning the second part of this thesis, several future research projects on the appli-
cation of DLRA to inverse problems are possible. A first natural extension of the results
presented in Chapter 9 consists in considering numerical test examples in more than one
spatial and angular variable since in higher dimensions the savings by the DLRA method
are expected to be larger by orders of magnitude. Also, theoretical considerations con-
cerning for example the stability of DLRA schemes applied to parameter identification
inverse problems can provide valuable insights into the structure of such problems. In ad-
dition, various open questions arise when the structural order of the problem is changed,
meaning that for example a “first low-rank, then optimize, then discretize” strategy is
pursued. For instance, it is not clear how the adjoint equations can be derived from
the low-rank components of the forward problem as the low-rank equations are highly
nonlinear.

Altogether, this thesis underlines that each DLRA scheme has to be carefully constructed
such that for instance stability estimates and conservation properties are ensured and that
a direct transition of knowledge from one problem to another is only partially possible.
However, various numerical experiments show that the DLRA method exhibits significant
potential in reducing the computational costs, memory demands, and general complexities
for the solution of kinetic equations, which especially for iterative optimization schemes
can be extremely useful.
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Glossary of abbreviations

1D one-dimensional. 15, 19, 27, 29, 30, 49, 50, 70, 75, 93, 94, 100, 117-119, 123, 126
134, 141, 142, 155

2D two-dimensional. 19, 28, 30, 72-75, 94, 100, 117, 122-124, 126

3D three-dimensional. 5, 11, 30, 50, 72

BGK Bhatnagar-Gross-Krook. i, iii, 2-5, 10, 13, 44, 77, 78, 82, 96, 99, 100, 103, 105,
106, 125, 126, 157, 158

BUG basis update & Galerkin. 2, 3, 38-41, 43-45, 49, 51-53, 58, 68, 70, 86, 93, 96, 112,
126, 149, 155, 159

CFL Courant-Friedrichs-Lewy. 2, 3, 23, 24, 44, 60, 71, 74, 75, 77-79, 83, 94, 96, 101, 106,
111, 118, 122, 126, 152

DLRA dynamical low-rank approximation. i, iii, 1-4, 33, 36, 38, 39, 41, 43-45, 49, 51, 57,
62, 64, 68-72, 74, 75, 77-79, 82, 86-88, 90, 92-97, 99-101, 111, 112, 114, 116-120,
122-126, 141, 143, 149, 150, 152-155, 157-159

FD finite difference. 16, 17, 19-26, 54, 80, 82, 102, 106, 146, 147

IMEX implicit-explicit. 21, 58, 75

IVP initial value problem. 7, 22
ODE ordinary differential equation. 37, 39, 52, 54

PDE partial differential equation. i, iii, 1-3, 5-7, 15, 19, 20, 22, 23, 25, 33, 36, 37, 39,
43, 51, 52, 100, 129, 131-133, 141-144, 148, 155, 157

RTE radiative transfer equation. i, iii, 2-4, 41, 44, 45, 49-51, 70, 77, 141, 142, 155, 157,
158

SVD singular value decomposition. 2, 34, 39, 44, 46, 113, 130, 149, 152
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