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An energy stable and conservative multiplicative
dynamical low-rank discretization for the Su-Olson
problem
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Abstract Computing numerical solutions of the thermal radiative transfer equa-
tions on a finely resolved grid can be costly due to high computational and memory
requirements. A numerical reduced order method that has recently been applied to
a wide variety of kinetic partial differential equations is the concept of dynamical
low-rank approximation (DLRA). In this paper, we consider the thermal radiative
transfer equations with Su-Olson closure, leading to a linearized kinetic model. For
the conducted theoretical and practical considerations we use a multiplicative split-
ting of the distribution function that poses additional challenges in finding an en-
ergy stable discretization and deriving a hyperbolic Courant-Friedrichs-Lewy (CFL)
condition. We propose such an energy stable DLRA scheme that makes use of the
augmented basis update & Galerkin integrator. This integrator allows for additional
basis augmentations, enabling us to give a mathematically rigorous proof of energy
stability and local mass conservation. Numerical examples confirm the derived prop-
erties and show the computational advantages of the DLRA scheme compared to a
numerical solution of the full system of equations.
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1 Introduction

Thermal radiative transfer problems are a class of kinetic transport equations model-
ing the movement of particles that interact with a background medium, for instance
by scattering or absorption. By this interaction, the background medium can heat
up and itself emit new particles, enforcing the exchange of energy between particles
and the background material. This process is described by two coupled equations,
one for the particle density f(t, x, µ) and one for the internal energy e(t, x) of the
material. The variable t ∈ R+ denotes time, x ∈ D ⊂ R stands for the spatial
and µ ∈ [−1, 1] for the directional variable. The numerical solution of this set of
equations is challenging as its high dimensionality requires enormous computational
and memory costs. To overcome these problems, the concept of dynamical low-rank
approximation (DLRA) [26] can be used. It is a numerical reduced order method
providing accurate and efficient approximations of the solution of kinetic partial dif-
ferential equations and has already been applied in various fields of research. Recent
work for instance has been published on radiation transport [1,39,11,42,40,41,29,
46], radiation therapy [28], plasma physics [15,18,13,19], chemical kinetics [44,17]
and Boltzmann type transport problems [2,9,12,10,24]. The main idea of DLRA
consists in approximating the distribution function as

f(t, x, µ) ≈
r∑

i,j=1

Xi(t, x)Sij(t)Vj(t, µ),

where {Xi : i = 1, .., r} are the orthonormal basis functions in space and {Vj : j =
1, .., r} the orthonormal basis functions in direction. This splitting can be understood
as a continuous analogue to the singular value decomposition of a matrix, explaining
why S = (Sij) ∈ Rr×r is called the coefficient or coupling matrix and r the rank of
this approximation. The time evolution of the low-rank factors is then determined
by a projection of the equation onto the tangent space of the low-rank solution
manifold. Integrators that ensure that the solution stays on the low-rank manifold
while being robust to small singular values (otherwise this may lead to enormous
restrictions on the choice of the time step size [25]) are the projector-splitting [32],
the (augmented) basis update & Galerkin (BUG) [7,5], and the parallel integrator [6].
Extensions to schemes with proven second-order robust error bounds are available
for the augmented BUG [4] as well as for the parallel integrator [27].

A challenge for constructing a stable dynamical low-rank scheme is to derive a
suitable discretization of the system. To account for the angular dependence of the
solution, we consider a modal representation that makes use of a finite expansion of
the particle density in terms of spherical harmonics (PN ). This approach is explained
in [3] and for instance used in [1,37,34,35,30,47,36,8]. Also the spatial discretization
has to be chosen carefully. In [12] it is shown that for an efficient dynamical low-
rank scheme for the isothermal Boltzmann-BGK equation it is useful to consider a
multiplicative splitting of the distribution function. To transfer knowledge to such
systems, we decide on a multiplicative splitting of the particle density f also for the
considered problem. In this case, it is per se not clear how to deal with the spatial
derivatives. Recent work on this topic has been published for the linear Boltzmann-
BGK equation in [2]. For the time discretization the potentially stiff opacity term
has to be taken into account, leading to a coupled-implicit scheme similar to the one
treated in [1], which again is complicated to solve.
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In this paper we propose an energy stable multiplicative dynamical low-rank
discretization for a linearized internal energy model called the Su-Olson problem.
The main novelties are:

– A multiplicative splitting of the distribution function: Based on the insights from
[12], we consider a multiplicative splitting of the distribution function. Similar
to [2], we show that the spatial discretization has to be carefully chosen in order
to obtain an energy stable numerical scheme.

– An energy stable numerical scheme with rigorous mathematical proofs: We show
that the derived DLRA scheme is energy stable and give rigorous mathematical
proofs, enabling us to deduce a classic hyperbolic CFL condition. This allows to
compute up to a maximal time step size of ∆t = CFL ·∆x, which again enhances
the performance of the algorithm.

– A mass conservative augmented integrator: We make use of the augmented BUG
integrator from [5], leading to a basis augmentation in two substeps of the nu-
merical scheme. As this integrator allows for further modifications, we include
additional basis augmentation steps that ensure the exactness of the projection
operators needed for the theoretical proof of energy stability as well as the local
conservation of mass.

– A series of test examples: A series of test examples compares the results of the
low-rank discretization with the solution of the full system. This validates the
derived properties and shows the accuracy and the efficiency of the proposed
DLRA method.

The structure of the paper is as follows: After the introduction in Section 1, we pro-
vide background information on the thermal radiative transfer equations in Section
2. We explain the considered multiplicative structure and derive two possible systems
that in the continuous setting are equivalent. In Section 3, we discretize both systems
in angle, space and time. Section 4 is devoted to the subject of energy stability. We
show that the advection form of the multiplicative Su-Olson problem is generally
not numerically stable in the sense of von Neumann, whereas for the conservative
form a hyperbolic CFL condition is derived, under which an energy estimate can
be given. Section 5 first provides an overview of the method of dynamical low-rank
approximation. Then, an energy stable DLRA scheme is derived. In addition, mass
conservation can be shown, when using a suitable truncation strategy. The numer-
ical results in Section 6 confirm the derived properties, before in Section 7 a brief
conclusion and outlook is given.

2 Thermal radiative transfer

In a one-dimensional setting the thermal radiative transfer equation with absorbing
background material is given by

1
c
∂tf(t, x, µ) + µ∂xf(t, x, µ) = σ(B(t, x)− f(t, x, µ)),

∂te(t, x) = σ(〈f(t, x, ·)−B(t, x)〉µ),

where an integration over the directional domain [−1, 1] is denoted by 〈·〉µ. The speed
of light is denoted by c and the variable σ represents the opacity that encodes the rate



4 Lena Baumann, Lukas Einkemmer, Christian Klingenberg, Jonas Kusch

at which particles are absorbed by the background medium. The black body radiation
B(T ) at the material temperature T can be described by the Stefan-Boltzmann law

B(T ) = acT 4,

where a = 4σSB
c is the radiation density constant and σSB the Stefan-Boltzmann

constant. The above set of equations is not closed. To determine a relation between
the temperature T and the internal energy e(T ) we follow the ideas of Pomraning
[43] and Su and Olson [45] and set e(T ) = αB(T ). From this point on, we call αB(T )
the internal energy of the material. Further, we perform a rescaling τ = t

c and by an
abuse of notation write t instead of τ in the remainder. This leads to the system

∂tf(t, x, µ) + µ∂xf(t, x, µ) = σ(B(t, x)− f(t, x, µ)), (1a)
∂tB(t, x) = σ(〈f(t, x, ·)−B(t, x)〉µ), (1b)

where without loss of generality we assume α = 1. This system is a closed lin-
earized internal energy model that is analytically solvable and commonly used as a
benchmark for numerical examples [38,36,37,35]. In the following, we call equations
(1) the Su-Olson problem. Note that for the moment we omit initial and boundary
conditions.

In [12] it has been shown that for deriving an efficient dynamical low-rank scheme
for the Boltzmann-BGK equation it is crucial to consider a multiplicative splitting
of the distribution function. This allows one to separate a generally not low-rank
Maxwellian from a remaining low-rank function g, to which the DLRA scheme is
subsequently applied. The considered Su-Olson problem is similar in structure to
this equation. To transfer knowledge of the construction of efficient dynamical low-
rank schemes from the Su-Olson problem to more general kinetic equations, we have
decided on a multiplicative splitting of the distribution function of the form

f(t, x, µ) = B(t, x)g(t, x, µ), (2)

and apply the low-rank ansatz to g. For this system, we give a mathematically rig-
orous proof of energy stability and derive a hyperbolic CFL condition. In this sense,
this paper can be understood as an intermediate step from the Su-Olson problem
treated in [1] towards more complicated BGK problems with multiplicative splitting
as in [12], where the time step size of the proposed algorithm is not determined
theoretically by means of analytical considerations but experimentally chosen small
enough such that numerical experiments show good agreement. The idea of applying
a multiplicative splitting to a linearized model and deriving a concrete CFL condition
is also pursued in [2] for the linear Boltzmann-BGK equation.

We insert ansatz (2) into (1a) and (1b) and obtain the set of equations

∂tg(t, x, µ) =− µ∂xg(t, x, µ) + σ (1− g(t, x, µ))− g(t, x, µ)
B(t, x) ∂tB(t, x) (3a)

− µg(t, x, µ)
B(t, x) ∂xB(t, x),

∂tB(t, x) = σB(t, x) (〈g(t, x, µ)〉µ − 2) , (3b)

that is called the advection form of the multiplicative system. Using the product rule,
it splits up the spatial derivatives for B and g in (3a). This corresponds to the form in
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which the multiplicative splitting in [12] is applied to the Boltzmann-BGK equation.
Equation (3a) can be equivalently rewritten into a conservative form, leaving the
spatial derivative of Bg together and leading to the system

∂tg(t, x, µ) = − µ

B(t, x)∂x (B(t, x)g(t, x, µ)) + σ (1− g(t, x, µ))− g(t, x, µ)
B(t, x) ∂tB(t, x),

(4a)
∂tB(t, x) = σB(t, x) (〈g(t, x, µ)〉µ − 2) . (4b)

In later considerations, we are interested in the conservation properties of our
numerical scheme. For the multiplicative Su-Olson problem, the mass and the mo-
mentum of the system shall be defined as follows.

Definition 1 (Macroscopic quantities) The mass of the multiplicative Su-Olson
problem is defined as

ρ(t, x) =
∫
f(t, x, µ)dµ+B(t, x) = B(t, x)

∫
g(t, x, µ)dµ+B(t, x).

The momentum is given as

u(t, x) =
∫
µf(t, x, µ)dµ = B(t, x)

∫
µg(t, x, µ)dµ.

In particular, the multiplicative Su-Olson problem satisfies the local conservation
law

∂tρ(t, x) + ∂xu(t, x) = 0. (5)

Global conservation of mass is then obtained by integrating over the spatial domain
[16].

In the following, we discretize both sets of equations to compare them in terms of
numerical stability. We derive an energy stable dynamical low-rank scheme and give
a concrete hyperbolic CFL condition. Note that in contrast to [1,12], but similar to
[2], we first discretize the equations and then apply the low-rank ansatz here.

3 Discretization of the multiplicative system

In this section, we fully discretize the advection form (3) as well as the conserva-
tive form (4) of the multiplicative system. We start with the angular and spatial
discretization, followed by the time discretization.

3.1 Angular discretization

For the angular discretization a modal approach with normalized Legendre poly-
nomials P` is used. They constitute a complete set of orthogonal functions on the
interval [−1, 1] that satisfy 〈Pk, P`〉µ = δk`. As an approximation, a finite expansion
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of the distribution function g with Nµ expansion coefficients, called the moments, is
used. It writes

g(t, x, µ) ≈ gNµ(t, x, µ) =
Nµ−1∑
`=0

v`(t, x)P`(µ).

We insert this representation into (3), multiply (3a) with Pk(µ) and integrate over
µ. Further, we introduce the matrix A ∈ RNµ×Nµ with entries Ak` := 〈Pk, µP`〉µ
and use that P0 = 1√

2 . This gives

∂tvk(t, x) =−
Nµ−1∑
`=0

∂xv`(t, x)Ak` + σ
Ä√

2δk0 − vk(t, x)
ä
− vk(t, x)
B(t, x) ∂tB(t, x) (6a)

−
Nµ−1∑
`=1

v`
B(t, x)∂xB(t, x)Ak`,

∂tB(t, x) = σB(t, x)
Ä√

2v0(t, x)− 2
ä
. (6b)

Analogously, we obtain for system (4) the angularly discretized equations

∂tvk(t, x) =−
Nµ−1∑
`=0

1
B(t, x)∂x (B(t, x)v`(t, x))Ak` + σ

Ä√
2δk0 − vk(t, x)

ä
(7a)

− vk(t, x)
B(t, x) ∂tB(t, x),

∂tB(t, x) = σB(t, x)
Ä√

2v0(t, x)− 2
ä
. (7b)

Note that the matrix A is symmetric and diagonalizable in the form A = QMQ>
with Q orthonormal and M = diag(σ1, ..., σNµ). We then define |A| = Q|M|Q>.

3.2 Spatial discretization

For the spatial discretization we prescribe a spatial grid with Nx grid points and
equidistant spacing ∆x = 1

Nx
. Spatially dependent quantities are approximated at

the grid points xj for j = 1, ..., Nx, and denoted by

Bj(t) ≈ B(t, xj), vjk(t) ≈ vk(t, xj).

First-order spatial derivatives ∂x are approximated using the tridiagonal stencil ma-
trices Dx ∈ RNx×Nx and a second-order stabilization term Dxx ∈ RNx×Nx approxi-
mating 1

2∆x∂xx is added. The entries of those matrices are defined as

Dx
j,j±1 = ±1

2∆x , Dxx
j,j = − 1

∆x
, Dxx

j,j±1 = 1
2∆x .

Note that from now on we assume periodic boundary conditions to which we account
by setting

Dx
1,Nx = −1

2∆x , Dx
Nx,1 = 1

2∆x ,

Dxx
1,Nx = Dxx

Nx,1 = 1
2∆x.

The stencil matrices Dx and Dxx then fulfill the following properties:
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Lemma 1 Let y, z ∈ RNx with indices i, j = 1, ..., Nx. It holds

Nx∑
i,j=1

yjD
x
jizi = −

Nx∑
i,j=1

zjD
x
jiyi ,

Nx∑
i,j=1

zjD
x
jizi = 0 ,

Nx∑
i,j=1

yjD
xx
ji zi =

Nx∑
i,j=1

zjD
xx
ji yi.

Moreover, let D+ ∈ RNx×Nx be defined as

D+
j,j = −1√

2∆x
, D+

j,j+1 = 1√
2∆x

.

Then,
∑Nx

i,j=1 zjD
xx
ji zi = −

∑Nx
j=1

Ä∑Nx
i=1 D

+
jizi
ä2

.

Proof See [1, Lemma 4.2].

We insert the proposed discretization into the angularly discretized advection
form (6) of the equations and add a second-order stabilization term for B∂xv, leading
to the angularly and spatially discretized set of equations

v̇jk(t) =−
Nx∑
i=1

Nµ−1∑
`=0

Dx
jivi`(t)Ak` +

Nx∑
i=1

Nµ−1∑
`=0

Dxx
ji vi`(t)|A|k` (8a)

+ σ
Ä√

2δk0 − vjk(t)
ä
−
vjk(t)
Bj(t)

Ḃj(t)−
Nx∑
i=1

Nµ−1∑
`=0

vj`(t)
Bj(t)

Dx
jiBi(t)Ak`,

Ḃj(t) = σBj(t)
Ä√

2vj0(t)− 2
ä
. (8b)

Inserting the discretization into the angularly discretized conservative form (7) of
the equations and adding a second-order stabilization term to ∂x (Bv) gives

v̇jk(t) =−
Nx∑
i=1

Nµ−1∑
`=0

1
Bj(t)

Dx
jiBi(t)vi`(t)Ak` +

Nx∑
i=1

Nµ−1∑
`=0

1
Bj(t)

Dxx
ji Bi(t)vi`(t)|A|k`

(9a)

+ σ
Ä√

2δk0 − vjk(t)
ä
−
vjk(t)
Bj(t)

Ḃj(t),

Ḃj(t) = σBj(t)
Ä√

2vj0(t)− 2
ä
. (9b)

Note that due to the different structure of the equations the stabilization term
in (8a) is applied to B∂xv, whereas in (9a) it is added for ∂x (Bv).

3.3 Time discretization

From [1] we know that constructing an energy stable scheme for the Su-Olson prob-
lem is challenging. For the advection form of the equations we start from (8) and
apply an explicit Euler step to transport terms. The potentially stiff absorption terms
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are treated implicitly and the time derivative ∂tB is approximated by its difference
quotient. We obtain the following fully discrete space-time discretization

v1
jk = v0

jk −∆t
Nx∑
i=1

Nµ−1∑
`=0

Dx
jiv

0
i`Ak` +∆t

Nx∑
i=1

Nµ−1∑
`=0

Dxx
ji v

0
i`|A|k` (10a)

+ σ∆t
Ä√

2δk0 − v1
jk

ä
−∆t 1

B0
j

B1
j −B0

j

∆t
v1
jk −∆t

Nx∑
i=1

Nµ−1∑
`=0

v0
j`

B0
j

Dx
jiB

0
iAk`,

B1
j = B0

j + σ∆tB1
j

(
sqrt2v1

j0 − 2
)
, (10b)

that describes one time step from time t0 to time t1 = t0 + ∆t and holds for all
further time steps equivalently. For the conservative form (9) we again apply an
explicit Euler step to the transport parts, treat the absorption terms implicitly and
approximate ∂tB by its difference quotient. In addition, we add a factor B1

B0 in the
absorption term of (9a). This gives the fully discrete scheme

v1
jk = v0

jk −∆t
Nx∑
i=1

Nµ−1∑
`=0

1
B0
j

Dx
jiB

0
i v

0
i`Ak` +∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
j

Dxx
ji B

0
i v

0
i`|A|k` (11a)

+ σ∆t
B1
j

B0
j

Ä√
2δk0 − v1

jk

ä
−∆t 1

B0
j

B1
j −B0

j

∆t
v1
jk,

B1
j = B0

j + σ∆tB1
j

Ä√
2v1
j0 − 2

ä
. (11b)

Note that the evolution equations (10b) and (11b) for the internal energy B are the
same in both schemes. The main difference of (10a) and (11a) consists in the distinct
second-order stabilization terms and the additional factor B1

B0 in (11a) that we will
explain later when showing energy stability.

4 Energy stability

The goal of this section is to investigate energy stability of the derived schemes. Note
that this section is closely related to the considerations in [1]. We first introduce the
following notations.

Definition 2 In the following we write u0
jk := B0

j v
0
jk and u1

jk := B1
j v

1
jk at time t0

and t1, respectively. Note that u0 = (u0
jk) ∈ RNx×Nµ corresponds to f(t = 0, x, µ)

and v0 = (v0
jk) ∈ RNx×Nµ corresponds to g(t = 0, x, µ) in (2).

With this notation we can give the definition of the total energy of a fully dis-
cretized system.

Definition 3 (Total energy) Let u0 ∈ RNx×Nµ be the fully discretized angular
solution of the full Su-Olson problem and B0 = (B0

j ) ∈ RNx the internal energy at
time t0. Then, the total energy at this time is defined as

E0 := 1
2‖u

0‖2
F + 1

2‖B
0‖2
E ,

where ‖ · ‖F denotes the Frobenius and ‖ · ‖E the Euclidean norm. For t1 = t0 +∆t
this definition shall hold analogously.
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4.1 Advection form

We start with the advection form (10) of the Su-Olson problem which is comparable
to the considered low-rank discretization in [12] for the isothermal Boltzmann-BGK
equation in the sense that the term ∂x (Bv) is split up into the sum of B∂xv and
v∂xB. We can show that this scheme is not, in general, von Neumann stable.

Theorem 1 There exist initial values v0 ∈ RNx×Nµ and B0 ∈ RNx such that the
advection form (10) of the Su-Olson problem for σ = 0 is not von Neumann stable.

Proof Let us assume a solution v0
jk that is constant in space and direction, e.g.

v0
jk = 1. For this solution all spatial derivatives are zero, i.e. the terms containing

Dxv0 and Dxxv0 in (10a) drop out. We further assume that for the opacity it holds
σ = 0, i.e. the Su-Olson problem reduces to a simple advection equation. From (10b)
we thus obtain that B1

j = B0
j = Bj , i.e. the internal energy is constant in time. We

insert these results into (10a) and get

v1
jk = 1−∆t

Nx∑
i=1

Nµ−1∑
`=0

1
Bj

Dx
jiBiAk`.

Multiplication with Bj then leads to

u1
jk = u0

jk −∆t
Nx∑
i=1

Nµ−1∑
`=0

Dx
jiu

0
i`Ak`.

This is a discretization of ∂tu + µ∂xu = 0 with an explicit Euler step forward in
time and a centered finite difference scheme in space. From [23,31] we know that
this discretization is not von Neumann stable.

The consideration of this special case shall serve as a motivation to seek for a gen-
erally stable numerical discretization as done in the next subsection.

4.2 Conservative form

For the conservative form of the discretization of the Su-Olson problem given in
(11), we can derive a hyperbolic CFL condition and show that under this time step
restriction the total energy of the system decreases over time. We start with the
following lemma.

Lemma 2 Under the time step restriction ∆t ≤ ∆x it holds

∆t

2

Nx∑
i=1

Nµ−1∑
`=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

(
Dx
jiu

1
jkAk` −Dxx

ji u
1
jk|A|k`

)é2

−
Nx∑
i=1

Nµ−1∑
`=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

D+
jiu

1
jk|A|

1/2
k`

é2

≤ 0,

Proof See [1, Lemma 5.2].
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With this relation we can now show that the energy of the conservative form (11) of
the Su-Olson system dissipates and hence the system is energy stable.

Theorem 2 Under the time step restriction ∆t ≤ ∆x the fully discrete system (11)
is energy stable, i.e. it holds E1 ≤ E0.

Proof The proof of this theorem is similar to the proof of [1, Theorem 5.3]. We start
with equation (11b) and multiply it with B1

j . This gives

(
B1
j

)2 = B0
jB

1
j + σ∆t

(
B1
j

)2 Ä√2v1
j0 − 2

ä
.

Note that it holds

B0
jB

1
j = 1

2
(
B1
j

)2 + 1
2
(
B0
j

)2 − 1
2
(
B1
j −B0

j

)2
.

We insert this relation and sum over j, giving

1
2

Nx∑
j=1

(
B1
j

)2 = 1
2

Nx∑
j=1

(
B0
j

)2 − 1
2

Nx∑
j=1

(
B1
j −B0

j

)2 + σ∆t

Nx∑
j=1

(
B1
j

)2 Ä√2v1
j0 − 2

ä
.

(12)

Next, we multiply equation (11a) with B1
jB

0
j v

1
jk and sum over j and k. This leads

to

Nx∑
j=1

Nµ−1∑
k=0

B1
jB

0
j

(
v1
jk

)2 =
Nx∑
j=1

Nµ−1∑
k=0

B0
j v

0
jkB

1
j v

1
jk −∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

B1
j v

1
jkD

x
jiB

0
i v

0
i`Ak`

+∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

B1
j v

1
jkD

xx
ji B

0
i v

0
i`|A|k` (13)

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2
v1
jk

Ä√
2δk0 − v1

jk

ä
−

Nx∑
j=1

Nµ−1∑
k=0

B1
j

(
v1
jk

)2 (
B1
j −B0

j

)
Note that for this step the additional factor B1

B0
in the absorption term of (11a) is

crucial. As above, it holds for the first term on the right-hand side that

Nx∑
j=1

Nµ−1∑
k=0

B0
j v

0
jkB

1
j v

1
jk

=
Nx∑
j=1

Nµ−1∑
k=0

Å1
2
(
B1
j v

1
jk

)2 + 1
2
(
B0
j v

0
jk

)2 − 1
2
(
B1
j v

1
jk −B0

j v
0
jk

)2
ã
.
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We insert the notation u0
jk = B0

j v
0
jk and u1

jk = B1
j v

1
jk, respectively, as well as insert

the above relation into (13), bring the last term of (13) to the left-hand side and
rearrange the equation. We obtain

1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u1
jk

)2 = 1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u0
jk

)2 − 1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u1
jk − u0

jk

)2

−∆t
Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

x
jiu

0
i`Ak` +∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

xx
ji u

0
i`|A|k`

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2
v1
jk

Ä√
2δk0 − v1

jk

ä
.

We now add the zero term ∆t
∑Nx

i,j=1
∑Nµ−1

k,`=0 u
1
jkD

x
jiu

1
i`Ak` and add and subtract

the second-order term ∆t
∑Nx

i,j=1
∑Nµ−1

k,`=0 u
1
jkD

xx
ji u

1
i`|A|k` giving

1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u1
jk

)2 = 1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u0
jk

)2 − 1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u1
jk − u0

jk

)2

−∆t
Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

x
ji

(
u0
i` − u1

i`

)
Ak`

+∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

xx
ji

(
u0
i` − u1

i`

)
|A|k`

+∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

xx
ji u

1
i`|A|k`

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2
v1
jk

Ä√
2δk0 − v1

jk

ä
.

In the next step, we apply Young’s inequality, which states that for a, b ∈ R we have
a · b ≤ a2

2 + b2

2 , to the term

−∆t
Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

x
ji

(
u0
i` − u1

i`

)
Ak` +∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

xx
ji

(
u0
i` − u1

i`

)
|A|k`

=−∆t
Nx∑
i=1

Nµ−1∑
`=0

(
u0
i` − u1

i`

)Ñ Nx∑
j=1

Nµ−1∑
k=0

(
Dx
jiu

1
jkAk` −Dxx

ji u
1
jk|A|k`

)é
≤ 1

2

Nx∑
i=1

Nµ−1∑
`=0

(
u0
i` − u1

i`

)2

+ (∆t)2

2

Nx∑
i=1

Nµ−1∑
`=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

(
Dx
jiu

1
jkAk` −Dxx

ji u
1
jk|A|k`

)é2

.
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In addition, we note that with the properties of the stencil matrices from Lemma 1
we can write

∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

u1
jkD

xx
ji u

1
i`|A|k` = −∆t

Nx∑
i=1

Nµ−1∑
`=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

D+
jiu

1
jk|A|

1/2
k`

é2

.

We insert both relations and get

1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u1
jk

)2 ≤ 1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u0
jk

)2

+ (∆t)2

2

Nx∑
i=1

Nµ−1∑
`=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

(
Dx
jiu

1
jkAk` −Dxx

ji u
1
jk|A|k`

)é2

−∆t
Nx∑
i=1

Nµ−1∑
`=0

Ñ
Nx∑
j=1

Nµ−1∑
k=0

D+
jiu

1
jk|A|

1/2
k`

é2

+ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2
v1
jk

Ä√
2δk0 − v1

jk

ä
.

With Lemma 2 we have that under the time step restriction ∆t ≤ ∆x it holds

1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u1
jk

)2 ≤ 1
2

Nx∑
j=1

Nµ−1∑
k=0

(
u0
jk

)2 + σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2
v1
jk

Ä√
2δk0 − v1

jk

ä
.

(14)

To obtain an expression for the total energy of the system, we add (14) and (12).
This gives

E1 ≤ E0 − 1
2

Nx∑
j=1

(
B1
j −B0

j

)2 + σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2
v1
jk

Ä√
2δk0 − v1

jk

ä
+ σ∆t

Nx∑
j=1

(
B1
j

)2 Ä√2v1
j0 − 2

ä
.

The term − 1
2

∑Nx
j=1

Ä
B1
j −B0

j

ä2
is non-positive. The remaining two terms on the

right-hand side can be rewritten and bounded as follows:

σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2
v1
jk

Ä√
2δk0 − v1

jk

ä
+ σ∆t

Nx∑
j=1

(
B1
j

)2 Ä√2v1
j0 − 2

ä
≤ σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2 Ä− (v1
jk

)2 + 2
√

2v1
jkδk0 − 2δk0

ä
=− σ∆t

Nx∑
j=1

Nµ−1∑
k=0

(
B1
j

)2 Ä
v1
jk −

√
2δk0
ä2
≤ 0.
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Hence, we have shown that under the time step restriction∆t ≤ ∆x it holds E1 ≤ E0,
and the system is energy stable.

5 Dynamical low-rank approximation for the energy stable system

Having attained an energy stable discretization of the multiplicative Su-Olson prob-
lem, its practical implementation can still pose numerical challenges such as large
memory demands and computational costs, especially in a higher-dimensional set-
ting. To overcome these problems, we introduce the concept of dynamical low-rank
approximation.

5.1 Background on DLRA

The method of dynamical low-rank approximation has originally been introduced in
a semi-discrete time-continuous matrix setting [26], in which it will also be explained
in this subsection. Let us consider the matrix differential equation

ḟ(t) = F (t, f(t)) ,

where f(t) ∈ RNx×Nµ is the solution of the equation and F (t, f(t)) : RNx×Nµ →
RNx×Nµ denotes its right-hand side. The dynamical low-rank approximation of f(t)
is then given by

fr(t) = X(t)S(t)V(t)>, (15)

where X(t) ∈ RNx×r is the orthonormal basis in space, V(t) ∈ RNµ×r the orthonor-
mal basis in direction, and S(t) ∈ Rr×r the coupling or coefficient matrix of the rank
r approximation. All matrices of the form (15) constitute the manifold of low-rank
matricesMr. The basis matrices X(t) and V(t), and the coefficient matrix S(t) shall
then be evolved in time such that the minimization problem

min
ḟr(t)∈Tfr(t)Mr

‖ḟr(t)− F (t, fr(t)) ‖F

is fulfilled at all times t, where Tfr(t)Mr denotes the tangent space of the low-rank
manifold Mr at fr(t). In [26], it has been shown that solving this minimization
problem is equivalent to projecting the right-hand side F (t, fr(t)) by means of an
orthogonal projection P onto Tfr(t)Mr, and solving

ḟr(t) = P (fr(t)) F (t, fr(t)) . (16)

For fr = XSV>, the orthogonal projection P onto Tfr(t)Mr is explicitly given as

P(fr)F (fr) = XX>F (fr)−XX>F (fr) VV> + F (fr) VV>.

Different time integrators that make use of the special form of this orthogonal pro-
jection such as the projector-splitting [32], the (augmented) basis update & Galerkin
(BUG) [7,5], and the parallel integrator [6] exist. They are able to evolve the solution
on the low-rank manifold while not suffering from the stiffness of (16). In this paper,



14 Lena Baumann, Lukas Einkemmer, Christian Klingenberg, Jonas Kusch

we focus on the augmented basis update & Galerkin (BUG) integrator, that shall be
explained in the following.

The BUG integrator first updates and augments the spatial basis X and the
directional basis V in parallel. This leads to an increase from rank r to rank 2r.
Note that we denote augmented quantities of rank 2r with hats. Next, a Galerkin
step is conducted for the coefficient matrix S in the augmented setting, before in a
last step all augmented quantities are truncated to a new rank r1 ≤ 2r. To be more
specific, the BUG integrator evolves the low-rank solution f0

r = X0S0V0,> at time
t0 to the time-updated low-rank solution f1

r = X1S1V1,> at time t1 = t0 + ∆t as
follows:

K-Step: We fix the directional basis V0 at time t0 and introduce the notation
K(t) = X(t)S(t). Then, we update the spatial basis from X0 to “X1 ∈ RNx×2r by
solving the PDE

K̇(t) = F
(
t,K(t)V0,>)V0, K(t0) = X0S0,

and determining “X1 as an orthonormal basis of the augmented matrix [K(t1),X0] ∈
RNx×2r, e.g. by QR-decomposition. We store M̂ = “X1,>X0 ∈ R2r×r.

L-Step: We fix the spatial basis X0 at time t0 and introduce the notation L(t) =
V(t)S(t)>. Then, we update the directional basis from V0 to “V1 ∈ RNµ×2r by solving
the PDE

L̇(t) = F
(
t,X0L(t)>

)>X0, L(t0) = V0S0,>,

and determining “V1 as an orthonormal basis of the augmented matrix [L(t1),V0] ∈
RNµ×2r, e.g. by QR-decomposition. We store “N = “V1,>V0 ∈ R2r×r.

S-step: We update the coupling matrix from S0 ∈ Rr×r to Ŝ1 ∈ R2r×2r by
solving the ODE

˙̂S(t) = “X1,>F
Ä
t,“X1Ŝ(t)“V1,>

ä “V1, Ŝ(t0) = M̂S0“N>.
Truncation: We compute the singular value decomposition of Ŝ1 = “PΣ“Q> with

Σ = diag(σj). The new rank r1 ≤ 2r is chosen such that for a prescribed tolerance
parameter ϑ it holds Ñ

2r∑
j=r1+1

σ2
j

é1/2

≤ ϑ.

We set S1 ∈ Rr1×r1 to be the matrix containing the r1 largest singular values. For the
update of the spatial and the directional basis we introduce the matrices P1 ∈ R2r×r1

and Q1 ∈ R2r×r1 containing the first r1 columns of “P and “Q, respectively, and set
X1 = “X1P1 ∈ RNx×r1 and V1 = “V1Q1 ∈ RNµ×r1 .

Altogether, this gives the time-updated low-rank approximation f1
r = X1S1V1,>

at time t1 = t0 + ∆t. Note that in the following, in an abuse of notation, we will
write f instead of fr and call this the low-rank solution of the considered problem.
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5.2 DLRA scheme for multiplicative Su-Olson

In this subsection, the DLRA method is applied to the energy stable conservative
form (11) of the Su-Olson problem to evolve v0 =

Ä
v0
jk

ä
to v1 =

Ä
v1
jk

ä
. First note

that for the derivation of the low-rank scheme we rewrite equations (11). In (11a), we
bring all terms containing v1

jk to the left-hand side and divide by 1 + σ∆t. Further,
we multiply (11b) with 1

B0
j

. This gives the system

B1
j

B0
j

v1
jk = 1

1 + σ∆t
v0
jk −

∆t

1 + σ∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
j

Dx
jiB

0
i v

0
i`Ak` (17a)

+ ∆t

1 + σ∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
j

Dxx
ji B

0
i v

0
i`|A|k` +

√
2σ∆t

1 + σ∆t

B1
j

B0
j

δk0,

B1
j

B0
j

= 1 + σ∆t
B1
j

B0
j

Ä√
2v1
j0 − 2

ä
. (17b)

We then apply DLRA to this set of equations as follows. In a first step, we want to
update v0

jk =
∑r

m,n=1 X
0
jmS

0
mnV

0
kn to B1

j

B0
j

v∗jk =
∑3r

m,n=1
̂̂X∗jm““S∗mn““V ∗kn for k 6= 0. We

introduce the notation K0
jn =

∑r
m=1 X

0
jmS

0
mn and solve the K -step equation

K∗jp = 1
1 + σ∆t

K0
jp −

∆t

1 + σ∆t

1
B0
j

Nx∑
i=1

Dx
jiB

0
i

r∑
n=1

K0
in

Nµ−1∑
k,`=0

V 0
`nAk`V

0
kp (18a)

+ ∆t

1 + σ∆t

1
B0
j

Nx∑
i=1

Dxx
ji B

0
i

r∑
n=1

K0
im

Nµ−1∑
k,`=0

V 0
`n|A|k`V 0

kp.

We derive the updated basis “X∗ of rank 2r from “X∗ = qr
(
[K∗,X0]

)
. Moreover, we

perform an additional basis augmentation step according to““X∗ = qr
Å

[“X∗, 1
B0 �Dx

(
B0 �X0)]ã , (18b)

which ensures the exactness of the corresponding projection operator in the proof
of energy stability of the DLRA scheme. Here, the symbol � stands for a pointwise
multiplication and the vector 1

B0 ∈ RNx is defined to contain the element 1
Bj

for each

j = 1, ..., Nx. In addition, we compute and store ̂̂M = ““X∗,>X0. Note that quantities
of rank 2r are denoted with one single hat and quantities of rank 3r with double
hats.

The L-step can be computed in parallel with the K -step. We introduce the no-
tation L0

mk =
∑r

n=1 S
0
nmV

0
nk and solve

L∗kp = 1
1 + σ∆t

L0
kp −

∆t

1 + σ∆t

Nµ−1∑
`=0

r∑
m=1

A`kL
0
`m

Nx∑
i=1

X0
imB

0
i

Nx∑
j=1

Dx
ij

1
B0
j

X0
jp (18c)

+ ∆t

1 + σ∆t

Nµ−1∑
`=0

r∑
m=1

|A|`kL0
`m

Nx∑
i=1

X0
imB

0
i

Nx∑
j=1

Dxx
ij

1
B0
j

X0
jp.
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We derive the updated basis “V∗ of rank 2r from “V∗ = qr
(
[L∗,V0]

)
. Moreover, we

perform an additional basis augmentation step according to““V∗ = qr
Ä
[“V∗,A>V0]

ä
, (18d)

that again ensures the exactness of the corresponding projection operator and will
be made clear in the proof of energy stability of the DLRA scheme in the next
subsection. In addition, we compute and store ““N = ““V∗,>V0.

For the S-step we use the information from the K - and L-step, set ‹S0
mn =∑r

j,k=1
””MmjS

0
jk
̂̂Nnk, and solve““S∗qp = 1

1 + σ∆t
‹S0
qp −

∆t

1 + σ∆t

Nx∑
j=1

̂̂X∗jq 1
B0
j

Nx∑
i=1

Dx
jiB

0
i

3r∑
m,n=1

̂̂X∗im‹S0
mn

Nµ−1∑
k,`=0

““V ∗`nAk`““V ∗kp
(18e)

+ ∆t

1 + σ∆t

Nx∑
j=1

̂̂X∗jq 1
B0
j

Nx∑
i=1

Dxx
ji B

0
i

3r∑
m,n=1

̂̂X∗im‹S0
mn

Nµ−1∑
k,`=0

““V ∗`n|A|k`““V ∗kp.
In the next step, we consider the equations for k = 0. In this case, the equations

for B1
j

B0
j

v1
j0 and B1

j

B0
j

couple and we solve the system

B1
j

B0
j

v1
j0 = 1

1 + σ∆t

r∑
m,n=1

X0
jmS

0
mnV

0
kn

− ∆t

1 + σ∆t

Nx∑
i=1

N−1∑
`=0

1
B0
j

Dx
jiB

0
i

3r∑
m,n=1

̂̂X∗im‹S0
mn
““V ∗`nA0` (18f)

+ ∆t

1 + σ∆t

Nx∑
i=1

N−1∑
`=0

1
B0
j

Dxx
ji B

0
i

3r∑
m,n=1

̂̂X∗im‹S0
mn
““V ∗`n|A|0` +

√
2σ∆t

1 + σ∆t

B1
j

B0
j

,

B1
j

B0
j

= 1 + σ∆t
B1
j

B0
j

Ä√
2v1
j0 − 2

ä
. (18g)

From (18f) and (18g) we can then retrieve v1
0 =

Ä
v1
j0

ä
and B1 =

Ä
B1
j

ä
. We use

the latter to divide out the factor B1
j

B0
j

in the low-rank representation of B1
j

B0
j

v∗jk =∑3r
m,n=1

̂̂X∗jm““S∗mn““V ∗kn. We perform the transformation step

K∗,trans
jp =

B0
j

B1
j

K∗jp. (18h)

From a QR-decomposition we then obtain ““X∗,trans ̂̂S∗,trans = qr (K∗,trans). Then, we
perform an additional basis augmentation step according to““X1 = qr

(
[v1

0,
““X∗,trans]

)
, ““V1 = qr

(
[e1,
““V∗]) , (18i)
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where we add v1
0 to the updated spatial low-rank basis since the mass of the system

is given by the zeroth order moment v1
0. In the directional basis, we add e1 ∈ RNµ ,

denoting the first unit vector in RNµ . Again, this ensures mass conservation of the
proposed low-rank scheme. Then, we have to adjust the coefficient matrix ̂̂S∗,trans

correspondingly as

̂̂S1 = ““X1,>““X∗,trans ̂̂S∗,trans““V∗ (I− e1e>1
)““V1 + ““X1,>v1

0e>1 ““V1 ∈ R(3r+1)×(3r+1).
(18j)

In a last step, we truncate the augmented quantities ““X1, ̂̂S1 and ““V1 back to a new
rank r1, using the truncation strategy described in [5] or an adjusted truncation
method inspired by [19] that ensures conservation of mass and will be given in a
following subsection. Altogether, we obtain the updated low-rank factors X1,S1 and
V1 such that v1

jk =
∑r1

m,n=1 X
1
jmS

1
mnV

1
kn. The structure of the DLRA scheme is

visualized in Figure 1.

5.3 Energy stability of the proposed low-rank scheme

We can then show that the proposed DLRA scheme preserves the energy stability of
the full system.

Theorem 3 Under the time step restriction ∆t ≤ ∆x, the fully discrete DLRA
scheme (18) is energy stable, i.e. it holds E1 ≤ E0.

Proof We start with the internal energy B and multiply (18g) with B0
jB

1
j . This leads

to (
B1
j

)2 = B0
jB

1
j + σ∆t

(
B1
j

)2 Ä√2v1
j0 − 2

ä
Analogously to the proof of Theorem 2, we rewrite the product B0

jB
1
j and sum over

j, giving the relation

1
2

Nx∑
j=1

(
B1
j

)2 = 1
2

Nx∑
j=1

(
B0
j

)2 − 1
2

Nx∑
j=1

(
B1
j −B0

j

)2 + σ∆t

Nx∑
j=1

(
B1
j

)2 Ä√2v1
j0 − 2

ä
.

(19)

In the next step, we multiply (18e) with ̂̂X∗αq““V ∗βp and sum over q and p. We introduce
the projection operators PX∗

αj =
∑3r

q=1
̂̂X∗αq̂̂X∗jq and PV

∗

kβ =
∑3r

p=1
““V ∗kp““V ∗βp and the

notation v∗αβ :=
∑3r

p,q=1
̂̂X∗αq““S∗qp““V ∗βp and obtain

v∗αβ = 1
1 + σ∆t

v0
αβ −

∆t

1 + σ∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

PX
∗

αj

1
B0
j

Dx
jiB

0
i v

0
i`Ak`P

V ∗

kβ (20)

+ ∆t

1 + σ∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

PX
∗

αj

1
B0
j

Dxx
ji B

0
i v

0
i`|A|k`PV

∗

kβ .
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input
– internal energy at time t0: B0

j

– low-rank factors at time t0: X0
jm, S0

mn, V 0
kn

– rank at time t0: r

update bases according to (18a) and (18c)

augment bases with X0
jm, V 0

kn

augment bases with 1
B0
j

∑Nx
i=1 Dx

jiB
0
i X0

im and
∑Nµ

`=0 Ak`V 0
`n according to (18b) and (18d)

update coefficient matrix according to (18e)

update zeroth order moment and internal energy according to (18f) and (18g)

perform transformation step according to (18h)

augment bases according to (18i)

adjust coefficient matrix ““S∗,trans
mn according to (18j)

truncate factors ̂̂X1
jm,““S1

mn,““V 1
kn

output
– internal energy at time t1: B1

j

– low-rank factors at time t1: X1
jm, S1

mn, V 1
kn

– rank at time t1: r1

K∗
jp, L∗

kp

X̂∗
jm,“V ∗

kn

̂̂X∗
jm,““V ∗

kn

““S∗
mn

B1
j , v1

j0

X∗,trans
jm , S∗,trans

mn

̂̂X1
jm,““V 1

kn

““S1
mn

Fig. 1: Flowchart of the stable and conservative method (18).

Further, we denote ̂̂v1
αβ :=

∑3r+1
p,q=1

̂̂X1
αq
““S1
qp
““V 1
βp. From equation (18j), we have that

B1
α

B0
α

̂̂v1
αβ = v∗αβ (1− δβ0) + B1

α

B0
α

vα0δβ0.
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We plug in (20) and (18f) and get

B1
α

B0
α

̂̂v1
αβ (1 + σ∆t) =

(
v0
αβ −∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

PX
∗

αj

1
B0
j

Dx
jiB

0
i v

0
i`Ak`P

V ∗

kβ

+∆t

Nx∑
i,j=1

Nµ−1∑
k,`=0

PX
∗

αj

1
B0
j

Dxx
ji B

0
i v

0
i`|A|k`PV

∗

kβ

)
(1− δβ0)

+
(
v0
αβ −∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
α

Dx
αiB

0
i v

0
i`A0`

+∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
α

Dxx
αiB

0
i v

0
i`|A|0` +

√
2σ∆tB

1
α

B0
α

)
δβ0.

We now use the fact that we have augmented the spatial basis according to (18b)
and (18d). This allows us to write any function h0

i ∈ span
(
X0
i

)
and h̃0

` ∈ span
(
V 0
`

)
as

Nx∑
i,j=1

PX
∗

αj

1
B0
j

Dx
jiB

0
i h

0
i = 1

B0
α

Nx∑
i=1

Dx
αiB

0
i h

0
i and

Nµ−1∑
k,`=0

h̃0
`Ak`P

V ∗

kβ =
Nµ−1∑
`=0

h̃0
`Aβ`.

The basis augmentations as well as the property of the projection operators hence
enables us to obtain a representation of the form

B1
α

B0
α

̂̂v1
αβ (1 + σ∆t) = F (1− δβ0) + Fδβ0 +

√
2σ∆tB

1
α

B0
α

δβ0

with

F = v0
αβ −∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
α

Dx
αiB

0
i v

0
i`A0` +∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
α

Dxx
αiB

0
i v

0
i`|A|0`.

We use that on the right-hand side Fδβ0 cancels out such that we are left with

B1
α

B0
α

̂̂v1
αβ (1 + σ∆t) = v0

αβ −∆t
Nx∑
i=1

Nµ−1∑
`=0

1
B0
α

Dx
αiB

0
i v

0
i`A0`

+∆t

Nx∑
i=1

Nµ−1∑
`=0

1
B0
α

Dxx
αiB

0
i v

0
i`|A|0`δβ0 +

√
2σ∆tB

1
α

B0
α

δβ0.
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In the next step, we multiply with B1
αB

0
α
̂̂v1
αβ , sum over α and β, rearrange, and

introduce the notation ̂̂u1
αβ = B1

α
̂̂v1
αβ . This leads to

Nx∑
α=1

Nµ−1∑
β=0

(̂̂u1
αβ

)2 =
Nx∑
α=1

Nµ−1∑
β=0

u0
αβ
̂̂u1
αβ −∆t

Nx∑
i,α=1

Nµ−1∑
`,β=0

̂̂u1
αβD

x
αiu

0
i`Aβ`

+∆t

Nx∑
i,α=1

Nµ−1∑
`,β=0

̂̂u1
αβD

xx
αi v

0
i`|A|β`

+ σ∆t

Nx∑
α=1

Nµ−1∑
β=0

(
B1
α

)2 ̂̂v1
αβ

Ä√
2δβ0 − ̂̂v1

αβ

ä
.

Inserting the relation

Nx∑
α=1

Nµ−1∑
β=0

u0
αβ
̂̂u1
αβ =

Nx∑
α=1

Nµ−1∑
β=0

Å1
2
(̂̂u1
αβ

)2 + 1
2
(
u0
αβ

)2 − 1
2
(̂̂u1
jk − u0

jk

)2
ã

then gives

1
2

Nx∑
α=1

Nµ−1∑
β=0

(̂̂u1
αβ

)2 = 1
2

Nx∑
α=1

Nµ−1∑
β=0

(
u0
αβ

)2 − 1
2

Nx∑
α=1

Nµ−1∑
β=0

(̂̂u1
jk − u0

jk

)2

−∆t
Nx∑
i,α=1

Nµ−1∑
`,β=0

̂̂u1
αβD

x
αiu

0
i`Aβ` +∆t

Nx∑
i,α=1

Nµ−1∑
`,β=0

̂̂u1
αβD

xx
αi v

0
i`|A|β`

+ σ∆t

Nx∑
α=1

Nµ−1∑
β=0

(
B1
α

)2 ̂̂v1
αβ

Ä√
2δβ0 − ̂̂v1

αβ

ä
.

We estimate this expression as in the proof of Theorem 2 and add it with equation
(19). Analogously to the proof of Theorem 2, and as the truncation step does not
alter the zeroth order moment, we obtain that the DLRA scheme is energy stable
under the time step restriction ∆t ≤ ∆x.

5.4 Mass conservation

In addition, the DLRA scheme (18) can be shown to be mass conservative when
using a suitable truncation strategy. We follow the ideas in [19,22,14] and adjust
the truncation step such that it conserves the zeroth order moment. Different from
[19] and as explained in [14], we do not need to adjust the L-step equation due to
the usage of the augmented BUG integrator from [5]. Starting from the augmented
quantities ““X1, ̂̂S1 and ““V1, the conservative truncation strategy then works as follows:

1. We set ““K1 = ““X1 ̂̂S1 and split it into two parts ““K1 = [““K1,cons,““K1,rem], where““K1,cons corresponds to the first and ““K1,rem to the remaining columns of ““K1.
Analogously, we split ““V1 into ““V1 = [““V1,cons,““V1,rem], where ““V1,cons corresponds
to the first and ““V1,rem to the remaining columns of ““V1.
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2. We compute ““X1,cons = ““K1,cons/‖““K1,cons‖ and ̂̂S1,cons = ‖““K1,cons‖.
3. We perform a QR-decomposition of ““K1,rem to obtain ““K1,rem = ““X1,rem ̂̂S1,rem.
4. We compute the singular value decomposition of ̂̂S1,rem = ““PΣ““Q> with Σ =

diag(σj). The new rank r1 ≤ 3r+1 is chosen such that for a prescribed tolerance
parameter ϑ it holds Ñ

3r+1∑
j=r1+1

σ2
j

é1/2

≤ ϑ.

We set S1,rem ∈ Rr1×r1 to be the matrix containing the r1 largest singular values.
For the update of the spatial and the directional basis we introduce the matrices““Prem ∈ R(3r+1)×r1 and ““Qrem ∈ R(3r+1)×r1 containing the first r1 columns of““P and ““Q, respectively, and set X1,rem = ““X1,rem““Prem ∈ RNx×r1 and V1,rem =““V1,rem““Qrem ∈ RNµ×r1 .

5. We set ‹X1 = [““X1,cons,X1,rem] and ‹V1 = [e1,V1,rem] and perform a QR-decomposition
to obtain ‹X1 = X1R1 and ‹V1 = V1R2, respectively.

6. We compute

S1 = R1
ñ̂̂S1,cons 0

0 S1,rem

ô
R2,>.

This leads to the updated solution v1 = X1S1V1,> after one time step at time
t1 = t0 +∆t.

In order to show local mass conservation for the proposed DLRA scheme, we
translate the macroscopic quantities given in Definition 1 to the fully discretized
setting.

Definition 4 (Fully discretized macroscopic quantities) The mass of the fully
discretized multiplicative Su-Olson problem at time t0 is defined as

ρ0
j =
√

2B0
j v

0
j0 +B0

j .

The momentum is given as

u0
j =
√

2
Nx∑
j=1

Bjv
0
j`A0`.

For t1 = t0 +∆t the definitions shall hold analogously.

We can then show that the DLRA algorithm together with the conservative trunca-
tion strategy fulfills the following local conservation law.

Theorem 4 The DLRA scheme (18) together with the conservative truncation strat-
egy is locally mass conservative, i.e. it fulfills the local conservation law

1
∆t

Ä√
2B1

jΦ
1
j +B1

j −
Ä√

2B0
jΦ

0
j +B0

j

ää
=−
√

2
Nx∑
i=1

Nµ−1∑
`=0

Dx
jiB

0
i v

0
i`A0` +

√
2
Nx∑
i=1

Nµ−1∑
`=0

Dxx
ji B

0
i v

0
i`|A|0`,
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where Φ0
j =

∑r
m,n=1 X

0
jmS

0
mnV

0
0n, Φ1

j =
∑r1

m,n=1 X
1
jmS

1
mnV

1
0n and v0

jk = X0
jmS

0
mnV

0
kn.

This is a discretization of the continuous local conservation law given in (5).

Proof We know that the conservative truncation strategy is designed such that it
does not alter the zeroth order moment, i.e. it holds

∑3r
m,n=1

̂̂X1
jm
““S1
mn
““V 1

0m = v1
j0. In

addition, we know from the basis augmentation (18i) and the correction step (18j)
that

∑3r
m,n=1

̂̂X1
jm
““S1
mn
““V 1

0m =
∑r

m,n=1 X
1
jmS

1
mnV

1
0n. Combining both, we have

Φ1
j =

r1∑
m,n=1

X1
jmS

1
mnV

1
0n =

3r∑
m,n=1

̂̂X1
jm
““S1
mn
““V 1

0m = v1
j0.

We insert this relation into the coupled equations (18f) and (18g). We multiply (18f)
with

√
2, rearrange it and multiply both equations with B0

j . This gives

√
2B1

jΦ
1
j =
√

2B0
jΦ

0
j −
√

2∆t
Nx∑
i=1

Nµ−1∑
`=0

Dx
jiB

0
i

3r∑
m,n=1

̂̂X∗im‹S0
mn
““V ∗`nA0` (21a)

+
√

2∆t
Nx∑
i=1

Nµ−1∑
`=0

Dxx
ji B

0
i

3r∑
m,n=1

̂̂X∗im‹S0
mn
““V ∗`n|A|0` + σ∆tB1

j

Ä
2−
√

2Φ1
j

ä
,

B1
j = B0

j + σ∆tB1
j

Ä√
2Φ1

j − 2
ä
. (21b)

Due to the basis augmentations with X0 and V0 from the augmented BUG integra-
tor, we also know that

3r∑
m,n=1

̂̂X∗im‹S0
mn
““V ∗`n =

r∑
m,n=1

X0
imS

0
mnV

0
`n = v0

i`.

We insert this into (21a), add equation (21a) and (21b), and rearrange. This leads
to the local conservation law (4), ensuring the local conservation of mass.

6 Numerical results

In this section, we compare the solution of the DLRA scheme (18) to the solution
of the full equations (17) to underline the efficiency and accuracy of the proposed
method. We give different test examples in one space and one directional dimension
that validate our theoretical results.

6.1 1D plane source

We start with the one-dimensional plane source test case which is a common test
example for thermal radiative transfer [20,21,1,42]. We consider the spatial domain
D = [−10, 10] and the directional domain [−1, 1]. The initial condition shall be
chosen as the cutoff Gaussian

v(t = 0, x, µ) = 1
B0 max

Ñ
10−4,

1»
2πσ2

IC

exp
Å
− (x− 1)2

2σ2
IC

ãé
,
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where the constant deviation is given as σIC = 0.03. The traveling particles are
initially centered around x = 1 and move into all directions µ ∈ [−1, 1]. The initial
internal energy is set to B0 = 1 and the opacity to the constant value σ = 1. For
the low-rank computations we use an initial rank of r = 20. The total mass mn

at time tn can be derived as mn = ∆x
∑

j

Ä√
2Bnj vnj0 +Bnj

ä
. As computational

parameters we use Nx = 1000 grid points in the spatial domain and Nµ = 500
moments for the approximation in the directional domain. The time step size is
determined by ∆t = CFL · ∆x with CFL = 0.99. In Figure 2 we compare the
solution of the DLRA scheme (DLRA) with the solution of the full system (full).
We observe that the solution f(x, µ) as well as the scalar flux Φ = 1√

2 〈f〉µ and the
dimensionless temperature T = 4

√
B are captured well by the DLRA scheme. For a

chosen tolerance parameter of ϑ = 10−1‖Σ‖2 the rank r increases up to r = 23 before
it significantly reduces again. The relative mass error |m

0−mn|
‖m0‖ is of order O(10−13),

i.e. the DLRA scheme is mass conservative up to machine precision. These results
confirm our theoretical results.

Fig. 2: Top row: Numerical results for the solution B(x)g(x, µ) of the plane source
problem at time tend = 8 computed with the full solver (left) and the multiplicative
DLRA scheme (right). Middle row: Scalar flux Φ (left) and temperature T (right) for
both the full system and the multiplicative DLRA scheme. Bottom row: Evolution of
the rank in time for the multiplicative DLRA method (left) and relative mass error
for both methods (right).
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6.2 1D external source

In a second test example we take an external source term Q(x) into account. It shall
be added to the conservative form of the Su-Olson system as follows

∂tg(t, x, µ) =− µ

B(t, x)∂x (B(t, x)g(t, x, µ)) + σ (1− g(t, x, µ))− g(t, x, µ)
B(t, x) ∂tB(t, x)

+ Q(x)
B(t, x) ,

∂tB(t, x) = σB(t, x) (〈g(t, x, µ)〉µ − 2) .

This source term again generates radiation that moves through and interacts with
the background material which in turn heats up and itself emits particles. The
resulting travelling temperature wave is called a Marshak wave [33]. Again, we
compare the solution of the full equations (17) (full) with the presented low-rank
scheme (18) (DLRA). Both schemes are now adjusted such that the additional
source term is taken into account. For our numerical example we choose the func-
tion Q(x) = χ[−0.5,0.5](x)/a with a = 4σSB

c being the radiation constant. We again
consider the spatial domain D = [−10, 10] and the directional domain [−1, 1]. The
initial condition shall be chosen as

v(t = 0, x, µ) = 1
B0 max

Ñ
10−4,

1»
2πσ2

IC

exp
Å
− (x− 1)2

2σ2
IC

ãé
,

where the constant deviation is given as σIC = 0.03 and the particles move into all
directions µ ∈ [−1, 1]. The initial internal energy is set to B0 = 50 and the opacity
to the constant value σ = 1. For the low-rank computations we use an initial rank
of r = 20. As computational parameters we use Nx = 1000 grid points in the spatial
domain and Nµ = 500 moments for the approximation in the directional domain. The
time step size is determined by ∆t = CFL·∆x with CFL = 0.99. Figure 3 then shows
the numerical results for the solution f(x, µ), for the scalar flux Φ = 1√

2 〈f〉µ, and
for the dimensionless temperature T = 4

√
B, computed with both solvers. We again

observe that the DLRA scheme captures the solution of the full system. The rank r
increases up to a value of r = 23 for a chosen tolerance parameter of ϑ = 10−3‖Σ‖2.
Due to the additional source term, there is no conservation of mass in this test
example.

7 Conclusion and outlook

We have presented a DLRA discretization for the multiplicative Su-Olson problem
that is energy stable and mass conservative. To achieve both of these features, an
additional basis augmentation in the augmented BUG integrator combined with an
adjusted truncation step are performed. This enables us to give a mathematically rig-
orous stability analysis. Numerical test examples confirm the theoretical properties
and validate the accuracy and computational advantages of the DLRA scheme. How-
ever, the extension of the considered stability analysis from a linear to a non-linear
problem, for example the isothermal Boltzmann-BGK equation treated in [12], poses
additional challenges as the general theoretical setting is significantly more difficult.
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Fig. 3: Top row: Numerical results for the solution B(x)g(x, µ) of the Su-Olson
problem at time tend = 3.16 computed with the full solver (left) and the multiplicative
DLRA scheme (right). Middle row: Scalar flux Φ (left) and temperature T (right) for
both the full system and the multiplicative DLRA scheme. Bottom row: Evolution
of the rank in time for the multiplicative DLRA method.

For example, to our knowledge, the theoretical framework we have used here is not
available in the non-linear case. Nevertheless, the analysis performed in this paper
provides valuable insight into the choice of a suitable space discretization and stabi-
lization when considering a multiplicative splitting of the distribution function. This
splitting approach can be extremely useful for the construction of DLRA schemes
for more complicated problems, which we consider future work.
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