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Abstract

The numerical solution of kinetic partial differential equations (PDEs) usually exhibits

high computational costs and memory requirements. This problem can be overcome when

using numerical reduction techniques such as dynamical low-rank approximation (DLRA).

Its main idea consists in representing and evolving the solution to a given equation on a

low-rank manifold, thereby splitting up the solution of one high-dimensional problem into

lower-dimensional subproblems. Efficient fully discrete DLRA schemes must be carefully

constructed in order to account for the underlying structure of the problem and to ensure

numerical stability.

The first part of this thesis is devoted to the derivation of stable fully discrete DLRA

schemes for different linear PDEs. For the thermal radiative transfer equations (RTEs)

with Su-Olson closure, a provably energy stable and mass conservative DLRA algorithm is

proposed. For its construction an implicit coupling of particle density and internal energy

as well as a rank-adaptive augmented low-rank integrator and a suitable conservative

truncation strategy are used. In certain settings, a multiplicative splitting of the kinetic

distribution function is advantageous for the construction of an efficient DLRA scheme.

We first reconsider the thermal RTEs with Su-Olson closure with a multiplicative splitting

of the distribution function, giving rise to additional complexities in the proof of energy

stability and mass conservation for the DLRA scheme. In a second step, the gained

insights are transferred to the linear Boltzmann-Bhatnagar-Gross-Krook (BGK) equation.

Being different in structure, a distinct notion of numerical stability is required and new

ideas for basis augmentations and an appropriate truncation strategy are introduced into

the mathematically rigorous proof of stability. Various numerical experiments confirm the

efficiency and the accuracy of the proposed DLRA schemes and validate the theoretical

results.

In the second part of this thesis, the method of DLRA is applied to parameter iden-

tification inverse problems. For the reconstruction of the scattering coefficient in the

RTE, a PDE constrained optimization problem together with a gradient-based iterative

update scheme is formulated. The optimization procedure requires the solution of the

forward and the adjoint kinetic equations in each step of the algorithm, rendering numer-

ical computations especially in higher dimensions extremely expensive. For the reduction

of computational demands a DLRA approach is applied to the fully discrete forward and

adjoint equations. Its efficiency is further enhanced by using an adaptive choice of the

optimization step size and of the DLRA truncation tolerance. Numerical test examples

underline the applicability of DLRA to inverse problems and confirm the efficiency of the

proposed method.
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Zusammenfassung

Die numerische Lösung kinetischer partieller Differentialgleichungen (PDEs) erfordert in

der Regel umfangreichen Rechenaufwand und hohen Speicherbedarf. Eine Methode, die

zur Verringerung des numerischen Aufwandes eingesetzt werden kann, ist das Konzept

der dynamischen Niedrigrang-Approximation (DLRA). Dessen Hauptidee besteht darin,

die Lösung einer gegebenen Gleichung auf eine Niedrigrang-Mannigfaltigkeit zu pro-

jizieren und dort in der Zeit weiterzuentwickeln. Dadurch reduziert sich die Lösung eines

hochdimensionalen Problems auf mehrere niedrigdimensionale Teilprobleme. Effiziente,

vollständig diskretisierte DLRA Verfahren müssen jedoch sehr sorgfältig konstruiert wer-

den, damit die zugrundeliegende Struktur des Problems berücksichtigt und numerische

Stabilität garantiert werden kann.

Der erste Teil dieser Dissertation beschäftigt sich mit der Herleitung stabiler, vollständig

diskretisierter DLRA Verfahren für verschiedene lineare PDEs. Zunächst wird ein nach-

weislich energiestabiler and massenerhaltender DLRA Algorithmus für die thermischen

Strahlungstransportgleichungen (RTEs) mit Su-Olson-Abschluss konstruiert. Hierfür sind

eine implizite Kopplung von Teilchendichte und innerer Energie sowie ein Rang-adaptiver

erweiterter Niedrigrang-Integrator und eine geeignete massenerhaltende Strategie zum

Abschneiden der Lösung auf einen bestimmten Rang unerlässlich. Unter gewissen Voraus-

setzungen kann auch ein multiplikatives Aufspalten der kinetischen Verteilungsfunktion

von Vorteil sein, um ein effizientes DLRA Verfahren zu erhalten. Aus diesem Grund wer-

den die thermischen RTEs mit Su-Olson-Abschluss nochmals mit multiplikativer Struktur

der Verteilungsfunktion untersucht. Dies führt zu zusätzlichen Herausforderungen im Be-

weis der Energiestabilität und Massenerhaltung des DLRA Verfahrens. Mithilfe der aus

dieser Arbeit gewonnenen Einblicke wird daraufhin die lineare Boltzmann-Bhatnagar-

Gross-Krook (BGK)-Gleichung betrachtet. Für diese werden aufgrund ihrer Struktur ein

anderer Stabilitätsbegriff und neue Ideen zum Beweis der numerischen Stabilität benötigt.

Die Effizienz und Genauigkeit der hergeleiteten DLRA Verfahren sowie die Ergebnisse

aus den theoretischen Betrachtungen werden in zahlreichen numerischen Testbeispielen

bestätigt.

Im zweiten Teil dieser Dissertation wird die DLRA Methode auf inverse Probleme zur

Identifizierung von Modellparametern angewendet. Hierfür betrachten wir das Problem

der Rekonstruktion des Streuungskoeffizienten in der RTE, welches als restringiertes Op-

timierungsproblem formuliert wird und mit einem Gradienten-basierten iterativen Ver-

fahren gelöst werden soll. Jeder Schritt des Verfahrens benötigt sowohl die Lösung der

Vorwärtsgleichungen als auch der adjungierten Gleichungen. Dies führt vor allem in

höheren Dimensionen zu erheblichem numerischem Aufwand. Um diesen zu reduzieren,

wird ein DLRA Ansatz auf die vollständig diskretisierten Vorwärts-Gleichungen und ad-

jungierten Gleichungen angewendet. Dessen Effizienz wird durch eine adaptive Wahl der

Optimierungsschrittweite und der Toleranz zum Abschneiden der DLRA Lösung auf einen

gewissen Rang noch einmal gesteigert. Numerische Testbeispiele bestätigen die Anwend-

barkeit von DLRA Methoden auf inverse Probleme und die Effizienz des betrachteten

Verfahrens.
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1
Introduction

Many natural phenomena can be mathematically modeled by partial differential equa-

tions (PDEs). Classic examples are for instance bacterial movements [KS70], medical

treatments such as radiation therapy [HMA81], radiation transport [Cha60], astrophys-

ical phenomena [Alf42], heat transfer [CN47], wave equations [d’A47] or gas dynamics

[Bol72]. The description of the underlying problem can hereby be given at different

physical scales [Gra49, Deg04, Son19]. The most detailed microscopic description traces

each particle of the considered medium individually, usually leading to a huge system of

equations which is expensive to solve. The mesoscopic or kinetic description makes use

of a distribution function that is based on the statistical repartition of the particles in

phase space and can be considered as a probability density. The macroscopic regime con-

tains less details. It depends only on macroscopic measurable quantities such as density,

mean velocity, temperature, pressure, energy etc. This thesis focuses on the intermediate

perspective, the class of kinetic equations.

Numerical solution of kinetic equations. For many systems described by kinetic PDEs,

the computation of an analytical solution, if existing, is highly involved. In such cases,

numerical approximations come into play, requiring a discretization of the system in

the time variable t ∈ R+
0 , the space variable x ∈ Ωx ⊆ Rdx , and the velocity variable

v ∈ Ωv ⊆ Rdv . Depending on the number of space dimensions dx and dv, respectively,

and the general complexity of the problem, the numerical solution of a kinetic equation

can be computationally expensive. To speed up simulations and save computational

effort and memory requirements, model reduction techniques such as dynamical low-rank

approximation (DLRA) [KL07] can be used.

Basic principles of DLRA. For the application of the DLRA method to a kinetic equa-

tion, the distribution function f is approximated by a low-rank representation of the

form

f (t,x,v) ≈
r∑

i,j=1

Xi (t,x)Sij (t)Vj (t,v) , (1.1)

1



1. Introduction

where {Xi : i = 1, ..., r} denotes the set of orthonormal basis functions in space and {Vj :

j = 1, ..., r} the set of orthonormal basis functions in velocity. The matrix S = (Sij) ∈
Rr×r is called the coefficient or coupling matrix and r the rank of the approximation.

This splitting approach can be understood as a continuous analogue to the singular value

decomposition (SVD) of a matrix. However, the matrix S is not required to be diagonal.

The main idea of DLRA is to project the solution to a manifold of low-rank functions

of the form (1.1) and to constrain the solution dynamics there. Special time integrators

that are able to update the low-rank factors while not suffering from the curvature of

the low-rank manifold exist [LO14, CL22, CKL22, CKL24]. This approach reduces the

solution of a high-dimensional problem to solving lower-dimensional subproblems.

Research contributions. The construction of fully discretized numerical schemes for

solving kinetic PDEs is challenging and requires careful consideration. Among the essen-

tial properties of a numerical scheme is its stability, meaning that approximation errors

do not increase unrestrictedly over time so that a reasonable solution of the underlying

physical problem is ensured. In this thesis, the concept of energy stability is used. This

approach gives bounds to the energy of a system, hereby making the numerical behavior

of a scheme predictable. Another difficulty arising from the application of reduction tech-

niques is the preservation of physical properties inherent in the underlying equations such

as for instance conservation laws. If physical conservation properties cannot be guaran-

teed, the reconstruction of the solution provided by the scheme may be inconsistent with

the governing physical principles and, consequently, be considerably less applicable to

realistic settings. In the first part of this thesis, we present DLRA schemes that explicitly

accomplish numerical stability and conservation properties.

The first research contribution presented in this thesis, which is published in [BEKK24a],

concerns the thermal radiative transfer equations (RTEs). These equations form a system

of two coupled PDEs that models radiation particles moving through and interacting with

a background material. The Su-Olson closure is applied to obtain a linearized internal

energy model, called the Su-Olson problem. We derive an energy stable DLRA scheme

for the Su-Olson problem and provide a mathematically rigorous proof of energy stabil-

ity under a certain hyperbolic Courant-Friedrichs-Lewy (CFL) condition. The conducted

analysis allows for an optimal choice of the time step size, enhancing the computational

performance of the algorithm. For the derivation of the DLRA scheme the basis augmen-

tation step proposed by the rank-adaptive augmented basis update & Galerkin (BUG)

integrator [CKL22] is implemented and adjusted in a way that together with a conser-

vative truncation strategy as described in [EOS23] mass conservation can be ensured.

Numerical experiments confirm the derived theoretical results.

It has been shown, for instance in [EHY21] for the non-linear isothermal Boltzmann-

Bhatnagar-Gross-Krook (BGK) equation, that for the construction of efficient DLRA

schemes a multiplicative splitting of the distribution function can offer advantages in

reducing the computational effort. To investigate these schemes from an analytical per-

spective, we reconsider the Su-Olson problem together with a multiplicative splitting of

the distribution function. The multiplicative structure poses additional challenges for the

2



construction of an energy stable DLRA scheme for the Su-Olson problem. For instance,

careful consideration must be given to the discretization of the spatial derivatives and

additional basis augmentations are required to ensure the exactness of the projection op-

erators in the mathematically rigorous proof of energy stability. Mass conservation can

be guaranteed similarly to the Su-Olson problem without multiplicative splitting when

using a suitable low-rank integrator and a conservative truncation strategy. Numerical

test examples confirm the properties of the derived DLRA scheme. The corresponding

results can be found in [BEKK25b].

To extend the gained insights to more complicated problems such as the non-linear

isothermal Boltzmann-BGK equation considered in [EHY21], further investigations on

the multiplicative structure of the distribution function are conducted. In [BEKK24b], a

multiplicative DLRA scheme for the linear isothermal Boltzmann-BGK equation is pro-

posed. Within an appropriate stability framework, we perform a mathematically rigorous

stability analysis and derive a concrete hyperbolic CFL condition. To ensure the ana-

lytical correctness, additional basis augmentations in the rank-adaptive augmented BUG

integrator as well as a specifically designed truncation strategy are required. Various nu-

merical experiments underline the theoretical results and the efficiency of the proposed

DLRA scheme.

Computational advantages of the DLRA method can be especially observed in higher-

dimensional settings. A classic problem requiring the solution of a considerable number

of potentially high-dimensional kinetic equations, is the parameter identification in inverse

problems. The second part of this thesis is devoted to the application of DLRA for the

reconstruction of searched-for parameters in inverse problems. Following the presentation

in [BEKK25a], we consider the RTE with a spatially dependent scattering coefficient. For

its reconstruction, a PDE constrained optimization procedure with gradient-based update

formula is applied, requiring the solution of the forward as well as of the adjoint equations

in each step of the iterative scheme. For the numerical reconstruction, we propose a DLRA

solver for the forward and the adjoint equations. An adaptive choice of the step size in

the gradient-based iterative scheme and of the DLRA rank truncation tolerance lead to

further improvements in efficiency. Numerical test examples show promising results for

the combination of DLRA methods and parameter identification inverse problems.

Altogether, this thesis covers two main topics to which it contributes new results:

(i) Stability analysis (and conservation properties) for (multiplicative) DLRA schemes.

(ii) Application of DLRA to parameter identification inverse problems.

Structure of the thesis. After the introduction in Chapter 1, we review some funda-

mentals on kinetic theory in Chapter 2. These include a detailed overview of established

possibilities for describing processes on different physical scales with a focus on the kinetic

perspective as well as the important Boltzmann and simplified Boltzmann-BGK equation.

Chapter 3 provides an introduction to the topic of numerical discretization in the space,

time and velocity variable and recalls important concepts for numerical stability. Chapter

4 is devoted to the method of DLRA, which is at the center of this thesis. It formalizes

3



1. Introduction

the basic idea of DLRA, explains different exact and robust time integrators and reviews

results concerning stability and conservation properties of DLRA schemes. Part I of this

thesis provides rigorous stability results for DLRA schemes applied to different problems.

In Chapter 5 an energy stable and mass conservative DLRA scheme for the Su-Olson

problem is proposed. Chapter 6 reconsiders the Su-Olson problem with a multiplicative

splitting of the distribution function, posing further challenges in the construction of an

appropriate energy stable and mass conservative DLRA scheme. Chapter 7 is devoted to

the derivation of a provably stable DLRA scheme for the linear Boltzmann-BGK equa-

tion. Part II concerns the application of the DLRA method to inverse problems. Chapter

8 provides basic information for the numerical solution of parameter identification inverse

problems, including their definition, the formulation of a corresponding optimization prob-

lem and techniques for its efficient solution. In Chapter 9 the application of an adaptive

DLRA solver for the reconstruction of the scattering coefficient in the RTE is presented.

Chapter 10 draws a short conclusion and provides an outlook for future research.
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2
Fundamentals on kinetic theory

When modeling natural phenomena by PDEs, different physical scales containing more

or less details may be considered. In Section 2.1 we provide a short overview of common

approaches. Section 2.2 focuses on the kinetic description and provides basic principles,

including a formal definition of the distribution function and the general form of a kinetic

equation. Section 2.3 is devoted to the Boltzmann equation, which is a crucial equation

in kinetic theory that continues to be actively studied [UA82, Per90, BGL00, FHJ12].

Section 2.4 introduces a simplification of the Boltzmann collision operator, namely the

BGK collision operator. The following sections rely mainly on introductory work on

kinetic theory and on the Boltzmann equation, in particular [Cer88, CIP94, CC90, Gra49,

DP14].

2.1 PDE models in different physical regimes

Depending on the level of accuracy required in describing physical processes, different

models are available. Since the models are intended to represent real-world applications,

we use three-dimensional (3D) Cartesian coordinates, i.e. we consider x ∈ Ωx ⊆ R3 and

v ∈ Ωv ⊆ R3.

Microscopic description. In the microscopic regime each particle of the corresponding

medium is considered individually. The fundamental principles of particle dynamics in

classical mechanics can be derived from Newton’s laws of motion given in [New87]. Let

xi for i = 1, ..., N be the position of the i-th particle of a medium consisting of N such

particles and vi its velocity. The time evolution of this particle is determined by Newton’s

equations

ẋi(t) = vi and miv̇i(t) = Fi (x1, ...,xN ) , (2.1)

5



2. Fundamentals on kinetic theory

where mi denotes the particle mass and Fi the force acting on the i-th particle. In general,

the force term Fi includes both the force that is exerted on the i-th particle by other

particles as well as external forces, such as gravity. Determining the time evolution of an

N -particle system using equations (2.1) requires the solution of 6N differential equations.

For a huge number of particles N (as for instance a number of O
(
1023

)
particles such as

described by the Avogadro constant to be contained in one mole of a gas) this approach

is usually infeasible.

Kinetic description. A less detailed description is given in the mesoscopic or kinetic

regime. The idea of using a particle density distribution function instead of tracing each

single particle of a rarefied monatomic gas goes back to Boltzmann. He presented the

famous Boltzmann equation in [Bol72]. More information on the Boltzmann equation and

on the basic assumptions for its derivation from the microscopic description can be found

in Section 2.3. His work was inspired by previous considerations made by Maxwell [Max67]

who gave a heuristic derivation of the particle density distribution function for a gas in

thermodynamic equilibrium, the so-called Maxwell-Boltzmann or Maxwellian distribution.

Important historical contributions for the solution of the Boltzmann equation were also

made by Hilbert [Hil12], Chapman [Cha16] and Enskog [Ens17]. The idea of using a

distribution function spread from the field of rarefied gas dynamics to other areas of

research such as radiative transfer, neutron transport or quantum effects in gases [CC90].

Macroscopic description. Under certain limiting assumptions (see for instance [BGL91,

Deg04, EP04]), it is possible to derive macroscopic or fluid equations from the kinetic

regime. Historically, those equations go further back than kinetic ones as they only rely on

observable macroscopic quantities such as density, mean velocity, temperature, pressure,

energy etc., which are measurable quantities in experiments. Important macroscopic

systems of PDEs are for instance the Euler equations [Eul57] and their more general

extension to the Navier-Stokes equations, which include effects of viscosity [Nav22, Nav27,

Sto45]. The Euler equations constitute a system of hyperbolic conservation laws, for which

we provide a general definition.

Definition 2.1 (Conservation law, [LeV92]). Let u (t,x) : R+
0 × R3 → Rm denote an

m-dimensional vector of conserved quantities. The differential form of a conservation law

is given by

∂tu (t,x) + ∇x · F (u (t,x)) = 0, (2.2)

where F = (F1,F2,F3)
⊤ ∈ R3m denotes the flux vector containing the flux functions

Fi : Rm → Rm for i = 1, 2, 3. For m = 1, equation (2.2) is called a scalar conservation

law, for m ≥ 2 a system of conservation laws.

Note that we do not specify the regularity of a solution to (2.2) here. For more information

on different solution concepts of conservation laws the reader is referred to literature such

as [Eva10, LeV02, Daf16, Mar21]. Equation (2.2) can be rewritten in the quasi-linear

6



2.1. PDE models in different physical regimes

form

∂tu (t,x) +
3∑

i=1

Ai∂xiu (t,x) = 0,

where Ai := ∇uFi (u) ∈ Rm×m denotes the flux Jacobian matrices. We focus on a special

class of equations, the hyperbolic equations.

Definition 2.2 (Hyperbolicity, [LeV92]). The conservation law (2.2) is called hyperbolic

if the matrix A :=
∑3

i=1 αiAi with αi ∈ R has only real eigenvalues λ1, ..., λm and is

diagonalizable, i.e. a full set of m linearly independent eigenvectors exists. If A has m

distinct eigenvalues, (2.2) is called strictly hyperbolic.

Using equation (2.2), the time evolution of the function u (t,x) can be determined. Adding

information in the form of a suitable initial condition

u (0,x) = u0 (x) (2.3)

complements the solution. Equation (2.2) together with (2.3) is called a Cauchy or initial

value problem (IVP).

Choice of a suitable description. Figure 2.1 provides an overview of the descriptions

introduced for PDE models on different physical scales. This illustration is inspired by the

one given in [War22]. The decision on a model of appropriate accuracy can be challenging.

A helpful indicator can be the Knudsen number Kn of the particular system. The Knudsen

number Kn represents the ratio of the mean free path, i.e. the distance that a particle

travels on average until it collides with another one, and a characteristic length scale of

the corresponding system. In [Str05] a rough classification for an appropriate description

depending on the Knudsen number is provided. For our purpose, a microscopic description

is clearly infeasible as the considered systems consist of large numbers of particles. A

macroscopic description potentially loses too much information as it only accounts for

velocity-averaged quantities. For this reason, we focus on kinetic hyperbolic models in

this thesis.

v

f
M

−2 −1 0 1 2

1

2

3

x

d
en
si
ty

Figure 2.1: Possibilities for the description of natural phenomena on differently detailed physical scales.
Left: Microscopic description: The trajectory of each single particle is considered individually. Middle:
Kinetic description: Statistical repartition of the particles using a distribution function f , which tends
to a Maxwellian distribution M in equilibrium. This illustration is described more precisely in Figure
2.2. Right: Macroscopic description: Only measurable quantities such as the density are available.
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2. Fundamentals on kinetic theory

2.2 Basic principles for the kinetic description

When determining the time evolution of a system consisting of a large number of particles,

a statistical description based on a distribution function can be useful. The concept of

using distribution functions in kinetic theory arises from probability theory and we refer

to [Cer88] for further reading. We provide the following definition.

Definition 2.3 (Distribution function and phase space, [CC90, Pir18]). An integrable

function f : R+
0 × R3 × R3 → R+

0 , (t,x,v) 7→ f (t,x,v) is called a distribution function if

and only if f dxdv is the probable number of particles which are situated in the volume

element (x,x + dx) and have velocities in (v,v + dv) at time t. The set of all possible

physical states (x,v) of a particle at time t is called the phase space.

Under the common assumption of a normalization to one, the distribution function

f (t,x,v) describes the probability of finding a particle at the position (x,v) in phase

space at time t. We use this concept to introduce the general form of a kinetic equation.

Definition 2.4 (General kinetic equation, [DP14]). Let f (t,x,v) be a distribution func-

tion. The general form of a kinetic equation is given by

∂tf (t,x,v) + v · ∇xf (t,x,v) +
F (t,x)

m
· ∇vf (t,x,v) = Q [f ] (t,x,v) , (2.4)

where m denotes the particle mass, F the effects of external forces, and Q [f ] the collision

operator describing the effects of internal forces due to particle interactions.

Note that in this thesis only problems without external forces, i.e. F = 0, are consid-

ered. Given the distribution function, important macroscopic quantities can be derived

by taking moments in the velocity variable v.

Definition 2.5 (Macroscopic quantities, [Pir18]). Let f (t,x,v) be a distribution function

and the subsequent integrands be in L1 ( dv). Then the following macroscopic quantities

are defined.

(i) Let m denote the particle mass. The functions

n (t,x) : R+
0 × R3 → R+

0 , (t,x) 7→
∫
R3

f (t,x,v) dv and

ρ (t,x) : R+
0 × R3 → R+

0 , (t,x) 7→ m

∫
R3

f (t,x,v) dv

are called the number density and the mass density, respectively, and it holds

ρ (t,x) = mn (t,x).

(ii) We define the function

n (t,x)u (t,x) : R+
0 × R3 → R3, (t,x) 7→

∫
R3

f (t,x,v)v dv

and, for n (t,x) > 0, call u (t,x) the mean velocity.
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2.2. Basic principles for the kinetic description

(iii) The function

E (t,x) : R+
0 × R3 → R+

0 , (t,x) 7→ m

2

∫
R3

f (t,x,v) |v|2 dv

is called the energy density.

(iv) The energy density can be split into two parts, the kinetic energy Ekin (t,x) =
1
2ρ (t,x) |u (t,x)|2 and the internal energy

e (t,x) : R+
0 × R3 → R+

0 , (t,x) 7→ E (t,x) − Ekin (t,x)

=
m

2

∫
R3

f (t,x,v) |v − u (t,x)|2 dv.

(v) Using the ideal gas law, for n (t,x) > 0, the temperature can be derived as

T (t,x) : R+
0 × R3 → R+

0 , (t,x) 7→ 2e (t,x)

3n (t,x) kB

=
m

3n (t,x) kB

∫
R3

f (t,x,v) |v − u (t,x)|2 dv,

where kB denotes the Boltzmann constant. The pressure is obtained as p (t,x) =

n (t,x) kBT (t,x).

Having F = 0 in (2.4), the collision operator Q [f ] should, in general, be designed to

preserve the conservation properties of the physical system, i.e. it should satisfy∫
R3

Q [f ] (t,x,v)φ (v) dv = 0, (2.5)

where φ (v) = 1,v, |v|2 characterizes the conservation of mass, momentum and energy,

respectively. Under this assumption, integration of (2.4) against φ (v) with respect to v

yields the following system of local conservation laws

∂t

∫
R3

f (t,x,v)φ (v) dv +

∫
R3

v · ∇xf (t,x,v)φ (v) dv = 0. (2.6)

If it holds

∂t

∫
R3

∫
R3

f (t,x,v)φ (v) dv dx = 0, (2.7)

the corresponding global conservation laws are fulfilled.

System (2.6) is not closed since the second term depends on higher order moments in v.

For the derivation of a closed set of equations, an additional assumption on the collision

operator involving the Maxwellian equilibrium distribution is made.

9



2. Fundamentals on kinetic theory

Definition 2.6 (Maxwellian distribution, [CC90]). A distribution function of the form

M [f ] (t,x,v) =
n (t,x)Ä

2π kBT (t,x)
m

ä3/2 exp

(
−|v − u (t,x)|2

2kBT (t,x)
m

)
(2.8)

is called Maxwellian distribution.

The Maxwellian distribution describes a system that is in thermodynamic equilibrium.

This relation shall be incorporated in the collision operator so that it fulfills

Q [f ] = 0 if and only if f = M [f ] . (2.9)

Both the Boltzmann collision operator QBol [f ] and the simplified BGK collision operator

QBGK [f ], which are introduced in the next sections, accomplish the two properties (2.5)

and (2.9). Note that from now on the particle mass m as well as the Boltzmann constant

kB are set to one.

2.3 Boltzmann equation

The Boltzmann equation may be considered the most important equation in kinetic the-

ory. It describes the time evolution of a perfect monatomic dilute gas. For its derivation

from the microscopic description a considerable number of assumptions are made. A well-

structured overview is provided in [Vil02]. First of all, only binary collisions of identical

gas particles are assumed, meaning that interactions involving more than two particles

are neglected. Second, the collisions are supposed to be purely local and instantaneous

in time, i.e. they happen at a given time t and a given position x and have a very short

duration compared to the typical time scale of the system. Third, the collisions are as-

sumed to be elastic. This means that for two particles with velocities v′ and v′
∗ before the

collision and velocities v and v∗ after the collision the following corresponding relations

for the microscopic conservation of momentum and energy shall hold:

v′ + v′
∗ = v + v∗ (conservation of momentum),∣∣v′∣∣2 +

∣∣v′
∗
∣∣2 = |v|2 + |v∗|2 (conservation of energy).

Fourth, the collisions shall be reversible in time at a microscopic level. This assumption

implies that changing the velocities from (v′,v′
∗) to (v,v∗) is as probable as changing

the velocities from (v,v∗) to (v′,v′
∗). The fifth assumption is referred to as Boltzmann’s

molecular chaos assumption or Stosszahlansatz. It states that the velocities of the par-

ticles that are about to collide are statistically uncorrelated. Indeed, the velocities of

the particles that have just collided are statistically correlated. This asymmetry bridges

the gap between the time reversible microscopic and the time irreversible kinetic and

macroscopic description. We can now present the following formulation of the Boltzmann

equation.
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2.3. Boltzmann equation

Definition 2.7 (Boltzmann equation, [Gol05, Cer88]). In terms of a distribution function

f , the Boltzmann equation reads

∂tf (t,x,v) + v · ∇xf (t,x,v) = QBol [f ] (t,x,v) , (2.10)

with QBol [f ] being the quadratic Boltzmann collision operator

QBol [f ] (t,x,v) =

∫
R3

∫
S2

(
f
(
t,x,v′) f (t,x,v′

∗
)
− f (t,x,v) f (t,x,v∗)

)
B (v − v∗, η) dη dv∗,

where η ∈ S2 denotes an arbitrary unit vector contained in the 3D unit sphere S2 and

B (v − v∗, η) is called the collision kernel.

The exact form of the collision kernel B depends on the considered setting. Common

assumptions for the particle interactions are hard sphere collisions or interactions due to

a central force in a smooth potential. In both cases, the collision kernel can be explicitly

stated. More information on the choice of an appropriate collision kernel can be found

in [Vil02, Gol05, Cer88]. In this thesis, we follow [Gol05] and assume B to be locally

integrable on R3×S2. In addition, we assume the distribution function f to be continuous

with compact support in the velocity variable. Then the Boltzmann collision operator

QBol [f ] can be rewritten as

QBol [f ] (t,x,v) = Q+
Bol [f ] (t,x,v) −Q−

Bol [f ] (t,x,v) ,

where

Q+
Bol [f ] (t,x,v) =

∫
R3

∫
S2

f
(
t,x,v′) f (t,x,v′

∗
)
B (v − v∗, η) dη dv∗ and

Q−
Bol [f ] (t,x,v) =

∫
R3

∫
S2

f (t,x,v) f (t,x,v∗)B (v − v∗, η) dη dv∗

are called the gain term and the loss term, respectively. The gain term accounts for

particles having velocities (v′,v′
∗) that change their velocities to (v,v∗) after the collision.

In this sense, particles with velocity v are gained in the volume element dv centered

around v. The loss term instead accounts for particles having velocities (v,v∗) that

change their velocities to (v′,v′
∗) after the collision. In this sense, particles with velocity

v are lost in the volume element dv centered around v.

The Boltzmann collision operator fulfills important physical properties. For instance, it

guarantees the conservation of mass, momentum and energy.

Theorem 2.8 (Conservation properties for the Boltzmann equation, [Gol05]). Let f =

f (v) ∈ Cc

(
R3
)

and B ∈ L1
loc

(
R3 × S2

)
. Then, for i = 1, 2, 3, the Boltzmann collision

11



2. Fundamentals on kinetic theory

operator QBol [f ] fulfills∫
R3

QBol [f ] (t,x,v) dv = 0 (conservation of mass),∫
R3

QBol [f ] (t,x,v) vi dv = 0 (conservation of momentum),∫
R3

QBol [f ] (t,x,v) |v|2 dv = 0 (conservation of energy).

Proof. See for instance [Gol05, Cer88].

Remark 2.9. Note that the assumption f = f (v) ∈ Cc

(
R3
)

in Theorem 2.8 is quite

strong and can be weakened under additional assumptions [Gol05].

According to the second law of thermodynamics, the entropy of a thermodynamical system

is non-decreasing, explaining that such processes are irreversible in time. This behavior

is mirrored in Boltzmann’s H-theorem.

Theorem 2.10 (Boltzmann’s H-theorem, [Gol05]). Let f = f (v) ∈ C
(
R3
)

be positive

and rapidly decaying at infinity and B ∈ L1
loc

(
R3 × S2

)
. Further, assume that there exists

m > 0 such that∫
S2

B (v, η) dη + |ln f (v)| = O (|v|m) as |v| → +∞.

Then the following inequality holds∫
R3

QBol [f ] (t,x,v) ln f (t,x,v) dv ≤ 0,

with equality if and only if f is a Maxwellian distribution.

Proof. See for instance [Gol05, Cer88].

The proof of Boltzmann’s H-theorem also reveals the special Maxwellian structure of the

equilibrium.

Corollary 2.11 (Structure of the equilibrium, [Gol05]). Let the assumptions of the pre-

vious theorem hold. Then the Boltzmann collision operator satisfies

QBol [f ] (t,x,v) = 0 for all v ∈ R3 if and only if f (t,x,v) = M [f ] (t,x,v) .

2.4 Boltzmann-BGK equation

For practical implementations, the solution of the full Boltzmann equation (2.10) is, in

general, computationally expensive. Simplifications of the Boltzmann collision operator

that maintain its key properties while being numerically less demanding are sought. A

12
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v

f

M

Figure 2.2: Relaxation of the distribution function f towards the Maxwellian distribution M in the
space homogeneous case. The arrows depict the time derivatives of f with respect to the evolution
equation (2.11).

widely used collision model is the Bhatnagar-Gross-Krook (BGK) collision operator. It

was proposed by Bhatnagar, Gross and Krook [BGK54] and is sometimes referred to as

the Krook operator. We replace the Boltzmann collision operator QBol [f ] in (2.10) by the

BGK collision operator QBGK [f ] and obtain the Boltzmann-BGK equation.

Definition 2.12 (Boltzmann-BGK equation, [BGK54]). The Boltzmann-BGK equation

reads

∂tf (t,x,v) + v · ∇xf (t,x,v) = QBGK [f ] (t,x,v) , (2.11)

where the BGK collision operator is given by

QBGK [f ] (t,x,v) = σ (t,x) (M [f ] (t,x,v) − f (t,x,v)) , (2.12)

and σ = σ (t,x) ≥ 0 denotes a prescribed collision frequency.

The Boltzmann-BGK equation (2.11) describes the relaxation of the distribution function

f towards the corresponding Maxwellian distribution M when the system is close to

thermodynamic equilibrium. For this reason, the BGK collision operator (2.12) is also

called a relaxation operator. Figure 2.2 illustrates this behavior. The BGK collision

operator (2.12) maintains important properties of the full Boltzmann collision operator.

Theorem 2.13 (Properties of the BGK collision operator, [Pir18]). Let f = f (v) ∈
C
(
R3
)

be positive and rapidly decaying at infinity. Then the BGK collision operator

QBGK [f ] has the same main properties as the Boltzmann collision operator QBol [f ],

namely the conservation of mass, momentum and energy, the H-theorem, and the struc-

ture of the equilibrium.

Proof. See for instance [Pir18, Str05].

The existence and uniqueness of solutions to the Boltzmann-BGK equation (2.11) has

been proven in [Per89, PP93]. The Boltzmann-BGK equation is a simplified model of the

Boltzmann equation that is widely used in research in its original as well as in modified

forms, allowing, for example, for the reproduction of a correct Prandtl number [Hol66,

ATPP00] or for velocity-dependent collision frequencies [Str97, HHK+21].
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3
Discretization and numerical stability

In order to obtain a numerical solution of PDEs, their continuous formulation must first be

transformed into a fully discretized representation. For deriving the theoretical concepts

of discretization and numerical stability, we follow the explanations given in [LeV92] and

restrict our considerations to one-dimensional (1D) linear advection equations of the form

∂tu (t, x) + a∂xu (t, x) = 0, (3.1)

where u (t, x) : [0, T ] × Ωx → R is assumed to be sufficiently regular and a ∈ R denotes

a constant value. Combined with an appropriate initial condition u (0, x) = u0 (x), the

solution of (3.1) admits the explicit form u (t, x) = u0 (x− at). Consequently, the solution

u (t, x) at any fixed point (t, x) solely depends on the initial condition evaluated at x− at

and is constant along each characteristic curve described by x0 = x− at. The set

D (t, x) = {x− at} (3.2)

is called the true domain of dependence of the PDE. In Figure 3.1 the characteristic curves

as well as the solution to the linear advection equation (3.1) are sketched for a > 0.

Section 3.1 presents techniques for the spatial and temporal discretization commonly

used for problems of the form (3.1). Section 3.2 is devoted to stability considerations.

Section 3.3 relates kinetic equations to the previously discussed methods by introducing an

appropriate discretization in the velocity variable. A selection of introductory literature

used for Sections 3.1 and 3.2 can be found in [Tho95, LeV92, LeV07, Str04, RM67].

u0 (x)

u (t, x)

Figure 3.1: Illustration of the initial condition u0 (x), the solution to the linear advection equation
u (t, x) and the characteristic curves depicted by arrows for a > 0.
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3. Discretization and numerical stability

3.1 Discretization in space and time

The linear advection equation (3.1) depends continuously on space and time. For the

derivation of a numerical scheme, a discretization in both the spatial variable x and the

temporal variable t must be performed. We begin with a discretization in the spatial

variable in Section 3.1.1, leading to a semi-discrete representation, before the system is

rendered fully discrete through a temporal discretization presented in Section 3.1.2.

3.1.1 Spatial discretization

Regarding the discretization of the spatial domain Ωx, we construct a uniform spatial grid

consisting of a finite number of grid cells Nx ∈ N. The grid points x0, x1, ..., xNx ∈ Ωx are

assumed to be uniformly distributed with equidistant spacing ∆x = 1
Nx

. An approximate

solution u (t) ∈ RNx to (3.1) on the spatial grid is obtained by evaluating u (t, x) at the

end point of each grid cell, i.e. by computing

uj (t) ≈ u (t, xj) for j = 1, ..., Nx.

The linear advection equation (3.1) involves spatial derivatives. Different approaches for

their numerical approximation are available. In this thesis, we focus on centered finite

difference (FD) schemes.

Numerical differentiation. For the derivation of a centered FD scheme for equation (3.1)

we consider the following Taylor expansions of its continuous solution:

u (t, x + ∆x) = u (t, x) + ∆x∂xu (t, x) +
(∆x)2

2
∂xxu (t, x) + O

Ä
(∆x)3

ä
, (3.3)

u (t, x− ∆x) = u (t, x) − ∆x∂xu (t, x) +
(∆x)2

2
∂xxu (t, x) −O

Ä
(∆x)3

ä
. (3.4)

Subtracting equation (3.4) from equation (3.3) allows for the formulation

∂xu (t, x) =
u (t, x + ∆x) − u (t, x− ∆x)

2∆x
+ O
Ä
(∆x)2

ä
.

This approach is used for the approximation of first-order derivatives as

∂xu (t, x)
∣∣
x=xj

≈ uj+1 (t) − uj−1 (t)

2∆x
. (3.5)

At the grid points xNx and x1, formula (3.5) involves the evaluation of uNx+1 (t) and

u0 (t), respectively. Periodic boundary conditions can be introduced, determining

u0 (t) := uNx (t) and uNx+1 (t) := u1 (t) . (3.6)
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Then the following semi-discrete time-continuous form of the advection equation (3.1)

can be derived as

u̇j (t) = − a

2∆x
(uj+1 (t) − uj−1 (t)) . (3.7)

Expression (3.7) can be reformulated as

u̇ (t) = −aDxu (t) ,

where the matrix Dx ∈ RNx×Nx with entries

Dx
j,j±1 =

±1

2∆x
, Dx

1,Nx
=

−1

2∆x
, Dx

Nx,1 =
1

2∆x
(3.8)

incorporates a centered FD approximation for first-order spatial derivatives ∂x as well as

periodic boundary conditions.

Extension to second-order derivatives. Although equation (3.1) involves no spatial

derivatives beyond the first order, adding a second-order diffusion term to the spatial

discretization can be beneficial for its numerical stability [LeV02]. For the derivation of a

centered FD approximation for second-order derivatives, the Taylor expansions given in

(3.3) and (3.4) are reconsidered. Adding these equations leads to the expression

∂xxu (t, x) =
u (t, x + ∆x) − 2u (t, x) + u (t, x− ∆x)

(∆x)2
+ O
Ä
(∆x)2

ä
.

Similarly to the first-order case, approximations of second-order derivatives can be ob-

tained as

∂xxu (t, x)
∣∣
x=xj

≈ uj+1 (t) − 2uj (t) + uj−1 (t)

(∆x)2
. (3.9)

Instead of (3.7), an advection-diffusion equation of the form

u̇j (t) = − a

2∆x
(uj+1 (t) − uj−1 (t)) +

|a|
(∆x)2

(uj+1 (t) − 2uj (t) + uj−1 (t)) (3.10)

is numerically solved. Expression (3.10) can be reformulated as

u̇ (t) = −aDxu (t) + |a|Dxxu (t) ,

where the matrix Dxx ∈ RNx×Nx with entries

Dxx
j,j = − 2

(∆x)2
, Dxx

j,j±1 =
1

(∆x)2
, Dxx

1,Nx
= Dxx

Nx,1 =
1

(∆x)2
(3.11)

incorporates a centered FD approximation for second-order spatial derivatives ∂xx as well

as periodic boundary conditions.
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3. Discretization and numerical stability

Properties of the differentiation matrices. The spatial stencil matrices Dx and Dxx

exhibit useful properties. For instance, the discrete counterpart of the continuous inte-

gration by parts method can be shown.

Lemma 3.1 (Summation by parts). Let y, z ∈ RNx be vectors with indices i, j = 1, ..., Nx.

In addition, we define y0 := yNx and yNx+1 := y1 as well as z0 := zNx and zNx+1 := z1
to account for periodic boundary conditions. Then the stencil matrices Dx and Dxx fulfill

the following properties:

Nx∑
i,j=1

yjD
x
jizi = −

Nx∑
i,j=1

zjD
x
jiyi,

Nx∑
i,j=1

zjD
x
jizi = 0,

Nx∑
i,j=1

yjD
xx
ji zi =

Nx∑
i,j=1

zjD
xx
ji yi.

Moreover, consider the stencil matrix D+ ∈ RNx×Nx, defined by its entries

D+
j,j =

−1

∆x
, D+

j,j+1 =
1

∆x
, D+

Nx,1
=

1

∆x
.

Then,

Nx∑
i,j=1

zjD
xx
ji zi = −

Nx∑
j=1

(
Nx∑
i=1

D+
jizi

)2

.

Proof. The assertions follow directly by inserting the definitions of the spatial stencil

matrices and by properly rearranging the expressions. In detail, we obtain

Nx∑
i,j=1

yjD
x
jizi =

1

2∆x

Nx∑
j=1

yj (zj+1 − zj−1) = − 1

2∆x

Nx∑
j=1

zj (yj+1 − yj−1) = −
Nx∑

i,j=1

zjD
x
jiyi,

Nx∑
i,j=1

zjD
x
jizi = −

Nx∑
i,j=1

zjD
x
jizi = 0,

Nx∑
i,j=1

yjD
xx
ji zi = − 2

(∆x)2

Nx∑
j=1

yjzj +
1

(∆x)2

Nx∑
j=1

yj (zj+1 + zj−1)

= − 2

(∆x)2

Nx∑
j=1

zjyj +
1

(∆x)2

Nx∑
j=1

zj (yj+1 + yj−1) =

Nx∑
i,j=1

zjD
xx
ji yi,

Nx∑
i,j=1

zjD
xx
ji zi = − 2

(∆x)2

Nx∑
j=1

z2j +
1

(∆x)2

Nx∑
j=1

zj (zj+1 + zj−1)

= − 1

(∆x)2

Nx∑
j=1

(
z2j − 2zjzj+1 + z2j+1

)
= − 1

(∆x)2

Nx∑
j=1

(zj − zj+1)
2

= −
Nx∑
j=1

(
Nx∑
i=1

D+
jizi

)2

.
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3.1. Discretization in space and time

Extension to two dimensions. The theoretical stability analysis in this thesis is con-

ducted in one spatial dimension, represented by the spatial variable x. However, nu-

merical experiments will be performed in two-dimensional (2D) spatial settings involving

dependencies on the variable x = (x, y)⊤ ∈ R2. Therefore, we extend the centered FD

framework to equations of the form

∂tu (t, x, y) + a∂xu (t, x, y) + b∂yu (t, x, y) = 0, (3.12)

equipped with an appropriate initial condition

u (0, x, y) = u0 (x, y) ,

where the function u (t, x, y) : [0, T ]×Ωx×Ωy → R is assumed to be sufficiently regular and

a, b ∈ R denote constant scalar values. The spatial domain Ωy is discretized analogously

to Ωx, i.e. by construction of a uniform spatial grid with a finite number of grid cells

Ny ∈ N and equidistant spacing ∆y = 1
Ny

. A spatially discretized approximation to (3.12)

is obtained by evaluating u (t, x, y) at the grid points (xj , yi) ∈ Ωx × Ωy and setting

uji (t) ≈ u (t, xj , yi) for j = 1, ..., Nx, i = 1, ..., Ny.

For the approximation of first-order spatial derivatives we perform a dimensional splitting

as proposed in [LeV02] and apply a centered FD scheme to each spatial direction, i.e. we

approximate

∂xu (t, x, y)
∣∣
(x,y)=(xj ,yi)

≈ uj+1,i (t) − uj−1,i (t)

2∆x
and

∂yu (t, x, y)
∣∣
(x,y)=(xj ,yi)

≈ uj,i+1 (t) − uj,i−1 (t)

2∆y
.

This leads to the semi-discrete time-continuous reformulation of equation (3.12) as

u̇ji (t) = − a

2∆x
(uj+1,i (t) − uj−1,i (t)) − b

2∆y
(uj,i+1 (t) − uj,i−1 (t)) .

Analogously to the 1D case, the spatial stencil matrices Dx and Dy approximating first-

order spatial derivatives ∂x and ∂y, respectively, and incorporating periodic boundary

conditions can be constructed. To account for numerical stability, second-order spatial

stencil matrices Dxx and Dyy, which are derived similar to the 1D setting, can be added.

Alternatives to the centered FD method. Alternative methods for the spatial dis-

cretization of PDEs exist. Concerning the FD method, the one-sided forward or backward

FD approximation shall be mentioned. Compared to the second-order accurate centered

FD scheme, these approximations are only first-order accurate and therefore not consid-

ered in this thesis. Frequently used approaches are also finite volume methods and finite

element methods, for which the reader is referred to standard textbooks such as [LeV02]

and [ZTZ13].
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3. Discretization and numerical stability

x

t

x0 x1 x2 . . . xNx

t0 = 0

t1 = ∆t

t2 = 2∆t

∆x

∆t

Figure 3.2: Space-time grid with Nx grid cells of width ∆x in the spatial variable and Nt grid cells
of width ∆t in the temporal variable.

3.1.2 Temporal discretization

The derivations presented thus far have yielded a semi-discrete time-continuous form of

the hyperbolic advection equation (3.1). To retrieve established theoretical concepts for

PDEs in the next section, a discretization in the temporal variable is required. For the

discretization of the time interval [0, T ] we construct a uniform temporal grid with a finite

number of grid cells Nt and prescribed grid size ∆t. The number of equidistant grid cells

Nt is determined from the relation Nt =
⌈

T
∆t

⌉
. An approximation of the semi-discrete

time-continuous solution uj (t) on the temporal grid is obtained by evaluating

unj ≈ u (tn, xj) for tn = n∆t, n = 0, ..., Nt.

The resulting space-time grid is illustrated in Figure 3.2. The linear advection equation

(3.1) involves temporal derivatives. In this thesis, we focus on Euler methods for their

approximation.

Explicit forward Euler method. An elementary strategy is the application of the forward

Euler method. Its basic idea was first introduced in [Eul68] and relies on a Taylor expan-

sion in time. For the linear advection equation (3.1) the fully discrete update formula

un+1
j = unj − a∆t

2∆x

(
unj+1 − unj−1

)
(3.13)

can be derived from the centered FD discretization given in (3.7). This is a first-order

accurate scheme in time and a second-order accurate scheme in space. Note that the time

update from time tn to time tn+1 = tn + ∆t described in (3.13) only requires knowledge

of quantities evaluated at time tn. Such schemes are called explicit methods.

Implicit and implicit-explicit methods. Numerical schemes, on the other hand, that for

a time update require the evaluation of quantities at time tn+1 (as e.g. the backward Euler

method) are called implicit methods. They are often used to handle a potential stiffness,

which can introduce numerical instabilities, leading to unacceptably small time step sizes.

Implicit methods usually exhibit an improved stability behavior for stiff problems but

generally require the numerical solution of more complicated systems, which can involve
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3.2. Numerical stability

coupled dependencies [HW96]. Also the combination of explicit and implicit methods is

possible. Such schemes are called implicit-explicit (IMEX) methods.

3.2 Numerical stability

This section is devoted to the concept of numerical stability for fully discrete FD schemes.

We provide a definition of stability in Section 3.2.1 and introduce necessary and sufficient

conditions for the stability of FD schemes in Sections 3.2.2 and 3.2.3. Section 3.2.4

explains the concept of strong stability, which is often related to the energy of the system.

3.2.1 Consistency, convergence and stability

We consider one-step FD schemes of the form

un+1
j = N∆t,∆xu

n
j , (3.14)

where N∆t,∆x denotes an FD update operator associated with a given temporal and spatial

grid. The indices ∆t,∆x refer to the fixed grid sizes.

Example 3.2. The FD update operator associated with the fully discrete scheme (3.13)

for the linear advection equation (3.1) applied to a sufficiently regular function ϕ has the

form

N∆t,∆x [ϕ] (tn, xj) = ϕn − a∆t

2∆x

(
ϕn
j+1 − ϕn

j−1

)
.

Consistency. An important property of a numerical scheme is its consistency with the

differential equation. This means that the numerical update operator shall approximate

the solution to the continuous equation well locally. This behavior can be quantified by

the local truncation error.

Definition 3.3 (Local truncation error, [LeV92]). For one-step FD schemes associated

with an update operator N∆t,∆x such as given in (3.14) the quantity τn =
Ä
τnj

ä
∈ RNx

with

τnj =
1

∆t
(u (tn+1, xj) −N∆t,∆x [u] (tn, xj))

is called the local truncation error.

The local truncation error is used to define the consistency of a numerical scheme.

Definition 3.4 (Consistency, [LeV92, Tho95]). A one-step FD scheme associated with

an update operator N∆t,∆x such as given in (3.14) is called consistent if, in an appropriate

norm ∥·∥, it holds

∥τn∥ → 0 as ∆t,∆x → 0. (3.15)
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3. Discretization and numerical stability

Condition (3.15) provides no information on the rate of convergence. More details are

included in the concept of accuracy.

Definition 3.5 (Accuracy, [LeV92, Tho95]). A one-step FD scheme associated with an

update operator N∆t,∆x such as given in (3.14) is called accurate of order p in time and of

order q in space if for any sufficiently regular solution u (t, x) with compactly supported

initial condition u0 (x) it holds

∥τn∥ = O ((∆t)p) + O ((∆x)q) .

Remark 3.6. Accurate schemes of order p, q ≥ 1 are consistent [Tho95].

Convergence. Another important property for the construction of numerical schemes is

the pointwise convergence of the numerical solution to the true solution of the PDE as

the grid sizes become arbitrarily small.

Definition 3.7 (Convergence, [Str04]). A one-step FD scheme associated with an update

operator N∆t,∆x such as given in (3.14) is called convergent if for any solution to the

continuous PDE u (t, x) and solutions to the FD scheme unj , such that u0j converges to

u0 (x) as j∆x converges to x, then unj converges to u (t, x) as (n∆t, j∆x) converges to

(t, x) as ∆t,∆x converge to zero.

Stability. The first part of this thesis focuses on the stability of numerical schemes. This

concept ensures that errors, which are for instance introduced in the initial condition, do

not increase uncontrollably over time and dominate the true behavior of the solution.

Definition 3.8 (Stability, [Tho95, LeV02]). A one-step FD scheme associated with an

update operator N∆t,∆x such as given in (3.14) is stable in a stability region Λ with respect

to an appropriate norm ∥·∥ if, for each time T , there is a constant CT > 0 such that∥∥N n
∆t,∆x

∥∥ ≤ CT for all 0 ≤ n ≤ Nt with (∆t,∆x) ∈ Λ. (3.16)

Relation between the concepts. For linear FD schemes approximating linear PDEs,

for which the corresponding IVP is well-posed, the following relation between the above

concepts exist. A rigorous definition of well-posedness of an IVP can be found in [Str04].

Theorem 3.9 (Lax-Richtmeyr equivalence theorem, [Str04]). A consistent and linear FD

scheme for a linear PDE, for which the corresponding IVP is well-posed, is convergent if

and only if it is stable.

Proof. See for instance [LR56, Str04].

Briefly summarized, the Lax-Richtmeyr equivalence theorem states that for linear PDEs

and linear FD methods it holds

consistency + stability ⇐⇒ convergence.
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3.2. Numerical stability

xj−n xj xj+n

t0

tn

(tn, xj)

a > 0 a < 0

xj−1 xj

tn−1

tn
(tn, xj)

∆x

∆t

a∆t

Figure 3.3: Visualization of the numerical domain of dependence and of the CFL condition for the
linear advection equation (3.1). Left: The numerical domain of dependence for a time-explicit three-
point method is depicted exemplarily for the point (tn, xj) in blue. The characteristic curves for the
linear advection equation (3.1) are added in violet-red for a > 0 and a < 0. For the FD scheme
to satisfy the CFL condition, the characteristic curves must lie inside the blue numerical domain of
dependence. Right: Zoom into one grid cell, illustrating the concrete CFL condition given in (3.17).

3.2.2 CFL condition

For many schemes showing boundedness of the FD update operator as described in (3.16)

is a non-trivial problem. A necessary condition for the stability of FD schemes, which

is usually easier to derive, was discovered by Courant, Friedrichs and Lewy in [CFL28].

Analogously to the analytical true domain of dependence, given for instance in (3.2) for

the linear advection (3.1), the numerical domain of dependence can be defined. For a

fixed grid point (tn, xj), it contains all grid points xj at the initial time t = 0 for which u0j
has an impact on the solution unj . The Courant-Friedrichs-Lewy (CFL) condition relates

the true and the numerical domain of dependence.

Theorem 3.10 (CFL condition, [LeV07]). A numerical method can only be stable (and

hence convergent) if its numerical domain of dependence contains the true domain of

dependence of the PDE, at least in the limit as ∆t and ∆x go to zero.

Proof. See for instance [CFL28, Str04].

In Figure 3.3 the numerical domain of dependence for a time-explicit three-point FD

scheme is displayed. The computation of un+1
j requires knowledge of unj−1, u

n
j and unj+1.

For the linear advection equation (3.1) together with an explicit FD scheme, the CFL

condition translates to

CCFL =

∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1, (3.17)

where CCFL is called the Courant number. This concrete condition is also illustrated

in Figure 3.3. With the insights gained from the derivation of the CFL condition the

following theorem was first proven in [CFL28].

Theorem 3.11. There are no explicit, consistent, unconditionally stable FD schemes for

the solution of hyperbolic PDEs.

Proof. See for instance [CFL28].
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3. Discretization and numerical stability

Note that the CFL condition is a necessary condition for stability (and convergence). To

guarantee numerical stability, a thorough stability analysis is still required.

3.2.3 Von Neumann stability

A further method for deriving necessary or even sufficient conditions for the stability of

linear FD schemes, which is generally more feasible than the criterion given in (3.16), relies

on the application of Fourier analysis. This approach goes back to [CN47, CFvN50] and

is commonly referred to as the von Neumann stability analysis. The basic idea of Fourier

analysis, introduced in [Fou08, Fou22], consists in expanding generally complicated func-

tions in terms of simpler trigonometric expressions. Around this concept an entire theo-

retical framework has been constructed. More information, for instance on the continuous

Fourier transform, can be found in standard textbooks such as [Yos95, Tit48]. In this

thesis, we restrict our considerations to grid functions u = (..., u−1, u0, u1, ...)
⊤ ∈ ℓ2.

Definition 3.12 (Fourier transform of a grid function, [Tho95]). The Fourier transform

of a grid function u ∈ ℓ2 is the 2π-periodic function û ∈ L2 [−π, π] defined by

û (ξ) =
1√
2π

∞∑
j=−∞

e−ijξuj for ξ ∈ [−π, π] ,

where i ∈ C denotes the imaginary unit.

Given the Fourier transform û ∈ L2 [−π, π], the original grid function u ∈ ℓ2 can be

uniquely recovered.

Proposition 3.13 (Fourier inversion formula, [Tho95]). Let u ∈ ℓ2 and û ∈ L2 [−π, π]

be its Fourier transform. Then,

uj =
1√
2π

∫ π

−π
eijξû (ξ) dξ. (3.18)

Proof. See for instance [Tho95, Tit48].

A fundamental result, motivating to work within the L2-space in Fourier analysis, is

Parseval’s identity.

Proposition 3.14 (Parseval’s identity, [Tho95]). Let u ∈ ℓ2 and û ∈ L2 [−π, π] be its

Fourier transform. Then,

∥û∥2 = ∥u∥2 .

Proof. See for instance [Tho95, Tit48].

Stability of linear FD schemes. Concerning stability considerations of linear one-step

FD schemes, we insert a Fourier approach as proposed in (3.18) into the update formula
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3.2. Numerical stability

given in (3.14), which is assumed to be extended to infinitely many indices −∞ < j < ∞.

This leads to an equation of the form

ûn+1 (ξ) = g (ξ) ûn (ξ) ,

where the scalar value g (ξ) is called the amplification factor. The obtained representation

is decoupled from all other Fourier modes [RM67].

Theorem 3.15 (von Neumann condition, [Tho95, MM05]). Let us consider a linear FD

scheme approximating a linear PDE. A necessary condition for its stability in a stability

region Λ is that there exists a constant K such that

|g (ξ)| ≤ 1 + K∆t for all ξ ∈ [−π, π] and (∆t,∆x) ∈ Λ. (3.19)

For a linear system of equations the amplification factor takes the form of a matrix, which

is called the amplification matrix. The von Neumann condition translates to

|λi| ≤ 1 + K∆t for all i,

where λi are the eigenvalues of the amplification matrix G (ξ).

Proof. See for instance [Tho95, MM05].

Remark 3.16. It can be shown that a discretization of the linear advection equation

(3.1) obtained from a centered FD method in the spatial variable and an explicit forward

Euler step in the temporal variable is not von Neumann stable [Str04].

The von Neumann condition is a necessary but generally not sufficient condition for the

numerical stability of linear FD schemes. However, under certain assumptions it becomes

sufficient to ensure stability. The following two results are taken from [RM67].

Theorem 3.17. If the amplification matrix G (ξ) is a normal matrix, the von Neumann

condition is a sufficient condition for the stability of linear FD schemes.

Proof. See for instance [RM67, MM05].

Corollary 3.18. In particular, a linear one-step FD scheme approximating a linear scalar

PDE with constant coefficients such as the linear advection equation (3.1) that satisfies

the von Neumann condition (3.19) is stable.

Note that the concepts presented in this section have formally been derived for grid

functions u with unrestricted index. For practical applications, limitations to finite sets

of grid points are imposed. The above results equivalently translate to this setting [Tho95,

Str04].

3.2.4 Energy stability

Another approach for showing the stability of FD schemes, which is also applicable to

problems with variable instead of constant coefficients or problems with non-periodic
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3. Discretization and numerical stability

boundary conditions, is the concept of energy stability. Its essential idea consists in

deriving a suitable norm for the solution vector u ∈ RNx so that the norm of the solution

stays uniformly bounded over time. In general, the identification of an appropriate norm

is a challenging task. In many cases the physical energy associated with the system

provides a natural candidate. A comprehensive introduction to energy methods as well as

possible generalizations and further results can be found in [RM67, GKO13]. We begin

with the definition of strong stability of an FD scheme.

Definition 3.19 (Strong stability, [RM67]). Let H∆t,∆x be an operator acting on u and

K1 and K2 be some fixed positive constants. An FD scheme is called strongly stable if

the following conditions hold:

(i) For every fixed ∆t the operator H∆t,∆x is well-defined and it holds

1

K1
∥u∥2 ≤ ∥u∥2H ≤ K1 ∥u∥2 ,

where ∥u∥2H =
∑Nx

j=1 ujH∆t,∆xuj .

(ii) The solution of the FD scheme satisfies∥∥un+1
∥∥
H ≤ (1 + K2∆t) ∥un∥H . (3.20)

It can easily be seen that strong stability implies the classic stability given in Definition

3.8. Since it explicitly depends on the H-norm, which is typically associated with the

energy of the system, we also refer to it as energy stability.

For one-step FD schemes associated with an update operator N∆t,∆x such as given in

(3.14) the condition imposed in (3.20) translates to

∥N∆t,∆x∥H ≤ 1 + K∆t,

which is consistent with the boundedness required for stability in (3.16) introduced in

Definition 3.8. In general, it can be shown that for problems with constant coefficients

and periodic boundary conditions Definition 3.19 is equivalent to Definition 3.8 [RM67].

Further important contributions using the method of energy stability can be found in

[Fri54, Lee60, Lax61, Kre63]. In more recent work such as [SN14] for example summa-

tion by parts schemes for non-periodic boundary conditions are studied using the energy

method.

3.3 Discretization in velocity

In contrast to the macroscopic linear advection equation given in (3.1), kinetic equations

as proposed in (2.4) exhibit an additional velocity dependence. To obtain fully discrete nu-

merical schemes for kinetic equations, a discretization in the velocity variable is required.
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3.3. Discretization in velocity

We restrict our considerations to a 1D setting and to equations of the form

∂tf (t, x, v) + v∂xf (t, x, v) = Q [f ] (t, x, v) ,

where f (t, x, v) : [0, T ] × Ωx × Ωv → R+
0 denotes a distribution function. Section 3.3.1

introduces a nodal approach making use of a pointwise approximation of the solution.

Section 3.3.2 is devoted to a modal approach, expanding the distribution function in

terms of orthogonal basis functions. Having performed a discretization in the velocity

variable, a discretization in the spatial and the temporal variable as well as stability

considerations can be conducted as described in the previous sections.

3.3.1 Nodal approach

For applying the nodal approach we discretize the velocity domain Ωv by constructing

a velocity grid with a finite number of grid points Nv ∈ N. An approximation of the

distribution function in the 1D velocity variable v is obtained by evaluating f (t, x, v) at

each grid point v1, ..., vNv ∈ Ωv, i.e. by computing

fk (t, x) ≈ f (t, x, vk) for k = 1, ..., Nv.

Numerical integration. According to Definition 2.5, macroscopic quantities such as the

density, mean velocity or temperature are obtained by taking moments of the distribution

function. This process involves the evaluation of integrals with respect to the velocity

variable v. Let a, b ∈ R and let us consider integrals over the interval [a, b] ⊆ Ωv of the

form

I (f) :=

∫ b

a
ω (v) f (v) dv,

where ω (v) is a given non-negative weight function on [a, b]. Note that this interval may

also be infinite. In accordance to [SB02, Atk89], the weight function ω : [a, b] → R+
0 must

accomplish the following properties:

(i) ω (v) is measurable on the finite or infinite interval [a, b].

(ii) All moments
∫ b
a vnω (v) dv exist and are finite for all n ≥ 0.

(iii) Suppose that ∫ b

a
ω (v) g (v) dv = 0

for some non-negative continuous function g (v). Then g (v) ≡ 0 on [a, b].

For the approximation of the integral I (f) with an appropriate weight function ω (v), a
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3. Discretization and numerical stability

quadrature rule of the form

I (f) ≈
Nv∑
k=1

ωkfk (3.21)

is sought. The points v1, ..., vNv are called the quadrature nodes and ω1, ..., ωNv the associ-

ated quadrature weights. There are multiple options for the distribution of the quadrature

nodes in the scalar case. An intuitive approach is to consider equidistant spacing, anal-

ogously to the spatial grid constructed in Section 3.1.1. Examples of this include the

Newton-Cotes formulae such as the trapezoidal rule or Simpson’s rule. More information

on this topic is provided in [Atk89, IK66]. However, more accurate approximations of

the integral I (f) can be obtained by allowing the quadrature nodes to be non-uniformly

distributed. This leads to Gaussian quadrature rules for which the nodes are determined

as the roots of orthogonal polynomials. This choice ensures that polynomials up to degree

2n−1 can be exactly computed [SB02]. Depending on the interval [a, b] and on the weight

function ω (v), different orthogonal polynomials are considered. An overview of common

choices can be found in [DR84], a tabular list of numerical values in [AS72].

Gauss-Hermite quadrature. In this thesis, we are interested in integrals evaluated over

the whole real line R of the form

I (f) =

∫
R
e−v2f (v) dv

with weight function ω (v) = e−v2 . The set of orthogonal polynomials associated with

this special weight function are the Hermite polynomials {Hn}n∈N0
, which are defined as

Hn (v) = (−1)n ev
2 dn

dvn
e−v2 .

Let Nv be the desired quadrature order of the numerical scheme. Then the quadrature

nodes v1, ..., vNv are determined as the roots of the Hermite polynomial HNv and the

corresponding quadrature weights are obtained by

ωk =
2Nv+1Nv!

√
π

[HNv+1 (vk)]2
for k = 1, ..., Nv.

This choice for the approximation of the integral I (f) in the form as given in (3.21) is

called the Gauss-Hermite quadrature rule.

Extension to two velocity dimensions. For numerical experiments performed in 2D

settings also the approximation of 2D integrals of the form

I (f) =

∫
R×R

e−|v|2f (v) dv =

∫
R

∫
R
e−(v2+w2)f (v, w) dv dw (3.22)
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3.3. Discretization in velocity

with v = (v, w)⊤ ∈ R is relevant. Regarding the discretization of the velocity domain

Ωv×Ωw, we construct a velocity grid with Nv ∈ N grid points in the v direction and Nw ∈
N grid points in the w direction. The quadrature nodes in each single velocity dimension

is assumed to be derived from the 1D Gauss-Hermite quadrature rule. An approximation

of the distribution function f (t, x, v, w) at each grid point (vk, wℓ) ∈ Ωv ×Ωw is obtained

by evaluating

fkℓ (t, x) ≈ f (t, x, vk, wℓ) for k = 1, ..., Nv, ℓ = 1, ..., Nw.

Concerning the approximation of the integral (3.22), we follow the ideas presented in

[Jäc05] and compute

I (f) ≈
Nv∑
k=1

Nw∑
ℓ=1

ωkωℓfkℓ,

where ωk, ωℓ are the corresponding Gauss-Hermite quadrature weights. More information

on multivariate Gauss quadrature can be found in [DR84, Str71].

3.3.2 Modal approach

In a modal framework the distribution function is expanded in the velocity variable in

terms of orthogonal polynomials, which represent the modes of the solution. We restrict

our considerations to the interval [−1, 1]. This is a common choice for radiative transfer

problems to which frequently the modal PN method is applied. More information (also

on alternatives such as the nodal discrete ordinates SN method) can be found in [BG70,

CZ67]. The PN method makes use of the orthogonal Legendre polynomials
¶‹Pn

©
n∈N0

,

which are defined as ‹Pn (v) =
(−1)n

2nn!

dn

dvn
(
1 − v2

)n
.

Together with their standard normalization in L2 [−1, 1], they satisfy an orthogonality

condition of the form∫ 1

−1

‹Pm (v) ‹Pn (v) dv = γ2nδmn with γ2n =
2

(2n + 1)
. (3.23)

In addition, the Legendre polynomials fulfill the recurrence relation

(n + 1) ‹Pn+1 (v) = (2n + 1) v‹Pn (v) − n‹Pn−1 (v) .

In this thesis, we perform a rescaling of the Legendre polynomials by setting Pn =
‹Pn
γn

to

translate the orthogonality condition (3.23) into an orthonormality condition given by∫ 1

−1
Pm (v)Pn (v) dv = δmn. (3.24)
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3. Discretization and numerical stability

This rescaling implies a rescaled Legendre polynomial of degree zero P0 = 1√
2

as well as

a rescaled recurrence relation given as

vPn (v) =
(n + 1) γn+1

(2n + 1) γn
Pn+1 +

nγn−1

(2n + 1) γn
Pn−1. (3.25)

Then the PN method employs of a finite expansion of the distribution function f (t, x, v)

in the velocity variable v with Nv expansion coefficients un (t, x), called the moments, of

the form

f (t, x, v) ≈ fNv (t, x, v) =

Nv−1∑
n=0

un (t, x)Pn (v) ,

and relies on this expansion to derive the evolution equations for the moments.

Numerical integration. For the computation of integrals with respect to the velocity

variable v, the orthonormality (3.24) of the rescaled Legendre polynomials as well as the

recurrence relation (3.25) are used. In preparation for later chapters, we introduce the

matrix A ∈ RNv×Nv with entries

Amn :=

∫ 1

−1
vPm (v)Pn (v) dv. (3.26)

Note that the matrix A is symmetric and diagonalizable in the form A = QMQ⊤ with

Q being orthogonal and M = diag(σ0, ..., σNv−1). Further we define |A| = Q|M|Q⊤.

Extension to two angular dimensions. Besides the 1D analysis presented in this thesis,

numerical experiments are performed in higher dimensions. We consider a velocity vector

v ∈ R3 and perform the splitting

v = |v|Ω,

where |v| denotes the absolute value of the velocity and Ω ∈ S2 a unit vector in the

direction of motion. The unit vector Ω is usually given in spherical coordinates, depending

on the polar angle θ ∈ [0, π] as well as the azimuthal angle φ ∈ [0, 2π). We refer to this

expression as the 2D angular representation. The corresponding 3D Cartesian coordinates

can be derived from the angular representation as

Ωx = sin θ cosφ, Ωy = sin θ sinφ, Ωz = cos θ.

For an application of the PN method to an equation including a 2D angular variable

Ω = (θ, φ), we introduce the associated Legendre polynomials of degree n ∈ N0 and order

m = 0, ..., n. They are defined as‹Pm
n (v) = (−1)m

(
1 − v2

)m/2 dm

dvm
‹Pn (v) with v ∈ [−1, 1] .
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3.3. Discretization in velocity

This definition can be generalized to negative integers −n ≤ m < 0 by‹P−m
n (v) = (−1)m

(n−m)!

(n + m)!
‹Pm
n (v) .

The associated Legendre polynomials satisfy the orthogonality condition∫ 1

−1

‹Pm
n (v) ‹Pm′

n′ (v) dv =
2

2n + 1

(n + m)!

(n−m)!
δnn′ (3.27)

as well as the recurrence relations

(n−m + 1) ‹Pm
n+1 (v) = (2n + 1) v‹Pn (v) − (n + m) ‹Pm

n−1 (v) (3.28)

and (
v2 − 1

) d

dv
‹Pm
n (v) = nv‹Pm

n (v) − (n + m) ‹Pm
n−1 (v) . (3.29)

The associated Legendre polynomials are used to derive the complex-valued normalized

spherical harmonics, which can be given as

Ynm (Ω) =

 
2n + 1

4π

(n−m)!

(n + m)!
‹Pm
n (cos θ) eimφ.

The spherical harmonics fulfill the orthonormality condition∫ 2π

0

∫ 1

−1
Ynm (Ω)Y n′m′ (Ω) d cos θ dφ = δnn′δmm′ ,

where Y nm denotes the complex conjugate of Ynm, which can be determined from the

relation

Yn,−m (Ω) = (−1)m Y nm (Ω) .

In the context of this thesis, similar to the approach used in [Kus20], we employ a real-

valued spherical harmonics basic of the form

“Ynm (Ω) =


(−1)m√

2

(
Yn,−|m| (Ω) + (−1)m Yn|m| (Ω)

)
, m < 0,

Yn0 (Ω) , m = 0,
(−1)m√

2i

(
Yn,−|m| (Ω) − (−1)m Yn|m| (Ω)

)
, m > 0.

Then a finite spherical harmonics expansion of the distribution function f (t,x,Ω) in the

angular variable Ω with (NΩ + 1)2 expansion coefficients unm (t,x) is obtained by

f (t,x,Ω) ≈ fNΩ
(t,x,Ω) =

NΩ∑
n=0

n∑
m=−n

unm (t,x)“Ynm (Ω) .
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3. Discretization and numerical stability

Integrals with respect to the angular variable Ω are evaluated using the orthogonality of

the associated Legendre polynomials given in (3.27) as well as the recurrence relations

stated in equations (3.28) and (3.29).
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4
Dynamical low-rank approximation

The numerical solution of kinetic equations is computationally demanding due to their

high dimensionality. An approach to reduce the computational costs and memory require-

ments is the method of dynamical low-rank approximation (DLRA) [KL07]. It provides

accurate and efficient approximations of the solution to kinetic PDEs and has recently

been applied in various fields of research. For instance, contributions on radiation trans-

port [BEKK24a, FKP25, PMF20, YEHS24], radiation therapy [KS23], plasma physics

[EL18, EOP20, EOS23], chemical kinetics [EMP24, PEL23] or Boltzmann type transport

equations [BEKK24b, EHY21, DL21, HW22] are available. The review article [EKK+25]

provides an overview of recent developments on low-rank methods in kinetic theory.

In Section 4.1 the basic idea of DLRA is explained in a semi-discrete time-continuous

matrix setting. Section 4.2 provides an overview of frequently used time integrators,

which accomplish the important properties of being exact and robust to small singular

values. In Section 4.3 the idea of DLRA is reformulated in a fully continuous setting

as the order of discretizing and applying the DLRA method may affect theoretical and

numerical results. Section 4.4 is devoted to linear stability results for DLRA schemes and

the conservation of physical invariants.

4.1 Basic idea of DLRA

We follow the explanations in [KL07], where the concept of DLRA has been introduced in

a semi-discrete time-dependent matrix setting. Let f (t) ∈ RNx×Nv , depending smoothly

on the time parameter t, be the solution to the matrix differential equation

ḟ (t) = F (t, f (t)) , f (t0) = f0, t ≥ t0, (4.1)

for which the right-hand side is denoted by F (t, f (t)) : [0, T ]×RNx×Nv → RNx×Nv . Then

we seek an approximation fr (t) ∈ RNx×Nv of rank r with r ≤ min{Nx, Nv} of the matrix

f (t) ∈ RNx×Nv . The set of matrices of rank r constitutes a differentiable manifold, which
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4. Dynamical low-rank approximation (DLRA)

F
(
t, fr

(
t
))

ḟr
(
t
)

fr (t)

fr
(
t
)

Mr

Tfr(t)Mr

Figure 4.1: Illustration of the basic idea of DLRA. The low-rank manifold Mr containing a time-
dependent low-rank function fr (t) is depicted in dark green. The tangent plane Tfr(t)Mr at fr

(
t
)
at

some fixed time t is depicted in light green. The derivative ḟr
(
t
)
is required to stay on the tangent

plane. This behavior is ensured by an orthogonal projection of F
(
t, fr

(
t
))

onto the tangent plane.

we denote by Mr [Pia19, Sch22]. Its corresponding tangent space at fr(t) is denoted by

Tfr(t)Mr. The searched-for approximation fr(t) ∈ Mr is determined such that at all times

t the minimization problem

min
ḟr(t)∈Tfr(t)Mr

∥∥∥ḟr (t) − F (t, fr (t))
∥∥∥
F

(4.2)

is fulfilled. Here, ∥·∥F denotes the Frobenius norm. The low-rank approximation fr(t)

is complemented with an initial condition fr (t0) = f0r , which ideally satisfies f0r = f0. If

this is not the case, f0r is usually computed as a low-rank approximation of f0 using a

truncated SVD. Following [KL07], the minimization constraint (4.2) on the tangent space

is equivalent to determining

ḟr (t) = P (fr (t))F (t, fr (t)) , (4.3)

where P denotes the orthogonal projector onto the tangent space Tfr(t)Mr. This approach

is visualized in Figure 4.1, which has been created similarly to [Pia19]. Each matrix

fr(t) ∈ Mr can be decomposed into low-rank factors as

fr (t) = X (t)S (t)V (t)⊤ , (4.4)

where the matrices X (t) ∈ RNx×r and V (t) ∈ RNv×r have r orthonormal columns, i.e.

X (t)⊤X (t) = I and V (t)⊤V (t) = I,

where I ∈ Rr×r denotes the identity matrix. The matrix X (t) contains the orthonormal

basis functions in space and V (t) the orthonormal basis functions in velocity. The matrix

S (t) ∈ Rr×r is assumed to be nonsingular and called the coefficient or coupling matrix,

containing the coefficients of the approximation. Note that S (t) is not required to be

diagonal and that the representation given in (4.4) is not unique. The orthogonal matrices
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4.1. Basic idea of DLRA

X (t) and V (t) are contained in the following manifold.

Definition 4.1 (Stiefel manifold and its tangent space, [AMS08, Bou23]). The set of

matrices with orthonormal columns

VNx,r =
¶
X ∈ RNx×r : X⊤X = I

©
constitutes an embedded submanifold of RNx×r and is called Stiefel manifold. Its tangent

space at X ∈ VNx,r is given as

TXVNx,r =
¶
Ẋ ∈ RNx×r : Ẋ⊤X + X⊤Ẋ = 0

©
.

It can be shown that for time-dependent orthogonal matrices X (t) ∈ VNx,r their corre-

sponding time derivative is contained in the tangent space TX(t)VNx,r at X (t) [Sch22].

Let Ẋ (t) ∈ TX(t)VNx,r be the time derivative of X (t) and V̇ (t) ∈ TV(t)VNv ,r be the time

derivative of V (t), respectively. If for representation (4.4) the additional orthogonality

constraints

X (t)⊤ Ẋ (t) = 0 and V (t)⊤ V̇ (t) = 0

are imposed, the elements ḟr (t) ∈ Tfr(t)Mr are uniquely determined and of the form

Tfr(t)Mr =
{
ḟr (t) ∈ RNx×Nv :

ḟr (t) = Ẋ (t)S (t)V (t)⊤ + X (t) Ṡ (t)V (t)⊤ + X (t)S (t) V̇ (t)⊤

with Ṡ ∈ Rr×r, Ẋ ∈ TXVNx,r, V̇ ∈ TVVNv ,r and X⊤Ẋ = 0,V⊤V̇ = 0
}
.

It has been proven in [KL07] that deriving a low-rank approximation fr (t) ∈ Mr of

the form given in (4.4), which fulfills the minimization constraint on the tangent space

stated in (4.2), is equivalent to determining ḟr (t) ∈ Tfr(t)Mr, for which the corresponding

low-rank factors are evolved according to

Ẋ (t) =
Ä
I−X (t)X (t)⊤

ä
F (t, fr (t))V (t)S (t)−1 , (4.5a)

V̇ (t) =
Ä
I−V (t)V (t)⊤

ä
F (t, fr (t))⊤X (t)S (t)−⊤ , (4.5b)

Ṡ (t) = X (t)⊤F (t, fr (t))V (t) . (4.5c)

This leads to unique low-rank factors X (t) ,S (t) and V (t) and a unique representation

of the expression given in (4.4). Then the orthogonal projector P onto Tfr(t)Mr for the

solution of (4.3) can be explicitly derived as

P (fr (t))F (t, fr (t)) = XX⊤F (t, fr (t)) −XX⊤F (t, fr (t))VV⊤ (4.6)

+ F (t, fr (t))VV⊤,

where we omit the time-dependency of X (t) and V (t) for a better readability.

In the case of very small singular values the matrix S (t) becomes nearly singular. When

solving the evolution equations (4.5) with standard numerical integrators (as e.g. Runge-
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4. Dynamical low-rank approximation (DLRA)

Kutta methods) the inversion of the matrix S (t) in (4.5a) and (4.5b) leads to thorough

computational challenges, imposing severe step size restrictions and rendering the al-

gorithm highly unstable. To overcome this problem, different exact and robust time

integrators which are able to evolve the low-rank solution on the manifold Mr while not

suffering from potentially small singular values have been introduced. An explanation of

two of them is provided in the upcoming section.

4.2 Exact and robust time integrators

For an exact and robust DLRA scheme the implementation of a suitable time integrator is

essential. Different such integrators are available [LO14, CL22, CKL22, CKL24]. Section

4.2.1 focuses on the projector-splitting integrator introduced in [LO14], whereas Section

4.2.2 is devoted to BUG integrators [CL22, CKL22, CKL24], especially the rank-adaptive

augmented BUG integrator presented in [CKL22].

4.2.1 Projector-splitting integrator

In [LO14] the projector-splitting integrator is introduced. Rather than solving the evolu-

tion equations (4.5) directly, it relies on the orthogonal projection (4.6) onto the tangent

space Tfr(t)Mr. Its main idea is based on the application of splitting methods and the

subsequent solution of three subprojections, each of which constitutes a simpler problem

than that posed by the original equation. A first-order Lie-Trotter splitting is proposed in

[KL07] but also higher-order extensions (e.g. to a second-order Strang splitting scheme)

are possible using standard splitting techniques as described in [HLW06].

The projector-splitting integrator evolves the low-rank factors as given in decomposition

(4.4) for the solution of the minimization problem (4.2) in the following alternating way:

In the first step, the velocity basis V is fixed while the spatial basis X and the coefficient

matrix S are updated forward in time. In the second step, the coefficient matrix S is

updated backwards in time with fixed updated spatial basis X and fixed prior velocity

basis V. In the third step, the updated spatial basis X is fixed while the velocity basis V

and again the coefficient matrix S are updated forwards in time. In detail, the projector-

splitting integrator evolves the low-rank solution from fnr = XnSnVn,⊤ at time tn to

fn+1
r = Xn+1Sn+1Vn+1,⊤ at time tn+1 = tn + ∆t as follows:

K -Step: We fix the velocity basis Vn at time tn, denote K (t) = X (t)S (t) ∈ RNx×r,

and solve the PDE

K̇ (t) = F
Ä
t,K (t)Vn,⊤

ä
Vn, K (tn) = XnSn.

Then the spatial basis Xn is updated to Xn+1 ∈ RNx×r with orthonormal columns by a

factorization of K (tn+1) = Xn+1S̃n+1, where S̃n+1 ∈ Rr×r, e.g. by QR-decomposition.

S-step: We fix the spatial basis Xn+1 at time tn+1, the velocity basis Vn at time tn, and
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4.2. Exact and robust time integrators

solve the ordinary differential equation (ODE)

Ṡ (t) = −Xn+1,⊤F
Ä
t,Xn+1S (t)Vn,⊤

ä
Vn, S (tn) = S̃n+1.

Then the coefficient matrix S̃n+1 is updated to ˜̃Sn ∈ Rr×r by setting ˜̃Sn = S (tn+1).

L-Step: We fix the spatial basis Xn+1 at time tn+1, denote L (t) = V (t)S(t)⊤ ∈ RNv×r,

and solve the PDE

L̇ (t) = F
Ä
t,Xn+1L (t)⊤

ä⊤
Xn+1, L (tn) = Vn ˜̃Sn,⊤.

Then the velocity basis Vn is updated to Vn+1 ∈ RNv×r with orthonormal columns by a

factorization of L (tn+1) = Vn+1Sn+1,⊤, where Sn+1 ∈ Rr×r, e.g. by QR-decomposition.

Altogether, the update of fnr = XnSnVn,⊤ after one time step is given by fn+1
r =

Xn+1Sn+1Vn+1,⊤.

The proposed projector-splitting integrator has favorable properties compared to the di-

rect solution of the evolution equations (4.5). One of these is the following exactness

result for matrices f (t) of rank r and right-hand sides F = F (t).

Theorem 4.2 (Exactness property of the projector-splitting integrator, [LO14]). Let

f (t) ∈ RNx×Nv be a matrix of rank r for tn ≤ t ≤ tn+1, so that f (t) has a factorization

f (t) = X (t)S (t)V (t)⊤ as given in (4.4) and let X (tn+1)
⊤X (tn) and V (tn+1)

⊤V (tn)

be invertible. With the initial value fnr = f (tn), the projector-splitting integrator for

ḟr (t) = P (fr (t)) ḟ (t) with ḟ (t) = F (t) is exact, i.e. it holds fn+1
r = f (tn+1).

Proof. See [LO14].

When computing low-rank approximations only small singular values are allowed to be

neglected in the approximation in order to prevent important information from getting

lost and to retain a good accuracy of the approximation. Let us assume that for a pre-

scribed truncation tolerance parameter ϑ all singular values smaller than ϑ are discarded.

Then the smallest retained singular value cannot be expected to be much larger than the

largest discarded one as a distinct gap in the singular value distribution cannot be gen-

erally assumed. This implies that the coefficient matrix S still contains entries of order

O (ϑ), where ϑ is potentially very small. In contrast to standard numerical integrators

the projector-splitting integrator is insensitive to small singular values and the following

robust error bound can be shown.

Theorem 4.3 (Robust error bound for the projector-splitting integrator, [KLW16]). Let

f (t) ∈ RNx×Nv be the solution to the matrix differential equation (4.1) and f0r ∈ Mr the

initial value of the low-rank approximation. Assume further that the following conditions

hold:

(i) F is Lipschitz continuous and bounded, i.e. there exist constants L,B ≥ 0 such that

for all fr (t) , f̃r (t) ∈ RNx×Nv and 0 ≤ t ≤ T it holds∥∥∥F (t, fr (t)) − F
Ä
t, f̃r (t)

ä∥∥∥
F
≤ L

∥∥∥fr (t) − f̃r (t)
∥∥∥
F

and ∥F (t, fr (t))∥F ≤ B.
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4. Dynamical low-rank approximation (DLRA)

(ii) The non-tangential part of F (t, fr (t)) is ε-small, i.e. it holds

∥(I− P (fr (t)))F (t, fr (t))∥F ≤ ε with ε > 0

for all fr (t) ∈ Mr in a neighborhood of f (t) and 0 ≤ t ≤ T .

(iii) The error in the initial data is δ-small, i.e. it holds∥∥f0r − f0
∥∥
F
≤ δ with δ > 0.

Then the error of the projector-splitting integration scheme at time tn = n∆t is bounded

by

∥fnr − f (tn)∥F ≤ K1δ + K2ε + K3∆t for tn ≤ T, (4.7)

where the constants Ki for i = 1, 2, 3 only depend on L,B and T . In particular, the

constants Ki are independent of the singular values of the exact solution and its low-rank

approximation.

Proof. See [KLW16].

In addition, it is shown in [KLW16] that in the case of inexact solutions of the differential

equations in the substeps of the splitting scheme, the overall error is bounded similarly

as in (4.7). In particular, the bound is independent of the singular values.

Being exact and robust to small singular values are two important properties, distinguish-

ing the projector-splitting integrator from other integration techniques. However, the in-

tegration backwards in time in the S-step can lead to numerical instabilities for strongly

dissipative problems. Alternative integrators that avoid an integration backwards in time

are available and introduced in the next section.

4.2.2 Rank-adaptive augmented basis update & Galerkin integrator

Other integrators that are frequently used for the DLRA approach are the basis update &

Galerkin (BUG) integrator presented in [CL22] and the rank-adaptive augmented BUG

integrator introduced in [CKL22]. They both compute all substeps forward in time.

In addition, they update the spatial basis functions in the K- and the velocity basis

functions in the L-step in parallel, enabling for enhanced parallelization structures and

a faster computation of the solution. In contrast to the fixed-rank integrator described

in [CKL22], the rank-adaptive augmented BUG integrator discussed in [CKL22] makes

uses of certain basis augmentations, hereby allowing for an adaptive choice of the rank

in each time step of the evolution. This procedure assists in overcoming the question of

identifying a suitable fixed rank, which usually cannot be answered a priori. Also, the

required rank may vary over time. Computing with a too small fixed rank leads to poor

accuracy results, while for computations with a too large fixed rank too much information

is carried and the computational performance deteriorates. In addition, the rank-adaptive
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4.2. Exact and robust time integrators

augmented BUG integrator is flexible to basis augmentations, facilitating for instance the

implementation of conservation properties.

The rank-adaptive augmented BUG integrator will be used for the subsequently presented

DLRA schemes. It evolves the low-rank factors as follows: In the first two steps, it

updates and augments the spatial basis X and the velocity basis V in parallel, leading to

an increase of rank from r to 2r. Note that augmented quantities of rank 2r are denoted

with hats. Having the augmented bases at hand, a Galerkin step for the coefficient

matrix S is performed. In the last step, all quantities are truncated back to a new rank

rn+1 ≤ 2r, which is adaptively chosen depending on a prescribed error tolerance. In detail,

the augmented BUG integrator evolves the low-rank solution from fnr = XnSnVn,⊤ at

time tn to fn+1
r = Xn+1Sn+1Vn+1,⊤ at time tn+1 = tn + ∆t as follows:

K -Step: We fix the velocity basis Vn at time tn, denote K (t) = X (t)S (t) ∈ RNx×r,

and solve the PDE

K̇ (t) = F
Ä
t,K (t)Vn,⊤

ä
Vn, K (tn) = XnSn.

Then the spatial basis Xn is updated to “Xn+1 ∈ RNx×2r by determining “Xn+1 as an

orthonormal basis of [K(tn+1),X
n] ∈ RNx×2r, e.g. by QR-decomposition. We compute

and store M̂ = “Xn+1,⊤Xn ∈ R2r×r.

L-Step: We fix the spatial basis Xn at time tn, denote L (t) = V (t)S(t)⊤ ∈ RNv×r, and

solve the PDE

L̇ (t) = F
Ä
t,XnL (t)⊤

ä⊤
Xn, L (tn) = VnSn,⊤.

Then the velocity basis Vn is updated to “Vn+1 ∈ RNv×2r by determining “Vn+1 as an

orthonormal basis of [L (tn+1) ,V
n] ∈ RNv×2r, e.g. by QR-decomposition. We compute

and store “N = “Vn+1,⊤Vn ∈ R2r×r.

S-step: We fix the updated spatial basis “Xn+1 and the updated velocity basis “Vn+1 at

time tn+1, respectively, and solve the ODE

˙̂
S (t) = “Xn+1,⊤F

Ä
t,“Xn+1Ŝ (t)“Vn+1,⊤

ä “Vn+1, Ŝ (tn) = M̂Sn“N⊤.

Then the coefficient matrix Sn is updated to Ŝn+1 ∈ R2r×2r by setting Ŝn+1 = Ŝ (tn+1).

Truncation: We compute “PΣ“Q⊤ = svd
Ä
Ŝn+1

ä
from an SVD, where “P,“Q ∈ R2r×2r are

orthogonal matrices and Σ ∈ R2r×2r is the diagonal matrix containing the singular values

σ1, ..., σ2r. The new rank rn+1 ≤ 2r is determined such thatÑ
2r∑

j=rn+1+1

σ2
j

é1/2

≤ ϑ,

where ϑ denotes a prescribed tolerance parameter. Then we set Sn+1 ∈ Rrn+1×rn+1

to be the matrix containing the rn+1 largest singular values of Ŝn+1 and the matrices

Pn+1,Qn+1 ∈ R2r×rn+1 to contain the first rn+1 columns of“P and “Q, respectively. Finally,
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4. Dynamical low-rank approximation (DLRA)

we compute Xn+1 = “Xn+1Pn+1 ∈ RNx×rn+1 and Vn+1 = “Vn+1Qn+1 ∈ RNv×rn+1 .

Altogether, the update of fnr = XnSnVn,⊤ after one time step is given by fn+1
r =

Xn+1Sn+1Vn+1,⊤. Note that we do not explicitly include the new rank rn+1 in the

notation of the updated low-rank approximation fn+1
r .

The rank-adaptive augmented BUG integrator accomplishes the important property of

exactness for matrices f (t) of rank r and right-hand sides F = F (t, f (t)).

Theorem 4.4 (Exactness property of the rank-adaptive augmented BUG integrator,

[CKL22]). Let f (t) ∈ RNx×Nv be a matrix of rank r for tn < t < tn+1 so that a

factorization f (t) = X (t)S (t)V (t)⊤ as in (4.4) exists and let X (tn+1)
⊤X (tn) and

V (tn+1)
⊤V (tn) be invertible. Assume further that the truncation tolerance ϑ is smaller

than the r-th singular value of f (tn+1). With the initial value fnr = f (tn), the rank-

adaptive augmented BUG integrator for ḟr (t) = P (fr (t)) ḟ (t) with ḟ (t) = F (t, f (t)) is

exact, i.e. it holds fn+1
r = f (tn+1).

Proof. See [CKL22].

Beyond that, the rank-adaptive augmented BUG integrator is robust to small singular

values and the following robust error bound can be given.

Theorem 4.5 (Robust error bound for the rank-adaptive augmented BUG integrator,

[CKL22]). Let f (t) ∈ RNx×Nv be the solution to the matrix differential equation (4.1)

and f0r ∈ Mr the initial value of the low-rank approximation. Assume further that the

following conditions hold:

(i) F is Lipschitz continuous and bounded, i.e. there exist constants L,B ≥ 0 such that

for all fr (t) , f̃r (t) ∈ RNx×Nv and 0 ≤ t ≤ T it holds∥∥∥F (t, fr (t)) − F
Ä
t, f̃r (t)

ä∥∥∥
F
≤ L

∥∥∥fr (t) − f̃r (t)
∥∥∥
F

and ∥F (t, fr (t))∥F ≤ B.

(ii) The non-tangential part of F (t, fr (t)) is ε-small at rank rn for fr (t) near f (t) and

t near tn, i.e. it holds

∥(I− Prn (fr (t)))F (t, fr (t))∥F ≤ ε with ε > 0

for all fr (t) ∈ Mrn in a neighborhood of f (t) and t near tn, where Prn denotes

the orthogonal projector onto the tangent space Tfr(t)Mrn of the manifold Mrn of

matrices of rank rn at fr (t) ∈ Mrn.

(iii) The error in the initial data is δ-small, i.e. it holds∥∥f0r − f0
∥∥
F
≤ δ with δ > 0.

Then the error of the rank-adaptive augmented BUG integration scheme at time tn = n∆t

is bounded by

∥fnr − f (tn)∥F ≤ K1δ + K2ε + K3∆t + K4nϑ for tn ≤ T, (4.8)
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4.3. DLRA in a fully continuous setting

where the constants Ki for i = 1, 2, 3, 4 only depend on L,B and T . In particular, the

constants Ki are independent of the singular values of the exact solution and its low-rank

approximation.

Proof. See [CKL22].

In addition, it can be shown similarly as done in [KLW16] for the projector-splitting

integrator that in the case of inexact solutions of the differential equations in the substeps

of the splitting scheme, the overall error is bounded similarly as in (4.8). In particular,

the bound is independent of the singular values [CKL22].

In [CKL24] the parallel BUG integrator has been presented. Its update strategy is similar

to the rank-adaptive augmented BUG integrator but allows for a solution of all three

substeps fully in parallel. Compared to the presented rank-adaptive augmented BUG

integrator, it does not require the basis augmentations to rank 2r in the K- and L-step

and the solution of a 2r × 2r differential equation in the S-step of the scheme. The

enhanced parallelization of all three substeps as well as the reduction from rank 2r to r

renders this integrator even more efficient. However, the exactness property is not fulfilled

but a first-order robust error bound can be established [CKL24].

Extensions to schemes with proven second-order robust error bounds have been proposed

in [CEKL24] for the rank-adaptive augmented BUG and in [Kus25] for the parallel inte-

grator.

4.3 DLRA in a fully continuous setting

Thus far, the concept of DLRA has been discussed in a semi-discrete time-dependent

matrix framework, in which it was originally introduced in [KL07]. This means that, con-

cerning the space and velocity discretization, a “first discretize, then low-rank” approach

has been pursued. In contrast to that, the authors of [EL18] employ a “first low-rank,

then discretize” strategy and derive the evolution equations for the low-rank factors in

a fully continuous setting. We additionally present this approach as it is used in the

subsequently presented work on the thermal RTEs with Su-Olson closure [BEKK24a].

Let the distribution function f (t,x,v) : [0, T ]×Ωx×Ωv → R+
0 be the solution to a given

equation

∂tf (t,x,v) = F (t, f (t,x,v)) , f (t0,x,v) = f0 (x,v) , t ≥ t0.

We aim for a low-rank approximation of f of the form

fr (t,x,v) =
r∑

i,j=1

Xi (t,x)Sij (t)Vj (t,v) , (4.9)

where {Xi (t,x) : i = 1, ..., r} denotes the set of orthonormal basis functions in space and

{Vj (t,v) : j = 1, ..., r} the set of orthonormal basis functions in velocity. They accomplish
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4. Dynamical low-rank approximation (DLRA)

the orthogonality relations

⟨Xi (t,x) , Xk (t,x)⟩x = δik and ⟨Vj (t,v) , Vℓ (t,v)⟩v = δjℓ,

where ⟨·, ·⟩x and ⟨·, ·⟩v are the inner products on L2 (Ωx) and L2 (Ωv), respectively. As

the representation given in (4.9) is not unique, the additional Gauge conditions

⟨∂tXi (t,x) , Xk (t,x)⟩x = 0 and ⟨∂tVj (t,v) , Vℓ (t,v)⟩v = 0

are imposed. Then it can be derived that {Xi (t,x)} and {Vj (t,v)} are uniquely de-

termined for invertible S (t) = (Sij (t)) ∈ Rr×r [EL18]. This implies that we seek an

approximation of f that for each time t lies in the manifold

Mr =
{
fr ∈ L2 (Ωx × Ωv) : fr (·,x,v) =

r∑
i,j=1

Xi (·,x)Sij (·)Vj (·,v) with invertible

S = (Sij) ∈ Rr×r, Xi ∈ L2 (Ωx) , Vj ∈ L2 (Ωv) and ⟨Xi, Xk⟩x = δik,

⟨Vj , Vℓ⟩v = δjℓ

}
.

Let fr (t, ·, ·) be a path on Mr. A formal differentiation of fr with respect to t leads to

ḟr (t, ·, ·) =

r∑
i,j=1

(
Ẋi (t, ·)Sij (t)Vj (t, ·) + Xi (t, ·) Ṡij (t)Vj (t, ·)

+ Xi (t, ·)Sij (t) V̇j (t, ·)
)
.

These functions restrict the solution dynamics to the low-rank manifold Mr and constitute

the corresponding tangent space, which for fixed time t together with the Gauge conditions

reads

Tfr(t)Mr =
{
ḟr ∈ L2 (Ωx × Ωv) : ḟr (·,x,v) =

r∑
i,j=1

(
Ẋi (·,x)Sij (·)Vj (·,v)

+ Xi (·,x) Ṡij (·)Vj (·,v) + Xi (·,x)Sij (·) V̇j (·,v)
)

with

Ṡij ∈ R, Ẋi ∈ L2 (Ωx) , V̇j ∈ L2 (Ωv) and
¨
Ẋi, Xk

∂
x

= 0,
¨
V̇j , Vℓ

∂
v

= 0
}
.

Having defined the low-rank manifold and its tangent space, the next objective consists

in determining f (t, ·, ·) ∈ Mr such that the minimization problem

min
∂tfr(t,·,·)∈Tfr(t)Mr

∥∂tfr (t, ·, ·) − F (t, fr (t, ·, ·))∥L2(Ωx×Ωv)
(4.10)

is solved. For the time evolution of the low-rank factors the following differential equations
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4.4. Linear stability and conservation of physical invariants

can be derived [EL18]:

r∑
i=1

Sij∂tXi = ⟨Vj , F (t, fr)⟩v −
r∑

i=1

Xi∂tSij ,

r∑
j=1

Sij∂tVj = ⟨Xi, F (t, fr)⟩x −
r∑

j=1

∂tSijVj ,

∂tSij = ⟨XiVj , F (t, fr)⟩x,v .

Note that we suppress the arguments for a better readability. Then the minimization

constraint (4.10) can be reformulated as the problem of determining f (t,x,v) such that

∂tfr (t,x,v) = P (fr (t,x,v))F (fr (t,x,v)) ,

where the orthogonal projector P onto the tangent space Tfr(t)Mr can be explicitly given

as

P (fr)F (t, fr) =
r∑

j=1

⟨Vj , F (t, fr)⟩v Vj −
r∑

i,j=1

Xi ⟨XiVj , F (t, fr)⟩x,v Vj

+
r∑

i=1

Xi ⟨Xi, F (t, fr)⟩x .

The derivations of the continuous projector-splitting as well as of the continuous (rank-

adaptive augmented) BUG integrator are straightforward. An explicit formulation can

be found in [EKK+25].

4.4 Linear stability and conservation of physical invariants

A naturally arising question when considering DLRA schemes concerns their numerical

stability as well as their behavior related to physical invariants. Section 4.4.1 is devoted

to existing linear stability results. In Section 4.4.2 an overview of globally and locally

conservative DLRA schemes is provided and a mass conservative truncation strategy is

presented.

4.4.1 Linear stability

We begin with an analysis of linear stability of DLRA schemes. At this point, we do

not distinguish between the “first discretize, then low-rank” and the “first low-rank, then

discretize” approach. Even if the underlying PDE is linear in f , the coupled evolution

equations for the low-rank factors, as for instance given in (4.5), are non-linear in X,S

and V and it is per se not clear if linear stability concepts can be applied. In [KEC23] it

has been shown that the projector-splitting as well as the BUG integrator approximate
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4. Dynamical low-rank approximation (DLRA)

the non-linear evolution equations for X,S and V as a series of linear equations due

to the fact that in each substep all but one low-rank factor is fixed. In addition, it

is known that QR-decompositions and possible truncation steps that are based on an

SVD approach are stable in the L2-norm [EKK+25], making the concepts of linear von

Neumann stability analysis as described in Section 3.2.3 applicable. This enables us to

derive the stability region of the corresponding DLRA scheme, allowing for a comparison

of the DLRA stability region and the stability region of the full-rank problem and for the

choice of an optimal time step size, leading to a reduced computational effort.

Linear stability of the presented integrators. Following [KEC23], the order of dis-

cretization and application of the DLRA approach makes a crucial difference for the

projector-splitting integrator. While the “first discretize, then low-rank” approach is

shown to be L2-unstable due to the discrete S-step backwards in time, the “first low-

rank, then discretize” approach, under a certain CFL condition, can lead to an L2-stable

discretization. Indeed, as proven in [KEC23], the BUG integrator is shown to be L2-stable

independently of the order of discretization and derivation of the DLRA equations. This

result directly translates to the rank-adaptive augmented BUG integrator [EKK+25].

Energy estimates. Existing work on the stability of DLRA schemes often takes energy

estimates as a complementary approach to classic stability considerations into account.

Accordingly, in [KS23] an L2-stability result for radiation therapy is derived. The concept

of energy stability, which has been introduced in Section 3.2.4, is treated in [EHK24,

FKP25] in the context of DLRA schemes for linear RTEs. This method is not limited to

linear equations and a stability result for non-linear thermal radiative transfer is presented

in [PK25]. The contributions of this thesis on low-rank discretizations for linear thermal

radiative transfer published in [BEKK24a, BEKK25b] and on the linear BGK equation

[BEKK24b] also make use of the concept of showing stability estimates in a suitable norm,

which may be related to the energy of the underlying system.

4.4.2 Conservation of physical invariants

Since DLRA is a numerical reduction technique it cannot be expected to preserve all

relevant information related to the physical system over time and important information

ensuring the conservation of physical invariants may get lost. To overcome this problem,

techniques for the preservation of conservation properties have been introduced. We

distinguish between local and global conservation laws. While global conservation ensures

the preservation of macroscopic quantities such as total mass, total momentum or total

energy as described in (2.7), the concept of local conservation guarantees the validity of

a local conservation laws as given in (2.6). Global conservation is easier to achieve and is

obtained from local conservation by integration over the spatial domain [EL19].

Globally conservative DLRA schemes. A result on the global conservation of mass for

the RTE can be found in [PMF20]. In this research article a rescaling of the solution is
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performed in each step of the DLRA scheme to ensure the result of the algorithm to match

the expected mass that is computed from the underlying equation. This approach is only

available for the zeroth order moment. For the preservation of higher order moments the

evolution equations have to be adjusted. In [EL19] a DLRA scheme conserving global

mass and momentum is proposed for the Vlasov equation. The results derived in [PM21]

guarantee global mass and global momentum conservation for the RTE under a suitable

modification of the evolution equations.

Locally conservative DLRA schemes. The local preservation of conservation proper-

ties is significantly more demanding than the global one as stronger constraints on the

dynamics of the system have to be fulfilled. In [EJ21] a weighted L2-space with a cor-

responding modification in the L-step of the projector-splitting integrator is introduced,

ensuring local conservation of mass, momentum and energy on a continuous level for the

Vlasov equation. The proposed integrator is not stable with respect to small singular

values but the ideas for its construction have influenced further research. For instance, in

[EOS23, GQ24, EKS23] locally conservative DLRA algorithms for the Vlasov equation as

well as for the RTE, which incorporate a conservative truncation step, are presented. In

this thesis, we employ the rank-adaptive augmented BUG integrator, which is flexible to

basis augmentations. In this setting, different from the considerations in [EOS23] and as

explained in [EKS23], we do not need to adjust the L-step equation but solely include the

basis functions related to the preserved quantities (for instance v → 1 for mass conserva-

tion) in the velocity basis and implement a conservative truncation step. However, this

procedure requires an explicit forward Euler step in at least the S-step of the scheme.

Mass conservative truncation strategy. In the following two chapters, we focus on mass

conservative DLRA schemes, for which the additional basis augmentations“Xn+1 =
î
un+1
0 ,“Xn+1

ó
∈ RNx×(2r+1) and “Vn+1 =

î
e1,“Vn+1

ó
∈ RNv×(2r+1)

are applied. The vector un+1
0 denotes the updated zeroth order moment and e1 the first

unit vector in RNv . They are both stored in the first column of the updated “Xn+1 and“Vn+1, respectively. Also the coefficient matrix has to be updated to Ŝn+1 ∈ R(2r+1)×(2r+1)

accordingly. In detail, the concrete form of the corresponding updated Ŝn+1 will be ex-

plained in Chapter 5 and Chapter 6, respectively. An extension ensuring the preserva-

tion of further physical invariants is straightforward and can be achieved as described in

[EOS23, EKS23]. The mass conservative truncation strategy proceeds as follows:

(i) We set “Kn+1 = “Xn+1Ŝn+1 and split it into two parts “Kn+1 =
î“Kn+1,cons,“Kn+1,rem

ó
,

where “Kn+1,cons corresponds to the first and “Kn+1,rem to the remaining columns

of “Kn+1. Analogously, we split “Vn+1 into “Vn+1 = [“Vn+1,cons,“Vn+1,rem], where“Vn+1,cons corresponds to the first and “Vn+1,rem to the remaining columns of “Vn+1.

(ii) We compute “Xn+1,cons =
“Kn+1,cons∥∥∥“Kn+1,cons

∥∥∥ and Ŝn+1,cons =
∥∥∥“Kn+1,cons

∥∥∥.
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(iii) We perform a QR-decomposition to obtain “Xn+1,remŜn+1,rem = qr
Ä“Kn+1,rem

ä
.

(iv) We compute “PΣ“Q⊤ = svd
Ä
Ŝn+1,rem

ä
from an SVD, where “P,“Q ∈ R2r×2r are

orthogonal matrices and Σ ∈ R2r×2r is the diagonal matrix containing the singular

values σ1, ..., σ2r. The new rank r̃ ≤ 2r is determined such thatÑ
2r∑

j=r̃+1

σ2
j

é1/2

≤ ϑ,

where ϑ denotes a prescribed tolerance parameter. Then we set Sn+1,rem ∈ Rr̃×r̃ to

be the matrix containing the r̃ largest singular values of Ŝn+1,rem and the matrices“Prem,“Qrem ∈ R2r×r̃ to contain the first r̃ columns of “P and “Q, respectively. Finally,

we compute Xn+1,rem = “Xn+1,rem“Prem ∈ RNx×r̃ and Vn+1,rem = “Vn+1,rem“Qrem ∈
RNv×r̃.

(v) We set ‹Xn+1 = [“Xn+1,cons,Xn+1,rem] and ‹Vn+1 = [“Vn+1,cons,Vn+1,rem] and perform

a QR-decomposition to obtain Xn+1R1 = qr
Ä‹Xn+1

ä
and Vn+1R2 = qr

Ä‹Vn+1
ä
,

respectively.

(vi) We compute

Sn+1 = R1

[
Ŝn+1,cons 0

0 Sn+1,rem

]
R2,⊤.

Then the new rank rn+1 is given by rn+1 = r̃ + 1.

Altogether, this leads to the updated solution fn+1
r = Xn+1Sn+1Vn+1,⊤ after one time

step at time tn+1 = tn + ∆t.
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5
A DLRA scheme for the Su-Olson problem

Thermal radiative transfer problems are a class of kinetic transport equations modeling

the motion of particles that move through and interact with a background medium, for

instance by scattering or absorption. By this interaction the background medium can

heat up and itself emit new particles, enforcing the exchange of energy between particles

and the background material.

In this chapter, we focus on the thermal radiative transfer equations (RTEs) with Su-Olson

closure, leading to a linearized coupled internal energy model, for which the corresponding

background information is given in Section 5.1. In Section 5.2 the method of DLRA is

applied to this system and the continuous DLRA evolution equations obtained with the

rank-adaptive augmented BUG integrator are derived. Section 5.3 discretizes the resulting

equations in angle and space and provides an energy stability result for the semi-discrete

time-continuous system. The main method is presented in Section 5.4, where a provably

energy stable space-time discretization is proposed. Local mass conservation, proven

in Section 5.5, is achieved by additional basis augmentations and the implementation

of a conservative truncation strategy. Numerical experiments explained in Section 5.6

underline the theoretical properties before Section 5.7 provides a short summary and

conclusion. The results of this chapter closely follow the presentation in [BEKK24a].

5.1 Thermal radiative transfer equations

The process of thermal radiative transfer is modeled by two coupled equations, the thermal

RTEs. With absorbing background material they are given in 1D slab geometry by

1

c
∂tf (t, x, µ) + µ∂xf (t, x, µ) = σ (B (t, x) − f (t, x, µ)) ,

∂te (t, x) = σ ⟨f (t, x, µ) −B (t, x)⟩µ ,

where the distribution function f (t, x, µ) describes the particle density and e (t, x) the

internal energy of the material. The variable t ∈ R+ denotes time, x ∈ Ωx ⊆ R represents
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5. A DLRA scheme for the Su-Olson problem

the spatial and µ ∈ Ωµ = [−1, 1] the angular (or directional) variable. When restricting

the 1D velocity variable to the interval [−1, 1], using µ instead of v corresponds to common

notation. The opacity σ encodes the rate at which particles are absorbed by the medium

and we use brackets ⟨·⟩x , ⟨·⟩µ to indicate an integration over the spatial and the angular

domain, respectively. Moreover, the speed of light is denoted by c and the black body

radiation at the material temperature T is denoted by B (T ). It can be described by the

Stefan-Boltzmann law

B (T ) = acT 4,

where a = 4σSB
c is the radiation density constant and σSB the Stefan-Boltzmann constant.

Further information on the thermal RTEs and their relevance in physics can be found

in [Pom73, BG70, HMDS20]. The above set of equations is not closed and different

closures exist to determine a relation between the temperature T and the internal energy

e [OAH00]. We follow the ideas of Pomraning [Pom79] and Su and Olson [SO97] and set

e(T ) = αB(T ). From this point on, we call αB(T ) the internal energy of the material.

Further, we perform a rescaling τ = t
c and by an abuse of notation write t instead of τ in

the remainder. This leads to the system

∂tf (t, x, µ) + µ∂xf (t, x, µ) = σ (B (t, x) − f (t, x, µ)) , (5.1a)

∂tB (t, x) = σ ⟨f (t, x, µ) −B (t, x)⟩µ , (5.1b)

where without loss of generality we assume α = 1. This system is a closed linearized

internal energy model, which is analytically solvable and serves as a common benchmark

for numerical considerations [MELD08, MHB08a, MHB08b]. In the remaining thesis, we

call equations (5.1) the Su-Olson problem. Note that for the moment we omit initial and

boundary conditions. In subsequent considerations, our studies include the conservation

properties of the derived numerical scheme. For the Su-Olson problem, the mass and the

momentum of the system are defined as follows.

Definition 5.1 (Macroscopic quantities). The mass and the momentum of the Su-Olson

problem are defined as

ρ (t, x) :=

∫
f (t, x, µ) dµ + B (t, x) and u (t, x) :=

∫
µf (t, x, µ) dµ.

In particular, the Su-Olson problem satisfies the local conservation law

∂tρ (t, x) + ∂xu (t, x) = 0. (5.2)

Numerical solution of the thermal RTEs. Constructing numerical schemes for the so-

lution of the Su-Olson problem (5.1) is challenging. First, the potentially stiff opacity

term on the right-hand side of both equations presented in (5.1) must be treated by an

implicit time integration scheme. Second, for 3D spatial domains the computational costs

and memory requirements for finely resolved spatial and angular discretizations become

prohibitive. A widely used strategy to address this issue is to choose coarse numerical
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discretizations and mitigate numerical artifacts [Lat68, Mat99, MWLP03] which arise

due to the insufficient resolution, see e.g. [CFKK19, FKCH20, AS01, Lat71, Ten16]. De-

spite the success of these approaches in a large number of applications, the requirement

of picking user-determined and problem dependent tuning parameters can render them

impracticable.

Thermal RTEs and DLRA. Another approach to deal with the high dimensionality

of the problem is the application of DLRA methods, which are able to yield accu-

rate solutions while not requiring an expensive offline training phase. Earlier work on

radiative transfer with DLRA methods has focused on asymptotic-preserving schemes

[EHW21, EHK24, FKP25], mass conservation [PM21], stable discretizations [KEC23],

imposing boundary conditions [KS23], and implicit temporal discretizations [PM23]. A

discontinuous Galerkin discretization of the DLRA evolution equations for thermal radia-

tive transfer has been proposed in [CFK22]. In this chapter, we focus on energy stability

and mass conservation results for the thermal RTEs with Su-Olson closure.

5.2 Continuous DLRA equations for Su-Olson

We begin with a formulation of the continuous DLRA equations for the Su-Olson problem

presented in (5.1). The distribution function f is approximated as

f (t, x, µ) ≈
r∑

m,η=1

Xm (t, x)Smη (t)Vη (t, µ) ,

where {Xm (t, x) : m = 1, ..., r} are the spatial orthonormal basis functions and {Vη (t, µ) :

η = 1, ..., r} are the angular orthonormal basis functions. To simplify notation, we identify

f with its low-rank approximation fr and, throughout the following considerations, denote

both the full rank and the low-rank solution by f . All theoretical considerations are

performed in one spatial and one angular variable. However, an extension to higher

dimensions is straightforward.

The rank-adaptive augmented BUG integrator introduced in Section 4.2.2 is employed in

its continuous formulation and the corresponding evolution equations for system (5.1) are

derived. In the first step, the DLRA evolution equations for the particle density (5.1a)

are given as follows:

K-step: We write Kη (t, x) =
∑r

m=1Xm (t, x)Smη (t). This leads to the representation

f (t, x, µ) =
∑r

η=1Kη (t, x)V n
η (µ) for the low-rank approximation of the solution, where{

V n
η (µ)

}
denotes the set of angular orthonormal basis functions, which is kept fixed in

this step. Inserting this representation of f into (5.1a) and projecting onto V n
p (µ) yields

the PDE

∂tKp (t, x) = −
r∑

η=1

∂xKη (t, x)
〈
V n
p , µV n

η

〉
µ

+ σ
(
B (t, x) ⟨V n

p ⟩µ −Kp(t, x)
)
. (5.3a)
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5. A DLRA scheme for the Su-Olson problem

Together with the initial condition Kη (tn, x) =
∑r

m=1X
n
m (x)Sn

mη, the spatial basis func-

tions Xn
m (x) with m = 1, ..., r are updated to “Xn+1

m (x) with m = 1, ..., 2r by applying

Gram Schmidt to [Kη(tn+1, x), Xn
m (x)] =

∑2r
i=1
“Xn+1
m (x)R1

mη. Note that R1
mη is dis-

carded after this step. We compute and store M̂mq =
¨“Xn+1

m , Xn
q

∂
x
.

L-step: We write Lm (t, µ) =
∑r

η=1 Smη (t)Vη (t, µ). This leads to the representa-

tion f (t, x, µ) =
∑r

m=1X
n
m (x)Lm (t, µ) for the low-rank approximation of the solution,

{Xn
m (x)} denotes the set of spatial orthonormal basis functions, which is kept fixed in

this step. Inserting this representation of f into (5.1a) and projecting onto Xn
p (x) yields

the PDE

∂tLp (t, µ) = −µ
r∑

m=1

≠
Xn

p ,
d

dx
Xn

m

∑
x

Lm (t, µ) + σ
Ä〈

Xn
p , B(t, x)

〉
x
− Lp (t, µ)

ä
. (5.3b)

Together with the initial condition Lm (tn, µ) =
∑r

η=1 S
n
mηV

n
η (µ), the angular basis func-

tions V n
η (µ) with η = 1, ..., r are updated to “V n+1

η (µ) with η = 1, ..., 2r by applying Gram

Schmidt to
[
Lm (tn+1, µ) , V n

η (µ)
]

=
∑2r

j=1
“V n+1
η (µ)R2

mη. Note that R2
mη is discarded af-

ter this step. We compute and store “Nηp =
¨“V n+1

η , V n
p

∂
µ
.

Lastly the augmented Galerkin step of the rank-adaptive augmented BUG integrator is

constructed according to:

S-step: We fix the updated spatial basis functions “Xn+1
m with m = 1, ..., 2r and the up-

dated angular basis functions “V n+1
η with η = 1, ..., 2r and introduce the notation Ŝmη (t) =∑r

q,p=1 M̂mqSqp(t)“Nηp. For an update of the entries Sn
qp of the coefficient matrix with

q, p = 1, ..., r we insert the representation f (t, x, µ) =
∑2r

m,η=1
“Xn+1
m (x) Ŝmη (t)“V n+1

η (µ)

into (5.1a) and test against “Xn+1
q (x) and “V n+1

p (µ). This yields the ODE“̇Sqp (t) = −
2r∑

m,η=1

≠“Xn+1
q ,

d

dx
“Xn+1
m

∑
x

Ŝmη (t)
¨“V n+1

p , µ“V n+1
η

∂
µ

(5.3c)

+ σ
(¨“Xn+1

q , B (t, x)
∂
x

¨“V n+1
p

∂
µ
− Ŝqp (t)

)
.

Together with the initial condition Ŝmη (tn) =
∑r

q,p=1 M̂mqS
n
qp
“Nηp we obtain the updated

augmented quantities Ŝn+1
qp with q, p = 1, ..., 2r.

For the evolution equation of the internal energy we insert all augmented low-rank factors

into (5.1b) and obtain the PDE

∂tB (t, x) = σ

Ñ
2r∑

m,η=1

“Xn+1
m (x) Ŝmη (t)

¨“V n+1
η

∂
µ
− 2B (t, x)

é
. (5.3d)

Before repeating this process and evolving the subequations further in time, we truncate

the augmented quantities to a new rank rn+1 ≤ 2r by using a suitable truncation strategy.

Note, when employing the rank-adaptive augmented BUG integrator we are not limited

to augmenting with the old basis in the K- and L-step.
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5.3. Discretization in angle and space

5.3 Discretization in angle and space

Having derived the K-, L- and S-step of the rank-adaptive augmented BUG integrator

for the Su-Olson problem, Sections 5.3.1 and 5.3.2 are devoted to the angular and spatial

discretization of the evolution equations. This leads to a semi-discrete time-continuous

system, for which energy stability is proven in Section 5.3.3.

5.3.1 Angular discretization

For the angular discretization a modal representation with normalized rescaled Legendre

polynomials Pℓ (µ) as introduced in Section 3.3.2 is employed. The rescaled Legendre

polynomials constitute a complete set of orthogonal functions on the interval [−1, 1] and

satisfy ⟨Pk (µ) , Pℓ (µ)⟩µ = δkℓ. We approximate

Vη (t, µ) ≈
Nµ−1∑
ℓ=0

Vℓη (t)Pℓ (µ) , Lm (t, µ) ≈
Nµ−1∑
ℓ=0

Lℓm (t)Pℓ (µ) ,

and insert these representations into the evolution equations (5.3). We multiply (5.3b)

with Pk (µ) and integrate over µ. In addition, we exploit the fact that with A ∈ RNµ×Nµ

as defined in (3.26) we can rewrite
〈
V n
p (µ) , µV n

η (µ)
〉
µ

=
∑Nµ−1

k,ℓ=0 V n
ℓηAkℓV

n
kp. Then the

evolution equations with angular discretization are given by

∂tKp (t, x) = −
r∑

η=1

∂xKη (t, x)

Nµ−1∑
k,ℓ=0

V n
ℓηAkℓV

n
kp + σ

Ä√
2B (t, x)V n

0p −Kp (t, x)
ä
, (5.4a)

L̇kp (t) = −
r∑

m=1

≠
Xn

p ,
d

dx
Xn

m

∑
x

Nµ−1∑
ℓ=0

Lℓm (t)Akℓ (5.4b)

+ σ
Ä〈
Xn

p , B (t, x)
〉
x
δk0 − Lkp (t)

ä
,“̇Sqp (t) = −

2r∑
m,η=1

≠“Xn+1
q ,

d

dx
“Xn+1
m

∑
x

Ŝmη (t)

Nµ−1∑
k,ℓ=0

“V n+1
ℓη Akℓ

“V n+1
kp (5.4c)

+ σ
Ä√

2
¨“Xn+1

q , B (t, x)
∂
x
“V n+1
0p − Ŝqp (t)

ä
.

For the angular discretization of (5.3d) we obtain the equation

∂tB (t, x) = σ

Ñ
√

2
2r∑

m,η=1

“Xn+1
m (x) Ŝmη (t)“V n+1

0η − 2B (t, x)

é
. (5.4d)

5.3.2 Spatial discretization

To derive a spatial discretization, we construct a spatial grid with Nx grid cells and

equidistant spacing ∆x = 1
Nx

. Spatially dependent quantities are approximated at the
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5. A DLRA scheme for the Su-Olson problem

grid points xj for j = 1, ..., Nx and denoted by

Xjp (t) ≈ Xp (t, xj) , Kjp (t) ≈ Kp (t, xj) , Bj (t) ≈ B (t, xj) .

Assuming periodic boundary conditions, first-order spatial derivatives ∂x are approxi-

mated using the centered FD method. For stability reasons, a diffusion term involving

second-order derivatives ∂xx is added. This term is also approximated by the centered

FD method. We employ the tridiagonal stencil matrices Dx ∈ RNx×Nx given in (3.8) and

Dxx ∈ RNx×Nx defined in (3.11). Recall that the symmetric matrix A is diagonalizable

in the form A = QMQ⊤ with Q being orthogonal and M = diag(σ0, ..., σNµ−1) and that

we have defined |A| = Q|M|Q⊤. The following matrix ODEs are obtained:

K̇jp (t) = −
Nx∑
i=1

Dx
ji

r∑
η=1

Kiη (t)

Nµ−1∑
k,ℓ=0

V n
ℓηAkℓV

n
kp

+
∆x

2

Nx∑
i=1

Dxx
ji

r∑
η=1

Kiη (t)

Nµ−1∑
k,ℓ=0

V n
ℓη |A|kℓ V

n
kp (5.5a)

+ σ
Ä√

2Bj (t)V n
0p −Kjp (t)

ä
,

L̇kp (t) = −
Nµ−1∑
ℓ=0

Akℓ

r∑
m=1

Lℓm (t)

Nx∑
i,j=1

Xn
imDx

ijX
n
jp

+
∆x

2

Nµ−1∑
ℓ=0

|A|kℓ
r∑

m=1

Lℓm (t)

Nx∑
i,j=1

Xn
imDxx

ij X
n
jp (5.5b)

+ σ

Ñ
δk0

Nx∑
j=1

Bj (t)Xn
jp − Lkp (t)

é
,“̇Sqp (t) = −

Nx∑
i,j=1

“Xn+1
jq Dx

ji

2r∑
m,η=1

“Xn+1
im Ŝmη (t)

Nµ−1∑
k,ℓ=0

“V n+1
ℓη Akℓ

“V n+1
kp

+
∆x

2

Nx∑
i,j=1

“Xn+1
jq Dxx

ji

2r∑
m,η=1

“Xn+1
im Ŝmη (t)

Nµ−1∑
k,ℓ=0

“V n+1
ℓη |A|kℓ“V n+1

kp (5.5c)

+ σ

Ñ
√

2

Nx∑
j=1

“Xn+1
jq Bj (t)“V n+1

0p − Ŝqp (t)

é
.

Lastly, for the internal energy B we receive the spatially discretized equation

∂tBj (t) = σ

Ñ
√

2

2r∑
m,η=1

“Xn+1
jm Ŝmη (t)“V n+1

0η − 2Bj (t)

é
(5.5d)

= σ
Ä√

2un+1
j0 (t) − 2Bj (t)

ä
,

where we use the notation
∑2r

m,η=1
“Xn+1
jm Ŝmη (t)“V n+1

kη =: un+1
jk (t).
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5.3. Discretization in angle and space

5.3.3 Energy stability of the semi-discrete system

The aim of this section is showing energy stability of the semi-discrete time-continuous

system (5.5). First, a formal definition of the total energy of the system is presented.

Definition 5.2 (Total energy). Let us denote un+1 (t) =
Ä
un+1
jk (t)

ä
∈ RNx×Nµ for the

particle density and B (t) = (Bj (t)) ∈ RNx for the internal energy. The quantity

E(t) :=
1

2

∥∥un+1 (t)
∥∥2
F

+
1

2
∥B (t)∥2E ,

where ∥·∥F denotes the Frobenius and ∥·∥E the Euclidean norm, is called the total energy

of the system (5.5).

Then, dissipation of the total energy can be shown for system (5.5).

Theorem 5.3 (Energy stability of the semi-discrete system). The semi-discrete time-

continuous system (5.5) is energy stable, i.e. it holds Ė(t) ≤ 0.

Proof. Let us start from the S-step presented in (5.5c), which is given by“̇Sqp (t) = −
Nx∑

i,j=1

“Xn+1
jq Dx

ji

2r∑
m,η=1

“Xn+1
im Ŝmη (t)

Nµ−1∑
k,ℓ=0

“V n+1
ℓη Akℓ

“V n+1
kp

+
∆x

2

Nx∑
i,j=1

“Xn+1
jq Dxx

ji

2r∑
m,η=1

“Xn+1
im Ŝmη (t)

Nµ−1∑
k,ℓ=0

“V n+1
ℓη |A|kℓ“V n+1

kp

+ σ

Ñ
√

2

Nx∑
j=1

“Xn+1
jq Bj (t)“V n+1

0p − Ŝqp (t)

é
.

We multiply with “Xn+1
αq
“V n+1
βp , where α = 1, ..., Nx and β = 0, ..., Nµ − 1, and sum over

q and p. Further, the projection operators PXn+1

αj =
∑2r

q=1
“Xn+1
αq
“Xn+1
jq and P V n+1

kβ =∑2r
p=1
“V n+1
kp
“V n+1
βp are introduced. We obtain the representation

u̇n+1
αβ (t) = −

Nx∑
i,j=1

PXn+1

αj Dx
ji

Nµ−1∑
k,ℓ=0

un+1
iℓ (t)AkℓP

V n+1

kβ

+
∆x

2

Nx∑
i,j=1

PXn+1

αj Dxx
ji

Nµ−1∑
k,ℓ=0

un+1
iℓ (t) |A|kℓ P

V n+1

kβ

+ σ

Ñ
√

2

Nx∑
j=1

PXn+1

αj Bj (t) δk0P
V n+1

kβ − un+1
αβ (t)

é
.

In the next step, we multiply with un+1
αβ (t) and sum over α and β. Note that it holds

Nx∑
α=1

PXn+1

αj un+1
αβ (t) = un+1

jβ (t) and

Nµ−1∑
β=0

P V n+1

kβ un+1
jβ (t) = un+1

jk (t) .
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5. A DLRA scheme for the Su-Olson problem

This leads to

1

2

d

dt

∥∥un+1 (t)
∥∥2
F

= −
Nx∑

i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk (t)Dx

jiu
n+1
iℓ (t)Akℓ

+
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk (t)Dxx

ji u
n+1
iℓ (t) |A|kℓ

+ σ

Ñ
√

2

Nx∑
j=1

un+1
jk (t)Bj (t) δk0 −

∥∥un+1 (t)
∥∥2
F

é
.

Recall that the matrix A can be decomposed as A = QMQ⊤ with Q being a orthogonal

matrix and M = diag(σ0, ..., σNµ−1). Inserting this representation gives

1

2

d

dt

∥∥un+1 (t)
∥∥2
F

= −
Nx∑

i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk (t)Dx

jiu
n+1
iℓ (t)

Nµ−1∑
m=0

QℓmσmQkm

+
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk (t)Dxx

ji u
n+1
iℓ (t)

Nµ−1∑
m=0

Qℓm |σm|Qkm

+ σ

Ñ
√

2

Nx∑
j=1

un+1
jk (t)Bj (t) δk0 −

∥∥un+1 (t)
∥∥2
F

é
= −

Nµ−1∑
m=0

σm

Nx∑
i,j=1

ũn+1
jm (t)Dx

jiũ
n+1
im (t)

+
∆x

2

Nµ−1∑
m=0

|σm|
Nx∑

i,j=1

ũn+1
jm (t)Dxx

ji ũ
n+1
im (t)

+ σ

Ñ
√

2

Nx∑
j=1

un+1
jk (t)Bj (t) δk0 −

∥∥un+1 (t)
∥∥2
F

é
,

where ũn+1
jm (t) :=

∑Nµ−1
k=0 un+1

jk (t)Qkm. Using the properties of the stencil matrices shown

in Lemma 3.1, we obtain

1

2

d

dt

∥∥un+1 (t)
∥∥2
F

= − ∆x

2

Nx∑
j=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
i=1

Nµ−1∑
k=0

D+
jiu

n+1
ik (t) |A|1/2kℓ

é2

(5.6)

+ σ

Ñ
√

2

Nx∑
j=1

un+1
jk (t)Bj (t) δk0 −

∥∥un+1 (t)
∥∥2
F

é
.

In the following step, we consider equation (5.5d). Multiplication with Bj (t) and sum-
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mation over j yields

1

2

d

dt
∥B (t)∥2E = σ

Ñ
√

2

Nx∑
j=1

un+1
j0 (t)Bj (t) − 2 ∥B (t)∥2E

é
. (5.7)

Adding the evolution equations (5.6) and (5.7) and using the concept of the total energy

provided in Definition 5.2, leads to

Ė (t) = − ∆x

2

Nx∑
j=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
i=1

Nµ−1∑
k=0

D+
jiu

n+1
ik (t) |A|1/2kℓ

é2

+ σ

Ñ
√

2

Nx∑
j=1

un+1
j0 (t)Bj (t) −

∥∥un+1 (t)
∥∥2
F

é
+ σ

Ñ
√

2

Nx∑
j=1

un+1
j0 (t)Bj (t) − 2 ∥B (t)∥2E

é
= − ∆x

2

Nx∑
j=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
i=1

Nµ−1∑
k=0

D+
jiu

n+1
ik (t) |A|1/2kℓ

é2

− σ

Ñ
Nx∑
j=1

Ä
un+1
j0 (t) −

√
2Bj (t)

ä2
+

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk (t)

ä2
(1 − δk0)

é
≤ 0,

where in the last step we have rewritten
∥∥un+1 (t)

∥∥2
F

=
∑Nx

j=1

∑Nµ−1
k=0

Ä
un+1
jk (t)

ä2
and

∥B (t)∥2E =
∑Nx

j=1 (Bj (t))2. The expression obtained is non-positive, which means that E

is dissipated in time. Hence, the system is energy stable.

5.4 Discretization in time

The aim of this section is the construction of a conservative DLRA scheme that is energy

stable under a sharp time step restriction. First, the definition of the total energy is

extended to the fully discrete framework.

Definition 5.4 (Fully discrete total energy). Let un =
Ä
unjk

ä
∈ RNx×Nµ with entries

unjk =
∑r

m,η=1X
n
jmSn

mηV
n
kη and Bn =

Ä
Bn

j

ä
∈ RNx . The quantity

En :=
1

2
∥un∥2F +

1

2
∥Bn∥2E

is called the fully discrete total energy at time tn.

Constructing temporally discretized schemes that preserve the energy dissipation shown

in Theorem 5.3 while not suffering from the potentially stiff opacity term is not trivial.
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5. A DLRA scheme for the Su-Olson problem

In fact, as shown in Section 5.4.1, a naive IMEX time discretization may increase the

total energy. This unphysical behavior is overcome by carefully constructing an energy

stable space-time discretization in Section 5.4.2, for which rigorous mathematical proofs

are given.

5.4.1 Naive temporal discretization

The analysis starts from system (5.5) which still depends continuously on time. For the

temporal discretization, a naive IMEX Euler scheme performing a splitting of internal

energy and radiation transport is applied. This means that we use an explicit Euler step

for the transport part of the evolution equations, treat the internal energy B explicitly

and apply an implicit Euler step for the radiation absorption term. The evolution from

time tn to time tn+1 = tn + ∆t is described as follows:

Kn+1
jp = Kn

jp − ∆t

Nx∑
i=1

Dx
ji

r∑
η=1

Kn
iη

Nµ−1∑
k,ℓ=0

V n
ℓηAkℓV

n
kp

+ ∆t
∆x

2

Nx∑
i=1

Dxx
ji

r∑
η=1

Kn
iη

Nµ−1∑
k,ℓ=0

V n
ℓη |A|kℓ V

n
kp (5.8a)

+ σ∆t
Ä√

2Bn
j V

n
0p −Kn+1

jp

ä
,

Ln+1
kp = Ln

kp − ∆t

Nµ−1∑
ℓ=0

Akℓ

r∑
m=1

Ln
ℓm

Nx∑
i,j=1

Xn
imDx

jiX
n
jp

+ ∆t
∆x

2

Nµ−1∑
ℓ=0

|A|kℓ
r∑

m=1

Ln
ℓm

Nx∑
i,j=1

Xn
imDxx

ji X
n
jp (5.8b)

+ σ∆t

Ñ
δk0

Nx∑
j=1

Bn
j X

n
jp − Ln+1

kp

é
.

The augmented and time-updated spatial basis “Xn+1
jp and velocity basis “V n+1

kp are obtained

from a QR-decomposition of the augmented quantities “Xn+1
jp = qr

Äî
Kn+1

jp , Xn
jp

óä
and“V n+1

kp = qr
Äî
Ln+1
kp , V n

kp

óä
, according to the rank-adaptive augmented BUG integrator.

Lastly, a Galerkin step for the augmented bases is performed according to

Ŝn+1
qp = S̃n

qp − ∆t

Nx∑
i,j=1

“Xn+1
jq Dx

ji

2r∑
m,η=1

“Xn+1
im S̃n

mη

Nµ−1∑
k,ℓ=0

“V n+1
ℓη Akℓ

“V n+1
kp

+ ∆t
∆x

2

Nx∑
i,j=1

“Xn+1
jq Dxx

ji

2r∑
m,η=1

“Xn+1
im S̃n

mη

Nµ−1∑
k,ℓ=0

“V n+1
ℓη |A|kℓ“V n+1

kp (5.8c)

+ σ∆t

Ñ
√

2

Nx∑
j=1

“Xn+1
jq Bn

j
“V n+1
0p − Ŝn+1

qp

é
,
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where S̃n
mη =

∑Nx
j=1

∑Nµ−1
k=0

∑r
q,p=1

“Xn+1
jm Xn

jqS
n
qpV

n
kp
“V n+1
kη . The internal energy B is up-

dated through

Bn+1
j = Bn

j + σ∆t

Ñ
√

2
2r∑

m,η=1

“Xn+1
jm Ŝn+1

mη
“V n+1
0η − 2Bn+1

j

é
(5.8d)

= Bn
j + σ∆t

Ä√
2un+1

j0 − 2Bn+1
j

ä
.

However, in Theorem 5.5 we prove that this numerical method exhibits the undesirable

property of potentially increasing the total energy during a single time step. This behavior

is inconsistent with the governing physical principles.

Theorem 5.5. There exist initial value pairs (un,Bn) and time step sizes ∆t such that

the naive scheme (5.8) results in
(
un+1,Bn+1

)
for which the fully discrete total energy

increases, i.e. for which En+1 > En.

Proof. We multiply the S-step equation given in (5.8c) with “Xn+1
αq
“V n+1
βp and sum over q

and p. Together with the projection operators PXn+1

αj =
∑2r

q=1
“Xn+1
αq
“Xn+1
jq and P V n+1

kβ =∑2r
p=1
“V n+1
kp
“V n+1
βp and the definition of S̃n

mη, we obtain

un+1
αβ = unαβ − ∆t

Nx∑
i,j=1

PXn+1

αj Dx
ji

Nµ−1∑
k,ℓ=0

uniℓAkℓP
V n+1

kβ

+ ∆t
∆x

2

Nx∑
i,j=1

PXn+1

αj Dxx
ji

Nµ−1∑
k,ℓ=0

uniℓ |A|kℓ P
V n+1

kβ (5.9)

+ σ∆t

Ñ
√

2

Nx∑
j=1

Nµ−1∑
k=0

“PXn+1

αj Bn
j δk0
“P V n+1
kβ − un+1

αβ

é
.

Let us choose a solution u and an internal energy B which at all times are constant in

space. Then all terms in (5.9) containing the stencil matrices Dx and Dxx drop out. In

addition, we conclude that all projections in the last term of (5.9) are exact since Bn
j is

constant in space and δk0 lies in the span of the basis. Hence, it follows that

un+1
αβ = unαβ + σ∆t

Ä√
2Bn

αδβ0 − un+1
αβ

ä
. (5.10)

Let us now set Bn+1
α = Bn+1 and un+1

αβ = un+1δβ0. The scalar values Bn+1 and un+1 are

chosen such that Bn+1 = 1√
2
un+1 + γ, where

0 < γ <
2
√

2σ∆t

2 + 3σ∆t + 4σ2 (∆t)2 + 4σ3 (∆t)3
un+1.

It can be verified that the chosen values for Bn+1
α and un+1

αβ are retrieved after a single
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5. A DLRA scheme for the Su-Olson problem

step of the scheme (5.8) when using the initial conditions

Bn
α = Bn+1 + 2σ∆tγ =

1√
2
un+1 + γ (1 + 2σ∆t) , (5.11a)

unαβ =
Ä
un+1 + σ∆t(un+1 −

√
2Bn

α)
ä
δβ0 =

Ä
un+1 −

√
2σ∆tγ (1 + 2σ∆t)

ä
δβ0. (5.11b)

Inserting the initial values (5.11) into (5.10), we directly obtain un+1
αβ = un+1δβ0. Similarly,

by inserting (5.11) into (5.8d) we obtain Bn+1
α = Bn+1. Then we square both of the initial

terms (5.11). This leads to

(Bn
α)2 =

(
Bn+1

)2
+ 4σ∆tγBn+1 + 4σ2 (∆t)2 γ2

=
(
Bn+1

)2
+ 4σ∆tγ

Å
1√
2
un+1 + γ

ã
+ 4σ2 (∆t)2 γ2,(

unαβ
)2

=
Ä(
un+1

)2 − 2
√

2σ∆tγun+1 (1 + 2σ∆t) + 2σ2 (∆t)2 γ2 (1 + 2σ∆t)2
ä
δβ0.

Summing the first equation over α, the second equation over α and β, adding the two

terms, and multiplying with 1
2 , together with Definition 5.4 yields

En+1 = En +
1

2

Nx∑
α=1

Ä
2σ∆tγ

Ä
2
√

2σ∆tun+1 − γ
Ä
2 + 2σ∆t + σ∆t (1 + 2σ∆t)2

äää
.

Note that En+1 > En if

2
√

2σ∆tun+1 − γ
Ä
2 + 2σ∆t + σ∆t (1 + 2σ∆t)2

ä
> 0.

Rearranging the inequality gives

γ <
2
√

2σ∆t

2 + 3σ∆t + 4σ2 (∆t)2 + 4σ3 (∆t)3
un+1.

This is exactly the domain γ is chosen from. Hence, we have En+1 > En and the

unphysical behavior of the scheme (5.8) is proven.

5.4.2 Energy stable space-time discretization

The naive scheme presented in (5.8) can increase the total energy in one time step. The

main goal of this section is to construct a novel energy stable time integration scheme

for which the corresponding analysis leads to a classic hyperbolic CFL condition which

enables operating up to a time step size of ∆t = CCFL · ∆x.

Energy stable DLRA scheme for Su-Olson. For constructing this energy stable scheme,

the original equations are split in two parts, followed by a basis augmentation and a

correction step.
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In detail, we first solve

K∗
jp = Kn

jp − ∆t

Nx∑
i=1

Dx
ji

r∑
η=1

Kn
iη

Nµ−1∑
k,ℓ=0

V n
ℓηAkℓV

n
kp (5.12a)

+ ∆t
∆x

2

Nx∑
i=1

Dxx
ji

r∑
η=1

Kn
iη

Nµ−1∑
k,ℓ=0

V n
ℓη |A|kℓ V

n
kp,

L∗
kp = Ln

kp − ∆t

Nµ−1∑
ℓ=0

Akℓ

r∑
m=1

Ln
ℓm

Nx∑
i,j=1

Xn
imDx

jiX
n
jp (5.12b)

+ ∆t
∆x

2

Nµ−1∑
ℓ=0

|A|kℓ
r∑

m=1

Ln
ℓm

Nx∑
i,j=1

Xn
imDxx

ji X
n
jp.

The updated bases “X∗ of rank 2r and “V∗ of rank 2r are obtained from a QR-decomposition

of the augmented quantities “X∗ = qr ([K∗,Xn]) and “V∗ = qr ([L∗,Vn]). Using the

notation S̃n
mη =

∑Nx
j=1

∑Nµ−1
k=0

∑r
q,p=1

“X∗
jmXn

jqS
n
qpV

n
kp
“V ∗
kη, we solve the S-step equation

Ŝ∗
qp = S̃n

qp − ∆t

Nx∑
i,j=1

“X∗
jqD

x
ji

2r∑
m,η=1

“X∗
imS̃n

mη

Nµ−1∑
k,ℓ=0

“V ∗
ℓηAkℓ

“V ∗
kp (5.12c)

+ ∆t
∆x

2

Nx∑
i,j=1

“X∗
jqD

xx
ji

2r∑
m,η=1

“X∗
imS̃n

mη

Nµ−1∑
k,ℓ=0

“V ∗
ℓη |A|kℓ“V ∗

kp.

Second, we solve the coupled equations for the internal energy B ∈ RNx and the zeroth

order moment ũn+1
0 = (ũn+1

j0 )j ∈ RNx according to

ũn+1
j0 =

r∑
m,η=1

Xn
jmSn

mηV
n
0η − ∆t

Nx∑
i=1

Dx
ji

2r∑
m,η=1

“X∗
imS̃n

mη

Nµ−1∑
ℓ=0

“V ∗
ℓηA0ℓ (5.12d)

+ ∆t
∆x

2

Nx∑
i=1

Dxx
ji

2r∑
m,η=1

“X∗
imS̃n

mη

Nµ−1∑
ℓ=0

“V ∗
ℓη |A|0ℓ + σ∆t

Ä√
2Bn+1

j − ũn+1
j0

ä
,

Bn+1
j = Bn

j + σ∆t
Ä√

2ũn+1
j0 − 2Bn+1

j

ä
. (5.12e)

Following [KEC23], we perform the opacity update only on L = “V∗Ŝ∗, i.e. we compute

L∗,abs
kp =

1

1 + σ∆t
Lkp for p ̸= 0. (5.12f)

We perform a QR-decomposition “V∗,absŜ∗,abs,⊤ = qr
(
L∗,abs) to retrieve the factorized

basis “V∗,abs and the coefficients contained in the matrix Ŝ∗,abs. In the next step, we

augment the basis matrices according to“Xn+1 = qr
Äî
ũn+1
0 ,“X∗

óä
and “Vn+1 = qr

Äî
e1,“V∗,abs

óä
, (5.12g)
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5. A DLRA scheme for the Su-Olson problem

where e1 denotes the first unit vector in RNµ . Third, the coefficient matrix is updated to

Ŝn+1 ∈ R(2r+1)×(2r+1) through

Ŝn+1 = “Xn+1,⊤“X∗Ŝ∗,abs“V∗,abs,⊤
Ä
I− e1e

⊤
1

ä “Vn+1 + “Xn+1,⊤ũn+1
0 e⊤1

“Vn+1. (5.12h)

The updated solution u ∈ RNx×Nµ is obtained as un+1 = “Xn+1Ŝn+1“Vn+1. Lastly, we

truncate the augmented quantities “Xn+1, Ŝn+1 and “Vn+1 from rank 2r+ 1 to a new rank

rn+1 by using a suitable truncation strategy such as proposed in Section 4.4.2. This

finally leads to the low-rank factors Xn+1,Sn+1 and Vn+1. To provide an overview of the

scheme, its main steps are visualized in Algorithm 1.

Proof of energy stability of the proposed low-rank scheme. For showing energy sta-

bility of the DLRA scheme given in (5.12), we first provide the following auxiliary results.

Lemma 5.6 (Young’s inequality, [CR16]). Let 1 < p < q < ∞ be such that 1
p + 1

q = 1

and let a, b ∈ R+. Then it holds

ab ≤ ap

p
+

bq

q
,

with equality if and only if ap = bq.

Proof. See for instance [CR16].

A practically useful result within the framework of Fourier analysis is obtained following

the ideas presented in [KEC23].

Lemma 5.7. Let us define the matrix E ∈ CNx×Nx with entries

Ejα =

 
∆x

|Ωx|
exp (2πiαxj) , for j, α = 1, ..., Nx,

where |Ωx| denotes the length of the domain Ωx. Then, E is a unitary matrix, i.e.

EEH = EHE = I, where the superscript H denotes the complex transpose and I ∈ RNx×Nx

represents the identity matrix. In addition, it diagonalizes the stencil matrices

DγE = EΛγ with γ ∈ {x, xx,+} ,

and Λγ ∈ CNx×Nx are the diagonal matrices with entries

λx
αα =

1

2∆x

Ä
e2πiα∆x − e−2πiα∆x

ä
=

i

∆x
sin (να) ,

λxx
αα =

1

(∆x)2

Ä
e2πiα∆x − 2 + e−2πiα∆x

ä
=

2

(∆x)2
(cos(να) − 1) ,

λ+
αα =

1

∆x

Ä
e2πiα∆x − 1

ä
=

1

∆x
(cos(να) + i sin(να) − 1) ,

where να := 2πα∆x.
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5.4. Discretization in time

Algorithm 1 Flowchart of the energy stable and mass conservative DLRA scheme (5.12).

input
• internal energy at time tn: B

n
j

• low-rank factors at time tn: X
n
jm, Sn

mη, V
n
kη

• rank at time tn: r

update bases according to (5.12a) and (5.12b)

augment bases with Xn
jm, V n

kη

update coefficient matrix according to (5.12c)

update zeroth order moment and internal energy according to (5.12d) and (5.12e)

perform absorption step according to (5.12f)

augment bases with ũn+1
0 and e1 according to (5.12g)

adjust coefficient matrix Ŝ∗,abs
mη according to (5.12h)

truncate factors “Xn+1
jm , Ŝn+1

mη ,“V n+1
kη

output

• internal energy at time tn+1: B
n+1
j

• low-rank factors at time tn+1: X
n+1
jm , Sn+1

mη , V n+1
kη

• rank at time tn+1: rn+1

Bn+1
j , ũn+1

j0

“X∗
jm,“V ∗

kη

Ŝ∗
mη

K∗
jp, L

∗
kp

Ŝ∗,abs
mη ,“V ∗,abs

kη“Xn+1
jm ,“V n+1

kη

Ŝn+1
mη
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5. A DLRA scheme for the Su-Olson problem

Proof. The assertions follow directly by inserting the definitions of the matrix E, the

spatial stencil matrices Dγ and the diagonal matrices Λγ for γ ∈ {x, xx,+}, assuming

periodic boundary conditions.

Also the following lemma is indispensable for the proof of energy stability.

Lemma 5.8. Under the time step restriction ∆t ≤ ∆x it holds

∆t

∥∥∥∥Dxun+1A− ∆x

2
Dxxun+1 |A|

∥∥∥∥2
F

− ∆x
∥∥∥D+un+1 |A|1/2

∥∥∥2
F
≤ 0. (5.13)

Proof. We employ a Fourier analysis similar to [KEC23] and use Lemma 5.7 introducing

the matrices E and Λγ . Moreover, we recall that the matrix A can be decomposed as

A = QMQ⊤ with Q being orthogonal and M = diag(σ0, ..., σNµ−1). Let us denote

ûn+1 =
(
ûn+1
αm

)
∈ CNx×Nµ with entries ûn+1

αm =
∑Nx

j=1

∑Nµ−1
k=0 Eαju

n+1
jk Qkm. By applying

Parseval’s identity as stated in Proposition 3.14, we obtain

∆t

∥∥∥∥Dxun+1A− ∆x

2
Dxxun+1 |A|

∥∥∥∥2
F

− ∆x
∥∥∥D+un+1 |A|1/2

∥∥∥2
F

= ∆t

∥∥∥∥EΛxûn+1MQ⊤ − ∆x

2
EΛxxûn+1 |M|Q⊤

∥∥∥∥2
F

− ∆x
∥∥∥EΛ+ûn+1 |M|1/2Q⊤

∥∥∥2
F

= ∆t

∥∥∥∥Λxûn+1M− ∆x

2
Λxxûn+1 |M|

∥∥∥∥2
F

− ∆x
∥∥∥Λ+ûn+1 |M|1/2

∥∥∥2
F

= 2

Nx∑
α=1

Nµ−1∑
m=0

Ç
∆t

|σm|2

(∆x)2
|1 − cos (να)| − |σm|

∆x
|1 − cos (να)|

å ∣∣ûn+1
αm

∣∣2 .
A sufficient condition to ensure negativity is that for each index m it must hold

∆t
|σm|2

(∆x)2
|1 − cos (να)| ≤ |σm|

∆x
|1 − cos (να)| .

Hence, for ∆t ≤ ∆x
|σm| , equation (5.13) holds. Since |σm| ≤ 1, we have proven the lemma.

We can now show energy stability of the proposed scheme.

Theorem 5.9 (Energy stability of the proposed DLRA scheme). Under the time step

restriction ∆t ≤ ∆x the fully discrete DLRA scheme presented in (5.12) is energy stable,

i.e. it holds

1

2

∥∥Bn+1
∥∥2
E

+
1

2

∥∥∥Xn+1Sn+1Vn+1,⊤
∥∥∥2
F
≤ 1

2
∥Bn∥2E +

1

2

∥∥∥XnSnVn,⊤
∥∥∥2
F
. (5.14)

Proof. First, we multiply equation (5.12e) with Bn+1
j and obtainÄ

Bn+1
j

ä2
= Bn

j B
n+1
j + σ∆t

(√
2ũn+1

j0 Bn+1
j − 2

Ä
Bn+1

j

ä2)
.
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5.4. Discretization in time

Let us note that

Bn
j B

n+1
j =

1

2

Ä
Bn+1

j

ä2
+

1

2

(
Bn

j

)2 − 1

2

Ä
Bn+1

j −Bn
j

ä2
. (5.15)

Inserting this relation and summing over j leads to

1

2

Nx∑
j=1

Ä
Bn+1

j

ä2
=

1

2

Nx∑
j=1

(
Bn

j

)2 − 1

2

Nx∑
j=1

Ä
Bn+1

j −Bn
j

ä2
(5.16)

+ σ∆t

Nx∑
j=1

(√
2ũn+1

j0 Bn+1
j − 2

Ä
Bn+1

j

ä2)
.

To obtain a similar expression for
Ä
un+1
jk

ä2
, we multiply (5.12c) with “X∗

αq
“V ∗
βp and sum

over q and p. For simplicity of notation, let us introduce u∗αβ :=
∑2r

q,p=1
“X∗
αqŜ

∗
qp
“V ∗
βp and

unαβ :=
∑2r

q,p=1
“X∗
αqS̃

n
qp
“V ∗
βp as well as the projection operators PX∗

αj =
∑2r

q=1
“X∗
αq
“X∗
jq and

P V ∗
kβ =

∑2r
p=1
“V ∗
kp
“V ∗
βp. Then we obtain

u∗αβ = unαβ − ∆t

Nx∑
i,j=1

PX∗
αj Dx

ji

Nµ−1∑
k,ℓ=0

uniℓAkℓP
V ∗
kβ (5.17)

+ ∆t
∆x

2

Nx∑
i,j=1

PX∗
αj Dxx

ji

Nµ−1∑
k,ℓ=0

uniℓ |A|kℓ P
V ∗
kβ .

Note that with un+1
αβ =

∑2r
q,p=1

“Xn+1
αq Ŝn+1

qp
“V n+1
βp and by construction it holds

un+1
αβ =

u⋆αβ(1 − δβ0)

1 + σ∆t
+ ũn+1

α0 δβ0.

Hence, inserting the schemes for u∗αβ and ũn+1
α0 , i.e. equations (5.17) and (5.12d), leads to

(1 + σ∆t)un+1
αβ =

(
unαβ − ∆t

Nx∑
i,j=1

PX∗
αj Dx

ji

Nµ−1∑
k,ℓ=0

uniℓAkℓP
V ∗
kβ

+ ∆t
∆x

2

Nx∑
i,j=1

PX∗
αj Dxx

ji

Nµ−1∑
k,ℓ=0

uniℓ |A|kℓ P
V ∗
kβ

)
(1 − δβ0)

+

(
unα0 − ∆t

Nx∑
i=1

Dx
αi

Nµ−1∑
ℓ=0

uniℓA0ℓ

+ ∆t
∆x

2

Nx∑
i=1

Dxx
αi

Nµ−1∑
ℓ=0

uniℓ |A|0ℓ +
√

2σ∆tBn+1
j

)
δβ0.
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In the next step, we multiply with un+1
αβ and sum over α and β. Note that it holds

Nx∑
α=1

PX∗
αj un+1

αβ = ujβ (t) and

Nµ−1∑
β=0

P V ∗
kβ un+1

jβ = un+1
jk .

To be consistent in notation, we change the summation indices in the corresponding terms

from α to j and from β to k. Let us note that

Nx∑
j=1

Nµ−1∑
k=0

unjku
n+1
jk =

Nx∑
j=1

Nµ−1∑
k=0

Å
1

2

Ä
un+1
jk

ä2
+

1

2

(
unjk
)2 − 1

2

Ä
un+1
jk − unjk

ä2 ã
. (5.18)

This results in

1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk

ä2
=

1

2

Nx∑
j=1

Nµ−1∑
k=0

(
unjk
)2 − 1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk − unjk

ä2
− ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

jiu
n
iℓAkℓ + ∆t

∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji u
n
iℓ |A|kℓ

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

un+1
jk

Ä√
2Bn+1

j δk0 − un+1
jk

ä
.

Let us now add the zero term ∆t
∑Nx

i,j=1

∑Nµ−1
k,ℓ=0 un+1

jk Dx
jiu

n+1
iℓ Akℓ and add and subtract

the term ∆t∆x
2

∑Nx
i,j=1

∑Nµ−1
k,ℓ=0 un+1

jk Dxx
ji u

n+1
iℓ |A|kℓ. This yields

1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk

ä2
=

1

2

Nx∑
j=1

Nµ−1∑
k=0

(
unjk
)2 − 1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk − unjk

ä2
− ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

ji

(
uniℓ − un+1

iℓ

)
Akℓ (I)

+ ∆t
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji

(
uniℓ − un+1

iℓ

)
|A|kℓ (II)

+ ∆t
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji u
n+1
iℓ |A|kℓ (III)

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

un+1
jk

Ä√
2Bn+1

j δk0 − un+1
jk

ä
.

We proceed by analyzing the terms (I), (II), and (III) separately. Let us start with (I)

and (II) and apply Young’s inequality given in Lemma 5.6. For the sum (I) + (II) this
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results in

− ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

ji

(
uniℓ − un+1

iℓ

)
Akℓ + ∆t

∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji

(
uniℓ − un+1

iℓ

)
|A|kℓ

= − ∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

(
uniℓ − un+1

iℓ

)Ñ Nx∑
j=1

Nµ−1∑
k=0

Å
Dx

jiu
n+1
jk Akℓ −

∆x

2
Dxx

ji u
n+1
jk |A|kℓ

ãé
≤ 1

2

Nx∑
i=1

Nµ−1∑
ℓ=0

(
uniℓ − un+1

iℓ

)2
+

(∆t)2

2

Nx∑
i=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

Å
Dx

jiu
n+1
jk Akℓ −

∆x

2
Dxx

ji u
n+1
jk |A|kℓ

ãé2

.

For (III) we exploit the properties of the spatial stencil matrices given in Lemma 3.1.

This leads to the equality

∆t
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji u
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D+
jiu
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ik |A|1/2kℓ

é2

.

Hence, inserting these relations, yields

1

2

Nx∑
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Nµ−1∑
k=0

Ä
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jk

ä2
≤ 1

2

Nx∑
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Nµ−1∑
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(
unjk
)2
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(5.19)

− ∆t
∆x

2

Nx∑
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jiu
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+ σ∆t
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k=0
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Ä√
2Bn+1

j δk0 − un+1
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ä
.

As for the continuous case, we add equations (5.19) and (5.16) to obtain a time update
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5. A DLRA scheme for the Su-Olson problem

for the total energy introduced in Definition 5.4. This establishes the inequality

En+1 ≤ En +
(∆t)2
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.

We estimate the opacity term and derive

En+1 ≤ En +
(∆t)2
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With Lemma 5.8 we obtain

∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

Å
Dx

jiu
n+1
jk Akℓ −

∆x

2
Dxx

ji u
n+1
jk |A|kℓ

ãé2

−∆x

Nx∑
j=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
i=1

Nµ−1∑
k=0

D+
jiu

n+1
ik |A|1/2kℓ

é2

≤ 0

for ∆t ≤ ∆x. Since the truncation step is designed to not alter the zeroth order moment,

this means that En+1 ≤ En and we can conclude that the full scheme is energy stable

under the time step restriction ∆t ≤ ∆x.

5.5 Mass conservation

A drawback of the DLRA method using the integrators introduced in Section 4.2 is that

physical invariants are not preserved. This problem can be overcome when implement-

ing the rank-adaptive augmented BUG integrator introduced in [CKL22] together with
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5.5. Mass conservation

suitable basis augmentation steps and a conservative truncation strategy as described in

Section 4.4.2. We first translate the macroscopic quantities given in Definition 5.1 to the

fully discrete setting.

Definition 5.10 (Fully discrete macroscopic quantities). The mass and the momentum

of the fully discretized Su-Olson problem at time tn are defined as

ρnj :=
√

2unj0 + Bn
j and unj :=

√
2

Nµ−1∑
ℓ=0

unjℓA0ℓ.

Then we can show that besides being energy stable our DLRA scheme ensures local

conservation of mass.

Theorem 5.11 (Mass conservation of the proposed DLRA scheme). The DLRA scheme

(5.12) together with the conservative truncation strategy described in Section 4.4.2 is lo-

cally mass conservative, i.e. it fulfills the local conservation law

1
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Ä√
2Φn+1

j + Bn+1
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Ä√
2Φn

j + Bn
j

ää
(5.20)
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iℓ |A|0ℓ ,

where Φn
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∑r
m,η=1X

n
jmSn

mηV
n
0η and Φn+1
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∑rn+1

m,η=1X
n+1
jm Sn+1

mη V n+1
0η . As done before,

we denote unjk =
∑r

m,η=1X
n
jmSn

mηV
n
kη. This is a discretization of the continuous local

conservation law given in (5.2).

Proof. The conservative truncation strategy is designed to not alter the zeroth order

moment, i.e. it holds
∑2r

m,η=1
“Xn+1
jm Ŝn+1

mη
“V n+1
0η = un+1

j0 . In addition, the basis aug-

mentations performed in (5.12g) and the adjustment step stated in (5.12h) ensure that∑2r
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mη
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0η =

∑rn+1

m,η=1X
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mη V n+1
0η . Combining both, this leads to the

equality
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We insert this relation into the coupled equations (5.12d) and (5.12e) and multiply (5.12d)

with
√

2. This yields
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5. A DLRA scheme for the Su-Olson problem

Due to the basis augmentations with Xn and Vn introduced by the rank-adaptive aug-

mented BUG integrator it can be concluded that

2r∑
m,η=1

“X∗
imS̃n

mη
“V ∗
ℓη =

r∑
m,η=1

Xn
imSn

mηV
n
ℓη = uniℓ.

We insert this relation into (5.21a), add equations (5.21a) and (5.21b), and rearrange

the obtained expression. This leads to the local conservation law (5.20), ensuring local

conservation of mass.

Hence, equipped with a conservative truncation step, the energy stable DLRA algorithm

presented in (5.12) locally conserves mass.

5.6 Numerical results

In this section, we provide numerical results to validate the energy stable and mass conser-

vative DLRA scheme proposed in (5.12). Sections 5.6.1 and 5.6.2 are devoted to commonly

considered 1D test examples in radiative transfer before in Section 5.6.3 an experiment

in two spatial dimensions is presented.

5.6.1 1D plane source

We consider the thermal RTEs as described in (5.1) on the spatial domain Ωx = [−10, 10]

and the angular domain Ωµ = [−1, 1]. As initial distribution we choose the cutoff Gaussian

u (t = 0, x) = max

Ñ
10−4,

1»
2πσ2

IC

exp

Ç
−(x− 1)2

2σ2
IC

åé
with constant deviation σIC = 0.03. Particles are initially centered around x = 1 and

move into all directions µ ∈ [−1, 1]. The initial value for the internal energy is set to

B0 = 1 and the opacity to the constant value σ = 1. For the low-rank computations an

initial rank of r = 20 is prescribed. Note that this setting is an extension of the so-called

plane source problem, which is a common test case for the RTE [GBD+01, Gan08]. In the

context of DLRA it has been studied for instance in [CKL22, KEC23, PMF20, PM21].

We compare the solution of the full coupled-implicit system

un+1
jk = unjk − ∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

Dx
jiu

n
iℓAkℓ + ∆t

∆x

2

Nx∑
i=1

Nµ−1∑
ℓ=0

Dxx
ji u

n
iℓ|A|kℓ (5.22a)

+ σ∆t
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j δk0 − un+1
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ä
,

Bn+1
j = Bn

j + σ∆t
Ä√

2un+1
j0 − 2Bn+1

j

ä
, (5.22b)
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5.6. Numerical results

to the solution obtained from the energy stable and mass conservative DLRA scheme

given in (5.12). We refer to (5.22) as the full system. The total mass at time tn is defined

as mn := ∆x
∑Nx

j=1

Ä√
2unj0 + Bn

j

ä
. As computational parameters we use Nx = 1000 cells

in the spatial domain and Nµ = 500 moments to represent the angular variable. The time

step size is chosen to be ∆t = CCFL · ∆x with a CFL number of CCFL = 0.99.

In Figure 5.1 we present the computational results for the solution f (x, µ), the scalar

flux Φ = 1√
2
⟨f⟩µ and the dimensionless temperature T = 4

√
B at the end time tend = 8.

Further, the evolution of the rank r in time and the evolution of the relative mass error
|m0−mn|

|m0| in time are shown. It is observable that the DLRA scheme captures well the

behavior of the full system. For a chosen tolerance parameter of ϑ = 10−1 ∥Σ∥F the rank

increases up to r = 23 before it significantly decreases again. The relative mass error

is of order O
(
10−13

)
. Hence, our proposed scheme is mass conservative up to machine

precision. These results confirm our theoretical considerations.

5.6.2 1D external source

For the next test problem, a source term Q (x) is added to the previously investigated

equations, leading to

∂tf (t, x, µ) + µ∂xf (t, x, µ) = σ (B (t, x) − f (t, x, µ)) + Q (x) ,

∂tB (t, x) = σ ⟨f (t, x, µ) −B (t, x)⟩µ .

This source term generates radiation particles moving through and interacting with the

background material. The interaction is driven by the opacity σ. In turn, particles heat

up the material, leading to a traveling temperature front, also called a Marshak wave

[Mar58]. Again this traveling heat wave can lead to the emission of new particles from

the background material, generating a particle wave. In our example we use the source

function Q (x) = χ[−0.5,0.5] (x) /a with a = 4σSB
c being the radiation and χ[−0.5,0.5] (x)

denoting the indicator function on [−0.5, 0.5]. The initial value for the internal energy is

set to B0 = 50. All other initial settings and computational parameters remain unchanged

from the previous test example given in Section 5.6.1.

In Figure 5.2 we display the numerical results for the solution f (x, µ), the scalar flux Φ =
1√
2
⟨f⟩µ and the temperature T = 4

√
B at a given time point tend = 3.16. We add the same

source term to the full coupled-implicit system (5.22) as well as to the presented energy

stable and mass conservative DLRA scheme given in (5.12) and compare the solution.

Further, the evolution of the rank in time is presented for a chosen tolerance parameter

of ϑ = 10−2 ∥Σ∥F . Again we observe that the proposed DLRA scheme approximates well

the behavior of the full system. In addition, a very low rank is sufficient to obtain accurate

results. Note that due to the additional source term there is no mass conservation in this

example.
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5. A DLRA scheme for the Su-Olson problem

Figure 5.1: Top row: Numerical results for the solution f (x, µ) of the plane source problem at time
tend = 8 computed with the full coupled-implicit solver (left) and the DLRA scheme (right). Middle
row: Scalar flux Φ (left) and temperature T (right) for both the full solver and the DLRA scheme.
Bottom row: Evolution of the rank in time for the DLRA method (left) and evolution of the relative
mass error in time compared for both methods (right).

5.6.3 2D beam

To approve computational benefits of the presented DLRA algorithm, we extend it to a

2D spatial and a 2D angular setting. The corresponding set of equations becomes

∂tf (t,x,Ω) + Ω · ∇xf (t,x,Ω) = σ (B (t,x) − f (t,x,Ω)) ,

∂tB (t,x) = σ ⟨f (t,x,Ω) −B (t,x)⟩Ω .

For the numerical experiments let x = (x, y) ∈ [−1, 1]× [−1, 1] and Ω = (Ωx,Ωy,Ωz) ∈ S2

be represented in 3D Cartesian coordinates as explained in Section 3.3.2. The initial
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5.6. Numerical results

Figure 5.2: Top row: Numerical results for the solution f (x, µ) of the external source problem at
time tend = 3.16 computed with the full coupled-implicit solver (left) and the DLRA scheme (right).
Middle row: Scalar flux Φ (left) and temperature T (right) for both the full solver and the DLRA
scheme. Bottom row: Evolution of the rank in time for the DLRA method.

condition of the 2D beam is given by

f (t = 0,x,Ω) = 106 · 1

2πσ2
x

exp

Ç
−∥x∥2

2σ2
x

å
· 1

2πσ2
Ω

exp

Ç
−(Ωx − Ω∗)2 + (Ωz − Ω∗)2

2σ2
Ω

å
,

where Ω∗ = 1√
2

and σx = σΩ = 0.1. The initial value for the internal energy is set to

B0 = 1 and the opacity to the constant value σ = 0.5. The low-rank computations are

performed with an initial rank of r = 100. The total mass at any time tn is defined as

mn := ∆x∆y
∑Nx·Ny

j=1

Ä
unj0 + Bn

j

ä
. We perform our computations on a spatial grid with

Nx = 500 cells in x and Ny = 500 cells in y. For the 2D angular discretization, we use
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5. A DLRA scheme for the Su-Olson problem

Figure 5.3: Numerical results for the scalar flux Φ and the temperature T for the 2D beam problem
computed with the full coupled-implicit solver (left) and the DLRA scheme (right) at time tend = 0.5.

the spherical harmonics method introduced in Section 3.3.2. We consider a polynomial

degree of NΩ = 29, corresponding to 900 expansion coefficients in angle. In general, the

polynomial degree shall be chosen large enough to ensure a correct behavior of the scheme

but still small enough to stay in a reasonable computational regime. The time step size is

chosen to be ∆t = CCFL ·∆x with a CFL number of CCFL = 0.7. We compare the solution

of the 2D full system corresponding to (5.22) to the solution obtained from the 2D DLRA

scheme corresponding to (5.12). The extension to two dimensions is straightforward.

In Figure 5.3 we show numerical results for the scalar flux Φ =
∫
S2 f (t,x,Ω) dΩ and the

temperature T = 4π
√

2 4
√
B at the end time tend = 0.5. We again observe the accuracy of

the proposed DLRA scheme. For the evolution of the rank r in time and the evolution of

the relative mass error
|m0−mn|

|m0| in time we consider a time interval up to tend = 1.5. In

Figure 5.4 one can observe that for a chosen tolerance parameter of ϑ = 5 · 10−4∥Σ∥F the

rank increases but does not approach its maximal allowed value of rmax = 100. Further,

the relative mass error stagnates at order O
(
10−11

)
and the DLRA method shows its mass

conservation property. For this setup, the computational benefit of the DLRA method is

significant. The scheme is implemented in Julia v1.7 and performed on a MacBook Pro

with M1 chip, resulting in a decrease of run time by a factor of approximately 8 from

20023 seconds to 2509 seconds.
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5.7. Summary and conclusion

Figure 5.4: Evolution of the rank in time for the 2D beam problem for the DLRA method (left) and
evolution of the relative mass error in time compared for both methods (right) until time tend = 1.5.

5.7 Summary and conclusion

We have introduced an energy stable and mass conservative DLRA scheme for the Su-

Olson problem. The main research contributions are:

(i) An energy stable numerical scheme with rigorous mathematical proofs: We have

shown that a naive IMEX scheme fails to guarantee energy stability. To overcome

this unphysical behavior, a DLRA scheme which advances radiation and internal

energy in a coupled-implicit way has been proposed. In addition, a classic hyperbolic

CFL condition has been derived, enabling to operate up to an optimal time step

size of ∆t = CCFL · ∆x.

(ii) A mass conservative and rank-adaptive augmented integrator: We have employed

the basis augmentation step described in [CKL22] as well as an adaption of the

conservative truncation strategy presented in [EOS23, EKS23] to guarantee local

mass conservation and rank adaptivity.

(iii) Numerical test examples confirming the theoretical properties: We have compared

the numerical results obtained from the DLRA scheme with the solution of the

full system for different test examples both in 1D and 2D, underlining the derived

properties while showing significantly reduced computational costs and memory

requirements, especially in the 2D setting.

Altogether, we have proposed a novel coupled-implicit energy stable DLRA scheme from

which conclusions on an appropriate discretization strategy regarding stability can be

drawn. For future work, we propose to implement the parallel integrator described in

[CKL24] for further enhancing the efficiency of the DLRA method.

75





6
A multiplicative DLRA scheme for the

Su-Olson problem

For the construction of efficient DLRA schemes the structure of the underlying problem

has to be taken into account. For instance, it has been shown in [EHY21] that for deriving

an efficient DLRA scheme for the non-linear isothermal Boltzmann-BGK equation it is

advantageous to consider a multiplicative splitting of the distribution function. This

allows for a separation of a generally not low-rank Maxwellian from a remaining low-rank

function, to which the DLRA scheme is subsequently applied. To transfer knowledge

about the construction of efficient DLRA schemes from the Su-Olson problem considered

in Chapter 5 to more general kinetic equations such as given in [EHY21], we reconsider

the Su-Olson problem in this chapter and decide on a multiplicative splitting of the

distribution function. One difficulty arising in this context is the treatment of the spatial

derivatives. For the temporal discretization again the potentially stiff opacity term has to

be taken into account, leading to a coupled-implicit scheme, which is complicated to solve.

In addition, the multiplicative splitting poses further challenges for the proof of energy

stability and for the construction of a DLRA scheme to which we account for instance by

pursuing a “first discretize, then low-rank” approach.

The structure of this chapter is as follows. In Section 6.1 we explain the considered mul-

tiplicative structure and derive two possible systems for the thermal radiative transfer

equations (RTEs) with multiplicative splitting, which in the continuous setting are equiv-

alent. In Section 6.2 a discretization of both systems in angle, space and time is given.

Section 6.3 is devoted to the subject of energy stability. We show that the advection form

of the multiplicative Su-Olson problem is generally not stable in the sense of von Neu-

mann, whereas for the conservative form an energy estimate can be derived under a classic

hyperbolic CFL condition. In Section 6.4 an energy stable DLRA scheme is presented. In

addition, mass conservation is shown in Section 6.5 when additional basis augmentations

and a suitable truncation strategy are used. The numerical results in Section 6.6 confirm

the derived properties before in Section 6.7 a brief summary and conclusion are given.

The results of this chapter closely follow the presentation in [BEKK25b].
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6. A multiplicative DLRA scheme for the Su-Olson problem

6.1 Thermal radiative transfer equations with multiplicative

splitting

We start from the Su-Olson problem given in equations (5.1) and decide on a multiplicative

splitting of the distribution function f of the form

f (t, x, µ) = B (t, x) g (t, x, µ) . (6.1)

Similar to [EHY21], we apply a DLRA approach to the function g. For this system, we de-

rive a mathematically rigorous proof of energy stability and a hyperbolic CFL condition.

As resembling in structure, this chapter can be understood as an intermediate step from

the Su-Olson problem treated in Chapter 5 towards more complicated Boltzmann-BGK

problems with multiplicative splitting as treated in [EHY21], where the time step size of

the proposed algorithm is not theoretically determined by means of analytical consider-

ations but experimentally chosen small enough to ensure good agreement in numerical

experiments. We insert the multiplicative splitting (6.1) into the continuous Su-Olson

problem (5.1) and obtain the set of equations

∂tg (t, x, µ) = − µ∂xg (t, x, µ) + σ (1 − g (t, x, µ)) − g (t, x, µ)

B (t, x)
∂tB (t, x) (6.2a)

− µ
g (t, x, µ)

B (t, x)
∂xB (t, x) ,

∂tB (t, x) = σB (t, x)
Ä
⟨g (t, x, µ)⟩µ − 2

ä
, (6.2b)

which is called the advection form of the multiplicative system. Using the product rule,

it splits up the spatial derivatives for B and g in (6.2a). This corresponds to the form

in which the multiplicative splitting in [EHY21] is applied to the non-linear isothermal

Boltzmann-BGK equation. Equation (6.2a) can be equivalently rewritten into a con-

servative form, leaving the spatial derivative of Bg together and leading to the system

∂tg (t, x, µ) = − µ

B (t, x)
∂x (B (t, x) g (t, x, µ)) + σ (1 − g (t, x, µ)) (6.3a)

− g (t, x, µ)

B (t, x)
∂tB (t, x) ,

∂tB (t, x) = σB (t, x)
Ä
⟨g (t, x, µ)⟩µ − 2

ä
. (6.3b)

Note that for both systems we omit initial and boundary conditions for now. In subsequent

considerations, our studies include the conservation properties of the derived numerical

scheme. The mass and the momentum of the multiplicative system are defined as follows.

Definition 6.1 (Macroscopic quantities). The mass of the multiplicative Su-Olson prob-

lem is defined as

ρ (t, x) :=

∫
f (t, x, µ) dµ + B (t, x) = B (t, x)

∫
g (t, x, µ) dµ + B (t, x) .
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6.2. Discretization of the multiplicative system

The momentum is given by

u (t, x) :=

∫
µf (t, x, µ) dµ = B (t, x)

∫
µg (t, x, µ) dµ.

In particular, the multiplicative Su-Olson problem satisfies the local conservation law

∂tρ (t, x) + ∂xu (t, x) = 0. (6.4)

In the following sections, we discretize both sets of equations (6.2) and (6.3) to compare

them in terms of numerical stability. We derive an energy stable DLRA scheme and give

a concrete hyperbolic CFL condition. Note that in contrast to Chapter 5 and to [EHY21],

we first discretize the equations and then apply a DLRA approach here.

6.2 Discretization of the multiplicative system

In this section, we fully discretize the advection form (6.2) as well as the conservative

form (6.3) of the multiplicative Su-Olson problem. We start with the angular and spatial

discretizations in Sections 6.2.1 and 6.2.2, followed by the temporal discretization in

Section 6.2.3.

6.2.1 Angular discretization

For the angular discretization a modal approach with normalized rescaled Legendre poly-

nomials Pℓ (µ) as introduced in Section 3.3.2 is applied. The rescaled Legendre polyno-

mials constitute a complete set of orthogonal functions on the interval [−1, 1] and satisfy

⟨Pk (µ) , Pℓ (µ)⟩µ = δkℓ. We approximate the distribution function g in terms of a finite

expansion with Nµ expansion coefficients of the form

g (t, x, µ) ≈ gNµ (t, x, µ) =

Nµ−1∑
ℓ=0

vℓ (t, x)Pℓ (µ) .

We insert this representation into the advection form (6.2), multiply (6.2a) with Pk (µ)

and integrate over µ. Together with the matrix A ∈ RNµ×Nµ defined in (3.26) we obtain

the angularly discretized equations

∂tvk (t, x) = −
Nµ−1∑
ℓ=0

∂xvℓ (t, x)Akℓ + σ
Ä√

2δk0 − vk (t, x)
ä
− vk (t, x)

B (t, x)
∂tB (t, x) (6.5a)

−
Nµ−1∑
ℓ=1

vℓ (t, x)

B (t, x)
∂xB (t, x)Akℓ,

∂tB (t, x) = σB (t, x)
Ä√

2v0 (t, x) − 2
ä
. (6.5b)
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6. A multiplicative DLRA scheme for the Su-Olson problem

Analogously, we obtain for the conservative form (6.3) the following equations

∂tvk (t, x) = − 1

B (t, x)

Nµ−1∑
ℓ=0

∂x (B (t, x) vℓ (t, x))Akℓ + σ
Ä√

2δk0 − vk (t, x)
ä

(6.6a)

− vk (t, x)

B (t, x)
∂tB (t, x) ,

∂tB (t, x) = σB (t, x)
Ä√

2v0 (t, x) − 2
ä
. (6.6b)

6.2.2 Spatial discretization

For the spatial discretization we construct a spatial grid with Nx grid cells and equidistant

spacing ∆x = 1
Nx

. Spatially dependent quantities are approximated as

Bj (t) ≈ B (t, xj) , vjk (t) ≈ vk (t, xj) for j = 1, ..., Nx.

Assuming periodic boundary conditions, first-order spatial derivatives ∂x are approxi-

mated using the centered FD method. For stability reasons, a diffusion term involving

second-order derivatives ∂xx is added. This term is also approximated by the centered

FD method. We employ the tridiagonal spatial stencil matrices Dx ∈ RNx×Nx given in

(3.8) and Dxx ∈ RNx×Nx defined in (3.11). Recall that the symmetric matrix A is diago-

nalizable in the form A = QMQ⊤ with Q being orthogonal and M = diag(σ0, ..., σNµ−1)

and that we have defined |A| = Q|M|Q⊤. We insert the proposed discretization into the

advection form (6.5) and add a second-order stabilization term for ∂xv. This leads to

v̇jk (t) = −
Nx∑
i=1

Nµ−1∑
ℓ=0

Dx
jiviℓ (t)Akℓ +

∆x

2

Nx∑
i=1

Nµ−1∑
ℓ=0

Dxx
ji viℓ (t) |A|kℓ (6.7a)

+ σ
Ä√

2δk0 − vjk (t)
ä
−

vjk (t)

Bj (t)
Ḃj (t) −

Nx∑
i=1

Nµ−1∑
ℓ=0

vjℓ (t)

Bj (t)
Dx

jiBi (t)Akℓ,

Ḃj (t) = σBj (t)
Ä√

2vj0 (t) − 2
ä
. (6.7b)

Inserting the discretization into the conservative form (6.6) and adding a second-order

stabilization term to ∂x (Bv) gives

v̇jk (t) = − 1

Bj (t)

Nx∑
i=1

Nµ−1∑
ℓ=0

Dx
jiBi (t) viℓ (t)Akℓ +

∆x

2

1

Bj (t)

Nx∑
i=1

Nµ−1∑
ℓ=0

Dxx
ji Bi (t) viℓ (t) |A|kℓ

+ σ
Ä√

2δk0 − vjk (t)
ä
−

vjk (t)

Bj (t)
Ḃj (t) , (6.8a)

Ḃj (t) = σBj (t)
Ä√

2vj0 (t) − 2
ä
. (6.8b)

Note that due to the different structure of the equations the stabilization term in (6.7a)

is applied to ∂xv, whereas in (6.8a) it is added for ∂x (Bv).
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6.3. Energy stability

6.2.3 Temporal discretization

In Section 5.4 it is shown that constructing a fully discrete energy stable scheme for the

Su-Olson problem is challenging. For the advection form we begin with equations (6.7)

and apply an explicit Euler step to the transport terms. The potentially stiff absorption

term is treated implicitly and the time derivative ∂tB is approximated by its difference

quotient. We obtain the following fully discrete space-time discretization

vn+1
jk = vnjk − ∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

Dx
jiv

n
iℓAkℓ + ∆t

∆x

2

Nx∑
i=1

Nµ−1∑
ℓ=0

Dxx
ji v

n
iℓ|A|kℓ (6.9a)

+ σ∆t
Ä√

2δk0 − vn+1
jk

ä
−

vn+1
jk

Bn
j

Ä
Bn+1

j −Bn
j

ä
− ∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

vnjℓ
Bn

j

Dx
jiB

n
i Akℓ,

Bn+1
j = Bn

j + σ∆tBn+1
j

Ä√
2vn+1

j0 − 2
ä
, (6.9b)

which describes one time step from time tn to time tn+1 = tn + ∆t. For the conservative

form (6.8), we again apply an explicit Euler step to the transport parts, treat the absorp-

tion term implicitly and approximate ∂tB by its difference quotient. In addition, we add

the factor
Bn+1

j

Bn
j

in the absorption term of (6.8a). This gives the fully discrete scheme

vn+1
jk = vnjk − ∆t

1

Bn
j

Nx∑
i=1

Nµ−1∑
ℓ=0

Dx
jiB

n
i v

n
iℓAkℓ + ∆t

∆x

2

1

Bn
j

Nx∑
i=1

Nµ−1∑
ℓ=0

Dxx
ji B

n
i v

n
iℓ|A|kℓ (6.10a)

+ σ∆t
Bn+1

j

Bn
j

Ä√
2δk0 − vn+1

jk

ä
−

vn+1
jk

Bn
j

Ä
Bn+1

j −Bn
j

ä
,

Bn+1
j = Bn

j + σ∆tBn+1
j

Ä√
2vn+1

j0 − 2
ä
. (6.10b)

Note that the evolution equations (6.9b) and (6.10b) for the internal energy B are the

same in both schemes. The main difference of (6.9a) and (6.10a) consists in the distinct

second-order stabilization terms and the additional factor
Bn+1

j

Bn
j

in (6.10a), which will be

explained later in the proof of energy stability.

6.3 Energy stability

The goal of this section consists in investigating energy stability of the derived schemes.

Note that this section is closely related to the considerations in Section 5.4. We first

introduce the following notations.

Definition 6.2. In the following considerations, we denote unjk := Bn
j v

n
jk. Note that

un =
Ä
unjk

ä
∈ RNx×Nµ corresponds to the angularly and spatially discretized f (t, x, µ) at

time tn and vn =
Ä
vnjk

ä
∈ RNx×Nµ corresponds to the angularly and spatially discretized

g (t, x, µ) at time tn in representation (6.1).
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6. A multiplicative DLRA scheme for the Su-Olson problem

Then the definition of the total energy of a fully discrete system can be given.

Definition 6.3 (Fully discrete total energy). Let un ∈ RNx×Nµ be the fully discrete

angular solution to the full Su-Olson problem at time tn and Bn =
Ä
Bn

j

ä
∈ RNx the

internal energy at time tn. The fully discrete total energy at time tn is defined as

En :=
1

2
∥un∥2F +

1

2
∥Bn∥2E ,

where ∥·∥F denotes the Frobenius and ∥·∥E the Euclidean norm.

In Section 6.3.1 it is shown that the advection form (6.9), in general, is not numerically

stable. Section 6.3.2 presents a proof of energy stability for the conservative form (6.10).

6.3.1 Advection form

We begin with the advection form (6.9) of the Su-Olson problem, which is comparable

to the considered DLRA discretization in [EHY21] for the isothermal Boltzmann-BGK

equation in the sense that the term ∂x (Bv) is split up into the sum of B∂xv and v∂xB.

We can show that this scheme is, in general, not von Neumann stable.

Theorem 6.4. There exist initial values vn ∈ RNx×Nµ and Bn ∈ RNx such that the

advection form (6.9) of the Su-Olson problem for σ = 0 is not von Neumann stable.

Proof. Let us assume a solution vnjk that is constant in space and direction, e.g. vnjk = 1.

For this solution all spatial derivatives are zero and the terms containing Dxvn and Dxxvn

in (6.9a) drop out. We further assume that for the opacity it holds σ = 0, i.e. the Su-

Olson problem reduces to a simple advection equation. From (6.9b) we thus derive the

equality Bn+1
j = Bn

j = Bj , i.e. the internal energy is constant in time. We insert these

results into (6.9a) and obtain

vn+1
jk = 1 − ∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

1

Bj
Dx

jiBiAkℓ.

Multiplication with Bj leads to

un+1
jk = unjk − ∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

Dx
jiu

n
iℓAkℓ.

This is a discretization of ∂tu+µ∂xu = 0 with an explicit Euler step forward in time and

a centered FD scheme in space. According to Remark 3.16 this discretization is not von

Neumann stable.

The consideration of this special case demonstrates that for the fully discrete advection

form (6.9) of the multiplicative Su-Olson problem numerical stability in the sense of von

Neumann as described in Section 3.2.3 cannot be guaranteed. In this sense, Theorem 6.4

serves as a motivation to seek a generally stable numerical discretization as done in the

next section.
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6.3. Energy stability

6.3.2 Conservative form

For the conservative form (6.10) we are able to derive a hyperbolic CFL condition and to

show that under this time step restriction the total energy of the system dissipates.

Theorem 6.5 (Energy stability of the fully discrete system). Under the time step restric-

tion ∆t ≤ ∆x the fully discrete system (6.10) is energy stable, i.e. it holds En+1 ≤ En.

Proof. The proof of this theorem is similar to the proof of Theorem 5.9. We start with

equation (6.10b) and multiply it with Bn+1
j . This givesÄ

Bn+1
j

ä2
= Bn

j B
n+1
j + σ∆t

Ä
Bn+1

j

ä2 Ä√
2vn+1

j0 − 2
ä
.

We insert relation (5.15) and sum over j, leading to

1

2

Nx∑
j=1

Ä
Bn+1

j

ä2
=

1

2

Nx∑
j=1

(
Bn

j

)2 − 1

2

Nx∑
j=1

Ä
Bn+1

j −Bn
j

ä2
+ σ∆t

Nx∑
j=1

Ä
Bn+1

j

ä2 Ä√
2vn+1

j0 − 2
ä
.

(6.11)

To obtain a similar expression for
Ä
un+1
jk

ä2
, we multiply (6.10a) with Bn+1

j Bn
j v

n+1
jk , sum

over j and k, and use the notation unjk = Bn
j v

n
jk. We obtain

Nx∑
j=1

Nµ−1∑
k=0

Bn+1
j Bn

j

Ä
vn+1
jk

ä2
=

Nx∑
j=1

Nµ−1∑
k=0

unjku
n+1
jk − ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

jiu
n
iℓAkℓ

+ ∆t
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji u
n
iℓ|A|kℓ (6.12)

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
−

Nx∑
j=1

Nµ−1∑
k=0

Bn+1
j

Ä
vn+1
jk

ä2 Ä
Bn+1

j −Bn
j

ä
.

Note that for this step the additional factor
Bn+1

j

Bn
j

in (6.10a) is crucial. We insert relation

(5.18) into (6.12), put the last term of (6.12) to the left-hand side and rearrange. Then,

1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk

ä2
=

1

2

Nx∑
j=1

Nµ−1∑
k=0

(
unjk
)2 − 1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk − unjk

ä2
(6.13)

− ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

jiu
n
iℓAkℓ + ∆t

∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji u
n
iℓ|A|kℓ

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
.
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6. A multiplicative DLRA scheme for the Su-Olson problem

In the next step, we add artificial zero terms to the equation. Adding the zero term

∆t
∑Nx

i,j=1

∑Nµ−1
k,ℓ=0 un+1

jk Dx
jiu

n+1
iℓ Akℓ and adding and subtracting the second-order term

∆t∆x
2

∑Nx
i,j=1

∑Nµ−1
k,ℓ=0 un+1

jk Dxx
ji u

n+1
iℓ |A|kℓ leads to

1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk

ä2
=

1

2

Nx∑
j=1

Nµ−1∑
k=0

(
unjk
)2 − 1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk − unjk

ä2
− ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

ji

(
uniℓ − un+1

iℓ

)
Akℓ (I)

+ ∆t
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji

(
uniℓ − un+1

iℓ

)
|A|kℓ (II)

+ ∆t
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji u
n+1
iℓ |A|kℓ (III)

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
.

We proceed by analyzing the terms (I), (II), and (III) separately. Let us start with (I)

and (II) and apply Young’s inequality given in Lemma 5.6. For the sum (I) + (II) this

results in

− ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

ji

(
uniℓ − un+1

iℓ

)
Akℓ + ∆t

∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji

(
uniℓ − un+1

iℓ

)
|A|kℓ

= − ∆t

Nx∑
i=1

Nµ−1∑
ℓ=0

(
uniℓ − un+1

iℓ

)Ñ Nx∑
j=1

Nµ−1∑
k=0

Å
Dx

jiu
n+1
jk Akℓ −

∆x

2
Dxx

ji u
n+1
jk |A|kℓ

ãé
≤ 1

2

Nx∑
i=1

Nµ−1∑
ℓ=0

(
uniℓ − un+1

iℓ

)2
+

(∆t)2

2

Nx∑
i=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

Å
Dx

jiu
n+1
jk Akℓ −

∆x

2
Dxx

ji u
n+1
jk |A|kℓ

ãé2

.

For (III) we exploit the properties of the stencil matrices given in Lemma 3.1. This leads

to the equality

∆t
∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji u
n+1
iℓ |A|kℓ = −∆t

∆x

2

Nx∑
j=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
i=1

Nµ−1∑
k=0

D+
jiu

n+1
ik |A|1/2kℓ

é2

.
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We insert both relations and obtain

1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk

ä2
≤ 1

2

Nx∑
j=1

Nµ−1∑
k=0

(
unjk
)2

+
(∆t)2

2

Nx∑
i=1

Nµ−1∑
ℓ=0

(
Nx∑
j=1

Nµ−1∑
k=0

(
Dx

jiu
n+1
jk Akℓ

− ∆x

2
Dxx

ji u
n+1
jk |A|kℓ

))2

− ∆t
∆x

2

Nx∑
j=1

Nµ−1∑
ℓ=0

Ñ
Nx∑
i=1

Nµ−1∑
k=0

D+
jiu

n+1
ik |A|1/2kℓ

é2

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
.

With Lemma 5.8 we can conclude that under the time step restriction ∆t ≤ ∆x it holds

1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk

ä2
≤ 1

2

Nx∑
j=1

Nµ−1∑
k=0

(
unjk
)2

(6.14)

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
.

To obtain an expression for the total energy of the system given in Definition 6.3, we add

equations (6.14) and (6.11). This yields

En+1 ≤ En − 1

2

Nx∑
j=1

Ä
Bn+1

j −Bn
j

ä2
+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
+ σ∆t

Nx∑
j=1

Ä
Bn+1

j

ä2 Ä√
2vn+1

j0 − 2
ä
.

The term −1
2

∑Nx
j=1

Ä
Bn+1

j −Bn
j

ä2
is non-positive. The remaining two terms on the right-

hand side can be rewritten and bounded as follows:

σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
+ σ∆t

Nx∑
j=1

Ä
Bn+1

j

ä2 Ä√
2vn+1

j0 − 2
ä

≤ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2 (
−
Ä
vn+1
jk

ä2
+ 2

√
2vn+1

jk δk0 − 2δk0

)

= − σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2 Ä
vn+1
jk −

√
2δk0
ä2

≤ 0.
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Hence, we have shown that under the time step restriction ∆t ≤ ∆x it holds En+1 ≤ En,

and the system is energy stable.

6.4 Energy stable DLRA scheme for multiplicative Su-Olson

Having attained an energy stable discretization of the multiplicative Su-Olson problem,

its practical implementation can still pose numerical challenges such as large memory

demands and computational costs, especially in higher-dimensional settings. To overcome

these problems, we apply the concept of DLRA to the energy stable conservative form

(6.10) of the Su-Olson problem to evolve vn =
Ä
vnjk

ä
to vn+1 =

Ä
vn+1
jk

ä
. First note

that for the derivation of the DLRA scheme we rewrite the equations given in (6.10). In

(6.10a), we put all terms containing vn+1
jk to the left-hand side and divide by 1 + σ∆t.

Further, we multiply (6.10b) with 1
Bn

j
. This establishes the system

Bn+1
j

Bn
j

vn+1
jk =

1

1 + σ∆t
vnjk −

∆t

1 + σ∆t

1

Bn
j

Nx∑
i=1

Nµ−1∑
ℓ=0

Dx
jiB

n
i v

n
iℓAkℓ (6.15a)

+
∆t

1 + σ∆t

∆x

2

1

Bn
j

Nx∑
i=1

Nµ−1∑
ℓ=0

Dxx
ji B

n
i v

n
iℓ|A|kℓ +

√
2σ∆t

1 + σ∆t

Bn+1
j

Bn
j

δk0,

Bn+1
j

Bn
j

= 1 + σ∆t
Bn+1

j

Bn
j

Ä√
2vn+1

j0 − 2
ä
. (6.15b)

In what follows, we derive an energy stable and mass conservative DLRA discretization

for equations (6.15) which makes use of the rank-adaptive augmented BUG integrator

described in [CKL22] together with additional basis augmentations and a conservative

truncation strategy. In detail, the DLRA scheme works as follows.

In the first step of the scheme, an update of the quantity vnjk =
∑r

m,η=1X
n
jmSn

mηV
n
kη

to
Bn+1

j

Bn
j

v∗jk =
∑4r

m,η=1
““X∗

jm
̂̂S∗
mη
““V ∗

kη is performed for k ̸= 0. We introduce the notation

Kn
jη =

∑r
m=1X

n
jmSn

mη and solve the K-step equation

K∗
jp =

1

1 + σ∆t
Kn

jp −
∆t

1 + σ∆t

1

Bn
j

Nx∑
i=1

Dx
jiB

n
i

r∑
η=1

Kn
iη

Nµ−1∑
k,ℓ=0

V n
ℓηAkℓV

n
kp (6.16a)

+
∆t

1 + σ∆t

∆x

2

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i

r∑
η=1

Kn
iη

Nµ−1∑
k,ℓ=0

V n
ℓη|A|kℓV n

kp.

The updated basis “X∗ of rank 2r is derived from a QR-decomposition of the augmented

quantity “X∗ = qr ([K∗,Xn]). Moreover, we perform an additional basis augmentation

86



6.4. Energy stable DLRA scheme for multiplicative Su-Olson

step according to““X∗ = qr

Åï“X∗,
1

Bn
⊙Dx (Bn ⊙Xn) ,

1

Bn
⊙Dxx (Bn ⊙Xn)

òã
, (6.16b)

which ensures the exactness of the corresponding projection operators in the proof of

energy stability of the DLRA scheme. The symbol ⊙ denotes a pointwise multiplication

and the vector 1
Bn ∈ RNx is defined to contain the elements 1

Bn
j

for each j = 1, ..., Nx.

In addition, we compute and store ̂̂M = ““X∗,⊤Xn. Note that for this scheme we perform

full rank updates, leading to an increase from rank 2r to 4r. Quantities of rank 2r are

denoted with one single hat and quantities of rank 4r with double hats.

The L-step can be computed in parallel with the K-step. We introduce the notation

Ln
km =

∑r
η=1 S

n
mηV

n
kη and solve

L∗
kp =

1

1 + σ∆t
Ln
kp −

∆t

1 + σ∆t

Nµ−1∑
ℓ=0

Akℓ

r∑
m=1

Ln
ℓm

Nx∑
i=1

Xn
imBn

i

Nx∑
j=1

Dx
ji

1

Bn
j

Xn
jp (6.16c)

+
∆t

1 + σ∆t

∆x

2

Nµ−1∑
ℓ=0

|A|kℓ
r∑

m=1

Ln
ℓm

Nx∑
i=1

Xn
imBn

i

Nx∑
j=1

Dxx
ji

1

Bn
j

Xn
jp.

The updated basis “V∗ of rank 2r is derived from a QR-decomposition of the augmented

quantity “V∗ = qr ([L∗,Vn]). Moreover, we perform an additional basis augmentation

step according to ““V∗ = qr
Äî“V∗,A⊤Vn, |A|⊤Vn

óä
, (6.16d)

leading to a new augmented basis ““Vn+1 of rank 4r. This basis augmentation again

ensures the exactness of the corresponding projection operators and will be made clear

in the proof of energy stability of the DLRA scheme later. In addition, we compute and

store ““N = ““V∗,⊤Vn.

For the S-step, the previously computed solutions obtained in the K- and L-step are

used. We introduce the notation S̃n
mη =

∑r
j,k=1

̂̂MmjS
n
jk
““Nηk and solve the equation

̂̂S∗
qp =

1

1 + σ∆t
S̃n
qp

− ∆t

1 + σ∆t

Nx∑
j=1

““X∗
jq

1

Bn
j

Nx∑
i=1

Dx
jiB

n
i

4r∑
m,η=1

““X∗
imS̃n

mη

Nµ−1∑
k,ℓ=0

““V ∗
ℓηAkℓ

““V ∗
kp (6.16e)

+
∆t

1 + σ∆t

∆x

2

Nx∑
j=1

““X∗
jq

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i

4r∑
m,η=1

““X∗
imS̃n

mη

Nµ−1∑
k,ℓ=0

““V ∗
ℓη|A|kℓ““V ∗

kp.

In the next step, we consider the equations for k = 0. In this case, the expressions for

87



6. A multiplicative DLRA scheme for the Su-Olson problem

Bn+1
j

Bn
j

ṽn+1
j0 and

Bn+1
j

Bn
j

are coupled and we solve the system

Bn+1
j

Bn
j

ṽn+1
j0 =

1

1 + σ∆t

r∑
m,η=1

Xn
jmSn

mηV
n
0η

− ∆t

1 + σ∆t

1

Bn
j

Nx∑
i=1

Dx
jiB

n
i

4r∑
m,η=1

““X∗
imS̃n

mη

Nµ−1∑
ℓ=0

““V ∗
ℓηA0ℓ (6.16f)

+
∆t

1 + σ∆t

∆x

2

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i

4r∑
m,η=1

““X∗
imS̃n

mη

Nµ−1∑
ℓ=0

““V ∗
ℓη|A|0ℓ

+

√
2σ∆t

1 + σ∆t

Bn+1
j

Bn
j

,

Bn+1
j

Bn
j

= 1 + σ∆t
Bn+1

j

Bn
j

Ä√
2ṽn+1

j0 − 2
ä
. (6.16g)

Using equations (6.16f) and (6.16g), ṽn+1
0 =

Ä
ṽn+1
j0

ä
and Bn+1 =

Ä
Bn+1

j

ä
can be retrieved.

The latter is used to multiply the DLRA expression of
Bn+1

j

Bn
j

v∗jk =
∑4r

m,η=1
““X∗

jm
̂̂S∗
mη
““V ∗

kη

with the factor
Bn

j

Bn+1
j

in the form of a transformation step given by

K∗,trans
jp =

Bn
j

Bn+1
j

K∗
jp. (6.16h)

From a QR-decomposition we obtain ““X∗,trans ̂̂S∗,trans = qr
(
K∗,trans). Then we perform an

additional basis augmentation step according to““Xn+1 = qr
([

ṽn+1
0 ,““X∗,trans

])
and ““Vn+1 = qr

([
e1,
““V∗
])

, (6.16i)

where we add ṽn+1
0 to the updated spatial low-rank basis since the mass of the system

is given by the zeroth order moment ṽn+1
0 . In the directional basis, we add e1 ∈ RNµ .

Again, these basis augmentations ensure the conservation of mass of the DLRA scheme.

Finally, we have to adjust the coefficient matrix from ̂̂S∗,trans to ̂̂Sn+1 ∈ R(4r+1)×(4r+1) as

̂̂Sn+1 = ““Xn+1,⊤““X∗,trans ̂̂S∗,trans““V∗
Ä
I− e1e

⊤
1

ä ““Vn+1 + ““Xn+1,⊤ṽn+1
0 e⊤1

““Vn+1. (6.16j)

We obtain the updated solution vn+1 = ““Xn+1 ̂̂Sn+1““Vn+1 ∈ RNx×Nµ . In a last step, we

truncate the augmented quantities ““Xn+1, ̂̂Sn+1 and ““Vn+1 from rank 4r+ 1 to a new rank

rn+1 by using a suitable truncation strategy such as proposed in Section 4.4.2. This

eventually gives the low-rank factors Xn+1,Sn+1, and Vn+1. To provide an overview

of the DLRA scheme, its structure is visualized in Algorithm 2. Note that this scheme

is significantly different from the one presented in Section 5.4.2 as the multiplicative

structure leads to additional basis augmentations introduced in (6.16b) and (6.16d) as

well as to a different solution of the coupled equations given in (6.16f) and (6.16g).
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Algorithm 2 Flowchart of the energy stable and mass conservative multiplicative DLRA
scheme (6.16).

input
• internal energy at time tn: B

n
j

• low-rank factors at time tn: X
n
jm, Sn

mη, V
n
kη

• rank at time tn: r

update bases according to (6.16a) and (6.16c)

augment bases with Xn
jm, V n

kη

augment bases with 1
Bn

j

∑Nx
i=1D

x
jiB

n
i X

n
im, 1

Bn
j

∑Nx
i=1D

xx
ji B

n
i X

n
im

and
∑Nµ

ℓ=0AkℓV
n
ℓη,
∑Nµ

ℓ=0 |A|kℓ V
n
ℓη according to (6.16b) and (6.16d)

update coefficient matrix according to (6.16e)

update zeroth order moment and internal energy according to (6.16f) and (6.16g)

perform transformation step according to (6.16h)

augment bases with ṽn+1
0 and e1 according to (6.16i)

adjust coefficient matrix ̂̂S∗,trans
mη according to (6.16j)

truncate factors ““Xn+1
jm , ̂̂Sn+1

mη ,““V n+1
kη

output

• internal energy at time tn+1: B
n+1
j

• low-rank factors at time tn+1: X
n+1
jm , Sn+1

mη , V n+1
kη

• rank at time tn+1: rn+1

K∗
jp, L

∗
kp“X∗

jm,“V ∗
kη

““X∗
jm,““V ∗

kη

̂̂S∗
mη

Bn+1
j , ṽn+1

j0““X∗,trans
jm , ̂̂S∗,trans

mη““Xn+1
jm ,““V n+1

kη

̂̂Sn+1
mη
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Proof of energy stability of the proposed multiplicative low-rank scheme. It can be

shown that the DLRA scheme proposed in (6.16) preserves the energy stability of the full

system given in Section 5.4.2. The rewriting of equations (6.10) into (6.15) as well as the

basis augmentations introduced in (6.16b) and (6.16d) differentiate this DLRA method

from the existing scheme in Section 5.4.2 and are crucial for the proof.

Theorem 6.6 (Energy stability of the proposed multiplicative DLRA scheme). Under

the time step restriction ∆t ≤ ∆x the fully discrete multiplicative DLRA scheme (6.16)

is energy stable, i.e. it holds En+1 ≤ En.

Proof. Similar to the proof of Theorem 6.5, an estimate for the fully discrete energy

introduced in Definition 6.3 is sought. We begin with the internal energy B and multiply

equation (6.16g) with Bn
j B

n+1
j . This leads toÄ

Bn+1
j

ä2
= Bn

j B
n+1
j + σ∆t

Ä
Bn+1

j

ä2 Ä√
2vn+1

j0 − 2
ä
.

We insert relation (5.15) to rewrite the product Bn
j B

n+1
j and sum over j, rendering the

expression

1

2

Nx∑
j=1

Ä
Bn+1

j

ä2
=

1

2

Nx∑
j=1

(
Bn

j

)2 − 1

2

Nx∑
j=1

Ä
Bn+1

j −Bn
j

ä2
(6.17)

+ σ∆t

Nx∑
j=1

Ä
Bn+1

j

ä2 Ä√
2vn+1

j0 − 2
ä
.

This is the same equation as stated in (6.11) in the proof of Theorem 6.5. To obtain

a similar expression for
Ä
un+1
jk

ä2
, we multiply equation (6.16e) with ““X∗

αq
““V ∗

βp and sum

over q and p. For simplicity of notation, we introduce v∗αβ :=
∑4r

q,p=1
““X∗

αq
̂̂S∗
qp
““V ∗

βp and

vnαβ :=
∑4r

q,p=1
““X∗

αqS̃
n
qp
““V ∗

βp as well as the projection operators PX∗
αj =

∑4r
q=1
““X∗

αq
““X∗

jq and

P V ∗
kβ =

∑4r
p=1
““V ∗

kp
““V ∗

βp. We obtain

v∗αβ =
1

1 + σ∆t
vnαβ − ∆t

1 + σ∆t

Nx∑
j=1

PX∗
αj

1

Bn
j

Nx∑
i=1

Dx
jiB

n
i

Nµ−1∑
k,ℓ=0

vniℓAkℓP
V ∗
kβ (6.18)

+
∆t

1 + σ∆t

∆x

2

Nx∑
j=1

PX∗
αj

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i

Nµ−1∑
k,ℓ=0

vniℓ|A|kℓP V ∗
kβ .

Further, we denote vn+1
αβ :=

∑4r+1
q,p=1

““Xn+1
αq
̂̂Sn+1
qp
““V n+1

βp . From equation (6.16j), we can derive

the equation

Bn+1
α

Bn
α

vn+1
αβ = v∗αβ (1 − δβ0) +

Bn+1
α

Bn
α

ṽn+1
α0 δβ0.

Hence, inserting the schemes for v∗αβ and ṽn+1
α0 , i.e. equations (6.18) and (6.16f), establishes
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the expression

Bn+1
α

Bn
α

vn+1
αβ (1 + σ∆t) =

(
vnαβ − ∆t

Nx∑
j=1

PX∗
αj

1

Bn
j

Nx∑
i=1

Dx
jiB

n
i

Nµ−1∑
k,ℓ=0

vniℓAkℓP
V ∗
kβ

+ ∆t
∆x

2

Nx∑
j=1

PX∗
αj

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i

Nµ−1∑
k,ℓ=0

vniℓ|A|kℓP V ∗
kβ

)
(1 − δβ0)

+

(
vnα0 − ∆t

Nx∑
i=1

1

Bn
α

Dx
αiB

n
i

Nµ−1∑
ℓ=0

vniℓA0ℓ

+ ∆t
∆x

2

Nx∑
i=1

1

Bn
α

Dxx
αiB

n
i

Nµ−1∑
ℓ=0

vniℓ|A|0ℓ +
√

2σ∆t
Bn+1

α

Bn
α

)
δβ0.

We proceed by employing the fact that we have augmented the spatial basis according

to (6.16b) and (6.16d). This allows us to write any function hni ∈ span (Xn
i ) and h̃nℓ ∈

span (V n
ℓ ) as

Nx∑
j=1

PX∗
αj

1

Bn
j

Nx∑
i=1

Dx
jiB

n
i h

n
i =

1

Bn
α

Nx∑
i=1

Dx
αiB

n
i h

n
i and

Nµ−1∑
k,ℓ=0

h̃nℓAkℓP
V ∗
kβ =

Nµ−1∑
ℓ=0

h̃nℓAβℓ,

Nx∑
j=1

PX∗
αj

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i h

n
i =

1

Bn
α

Nx∑
i=1

Dxx
αiB

n
i h

n
i and

Nµ−1∑
k,ℓ=0

h̃nℓ |A|kℓP V ∗
kβ =

Nµ−1∑
ℓ=0

h̃nℓ |A|βℓ.

To be consistent in notation, we change the indices from α to j and from β to k at

this point. The basis augmentations as well as the properties of the projection operators

enable us to obtain a representation of the form

Bn+1
j

Bn
j

vn+1
jk (1 + σ∆t) = F (1 − δk0) + Fδk0 +

√
2σ∆t

Bn+1
j

Bn
j

δk0

with

F = vnjk − ∆t
1

Bn
j

Nx∑
i=1

Dx
jiB

n
i

Nµ−1∑
ℓ=0

vniℓAkℓ + ∆t
∆x

2

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i

Nµ−1∑
ℓ=0

vniℓ |A|kℓ .

On the right-hand side the factor Fδk0 cancels out. This yields the equation

Bn+1
j

Bn
j

vn+1
jk (1 + σ∆t) = vnjk − ∆t

1

Bn
j

Nx∑
i=1

Dx
jiB

n
i

Nµ−1∑
ℓ=0

vniℓAkℓ

+ ∆t
∆x

2

1

Bn
j

Nx∑
i=1

Dxx
ji B

n
i

Nµ−1∑
ℓ=0

vniℓ |A|kℓ +
√

2σ∆t
Bn+1

j

Bn
j

δk0.

In the next step we multiply this expression with Bn+1
j Bn

j v
n+1
jk , sum over j and k, rear-

range the obtained equation, use the notation unjk = Bn
j v

n
jk, and insert relation (5.18).
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This leads to

1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk

ä2
=

1

2

Nx∑
j=1

Nµ−1∑
k=0

(
unjk
)2 − 1

2

Nx∑
j=1

Nµ−1∑
k=0

Ä
un+1
jk − unjk

ä2
− ∆t

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dx

jiu
n
iℓAkℓ + ∆t

∆x

2

Nx∑
i,j=1

Nµ−1∑
k,ℓ=0

un+1
jk Dxx

ji v
n
iℓ |A|kℓ

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

Ä
Bn+1

j

ä2
vn+1
jk

Ä√
2δk0 − vn+1

jk

ä
,

which is the same expression as in equation (6.13) in the proof of Theorem 6.5. We apply

the same estimates as in the proof of Theorem 6.5 and add the resulting equation and

equation (6.17). Analogously to the proof of Theorem 6.5 and due to the fact that the

truncation step does not alter the zeroth order moment, we obtain energy stability of the

multiplicative DLRA scheme under the time step restriction ∆t ≤ ∆x.

6.5 Mass conservation

The multiplicative DLRA scheme described in (6.16) can be shown to be locally mass

conservative when using a suitable truncation strategy. For instance, the truncation

strategy presented in Section 4.4.2 can be easily adjusted to the considered framework,

which includes quantities of rank 4r instead of 2r. We translate the macroscopic quantities

introduced in Definition 6.1 to the fully discrete setting.

Definition 6.7 (Fully discrete macroscopic quantities). The mass and the momentum

of the fully discrete multiplicative Su-Olson problem at time tn are defined as

ρnj :=
√

2Bn
j v

n
j0 + Bn

j and unj :=
√

2Bn
j

Nµ−1∑
ℓ=0

vnjℓA0ℓ.

It can be shown that the DLRA algorithm proposed in (6.16) together with the conser-

vative truncation strategy fulfills the following local conservation law.

Theorem 6.8 (Mass conservation of the proposed multiplicative DLRA scheme). The

DLRA scheme given in (6.16) together with the conservative truncation strategy presented

in Section 4.4.2 is locally mass conservative, i.e. it fulfills the local conservation law

1

∆t

Ä√
2Bn+1

j Φn+1
j + Bn+1

j −
Ä√

2Bn
j Φn

j + Bn
j

ää
(6.19)

= −
√

2

Nx∑
i=1

Dx
jiB

n
i

Nµ−1∑
ℓ=0

vniℓA0ℓ +
√

2

Nx∑
i=1

Dxx
ji B

n
i

Nµ−1∑
ℓ=0

vniℓ|A|0ℓ,

where Φn
j :=

∑r
m,η=1X

n
jmSn

mηV
n
0η and Φn+1

j =
∑rn+1

m,η=1X
n+1
jm Sn+1

mη V n+1
0η . As done before,
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we denote vnjk =
∑r

m,η=1X
n
jmSn

mηV
n
kη. This is a discretization of the continuous local

conservation law given in (6.4).

Proof. The conservative truncation strategy is designed to leave the zeroth order moment

unchanged, i.e. it holds
∑4r

m,η=1
““Xn+1

jm
̂̂Sn+1
mη
““V n+1

0η = vn+1
j0 . In addition, we know from the

basis augmentation performed in (6.16i) and the adjustment step stated in (6.16j) that

it holds
∑4r

m,η=1
““Xn+1

jm
̂̂Sn+1
mη
““V n+1

0η =
∑rn+1

m,η=1X
n+1
jm Sn+1

mη V n+1
0η . Combining both equalities,

we obtain

Φn+1
j =

rn+1∑
m,η=1

Xn+1
jm Sn+1

mη V n+1
0η =

4r∑
m,η=1

““Xn+1
jm
̂̂Sn+1
mη
““V n+1

0η = vn+1
j0 .

We insert this relation into the coupled equations (6.16f) and (6.16g). We multiply (6.16f)

with
√

2 (1 + σ∆t), rearrange it, and multiply both equations with Bn
j . This leads to

√
2Bn+1

j Φn+1
j =

√
2Bn

j Φn
j −

√
2∆t

Nx∑
i=1

Dx
jiB

n
i

4r∑
m,η=1

““X∗
imS̃n

mη

Nµ−1∑
ℓ=0

““V ∗
ℓηA0ℓ

+
√

2∆t
∆x

2

Nx∑
i=1

Dxx
ji B

n
i

4r∑
m,η=1

““X∗
imS̃n

mη

Nµ−1∑
ℓ=0

““V ∗
ℓη|A|0ℓ (6.20a)

+ σ∆tBn+1
j

Ä
2 −

√
2Φn+1

j

ä
,

Bn+1
j = Bn

j + σ∆tBn+1
j

Ä√
2Φn+1

j − 2
ä
. (6.20b)

Due to the basis augmentations with Xn and Vn introduced by the rank-adaptive aug-

mented BUG integrator it can be concluded that

4r∑
m,η=1

““X∗
imS̃n

mη
““V ∗

ℓη =
r∑

m,η=1

Xn
imSn

mηV
n
ℓη = vniℓ.

We insert this relation into expression (6.20a), add equations (6.20a) and (6.20b), and

rearrange the result. This leads to the local conservation law (6.19), ensuring the local

conservation of mass.

Hence, equipped with a conservative truncation step, the energy stable DLRA algorithm

presented in (6.16) locally conserves mass.

6.6 Numerical results

In this section, we compare the solution of the DLRA scheme (6.16) to the solution of

the full equations (6.15). We provide different test examples in 1D which validate our

theoretical results. Section 6.6.1 reconsiders the 1D plane source problem, whereas Section

6.6.2 is devoted to the 1D Marshak wave problem with external source. Note that in this
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chapter we focus on the theoretical difficulties arising for a multiplicative splitting of the

distribution function and on proper theoretical results. For this reason we refrain from

higher-dimensional examples but expect the DLRA scheme to equally provide accurate

and efficient solutions similar to the 2D result given in Section 5.6.3.

6.6.1 1D plane source

We first examine the 1D plane source test case. This is a common test example for

thermal radiative transfer and has already been treated in Section 5.6.1 for the non-

multiplicative Su-Olson problem. We consider the spatial domain Ωx = [−10, 10] and the

angular domain Ωµ = [−1, 1]. The initial distribution is chosen to be the cutoff Gaussian

v (t = 0, x) =
1

B0
max

Ñ
10−4,

1»
2πσ2

IC

exp

Ç
−(x− 1)2

2σ2
IC

åé
,

with constant deviation σIC = 0.03. The traveling particles are initially centered around

x = 1 and move into all directions µ ∈ [−1, 1]. The initial value for the internal energy

is set to B0 = 1 and for the opacity to σ = 1. For the low-rank computations an initial

rank of r = 10 is prescribed. This value is chosen smaller than in Section 5.6.1 as we

are concerned with quantities of rank 4r + 1. The total mass mn at time tn is defined

as mn := ∆x
∑Nx

j=1

Ä√
2Bn

j v
n
j0 + Bn

j

ä
. As computational parameters we use Nx = 1000

cells in the spatial and Nµ = 500 moments in the angular variable. The time step size is

determined by ∆t = CCFL · ∆x with a CFL number of CCFL = 0.99.

In Figure 6.1 we compare the solution of the DLRA scheme with the solution of the full

system. It is observable that the solution f (x, µ) as well as the scalar flux Φ = 1√
2
⟨f⟩µ

and the dimensionless temperature T = 4
√
B at the end time tend = 8 are captured well

by the DLRA scheme. For a chosen tolerance parameter of ϑ = 10−1∥Σ∥F the rank r

increases up to r = 23 before it significantly decreases again. The relative mass error
|m0−mn|

|m0| is of order O
(
10−13

)
, i.e. the proposed DLRA scheme is mass conservative up

to machine precision. These results confirm our theoretical considerations and match the

results of the non-multiplicative Su-Olson problem described in Section 5.6.1.

6.6.2 1D external source

In a second example, an external source term Q (x) is added to the conservative form of

the Su-Olson system (6.3), leading to

∂tg (t, x, µ) = − µ

B (t, x)
∂x (B (t, x) g (t, x, µ)) + σ (1 − g (t, x, µ))

− g (t, x, µ)

B (t, x)
∂tB (t, x) +

Q (x)

B (t, x)
,

∂tB (t, x) = σB (t, x)
Ä
⟨g (t, x, µ)⟩µ − 2

ä
.
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6.6. Numerical results

Figure 6.1: Top row: Numerical results for the solution f (x, µ) of the plane source problem at time
tend = 8 computed with the multiplicative full solver (left) and the multiplicative DLRA scheme (right).
Middle row: Scalar flux Φ (left) and temperature T (right) for both the multiplicative full solver and
the multiplicative DLRA scheme. Bottom row: Evolution of the rank in time for the multiplicative
DLRA method (left) and evolution of the relative mass error in time compared for both methods
(right).

This test example is known as the Marshak wave problem [Mar58] and has already been

considered in Section 5.6.2 for the non-multiplicative Su-Olson problem. In our example,

we use the source function Q (x) = χ[−0.5,0.5] (x) /a with a = 4σSB
c being the radiation

constant and χ[−0.5,0.5] (x) denoting the indicator function on [−0.5, 0.5]. The initial value

for the internal energy is set to B0 = 50. All other initial settings and computational

parameters remain unchanged from the previous test example given in Section 6.6.1.

In Figure 6.2 we compare the solution of the full equations (6.15) to the solution obtained

from the DLRA scheme presented in (6.16). Both schemes are adjusted to take the
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6. A multiplicative DLRA scheme for the Su-Olson problem

additional source term into account. The numerical results for the solution f (x, µ), for

the scalar flux Φ = 1√
2
⟨f⟩µ and for the dimensionless temperature T = 4

√
B at the end

time tend = 3.16, computed with both solvers, are shown. We again observe that the

DLRA scheme captures the solution of the full system. For a chosen tolerance parameter

of ϑ = 10−3∥Σ∥F the rank r increases up to a value of r = 23. Due to the additional

source term, there is no conservation of mass in this test example. These results confirm

our theoretical considerations and match the results of the non-multiplicative Su-Olson

problem described in Section 5.6.2. However, note that for an accurate solution of the

DLRA scheme a smaller truncation tolerance parameter ϑ as well as a higher rank r

are required, indicating that the multiplicative structure numerically poses additional

challenges.

6.7 Summary and conclusion

We have presented a DLRA discretization for the multiplicative Su-Olson problem that

is energy stable and mass conservative. The main research contributions are:

(i) A multiplicative splitting of the distribution function: Based on the insights gained

in [EHY21] we have considered a multiplicative splitting of the distribution func-

tion for which the spatial discretization had to be carefully derived. Further, the

multiplicative splitting has required additional modifications in the DLRA scheme

in order to obtain an energy stable numerical discretization of the problem.

(ii) An energy stable numerical scheme with rigorous mathematical proofs: We have

given rigorous mathematical proofs for the energy stability of the derived DLRA

scheme, enabling to deduce a classic hyperbolic CFL condition. This allows to com-

pute up to a maximal time step size of ∆t = CCFL ·∆x, enhancing the performance

of the algorithm.

(iii) A mass conservative and rank-adaptive augmented integrator: We have implemented

the rank-adaptive augmented BUG integrator presented in [CKL22]. Since this

integrator allows for further basis modifications, we have included additional basis

augmentation steps that ensure the exactness of the projection operators needed for

the theoretical proof of energy stability as well as the local conservation of mass,

which has been guaranteed in combination with a suitable truncation strategy as

described in [EOS23, EKS23].

(iv) Numerical test examples confirming the theoretical properties: We have compared

the numerical results obtained from the DLRA scheme with the solution of the

full system for relevant test examples from the literature, validating the derived

properties as well as the accuracy of the proposed DLRA method.

However, the extension of the considered stability analysis from a linear to a non-linear

problem, for example the isothermal Boltzmann-BGK equation treated in [EHY21], poses
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6.7. Summary and conclusion

Figure 6.2: Top row: Numerical results for the solution f (x, µ) of the external source problem at
time tend = 3.16 computed with the multiplicative full solver (left) and the multiplicative DLRA scheme
(right). Middle row: Scalar flux Φ (left) and temperature T (right) for both the multiplicative full
system and the multiplicative DLRA scheme. Bottom row: Evolution of the rank in time for the
multiplicative DLRA method.

additional challenges as the general theoretical setting is significantly more difficult. Nev-

ertheless, the analysis performed for the multiplicative Su-Olson problem provides valu-

able insights into the choice of a suitable spatial discretization and stabilization when

considering a multiplicative splitting of the distribution function. This splitting approach

can be extremely useful for the construction of DLRA schemes for more complicated

problems.
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7
A multiplicative DLRA scheme for the

linear Boltzmann-BGK equation

The Boltzmann equation is a fundamental model in kinetic theory describing a gas that

is not in thermodynamic equilibrium. In its full formulation with quadratic Boltzmann

collision operator as given in (2.10), numerically solving the Boltzmann equation is highly

demanding. Instead, the Boltzmann-Bhatnagar-Gross-Krook (BGK) equation (2.11) can

be considered. It simplifies the collision term while maintaining the key properties of the

original equation. Still, especially in higher-dimensional settings occurring in practical

applications, its solution can lead to prohibitive numerical costs. To overcome this last

problem, the method of DLRA is applied to the Boltzmann-BGK equation in this chapter.

Inspired by [EHY21, KS16], a multiplicative splitting of the distribution function of the

form f = Mg is considered, splitting a generally not low-rank Maxwellian M from a

remaining distribution function g. In [EHY21], it has been shown that for the Boltzmann-

BGK equation the remaining function g is of low rank even if the distribution function

f is not (which is not true for the classic additive micro-macro decomposition). Hence,

in order to obtain an efficient scheme, the DLRA approach is applied to the low-rank

distribution function g. Difficulties may arise in the discretization. With the knowledge

gained in Chapter 6 an advection and a conservative form of the evolution equation

for g are derived and a “first discretize, then low-rank” approach is pursued. Further,

the potentially stiff collision term is treated with an implicit temporal discretization.

However, different from Chapter 6, the Boltzmann-BGK equation requires another notion

of stability, giving rise to additional complexities in the proof of numerical stability. In

addition, for the construction of the DLRA scheme new ideas for the basis augmentations

as well as an adjusted truncation strategy are necessary.

The structure of this chapter is as follows. In Section 7.1 two possible systems for the linear

Boltzmann-BGK equation with multiplicative splitting are derived. Both systems are

equivalent in the continuous setting. In Section 7.2 a discretization in velocity, space and

time is performed, leading to two different fully discretized schemes. It is shown in Section

7.3 that the advection form of the multiplicative linear Boltzmann-BGK equation can lead

to a numerical scheme that is not von Neumann stable, whereas for the conservative form
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

numerical stability can be guaranteed. Section 7.4 is devoted to the derivation of a DLRA

scheme which together with a suitable truncation strategy is shown to be numerically

stable. Numerical experiments both in 1D and 2D, given in Section 7.5, confirm the

derived results before Section 7.6 provides a brief summary and conclusion. The results

of this chapter closely follow the presentation in [BEKK24b].

7.1 Linear Boltzmann-BGK equation with multiplicative

splitting

We start from the Boltzmann-BGK equation given in (2.11) and restrict it to a 1D setting

of the form

∂tf (t, x, v) + v∂xf (t, x, v) = σ (M [f ] (t, x, v) − f (t, x, v)) , (7.1a)

where f (t, x, v) denotes the distribution function depending on the time t ∈ R+, the

spatial variable x ∈ Ωx ⊆ R and the velocity variable v ∈ R. The collision frequency

of the particles is set to a constant scalar value σ. In the definition of the Maxwellian

equilibrium distribution M [f ] as provided in (2.8), the number density n (t, x) can be

replaced by the mass density ρ (t, x), which under the assumption of a unity mass m are

the same. We refer to this quantity as the density ρ (t, x). An evolution equation for the

density is obtained by integrating (7.1a) with respect to v, resulting in

∂tρ (t, x) = −∂x

∫
vf (t, x, v) dv. (7.1b)

Following the considerations presented in [EHY21], we employ the multiplicative decom-

position

f (t, x, v) = M [f ] (t, x, v) g (t, x, v) , (7.2)

which is advantageous for the construction of an efficient DLRA scheme as g is low-rank

even if this is not the case for the Maxwellian. In this thesis, we consider an isothermal

Maxwellian without drift, i.e.

M [f ] (t, x, v) =
ρ (t, x)√

2π
exp

Å
−v2

2

ã
.

This results in a linear model, which we call the linear Boltzmann-BGK equation. This lin-

ear model has been extensively studied in the PDE community [Eva21, CCEY20, AAC16]

as well as from a numerical point of view [BCHR20]. In the following considerations, we

provide a stability analysis in the context of DLRA simulation using a multiplicative

decomposition as proposed in (7.2). The stability analysis for the simplified problem

provides insight into the numerical scheme that has been used in the literature [EHY21]

dealing with the Boltzmann-BGK equation. In particular, our analysis explains why
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such multiplicative schemes need to take relatively small time step sizes even though the

collision operator is treated implicitly.

We first insert the multiplicative approach (7.2) into the definition of the density and

obtain

ρ (t, x) =
ρ (t, x)√

2π

∫
g (t, x, v) e−v2/2dv,

which can be equivalently rewritten as the identity

1 =
1√
2π

∫
g (t, x, v) e−v2/2dv. (7.3)

Then we insert the multiplicative approach (7.2) into equations (7.1a) and (7.1b), yielding

∂tg (t, x, v) = − v∂xg (t, x, v) + σ (1 − g (t, x, v)) − g (t, x, v)

ρ (t, x)
∂tρ (t, x) (7.4a)

− v
g (t, x, v)

ρ (t, x)
∂xρ (t, x) ,

∂tρ (t, x) = − 1√
2π

∂x

∫
ρ (t, x) g (t, x, v) ve−v2/2dv. (7.4b)

This set of equations is called the advection form of the multiplicative system. It corre-

sponds to the way the equations are treated in [EHY21]. We can rewrite equation (7.4a)

into a conservative form, leading to the system

∂tg (t, x, v) = − v

ρ (t, x)
∂x (ρ (t, x) g (t, x, v)) + σ (1 − g (t, x, v)) (7.5a)

− g (t, x, v)

ρ (t, x)
∂tρ (t, x) ,

∂tρ (t, x) = − 1√
2π

∂x

∫
ρ (t, x) g (t, x, v) ve−v2/2dv. (7.5b)

Note that for both systems we omit initial and boundary conditions for now. In the

following considerations, we discretize both sets of equations (7.4) and (7.5) to compare

them in terms of numerical stability. We derive a stable DLRA scheme and give a concrete

hyperbolic CFL condition. Similar to Chapter 6, we first discretize the equations and then

apply a DLRA approach.

7.2 Discretization of the multiplicative system

In this section, we provide a full discretization of both versions (7.4) and (7.5) of the mul-

tiplicative system. Sections 7.2.1 and 7.2.2 discretize equations (7.4) and (7.5) in velocity

and space, leading to semi-discrete systems. In Section 7.2.3 a temporal discretization is

presented, rendering fully discrete schemes.
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

7.2.1 Velocity discretization

For the discretization in the velocity space a nodal approach as described in Section

3.3.1 is employed. We prescribe a certain number of grid points Nv and determine the

quadrature nodes v1, ..., vNv and weights ω1, ..., ωNv using the Gauss-Hermite quadrature

rule. This choice accounts for the special structure of equations (7.4b) and (7.5b) and

enables an approximation of the following integrals as

∫
R
e−v2g (t, x, v) dv ≈

Nv∑
k=1

ωkg (t, x, vk) .

An approximation of the velocity-dependent distribution function g (t, x, v) is obtained

from an evaluation at each grid point, i.e. by computing

gk (t, x) ≈ g (t, x, vk) for k = 1, ..., Nv.

Considering the advection form (7.4), this leads to the system

∂tgk (t, x) = − vk∂xgk (t, x) + σ (1 − gk (t, x)) − gk (t, x)

ρ (t, x)
∂tρ (t, x) (7.6a)

− vk
gk (t, x)

ρ (t, x)
∂xρ (t, x) ,

∂tρ (t, x) = − 1√
2π

Nv∑
k=1

∂x (ρ (t, x) gk (t, x)) vkωke
v2k/2, (7.6b)

which is discretized in the velocity variable. Analogously, for the conservative system

(7.5) the following set of equations is derived:

∂tgk (t, x) = − vk
ρ (t, x)

∂x (ρ (t, x) gk (t, x)) + σ (1 − gk (t, x)) − gk (t, x)

ρ (t, x)
∂tρ (t, x) , (7.7a)

∂tρ (t, x) = − 1√
2π

Nv∑
k=1

∂x (ρ (t, x) gk (t, x)) vkωke
v2k/2. (7.7b)

7.2.2 Spatial discretization

Regarding the discretization of the spatial domain Ωx, we construct a uniform spatial grid

with Nx grid cells and equidistant spacing ∆x = 1
Nx

. Spatially dependent quantities are

approximated as

ρj (t) ≈ ρ (t, xj) and gjk (t) ≈ gk (t, xj) for j = 1..., Nx.

Assuming periodic boundary conditions, first-order spatial derivatives ∂x are approxi-

mated using the centered FD method. For stability reasons, a diffusion term involving

second-order derivatives ∂xx is added. This term is also approximated by the centered

FD method. We employ the tridiagonal spatial stencil matrices Dx ∈ RNx×Nx given in
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7.2. Discretization of the multiplicative system

(3.8) and Dxx ∈ RNx×Nx defined in (3.11).

We insert the proposed spatial discretizations into the advection form (7.6) and add a

stabilizing second-order term for ∂xg. This corresponds to the method used in [EHY21]

for the non-linear isothermal Boltzmann-BGK equation and leads to the semi-discrete

time-continuous system

ġjk (t) = −
Nx∑
i=1

Dx
jigik (t) vk +

∆x

2

Nx∑
i=1

Dxx
ji gik (t) |vk| (7.8a)

+ σ (1 − gjk (t)) −
gjk (t)

ρj (t)
ρ̇j (t) −

gjk (t)

ρj (t)

Nx∑
i=1

Dx
jiρi (t) vk,

ρ̇j (t) = − 1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρi (t) gik (t) vkωke

v2k/2 (7.8b)

+
∆x

2
√

2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρi (t) gik (t) |vk|ωke

v2k/2.

For the conservative form (7.7) the second-order stabilization term is applied to ∂x (ρg).

We obtain the semi-discrete time-continuous system

ġjk (t) = − 1

ρj (t)

Nx∑
i=1

Dx
jiρi (t) gik (t) vk +

∆x

2

1

ρj (t)

Nx∑
i=1

Dxx
ji ρi (t) gik (t) |vk| (7.9a)

+ σ (1 − gjk (t)) −
gjk (t)

ρj (t)
ρ̇j (t) ,

ρ̇j (t) = − 1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρi (t) gik (t) vkωke

v2k/2 (7.9b)

+
∆x

2
√

2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρi (t) gik (t) |vk|ωke

v2k/2.

Note that due to the different structure of the equations the stabilization term in (7.8a)

is applied to ∂xg, whereas in (7.9a) it is added for ∂x (ρg). This marks an important

difference between both presented schemes.

7.2.3 Temporal discretization

The temporal discretization has to be carefully derived to obtain a possibly numerically

stable scheme. We start with the semi-discrete advection form presented in (7.8) and

perform an explicit Euler step for the transport part in (7.8a) as well as in (7.8b). The

potentially stiff collision term is treated implicitly. This is a reasonable approach and

for instance explained in Section 3.1.2. For approximating the time derivative ∂tρ the
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corresponding difference quotient is used. We obtain the fully discrete scheme

gn+1
jk = gnjk − ∆t

Nx∑
i=1

Dx
jig

n
ikvk + ∆t

∆x

2

Nx∑
i=1

Dxx
ji g

n
ik|vk| (7.10a)

+ σ∆t
Ä
1 − gn+1

jk

ä
−

gn+1
jk

ρnj

Ä
ρn+1
j − ρnj

ä
− ∆t

gnjk
ρnj

Nx∑
i=1

Dx
jiρ

n
i vk,

ρn+1
j = ρnj − ∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2k/2 (7.10b)

+ ∆t
∆x

2
√

2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2k/2,

which describes one time step from time tn to time tn+1 = tn + ∆t. Considering the

conservative form (7.9), we again perform an explicit Euler step for the transport part

in (7.9a) as well as in (7.9b). The collision term is treated implicitly and a factor
ρn+1
j

ρnj
is added. The special form of this factor will be explained later in the proof of numer-

ical stability. As done before, the time derivative ∂tρ is approximated by its difference

quotient. This leads to the fully discretized equations

gn+1
jk = gnjk − ∆t

1

ρnj

Nx∑
i=1

Dx
jiρ

n
i g

n
ikvk + ∆t

∆x

2

1

ρnj

Nx∑
i=1

Dxx
ji ρ

n
i g

n
ik|vk| (7.11a)

+ σ∆t
ρn+1
j

ρnj

Ä
1 − gn+1

jk

ä
−

gn+1
jk

ρnj

Ä
ρn+1
j − ρnj

ä
,

ρn+1
j = ρnj − ∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2k/2 (7.11b)

+ ∆t
∆x

2
√

2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2k/2.

Note that the discretizations for ρ given in (7.10b) and (7.11b) are exactly the same.

The main differences between the naive discretization of the advection form (7.10) and

the proposed scheme (7.11) for the conservative form are the stabilization of ∂x (ρg) in

(7.11a), opposed to a stabilization of ∂xg as done in (7.10a), and the additional factor
ρn+1
j

ρnj
in the collision term of (7.11a).

7.3 Numerical stability

Although the derivation of the equations proposed in (7.10) and (7.11) is similar, both

systems differ drastically in terms of numerical stability. We first introduce the following
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notations for the fully discrete setting.

Definition 7.1 (Fully discrete solution and Maxwellian). The fully discrete solution f

at time tn is given by fn =
Ä
fn
jk

ä
∈ RNx×Nv with entries

fn
jk =

1√
2π

ρnj g
n
jke

−v2k/2.

The fully discrete Maxwellian at time tn is denoted by Mn =
Ä
Mn

jk

ä
∈ RNx×Nv with

entries

Mn
jk =

1√
2π

ρnj e
−v2k/2.

In this section, both fully discrete schemes presented are compared. In Section 7.3.1 it is

shown that the advection form (7.10) is generally not von Neumann stable whereas for

the conservative form (7.11) a proof of numerical stability is established in Section 7.3.2.

7.3.1 Advection form

We begin with the fully discretized advection form (7.10), which is comparable to the

discretization chosen in the article [EHY21] as the term ∂x (Mg) is split up into the

sum of M∂xg and g∂xM . In [EHY21], numerical experiments are given but no explicit

stability analysis is conducted. In the following part, we provide an example showing that

numerical stability in the sense of von Neumann cannot be guaranteed.

Theorem 7.2. There exist initial values gn =
Ä
gnjk

ä
∈ RNx×Nv and ρn =

Ä
ρnj

ä
∈ RNx

such that the advection form (7.10) of the linear Boltzmann-BGK equation for σ = 0 is

not von Neumann stable.

Proof. Let us assume a solution gnjk that is constant in space and velocity, e.g. gnjk ≡ 1.

For this solution the terms containing Dxgn and Dxxgn in (7.10a) are zero. Let us further

assume that there is no collisionality, i.e. σ = 0. We insert this information into (7.10a)

and derive

gn+1
jk = 1 −

gn+1
jk

ρnj

Ä
ρn+1
j − ρnj

ä
− ∆t

1

ρnj

Nx∑
i=1

Dx
jiρ

n
i vk.

After rearranging the equation, we obtain

ρn+1
j gn+1

jk = ρnj − ∆t

Nx∑
i=1

Dx
jiρ

n
i vk.

Multiplication with 1√
2π
e−v2k/2 leads to

fn+1
jk = fn

jk − ∆t

Nx∑
i=1

Dx
jif

n
ikvk. (7.12)
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This expression corresponds to a discretization of the linear advection equation of the form

∂tf + v∂xf = 0 with an explicit Euler step forward in time and a centered FD method in

space. According to Remark 3.16 this discretization is not von Neumann stable.

Indeed, it can be shown that the discretization given in (7.12) is not von Neumann stable

but stable in the sense of Definition 3.8 for relatively small time step sizes [LeV07]. This

matches our numerical insights gained from [EHY21], where the spatial discretization is

comparable to (7.10) and small time step sizes are required.

7.3.2 Conservative form

Having found out that for a certain choice of the initial values the system of equations

(7.10) is not von Neumann stable, we now consider equations (7.11) in terms of numerical

stability. We observe that the advection terms are treated explicitly, whereas the collision

term is treated implicitly. As explained in Section 3.1.2, this leads to a removal of the

potential stiffness caused by a large number of collisions. We seek a rigorous proof of

stability under a classic hyperbolic CFL condition, which will be derived in the following

norm.

Definition 7.3 (Stability norm). For fn = (fn
jk) ∈ RNx×Nv , the H -norm is defined as

∥fn∥2H =
√

2π

Nx∑
j=1

Nv∑
k=1

(
fn
jk

)2
ωke

3v2k/2.

This corresponds to a Frobenius norm ∥·∥F with weights
√

2πωke
3v2k/2.

The choice of this norm is inspired by the analysis in [AAC16], where hypocoercivity

for the linear Boltzmann-BGK equation is shown. Different from the considerations in

[AAC16], we use a fully discrete analogue to the considered weighted L2-norm which also

takes the Gauss-Hermite quadrature into account. Note that the factor
√

2π does not

affect the stability but is added for consistency.

At each time step the fully discrete distribution function f and the fully discrete density

ρ are required to fulfill the discrete counterpart of its definition given in Definition 2.5,

namely the identity

ρnj =

Nv∑
k=1

fn
jkωke

v2k for all n ∈ N.

With relation (7.3) this identity can be rewritten in a equivalent formulation as

1 =
1√
2π

Nv∑
k=1

gnjkωke
v2k/2 for all n ∈ N. (7.13)

We are able to show that the equality given in (7.13) holds for the conservative equations

(7.11) under a suitable choice of the initial condition.
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Lemma 7.4. Let us assume that the initial condition for g satisfies

1 =
1√
2π

Nv∑
k=1

g0jkωke
v2k/2 for all j ∈ {1, ..., Nx} .

Then, for all n ∈ N, the equality given in (7.13) holds.

Proof. The proof follows by induction. For the induction assumption let us assume that

the relation 1 = 1√
2π

∑Nv
k=1 g

n
jkωke

v2k/2 holds for one n ∈ N. For the induction step we

begin with equation (7.11a), put the terms containing gn+1
jk to the left-hand side and

multiply with ρn+1
j . This results in

(1 + σ∆t) ρn+1
j gn+1

jk = ρnj g
n
jk − ∆t

Nx∑
i=1

Dx
jiρ

n
i g

n
ikvk + ∆t

∆x

2

Nx∑
i=1

Dxx
ji ρ

n
i g

n
ik |vk| + σ∆tρn+1

j .

Multiplication with 1√
2π
ωke

v2k/2 and summation over k leads to

(1 + σ∆t) ρn+1
j

1√
2π

Nv∑
k=1

gn+1
jk ωke

v2k/2

=
ρnj√
2π

Nv∑
k=1

gnjkωke
v2k/2 − ∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2k/2

+ ∆t
∆x

2
√

2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2k/2 + σ∆tρn+1
j

1√
2π

Nv∑
k=1

ωke
v2k/2.

We insert the induction assumption as well as 1√
2π

∑Nv
k=1 ωke

v2k/2 = 1. Then, together

with equation (7.11b), this establishes

(1 + σ∆t) ρn+1
j

1√
2π

Nv∑
k=1

gn+1
jk ωke

v2k/2 = (1 + σ∆t)ρn+1
j .

Canceling with (1 + σ∆t) ρn+1
j gives the desired equality for n + 1, and completes the

proof.

Also the following inequality is indispensable to show numerical stability of the conserva-

tive system (7.11).

Lemma 7.5. Under the time step restriction maxk (|vk|) ∆t ≤ ∆x it holds

∆t

∥∥∥∥Dxfn+1 diag (vk) − ∆x

2
Dxxfn+1 diag (|vk|)

∥∥∥∥2
H

(7.14)

−∆x
∥∥∥D+fn+1 diag

Ä
|vk|1/2

ä∥∥∥2
H

≤ 0.

Proof. We employ a Fourier analysis similar to [KEC23] and use Lemma 5.7 introducing
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the matrices E and Λγ that diagonalize the stencil matrices according to

DγE = EΛγ with γ ∈ {x, xx,+} ,

where E are unitary and Λγ are diagonal matrices. Let us denote f̂n+1 =
Ä
f̂n+1
αk

ä
∈

CNx×Nv with entries f̂n+1
αk =

∑Nx
j=1Eαjf

n+1
jk . With Parseval’s identity given in Proposition

3.14 we obtain

∆t

∥∥∥∥Dxfn+1 diag (vk) − ∆x

2
Dxxfn+1 diag (|vk|)

∥∥∥∥2
H

− ∆x
∥∥∥D+fn+1 diag

Ä
|vk|1/2

ä∥∥∥2
H

= ∆t

∥∥∥∥Dxfn+1 diag
Ä
vkω

1/2
k e3v

2
k/4
ä
− ∆x

2
Dxxfn+1 diag

Ä
|vk|ω

1/2
k e3v

2
k/4
ä∥∥∥∥2

F

− ∆x
∥∥∥D+fn+1 diag

Ä
|vk|1/2ω

1/2
k e3v

2
k/4
ä∥∥∥2

F

= ∆t

∥∥∥∥Λxf̂n+1 diag
Ä
vkω

1/2
k e3v

2
k/4
ä
− ∆x

2
Λxxf̂n+1 diag

Ä
|vk|ω

1/2
k e3v

2
k/4)
ä∥∥∥∥2

F

− ∆x
∥∥∥Λ+f̂n+1 diag

Ä
|vk|1/2ω

1/2
k e3v

2
k/4
ä∥∥∥2

F

= 2

Nx∑
α=1

Nv∑
k=1

Ç
∆t

|vk|2

(∆x)2
|1 − cos(να)| − |vk|

∆x
|1 − cos(να)|

å
ωke

3v2k/2
∣∣∣f̂n+1

αk

∣∣∣2 .
A sufficient condition to ensure negativity is that for each index k it must hold

∆t
|vk|2

(∆x)2
|1 − cos(να)| ≤ |vk|

∆x
|1 − cos(να)| .

Hence, for maxk(|vk|)∆t ≤ ∆x, equation (7.14) holds and we have proven the lemma.

Using the above results, numerical stability of the conservative form of the equations

proposed (7.11) in the H -norm can be shown.

Theorem 7.6 (Energy stability of the fully discrete system). Under the time step re-

striction maxk (|vk|) ∆t ≤ ∆x the fully discrete system (7.11) is numerically stable in the

H -norm, i.e. it holds ∥∥fn+1
∥∥2

H
≤ ∥fn∥2H .

Proof. We multiply (7.11a) with ρn+1
j ρnj g

n+1
jk and put the last term of the equation from

the right-hand to the left-hand side. This results inÄ
ρn+1
j gn+1

jk

ä2
= ρnj g

n
jkρ

n+1
j gn+1

jk − ∆tρn+1
j gn+1

jk

Nx∑
i=1

Dx
jiρ

n
i g

n
ikvk

+ ∆t
∆x

2
ρn+1
j gn+1

jk

Nx∑
i=1

Dxx
ji ρ

n
i g

n
ik |vk| + σ∆tρn+1

j gn+1
jk

Ä
ρn+1
j − ρn+1

j gn+1
jk

ä
.
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Multiplication with 2
Ä

1√
2π
e−v2k/2

ä2
leads to

2
Ä
fn+1
jk

ä2
= 2fn

jkf
n+1
jk − 2∆tfn+1

jk

Nx∑
i=1

Dx
jif

n
ikvk + ∆t∆xfn+1

jk

Nx∑
i=1

Dxx
ji f

n
ik |vk|

+ 2σ∆tfn+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
.

Note that it holds

2fn
jkf

n+1
jk =

Ä
fn+1
jk

ä2
+
(
fn
jk

)2 − Äfn+1
jk − fn

jk

ä2
. (7.15)

We insert this relation and obtainÄ
fn+1
jk

ä2
=
(
fn
jk

)2 − Äfn+1
jk − fn

jk

ä2
− 2∆tfn+1

jk

Nx∑
i=1

Dx
jif

n
ikvk + ∆t∆xfn+1

jk

Nx∑
i=1

Dxx
ji f

n
ik |vk|

+ 2σ∆tfn+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
.

In the next step, we multiply with
√

2πωke
3v2k/2 and sum over j and k. This yields

∥∥fn+1
∥∥2

H
= ∥fn∥2H −

√
2π

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä2
ωke

3v2k/2

− 2
√

2π∆t

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dx

jif
n
ikvkωke

3v2k/2 (7.16)

+
√

2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dxx

ji f
n
ik |vk|ωke

3v2k/2

+ 2
√

2πσ∆t

Nx∑
j=1

Nv∑
k=1

fn+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
ωke

3v2k/2.

According to Lemma 7.4, we can use the equality
∑Nv

k=1 f
n+1
jk ωke

v2k = ρn+1
j . Hence, we

can conclude that the term 2
√

2πσ∆t
∑Nx

j=1

∑Nv
k=1M

n+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
ωke

3v2k/2, which

is added in the next step, is equal to zero. Lemma 3.1 implies that also the term

2
√

2π∆t
∑Nx

i,j=1

∑Nv
k=1 f

n+1
jk Dx

jif
n+1
ik vkωke

3v2k/2, which is subtracted in the next step, is

equal to zero. Furthermore, we add an artificial zero to the equation given in (7.16) by

adding and subtracting the expression
√

2π∆t∆x
∑Nx

i,j=1

∑Nv
k=1 f

n+1
jk Dxx

ji f
n+1
ik |vk|ωke

3v2k/2.
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This leads to

∥∥fn+1
∥∥2

H
= ∥fn∥2H −

√
2π

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä2
ωke

3v2k/2

− 2
√

2π∆t

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dx

ji

(
fn
ik − fn+1

ik

)
vkωke

3v2k/2 (I)

+
√

2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dxx

ji

(
fn
ik − fn+1

ik

)
|vk|ωke

3v2k/2 (II)

+
√

2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dxx

ji f
n+1
ik |vk|ωke

3v2k/2 (III)

− 2
√

2πσ∆t

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk −Mn+1

jk

ä2
ωke

3v2k/2.

Now we analyze the terms (I), (II) and (III) separately. Let us start with (I) and (II) and

apply Young’s inequality proposed in Lemma 5.6. For the sum (I) + (II) this leads to

− 2
√

2π∆t

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dx

ji

(
fn
ik − fn+1

ik

)
vkωke

3v2k/2

+
√

2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dxx

ji

(
fn
ik − fn+1

ik

)
|vk|ωke

3v2k/2

=

Nx∑
i=1

Nv∑
k=1

Ä
−
√

2
4
√

2π
(
fn
ik − fn+1

ik

)√
ωke

3v2k/4
ä

·

Ñ
√

2
4
√

2π∆t

Nx∑
j=1

Å
Dx

jif
n+1
jk vk −

∆x

2
Dxx

ji f
n+1
jk |vk|

ã√
ωke

3v2k/4

é
≤

√
2π

Nx∑
i=1

Nv∑
k=1

(
fn
ik − fn+1

ik

)2
ωke

3v2k/2

+
√

2π (∆t)2
Nx∑
i=1

Nv∑
k=1

Ñ
Nx∑
j=1

Å
Dx

jif
n+1
jk vk −

∆x

2
Dxx

ji f
n+1
jk |vk|

ãé2

ωke
3v2k/2.

For (III) we exploit the properties of the spatial stencil matrices given in Lemma 3.1. We

derive the equality

√
2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dxx

ji f
n+1
ik |vk|ωke

3v2k/2

= −
√

2π∆t∆x

Nx∑
j=1

Nv∑
k=1

(
Nx∑
i=1

D+
jif

n+1
ik |vk|1/2

)2

ωke
3v2k/2.
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We insert both relations and obtain

∥fn+1∥2H ≤ ∥fn∥2H +
√

2π (∆t)2
Nx∑
i=1

Nv∑
k=1

Ñ
Nx∑
j=1

Dx
jif

n+1
jk vk −

∆x

2
Dxx

ji f
n+1
jk |vk|

é2

ωke
3v2k/2

−
√

2π∆t∆x

Nx∑
j=1

Nv∑
k=1

(
Nx∑
i=1

D+
jif

n+1
ik |vk|1/2

)2

ωke
3v2k/2

− 2
√

2πσ∆t

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk −Mn+1

jk

ä2
ωke

3v2k/2.

Together with Lemma 7.5 we can conclude that under the CFL condition maxk (|vk|) ∆t ≤
∆x it holds

∥∥fn+1
∥∥2

H
≤ ∥fn∥2H . Hence, under this time step restriction the proposed fully

discrete system (7.11) is numerically stable in the H -norm.

In principle, we have shown energy stability according to Section 3.2.4 for equations

(7.11). However, as the considered H -norm is not directly related to the physical energy

of the system, we refer to it as numerical stability in the sense that the solution remains

bounded over time.

7.4 Stable DLRA scheme for multiplicative linear

Boltzmann-BGK

In practical applications, the implementation of the full system given in (7.11) may lead

to prohibitive numerical costs, especially when computing in higher-dimensional settings.

To reduce computational and memory demands, we apply a DLRA approach to the

distribution function g. We first rewrite the conservative form of the equations. In

(7.11a), we put all terms containing gn+1
jk to the left-hand side and multiply the equation

with
ρnj

ρn+1
j

. Then equations (7.11) can be written in the equivalent form

gn+1
jk (1 + σ∆t) =

ρnj

ρn+1
j

gnjk − ∆t
1

ρn+1
j

Nx∑
i=1

Dx
ji (ρni g

n
ik) vk (7.17a)

+ ∆t
∆x

2

1

ρn+1
j

Nx∑
i=1

Dxx
ji (ρni g

n
ik) |vk| + σ∆t,

ρn+1
j = ρnj − ∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2k/2 (7.17b)

+ ∆t
∆x

2
√

2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2k/2.
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We propose a numerically stable DLRA implementation that uses the rank-adaptive aug-

mented BUG integrator presented in [CKL22] for equation (7.17a) together with addi-

tional basis augmentations and a suitable truncation strategy. Note that the scattering

term 1 + σ∆t is only applied in the S-step as it does not affect the span of the basis

functions derived in the K- and L-step. In detail, the DLRA scheme works as follows.

We first substitute gnjk =
∑r

m,η=1X
n
jmSn

mηV
n
kη into the update equation (7.17b) and obtain

ρn+1
j = ρnj − ∆t

1√
2π

Nx∑
i=1

Dx
jiρ

n
i

r∑
m,η=1

Xn
imSn

mη

Nv∑
k=1

V n
kηvkωke

v2k/2 (7.18a)

+ ∆t
∆x

2
√

2π

Nx∑
i=1

Dxx
ji ρ

n
i

r∑
m,η=1

Xn
imSn

mη

Nv∑
k=1

V n
kη |vk|ωke

v2k/2.

For the K-step, we introduce the notation Kn
jη =

∑r
m=1X

n
jmSn

mη and solve

Kn+1
jp =

ρnj

ρn+1
j

Kn
jp − ∆t

1

ρn+1
j

Nx∑
i=1

Dx
jiρ

n
i

r∑
η=1

Kn
iη

Nv∑
k=1

V n
kηvkV

n
kp (7.18b)

+ ∆t
∆x

2

1

ρn+1
j

Nx∑
i=1

Dxx
ji ρ

n
i

r∑
η=1

Kn
iη

Nv∑
k=1

V n
kη |vk|V n

kp + σ∆t

Nv∑
k=1

V n
kp.

We derive the updated basis “Xn+1 of rank 2r from a QR-decomposition of the augmented

quantity “Xn+1 = qr
([
Kn+1,Xn

])
. In addition, we augment the basis according to““Xn+1 = qr
Äî“Xn+1,

(
ρn+1

)2 “Xn+1
óä

. (7.18c)

This basis augmentation ensures the exactness of the corresponding projection operators

in the proof of stability of the proposed scheme. Its explicit form will be made clear later.

We compute and store ̂̂M = ““Xn+1,⊤Xn. Note that for this scheme we perform full rank

updates, leading to an increase from rank 2r to 4r. Quantities of rank 2r are denoted

with one single hat and quantities of rank 4r with double hats.

For the L-step, which can be computed in parallel with the K-step, we write Ln
km =∑r

η=1 S
n
mηV

n
kη and solve

Ln+1
kp =

r∑
m=1

Ln
km

Nx∑
j=1

Xn
jm

ρnj

ρn+1
j

Xn
jp − ∆t

r∑
m=1

vkL
n
km

Nx∑
i=1

Xn
imρni

Nx∑
j=1

Dx
ji

1

ρn+1
j

Xn
jp (7.18d)

+ ∆t
∆x

2

r∑
m=1

|vk|Ln
km

Nx∑
i=1

Xn
imρni

Nx∑
j=1

Dxx
ji

1

ρn+1
j

Xn
jp + σ∆t

Nx∑
j=1

Xn
jp.

We derive the updated basis “Vn+1 of rank 2r from a QR-decomposition of the augmented
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quantity “Vn+1 = qr
([
Ln+1,Vn

])
. In addition, we augment the basis according to““Vn+1 = qr

Äî“Vn+1, ωev
2/2“Vn+1

óä
(7.18e)

leading to a new augmented basis ““Vn+1 of rank 4r. This basis augmentation again ensures

the exactness of the corresponding projection operators and will be made clear later in

the proof of numerical stability. We compute and store ““N = ““Vn+1,⊤Vn.

For the S-step, the previously computed solutions from the K- and L-step are used. We

introduce the notation S̃n
mη =

∑r
j,k=1

̂̂MmjS
n
jk
““Nηk and solve

̂̂Sn+1
qp =

1

1 + σ∆t

Nx∑
j=1

““Xn+1
jq

ρnj

ρn+1
j

4r∑
m,η=1

““Xn+1
jm S̃n

mη

Nv∑
k=1

““V n+1
kη
““V n+1

kp

− ∆t

1 + σ∆t

Nx∑
j=1

““Xn+1
jq

1

ρn+1
j

Nx∑
i=1

Dx
jiρ

n
i

4r∑
m,η=1

““Xn+1
im S̃n

mη

Nv∑
k=1

““V n+1
kη vk

““V n+1
kp (7.18f)

+
∆t

1 + σ∆t

∆x

2

Nx∑
j=1

““Xn+1
jq

1

ρn+1
j

Nx∑
i=1

Dxx
ji ρ

n
i

4r∑
m,η=1

““Xn+1
im S̃n

mη

Nv∑
k=1

““V n+1
kη |vk|““V n+1

kp

+
σ∆t

1 + σ∆t

Nx∑
j=1

““Xn+1
jq

Nv∑
k=1

““V n+1
kp .

The last step consists in truncating the augmented quantities ““Xn+1, ““Vn+1 and ̂̂Sn+1 from

rank 4r to a new rank rn+1. We use a modification of the truncation strategy described

in Section 4.2.2 that ensures that the equality 1√
2π

∑r
m,η=1

∑Nv
k=1X

n
jmSn

mηV
n
kηωke

v2k/2 = 1

stays valid in each time step and works as follows:

(i) We set Z = (Zk) ∈ RNv with entries Zk = 1√
2π
ωke

v2k/2 and z = Z
∥Z∥E , where

∥·∥E denotes the Euclidean norm. Further, we set H1 = ““Xn+1 ̂̂Sn+1““Vn+1,⊤zz⊤ and

H2 = ““Xn+1 ̂̂Sn+1““Vn+1,⊤ (I− zz⊤
)

in order to ensure

1 = ““Xn+1 ̂̂Sn+1““Vn+1,⊤Z

=
(““Xn+1 ̂̂Sn+1““Vn+1,⊤zz⊤ + ““Xn+1 ̂̂Sn+1““Vn+1,⊤

Ä
I− zz⊤

ä)
Z

= (H1 + H2)Z,

where I ∈ RNv×Nv represents the identity matrix and 1 ∈ RNx the vector containing

the value one at each entry. H1 is a matrix of rank one and for H2 it holds that

H2Z = 0.

(ii) We compute XH1SH1VH1,⊤ = svd
(̂̂Sn+1““Vn+1,⊤zz⊤

)
from an SVD, where XH1 ∈

R4r,SH1 ∈ R, and VH1 ∈ RNv .

(iii) We compute ““PΣ““Q⊤ = svd
(̂̂Sn+1

)
from an SVD, where ““P,““Q ∈ R4r×4r are orthog-

onal matrices and Σ ∈ R4r×4r is the diagonal matrix containing the singular values
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σ1, ..., σ4r. The new rank r̃ ≤ 4r is determined such thatÑ
4r∑

j=r̃+1

σ2
j

é1/2

≤ ϑ,

where ϑ denotes a prescribed tolerance parameter. We set SH2 ∈ Rr̃×r̃ to be the

matrix containing the r̃ largest singular values of ̂̂Sn+1 and the matrices ““PH2 ,““QH2 ∈
R4r×r̃ to contain the first r̃ columns of ““P and ““Q, respectively. Finally, we compute

XH2 = ““Xn+1““PH2 ∈ RNx×r̃ and VH2 =
(
I− zz⊤

)⊤ ““Vn+1““QH2 ∈ RNv×r̃.

(iv) We combine both parts and perform a QR-decomposition to obtain

Xn+1R1 = qr
([““Xn+1XH1 ,XH2

])
and Vn+1R2 = qr

Äî
VH1 ,VH2

óä
.

(v) We compute

Sn+1 = R1

[
SH1 0

0 SH2

]
R2,⊤.

Then the new rank rn+1 is given by rn+1 = r̃ + 1.

Altogether, this leads to the updated solution gn+1 = Xn+1Sn+1Vn+1,⊤ after one time

step at time tn+1 = tn + ∆t. To provide an overview of the structure of the proposed

DLRA scheme, its working principle is visualized in Algorithm 3. Note that the notation

using brackets refers to a simplification of the algorithm that is explained later in Section

7.5.1.

Proof of stability of the proposed multiplicative low-rank scheme. It can be shown

that the DLRA scheme proposed in (7.18) preserves the numerical stability of the full

conservative system presented in (7.11), which has been shown in Theorem 7.6. The

rewriting of equations (7.11) into (7.17), the basis augmentations in (7.18c) and (7.18e)

and the implementation of the described truncation strategy are crucial for the proof. We

begin with the following definition.

Definition 7.7 (Low-rank approximation of the fully discrete solution). The low-rank

approximation of the fully discrete solution f at time tn is given by fn =
Ä
fn
jk

ä
∈ RNx×Nv

with entries

fn
jk =

1√
2π

ρnj

r∑
m,η=1

Xn
jmSn

mηV
n
kηe

−v2k/2.

Note that in this notation we do not distinguish between the full solution fn and its low-

rank approximation fnr at time tn. Then we can show that the DLRA scheme (7.18) is

numerically stable.
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Algorithm 3 Flowchart of the (simplified) stable multiplicative DLRA scheme (7.18).

input
• density at time tn: ρ

n
j

• low-rank factors at time tn: X
n
jm, Sn

mη, V
n
kη

• rank at time tn: r

update density according to (7.18a)

update bases according to (7.18b) and (7.18d)

augment bases with Xn
jm, V n

kη

augment bases with
Ä
ρn+1
j

ä2 “Xn+1
jm and ωke

v2k/2“V n+1
kη

according to (7.18c) and (7.18e)

update coefficient matrix according to (7.18f)

truncate factors ““Xn+1
jm , ̂̂Sn+1

mη ,““V n+1
kη (or “Xn+1

jm , Ŝn+1
mη ,“V n+1

kη )

output

• density at time tn+1: ρ
n+1
j

• low-rank factors at time tn+1: X
n+1
jm , Sn+1

mη , V n+1
kη

• rank at time tn+1: rn+1

“Xn+1
jm ,“V n+1

kηÄ“Xn+1
jm ,“V n+1

kη

ä ““Xn+1
jm ,““V n+1

kη

̂̂Sn+1
mη (or Ŝn+1

mη )

ρn+1
j

Kn+1
jm , Ln+1

kℓ
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Theorem 7.8 (Numerical stability of the proposed multiplicative DLRA scheme). Under

the time step restriction maxk(|vk|)∆t ≤ ∆x the fully discrete DLRA scheme (7.18) is

numerically stable in the H -norm, i.e. it holds∥∥fn+1
∥∥2

H
≤ ∥fn∥2H .

Proof. We begin with the S-step given in (7.18f), multiply it with ““Xn+1
αq
““V n+1

βp and sum

over q and p. For simplicity, the notation gn+1
αβ :=

∑4r
q,p=1

““Xn+1
αq
̂̂Sn+1
qp
““V n+1

βp as well as

the projection operators PXn+1

αj =
∑4r

q=1
““Xn+1

αq
““Xn+1

jq and P V n+1

kβ =
∑4r

p=1
““V n+1

kp
““V n+1

βp are

introduced. This leads to

gn+1
αβ =

Nx∑
j=1

PXn+1

αj

ρnj

ρn+1
j

Nv∑
k=1

gnjkP
V n+1

kβ

− ∆t

1 + σ∆t

Nx∑
j=1

PXn+1

αj

1

ρn+1
j

Nx∑
i=1

Dx
jiρ

n
i

Nv∑
k=1

gnikvkP
V n+1

kβ

+
∆t

1 + σ∆t

∆x

2

Nx∑
j=1

PXn+1

αj

1

ρn+1
j

Nx∑
i=1

Dxx
ji ρ

n
i

Nv∑
k=1

gnik |vk|P V n+1

kβ

+
σ∆t

1 + σ∆t

Nx∑
j=1

PXn+1

αj

Nv∑
k=1

P V n+1

kβ .

We multiply with (1 + σ∆t) 2√
2π

(
ρn+1
α

)2
gn+1
αβ ωβe

v2β/2 and sum over α and β. Then,

(1 + σ∆t)
2√
2π

Nx∑
α=1

Nv∑
β=1

Ä
ρn+1
α gn+1

αβ

ä2
ωβe

v2β/2

=
2√
2π

Nx∑
j,α=1

PXn+1

αj

ρnj

ρn+1
j

(
ρn+1
α

)2 Nv∑
k=1

gnjk

Nv∑
β=1

P V n+1

kβ gn+1
αβ ωβe

v2β/2

− 2∆t√
2π

Nx∑
j,α=1

PXn+1

αj

1

ρn+1
j

(
ρn+1
α

)2 Nx∑
i=1

Dx
jiρ

n
i

Nv∑
k=1

gnikvk

Nv∑
β=1

P V n+1

kβ gn+1
αβ ωβe

v2β/2

+ ∆t
∆x√

2π

Nx∑
j=1,α

PXn+1

αj

1

ρn+1
j

(
ρn+1
α

)2 Nx∑
i=1

Dxx
ji ρ

n
i

Nv∑
k=1

gnik |vk|
Nv∑
β=1

P V n+1

kβ gn+1
αβ ωβe

v2β/2

+
2σ∆t√

2π

Nx∑
j,α=1

PXn+1

αj

(
ρn+1
α

)2 Nv∑
β=1

gn+1
αβ ωβe

v2β/2
Nv∑
k=1

P V n+1

kβ .

Using the basis augmentations given in (7.18c) and (7.18e), we can deduce that the

equalities

Nx∑
α=1

PXn+1

αj

(
ρn+1
α

)2
gn+1
αβ =

Ä
ρn+1
j

ä2
gn+1
jβ and

Nv∑
β=1

P V n+1

kβ gn+1
jβ ωβe

v2β/2 = gn+1
jk ωke

v2k/2
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hold. We insert these relations and, to be consistent in notation, change the summation

indices on the left-hand side from α to j and from β to k. This leads to

(1 + σ∆t)
2√
2π

Nx∑
j=1

Nv∑
k=1

Ä
ρn+1
j gn+1

jk

ä2
ωke

v2k/2

=
2√
2π

Nx∑
j=1

Nv∑
k=1

ρnj g
n
jkρ

n+1
j gn+1

jk ωke
v2k/2 − 2∆t√

2π

Nx∑
j=1

Nv∑
k=1

ρn+1
j gn+1

jk

Nx∑
i=1

Dx
jiρ

n
i g

n
ikvkωke

v2k/2

+ ∆t
∆x√

2π

Nx∑
j=1

Nv∑
k=1

ρn+1
j gn+1

jk

Nx∑
i=1

Dxx
ji ρ

n
i g

n
ik |vk|ωke

v2k/2

+
2σ∆t√

2π

Nx∑
j=1

Nv∑
k=1

Ä
ρn+1
j

ä2
gn+1
jk ωke

v2k/2.

We rearrange the equation, insert the notations from Definition 7.1 and use the relation

stated in (7.15), yielding

∥∥fn+1
∥∥2

H
= ∥fn∥2H −

√
2π

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä2
ωke

3v2k/2

− 2
√

2π∆t

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dx

jif
n
ikvkωke

3v2k/2

+
√

2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dxx

ji f
n
ik |vk|ωke

3v2k/2

+ 2
√

2πσ∆t

Nx∑
j=1

Nv∑
k=1

fn+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
ωke

3v2k/2,

which is exactly expression (7.16) dealt with in the proof of Theorem 7.6. As the trun-

cation step is specifically designed to leave these expressions unchanged, we can con-

clude analogously to the proof of Theorem 7.6 that the proposed DLRA scheme de-

creases the H -norm and hence is numerically stable under the time step restriction

maxk(|vk|)∆t ≤ ∆x.

7.5 Numerical results

To validate our theoretical considerations, we compare the solution of the full equations

(7.17) to the solution obtained by the DLRA scheme given in (7.18) for different nu-

merical test examples. Section 7.5.1 reconsiders the 1D plane source problem, before in

Section 7.5.2 a 1D tanh problem with more challenging initial distributions is considered.

In Sections 7.5.3 and 7.5.4 2D test examples are presented in order to investigate the

computational benefit of the DLRA scheme in higher-dimensional settings.
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

7.5.1 1D plane source

We begin with the 1D plane source test problem, which has already been treated in

Sections 5.6.1 and 6.6.1 for the (multiplicative) Su-Olson problem. We consider the spatial

domain Ωx = [−10, 10] and choose the initial density ρ to be the cutoff Gaussian

ρ (t = 0, x) = max

Ñ
10−4,

1»
2πσ2

IC

exp

Å
− x2

2σ2
IC

ãé
with constant deviation σIC = 0.3. The initial distribution function g is assumed to be

constant in space and velocity and we prescribe

g (t = 0, x, v) = 1.

We consider a relatively large collisionality by choosing σ = 10. For the low-rank com-

putations an initial rank of r = 20 is prescribed. As computational parameters we use

Nx = 1000 grid cells in the spatial as well as Nv = 500 grid points in the velocity domain.

Based on this choice, we obtain maxk (|vk|) ≈ 31.05, which is adjusted to the next larger

integer. The time step size is determined by ∆t = CCFL · ∆x
32 with CCFL = 0.99, according

to the corresponding CFL condition.

Practical implementations show that the basis augmentations to rank 4r performed in

(7.18c) and (7.18e), which are needed for the theoretical proof of numerical stability, may

not be necessary for numerical examples and that the standard basis augmentations to

rank 2r provide similar solutions while being significantly faster. For this reason, we

propose to leave out the basis augmentations presented in (7.18c) and (7.18e) in practical

applications. In this case, all quantities with double hats related to rank 4r decrease to

quantities of rank 2r with one single hat. The simplified scheme with rank 2r is also

visualized (in brackets) in the flowchart of Algorithm 3.

In Figure 7.1 we compare the results for the solution f (t, x, v) computed with the multi-

plicative full solver, the simplified multiplicative DLRA scheme with rank 2r and the basis

augmented multiplicative DLRA scheme with rank 4r at different times up to tEnd = 6.

We observe that the reduced as well as the augmented multiplicative DLRA algorithm

capture the main characteristics of the full reference system. This is also true for the

computational results for the density ρ (t, x) displayed in Figure 7.2. Figure 7.3 shows the

evolution of the rank in time, which for a chosen tolerance parameter of ϑ = 10−5 ∥Σ∥F
increases up to r = 75 before it significantly decreases over time. Note that the evolu-

tion of the rank for the reduced as well as for the basis augmented multiplicative DLRA

algorithm show good agreement as the new rank is displayed after the corresponding trun-

cation step. Further, the evolution of the norm ∥f∥2H in time is illustrated. As expected

from the theoretical results, its value decreases smoothly over time for all considered

systems. Additionally, we display the quantities κ+ := maxj

Ä
1√
2π

∑Nv
k=1 gjkωke

v2k/2
ä

and

κ− := minj

Ä
1√
2π

∑Nv
k=1 gjkωke

v2k/2
ä
. According to Lemma 7.4, it is essential that they are

both equal to 1, which for the DLRA schemes is ensured by the adjusted truncation step.

It can be observed that this property is fulfilled up to order O
(
10−10

)
.
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7.5. Numerical results

Figure 7.1: Numerical results for the solution f (t, x, v) of the 1D plane source problem at time t = 0
(first column), t = 2 (second column), t = 4 (third column), and t = 6 (fourth column), computed
with the multiplicative full solver (first row), the reduced multiplicative DLRA scheme (second row),
and the basis augmented multiplicative DLRA scheme (third row).

7.5.2 1D tanh

For the next 1D test problem, a more challenging initial density distribution is considered.

The initial density ρ is chosen to be

ρ(t = 0, x) =


tanh(x) for x < −1,

1 for x ∈ [−1, 1],

coth(x) − 2 for x > 1.

The initial distribution function g is assigned to be constant in space and velocity and we

prescribe

g (t = 0, x, v) = 1.

All other initial settings and computational parameters remain unchanged from the pre-

vious test example given in Section 7.5.1.

In Figure 7.4 a comparison of the numerical results for the solution f (t, x, v) computed

with the three different solvers up to tEnd = 6 is given. We observe that both DLRA

algorithms are able to reproduce the full solution. This is also true for the computational

results for the density ρ (t, x) displayed in Figure 7.5. In addition, Figure 7.6 shows the

evolution of the rank in time, which for a chosen tolerance parameter of ϑ = 10−5 ∥Σ∥F
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

Figure 7.2: Numerical results for the density ρ (t, x) of the 1D plane source problem at time t = 0,
t = 2, t = 4, and t = 6, computed with the multiplicative full solver, the reduced multiplicative DLRA
scheme, and the basis augmented multiplicative DLRA scheme.

Figure 7.3: Left: Evolution of the rank in time for the 1D plane source problem for the reduced
multiplicative DLRA scheme and the basis augmented multiplicative DLRA scheme. Middle: Evolution
of the H -norm in time for the multiplicative full solver, the reduced multiplicative DLRA scheme, and
the basis augmented multiplicative DLRA scheme. Right: Evolution of κ± in time for the multiplicative
full solver, the reduced multiplicative DLRA scheme, and the basis augmented multiplicative DLRA
scheme. The line corresponding to the full system has the constant value 1.

increases up to r = 93 before it significantly decreases over time. Again, the evolution

of the rank for the reduced and for the basis augmented multiplicative DLRA algorithm

nearly coincide. Further, the evolution of the norm ∥f∥2H in time is illustrated. Its value

decreases smoothly over time for all considered systems. Additionally, we display the

quantities κ+ and κ− defined in Section 7.5.1, which are required to be equal to 1. This

property is fulfilled up to order O
(
10−8

)
for all schemes.
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7.5. Numerical results

Figure 7.4: Numerical results for the solution f (t, x, v) of the 1D tanh problem at time t = 0 (first
column), t = 2 (second column), t = 4 (third column), and t = 6 (fourth column), computed with
the multiplicative full solver (first row), the reduced multiplicative DLRA scheme (second row), and
the basis augmented multiplicative DLRA scheme (third row).

Figure 7.5: Numerical results for the density ρ (t, x) of the 1D tanh problem at time t = 0, t = 2,
t = 4, and t = 6, computed with the multiplicative full solver, the reduced multiplicative DLRA
scheme, and the basis augmented multiplicative DLRA scheme.
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7. A multiplicative DLRA scheme for the linear Boltzmann-BGK equation

Figure 7.6: Left: Evolution of the rank in time for the 1D tanh problem for the reduced multiplicative
DLRA scheme and the basis augmented multiplicative DLRA scheme. Middle: Evolution of the
H -norm in time for the multiplicative full solver, the reduced multiplicative DLRA scheme, and the
basis augmented multiplicative DLRA scheme. Right: Evolution of κ± in time for the multiplicative
full solver, the reduced multiplicative DLRA scheme, and the basis augmented multiplicative DLRA
scheme. The line corresponding to the full system has the constant value 1.

7.5.3 2D plane source

To highlight the computational advantages of the DLRA scheme, a 2D version of the

plane source problem considered in Section 7.5.1 is presented. The corresponding 2D

conservative form of the equations established in (7.5) is given by

∂tg (t,x,v) = − v

ρ (t,x)
· ∇x (ρ (t,x) g (t,x,v)) + σ (1 − g (t,x,v)) − g (t,x,v)

ρ (t,x)
∂tρ (t,x) ,

∂tρ (t,x) = − 1

2π
∇x ·

∫
ρ (t,x) g (t,x,v)ve−|v|2/2dv,

where x = (x, y) ∈ Ωx ⊆ R2 and v = (v, w) ∈ R2. For the numerical experiments, we

consider the spatial domain Ωx = [−3, 3] × [−3, 3]. The initial density ρ is chosen to be

the cutoff Gaussian

ρ (t = 0,x) =
1

4π
max

Ç
10−1,

102

4πσ2
IC

exp

Ç
− |x|2

4σ2
IC

åå
with constant deviation σIC = 0.3. The initial distribution function g is assumed to be

constant in space and velocity and we prescribe

g (t = 0,x,v) = 1.

A large collisionality of σ = 100 is chosen. For the low-rank computations an initial rank of

r = 20 is considered. Computations are performed on a spatial grid with Nx = Ny = 128

grid cells in both spatial directions. For the velocity grid, Nv = Nw = 32 grid points

are prescribed in both velocity directions. Based on this choice, we obtain maxk (|vk|) ≈
10.08, which is adjusted to the next larger integer. The time step size is determined by

∆t = CCFL · ∆x
11 with a CFL number of CCFL = 0.7 in order to guarantee numerical

stability. We compare the solution of the 2D conservative full system corresponding to

(7.17) to the solution obtained from the 2D DLRA scheme corresponding to (7.18). The

extension to two dimensions is straightforward.
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7.5. Numerical results

Figure 7.7: Numerical results for the density ρ (t,x) of the 2D plane source problem at time t = 0
(first column), t = 1 (second column), t = 2 (third column, and t = 3 (fourth column), computed with
the multiplicative full solver (first row) and the reduced multiplicative DLRA scheme (second row).

Figure 7.7 displays the density ρ (t, x) at different times up to tEnd = 3.0 computed with

the multiplicative full solver and the reduced multiplicative DLRA scheme with rank

2r. Note that we refrain from computations with the basis augmented 4r scheme as

in two space and velocity dimensions this would lead to extremely increased computa-

tional costs while obtaining good agreement also for the reduced multiplicative DLRA

scheme with rank 2r. We observe that at all times the solution of the reduced DLRA

scheme matches the solution of the full system. To determine the evolution of the

rank, we use a tolerance parameter of ϑ = 10−5∥Σ∥F . In Figure 7.8 we observe an

increase of the rank up to r = 73 before it decreases over time. Further, the evo-

lution of the norm ∥f∥2H in time is displayed. As expected from 1D theoretical re-

sults, its value decreases smoothly over time for all considered systems. In addition,

we plot the quantities κ+ := maxj

(
1
2π

∑Nv
k=1

∑Nw
ℓ=1 g (t,xj , vk, wℓ)ωkωℓe

(v2k+w2
ℓ)/2

)
and

κ− := minj

(
1
2π

∑Nv
k=1

∑Nw
ℓ=1 g (t,xj , vk, wℓ)ωkωℓe

(v2k+w2
ℓ)/2

)
. According to 1D theoretical

results, it is essential that they are both equal to 1. This property is fulfilled up to order

O
(
10−10

)
. For this setup, the computational benefit of the DLRA method compared to

the full solver is significant. The scheme is implemented in Julia v1.11 and performed on

a MacBook Pro with M1 chip, resulting in a decrease of run time by a factor of approx-

imately 10 from 2315 seconds to 235 seconds, confirming the computational advantages

of the DLRA scheme.

7.5.4 2D beam

As a second 2D test example, we consider a beam in the spatial domain Ωx = [−5, 5] ×
[−5, 5] starting at the point (0, 0) in the middle of the spatial plane and moving to the
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Figure 7.8: Left: Evolution of the rank in time for the 2D plane source problem for the reduced mul-
tiplicative DLRA scheme. Middle: Evolution of the H -norm in time for the multiplicative full solver
and the reduced multiplicative DLRA scheme. Right: Evolution of κ± in time for the multiplicative
full solver and the reduced multiplicative DLRA scheme. The line corresponding to the full system has
the constant value 1.

bottom left. As initial conditions we prescribe the density ρ to be the cutoff Gaussian

ρ (t = 0,x) =
1

4π
max

Ç
10−1,

102

4πσ2
IC,ρ

exp

Ç
− |x|2

4σ2
IC,ρ

åå
,

where σIC,ρ = 0.2 denotes a constant deviation, and the distribution function g to be

g (t = 0,x,v) =
K

4π
max

Ç
10−14,

106

4πσ2
IC,g

exp

Ç
−|v − vbeam|2

4σ2
IC,g

åå
with constant deviation σIC,g = 0.01 and K being a normalization constant such that the

2D analogue to Lemma 7.4 is fulfilled. The beam velocity vbeam is set to

vbeam =

(
−1

−1

)

and the collisionality to a constant value of σ = 1.5. All other initial settings and compu-

tational parameters remain unchanged from the previous test example given in Section

7.5.3.

Figure 7.9 displays the numerical results for the density ρ (t, x) at different times up to

tEnd = 3.0 computed with the multiplicative full solver and the reduced multiplicative

DLRA scheme with rank 2r. At all displayed time steps the DLRA solution captures the

solution of the full system. In Figure 7.10 the evolution of the rank in time is shown. We

use a tolerance parameter of ϑ = 10−4 ∥Σ∥F and allow a maximal rank of r = 200. Due to

the choice of σ, the solution of the problem is not low-rank and a very high rank is required

for an accurate approximation. For this reason, we observe an increase of the rank up to

the maximal allowed value. Also, the evolution of the norm ∥f∥2H in time is illustrated.

As expected, it decreases smoothly over time for all considered systems. In addition, we

plot the quantities κ+ and κ− defined in Section 7.5.3. It is essential that they are both

equal to 1. This property is fulfilled up to order O
(
10−9

)
. Due to the high rank, the

computational benefits of the DLRA scheme are diminished compared to the previous

test case. The scheme is implemented in Julia v1.11 and performed on a MacBook Pro
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Figure 7.9: Numerical results for the density ρ (t,x) of the 2D beam problem at time t = 0 (first
column), t = 1 (second column), t = 2 (third column, and t = 3 (fourth column), computed with the
multiplicative full solver (first row) and the reduced multiplicative DLRA scheme (second row).

Figure 7.10: Left: Evolution of the rank in time for the 2D beam problem for the reduced multiplicative
DLRA scheme. The rank increases up to the maximal allowed value of r = 200. Middle: Evolution
of the H -norm in time for the multiplicative full solver and the reduced multiplicative DLRA scheme.
Right: Evolution of κ± in time for the multiplicative full solver and the reduced multiplicative DLRA
scheme. The line corresponding to the full system has the constant value 1.

with M1 chip, resulting in a decrease of run time by a factor of approximately 1.5 from

1220 seconds to 845 seconds. This example illustrates the relation between the choice of

σ and the low-rank structure of the solution. It is expected that for larger values of σ the

solution becomes low-rank and hence the computational benefits of the DLRA scheme

are enhanced.

7.6 Summary and conclusion

We have proposed a multiplicative DLRA discretization for the linear Boltzmann-BGK

problem that is numerically stable. The main research contributions are:

(i) A multiplicative splitting of the distribution function: As the Maxwellian equilibrium

distribution M is generally not a low-rank function, we have considered a multiplica-
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tive splitting f = Mg of the distribution function. The remaining function g can

be considered as a deviation from the equilibrium distribution and in [EHY21] it

is shown to be of low rank. For deriving an efficient and stable DLRA scheme the

spatial discretization had to be chosen in a conservative form and additional basis

augmentations have been required.

(ii) A stable numerical scheme with rigorous mathematical proofs: We have shown that a

stable discretization had to be carefully derived to obtain a rigorous analytical proof

of stability under a specifically designed truncation strategy. A classic hyperbolic

CFL condition has been deduced, enabling the choice of an optimal time step size

and thereby reducing the computational effort.

(iii) A rank-adaptive augmented integrator: We have implemented the rank-adaptive

augmented BUG integrator introduced in [CKL22], which is flexible to additional

basis augmentations. Compared to the projector-splitting integrator proposed in

[LO14], which is used for the non-linear isothermal Boltzmann-BGK equation in

[EHY21], this choice allows to adaptively determine the rank in each step, avoiding

the a priori determination of a certain fixed rank.

(iv) Numerical test examples confirming the theoretical properties: We have presented a

number of numerical test examples in both 1D and 2D which validate the stability

and the accuracy of the DLRA scheme while showing a significant reduction of

computational and memory requirements compared to the full method.

Altogether, the insights gained in this chapter can be helpful for future work as the

employed multiplicative splitting is attached to the investigation of more complicated

equations, e.g. the non-linear Boltzmann-BGK equation treated in [EHY21], for which

we propose to reconsider the chosen discretization in terms of stabilization.
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8
Numerical solution of parameter

identification inverse problems

Many practical applications involve non-observable quantities that shall be inferred from

related observations and measurements. In medical imaging, for example, a classic prob-

lem consists in the non-intrusive reconstruction of properties of an examined tissue from

measurements [Nat86]. In geophysics, information on the Earth’s history is collected from

lake and sea sediment analyses [LO84] or subsurface structures are analyzed by seismic

imaging for the detection of oil and gas deposits [Nol87]. Image reconstruction and im-

age deblurring techniques allow for the reconstruction of sharp images in projectors and

cameras [Gro93, BBM21]. In wave propagation, the characteristics of antennas such as

reflective surface mesh shapes are estimated from radiation patterns [BLA86]. A wide

variety of further applications can be found in [BK89, Gro93, Kir21, Vog02] and the

references therein. All aforementioned settings are examples of inverse problems.

In Section 8.1 we give an introduction to the theory of inverse problems. Section 8.2

provides methods for the numerical optimization with PDEs, which can be applied for

the reconstruction of unknown parameters.

8.1 Inverse problems

We have already introduced some descriptive examples for inverse problems. The goal

of this section consists in considering them from a mathematical point of view. In Sec-

tion 8.1.1 we formalize the definition of inverse problems. Section 8.1.2 introduces PDE

parameter identification inverse problems, relating inverse problems and PDEs.
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8. Numerical solution of parameter identification inverse problems

8.1.1 General formulation

We begin with a formal, general definition of direct and inverse problems in a noise-free

setting.

Definition 8.1 (Direct and inverse problems, [Gro93, Kir21]). Let X and Y be normed

vector spaces (typically Banach or Hilbert spaces) and F : X → Y be an operator acting

on a cause x ∈ X so that for the effect y ∈ Y the relation F (x) = y holds. The corre-

sponding problems are classified as follows:

Direct problem: Given x and F , evaluate F (x) = y.

Inverse problem of causation: Given y and F , solve F (x) = y for x.

Inverse problem of model identification: Given x and y, solve F (x) = y for F .

Hence, a direct problem consists in evaluating the consequences of a given cause whereas

for an inverse problem the unknown cause or unknown model parameters for a given

observation must be determined.

Hadamard’s concept of well-posedness was originally introduced for direct problems in

[Had02, Had23]. It directly translates to inverse problems.

Definition 8.2 (Well-posedness and ill-posedness, [Kir21]). Let F : X → Y with X and

Y being normed vector spaces. The inverse problem F (x) = y is called well-posed if the

following properties are satisfied:

(i) There exists a solution to the problem (existence).

(ii) There is at most one solution to the problem (uniqueness).

(iii) The solution continuously depends on the data (stability).

If at least one of the conditions is violated, the corresponding problem is called ill-posed.

The first two properties depend directly on the vector spaces X and Y and on the operator

F . The stability property relies on the choice of the norms and, following [Bal19], can

be considered to be subjective as, according to the setting, different conditions for the

acceptance of the translation of errors from the measurements y to the data x are possible.

Regularization of ill-posed problems. While direct problems are usually well-posed, the

corresponding inverse problems are often ill-posed [BBM21]. This ill-posedness can be

overcome by regularization techniques. Common strategies are Tikhonov regularization,

filtering and truncated SVD approaches, iterative methods such as Landweber iteration

or the conjugate gradient method, stochastic models such as Bayesian inversion, and

projection methods. A precise description of regularization and related techniques can be

found in [Lou89, Kir21, Gro93].
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INPUT DATA

initial configuration fin

initial condition fin

EVOLUTION

EXPERIMENT

PDE MODEL

with unknown

model parameter σ

MEASUREMENT

detector

operator M

OUTPUT DATA

yobsfin

M (ffin,σ)

Figure 8.1: Illustration of the structure of a parameter identification inverse problem. The first row
is related to real-world experiments. The second row is related to the mathematical simulation using
a PDE model. Controllable (known) quantities are depicted in blue. Unknown quantities are depicted
in purple. The PDE model, which is known except for the parameter σ, is depicted in gray.

8.1.2 PDE parameter identification

This thesis is concerned with inverse problems related to model identification, specifically

parameter identification inverse problems in physical processes that are described using

kinetic PDEs. Let σ be the unknown model parameter and F : U → Y be a forward

operator with F (σ) = y. Usually, σ is chosen from an admissible parameter set Uad ⊆
U that incorporates physically motivated constraints on the model parameter [BK89].

The problem is equipped with input data fin from the initial configuration, to which we

account by denoting Ffin (σ) = yfin . The output data yfin is assumed to be known from

observations or measurements. Then the parameter identification inverse problem reads:

Given fin and yfin , solve Ffin (σ) = yfin for σ.

On a mathematical level, the evolution characterized by the forward operator is described

by a kinetic PDE model depending on the unknown model parameter σ. The PDE model

is equipped with an initial condition fin and we denote ffin,σ for the solution of the PDE.

The output data is generated by measurements of the distribution function M (ffin,σ),

where M denotes a measurement operator, which is assumed to be known. As shown

in Figure 8.1, one seeks to align the experimental output data yobsfin
which is obtained

from detector observations in real-world experiments and the synthetic data M (ffin,σ)

generated from the mathematical PDE model. The illustration is inspired by the one

given in [Hel25].

Measurement models and noise. For simplicity, in the above setting we assume that,

both in real-world experiments and in the PDE model, the output data can be perfectly

derived from the measurements taken with the detector and from the measurement opera-

tor M, respectively. For practical applications this is clearly not realistic since all physical

measurements are affected by errors. A common choice consists in adding statistical noise

of Gaussian type to the output data [Tar05]. Also the construction of the measurement

operator M and the choice of an optimal set of experiments are challenging questions

which are subject to current research. More information can be found for example in the

review articles [Ren10, HJM24, Ale21].
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8. Numerical solution of parameter identification inverse problems

Output least squares minimization. A common strategy to align the results from the

experimental observations and the computed solutions from the PDE model is the out-

put least squares minimization [Vog02, Gro93, BK89]. In this approach, one solves the

optimization problem

arg min
σ∈U

J (σ) with J (σ) =
1

2

∥∥∥M (ffin,σ) − yobsfin

∥∥∥2
Y
, (8.1)

where ffin,σ is generated from the solution of the PDE with the considered parameter

value σ. The functional J measures the mismatch between the observed data yobsfin
and

the computed data M (ffin,σ) that is obtained when solving the PDE. Note that in (8.1)

usually a regularizing penalty term is added. We refrain from this but emphasize that

this extension is straightforward. In addition, we do not pose additional physically mo-

tivated constraints on the parameter σ and the PDE solution ffin,σ but emphasize their

importance for showing theoretical results as for instance done in [HPUU08].

8.2 Numerical optimization with PDEs

In this section, techniques for solving optimization problems such as (8.1) are presented.

We consider the following general non-linear minimization problem

arg min
(f,σ)∈X×U

J̃ (f, σ) subject to G (f, σ) = 0, (8.2)

where J̃ : X × U → R+
0 and G : X × U → Z are continuous with Banach space Z

and reflexive Banach spaces X and U . The state variable f is dependent on the control

variable σ through the equation G (f, σ) = 0, which is also called the state equation.

Section 8.2.1 reformulates the optimization problem (8.2) in a reduced form and intro-

duces the adjoint state method, which allows for an efficient calculation of the gradient

in gradient-based iterative solution schemes. Section 8.2.2 considers the optimization pa-

rameters, for which the size of the parameter space can be significantly reduced by spline

approximation. In Section 8.2.3 the gradient descent method for the reduced minimization

problem with spline-approximated optimization parameters is given.

8.2.1 Adjoint state method for a gradient-based solution

For an efficient gradient-based iterative solution of (8.2) the adjoint state method can be

applied. We first recall the following theoretical background.

Definition 8.3 (Lagrangian, [HPUU08]). The Lagrange function or Lagrangian L : X ×
U × Z∗ → R for the minimization problem (8.2) is defined by

L (f, σ, g) = J̃ (f, σ) + ⟨g,G (f, σ)⟩Z∗,Z , (8.3)
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8.2. Numerical optimization with PDEs

where Z∗ denotes the dual space of Z and ⟨·, ·⟩Z,Z∗ the corresponding dual pairing. The

quantity g ∈ Z∗ is called a Lagrange multiplier or an adjoint state.

The Lagrangian formulation allows to rewrite constrained optimization problems so that

methods from unconstrained optimization can be applied. Additional information can be

found in standard textbooks on numerical optimization such as [NW06, UU12] and more

specifically for numerical optimization in PDE settings in [BS00, Trö10]. Further, we gen-

eralize the notion of differentiability, allowing to consider continuous infinite-dimensional

optimization settings.

Definition 8.4 (Fréchet differentiability, [HPUU08]). Let F : U ⊆ X → Y be an operator

between Banach spaces X and Y and let U ⊆ X be a non-empty open subset. The

operator F is called Fréchet differentiable at x ∈ U if there exists a linear and bounded

operator F ′ (x) ∈ L (X,Y ) such that∥∥F (x + h) − F (x) − F ′ (x)h
∥∥
Y

= o (∥h∥X) for ∥h∥X → 0.

If F is Fréchet differentiable at every x ∈ V with V ⊆ U open, F is called Fréchet

differentiable on V and F ′ : V → L (X,Y ) , x 7→ F ′ (x) is called the Fréchet derivative of

F on V .

For the derivation of the adjoint state method we follow the explanations in [HPUU08,

Ple06]. Let J̃ and G be continuously Fréchet differentiable and the solution operator

σ ∈ U 7→ f (σ) = fσ ∈ X be uniquely defined and continuously Fréchet differentiable. We

first rewrite the full constrained optimization problem (8.2) as its corresponding reduced

problem by inserting f (σ). We obtain the formulation

arg min
σ∈U

J (σ) := J̃ (f (σ) , σ) , (8.4)

for which J : U → R+
0 is called the reduced functional. In order to apply a gradient-based

optimization procedure, we are interested in the computation of its Fréchet derivative

J ′ (σ). A direct evaluation gives

J ′ (σ) = f ′ (σ)∗ ∂f J̃ (f (σ) , σ) + ∂σJ̃ (f (σ) , σ) , (8.5)

where f ′ (σ)∗ denotes the adjoint of f ′ (σ). From a numerical point of view the compu-

tation of f ′ (σ) tends to be quite expensive and we seek a more sophisticated approach.

We insert f (σ) into the Lagrangian (8.3) for the minimization problem (8.2). This yields

L (f (σ) , σ, g) = J̃ (f (σ) , σ) + ⟨g,G (f (σ) , σ)⟩Z∗,Z (8.6)

with arbitrary g ∈ Z∗. On the solution manifold with f = f (σ) the state equation is

fulfilled and we obtain the equality

J (σ) = J̃ (f (σ) , σ) = J̃ (f (σ) , σ) + ⟨g,G (f (σ) , σ)⟩Z∗,Z = L (f (σ) , σ, g) .
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8. Numerical solution of parameter identification inverse problems

Differentiating this expression with respect to σ leads to

J ′ (σ) = ∂fL (f (σ) , σ, g) f ′ (σ) + ∂σL (f (σ) , σ, g) . (8.7)

To avoid the computation of f ′ (σ) appearing in the first term, we choose a special gσ ∈ Z∗

such that

∂fL (f (σ) , σ, gσ) = 0. (8.8)

From (8.6) we can conclude that this is exactly the case if

∂fG (f (σ) , σ)∗ gσ = −∂f J̃ (f (σ) , σ) .

This equation is called the adjoint equation. With the special choice gσ, we obtain from

(8.7) that the Fréchet derivative of J (σ) can be computed as

J ′ (σ) = ∂σL (f (σ) , σ, gσ) = ∂σJ̃ (f (σ) , σ) + ∂σG (f (σ) , σ)∗ gσ. (8.9)

Numerically, the evaluation of this expression is usually much less expensive than the

direct evaluation of (8.5).

Summary of the adjoint state method. We summarize the adjoint state method for an

efficient computation of J ′ (σ) as follows:

(i) Set up the Lagrangian L for the problem as done in (8.3).

(ii) Compute the adjoint state gσ by solving (8.8).

(iii) Compute J ′ (σ) by evaluating (8.9).

8.2.2 Spline approximation of the optimization parameters

In the optimization problem (8.2) and its reduced formulation (8.4) the function σ is

chosen from a reflexive Banach space U . Let us denote σ = σ (x) and assume that for

a numerical solution a relatively fine grid in the spatial variable x is prescribed. When

evaluating the scattering coefficient σ (x) at each point of the spatial grid and taking these

values as the parameters to be optimized, there are several computational disadvantages.

For instance, a huge parameter space is obtained and very rough functions are part of the

ansatz space. To avoid this, we consider the parametrization of σ (x) by splines. A lot of

profound literature on splines is available [dB78, Sch07, Sch15, HH13] but the topic is also

covered in several introductory textbooks on numerical analysis such as [SB02, QSS02].

We restrict our considerations to a 1D setting and consider the spatial domain Ωx = [a, b].

Let ∆ = {a = τ0 < τ1 < ... < τNc = b} be a partition of the interval [a, b] with Nc + 1

pairwise different knots.
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8.2. Numerical optimization with PDEs

Definition 8.5 (Spline (function), [QSS02]). A spline (function) sk (x) of degree k on ∆

is a function sk : [a, b] → R with the following properties:

(i) sk (x) ∈ Ck−1 [a, b], i.e. the function sk (x) is k− 1 times continuously differentiable

on the interval [a, b].

(ii) On every subinterval [τi, τi+1] , i = 0, ..., Nc − 1, the function sk (x) coincides with a

polynomial of degree at most k, i.e. sk (x)
∣∣
[τi,τi+1]

∈ Pk.

The set of all spline functions of degree k on ∆ is denoted by Sk,∆.

The properties given in the definition are not sufficient to uniquely characterize a spline

function of degree k. It can be shown that Nc + k degrees of freedom are left and thus

dim (Sk,∆) = Nc + k [QSS02]. Finding a suitable basis representation for sk (x) is crucial

for numerical applications as intuitive choices can for instance lead to ill-conditioning or

require a large number of numerical operations for the evaluation of sk (x) [Cox72, Sch07].

We introduce the following set of spline functions.

Definition 8.6 (B-spline (function), [QSS02, SB02]). The normalized B-spline (function)

Bi,k+1 (x) of degree k on ∆ is defined as

Bi,k+1 (x) = (τi+k+1 − τi)h [τi, ..., τi+k+1] ,

where

h (z) = (z − x)k+ =

{
(z − x)k for z ≥ x,

0 for z < x,
z ∈ R,

and h [τi, ..., τi+k+1] are the divided differences of the real function h, which are recursively

defined by h [τi] = h (τi) and

h [τi, ..., τi+k+1] =
h [τi+1, ..., τi+k+1] − h [τi, ..., τi+k]

τi+k+1 − τi
.

A recursive computation of the normalized B-spline functions is possible through the

following recursion formula.

Lemma 8.7 (Cox-de Boor recursion formula, [Cox72, dB72]). The normalized B-spline

Bi,k+1 (x) of degree k on ∆ can be obtained from the recursion

Bi,1 (x) =

{
1 if x ∈ [τi, τi+1] ,

0 else,

Bi,k+1 (x) =
x− τi

τi+k − τi
Bi,k (x) +

τi+k+1 − x

τi+k+1 − τi+1
Bi+1,k (x) , k ≥ 1.

Proof. See for instance [SB02].

The normalized B-spline functions exhibit useful properties making them well-suited for

numerical applications.
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Lemma 8.8 (Properties of B-splines, [SB02]). The normalized B-spline functions intro-

duced in Definition 8.6 fulfill the following properties:

(i) Bi,k+1 (x) = 0 for x /∈ [τi, τi+k+1],

(ii) Bi,k+1 (x) > 0 for τi < x < τi+k+1

(iii) For all x with inf {τi} < x < sup {τi} it holds
∑

iBi,k+1 (x) = 1, and the sum

contains only finitely many non-zero terms.

Proof. See for instance [SB02].

From the recursion formula given in Lemma 8.7 we can conclude that with respect to

the partition ∆ only Nc − k linearly independent normalized B-splines of order k can be

constructed. This can be overcome by considering an extended partition ∆ext, i.e. by

adding 2k knots such that

τ−k ≤ τ−k+1 ≤ ... ≤ τ−1 ≤ τ0 = a, (8.10)

b = τNc ≤ τNc+1 ≤ ... ≤ τNc+k.

Then the normalized B-splines Bi,k+1 (x) for i = −k, ...,−1 and i = Nc − k, ..., Nc − 1

can also be constructed and we obtain a unique basis representation of sk (x) in terms of

normalized B-splines.

Theorem 8.9 (B-spline basis of Sk,∆, [Sch07]). The normalized B-spline basis functions

Bi,k+1 (x) of degree k on the extended partition ∆ext constitute a basis of Sk,∆, i.e. for

each spline sk (x) ∈ Sk,∆ there exists a unique representation

sk (x) =

Nc−1∑
i=−k

ciBi,k+1 (x) with ci ∈ R,

and the real numbers ci with i = −k, ..., Nc − 1 are called the B-spline coefficients.

Proof. See for instance [Sch07].

Periodic splines. In many practical applications periodic functions are of importance.

For these, a suitable approximation can be derived in terms of periodic splines.

Definition 8.10 (Periodic spline (function), [Sch07]). A spline function sk (x) ∈ Sk,∆ of

degree k on ∆ which satisfies

s
(j)
k (a) = s

(j)
k (b) for j = 0, 1, ..., k − 1

is called a periodic spline (function). The set of all periodic spline functions of degree k

on ∆ is denoted by S̊k,∆.
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For the representation of periodic spline functions with normalized B-splines we set the

2k additional knots from (8.10) to be periodically extended such that

τ−i = τNc−i − b + a and τNc+i = τi + b− a for i = 1, ..., k. (8.11)

Then we can give the definition of periodic B-splines. We restrict the definition to the

case Nc > k but an extension for Nc ≤ k is also possible [Sch07].

Definition 8.11 (Periodic B-spline (function), [Sch07]). With the periodically extended

knots given in (8.11) the normalized periodic B-spline (function) B̊i,k+1 (x) of degree k

on ∆ is defined as

B̊i,k+1 (x) = Bi,k+1 (x) for i = 0, ..., Nc − 1 − k

and

B̊i,k+1 (x) =

{
Bi,k+1 (x) for a ≤ x < τk+1+i,

BNc+i,k+1 (x) for τk+1+i ≤ x ≤ b,
for i = −k, ...,−1.

Having the normalized periodic B-spline functions at hand, we can use them to express

a periodic spline sk ∈ S̊k,∆.

Theorem 8.12 (Periodic B-spline basis of S̊k,∆, [Sch07]). The normalized periodic B-

spline basis functions B̊i,k+1 (x) of degree k on the extended partition ∆ext with knots as

given in (8.11) constitute a basis of S̊k,∆, i.e. for each spline sk (x) ∈ S̊k,∆ there exists a

unique representation

sk (x) =

Nc−1−k∑
i=−k

ciB̊i,k+1 (x) with ci ∈ R. (8.12)

Proof. See for instance [Sch07].

With the definition of the periodic B-spline functions we can also rewrite the basis rep-

resentation (8.12) of sk (x) with non-periodic normalized B-splines.

Corollary 8.13 (B-spline basis of S̊k,∆, [Sch07]). The unique representation of a periodic

spline sk (x) ∈ S̊k,∆ given in (8.12) can be equivalently written in terms of non-periodic

normalized B-splines as

sk (x) =

Nc−1∑
i=−k

ciBi,k+1 (x) with cNc−1−i = c−i−1 for i = 0, ..., k − 1.

Proof. See for instance [Sch07].

Spline interpolation. A common field of application of spline functions is spline interpo-

lation. Let σ (x) be a prescribed function that can be evaluated on the considered interval
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Figure 8.2: Normalized cubic periodic B-spline basis functions B̊i,4 (x) for i = −3, ..., Nc − 4 for
Nc = 3 (left) and Nc = 5 (right) on different spatial domains.

Ωx = [a, b] and denote σ0 = σ (τ0), σ1 = σ (τ1), ..., σNc = σ (τNc). An interpolating spline

function sk (x) ∈ Sk,∆ of degree k on ∆ additionally satisfies

sk (τi) = σi for i = 0, ..., Nc − 1.

For spline interpolation, especially cubic splines play an important role as they provide

C2-approximations, which are particularly useful in practical applications. For more

information on (cubic) spline interpolation we refer to literature such as [dB78, SB02].

Coming back to the model parameter function σ (x) ∈ U of the optimization problem (8.2)

and its reduced formulation (8.4), it can be shown that for U being the Sobolev space

W q,2 a suitable interpolation of σ (x) with cubic B-splines can be given. Corresponding

error estimates can be found in [BK89].

Spline approximation of σ. In this thesis, we assume that the model parameter function

is well-approximated by a representation with normalized cubic periodic B-splines with

equally spaced knots, i.e. we set

σ (x) ≈
Nc−4∑
i=−3

ciB̊i,4 (x) with c = (ci) ∈ RNc . (8.13)

This assumption is justified by considering for instance a suitable interpolation of a given

parameter function σ (x). The set of normalized cubic periodic B-splines for Nc = 3

and for Nc = 5 on different spatial domains is illustrated in Figure 8.2. The reduced

optimization problem (8.4) is solved on the smaller parameter space RNc of dimension Nc

and translates to

arg min
c∈RNc

J (c) = J̃ (f (c) , c) , (8.14)

for which J : RNc → R+
0 is called the cost function.
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8.2.3 Gradient descent method

For the solution of the reduced optimization problem (8.14) with cost function J ∈
C1
(
RNc

)
a gradient-based approach is pursued. A simple method consists in applying

the gradient descent method, which is a standard technique in unconstrained numerical

optimization and has been extensively treated in literature, e.g. in [GK99, Nes04, NW06,

WR22]. We begin with the definition of a descent direction.

Definition 8.14 (Descent direction, [WR22]). A vector d ∈ RNc is called a descent

direction of J at c if, for all η > 0 sufficiently small, it holds

J (c + ηd) < J (c) .

Let c0 ∈ RNc be a starting value of the optimization procedure. Then the gradient descent

scheme generates an iterative sequence according to

cn+1 = cn − ηn∇cJ (cn) for n = 0, 1, ..., (8.15)

where ηn > 0 denotes an adaptively chosen step size. The descent direction dn =

−∇cJ (cn) is the direction of steepest descent, explaining why this method is also called

the steepest descent method. Without additional assumptions on the cost function J con-

vergence of the scheme (8.15) cannot be guaranteed. We introduce the following concepts.

Definition 8.15 (L-smoothness and m-strong convexity, [WR22]). The function J ∈
C1
(
RNc

)
is called L-smooth if its gradient is Lipschitz continuous, i.e. if there exists a

constant L ≥ 0 such that for all c1, c2 ∈ RNc it holds

∥∇Jc (c1) −∇Jc (c2)∥E ≤ L ∥c1 − c2∥E ,

where ∥·∥E denotes the Euclidean norm. The function J ∈ C1
(
RNc

)
is called m-strongly

convex if there exists a constant m > 0 such that for all c1, c2 ∈ RNc it holds

Jc (c2) ≥ Jc (c1) + ∇Jc (c1)
⊤ (c2 − c1) +

m

2
∥c2 − c1∥2E .

The constant m is called the modulus of convexity.

Then, convergence of the gradient descent method to a unique global minimum c∗ ∈ RNc

can be established.

Theorem 8.16 (Convergence of the gradient descent method, [Nes04]). Let J ∈ C1
(
RNc

)
be L-smooth and m-strongly convex. Then, for ηn ≡ η ≤ 2

m+L , the gradient descent

method (8.15) generates a sequence {cn} such that

∥cn − c∗∥2E ≤
Å

1 − 2ηmL

m + L

ãn ∥∥c0 − c∗
∥∥2
E
,

where c∗ ∈ RNc denotes the unique global minimum. Optimal convergence is obtained for

η = 2
m+L .
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Proof. See for instance [Nes04].

L-smoothness and m-strong convexity are strong restrictions on the cost function J . The

assumption of m-strong convexity can be weakened when imposing the Polyak- Lojasiewicz

inequality instead. Further reading can be found in [Pol63, KNS16].

Step size strategies. There are different strategies on how to determine the step size ηn

in each step of iterative descent schemes. We focus on line search methods that determine

the length of the step size when the descent direction dn is given. Often, a step size is

considered acceptable if the Armijo condition

J (cn + ηndn) ≤ J (cn) + h1η
n∇cJ (cn)⊤ dn (8.16)

with constant h1 ∈ (0, 1) is satisfied. To find an appropriate step size in practical appli-

cations, one can choose an initial guess η and a step size reduction factor p ∈ (0, 1) and

determine the first value in the sequence η, pη, p2η, p3η, ... such that condition (8.16) is

fulfilled. This approach is called backtracking line search with Armijo condition [Arm66].

Alternative step size conditions are for instance the (strong) Wolfe conditions, the Gold-

stein conditions or methods involving the Hessian if the cost function J is in C2
(
RNc

)
.

More information on step size strategies is available in [NW06, WR22].

Alternative gradient-based iterative methods. There are various alternatives to the

simple gradient descent method described in (8.15), exhibiting faster convergence proper-

ties or requiring less computational effort. Stochastic gradient descent methods reduce the

computational complexity when the evaluation of multiple gradients instead of only one

gradient is required. For twice continuously differentiable cost functions the convergence

can be improved by taking evaluations of the Hessian into account. This leads to Newton-

and quasi-Newton methods. Conjugate gradient methods are especially useful for the so-

lution of large linear and non-linear systems of equations. A more detailed description of

alternative gradient-based iterative methods is given in [NW06, GK99].
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9
An adaptive DLRA optimizer for parameter

identification inverse problems

A classic inverse problem arising in medical imaging is the reconstruction of proper-

ties of an examined tissue from measurements without doing harm to the human body.

We consider a model using the time-dependent radiative transfer equation (RTE) with

an unknown scattering coefficient incorporating properties of the background medium.

The associated inverse problem considers the reconstruction of the scattering coefficient

from measurements. This parameter identification inverse problem shall be solved by us-

ing PDE constrained optimization. Similar to recent papers [LWY23, CLL18, HKLT25,

ELWY24], we deploy a gradient-based approach for which in each iteration the evaluation

of both the forward and the adjoint problem is required. Obviously, this can numerically

become very costly, especially in higher-dimensional settings, which is overcome by using

a dynamical low-rank approximation (DLRA) approach. We pursue the following strat-

egy: “first optimize, then discretize, then low-rank”, i.e. we first perform the optimization

in a continuous setting before the resulting equations are discretized and the method of

DLRA is applied.

The structure of this chapter is as follows. Section 9.1 recalls the 1D formulation of

the RTE and the associated inverse transport problem. In Section 9.2 we apply a PDE

constrained optimization procedure for the solution of the parameter identification inverse

problem and derive the adjoint equations using a Lagrangian reformulation. For the

scattering coefficient a normalized cubic periodic B-spline approximation is introduced

and a gradient descent step for updating its coefficients is formulated. Section 9.3 is

devoted to the discretization of the forward and the adjoint equations as well as of the

gradient in angle, space, and time, leading to a fully discrete gradient descent scheme.

In Section 9.4 the method of DLRA is applied to the forward and adjoint equations and

a backtracking line search method for an adaptive refinement of the gradient descent

step size and the DLRA rank tolerance is presented. Numerical results given in Section

9.5 confirm the accuracy and efficiency of the DLRA scheme compared to the solutions

computed with a full solver. Finally, Section 9.6 provides a brief summary and conclusion.

The results of this chapter closely follow the presentation in [BEKK25a].
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9. An adaptive DLRA optimizer for parameter identification inverse problems

9.1 Radiative transfer equation

In optical tomography, the propagation of near-infrared light through tissue can be mod-

eled by using the RTE [RBH07, KNBH02, KH02]. Neglecting boundary effects, the time-

dependent form of this kinetic PDE can be given in 1D slab geometry as∂tf (t, x, µ) + µ∂xf (t, x, µ) = σ (x)
Ä

1
|Ωµ|⟨f (t, x, µ))⟩µ − f (t, x, µ)

ä
,

f (t = 0, x, µ) = fin (x, µ) ,
(9.1)

where f (t, x, µ) : R+
0 × Ωx × Ωµ → R+

0 denotes the distribution function which describes

the repartition of photons in phase space. Here, t stands for the time variable, x ∈ Ωx ⊆ R
for the space variable and µ ∈ Ωµ = [−1, 1] for the angular variable. An integration over

the corresponding domain is denoted by brackets ⟨·⟩ and |Ωµ| measures the length of

the domain Ωµ. The function σ (x) represents the properties of the background medium,

indicating the probability of particles at position x to be scattered into a new direction.

We refer to it as the scattering coefficient. At the initial time t = 0 the function fin (x, µ)

is prescribed for the distribution function. The inverse problem associated with the RTE

presented in (9.1) consists in reconstructing the scattering coefficient σ (x) from output

data that is generated from measurements. For more general information on the inverse

transport problem we refer to the review articles [Bal09, Ste03].

9.2 PDE constrained optimization

In practical applications, optical tomography commonly relies on a multitude of mea-

surements from different positions. To be close to realistic settings, we take a number of

NIC measurements for the reconstruction of the scattering coefficient σ (x) into account.

Furthermore, we assume the measurements to be generated by a measurement operator

M acting on the angle-averaged solution of the RTE at the final time t = T , which has

been computed with the corresponding initial condition fin,m for m = 1, ..., NIC. The

restriction to angle-averaged measurements is a common choice for modeling real-world

problems [BJ09, CLW18]. For simplicity, the experimentally observed data yobsm is as-

sumed to be close to the measurements of the angle-averaged solution that is obtained

with the ground truth parameter, i.e.

yobsm (x) ≈ M
Ä
⟨fσ,m (t = T, x, µ)⟩µ

ä
for m = 1, ..., NIC,

where fσ,m (t, x, µ) denotes a solution of∂tfm (t, x, µ) + µ∂xfm (t, x, µ) = σ (x)
Ä

1
|Ωµ|⟨fm (t, x, µ))⟩µ − fm (t, x, µ)

ä
,

fm (t = 0, x, µ) = fin,m (x, µ) ,
(9.2)

142



9.2. PDE constrained optimization

computed with the corresponding scattering coefficient σ (x). For notational brevity, we

refrain from explicitly denoting the dependence of the distribution function and of the

experimentally observed data on the initial condition fin,m.

For the solution of the PDE parameter identification inverse problem associated with (9.2)

one tries to minimize the square loss between the measurements of the angle-averaged

distribution function satisfying (9.2) and the experimentally observed data, i.e. one tries

to solve the minimization problem

arg min
f1,...fNIC

,σ
J̃ (f1, ..., fNIC

, σ)

with J̃ (f1, ..., fNIC
, σ) =

1

2

NIC∑
m=1

≠∣∣∣M Ä⟨fm(t = T, x, µ)⟩µ
ä
− yobsm (x)

∣∣∣2∑
x

, (9.3)

subject to (9.2).

This can be reformulated in a reduced form by inserting the solution fσ,m simulated from

(9.2). Then the reduced minimization problem is given by

arg min
σ

J (σ) with J (σ) =
1

2

NIC∑
m=1

≠∣∣∣M Ä⟨fσ,m(t = T, x, µ)⟩µ
ä
− yobsm (x)

∣∣∣2∑
x

. (9.4)

Note that this setup is close to realistic applications in the sense as described above. For

real-word applications we point out that the considered setting with one spatial and one

angular variable may not be sufficient. In addition, it is assumed that there is no noise in

the measurements, which in practical applications is clearly infeasible. Nevertheless, the

results gained from the considered setup provide valuable insights into the combination of

parameter identification and DLRA and can be directly extended to higher-dimensional

settings.

Section 9.2.1 derives the adjoint equations associated with the forward problem (9.2),

before in Section 9.2.2 an explicit gradient descent step is formulated.

9.2.1 Lagrangian formulation and adjoint problem

For the derivation of the adjoint problem as described in Section 8.2.1, we reformulate the

PDE constrained minimization problem (9.3) using the method of Lagrange multipliers.

We aim for a solution of

arg min
f1,...,fNIC

,g1,...,gNIC
,λ1,...λNIC

,σ
L (f1, ...fNIC

, g1, ..., gNIC
, λ1, ..., λNIC

, σ) ,
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9. An adaptive DLRA optimizer for parameter identification inverse problems

where

L = J̃ (f1, ..., fNIC
, σ) +

NIC∑
m=1

≠
gm, ∂tfm + µ∂xfm − σ (x)

Å
1

|Ωµ|
⟨fm⟩µ − fm

ã∑
t,x,µ

+

NIC∑
m=1

⟨λm, fm (t = 0, x, µ) − fin,m (x, µ)⟩x,µ ,

and gm (t, x, µ) and λm (x, µ) are the Lagrange multipliers with respect to fm (t, x, µ) and

fin,m (x, µ) for m = 1, ..., NIC, respectively. Applying integration by parts and assuming

periodic boundary conditions, the Lagrangian can be rewritten as

L = J̃ (f1, ..., fNIC
, σ) +

NIC∑
m=1

≠
fm,−∂tgm − µ∂xgm − σ (x)

Å
1

|Ωµ|
⟨gm⟩µ − gm

ã∑
t,x,µ

+

NIC∑
m=1

⟨gm(t = T, x, µ), fm(t = T, x, µ)⟩x,µ

−
NIC∑
m=1

⟨gm (t = 0, x, µ) , fm (t = 0, x, µ)⟩x,µ

+

NIC∑
m=1

⟨λm, fm (t = 0, x, µ) − fin,m (x, µ)⟩x,µ .

The corresponding adjoint or dual problems associated with (9.2) can be derived by setting

∂fmL = 0 for m = 1, ..., NIC. By straightforward calculation one obtains−∂tgm (t, x, µ) − µ∂xgm (t, x, µ) = σ (x)
Ä

1
|Ωµ| ⟨gm (t, x, µ)⟩µ − gm (t, x, µ)

ä
,

gm (t = T, x, µ) = −⟨fm (t = T, x, µ)⟩µ + yobsm (x) .
(9.5)

The notation gσ,m (t, x, µ) indicates that gm (t, x, µ) fulfills equations (9.5). On the so-

lution manifold with fσ,m (t, x, µ) satisfying the PDE constraints (9.2) and gσ,m (t, x, µ)

satisfying the adjoint equations (9.5) for m = 1, ..., NIC, the following equality holds

L (fσ,1, ..., fσ,NIC
, gσ,1, ..., gσ,NIC

, λ1, ..., λNIC
, σ) = J̃ (fσ,1, ..., fσ,NIC

, σ) = J (σ) ,

translating to the derivatives such that

J ′ (σ) =
dL (fσ,1, ..., fσ,NIC

, gσ,1, ..., gσ,NIC
, λ1, ..., λNIC

, σ)

dσ
(9.6)

=

NIC∑
m=1

Å
∂L

∂fσ,m

∂fσ,m
∂σ

+
∂L

∂gσ,m

∂gσ,m
∂σ

+
∂L
∂λm

∂λm

∂σ
+

∂L

∂σ

ã
=

NIC∑
m=1

∂L

∂σ
,

where the first three terms vanish since (9.2) and (9.5) are fulfilled. This can be used for

an efficient computation of the gradient in the following gradient descent step.
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9.3. Discretization

9.2.2 Optimization parameters and gradient descent step

To avoid computational disadvantages from a large optimization parameter space, the

function σ (x) is approximated using splines. We follow the considerations performed in

Section 8.2.2 and use a number Nc of normalized cubic periodic B-spline basis functions

B̊i,4 (x) with equally spaced knots as illustrated in Figure 8.2. As given in (8.13), we

obtain the representation

σ (x) ≈
Nc−4∑
i=−3

ciB̊i,4 (x) with c = (ci) ∈ RNc , (9.7)

where the vector c contains the coefficients of the approximation. With prescribed initial

values c0 ∈ RNc the gradient descent step for the solution of the minimization problem

(9.4) updates the coefficients from cn to cn+1 in each step by determining

cn+1 = cn − ηn∇cJ (cn) for n = 0, 1, ..., (9.8)

where ηn > 0 denotes an adaptively chosen step size. From expression (9.6) we can derive

an explicit formulation for the components of the gradient of the cost function as

∂J (c)

∂ci
=

NIC∑
m=1

∂L

∂σ

∂σ

∂ci
=

NIC∑
m=1

Å
− 1

|Ωµ|
⟨⟨fσ,m⟩µ, ⟨gσ,m⟩µ⟩t + ⟨fσ,m, gσ,m⟩t,µ

ã
B̊i,4, (9.9)

depending on the solutions of the forward and the adjoint equations as well as on the

B-spline basis functions and allowing for an efficient computation of the gradient in

the gradient descent step (9.8). Note that from now on we write fm (t, x, µ) instead

of fσ,m (t, x, µ) and gm (t, x, µ) instead of gσ,m (t, x, µ).

9.3 Discretization

For the numerical implementation we discretize the forward problem (9.2), the adjoint

problem (9.5) and the components of the gradient (9.9) in Sections 9.3.1, 9.3.2 and 9.3.3

in angle, space and time. This leads to a fully discrete scheme. Section 9.3.4 summarizes

the fully discrete gradient descent method.

9.3.1 Angular discretization

For the discretization in angle we choose a modal approach making use of the normal-

ized rescaled Legendre polynomials Pℓ (µ) introduced in Section 3.3.2. This is a standard

approach which is commonly used for radiative transfer problems and has also already

been adapted in the inverse setting [WSA07]. The normalized rescaled Legendre poly-

nomials Pℓ (µ) constitute a complete set of orthonormal functions on the interval [−1, 1]
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9. An adaptive DLRA optimizer for parameter identification inverse problems

and satisfy ⟨Pk (µ) , Pℓ (µ)⟩µ = δkℓ. We expand the distribution functions fm (t, x, µ) and

gm (t, x, µ) for m = 1, ..., NIC in terms of the rescaled Legendre polynomials and obtain

the approximations

fm (t, x, µ) ≈
Nµ−1∑
ℓ=0

uℓm (t, x)Pℓ (µ) and gm (t, x, µ) ≈
Nµ−1∑
ℓ=0

wℓm (t, x)Pℓ (µ) , (9.10)

where uℓ (t, x) and wℓ (t, x) are the corresponding expansion coefficients. We insert these

representations into the forward problem (9.2) as well as into the adjoint problem (9.5),

multiply with Pk (µ) and integrate over the angular variable µ. With the matrix A ∈
RNµ×Nµ defined in (3.26), and the orthonormality condition from above we obtain{

∂tukm (t, x) = −
∑Nµ−1

ℓ=0 ∂xuℓm (t, x)Akℓ + σ (x)ukm (t, x) (δk0 − 1) ,

ukm (t = 0, x) = uin,km (x) ,
(9.11)

for the forward equations and{
−∂twkm (t, x) =

∑Nµ−1
ℓ=0 ∂xwℓm (t, x)Akℓ + σ (x)wkm (t, x) (δk0 − 1) ,

wkm (t = T, x) =
Ä
−2u0m (t = T, x) +

√
2yobsm (x)

ä
δk0,

(9.12)

for the adjoint equations for m = 1, ..., NIC. For the angular discretization of the gradient

of the cost function we insert the representations (9.10) into (9.9) and derive

∂J (c)

∂ci
≈

NIC∑
m=1

(
− ⟨u0m (t, x) , w0m (t, x)⟩t (9.13)

+

Nµ−1∑
k=0

⟨ukm (t, x) , wkm (t, x)⟩t

)
B̊i,4 (x) .

9.3.2 Spatial discretization

The discretization in the spatial variable is performed on a spatial grid with Nx grid cells

and equidistant spacing ∆x = 1
Nx

. Spatially dependent quantities are approximated at

the grid points xj for j = 1, ..., Nx and denoted by

ujkm (t) ≈ ukm (t, xj) , wjkm (t) ≈ wkm (t, xj) ,

σj ≈ σ (xj) , yobsjm ≈ yobsm (xj) , B̊ji,4 ≈ B̊i,4 (xj) .

Assuming periodic boundary conditions, first-order spatial derivatives ∂x are approxi-

mated using the centered FD method. For stability reasons, a diffusion term involving

second-order derivatives ∂xx is added. This term is also approximated by the centered

FD method. We employ the tridiagonal stencil matrices Dx ∈ RNx×Nx given in (3.8) and

Dxx ∈ RNx×Nx defined in (3.11). Recall that the symmetric matrix A is diagonalizable

in the form A = QMQ⊤ with Q being orthogonal and M = diag(σ0, ..., σNµ−1) and that
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9.3. Discretization

we have defined |A| = Q|M|Q⊤. Then the spatially discretized forward equations with

centered FD method and an additional second-order FD stabilization term are obtained

from (9.11) as
∂tujkm (t) = −

∑Nx
i=1

∑Nµ−1
ℓ=0 Dx

jiuiℓm (t)Akℓ

+ ∆x
2

∑Nx
i=1

∑Nµ−1
ℓ=0 Dxx

ji uiℓm (t) |A|kℓ + σjujkm (t) (δk0 − 1) ,

ujkm (t = 0) = uin,jkm,

(9.14)

and the spatially discretized adjoint equations from (9.12) as
−∂twjkm (t) =

∑Nx
i=1

∑Nµ−1
ℓ=0 Dx

jiwiℓm (t)Akℓ

+ ∆x
2

∑Nx
i=1

∑Nµ−1
ℓ=0 Dxx

ji wiℓm (t) |A|kℓ + σjwjkm (t) (δk0 − 1) ,

wjkm (t = T ) =
Ä
−2uj0m (t = T ) +

√
2yobsjm

ä
δk0.

(9.15)

Using the expression given in (9.13), we derive the equation

∂J (c)

∂ci
≈

NIC∑
m=1

Ñ
−⟨uj0m (t) , wj0m (t)⟩t +

Nµ−1∑
k=0

⟨ujkm (t) , wjkm (t)⟩t

é
B̊ji,4 (9.16)

for the spatial discretization of the gradient of the cost function. The spatially discretized

scattering coefficient σ = (σj) ∈ RNx can be computed as

σj ≈
Nc−4∑
i=−3

ciB̊ji,4. (9.17)

9.3.3 Temporal discretization

To obtain a fully discrete system, the time interval [0, T ] is equidistantly split into a finite

number Nt of time cells. An update of the forward equations (9.14) from time tn to time

tn+1 = tn + ∆t is computed using an explicit Euler step forward in time according to
un+1
jkm = unjkm − ∆t

∑Nx
i=1

∑Nµ−1
ℓ=0 Dx

jiu
n
iℓmAkℓ

+ ∆t∆x
2

∑Nx
i=1

∑Nµ−1
ℓ=0 Dxx

ji u
n
iℓm |A|kℓ + σj∆tunjkm (δk0 − 1) ,

u0jkm = uin,jkm.

(9.18)

For the adjoint equations (9.15) we start computations with an end time condition after

Nt steps and evolve the solution from time tn to time tn−1 = tn−∆t by an explicit Euler

step backwards in time according to
wn−1
jkm = wn

jkm + ∆t
∑Nx

i=1

∑Nµ−1
ℓ=0 Dx

jiw
n
iℓmAkℓ

+ ∆t∆x
2

∑Nx
i=1

∑Nµ−1
ℓ=0 Dxx

ji w
n
iℓm |A|kℓ + σj∆twn

jkm (δk0 − 1) ,

wNt
jkm =

Ä
−2uNt

j0m +
√

2yobsjm

ä
δk0.

(9.19)
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9. An adaptive DLRA optimizer for parameter identification inverse problems

The fully discrete gradient of the cost function can be obtained from (9.16) by approxi-

mating the integrals with respect to time by step functions, which yields

∂J (c)

∂ci
≈ 1

Nt + 1

NIC∑
m=1

Nt∑
n=0

Ñ
−unj0mwn

j0m +

Nµ−1∑
k=0

unjkmwn
jkm

é
B̊ji,4. (9.20)

9.3.4 Fully discrete optimization scheme

The strategy for the fully discrete gradient descent method for the solution of the PDE pa-

rameter identification problem is summarized in Algorithm 4. Note that for the stopping

criterion an error estimate estimated-err for the deviation of the computed coefficients

from the true coefficients is required to run the algorithm. In practical applications, a

stopping criterion depending on the amount of progress that is still made in the optimiza-

tion procedure can be used.

Algorithm 4 Gradient descent method for the PDE parameter identification.

Input: measurements yobs
m =

(
yobsjm

)
∈ RNx for m = 1, ..., NIC,

initial data u0
m =

Ä
u0
jkm

ä
∈ RNx×Nµ for m = 1, ..., NIC,

initial guess for the coefficients c0 =
(
c0i
)
∈ RNc ,

initial step size η0 > 0,
estimated error estimated-err,
error tolerance errtol,
maximal number of iterations maxiter

Output: optimal coefficients copt =
Ä
copti

ä
∈ RNc within the prescribed error tolerance

while estimated-err > errtol and n ≤ maxiter do
Compute σn =

(
σn
j

)
∈ RNx from the given coefficients cn according to (9.17);

Solve the forward problem according to (9.18) for each m = 1, ..., NIC;
Solve the adjoint problem according to (9.19) for each m = 1, ..., NIC;

Compute the components of the gradient ∂J(cn)
∂cni

using (9.20) and the solutions of (9.18) and

(9.19);
Update the coefficients according to (9.8): cn+1 = cn − ηn∇cJ (cn), where ηn is adaptively
determined by line search;

end while

9.4 Adaptive DLRA scheme for the fully discrete optimization

problem

For the solution of the PDE parameter identification problem the coefficients c of the

spline approximation (9.17) of σ are updated several times in the gradient descent step

(9.8). For each iteration the solution of the fully discrete forward equations (9.18) as well

as of the fully discrete adjoint equations (9.19) have to be computed and stored in order

to compute the fully discretized gradient of the cost function as given in (9.20). This can
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9.4. Adaptive DLRA scheme for the fully discrete optimization problem

be computationally expensive. To reduce computational and memory requirements, the

method of DLRA is applied to the fully discrete optimization procedure for the inverse

transport problem proposed in Algorithm 4. We reformulate the forward equations (9.18)

as well as the adjoint equations (9.19) using the rank-adaptive augmented BUG integrator

introduced in [CKL22].

For the forward equations (9.18), the initial low-rank factors X0,for
m ,S0,for

m and V0,for
m are

obtained by an SVD of u0
m =

Ä
u0jkm

ä
∈ RNx×Nµ , where the number of singular values is

truncated to the initial rank r. In each time step, the low-rank factors Xn,for
m ,Sn,for

m and

Vn,for
m are evolved according to the following scheme.

First, we denote Kn,for
m = Xn,for

m Sn,for
m as well as Ln,for

m = Vn,for
m Sn,for,⊤

m and solve in parallel

the equations

Kn+1,for
m = Kn,for

m − ∆tDxKn,for
m Vn,for,⊤

m A⊤Vn,for
m + ∆t

∆x

2
DxxKn,for

m Vn,for,⊤
m |A|⊤Vn,for

m

+ ∆t diag(σ)Kn,for
m Vn,for,⊤

m HVn,for
m , (9.21a)

Ln+1,for
m = Ln,for

m − ∆tALn,for
m Xn,for,⊤

m Dx,⊤Xn,for
m + ∆t

∆x

2
|A|Ln,for

m Xn,for,⊤
m Dxx,⊤Xn,for

m

+ ∆tHLn,for
m Xn,for,⊤

m diag(σ)Xn,for
m , (9.21b)

where H = diag([0,−1, ...,−1]). In the next step, we derive the augmented and time-

updated bases “Xn+1,for
m and “Vn+1,for

m from a QR-decomposition of the augmented quanti-

ties “Xn+1,for
m = qr

Äî
Kn+1,for

m ,Xn,for
m

óä
and “Vn+1,for

m = qr
Äî
Ln+1,for
m ,Vn,for

m

óä
, respectively.

For the S-step, we introduce the notation S̃n,for
m = “Xn+1,for,⊤

m Xn,for
m Sn,for

m Vn,for,⊤
m

“Vn+1,for
m

and compute

Ŝn+1,for
m = S̃n,for

m − ∆t“Xn+1,for,⊤
m Dx“Xn+1,for

m S̃n,for
m
“Vn+1,for,⊤

m A⊤“Vn+1,for
m

+ ∆t
∆x

2
“Xn+1,for,⊤

m Dxx“Xn+1,for
m S̃n,for

m
“Vn+1,for,⊤

m |A|⊤“Vn+1,for
m (9.21c)

+ ∆t“Xn+1,for,⊤
m diag(σ)“Xn+1,for

m S̃n,for
m
“Vn+1,for,⊤

m H“Vn+1,for
m .

Finally, we truncate the time-updated augmented low-rank factors for each m = 1, ..., NIC

to a new rank rn+1 ≤ 2r by using a suitable truncation strategy such as proposed in

Section 4.2.2. Then the time-updated numerical solutions of the forward problem are

given by un+1
m = Xn+1,for

m Sn+1,for
m Vn+1,for,⊤

m ∈ RNx×Nµ .

For the adjoint equations (9.19), we perform an SVD of the end time solutions wNt
m =Ä

wNt
jkm

ä
∈ RNx×Nµ , truncate to the prescribed initial rank r, and obtain the low-rank

factors XNt,adj
m ,SNt,adj

m and VNt,adj
m . Then, in each step, the low-rank factors Xn,adj

m ,Sn,adj
m

and Vn,adj
m are evolved backwards in time as follows.

First, we denote Kn,adj
m = Xn,adj

m Sn,adj
m as well as Ln,adj

m = Vn,adj
m Sn,adj,⊤

m and solve in

parallel the equations

Kn−1,adj
m = Kn,adj

m + ∆tDxKn,adj
m Vn,adj,⊤

m A⊤Vn,adj
m + ∆t

∆x

2
DxxKn,adj

m Vn,adj,⊤
m |A|⊤Vn,adj

m

+ ∆tdiag(σ)Kn,adj
m Vn,adj,⊤

m HVn,adj
m ,
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Ln−1,adj
m = Ln,adj

m + ∆tALn,adj
m Xn,adj,⊤

m Dx,⊤Xn,adj
m + ∆t

∆x

2
|A|Ln,adj

m Xn,adj,⊤
m Dxx,⊤Xn,adj

m

+ ∆tHLn,adj
m Xn,adj,⊤

m diag(σ)Xn,adj
m .

In the next step, we derive the augmented and time-updated bases “Xn−1,adj
m and “Vn−1,adj

m

from a QR-decomposition of the augmented quantities “Xn−1,adj
m = qr

Äî
Kn−1,adj

m ,Xn,adj
m

óä
and “Vn−1,adj

m = qr
Äî
Ln−1,adj
m ,Vn,adj

m

óä
, respectively.

For the S-step, we set S̃n,adj
m = “Xn−1,adj,⊤

m Xn,adj
m Sn,adj

m Vn,adj,⊤
m

“Vn−1,adj
m and compute

Ŝn−1,adj
m = S̃n,adj

m + ∆t“Xn−1,adj,⊤
m Dx“Xn−1,adj

m S̃n,adj
m
“Vn−1,adj,⊤

m A⊤“Vn−1,adj
m

+ ∆t
∆x

2
“Xn−1,adj,⊤

m Dxx“Xn−1,adj
m S̃n,adj

m
“Vn−1,adj,⊤

m |A|⊤“Vn−1,adj
m

+ ∆t“Xn−1,adj,⊤
m diag(σ)“Xn−1,adj

m S̃n,adj
m
“Vn−1,adj,⊤

m H“Vn−1,adj
m .

Finally, we truncate the time-updated augmented low-rank factors for each m = 1, ..., NIC

to a new rank rn+1 ≤ 2r by using a suitable truncation strategy such as proposed in

Section 4.2.2. Then the time-updated numerical solutions of the adjoint problem are

given by wn−1
m = Xn−1,adj

m Sn−1,adj
m Vn−1,⊤,adj

m ∈ RNx×Nµ .

Having determined the low-rank solutions of the forward and the adjoint problems, we can

use them to compute the gradient as proposed in (9.20). For the update of the coefficients

according to (9.8), we adaptively determine the step size by a backtracking line search

approach with Armijo condition similar to [SEKM25] and as described in Algorithm 5.

The line search method works as follows: For a given step size ηn the B-spline coefficients

and the scattering coefficient are updated to cn+1 and σn+1, respectively. Then the

truncation error tolerance ϑ is adjusted using the given step size ηn and the maximal

absolute value of ∇cJ (cn). We add some safety parameters h2 and h3 as well as a lower

bound h1 for the truncation tolerance. In the next step we compute the value of the cost

function J with the low-rank factors of the forward problem at hand and denote it with

Jn. Then we solve the forward problem (9.21) with σn+1 and the updated value of ϑ

and use the obtained low-rank factors for another evaluation of the cost function J , for

which the result is denoted by J
n
. While the difference between Jn and J

n
is larger than

a prescribed tolerance depending on the Euclidean norm ∥·∥E of the gradient of the cost

function, the gradient descent step size is reduced by the step size reduction factor p and

the procedure is repeated.

9.5 Numerical results

We consider the following test examples in one space and one angular dimension to show

the computational accuracy and efficiency of the proposed DLRA scheme compared to

computations with full solvers for both the forward and the adjoint equations. In Section

9.5.1 initial distributions of Cosine type are treated. Section 9.5.2 presents numerical

results for Gaussian initial distributions.
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Algorithm 5 Backtracking line search method for the adaptive refinement of the gradient descent
step size and the DLRA rank tolerance.

Input: cost function J ,
coefficients cn,
gradient ∇cJ (cn) computed using (9.20),
low-rank factors Xn,for

m ,Sn,for
m ,Vn,for

m of the forward problem (9.21) for m = 1, ..., NIC,
step size ηn > 0,
rank error tolerance ϑ,
step size reduction factor p ∈ (0, 1),
constants h1, h2, h3, h4

Output: refined step size ηn+1, refined rank error tolerance ϑ, updated coefficients cn+1

Update the coefficients according to (9.8): cn+1 = cn − ηn∇cJ (cn);
Compute σn+1 from the updated coefficients cn+1 according to (9.17);
Update ϑ = max (h1,min (h2, η

nh3 ∥∇cJ (cn)∥∞));

Compute Jn = J
Ä
Xn,for

1 Sn,for
1 Vn,for

1 , ...,Xn,for
NIC

Sn,for
NIC

Vn,for
NIC

ä
;

Compute X
n,for

m S
n,for

m V
n,for

m from (9.21) for m = 1, ..., NIC with σn+1 and the updated ϑ;

Compute J
n

= J
(
X

n,for

1 S
n,for

1 V
n,for

1 , ...,X
n,for

NIC
S
n,for

NIC
V

n,for

NIC

)
;

while J
n
> Jn − ηnh4 ∥∇cJ (cn)∥2E do

Update ηn+1 = pηn;

Update the coefficients: cn+1 = cn+1 − ηn+1∇cJ (cn);
Compute σn+1 from the updated coefficients cn+1 according to (9.17);
Update ϑ = max

(
h1,min

(
h2, η

n+1h3 ∥∇cJ (cn)∥∞
))

;

Compute X
n,for

m S
n,for

m V
n,for

m from (9.21) for m = 1, ..., NIC with σn+1 and the updated ϑ;

Compute J
n

= J
(
X

n,for

1 S
n,for

1 V
n,for

1 , ...,X
n,for

NIC
S
n,for

NIC
V

n,for

NIC

)
;

Set ηn = ηn+1;
end while

9.5.1 1D cosine

For the first numerical experiment the spatial as well as the angular domain are set to

Ωx = Ωµ = [−1, 1]. We consider NIC = 3 initial distributions of Cosine type of the form

um (t = 0, x) = 2 + cos

ÅÅ
x− 2m

3

ã
π

ã
for m = 1, 2, 3.

The true and the initial B-spline coefficients for the approximation of the scattering

coefficient σ are chosen as

ctrue = (2.1, 2.0, 2.2)⊤ and cinit = (1.0, 1.5, 3.0)⊤ ,

and we consider normalized cubic periodic B-spline basis functions B̊i,4 (x) with equally

spaced knots. For the low-rank computations, we start with an initial rank of r = 5 in

the forward as well as in the adjoint problem. The maximal allowed value of the rank in

each step is restricted to 20. As computational parameters we use Nx = 100 cells in the
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spatial domain and Nµ = 250 moments in the angular variable. The end time is set to

T = 1.0 and the time step size of the algorithm is chosen according to ∆t = CCFL · ∆x

with a CFL number of CCFL = 0.99. We begin the gradient descent method with a step

size of η0 = 5 · 105 and a truncation error tolerance of ϑ = 10−2 ∥Σ∥F , where Σ ∈ R2r×2r

represents the diagonal matrix that is obtained from the SVD in the truncation strategy

described in Section 4.2.2 and ∥·∥F denotes the Frobenius norm. For the rescaling of the

gradient descent step size and the DLRA rank tolerance we use the step size reduction

factor p = 0.5 as well as the constants h1 = 10−3 ∥Σ∥F for a lower bound of the rank

tolerance and h2 = 0.1 ∥Σ∥F , h3 = 0.1 ∥Σ∥F as safety parameters. Also h4 = 0.5 is added

as a safety parameter to ensure a reasonable difference between Jn and J
n

in Algorithm

5. The whole gradient descent procedure is conducted until the prescribed error tolerance

errtol = 10−4 or a maximal number of iterations maxiter = 500 is reached.

In Figure 9.1 we compare the solutions of the parameter identification problem computed

with the full solvers and the DLRA solvers for both the forward and the adjoint equations.

Corresponding to the number of initial conditions, we plot three curves for the scalar flux

Φ = 1√
2
⟨f⟩µ and display the results that are obtained from the true coefficients and

at the end of the gradient descent optimization procedure, evaluated with both the full

and the DLRA solver. We observe that the DLRA solution captures well the behavior

of the full solution and that they both approach the solutions computed with the true

coefficients. In addition, the parameter reconstruction inverse problem for determining

σ is accurately resolved with both solvers. It can be observed in the bottom row that

beginning with σinit both the full and the DLRA method converge to the true solution

σtrue. The DLRA reconstruction closely resembles the reconstruction computed with

the full solvers. Further, the evolution of the rank r in time for the DLRA method is

illustrated, where we have averaged the ranks of the forward equations computed with the

different initial conditions to obtain rfor and the ranks of the adjoint equations computed

with the different initial conditions to obtain radj and finally set r = 1
2

(
rfor + radj

)
. We

notice that in the beginning of the optimization process the averaged rank decreases as

the initial rank was chosen larger than required. From then on, we observe a relatively

monotonous increase until it stays at approximately r = 9. This evolution of the rank

reflects the fact that in the beginning of the optimization the error tolerance ϑ is chosen

quite large as the computed solution is still comparably far away from the true solution.

As the optimization algorithm approaches the true coefficients, the DLRA rank tolerance

ϑ is decreased, resulting in a higher averaged rank.

For the considered setup, the computational benefit of the DLRA method compared to

the solution of the full problem is significant. The scheme is implemented in Julia v1.11

and performed on a MacBook Pro with M1 chip, resulting in a decrease of run time by a

factor of approximately 2.5 from 139 seconds to 56 seconds while retaining the accuracy

of the computed results. Concerning the memory costs, the solutions of the forward

problem and of the adjoint problem have to be stored in order to compute the gradient.

For each initial condition, the storage of the solution of the forward problem corresponds

to a memory cost of 8 (Nt + 1)NxNµ, which for the DLRA method can be lowered to

8 (Nt + 1)
(
rNx + rNµ + r2

)
, where r is the maximal averaged rank in the simulation.
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Figure 9.1: Top left: Numerical results for the scalar flux Φ of the 1D Cosine problem, computed
with the full solvers and the DLRA solvers, both with the true coefficients and with the optimization
gradient descent scheme. Top right: Evolution of the averaged rank r for the DLRA method. Bottom
row: Iterations for the reconstruction of the scattering coefficient σ computed with both the full solvers
(left) and the DLRA solvers (right).

9.5.2 1D Gaussian distribution

In a second test example, we prescribe Ωx = [0, 10] for the spatial and Ωµ = [−1, 1] for

the angular domain. We consider NIC = 5 Gaussian initial distributions of the form

um (t = 0, x) = max

Ñ
10−8,

1»
2πσ2

IC

exp

Ç
−(x− x0)

2

2σ2
IC

åé
for m = 1, 2, 3, 4, 5,

which are centered around equidistantly distributed x0 and periodically extended on the

domain Ωx. The standard deviation is set to the constant value σIC = 0.8. The true and

the initial B-spline coefficients for the approximation of the scattering coefficient σ are

chosen as

ctrue = (2.1, 2.0, 2.2, 2.0, 1.9)⊤ and cinit = (2.8, 1.5, 3.0, 2.1, 1.2)⊤ ,

and we consider normalized cubic periodic B-spline basis functions B̊i,4 (x) with equally

spaced knots. All other settings and computational parameters remain unchanged from

the previous test example given in Section 9.5.1.

In Figure 9.2 we compare the solutions of the parameter identification problem computed

with the full solvers and the DLRA solvers for both the forward and the adjoint equations.
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Figure 9.2: Top left: Numerical results for the scalar flux Φ of the 1D Gauss problem, computed with
the full solvers and the DLRA solvers, both with the true coefficients and with the optimization gradient
descent scheme. Top right: Evolution of the averaged rank r for the DLRA method. Bottom row:
Iterations for the reconstruction of the scattering coefficient σ computed with both the full solvers
(left) and the DLRA solvers (right).

Corresponding to the number of initial conditions, we plot five curves for the scalar flux

Φ = 1√
2
⟨f⟩µ and display the results that are obtained from the true coefficients and at

the end of the gradient descent optimization procedure, evaluated with both the full and

the DLRA solver. Again we observe that the DLRA solution captures well the behavior

of the full solution and that they both approach the solutions computed with the true

coefficients. For the reconstruction of the scattering coefficient σ, it can be observed in the

bottom row that beginning with σinit both the full and the DLRA method converge to the

true solution σtrue and that the DLRA reconstruction closely resembles the reconstruction

computed with the full solvers. The averaged rank r first decreases as the initial rank was

chosen larger than required. From then on, we observe the expected relatively monotonous

increase until it stagnates at a value of approximately r = 11.5.

The scheme is implemented in Julia v1.11 and performed on a MacBook Pro with M1 chip,

resulting in a decrease of run time by a factor of approximately 2 from 11.5 seconds to 6

seconds. Again, for each initial condition, the memory costs reduce from 8 (Nt + 1)NxNµ

for the full solvers to 8 (Nt + 1)
(
rNx + rNµ + r2

)
for the DLRA solvers, underlining the

computational efficiency of the DLRA scheme.
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9.6 Summary and conclusion

We have presented a fully discrete DLRA scheme for the reconstruction of the scattering

coefficient in the 1D RTE making use of a PDE constrained optimization procedure. The

main research contributions are:

(i) An application of DLRA to a PDE parameter identification inverse problem: The

scattering coefficient σ (x) has been determined by PDE constrained optimization,

for which after the discretization a DLRA approach has been used. To our knowl-

edge, this is the first research contribution that combines inverse problems and

DLRA, allowing for a reduction of computational effort and memory requirements

in a computationally demanding setup where in each step of the optimization pro-

cedure both the forward and the adjoint equations have to be solved.

(ii) A setup close to realistic applications: In most applications, measurements are not

able to access the full distribution function but at most angle-averaged quantities,

i.e. its moments. We have considered such a setup here, where we have assumed

that only the first moment is accessible by measurements. In addition, in optical

tomography usually measurements from different positions are taken into account,

which we have incorporated by probing as many initial values as coefficients to be

reconstructed, enriching the underlying data set.

(iii) An adaptive gradient descent step size and a rank-adaptive augmented integrator:

For the minimization we have used a gradient descent method which updates the

coefficients of a normalized cubic periodic B-spline approximation of σ (x). Simi-

lar to [SEKM25], the step size has been adaptively chosen by a backtracking line

search approach with Armijo condition. Also the rank of the DLRA algorithm has

been adaptively determined by using the rank-adaptive augmented BUG integrator

presented in [CKL22] combined with an adaptively chosen truncation error toler-

ance. As a result, this has enabled us to begin the optimization procedure with

a comparatively small rank (when the solution is still far from the minimum) and

gradually increase the rank as the optimization progresses and more accuracy is

required, again enhancing the performance of the DLRA scheme.

(iv) Numerical test examples showing good agreement: We have given a number of 1D

numerical test examples confirming that for the reconstruction of the scattering

coefficient in the inverse transport problem the application of DLRA shows good

agreement with the full solution while being significantly faster and saving memory

demands.

Altogether, the application of DLRA methods to parameter identification inverse prob-

lems provides promising numerical results, motivating for future investigations in this

area of research.
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The construction of an appropriate numerical scheme for the solution of kinetic PDEs is

challenging. Due to the, in general, high dimensionality of kinetic equations, numerical

reduction techniques such as DLRA are advantageous to reduce the computational effort

and memory requirements. While DLRA has been shown to provide efficient and accurate

approximations to the solution of various kinetic equations, it can be considered a rather

destructive method regarding conservation properties as the preservation of important

physical invariants can often not be guaranteed when reducing the general complexity

of the solution. In addition, deriving stability estimates is demanding as the low-rank

structure (4.4) imposes non-linear dependencies in the evolution equations for the low-

rank factors X, S, and V, even for linear equations. Using suitable time integrators,

these nonlinearities can be decoupled by subsequently solving update equations in which

all but one low-rank factor is fixed. Then, for linear equations, concepts of von Neumann

stability analysis can be used to deduce estimates, for instance on the energy of the

system, contributing to the stability considerations.

Part I. Stability analysis for DLRA schemes. In the first part of this thesis, the topic

of (energy) stability and conservation properties for DLRA schemes was addressed, be-

ginning with the thermal RTEs with Su-Olson closure. This closure led to a linearized

internal energy model, called the Su-Olson problem. In Chapter 5, a “first low-rank, then

discretize” approach was pursued and, based on an implicit coupling of the equations, a

provably energy stable DLRA scheme was derived. Together with suitable basis augmen-

tations and an adjusted truncation strategy, mass conservation was ensured. In Chapter

6, a multiplicative splitting of the distribution function was imposed. This multiplicative

structure gave rise to further complexities such as the question of an adequate discretiza-

tion of the spatial derivatives. Additional basis augmentations were required for a rigorous

proof of energy stability of the DLRA scheme. In addition, the structural order had to

be changed into “first discretize, then low-rank” to obtain thorough theoretical results.

Again, it was possible to show mass conservation under the same proper treatment as

done before. In Chapter 7, the linear Boltzmann-BGK equation was considered. For the

translation of knowledge on the construction of efficient DLRA algorithms to more compli-
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cated (potentially non-linear) settings, again a multiplicative structure of the distribution

function was assumed. The first difficulty consisted in determining a suitable stability

norm, which in this case was not directly related to the physical energy of the system.

For the proof of numerical stability of the proposed DLRA scheme, additional basis aug-

mentations (different from the ones in the previous chapter) as well as a “first discretize,

then low-rank” approach were necessary. Further, a specifically designed truncation strat-

egy had to be implemented. Altogether, a rigorous stability analysis was conducted for

three efficient and accurate DLRA schemes for linear equations, giving insights into the

structural difficulties of DLRA algorithms and proposing solution strategies.

Part II. Application of DLRA to inverse problems. The second part of this thesis was

devoted to the application of the DLRA method to parameter identification inverse prob-

lems. In Chapter 9, the combination of DLRA and inverse problems was experimentally

examined in numerical test problems for the reconstruction of the scattering coefficient in

the RTE. For the numerical optimization, a gradient descent approach on a comparably

small parameter space obtained from a spline approximation of the scattering parameter

was pursued. In the sense of a “first optimize, then discretize, then low-rank” ansatz, a

low-rank solver was implemented for the solution of the fully discrete forward and adjoint

equations in each step of an iterative gradient descent scheme. In this chapter, no theoret-

ical results were provided but numerical examples demonstrated good solution properties

of the proposed DLRA scheme.

Outlook. For future research, various open questions are left. Concerning stability es-

timates for DLRA schemes, a general difficult task consists in finding a suitable notion

of stability depending on the underlying problem. In addition, the stability estimates get

much more complicated when refraining from periodic boundary conditions, which were

assumed throughout this thesis. Even though this thesis has proposed strategies for the

construction of provably stable DLRA algorithms for linear equations, a direct transition

of knowledge to the corresponding non-linear equations is hardly possible. The main rea-

son for that is that in the non-linear case most of the theoretical concepts applied such

as the von Neumann stability approach are not available, making the analysis much more

difficult. Hence, for non-linear equations a different strategy for the proof of stability must

be used. In addition, we have seen that for the multiplicative splitting a discretization

of the conservative form of the equations was necessary to obtain a numerically stable

algorithm. For the non-linear Boltzmann-BGK equation such a discretization, i.e. by not

splitting up the term ∂x (Mg), is possible but cannot be efficiently implemented as the

Maxwellian M is generally not of low rank. Thus, the question of provable stability results

for an efficient DLRA scheme for the non-linear Boltzmann-BGK equation with multi-

plicative splitting remains subject to future research. Moreover, further investigations on

the structural order of discretizing and applying the DLRA method are of interest as we

have seen that this ordering plays an important role when deriving stability estimates for

a multiplicative splitting of the distribution function and had to be changed in Chapter

6 and 7 compared to Chapter 5. Regarding conservation properties, we have used that
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the rank-adaptive augmented BUG integrator presented in [CKL22] allows for additional

basis augmentations, ensuring that certain physical quantities are conserved in the bases

over time. This approach is well-studied [EKS23] but not generally applicable as for

example a specific choice of the temporal discretization is required.

Concerning the second part of this thesis, several future research projects on the appli-

cation of DLRA to inverse problems are possible. A first natural extension of the results

presented in Chapter 9 consists in considering numerical test examples in more than one

spatial and angular variable since in higher dimensions the savings by the DLRA method

are expected to be larger by orders of magnitude. Also, theoretical considerations con-

cerning for example the stability of DLRA schemes applied to parameter identification

inverse problems can provide valuable insights into the structure of such problems. In ad-

dition, various open questions arise when the structural order of the problem is changed,

meaning that for example a “first low-rank, then optimize, then discretize” strategy is

pursued. For instance, it is not clear how the adjoint equations can be derived from

the low-rank components of the forward problem as the low-rank equations are highly

nonlinear.

Altogether, this thesis underlines that each DLRA scheme has to be carefully constructed

such that for instance stability estimates and conservation properties are ensured and that

a direct transition of knowledge from one problem to another is only partially possible.

However, various numerical experiments show that the DLRA method exhibits significant

potential in reducing the computational costs, memory demands, and general complexities

for the solution of kinetic equations, which especially for iterative optimization schemes

can be extremely useful.
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Glossary of abbreviations

1D one-dimensional. 15, 19, 27, 29, 30, 49, 50, 70, 75, 93, 94, 100, 117–119, 123, 126,

134, 141, 142, 155

2D two-dimensional. 19, 28, 30, 72–75, 94, 100, 117, 122–124, 126

3D three-dimensional. 5, 11, 30, 50, 72

BGK Bhatnagar-Gross-Krook. i, iii, 2–5, 10, 13, 44, 77, 78, 82, 96, 99, 100, 103, 105,

106, 125, 126, 157, 158

BUG basis update & Galerkin. 2, 3, 38–41, 43–45, 49, 51–53, 58, 68, 70, 86, 93, 96, 112,

126, 149, 155, 159

CFL Courant-Friedrichs-Lewy. 2, 3, 23, 24, 44, 60, 71, 74, 75, 77–79, 83, 94, 96, 101, 106,

111, 118, 122, 126, 152

DLRA dynamical low-rank approximation. i, iii, 1–4, 33, 36, 38, 39, 41, 43–45, 49, 51, 57,

62, 64, 68–72, 74, 75, 77–79, 82, 86–88, 90, 92–97, 99–101, 111, 112, 114, 116–120,

122–126, 141, 143, 149, 150, 152–155, 157–159

FD finite difference. 16, 17, 19–26, 54, 80, 82, 102, 106, 146, 147

IMEX implicit-explicit. 21, 58, 75

IVP initial value problem. 7, 22

ODE ordinary differential equation. 37, 39, 52, 54

PDE partial differential equation. i, iii, 1–3, 5–7, 15, 19, 20, 22, 23, 25, 33, 36, 37, 39,

43, 51, 52, 100, 129, 131–133, 141–144, 148, 155, 157

RTE radiative transfer equation. i, iii, 2–4, 41, 44, 45, 49–51, 70, 77, 141, 142, 155, 157,

158

SVD singular value decomposition. 2, 34, 39, 44, 46, 113, 130, 149, 152
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[Eul57] L. Euler. Principes généraux de l’état d’équilibre des fluides. Mémoires de
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[KS16] K. Kormann and E. Sonnendrücker. Sparse grids for the Vlasov–Poisson

equation. In J. Garcke and D. Pflüger, editors, Sparse Grids and Ap-
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