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Abstract. The numerical solution of parameter identification inverse problems for kinetic equations can exhibit5
high computational and memory costs. In this paper, we propose a dynamical low-rank scheme6
for the reconstruction of the scattering parameter in the radiative transfer equation from a number7
of macroscopic time-independent measurements. We first work through the PDE constrained op-8
timization procedure in a continuous setting and derive the adjoint equations using a Lagrangian9
reformulation. For the scattering coefficient, a periodic B-spline approximation is introduced and a10
gradient descent step for updating its coefficients is formulated. After the discretization, a dynami-11
cal low-rank approximation (DLRA) is applied. We make use of the rank-adaptive basis update &12
Galerkin integrator and a line search approach for the adaptive refinement of the gradient descent13
step size and the DLRA tolerance. We show that the proposed scheme significantly reduces both14
memory and computational cost. Numerical results computed with different initial conditions val-15
idate the accuracy and efficiency of the proposed DLRA scheme compared to solutions computed16
with a full solver.17
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1. Introduction. A classical problem in medical imaging consists in the reconstruction of21

properties of the examined tissue from measurements without doing harm to the human body.22

In optical tomography, the propagation of near-infrared light through tissue can be modeled23

using the radiative transfer equation (RTE) [22, 15, 14]. Neglecting boundary effects, the24

time-dependent form of this kinetic partial differential equation (PDE) can be given in one-25

dimensional slab geometry as26 {
∂tf (t, x, v) + v∂xf (t, x, v) = σ (x)

Ä
1
|Ωv |〈f (t, x, v))〉v − f (t, x, v)

ä
,

f (t = 0, x, v) = fin (x, v) ,
(1.1)27

28

where f (t, x, v) : R+
0 × Ωx × Ωv → R+

0 denotes the distribution function that describes the29

repartition of photons in phase space. Here, t stands for the time variable, x ∈ Ωx ⊆ R for30

the space variable and v ∈ Ωv = [−1, 1] for the angular variable. An integration over the31

corresponding domain is denoted by brackets 〈·〉 and |Ωv| measures the length of the domain32
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Ωv. The function σ (x) represents the properties of the background medium, indicating the33

probability of particles at position x to be scattered into a new direction. We refer to it as34

the scattering coefficient. At the initial time t = 0 the function fin (x, v) shall be prescribed35

for the distribution function.36

The inverse problem associated to the RTE (1.1) considers the reconstruction of the scat-37

tering coefficient σ (x) from measurements. For the theoretical background on inverse prob-38

lems in general as well as on the theoretical requirements on σ (x) and f (t, x, v) in the inverse39

transport problem the reader is referred to [13] and to the review articles [1, 24], respectively.40

For the numerical solution of this parameter identification problem, PDE constrained opti-41

mization is deployed. In this setting, we aim for the minimization of the difference between42

the measurements and the computed solutions under the assumption of the validity of the43

RTE. Similar to recent papers [18, 7, 11, 9], we pursue a gradient-based approach for which in44

each iteration the evaluation of both the forward and the adjoint problem is required. Clearly,45

this can numerically become very costly, especially in higher-dimensional settings.46

To reduce the computational cost and memory requirements for the solution of kinetic47

equations, dynamical low-rank approximation (DLRA) [16] can be applied. This approach48

approximates the kinetic distribution function f up to a certain rank r as49

f (t, x, v) ≈
r∑

i,j=1

Xi (t, x)Sij (t)Vj (t, v) ,(1.2)50

51

where {Xi : i = 1, .., r} are the orthonormal basis functions in space and {Vj : j = 1, .., r}52

are the orthonormal basis functions in angle. The matrix S = (Sij) ∈ Rr×r contains the53

coefficients of the approximation and therefore is called the coefficient or coupling matrix.54

The idea of DLRA then consists in constraining the evolution dynamics to functions of the55

form (1.2). There are different integrators that are able to evolve the low-rank factors in time56

while not suffering from this solution structure. For instance, the projector-splitting [19], the57

(augmented) basis update & Galerkin (BUG) [6, 4], and the parallel BUG integrator [5] are58

widely used in various areas of research [2, 17, 10, 8].59

For the solution of the inverse transport problem associated to (1.1) the following approach60

is pursued in this paper: “first optimize, then discretize, then low-rank”, i.e. we first perform61

the optimization in a continuous setting before the resulting equations are discretized and a62

dynamical low-rank approximation is used. The main features of this paper are:63

• An application of DLRA to a PDE parameter identification inverse problem: The64

scattering parameter σ (x) is determined by PDE constrained optimization for which65

after the discretization the dynamical low-rank method is used. To our knowledge, this66

is the first paper that combines inverse problems and DLRA, leading to a reduction67

of computational effort from O
(
Ndx+dv

)
to O

Ä
rNmax(dx,dv)

ä
in each step, where N68

denotes the number of grid points in physical as well as angular space and dx, dv the69

dimensions in space and angle, respectively.70

• A setup close to realistic applications: In most applications measurements are not able71

to access the full distribution function but at most angle-averaged quantities, i.e. its72

moments. We will consider such a setup here where it is assumed that only the first73

moment is accessible by measurements. In addition, optimal tomography commonly74
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relies on a multitude of measurements from different positions which we incorporate75

by probing multiple initial values.76

• An adaptive gradient descent step size and an augmented low-rank integrator: The77

minimization is performed using a gradient descent method for updating the coeffi-78

cients of a periodic B-spline approximation of σ (x). Similar to [23], the step size is79

chosen adaptively by a line search approach with Armijo condition. Also the rank80

of the DLRA algorithm is chosen adaptively by using the augmented BUG integra-81

tor from [4]. This allows us to choose the rank in each step such that a given error82

tolerance is satisfied. In the context of optimization, this enables us to start with a83

comparatively small rank (when we are still far from the minimum) and then gradually84

increase the rank as the optimization progresses, thereby enhancing the performance85

of the low-rank scheme.86

• A series of numerical test examples: A series of numerical text examples confirms that87

for the reconstruction of the scattering coefficient the application of DLRA shows good88

agreement with the full solution while being significantly faster, suggesting that the89

combination of low-rank methods and inverse problems is a promising field of future90

research.91

The structure of the paper is as follows: After the introduction in Section 1, the PDE92

constrained optimization procedure for the solution of the inverse parameter identification93

problem is explained in Section 2. Section 3 is devoted to the discretization of the forward94

and the adjoint equations as well as of the gradient in angle, space, and time, leading to a95

fully discrete gradient descent scheme. In Section 4, the concept of DLRA is introduced and96

subsequently applied to the forward and adjoint equations. An adaptive line search method for97

refining the gradient descent step size and the DLRA rank tolerance is presented. Numerical98

results given in Section 5 confirm the accuracy and efficiency of the DLRA scheme compared99

to the solutions computed with the full solver. Finally, Section 6 gives a brief conclusion and100

an outlook for possible further research.101

2. PDE constrained optimization. For the reconstruction of the scattering coefficient102

σ (x) a multitude of NIC measurements shall be taken into account. We assume the measure-103

ments to be generated by a measurement operator M acting on the angle-averaged solution of104

the RTE at the final time t = T , that has been generated using the corresponding initial con-105

dition fin,m. For simplicity, the computed data dm is assumed to be close to the measurements106

of an angle-averaged solution, i.e.107

dm (x) ≈M
(
〈fσ,m (t = T, x, v)〉v

)
for m = 1, ..., NIC,108109

where fσ,m (t, x, v) is a solution of110

{
∂tfm (t, x, v) + v∂xfm (t, x, v) = σ (x)

Ä
1
|Ωv |〈fm (t, x, v))〉v − fm (t, x, v)

ä
,

fm (t = 0, x, v) = fin,m (x, v) .
(2.1)111

112
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One then tries to minimize the square loss between the simulated angle-averaged solution and113

the measured data, i.e. one tries to solve the minimization problem114

min
σ
J (σ) with J (σ) =

1

2

NIC∑
m=1

¨∣∣〈fσ,m(t = T, x, v)〉v − dm (x)
∣∣2∂

x
subject to (2.1).

(2.2)

115

116

Note that this setup is close to realistic applications in the sense as described above.117

For real-word applications we point out that the considered setting with one spatial and one118

angular variable may not be sufficient. In addition, it is assumed that there is no noise in the119

measurements which in practical applications is clearly infeasible. Even though, the results120

gained from the considered setup can directly be extended to higher-dimensional settings and121

give valuable insights into the combination of parameter identification and DLRA, which this122

paper aims for.123

In Subsection 2.1 we make use of the method of Lagrange multipliers to derive the adjoint124

equations associated to the forward problem (2.1). We then derive the explicit gradient descent125

step in Subsection 2.2.126

2.1. Lagrangian formulation. To reformulate the PDE constrained minimization problem127

(2.2) into an unconstrained optimization problem the method of Lagrange multipliers is used.128

Note that from now on, for brevity, we write fm (t, x, v) instead of fσ,m (t, x, v). We aim for a129

solution of130

minL (f1, ...fNIC
, g1, ..., gNIC

, λ1, ..., λNIC
, σ) ,131132

where133

L = J (f1, ..., fNIC
) +

NIC∑
m=1

≠
gm, ∂tfm + v∂xfm − σ (x)

Å
1

|Ωv|
〈fm〉v − fm

ã∑
t,x,v

134

+

NIC∑
m=1

〈λm, fm (t = 0, x, v)− fin,m(x, v)〉x,v135

136

and gm (t, x, v) and λm (x, v) are Lagrange multipliers with respect to fm (t, x, v) and the137

initial distributions fin,m (x, v) for m = 1, ..., NIC, respectively. Applying integration by parts138

and assuming periodic boundary conditions, the Lagrangian can be rewritten as139

L = J (f1, ..., fNIC
) +

NIC∑
m=1

≠
fm,−∂tgm − v∂xgm − σ (x)

Å
1

|Ωv|
〈gm〉v − gm

ã∑
t,x,v

140

+

NIC∑
m=1

〈gm(t = T, x, v), fm(t = T, x, v)〉x,v141

−
NIC∑
m=1

〈gm (t = 0, x, v) , fm (t = 0, x, v)〉x,v142

+

NIC∑
m=1

〈λm, fm (t = 0, x, v)− fin,m (x, v)〉x,v .143

144
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Figure 1. Cubic periodic B-spline basis functions for Nc = 3 (left) and Nc = 5 (right) on different spatial
domains.

The corresponding adjoint or dual problems associated to (2.1) can then be derived by setting145
∂L
∂fm

= 0 for m = 1, ..., NIC. By straightforward calculation one obtains146 {
−∂tgm (t, x, v)− v∂xgm (t, x, v) = σ (x)

Ä
1
|Ωv | 〈gm (t, x, v)〉v − gm (t, x, v)

ä
,

gm (t = T, x, v) = −〈fm (t = T, x, v)〉v + dm (x) .
(2.3)147

148

The solution of the forward equations (2.1) as well as the adjoint equations (2.3) will then149

be used for the computation of the gradient in the following gradient descent step.150

2.2. Optimization parameters and gradient descent step. When evaluating the scatter-151

ing coefficient σ (x) at each point of the spatial grid and taking these values as the parameters152

to be optimized, there are several computational disadvantages. For instance, a huge param-153

eter space is obtained and very rough functions are part of the ansatz space. To avoid this,154

we consider the parametrization of σ (x) by splines. In particular, we approximate155

σ (x) ≈
Nc∑
i=1

ciBi (x) ,(2.4)156

157

where Nc denotes the finite number of spline functions, Bi (x) are the periodic B-spline basis158

functions, and ci the coefficients of the approximation. In Figure 1 the basis functions for159

cubic periodic B-splines for Nc = 3 and Nc = 5 are illustrated.160

The gradient descent step for the solution of the minimization problem (2.2) then updates161

the coefficients cni to cn+1
i for i = 1, ..., Nc in each step by determining162

cn+1
i = cni − ηn

dJ (f1, ..., fNIC
)

dci

∣∣∣∣∣
ci=cni

,(2.5)163

164

where ηn denotes an adaptively chosen step size.165

As fm satisfies the PDE constraints (2.1) and gm solves the adjoint equations (2.3) for166

m = 1, ..., NIC, it holds167

L (f1, ..., fNIC
, g1, ..., gNIC

, λ1, ..., λNIC
, σ) = J (f1, ..., fNIC

) ,168169
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and thus170

dJ (f1, ..., fNIC
)

dci
=

dL (f1, ..., fNIC
, g1, ..., gNIC

, λ1, ..., λNIC
, σ)

dci
171

=

NIC∑
m=1

Å
∂L
∂fm

∂fm
∂σ

∂σ

∂ci
+

∂L
∂gm

∂gm
∂σ

∂σ

∂ci
+

∂L
∂λm

∂λm
∂σ

∂σ

∂ci
+
∂L
∂σ

∂σ

∂ci

ã
.172

173

The first three terms again vanish since (2.1) and (2.3) are fulfilled, leading to174

dJ (f1, ..., fNIC
)

dci
=

NIC∑
m=1

∂L
∂σ

∂σ

∂ci
=

NIC∑
m=1

Å
− 1

|Ωv|
〈〈fm〉v, 〈gm〉v〉t + 〈fm, gm〉t,v

ã
Bi.(2.6)175

176

Hence, we have derived an explicit formulation depending on the forward and on the adjoint177

equation as well as on the B-spline basis functions to compute the gradient in the gradient178

descent step (2.5).179

3. Discretization. For the numerical implementation we discretize the forward problem180

(2.1), the adjoint problem (2.3) and the gradient (2.6) in angle, space and time, leading to a181

fully discrete scheme. We begin with the angular discretization in Subsection 3.1, followed by182

a discretization in space in Subsection 3.2 and in time in Subsection 3.3. Subsection 3.4 then183

summarizes the fully discrete gradient descent method.184

3.1. Angular discretization. For the discretization in angle we decide on a modal ap-185

proach making use of normalized Legendre polynomials P`. This is a standard approach186

that is commonly used for radiative transfer problems and the derived methods are referred187

to as PN methods [21, 3, 20]. We use a rescaling of the Legendre polynomials such that188

〈Pk, P`〉v = δk` and P0 = 1√
2

holds. They constitute a complete set of orthonormal functions189

on the interval [−1, 1]. We expand the distribution functions fm and gm for m = 1, ..., NIC in190

terms of the rescaled Legendre polynomials and obtain the following approximation191

fm (t, x, v) ≈
Nv−1∑
`=0

u`m (t, x)P` (v) and gm (t, x, v) ≈
Nv−1∑
`=0

w`m (t, x)P` (v) ,(3.1)192

193

where the expansion coefficients u` (t, x) and w` (t, x), respectively, are called the moments194

and Nv is called the order of the approximation. We insert these representations into the195

forward problem (2.1) as well as the adjoint problem (2.3), multiply with Pk and integrate196

over the angular variable v. Using the orthonormality condition from above and the notation197

Ak` = 〈Pk, vP`〉v leads to198 ®
∂tukm (t, x) = −

∑Nv−1
`=0 ∂xu`m (t, x)Ak` + σ (x)ukm (t, x) (δk0 − 1) ,

ukm (t = 0, x) = uin,km (x) ,
(3.2)199

200

for the forward equations and201 {
−∂twkm (t, x) =

∑Nv−1
`=0 ∂xw`m (t, x)Ak` + σ (x)wkm (t, x) (δk0 − 1) ,

wkm (t = T, x) =
Ä
−2u0m (t = T, x) +

√
2dm (x)

ä
δk0,

(3.3)202

203
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for the adjoint equations for m = 1, ..., NIC . We collect the entries Ak` in the symmetric204

matrix A = (Ak`) ∈ RNv×Nv and note that A is diagonalizable in the form A = QMQ> with205

Q orthonormal and M = diag(σ1, ..., σNv). We then set |A| = Q|M|Q>. For the angular206

discretization of the gradient we insert the representations (3.1) into (2.6) and obtain207

dJ (f1, ..., fNIC
)

dci
≈

NIC∑
m=1

(
−〈u0m (t, x) , w0m (t, x)〉t +

Nv−1∑
k=0

〈ukm (t, x) , wkm (t, x)〉t

)
Bi (x) .

(3.4)

208

209

3.2. Spatial discretization. The discretization in the spatial variable is performed on a210

spatial grid with Nx grid cells and equidistant spacing ∆x = 1
Nx

such that211

ujkm (t) ≈ ukm (t, xj) , wjkm (t) ≈ wkm (t, xj) , σj ≈ σ (xj) , djm ≈ dm (xj) , Bji ≈ Bi (xj) .212213

Spatial derivatives are approximated using a centered finite difference scheme to which a214

second-order stabilization term is added. We denote ∂x ≈ Dx ∈ RNx×Nx and ∂xx ≈ Dxx ∈215

RNx×Nx for the tridiagonal stencil matrices with nonzero entries only at216

Dx
j,j±1 =

±1

2∆x
, Dxx

j,j = − 2

(∆x)2 , Dxx
j,j±1 =

1

(∆x)2 .217

218

In addition, we assume periodic boundary conditions which results in setting219

Dx
1,Nx

=
−1

2∆x
, Dx

Nx,1 =
1

2∆x
, Dxx

1,Nx
= Dxx

Nx,1 =
1

(∆x)2 .220

221

The spatially discretized forward equations with centered finite differences and an additional222

second-order stabilization term can then be obtained from (3.2) as223 
∂tujkm (t) = −

∑Nx
i=1

∑Nv−1
`=0 Dx

jiui`m (t)Ak` + ∆x
2

∑Nx
i=1

∑Nv−1
`=0 Dxx

ji ui`m (t) |A|k`
+ σjujkm (t) (δk0 − 1) ,

ujkm (t = 0) = uin,jkm,

(3.5)224

225

and the spatially discretized adjoint equations from (3.3) as226 
−∂twjkm (t) =

∑Nx
i=1

∑Nv−1
`=0 Dx

jiwi`m (t)Ak` + ∆x
2

∑Nx
i=1

∑Nv−1
`=0 Dxx

ji wi`m (t) |A|k`
+ σjwjkm (t) (δk0 − 1) ,

wjkm (t = T ) =
Ä
−2uj0m (t = T ) +

√
2djm

ä
δk0,

(3.6)227

228

For the spatial discretization of the gradient we get from (3.4) that229

dJ (f1, ..., fNIC
)

dci
≈

NIC∑
m=1

(
−〈uj0m (t) , wj0m (t)〉t +

Nv−1∑
k=0

〈ujkm (t) , wjkm (t)〉t

)
Bji.(3.7)230

231
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3.3. Time discretization. To obtain a fully discrete system, the time interval [0, T ] is split232

equidistantly into a finite number Nt of time cells. An update of the forward equations (3.5)233

from time tn to time tn+1 = tn + ∆t is then computed using an explicit Euler step forward in234

time such that235 
un+1
jkm = unjkm −∆t

∑Nx
i=1

∑Nv−1
`=0 Dx

jiu
n
i`mAk` + ∆t∆x

2

∑Nx
i=1

∑Nv−1
`=0 Dxx

ji u
n
i`m |A|k`

+ σj∆tu
n
jkm (δk0 − 1) ,

u0
jkm = uin,jkm.

(3.8)236

237

For the adjoint equations (3.6) we start computations with an end time condition after Nt238

steps and evolve the solution from time tn to time tn−1 = tn −∆t by an explicit Euler step239

backwards in time such that240 
wn−1
jkm = wnjkm + ∆t

∑Nx
i=1

∑Nv−1
`=0 Dx

jiw
n
i`mAk` + ∆t∆x

2

∑Nx
i=1

∑Nv−1
`=0 Dxx

ji w
n
i`m |A|k`

+ σj∆tw
n
jkm (δk0 − 1) ,

wNt
jkm =

Ä
−2uNt

j0m +
√

2djm
ä
δk0.

(3.9)241

242

The fully discretized gradient can be obtained from (3.7) by approximating integrals with243

respect to time by step functions. We get244

dJ (f1, ..., fNIC
)

dci
≈ 1

Nt + 1

NIC∑
m=1

Nt∑
n=0

(
−unj0mw

Nt−n
j0m +

Nv−1∑
k=0

unjkmw
Nt−n
jkm

)
Bji.(3.10)245

246

3.4. Fully discrete optimization scheme. The strategy for the fully discrete gradient247

descent method for the solution of the PDE parameter identification problem is summarized248

in Algorithm 3.1. Note that for the stopping criterion an error estimate estimated-err for249

the deviation of the computed coefficients from the true coefficients is required to run the250

algorithm.251

4. Dynamical low-rank approximation. For the solution of the PDE parameter identifi-252

cation problem the coefficients ci of the spline approximation (2.4) of σ are updated several253

times in the gradient descent step (2.5). For each iteration the solution of the fully discretized254

forward equations (3.8) as well as of the fully discretized adjoint equations (3.9) have to be255

computed and stored in order to compute the fully discretized gradient (3.10). A method256

for the reduction of computational and memory effort for kinetic equations is the concept of257

dynamical low-rank approximation that shall be applied to the considered inverse transport258

problem. We begin with some general information on DLRA in Subsection 4.1, before Sub-259

section 4.2 is devoted to a DLRA algorithm for the considered discrete optimization problem.260

4.1. Background on dynamical low-rank approximation. In [16], the concept of DLRA261

has been introduced in a semi-discrete time-dependent matrix setting. We follow the expla-262

nations there. Let f (t) ∈ RNx×Nv be the solution of the matrix differential equation263

ḟ (t) = F (f (t)) ,264265
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Algorithm 3.1 Gradient descent method for the PDE parameter reconstruction

Input: measurements dm = (djm) ∈ RNx for m = 1, ..., NIC,

initial data u0
m =

Ä
u0jkm

ä
∈ RNx×Nv for m = 1, ..., NIC,

initial guess for the coefficients c0 =
(
c0i
)
∈ RNc ,

initial step size η0,
estimated error estimated-err,
error tolerance errtol,
maximal number of iterations maxiter

Output: optimal coefficients copt = (copt,i) ∈ RNc within the prescribed error tolerance

while estimated-err > errtol and n ≤ maxiter do
Compute σn =

(
σn
j

)
∈ RNx from given coefficients cn according to (2.4);

Solve the forward problem according to (3.8) for each m = 1, ..., NIC;
Solve the adjoint problem according to (3.9) for each m = 1, ..., NIC;
Compute the gradient dJ

dcni
using (3.10) and the solutions of (3.8) and (3.9);

Update the coefficients according to (2.5): cn+1
i = cni − ηn dJ

dci

∣∣
ci=cni

, where ηn is determined

adaptively by line search;
end while

for which the right-hand side shall be denoted by F (f (t)) : RNx×Nv → RNx×Nv . We then seek266

an approximation of f (t) of the form267

fr (t) = X (t) S (t) V (t)> ,(4.1)268269

where the matrix X (t) ∈ RNx×r contains the orthonormal basis functions in space and V (t) ∈270

RNv×r the orthonormal basis functions in angle. The coefficients of the approximation are271

stored in the coupling matrix S (t) ∈ Rr×r. The set of all matrices of the form (4.1) then272

constitutes a low-rank manifold that we denote by Mr. Its tangent space at fr (t) shall be273

denoted by Tfr(t)Mr. For the evolution of the low-rank factors in time we seek a solution of274

the minimization problem275

min
ḟr(t)∈Tfr(t)Mr

∥∥∥ḟr (t)− F (fr (t))
∥∥∥
F

276

277

at all times t, where ‖·‖F denotes the Frobenius norm. In [16] it has been shown that this278

minimization constraint is equivalent to determining279

ḟr (t) = P (fr (t)) F (fr (t)) ,(4.2)280281

where P denotes the orthogonal projector onto the tangent space Tfr(t)Mr that can be ex-282

plicitly given as283

P (fr (t)) F = XX>F−XX>FVV> + FVV>.284285

There are different robust time integrators for the solution of (4.2) that are able to evolve286

the low-rank solution on the manifold Mr while not suffering from potentially small singular287
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values [12]. The projector-splitting [19], the (augmented) BUG [6, 4], and the parallel BUG288

integrator [5] are frequently used.289

In this work, we use the augmented BUG integrator from [4] that evolves the low-rank290

factors as follows: In the first two steps, the BUG integrator updates and augments the spatial291

basis X and the angular basis V in parallel, leading to an increase of rank from r to 2r. Having292

the augmented bases at hand, a Galerkin step for the coefficient matrix S is performed. In293

the last step, all quantities are truncated back to a new rank r1 ≤ 2r that is chosen adaptively294

depending on a prescribed error tolerance. In detail, the augmented BUG integrator evolves295

the low-rank solution from fnr = XnSnVn,> at time tn to fn+1
r = Xn+1Sn+1Vn+1,> at time296

tn+1 = tn + ∆t as follows:297

K -Step: We denote K (t) = X (t) S (t) and solve the PDE298

K̇ (t) = F
Ä
K (t) Vn,>

ä
Vn, K (tn) = XnSn.299

300

The spatial basis is then updated by determining “Xn+1 ∈ RNx×2r as an orthonormal basis of301

[K(tn+1),Xn] ∈ RNx×2r, e.g. by QR-decomposition. We store M̂ = “Xn+1,>Xn ∈ R2r×r. Note302

that we denote augmented quantities of rank 2r with hats.303

L-Step: We denote L (t) = V (t) S(t)> and solve the PDE304

L̇ (t) = F
Ä
XnL (t)>

ä>
Xn, L (tn) = VnSn,>.305

306

The angular basis is then updated by determining “Vn+1 ∈ RNv×2r as an orthonormal basis of307

[L (tn+1) ,Vn] ∈ RNv×2r, e.g. by QR-decomposition. We store “N = “Vn+1,>Vn ∈ R2r×r.308

S-step: We update the coefficient matrix from Sn ∈ Rr×r to Ŝn+1 ∈ R2r×2r by solving309

the ODE310

˙̂
S (t) = “Xn+1,>F

Ä“Xn+1Ŝ (t)“Vn+1,>
ä “Vn+1, Ŝ (tn) = M̂Sn“N>.311

312

Truncation: We compute the singular value decomposition of Ŝn+1 = “PΣ“Q>, where313 “P,“Q ∈ R2r×2r are orthogonal matrices and Σ ∈ R2r×2r is the diagonal matrix containing the314

singular values σ1, ..., σ2r. The new rank r1 ≤ 2r is determined such that315 Ñ
2r∑

j=r1+1

σ2
j

é1/2

≤ ϑ,316

317

where ϑ denotes a prescribed tolerance. We set Sn+1 ∈ Rr1×r1 to contain the r1 largest318

singular values of Ŝn+1 and Pn+1 ∈ R2r×r1 and Qn+1 ∈ R2r×r1 to contain the first r1 columns319

of “P and “Q, respectively. Finally, we compute Xn+1 = “Xn+1Pn+1 ∈ RNx×r1 and Vn+1 =320 “Vn+1Qn+1 ∈ RNv×r1 .321

The update of fnr after one time step is then given by fn+1
r = Xn+1Sn+1Vn+1,>. Note322

that in the following, to simplify notation, we will write f instead of fr.323
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4.2. Dynamical low-rank approximation for the discrete optimization problem. The324

goal of this subsection consists in applying DLRA to the fully discrete gradient descent method325

proposed in Algorithm 3.1. To this end, we reformulate the forward equations (3.8) as well326

as the adjoint equations (3.9) using the dynamical low-rank method with augmented BUG327

integrator.328

The initial low-rank factors X0,for
m ,S0,for

m , and V0,for
m for the forward equations (3.8) are329

obtained by a singular value decomposition of u0
m, where u0

m =
Ä
u0
jkm

ä
∈ RNx×Nv , for which330

the number of singular values is truncated to the initial rank r. In each time step, the low-rank331

factors Xn,for
m ,Sn,for

m , and Vn,for
m are then evolved according to the following scheme.332

First, we solve in parallel the equations333

Kn+1,for
m = Kn,for

m −∆tDxKn,for
m Vn,for,>

m A>Vn,for
m + ∆t

∆x

2
DxxKn,for

m Vn,for,>
m |A|>Vn,for

m

(4.3a)

334

+ ∆tdiag(σ)Kn,for
m Vn,for,>

m EVn,for
m ,335

Ln+1,for
m = Ln,for

m −∆tALn,for
m Xn,for,>

m Dx,>Xn,for
m + ∆t

∆x

2
|A|Ln,for

m Xn,for,>
m Dxx,>Xn,for

m

(4.3b)

336

+ ∆tELn,for
m Xn,for,>

m diag(σ)Xn,for
m ,337338

where E = diag([0,−1, ...,−1]). In the next step, we perform a QR-decomposition of the339

augmented quantities
î
Kn+1,for
m ,Xn,for

m

ó
and

î
Ln+1,for
m ,Vn,for

m

ó
to obtain the augmented and340

time updated spatial bases “Xn+1,for
m and angular bases “Vn+1,for

m , respectively. For the S-step341

we introduce the notation S̃n,for
m = “Xn+1,for,>

m Xn,for
m Sn,for

m Vn,for,>
m

“Vn+1,for
m and compute342

Ŝn+1,for
m = S̃n,for

m −∆t“Xn+1,for,>
m Dx“Xn+1,for

m S̃n,for
m
“Vn+1,for,>
m A>“Vn+1,for

m343

+ ∆t
∆x

2
“Xn+1,for,>
m Dxx“Xn+1,for

m S̃n,for
m
“Vn+1,for,>
m |A|>“Vn+1,for

m(4.3c)344

+ ∆t“Xn+1,for,>
m diag(σ)“Xn+1,for

m S̃n,for
m
“Vn+1,for,>
m E“Vn+1,for

m .345346

Finally, we truncate the time-updated augmented low-rank factors for each m = 1, ..., NIC to347

a new rank r1 ≤ 2r. The time-updated numerical solutions of the forward problem are then348

given by un+1
m = Xn+1,for

m Sn+1,for
m Vn+1,for,>

m ∈ RNx×Nv .349

For the adjoint equations (3.9) we perform a singular value decomposition of the end350

time solutions wNt
m =

Ä
wNt
jkm

ä
∈ RNx×Nv , truncate to the prescribed initial rank r and obtain351

the low-rank factors XNt,adj
m ,SNt,adj

m , and VNt,adj
m . Then, in each step, the low-rank factors352

Xn,adj
m ,Sn,adj

m , and Vn,adj
m are evolved backwards in time as follows.353

First, we solve in parallel the equations354

Kn−1,adj
m = Kn,adj

m + ∆tDxKn,adj
m Vn,adj,>

m A>Vn,adj
m + ∆t

∆x

2
DxxKn,adj

m Vn,adj,>
m |A|>Vn,adj

m355

+ ∆t diag(σ)Kn,adj
m Vn,adj,>

m EVn,adj
m ,356

Ln−1,adj
m = Ln,adj

m + ∆tALn,adj
m Xn,adj,>

m Dx,>Xn,adj
m + ∆t

∆x

2
|A|Ln,adj

m Xn,adj,>
m Dxx,>Xn,adj

m357

+ ∆tELn,adj
m Xn,adj,>

m diag(σ)Xn,adj
m .358359
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In the next step, we perform a QR-decomposition of
î
Kn−1,adj
m ,Xn,adj

m

ó
and
î
Ln−1,adj
m ,Vn,adj

m

ó
360

to obtain the augmented and time updated spatial bases “Xn−1,adj
m and angular bases “Vn−1,adj

m ,361

respectively. For the S-step we set S̃n,adj
m = “Xn−1,adj,>

m Xn,adj
m Sn,adj

m Vn,adj,>
m

“Vn−1,adj
m and com-362

pute363

Ŝn−1,adj
m = S̃n,adj

m + ∆t“Xn−1,adj,>
m Dx“Xn−1,adj

m S̃n,adj
m
“Vn−1,adj,>
m A>“Vn−1,adj

m364

+ ∆t
∆x

2
“Xn−1,adj,>
m Dxx“Xn−1,adj

m S̃n,adj
m
“Vn−1,adj,>
m |A|>“Vn−1,adj

m365

+ ∆t“Xn−1,adj,>
m diag(σ)“Xn−1,adj

m S̃n,adj
m
“Vn−1,adj,>
m E“Vn−1,adj

m .366367

Finally, we truncate the time-updated augmented low-rank factors for each m = 1, ..., NIC to368

a new rank r1 ≤ 2r. The time-updated numerical solutions of the adjoint problem are then369

given by wn−1
m = Xn−1,adj

m Sn−1,adj
m Vn−1,>,adj

m ∈ RNx×Nv .370

Having determined the low-rank solutions of the forward and the adjoint problems, we371

can use them to compute the gradient as given in (3.10). For the update of the coefficients372

according to (2.5) we determine the step size adaptively by a line search approach with Armijo373

condition similar to [23] and as described in Algorithm 4.1. For a given step size ηn the374

coefficients and the scattering coefficient are updated to cn+1 and σn+1, respectively. Then,375

the truncation error tolerance ϑ is adjusted using the given step size ηn and the maximal376

absolute value of ∇cnJ . We add some safety parameters h2 and h3 as well as a lower bound377

h1 for the truncation tolerance. In the next step, we compute the value of the goal function J378

with the low-rank factors of the forward problem at hand. We then solve the forward problem379

(4.3) with σn+1 and the updated ϑ to evaluate the goal function J again with the obtained380

low-rank factors. While the difference between those values of the goal function J is larger381

than a prescribed tolerance, the gradient descent step size is reduced by the factor p and the382

procedure is repeated.383

5. Numerical results. We consider the following test examples in one space and one384

angular dimension to show the computational accuracy and efficiency of the proposed low-385

rank scheme.386

5.1. Cosine. For the first numerical experiment the spatial as well as the angular domain387

shall be set to Ωx = Ωv = [−1, 1]. We consider NIC = 3 initial distributions of Cosine type of388

the form389

um (t = 0, x) = 2 + cos

ÅÅ
x− 2m

3

ã
π

ã
for m = 1, 2, 3.390

391

The true and the initial spline coefficients for the approximation of the scattering coefficient392

σ are chosen as393

ctrue = (2.1, 2.0, 2.2)> and cinit = (1.0, 1.5, 3.0)> .394395

The order of the spline basis functions is set to 3, i.e. cubic periodic B-splines are considered.396

As computational parameters we use Nx = 100 cells in the spatial domain and Nv = 250397

moments for the approximation in the angular variable. The end time is set to T = 1.0 and398
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Algorithm 4.1 Line search method for refining the gradient descent step size and the DLRA rank
tolerance
Input: goal function J ,

coefficients cn,
gradient ∇cnJ computed using (3.10),
low-rank factors Xn,for

m ,Sn,for
m ,Vn,for

m of the forward problem (4.3) for m = 1, ..., NIC,
step size ηn,
rank error tolerance ϑ,
step size reduction factor p,
constants h1, h2, h3, h4

Output: refined step size ηn+1, refined rank error tolerance ϑ, updated coefficients cn+1

Update the coefficients: cn+1 = cn − ηn∇cnJ ;
Compute σn+1 from coefficients cn+1 according to (2.4);
Update ϑ = max (h1,min (h2, h3 ‖∇cnJ‖∞ ηn));

Compute Jn = J
Ä
Xn,for

1 Sn,for
1 Vn,for

1 , ...,Xn,for
NIC

Sn,for
NIC

Vn,for
NIC

ä
;

Compute X
n,for

m S
n,for

m V
n,for

m from (4.3) for m = 1, ..., NIC with σ = σn+1 and the updated ϑ;

Compute J
n

= J
(
X

n,for

1 S
n,for

1 V
n,for

1 , ...,X
n,for

NIC
S
n,for

NIC
V

n,for

NIC

)
;

while J
n
> Jn − ηnh4 ‖∇cnJ‖22 do

Update ηn+1 = pηn;

Update cn+1 = cn+1 − ηn+1∇cnJ ;
Compute σn+1 from updated coefficients cn+1;
Update ϑ = max

(
h1,min

(
h2, h3 ‖∇cnJ‖∞ ηn+1

))
;

Compute X
n,for

m S
n,for

m V
n,for

m from (4.3) for m = 1, ..., NIC with σ = σn+1 and the updated ϑ;

Compute J
n

= J
(
X

n,for

1 S
n,for

1 V
n,for

1 , ...,X
n,for

NIC
S
n,for

NIC
V

n,for

NIC

)
;

end while

Set ηn+1 = ηn;

the time step size of the algorithm is chosen such that ∆t = CFL ·∆x with a CFL number399

of CFL = 0.99. For the low-rank computations we start with an initial rank of r = 5 in the400

forward as well as in the adjoint problem. The maximal allowed value of the rank in each step401

shall be restricted to 20. We begin the gradient descent method with a step size of η0 = 5 ·105402

and a truncation error tolerance of ϑ = 10−2 ‖Σ‖2. For the rescaling of the gradient descent403

step size and the DLRA rank tolerance we use the step size reduction factor p = 0.5 as well as404

the constants h1 = 10−3 ‖Σ‖2 for a lower bound of the rank tolerance and h2 = 0.1, h3 = 0.1405

as safety parameters. Also h4 = 0.5 is added as a safety parameter to ensure a reasonable406

difference between J
n

and Jn in Algorithm 4.1. The whole gradient descent procedure is407

then conducted until the prescribed error tolerance errtol = 10−4 or a maximal number of408

iterations maxiter = 500 is reached.409

In Figure 2 we compare the solutions of the parameter identification problem computed410
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Figure 2. Top left: Numerical results for the scalar flux Φ of the Cosine problem computed with the full
solvers and the DLRA solvers at the initial step n = 0, with the true coefficients and with the optimization
gradient descent scheme. Top right: Evolution of the averaged rank r for the DLRA method. Bottom row:
Iterations for the reconstruction of the scattering coefficient σ computed with both the full solvers (left) and the
DLRA solvers (right).

with the full solvers and the DLRA solvers for both the forward and the adjoint equations. We411

plot three curves corresponding to the different initial conditions of the scalar flux Φ = 1√
2
〈f〉v412

at the initial step (uinit n = 0), computed with the true coefficients (u True end) and at the413

end of the optimization procedure (optimized end), evaluated with both the full and the DLRA414

solver. We observe that the DLRA solution captures well the behavior of the full solution and415

that they both approach the solutions computed with the true coefficients. In addition, the416

parameter reconstruction inverse problem for determining σ is resolved accurately with both417

solvers. It can be seen that beginning with σinit both the full and the DLRA method converge418

to the true solution σtrue. Further, the evolution of the rank r is depicted, where we have419

averaged the ranks of the forward equations computed with the different initial conditions to420

obtain rfor and the ranks of the adjoint equations computed with the different initial conditions421

to obtain radj and finally set r = 1
2 (rfor + radj). We observe that in the beginning the averaged422

rank decreases as the initial rank was chosen larger than required. From then on, we observe423

a relatively monotonous increase until it stays at approximately r = 9. This evolution of the424

rank reflects the fact that in the beginning of the optimization the error tolerance ϑ is chosen425

quite large as the computed solution is still comparably far away from the true solution. As426

the optimization algorithm approaches the true coefficients, the DLRA rank tolerance ϑ is427
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decreased, resulting in a higher averaged rank. For the considered setup, the computational428

benefit of the DLRA method compared to the solution of the full problem is significant.429

Written in Julia v1.11 and run on a MacBook Pro with M1 chip, the run time decreases by a430

factor of approximately 2.5 from 139 seconds to 56 seconds while retaining the accuracy of the431

computed results. Concerning the memory costs, the solutions of the forward problem and432

of the adjoint problem have to be stored in order to compute the gradient. For each initial433

condition, the storage of the solution of the forward problem corresponds to a memory cost of434

8 (Nt + 1)NxNv, which for the DLRA method can be lowered to 8 (Nt + 1)
(
rNx + rNv + r2

)
,435

where r is the maximal averaged rank in the simulation.436

5.2. Gaussian distribution. In a second test example, we set Ωx = [0, 10] for the spatial437

and Ωv = [−1, 1] for the angular domain. We consider NIC = 5 Gaussian initial distributions438

of the form439

um (t = 0, x) = max

Ñ
10−8,

1»
2πσ2

IC

exp

Ç
−(x− x0)2

2σ2
IC

åé
for m = 1, 2, 3, 4, 5,440

441

that are centered around equidistantly distributed x0 and extended periodically on the domain442

Ωx. The standard deviation is set to the constant value σIC = 0.8. The true and the initial443

spline coefficients for the approximation of the scattering coefficient σ are chosen as444

ctrue = (2.1, 2.0, 2.2, 2.0, 1.9)> and cinit = (2.8, 1.5, 3.0, 2.1, 1.2)> .445446

All other settings and computational parameters remain unchanged from the previous test447

example.448

In Figure 3 we compare the solutions of the parameter identification problem computed449

with the full solvers and the DLRA solvers for both the forward and the adjoint equations. We450

plot five curves corresponding to the different initial conditions of the scalar flux Φ = 1√
2
〈f〉v451

at the initial step (uinit n = 0), computed with the true coefficients (u True end) and at the452

end of the optimization procedure (optimized end), evaluated with both the full and the453

DLRA solver. Again we observe that the DLRA solution captures well the behavior of the454

full solution and that they both approach the solutions computed with the true coefficients.455

For the reconstruction of the scattering coefficient σ it can be seen that beginning with σinit456

both the full and the DLRA method converge to the true solution σtrue. The averaged rank r457

first decreases as the initial rank was chosen larger than required. From then on, we observe458

the expected relatively monotonous increase until it stagnates at a value of approximately459

r = 11.5. Written in Julia v1.11 and run on a MacBook Pro with M1 chip, the computational460

time of the DLRA method compared to the solution of the full problem decreases by a factor461

of approximately 2 from 11.5 seconds to 6 seconds, showing its computational efficiency.462

6. Conclusion and outlook. We have presented a fully discrete DLRA scheme for the463

reconstruction of the scattering parameter in the radiative transfer equation making use of464

a PDE constrained optimization procedure. For a further enhancement of its computational465

advantages compared to a standard full solver, the step size of the gradient descent method466
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Figure 3. Top left: Numerical results for the scalar flux Φ of the Gauss problem computed with the full
solvers and the DLRA solvers at the initial step n = 0, with the true coefficients and with the optimization
gradient descent scheme. Top right: Evolution of the averaged rank r for the DLRA method. Bottom row:
Iterations for the reconstruction of the scattering coefficient σ computed with both the full solvers (left) and the
DLRA solvers (right).

is determined adaptively in each step and the allowed DLRA rank tolerance is adjusted ac-467

cordingly. This leads to an efficient and accurate numerical DLRA scheme. For further con-468

siderations, numerical examples in more than one spatial and angular variable are of interest469

as in higher dimensions the savings by the DLRA method are expected to be larger by orders470

of magnitude. Also, theoretical considerations concerning for instance the stability of DLRA471

schemes applied to inverse parameter reconstruction problems can provide valuable insights472

into the structure of such problems. In addition, various questions arise when the structural473

order of the problem is changed, meaning that for example a “first low-rank, then optimize,474

then discretize” strategy is pursued. For instance, it is not clear how the adjoint equations475

can be derived from the low-rank components of the forward problem as the low-rank equa-476

tions are highly nonlinear. Summarizing, the combination of DLRA methods and parameter477

identification problems is an interesting field of research with various open problems that are478

left to future work.479
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