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Abstract

The numerical method of dynamical low-rank approximation (DLRA) has recently been applied to various
kinetic equations showing a significant reduction of the computational effort. In this paper, we apply this
concept to the linear Boltzmann-Bhatnagar-Gross-Krook (Boltzmann-BGK) equation which due its high
dimensionality is challenging to solve. Inspired by the special structure of the non-linear Boltzmann-BGK
problem, we consider a multiplicative splitting of the distribution function. We propose a rank-adaptive
DLRA scheme making use of the basis update & Galerkin integrator and combine it with an additional basis
augmentation to ensure numerical stability, for which an analytical proof is given and a classical hyperbolic
Courant–Friedrichs–Lewy (CFL) condition is derived. This allows for a further acceleration of computational
times and a better understanding of the underlying problem in finding a suitable discretization of the system.
Numerical results of a series of different test examples confirm the accuracy and efficiency of the proposed
method compared to the numerical solution of the full system.

Keywords: linear Boltzmann equation, BGK relaxation model, dynamical low-rank approximation,
multiplicative splitting, numerical stability, rank adaptivity

1. Introduction

Numerically solving kinetic equations usually requires immense computational and memory efforts due
to the high-dimensional phase space containing all possible states of the system. The state of a kinetic
system is described by a distribution function f which can be interpreted as the corresponding particle
density in phase space. Instead of solving one high-dimensional equation, the concept of dynamical low-
rank approximation (DLRA) [23] allows us to split the problem into three lower dimensional subequations
leading to an appropriate approximation of the solution. In particular, in a one-dimensional setting we
approximate the distribution function f(t, x, v), with t ∈ R+ denoting the time, x ∈ D ⊂ R the spatial, and
v ∈ R the velocity variable, by

f(t, x, v) ≈
r∑

i,j=1

Xi(t, x)Sij(t)Vj(t, v),

and evolve the corresponding low-rank factors in three substeps further in time. The sets {Xi : i = 1, .., r}
and {Vj : j = 1, .., r} contain the orthonormal basis functions in space and in velocity, respectively, and r is
called the rank of this approximation. DLRA has recently gained increasing interest and has been studied
in various fields including radiation transport [2, 30, 13, 31, 34], radiation therapy [27], plasma physics
[16, 18, 15, 19], chemical kinetics [32, 17] and Boltzmann type transport problems [12, 14, 11, 22]. The core
idea of this method is to project the solution to a manifold of low-rank functions of the above form and

Preprint submitted to arXiv November 6, 2024

mailto:lena.baumann@uni-wuerzburg.de
mailto:klingen@mathematik.uni-wuerzburg.de
mailto:lukas.einkemmer@uibk.ac.at
mailto:jonas.kusch@nmbu.no


constrain the solution dynamics there. Different time integrators which are able to ensure this behaviour
and are robust to the presence of small singular values are available. Frequently used integrators for kinetic
problems are the projector-splitting [29] as well as the (rank-adaptive) basis update & Galerkin (BUG) [10, 8]
and the parallel integrator [9]. For the rank-adaptive BUG and the parallel integrator extensions to schemes
with proven second-order robust error bounds have been derived in [7, 25].
For a large number of collisions, the solution f of the Boltzmann-BGK equation stays close to the Maxwellian
equilibrium distribution M which in general is not a low-rank function. Inspired by [14, 24], we use the
multiplicative splitting f = Mg, for which in [14] it has been shown that g is a low-rank function even if
this if not the case for f . Hence, we derive an evolution equation for g and apply the low-rank approach to
this part of the distribution function. Difficulties may arise in the discretization as it is per se not clear how
to treat spatial derivatives.

In this paper we propose a stable dynamical low-rank discretization for the linear Boltzmann-BGK equation.
The main features of this paper are:

• A multiplicative splitting of the distribution function: As the Maxwellian equilibrium distribution M
is generally not a low-rank function, we consider the multiplicative splitting f = Mg and apply the
low-rank ansatz to the remaining function g. It can be considered as a deviation from the equilibrium
and is shown to be of low rank [14].

• A stable numerical scheme for linear Boltzmann-BGK with rigorous mathematical proofs: We show
that a stable discretization has to be derived carefully and compare it with an intuitive discretization
that fails to guarantee numerical stability. We give a rigorous analytical proof of stability and derive a
classic hyperbolic CFL condition. This enables us to choose an optimal time step size of ∆t = CFL·∆x
with CFL denoting the CFL number, leading to a reduction of the computational effort.

• A rank-adaptive integrator: For the low-rank scheme we use the rank-adaptive BUG integrator from
[8], leading to a basis augmentation in both the K- and L-step of the low-rank algorithm. Compared
to the projector-splitting integrator used in [12, 14, 11], this allows us to determine the rank adaptively
in each step avoiding the a priori choice of a certain fixed rank.

• A series of numerical experiments validating the derived properties: We give a number of numerical
examples that validate the derived stability while showing a significant reduction of computational
and memory requirements of the low-rank scheme compared to the full order method.

The paper is structured as follows: After the introduction in Section 1, we provide background information
on the linear Boltzmann-BGK equation, explain the considered multiplicative structure, and derive two
possible systems of equations in Section 2. Both systems are equivalent in the continuous setting. In Section
3, we discretize in velocity and in space, before subsequently time is discretized giving two different fully
discretized schemes. It is then shown in Section 4 that a naive discretization can lead to a numerical scheme
that is not von Neumann stable whereas a more careful treatment guarantees numerical stability. Section 5
gives a brief introduction to the concept of DLRA and applies this method such that a numerically stable
low-rank scheme is obtained. Numerical experiments in both 1D and 2D in Section 6 confirm the derived
results. Section 7 gives a brief conclusion and outlook.

2. Linear Boltzmann-BGK

The Boltzmann equation is a fundamental model in kinetic theory describing a gas that is not in thermo-
dynamic equilibrium [6, 33]. In its full formulation it makes use of the so called “Stosszahlansatz” leading
to a collision operator for which the solution of the Boltzmann equation is demanding. To overcome this,
the BGK model [4], named after Bhatnagar, Gross and Krook, can be considered. It simplifies the collision
term while maintaining the key properties of the equation. In a one-dimensional setting it reads

∂tf(t, x, v) + v∂xf(t, x, v) = σ (M [f ](t, x, v)− f(t, x, v)) , (1a)
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where f(t, x, v) denotes the distribution function depending on the time t ∈ R+, the spatial variable x ∈
D ⊂ R and the velocity variable v ∈ R. The constant σ describes the collisionality of the particles and M [f ]
stands for the Maxwellian equilibrium distribution. It depends on the density ρ(t, x) =

∫
R f(t, x, v)dv for

which we obtain an evolution equation by integrating (1a) with respect to v. This gives

∂tρ(t, x) = −∂x

∫
vf(t, x, v)dv. (1b)

In [14] it has been shown that using the multiplicative decomposition

f(t, x, v) = M [f ](t, x, v)g(t, x, v) (2)

is advantageous as g is low-rank even if this is not the case for the Maxwellian (which is not true for
the classic additive micro-macro decomposition). In order to reduce computational and memory costs a
dynamical low-rank approach has then been applied in [14] to treat the resulting evolution equations for
g.

In this work, we consider an isothermal Maxwellian without drift, i.e.

M [f ](t, x, v) =
ρ(t, x)√

2π
exp (−v2/2).

This results in a linear model, which we call the linear Boltzmann-BGK equation. It has been extensively
studied in the PDE community (see, e.g., [20, 5, 1]) as well as from a numerical point of view [3]. In this
paper, we provide a stability analysis of this model in the context of dynamical low-rank simulation. The
stability analysis for the simplified problem provides insight into the numerical schemes that have been used
in the literature [14] for the Boltzmann–BGK equation. In particular, it explains why such schemes need to
take relatively small time step sizes even though the collision operator is treated implicitly.

We insert the multiplicative approach (2) into (1a) and (1b) and obtain

∂tg(t, x, v) = −v∂xg(t, x, v) + σ (1− g(t, x, v))− g(t, x, v)

ρ(t, x)
∂tρ(t, x)− v

g(t, x, v)

ρ(t, x)
∂xρ(t, x), (3a)

∂tρ(t, x) = − 1√
2π

∂x

∫
ρ(t, x)g(t, x, v)ve−v2/2dv. (3b)

This set of equations is called the advection form of the multiplicative system. It corresponds to the way the
equations are treated in [14]. We can rewrite equation (3a) into a conservative form, leading to the system

∂tg(t, x, v) = − v

ρ(t, x)
∂x (ρ(t, x)g(t, x, v)) + σ (1− g(t, x, v))− g(t, x, v)

ρ(t, x)
∂tρ(t, x), (4a)

∂tρ(t, x) = − 1√
2π

∂x

∫
ρ(t, x)g(t, x, v)ve−v2/2dv. (4b)

Note that for both systems we omit initial and boundary conditions for now. It is a challenging task
to construct a suitable numerical scheme as it is per se not clear how to treat the spatial derivative in
the transport part of the first equations and which of both systems to prefer. Further, the potentially stiff
collision term requires an implicit time discretization. In addition, the consideration of higher dimensionality
occurring in practical applications leads to prohibitive numerical costs. To overcome this last problem, we
make use of the numerical reduced order method of dynamical low-rank approximation after having derived
a stable discretization.

3. Discretization of the Mg system

In this section we give a full discretization of both versions (3) and (4) of the Mg system. We start with
discretizing equations (3) and (4) in velocity and space before a time discretization is presented in the next
subsection.
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3.1. Discretization in velocity and in space

For the discretization in the velocity space we use a nodal approach and prescribe a certain number of grid
points Nv ∈ N. Due to the special structure of (3b) and (4b) we use a Gauss-Hermite quadrature providing
the quadrature nodes v1, ..., vNv

and weights ω1, ..., ωNv
enabling us to approximate integrals as∫

R
e−v2

g(t, x, v)dv ≈
Nv∑
k=1

ωkg(t, x, vk).

For the discretization of the spatial domain D ⊂ R we take Nx ∈ N grid points and choose a grid x1, ..., xNx

with equidistant spacing ∆x = 1
Nx

. We approximate x-dependent quantities by

ρj(t) ≈ ρ(t, xj) and gjk(t) ≈ g(t, xj , vk).

Spatial derivatives ∂x are approximated by the tridiagonal stencil matrices Dx ∈ RNx×Nx corresponding to a
first-order central differencing scheme. Further, a tridiagonal second-order central differencing stabilization
matrix Dxx ∈ RNx×Nx approximating ∂xx is added. Their entries are defined as

Dx
j,j±1 =

±1

2∆x
, Dxx

j,j = − 2

(∆x)
2 , Dxx

j,j±1 =
1

(∆x)
2 ,

whereas all other entries are set to zero. Note that from now on we assume periodic boundary conditions.
For this reason we set

Dx
1,2 = Dx

1,Nx
= 0 , Dx

Nx,Nx−1 = Dx
Nx,1 = 0 ,

Dxx
1,1 = 0 , Dxx

1,2 = 0 , Dxx
Nx,Nx−1 = 0 , Dxx

Nx,Nx
= 0.

Similar to the proof in [2], one can show that the stencil matrices Dx and Dxx fulfill the following proper-
ties:

Lemma 1 (Summation by parts). Let y, z ∈ RNx with indices i, j = 1, ..., Nx. Then it holds

Nx∑
i,j=1

yjD
x
jizi = −

Nx∑
i,j=1

zjD
x
jiyi ,

Nx∑
i,j=1

zjD
x
jizi = 0 ,

Nx∑
i,j=1

yjD
xx
ji zi =

Nx∑
i,j=1

zjD
xx
ji yi.

Moreover, let D+ ∈ RNx×Nx be defined as

D+
j,j =

−1

∆x
, D+

j,j+1 =
1

∆x
.

Then,
∑Nx

i,j=1 zjD
xx
ji zi = −

∑Nx

j=1

Ä∑Nx

i=1 D
+
jizi
ä2
.

We insert the proposed velocity and space discretization into the advection form (3) and add a stabilizing
second-order term for ρ∂xg. This corresponds to the method used in [14] for the non-linear isothermal
Boltzmann-BGK equation and leads to the semi-discrete time-continuous system

ġjk(t) =−
Nx∑
i=1

Dx
jigik(t)vk +

∆x

2

Nx∑
i=1

Dxx
ji gik(t)|vk|+ σ (1− gjk(t))−

gjk(t)

ρj(t)
ρ̇j(t)−

Nx∑
i=1

gjk(t)

ρj(t)
Dx

jiρi(t)vk,

(5a)

ρ̇j(t) =− 1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρi(t)gik(t)vkωke

v2
k/2 +

∆x

2
√
2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρi(t)gik(t)|vk|ωke

v2
k/2. (5b)
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For the conservative form (4) the second-order stabilization term is applied to ∂x(ρg). We obtain the
semi-discrete system

ġjk(t) =−
Nx∑
i=1

1

ρj(t)
Dx

jiρi(t)gik(t)vk +
∆x

2

Nx∑
i=1

1

ρj(t)
Dxx

ji ρi(t)gik(t)|vk|+ σ (1− gjk(t))−
gjk(t)

ρj(t)
ρ̇j(t), (6a)

ρ̇j(t) =− 1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρi(t)gik(t)vkωke

v2
k/2 +

∆x

2
√
2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρi(t)gik(t)|vk|ωke

v2
k/2. (6b)

3.2. Time discretization

The time discretization of both systems has to be derived carefully to ensure numerical stability. We start
with the advection form (5) and perform an explicit Euler step for the transport part in (5a) as well as in
(5b). The potentially stiff collision term is treated implicitly. For approximating the time derivative ∂tρ the
corresponding difference quotient is used. We obtain the fully discrete scheme

gn+1
jk = gnjk −∆t

Nx∑
i=1

Dx
jig

n
ikvk +∆t

∆x

2

Nx∑
i=1

Dxx
ji g

n
ik|vk|

+ σ∆t
Ä
1− gn+1

jk

ä
−∆t

gn+1
jk

ρnj

ρn+1
j − ρnj

∆t
−∆t

gnjk
ρnj

Nx∑
i=1

Dx
jiρ

n
i vk, (7a)

ρn+1
j = ρnj −∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2
k/2 +∆t

∆x

2
√
2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2
k/2. (7b)

For the conservative form (6) we again perform an explicit Euler step for the transport part in (6a) as well

as in (6b). The collision term is treated implicitly and a factor ρn+1

ρn coming from the analysis is added. As
before, the time derivative ∂tρ is approximated by its difference quotient. This leads to the fully discretized
equations

gn+1
jk = gnjk −∆t

Nx∑
i=1

1

ρnj
Dx

jiρ
n
i g

n
ikvk +∆t

∆x

2

Nx∑
i=1

1

ρnj
Dxx

ji ρ
n
i g

n
ik|vk|

+ σ∆t
ρn+1
j

ρnj

Ä
1− gn+1

jk

ä
−∆t

gn+1
jk

ρnj

ρn+1
j − ρnj

∆t
, (8a)

ρn+1
j = ρnj −∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2
k/2 +∆t

∆x

2
√
2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2
k/2. (8b)

Note that the discretizations for ρ given in (7b) and (8b) are exactly the same. The main differences between
the naive discretization of the advection form (7) and the proposed scheme (8) are the stabilization of ∂x(ρg)

in (8a), opposed to a stabilization of ρ∂xg as done in (7a), and the additional factor ρn+1

ρn in the collision

term of (8a).

In the fully discrete setting, we make use of the following notations.

Definition 1 (Fully discrete solution and Maxwellian). The full solution f of the linear Boltzmann-BGK
equation in the fully discrete setting at time tn is given by fn = (fn

jk) ∈ RNx×Nv with entries

fn
jk =

1√
2π

ρnj g
n
jke

−v2
k/2.

For the fully discrete Maxwellian Mn = (Mn
jk) ∈ RNx×Nv at time tn, we have Mn

jk = 1√
2π

ρnj e
−v2

k/2.
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4. Numerical stability

Although the derivation of the equations in (7) and (8) is similar, both systems differ drastically in terms
of numerical stability. In this section, both fully discretized schemes presented are compared.

4.1. Naive discretization

We begin with the naive discretization given in (7) that is comparable to the one chosen in [14] in the sense
that the advection form of the multiplicative splitting is used. In [14], numerical experiments are given but
no explicit stability analysis is conducted. In the following, we give an example which shows that numerical
stability in the sense of von Neumann can not be guaranteed.

Theorem 1. There exist initial values gn =
Ä
gnjk

ä
∈ RNx×Nv and ρn =

(
ρnj
)
∈ RNx such that the numerical

scheme proposed in (7) for σ = 0 is not von Neumann stable.

Proof. Let us assume a solution gnjk that is constant in space and velocity, e.g. gnjk ≡ 1. For this solution
the terms containing Dxgn and Dxxgn are zero. Let us further assume that there is no collisionality, i.e.
σ = 0. We insert this information into (7a) and get

gn+1
jk = 1−∆t

1

ρnj

ρn+1
j − ρnj

∆t
gn+1
jk −∆t

1

ρnj

Nx∑
i=1

(
Dx

jiρ
n
i

)
vk.

After rearranging, we have that

ρn+1
j gn+1

jk = ρnj −∆t

Nx∑
i=1

(
Dx

jiρ
n
i

)
vk.

Multiplication with 1√
2π

e−v2
k/2 then leads to

fn+1
jk = fn

jk −∆t

Nx∑
i=1

Dx
jif

n
ikvk. (9)

This corresponds to a discretization of ∂tf + v∂xf = 0 with explicit Euler in time and centered finite
differences in space for which it is well-known that it is not von Neumann stable [21, 28].

Indeed, one can show that the discretization given in (9) is not von Neumann stable, but stable for relatively
small time step sizes [28]. This matches our numerical insights from [14], where the space discretization is
comparable to (7) and small time step sizes are required.

4.2. Stable discretization

Having seen that for a certain choice of the initial values the system of equations (7) is not von Neumann
stable, we now consider equations (8) in terms of numerical stability. We observe that the advection terms
are treated explicitly, whereas the collision term is treated implicitly, leading to a removal of the potential
stiffness caused by a large number of collisions. We seek a rigorous proof of stability under a classic hyperbolic
CFL condition that will be derived in the following norm.

Definition 2 (Stability norm). For fn = (fn
jk) ∈ RNx×Nv , the H -norm shall be defined as

∥fn∥2H =
√
2π

Nx∑
j=1

Nv∑
k=1

(
fn
jk

)2
ωke

3v2
k/2.

This corresponds to a Frobenius norm ∥ · ∥F with weights
√
2πωke

3v2
k/2.
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The choice of this norm is inspired by the analysis in [1], where hypocoercivity for the linear Boltzmann-BGK
equation is shown. Different from there, we use a fully discrete analogue to the considered weighted L2-norm
that also takes the Gauss-Hermite quadrature into account. Note that the factor

√
2π does not affect the

stability but is added for consistency in the sense that for gnjk = 1 the condition 1√
2π

∑Nv

k=1 g
n
jkωke

v2
k/2 = 1

holds. This is the discrete counterpart of 1√
2π

∫
R ge−v2/2dv = 1 which is equivalent to

∫
R fdv = ρ that

in a discrete formulation can be written as
∑Nv

k=1 f
n
jkωke

v2
k = ρnj . This relation shall be preserved by the

numerical scheme.

Lemma 2. Let us assume that the initial condition for g satisfies 1√
2π

∑Nv

k=1 g
0
jkωke

v2
k/2 = 1. Then, for all

n ∈ N we have

Nv∑
k=1

fn
jkωke

v2
k = ρnj .

Proof. We start from equation (8a), bring the terms containing gn+1
jk to the left-hand side and multiply it

with ρn+1
j . This gives

(1 + σ∆t) ρn+1
j gn+1

jk = ρnj g
n
jk −∆t

Nx∑
i=1

Dx
jiρ

n
i g

n
ikvk +∆t

∆x

2

Nx∑
i=1

Dxx
ji ρ

n
i g

n
ik|vk|+ σ∆tρn+1

j .

Multiplication with 1√
2π

ωke
v2
k/2 and summation over k leads to

(1 + σ∆t) ρn+1
j

1√
2π

Nv∑
k=1

gn+1
jk ωke

v2
k/2 = ρnj

1√
2π

Nv∑
k=1

gnjkωke
v2
k/2 −∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2
k/2

+∆t
∆x

2
√
2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2
k/2

+ σ∆tρn+1
j

1√
2π

Nv∑
k=1

ωke
v2
k/2.

We insert the induction assumption as well as 1√
2π

∑Nv

k=1 ωke
v2
k/2 = 1. Then, together with (8b), we get

(1 + σ∆t) ρn+1
j

1√
2π

Nv∑
k=1

gn+1
jk ωke

v2
k/2 = (1 + σ∆t)ρn+1

j .

Cancelling with (1 + σ∆t) ρn+1
j gives the desired equality, and completes the proof.

Also, the following inequality is indispensable to show numerical stability of the above system.

Lemma 3. Under the time step restriction maxk(|vk|)∆t ≤ ∆x it holds

∆t

∥∥∥∥Dxfn diag (vk)−
∆x

2
Dxxfn diag (|vk|)

∥∥∥∥2
H

−∆x
∥∥∥D+fn diag

Ä
|vk|1/2

ä∥∥∥2
H

≤ 0.

Proof. We want to apply a Fourier analysis in x that allows us to write the stencil matrices in diagonal
form. As in [2, 26], we define the matrix E ∈ CNx×Nx as

Ejα =
√
∆x exp(iαπxj), j, α = 1, ..., Nx,

7



where i ∈ C denotes the imaginary unit. It is orthonormal, i.e. EEH = EHE = I, where the superscript H
stands for the complex transpose, and diagonalizes the stencil matrices

DγE = EΛγ , with γ ∈ {x, xx,+},

with Λγ ∈ CNx×Nx being the diagonal matrices with entries

λx
αα =

1

2∆x
(eiαπ∆x − e−iαπ∆x) =

i

∆x
sin(να),

λxx
αα =

1

(∆x)
2

(
eiαπ∆x − 2 + e−iαπ∆x

)
=

2

(∆x)
2 (cos(να)− 1) ,

λ+
αα =

1

∆x

(
eiαπ∆x − 1

)
=

1

∆x
(cos(να) + i sin(να)− 1) ,

and να := απ∆x. Let us denote f̂n =
Ä
f̂n
αk

ä
∈ CNx×Nv with entries f̂n

αk =
∑Nx

j=1 Eαjf
n
jk. With Parseval’s

identity we obtain

∆t

∥∥∥∥Dxfn diag (vk)−
∆x

2
Dxxfn diag (|vk|)

∥∥∥∥2
H

−∆x
∥∥∥D+fn diag

Ä
|vk|1/2

ä∥∥∥2
H

= ∆t

∥∥∥∥Dxfn diag
Ä
vkω

1/2
k e3v

2
k/4
ä
− ∆x

2
Dxxfn diag

Ä
|vk|ω1/2

k e3v
2
k/4
ä∥∥∥∥2

F

−∆x
∥∥∥D+fn diag

Ä
|vk|1/2ω1/2

k e3v
2
k/4
ä∥∥∥2

F

Parseval
= ∆t

∥∥∥∥Λxf̂n diag
Ä
vkω

1/2
k e3v

2
k/4
ä
− ∆x

2
Λxxf̂n diag

Ä
|vk|ω1/2

k e3v
2
k/4)
ä∥∥∥∥2

F

−∆x
∥∥∥Λ+f̂n diag

Ä
|vk|1/2ω1/2

k e3v
2
k/4
ä∥∥∥2

F

= 2

Nx∑
α=1

Nv∑
k=1

Ç
∆t

|vk|2

(∆x)
2 (1− cos(να))−

|vk|
∆x

(1− cos(να))

å
ωke

3v2
k/2
∣∣∣f̂n

αk

∣∣∣2 .
A sufficient condition to ensure negativity is that

∆t
|vk|2

(∆x)
2 (1− cos(να)) ≤

|vk|
∆x

(1− cos(να))

must hold for each index k. This leads to the time step restriction maxk(|vk|)∆t ≤ ∆x, which proves the
lemma.

We can now show numerical stability of the proposed system.

Theorem 2. Under the time step restriction maxk(|vk|)∆t ≤ ∆x, the fully discrete system (8) is numerically
stable in the H -norm, i.e.

∥fn+1∥2H ≤ ∥fn∥2H .

Proof. We multiply (8a) with ρn+1
j ρnj g

n+1
jk and bring the last term of the equation from the right-hand to

the left-hand side. This givesÄ
ρn+1
j gn+1

jk

ä2
= ρnj g

n
jkρ

n+1
j gn+1

jk −∆t

Nx∑
i=1

ρn+1
j gn+1

jk Dx
jiρ

n
i g

n
ikvk +∆t

∆x

2

Nx∑
i=1

ρn+1
j gn+1

jk Dxx
ji ρ

n
i g

n
ik|vk|

+ σ∆tρn+1
j gn+1

jk

Ä
ρn+1
j − ρn+1

j gn+1
jk

ä
.
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Multiplication with 2
Ä

1√
2π

e−v2
k/2
ä2

then leads to

2
Ä
fn+1
jk

ä2
= 2fn

jkf
n+1
jk − 2∆t

Nx∑
i=1

fn+1
jk Dx

jif
n
ikvk +∆t∆x

Nx∑
i=1

fn+1
jk Dxx

ji f
n
ik|vk|+ 2σ∆tfn+1

jk

Ä
Mn+1

jk − fn+1
jk

ä
.

Note that it holds

2fn
jkf

n+1
jk =

Ä
fn+1
jk

ä2
+
(
fn
jk

)2 − Äfn+1
jk − fn

jk

ä2
.

We insert this relation and obtainÄ
fn+1
jk

ä2
=
(
fn
jk

)2 − Äfn+1
jk − fn

jk

ä2
− 2∆t

Nx∑
i=1

fn+1
jk Dx

jif
n
ikvk +∆t∆x

Nx∑
i=1

fn+1
jk Dxx

ji f
n
ik|vk|

+ 2σ∆tfn+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
.

In the next step, we multiply with
√
2πωke

3v2
k/2 and sum over j and k. This gives

∥fn+1∥2H = ∥fn∥2H −
√
2π

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä2
ωke

3v2
k/2

− 2
√
2π∆t

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dx

jif
n
ikvkωke

3v2
k/2 +

√
2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn+1
jk Dxx

ji f
n
ik|vk|ωke

3v2
k/2

+ 2
√
2πσ∆t

Nx∑
j=1

Nv∑
k=1

fn+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
ωke

3v2
k/2.

From Lemma 2 we have that
∑Nv

k=1 f
n+1
jk ωke

v2
k = ρn+1

j . Hence, we can derive that the following term

2
√
2πσ∆t

∑Nx

j=1

∑Nv

k=1 M
n+1
jk

Ä
Mn+1

jk − fn+1
jk

ä
ωke

3v2
k/2 is equal to zero. Lemma 2 gives that also the term

2
√
2π∆t

∑Nx

i,j=1

∑Nv

k=1 f
n
jkD

x
jif

n
ikvkωke

3v2
k/2 is equal to zero. We subtract both and add an additional zero by

adding and subtracting the second-order term
√
2π∆t∆x

∑Nx

i,j=1

∑Nv

k=1 f
n
jkD

xx
ji f

n
ik|vk|ωke

3v2
k/2. This leads to

∥fn+1∥2H = ∥fn∥2H −
√
2π

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä2
ωke

3v2
k/2

− 2
√
2π∆t

Nx∑
i,j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä
Dx

jif
n
ikvkωke

3v2
k/2 (I)

+
√
2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä
Dxx

ji f
n
ik|vk|ωke

3v2
k/2 (II)

+
√
2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn
jkD

xx
ji f

n
ik|vk|ωke

3v2
k/2 (III)

− 2
√
2πσ∆t

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk −Mn+1

jk

ä2
ωke

3v2
k/2.

Now, we consider the parts (I), (II) and (III) separately. Let us start with (I) and (II) and apply Young’s

9



inequality which states that for a, b ∈ R it holds that a · b ≤ a2

2 + b2

2 . This gives for (I) +(II)

− 2
√
2π∆t

Nx∑
i,j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä
Dx

jif
n
ikvkωke

3v2
k/2 +

√
2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä
Dxx

ji f
n
ik|vk|ωke

3v2
k/2

=

Nx∑
j=1

Nv∑
k=1

Ä
−
√
2 (2π)

1/4
Ä
fn+1
jk − fn

jk

ä
ω
1/2
k e3v

2
k/4
ä(√

2 (2π)
1/4

∆t

Nx∑
i=1

Å
Dx

jif
n
ikvk − ∆x

2
Dxx

ji f
n
ik|vk|

ã
ω
1/2
k e3v

2
k/4

)

≤
√
2π

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk − fn

jk

ä2
ωke

3v2
k/2 +

√
2π (∆t)

2
Nx∑
j=1

Nv∑
k=1

(
Nx∑
i=1

Å
Dx

jif
n
ikvk − ∆x

2
Dxx

ji f
n
ik|vk|

ã)2

ωke
3v2

k/2.

For (III) we get with the properties of the stencil matrices given in Lemma 1 that

√
2π∆t∆x

Nx∑
i,j=1

Nv∑
k=1

fn
jkD

xx
ji f

n
ik|vk|ωke

3v2
k/2 = −

√
2π∆t∆x

Nx∑
j=1

Nv∑
k=1

(
Nx∑
i=1

D+
jif

n
ik|vk|1/2

)2

ωke
3v2

k/2.

Inserting these relations then gives

∥fn+1∥2H ≤ ∥fn∥2H +
√
2π (∆t)

2
Nx∑

i,j=1

Nv∑
k=1

Å
Dx

jif
n
ikvk − ∆x2

D

xx

ji
fn
ik|vk|

ã2
ωke

3v2
k/2

−
√
2π∆t∆x

Nx∑
j=1

Nv∑
k=1

(
Nx∑
i=1

D+
jif

n
ik|vk|1/2

)2

ωke
3v2

k/2

− 2
√
2πσ∆t

Nx∑
j=1

Nv∑
k=1

Ä
fn+1
jk −Mn+1

jk

ä2
ωke

3v2
k/2.

With Lemma 3 we can conclude that under the CFL condition maxk(|vk|)∆t ≤ ∆x it holds ∥fn+1∥2H ≤
∥fn∥2H . Hence, with this time step the proposed fully discrete system (8) is numerically stable in the
H -norm.

5. Dynamical low-rank approximation for the stable Mg system

In practical applications, the implementation of the full system given in (8) may lead to prohibitive numerical
costs, especially when computing in higher dimensional settings. To reduce computational and memory
demands, we apply dynamical low-rank approximation to the distribution function g.

5.1. Background on dynamical low-rank approximation

The concept of dynamical low-rank approximation has been introduced in a semi-discrete time-dependent
matrix setting [23]. Let us consider g ∈ RNx×Nv being the solution of the matrix differential equation

ġ(t) = F (t,g(t)) ,

where F : RNx×Nv → RNx×Nv denotes the right-hand side of the equation. We then seek for an approxima-
tion of g in the following form

gr(t) = X(t)S(t)V(t)⊤, (10)

with X ∈ RNx×r and V ∈ RNv×r denoting the orthonormal spatial and orthonormal velocity basis, respec-
tively. The slim matrix S ∈ Rr×r is called the coefficient or coupling matrix and determines the rank r of

10



the approximation. The set of all matrices of the above form (10) constitute the low-rank manifold Mr. Its
corresponding tangent space at gr(t) shall be denoted by Tgr(t)Mr. We now look for gr(t) ∈ Mr such that
at all times t the minimization problem

min
ġr(t)∈Tgr(t)Mr

∥ġr(t)− F (t,gr(t)) ∥F

is fulfilled. Following [23], this minimization constraint is equivalent to determining ġr(t) ∈ Tgr(t) by an
orthogonal projection onto the tangent space such that

ġr(t) = P(gr(t))F(gr(t)), (11)

where the orthogonal projector P onto TgMr applied to an arbitrary quantity G can explicitly be given
as

P(gr(t))G = XX⊤G−XX⊤GVV⊤ +GVV⊤.

Different robust time integrators to solve (11) exist. Frequently used integrators are the projector-splitting
integrator [29], the basis update & Galerkin integrator [10] as well as its rank-adaptive extension [8] and the
parallel integrator [9]. In this paper, we make use of the rank-adaptive BUG integrator whose concept shall
be explained in the following.

In the first two steps, the rank-adaptive BUG integrator updates and augments the bases X and V in
parallel such that their rank increases from r to 2r, for the spatial and velocity basis respectively. We
denote the augmented quantities of rank 2r with hats. Then, for the augmented bases a Galerkin step
is performed before in a last step a new rank r1 ≤ 2r is determined using a truncation with prescribed
tolerance. In detail, the rank-adaptive BUG integrator performs the following steps in order to update the
matrix gn

r = XnSnVn,⊤ at time tn to gn+1
r = Xn+1Sn+1Vn+1,⊤ at time tn+1 = tn +∆t:

K -Step: Let us fix the velocity basis Vn at time tn and introduce the notation K(t) = X(t)S(t). The
spatial basis Xn is updated and augmented by first solving the PDE

K̇(t) = F
(
t,K(t)Vn,⊤)Vn, K(tn) = XnSn,

and then determining “Xn+1 ∈ RNx×2r as an orthonormal basis of [K(tn+1),X
n] ∈ RNx×2r, e.g. by QR-

decomposition. Then, we compute M̂ = “Xn+1,⊤Xn ∈ R2r×r.

L-Step: Let us fix the spatial basis Xn at time tn and introduce the notation L(t) = V(t)S(t)⊤. The
velocity basis Vn is updated and augmented by first solving the PDE

L̇(t) = F
(
t,XnL(t)⊤

)⊤
Xn, L(tn) = VnSn,⊤,

and then determining “Vn+1 ∈ RNv×2r as an orthonormal basis of [L(tn+1),V
n] ∈ RNv×2r, e.g. by QR-

decomposition. Then, we compute “N = “Vn+1,⊤Vn ∈ R2r×r.

S-step: Update the coupling matrix from Sn ∈ Rr×r to Ŝn+1 ∈ R2r×2r by solving the ODE

˙̂
S(t) = “Xn+1,⊤F

Ä
t,“Xn+1Ŝ(t)“Vn+1,⊤

ä “Vn+1, Ŝ(tn) = M̂Sn“N⊤.

Truncation: Compute the singular value decomposition of Ŝn+1 = “PΣ“Q⊤ with Σ = diag(σj). For a
prescribed tolerance parameter ϑ the new rank r1 ≤ 2r is chosen such thatÑ

2r∑
j=r1+1

σ2
j

é1/2

≤ ϑ.

11



Let now Sn+1 ∈ Rr1×r1 contain the r1 largest singular values and Pn+1 ∈ R2r×r1 andQn+1 ∈ R2r×r1 contain

the first r1 columns of “P and “Q, respectively. Then, the time-updated spatial basis can be determined as

Xn+1 = “Xn+1Pn+1 ∈ RNx×r1 and the time-updated velocity basis as Vn+1 = “Vn+1Qn+1 ∈ RNv×r1 .

Altogether, the time-updated approximation of the distribution function after one time step is given by
gn+1
r = Xn+1Sn+1Vn+1,⊤.

5.2. DLRA algorithm for multiplicative linear Boltzmann-BGK

In this section, we apply DLRA to the stable and fully discretized system (8). Bringing all term containing

gn+1
jk to the left-hand side of (8a) and multiplying it with

ρn
j

ρn+1
j

, equations (8) can be equivalently written

as

gn+1
jk (1 + σ∆t) =

ρnj

ρn+1
j

gnjk −∆t

Nx∑
i=1

1

ρn+1
j

Dx
ji (ρ

n
i g

n
ik) vk +∆t

∆x

2

Nx∑
i=1

1

ρn+1
j

Dxx
ji (ρni g

n
ik) |vk|+ σ∆t, (12a)

ρn+1
j = ρnj −∆t

1√
2π

Nx∑
i=1

Nv∑
k=1

Dx
jiρ

n
i g

n
ikvkωke

v2
k/2 +∆t

∆x

2
√
2π

Nx∑
i=1

Nv∑
k=1

Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2
k/2. (12b)

We propose a low-rank implementation that uses the rank-adaptive BUG integrator [8] introduced in the
previous subsection for equation (12a) together with an additional basis augmentation and a suitable trun-
cation strategy. For this scheme we show numerical stability. Note that in the following, for simplicity, we
write g = (gjk) instead of gr.

Starting from (12), we apply the rank-adaptive BUG integrator leading to a splitting of (12a) into three
substeps, the K-, L-, and S-step. In the K- as well as in the L-step we perform an additional basis
augmentation ensuring certain quantities to be contained in the basis at all times. The augmented bases are
then used to determine the S-step. Note that the scattering term (1 + σ∆t) is only applied in the S-step
as it does not affect the span of the basis functions derived in the K- and L-step. We obtain the following
DLRA scheme:

Substituting gnjk =
∑r

m,ℓ=1 X
n
jmSn

mℓV
n
kℓ into the update equation (12b) yields

ρn+1
j = ρnj −∆t

1√
2π

Nx∑
i=1

Dx
jiρ

n
i

r∑
m,ℓ=1

Xn
imSn

mℓ

Nv∑
k=1

V n
kℓvkωke

v2
k/2

+∆t
∆x

2
√
2π

Nx∑
i=1

Dxx
ji ρ

n
i

r∑
m,ℓ=1

Xn
imSn

mℓ

Nv∑
k=1

V n
kℓ|vk|ωke

v2
k/2. (13a)

For the K-step we introduce the notation Kn
jℓ =

∑r
m=1 X

n
jmSn

mℓ and solve

Kn+1
jp =

ρnj

ρn+1
j

Kn
jp −∆t

1

ρn+1
j

Nx∑
i=1

Dx
jiρ

n
i

r∑
ℓ=1

Kn
iℓ

Nv∑
k=1

V n
kℓvkV

n
kp

+∆t
∆x

2

1

ρn+1
j

Nx∑
i=1

Dxx
ji ρ

n
i

r∑
ℓ=1

Kn
iℓ

Nv∑
k=1

V n
kℓ|vk|V n

kp + σ∆t

Nv∑
k=1

V n
kp. (13b)

This gives the updated matrix Kn+1 = (Kn+1
jp ) to which together with the old basis Xn = (Xn

jm) a QR-

decomposition is applied, giving the new augmented basis “Xn+1 = (“Xn+1
jm ).

In addition, we augment this basis according to““Xn+1 = qr
Ä
[“Xn+1,

(
ρn+1

)2 “Xn+1]
ä

(13c)
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leading to a new augmented basis ““Xn+1 = (““Xn+1
jm ) of rank 4r, and we compute ̂̂M = ““Xn+1,⊤Xn. Note that

all quantities of rank 2r are denoted with one hat and all quantities of rank 4r with double hats.

For the L-step we write Ln
mk =

∑r
ℓ=1 S

n
ℓmV n

ℓk and solve

Ln+1
pk =

r∑
m=1

Ln
mk

Nx∑
j=1

Xn
mj

ρnj

ρn+1
j

Xn
pj −∆t

r∑
m=1

vkL
n
mk

Nx∑
i=1

Xn
miρ

n
i

Nx∑
j=1

Dx
ij

1

ρn+1
j

Xn
pj

+∆t
∆x

2

r∑
m=1

|vk|Ln
mk

Nx∑
i=1

Xn
miρ

n
i

Nx∑
j=1

Dxx
ij

1

ρn+1
j

Xn
pj + σ∆t

Nx∑
j=1

Xn
pj . (13d)

This gives the updated matrix Ln+1 = (Ln+1
pk ) to which together with the old basis Vn = (V n

ℓk) a QR-

decomposition is applied, giving the new augmented basis “Vn+1 = (“V n+1
ℓk ).

In addition, we augment this basis according to““Vn+1 = qr
Ä
[“Vn+1, ωev

2/2“Vn+1]
ä

(13e)

leading to a new augmented basis ““Vn+1 = (““V n+1
ℓk ) of rank 4r, and we compute ““N = ““Vn+1,⊤Vn.

For the S-step we denote S̃n
mℓ =

∑r
j,k=1

̂̂MmjS
n
jk
““N ℓk and insert the expressions gnjk =

∑4r
m,ℓ=1

““Xn+1
jm S̃n

mℓ
““V n+1

kℓ

and gn+1
jk =

∑4r
m,ℓ=1

““Xn+1
jm

̂̂Sn+1
mℓ
““V n+1

kℓ into (12a). We multiply with ““Xn+1
jq
““V n+1

kp and sum over j and k. This
leads to

̂̂Sn+1
qp =

1

1 + σ∆t

(
Nx∑
j=1

““Xn+1
jq

ρnj

ρn+1
j

4r∑
m,ℓ=1

““Xn+1
jm S̃n

mℓ

Nv∑
k=1

““V n+1
kℓ
““V n+1

kp

−∆t

Nx∑
j=1

““Xn+1
jq

1

ρn+1
j

Nx∑
i=1

Dx
jiρ

n
i

4r∑
m,ℓ=1

““Xn+1
im S̃n

mℓ

Nv∑
k=1

““V n+1
kℓ vk

““V n+1
kp

+∆t
∆x

2

Nx∑
j=1

““Xn+1
jq

1

ρn+1
j

Nx∑
i=1

Dxx
ji ρ

n
i

4r∑
m,ℓ=1

““Xn+1
im S̃n

mℓ

Nv∑
k=1

““V n+1
kℓ |vk|““V n+1

kp

+ σ∆t

Nx∑
j=1

““Xn+1
jq

Nv∑
k=1

““V n+1
kp

)
. (13f)

The last step consists in truncating the augmented quantities ““Xn+1, ““Vn+1 and ̂̂Sn+1 from rank 4r to a
new rank r1. We use a modification of the truncation strategy described in Section 5.1 that ensures that
1√
2π

∑r
ℓ,m=1

∑Nv

k=1 X
n
jmSn

mℓV
n
kℓωke

v2
k/2 = 1 stays valid in each time step and works as follows:

Let us denote Z ∈ RNv being the vector with entries Zk = 1√
2π

ωke
v2
k/2 and let z = Z

∥Z∥E
, where ∥ ·∥E stands

for the Euclidean norm. We then want to have

1 = ““Xn+1 ̂̂Sn+1““Vn+1,⊤Z =
(““Xn+1 ̂̂Sn+1““Vn+1,⊤zz⊤ + ““Xn+1 ̂̂Sn+1““Vn+1,⊤ (I− zz⊤

))
Z =: (H1 +H2)Z,

with H1 = ““Xn+1 ̂̂Sn+1““Vn+1,⊤zz⊤,H2 = ““Xn+1 ̂̂Sn+1““Vn+1,⊤ (I− zz⊤
)
, I ∈ RNv×Nv denoting the identity

matrix and 1 ∈ RNx the vector containing ones at each entry. H1 is a matrix of rank 1. We determine its

low-rank factors by a singular value decomposition such that XH1SH1VH1,⊤ = svd
(̂̂Sn+1““Vn+1,⊤zz⊤

)
with

XH1 ∈ R4r,SH1 ∈ R, and VH1 ∈ RNv . For H2, it holds that H2Z = 0. We apply the truncation strategy

13



from Section 5.1 to H2 and obtain X∗,S∗, and V∗, which shall be of rank r̃1. Finally, we combine both
parts by performing a QR-decomposition of

Xn+1R1 =
[““Xn+1XH1 ,X∗

]
, and Vn+1R2 =

[
VH1 ,V∗] ,

and setting

Sn+1 = R1

ï
SH1 0
0 S∗

ò
R2,⊤.

The new rank r1 is then given by r1 = r̃1 + 1. With the time-updated low-rank factors Xn+1, Vn+1 and
Sn+1, the updated low-rank approximation of the solution is gn+1

jk =
∑r1

m,ℓ=1 X
n+1
jm Sn+1

mℓ V n+1
kℓ . The steps of

the proposed DLRA scheme are visualized in Figure 1.

input
• density at time tn: ρ

n
j

• factored moments at time tn: X
m
jm, Sn

mℓ, V
n
kℓ

• rank at time tn: r

update density according to (13a)

update bases according to (13b) and (13d)

augment bases with Xn
jm, V n

kℓ

augment bases with
Ä
ρn+1
j

ä2 “Xn+1
jm and ωke

v2
k/2“V n+1

kℓ according to (13c) and (13e)

update coefficient matrix according to (13f)

truncate factors ““Xn+1
jm , ̂̂Sn+1

mℓ ,““V n+1
kℓ (or “Xn+1

jm , Ŝn+1
mℓ ,“V n+1

kℓ )

output
• density at time tn+1: ρ

n+1
j

• factored moments at time tn+1: X
1
jm, S1

mℓ, V
1
kℓ

• rank at time tn+1: r1

“Xn+1
jm ,“V n+1

kℓ
(“Xn+1

jm ,“V n+1
kℓ )

““Xn+1
jm ,““V n+1

kℓ

̂̂Sn+1
mℓ (or Ŝn+1

mℓ )

ρn+1
j

Kn+1
jm , Ln+ 1kℓ

Figure 1: Flowchart of the (simplified) stable DLRA scheme (13).

From the low-rank approximation of g we can regain the full solution f as follows.

Definition 3 (Low-rank approximation of the full solution). The DLRA approximation of the full solution f
of the linear Boltzmann-BGK equation in the fully discrete setting at time tn is given by fn = (fn

jk) ∈ RNx×Nv

with entries

fn
jk =

1√
2π

ρnj

r∑
m,ℓ=1

Xn
jmSn

mℓV
n
kℓe

−v2
k/2.
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5.3. Stability of the proposed low-rank scheme

We can then show that algorithm (13) is numerically stable.

Theorem 3. Under the time step restriction maxk(|vk|)∆t ≤ ∆x, the fully discrete DLRA scheme (13) is
numerically stable in the H -norm, i.e

∥fn+1∥2H ≤ ∥fn∥2H .

Proof. We start from the S-step in (13f), multiply it with ““Xn+1
αq and ““V n+1

βp and sum over q and p. For

simplicity of notation, we introduce the projections PX
αj =

∑4r
q=1
““Xn+1

αq
““Xn+1

jq and PV
kβ =

∑4r
p=1
““V ∗

kp
““V ∗

βp.
This gives

gn+1
αβ =

1

1 + σ∆t

(
Nx∑
j=1

Nv∑
k=1

ρnj

ρn+1
j

gnjkP
X
αjP

V
kβ −∆t

Nx∑
i,j=1

Nv∑
k=1

1

ρn+1
j

Dx
jiρ

n
i g

n
ikvkP

X
αjP

V
kβ

+∆t
∆x

2

Nx∑
i,j=1

Nv∑
k=1

1

ρn+1
j

Dxx
ji ρ

n
i g

n
ik|vk|PX

αjP
V
kβ + σ∆t

Nx∑
j=1

Nv∑
k=1

PX
αjP

V
kβ

)
.

Multiplication with 2√
2π

(
ρn+1
α

)2
gn+1
αβ ωβe

v2
β/2(1 + σ∆t) and summation over α and β leads to

2√
2π

Nx∑
α=1

Nv∑
β=1

Ä
ρn+1
α gn+1

αβ

ä2
ωβe

v2
β/2 (1 + σ∆t)

=
2√
2π

Nx∑
j=1

Nv∑
k=1

ρnj

ρn+1
j

gnjk

Nx∑
α=1

PX
αjg

n+1
αβ

(
ρn+1
α

)2 Nv∑
β=1

PV
kβωβe

v2
β/2

− 2∆t√
2π

Nx∑
i,j=1

Nv∑
k=1

1

ρn+1
j

Dx
jiρ

n
i g

n
ikvk

Nx∑
α=1

PX
αjg

n+1
αβ

(
ρn+1
α

)2 Nv∑
β=1

PV
kβωβe

v2
β/2

+∆t
∆x

√
2π∑ Nx

i,j=1

Nv∑
k=1

1

ρn+1
j

Dxx
ji ρ

n
i g

n
ik|vk|

Nx∑
i,j,α=1

PX
αjg

n+1
αβ

(
ρn+1
α

)2 Nv∑
β=1

PV
kβωβe

v2
β/2

+
2σ∆t√

2π

Nx∑
j,α=1

Nv∑
k=1

PX
αjg

n+1
αβ

(
ρn+1
α

)2 Nv∑
β=1

PV
kβωβe

v2
β/2.

We now use the fact that we have augmented the bases in (13c) and (13e) such that

Nx∑
α=1

PX
αjg

n+1
αβ (ρn+1

α )2 = gn+1
jβ (ρn+1

j )2 and

Nv∑
β=1

PV
kβg

n+1
jβ ωβe

v2
β/2 = gn+1

jk ωke
v2
k/2

holds. We insert these relations and, to be consistent in notation, change the summation indices on the
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left-hand side from α to j and β to k giving

2√
2π

Nx∑
j=1

Nv∑
k=1

Ä
ρn+1
j gn+1

jk

ä2
ωke

v2
k/2 (1 + σ∆t) =

2√
2π

Nx∑
j=1

Nv∑
k=1

ρnj g
n
jkρ

n+1
j gn+1

jk ωke
v2
k/2

− 2∆t√
2π

Nx∑
i,j=1

Nv∑
k=1

ρn+1
j gn+1

jk Dx
jiρ

n
i g

n
ikvkωke

v2
k/2

+∆t
∆x√
2π

Nx∑
i,j=1

Nv∑
k=1

ρn+1
j gn+1

jk Dxx
ji ρ

n
i g

n
ik|vk|ωke

v2
k/2

+
2σ∆t√

2π

Nx∑
j=1

Nv∑
k=1

Ä
ρn+1
j

ä2
gn+1
jk ωke

v2
k/2.

Analogously to the proof of Theorem 2 and, as the truncation step is designed not to alter these expressions,
we can conclude that the proposed DLRA scheme is numerically stable under the time step restriction
maxk(|vk|)∆t ≤ ∆x.

6. Numerical results

To validate the theoretical considerations and the proposed DLRA scheme, numerical results for different
test examples in 1D as well as in 2D are given in this section.

6.1. 1D Plane source

We start with a one-dimensional analogue to the plane source problem, which is a common test case for
radiative transfer [2, 8, 26, 31], and compare the solution of the full equations (8) to the solution obtained
by the DLRA scheme given in (13). The spatial domain shall be set to D = [−10, 10]. As initial conditions
we choose the density ρ to be a cutoff Gaussian

ρ(t = 0, x) = max

Ñ
10−4,

1»
2πσ2

IC

exp

Å
− x2

2σ2
IC

ãé
,

where σIC = 0.3 denotes a constant deviation, and the function g to be constant in space and velocity, i.e.
g(t = 0, x, v) = 1. We consider relatively large collisionality by choosing σ = 10. Computations are started
with an initial rank of r = 20. As computational parameters we use Nx = 1000 grid points in the spatial as
well as Nv = 500 grid points in the velocity domain. Due to this choice, we obtain maxk(|vk|) ≈ 31.05, which
shall be adjusted to the next larger integer value such that the time step size is determined by ∆t = CFL · ∆x

32
with CFL = 0.99, according to the corresponding CFL condition. Practical implementations now show that
the basis augmentations to rank 4r in in (13c) and (13e) needed for the theoretical proof of the numerical
stability may not be necessary for numerical examples and that the standard basis augmentations to rank
2r provide similar solutions while being significantly faster. For this reason, we propose to leave out the
basis augmentations (13c) and (13e) in practical applications. In this case, all quantities with double hats
related to rank 4r reduce to quantities of rank 2r with one single hat. The simplified scheme with rank
2r is also visualized (in brackets) in the flowchart of Figure 1. In Figure 2, we now compare the results
for the full solution f(t, x, v), computed with the full solver (Mg (reference)), the DLRA scheme with rank
2r (Mg DLRA) and the basis augmented DLRA scheme with rank 4r (Mg DLRA BasisAug) at different
times up to tEnd = 8. We observe that the reduced as well as the augmented DLRA algorithm capture the
main characteristics of the full reference Mg system. This is also true for the computational results for the
density ρ(t, x), displayed in Figure 3. Figure 4 shows the evolution of the rank, which for a chosen tolerance
parameter of ϑ = 10−5∥Σ∥2 increases up to r = 76 before it significantly reduces over time. Note that the
evolution of the rank for the reduced as well as for the basis augmented algorithm show good agreement
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Figure 2: Numerical results for the solution f(t, x, v) of the 1D plane source analogue at time t = 0 (first column), t = 2
(second column), t = 4 (third column), and t = 6 (fourth column), computed with the full solver (Mg (reference)) (first row),
the reduced DLRA scheme (Mg DLRA) (second row) and the basis augmented DLRA scheme (Mg DLRA BasisAug) (third
row).

as the new rank is displayed after the corresponding truncation step. Further, the behavior of the norm
∥f∥2H is depicted. As expected, it decreases smoothly over time for all considered systems. Additionally,

we display the quantities κ+ := maxj
Ä

1√
2π

∑Nv

k=1 gjkωke
v2
k/2
ä
and κ− := minj

Ä
1√
2π

∑Nv

k=1 gjkωke
v2
k/2
ä
. It

is essential that they are equal to 1, which for the low-rank schemes is ensured by the adjusted truncation
step. It can be observed that this property is fulfilled up to order O

(
10−11

)
.

6.2. 2D Plane source

In higher dimensions, the computational advantages of DLRA schemes are enhanced. For this reason, we give
some two-dimensional test examples starting with the two-dimensional version of the plane source problem
considered in the previous section. The corresponding two-dimensional set of equations becomes

∂tg(t,x,v) = − v

ρ(t,x)
· ∇x (ρ(t,x)g(t,x,v)) + σ (1− g(t,x,v))− g(t,x,v)

ρ(t,x)
∂tρ(t,x),

∂tρ(t,x) = − 1

2π
∇x ·

∫
ρ(t,x)g(t,x,v)ve−|v|2/2dv,

where x = (x1, x2) ∈ D ⊂ R2 and v = (v1, v2) ∈ R2. We compare the solution of this system with the
solution of the DLRA scheme for which the extension to the two-dimensional setting is straightforward. For
this test example we choose the spatial domain D = [−3, 3]× [−3, 3] and prescribe the initial condition for
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Figure 3: Numerical results for the density ρ(t, x) of the 1D plane source analogue at time t = 0, t = 2, t = 4, and t = 6,
computed with the full solver (Mg (reference)), the reduced DLRA scheme (Mg DLRA) and the basis augmented DLRA scheme
(Mg DLRA BasisAug).

Figure 4: Left: Evolution of the rank in time for the 1D plane source analogue for the reduced DLRA scheme (Mg DLRA) and
the basis augmented DLRA scheme (Mg DLRA BasisAug). Middle: Evolution of the H -norm in time for the full solver (Mg
(reference)), the reduced DLRA scheme (Mg DLRA) and the basis augmented DLRA scheme (Mg DLRA BasisAug). Right:
Evolution of κ± in time for the full solver (Mg (reference)), the reduced DLRA scheme (Mg DLRA) and the basis augmented
DLRA scheme (Mg DLRA BasisAug). The red line has the constant value 1. The deviations of the DLRA schemes from 1 are
of order O

(
10−11

)
.

the density by

ρ(t = 0,x) =
1

4π
max

Å
10−1,

102

4πσ2
IC

exp

Å
− |x|2

4σ2
IC

ãã
,

with a constant deviation of σIC = 0.3. The function g shall be set to g(t = 0,x,v) = 1 and the collision
coefficient to σ = 100. We allow an initial rank of r = 20. Computations are performed on a spatial grid with
Nx1

= 128 grid points in x1 and Nx2
= 128 grid points in x2. For the velocity grid we choose Nv1 = 32 grid
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points in v1 and Nv2 = 32 grid points in v2. Due to this choice, we obtain maxk (|vk|) ≈ 10.08, which shall
be adjusted to the next larger integer value such that the time step size is determined by ∆t = CFL · ∆x

11 with
a CFL number of CFL = 0.7. Figure 5 compares the density ρ(t, x) at different times up to tEnd = 3.0, com-
puted with the full solver (Mg (reference)) and the reduced DLRA scheme with rank 2r (Mg DLRA). Note
that we refrain from computations with the basis augmented 4r scheme as in two space and velocity dimen-
sions this would lead to extremely increased computational costs. We observe that the solution of the DLRA
scheme matches the solution of the full system. To determine the evolution of the rank, we use a tolerance pa-

Figure 5: Numerical results for the density ρ(t,x) of the 2D plane source analogue at time t = 0 (first column), t = 1 (second
column), t = 2 (third column, and t = 3 (fourth column), computed with the full solver (Mg (reference)) (first row) and the
reduced DLRA scheme (Mg DLRA) (second row).

rameter of ϑ = 10−5∥Σ∥2. In Figure 6, we observe an increasing up to r = 73 before it decreases continuously
over time. Further, the norm ∥f∥2H is displayed. It decreases smoothly over time for all considered systems.

In addition, we plot the quantities κ+ := maxj

(
1
2π

∑Nv1

k=1

∑Nv2

ℓ=1 g(t,xj , v
1
k, v

2
ℓ )ω

1
kω

2
ℓ e
(v1

k)
2
/2e(v

2
k)

2
/2
)

and

κ− := minj

(
1
2π

∑Nv1

k=1

∑Nv2

ℓ=1 g(t,xj , v
1
k, v

2
ℓ )ω

1
kω

2
ℓ e
(v1

k)
2
/2e(v

2
k)

2
/2
)
, which are equal to 1 up to order O

(
10−3

)
.

For this setup, the running time of the DLRA scheme compared to the full solver is clearly faster. It reduces

Figure 6: Left: Evolution of the rank in time for the 2D plane source analogue for the reduced DLRA scheme (Mg DLRA).
Middle: Evolution of the H -norm in time for the full solver (Mg (reference)) and the reduced DLRA scheme (Mg DLRA).
Right: Evolution of κ± in time for the full solver (Mg (reference)) and the reduced DLRA scheme (Mg DLRA).

by a factor of approximately 2 from 3954 seconds to 1926 seconds, confirming the computational advantages
of the DLRA scheme.
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6.3. 2D Beam

As a second two-dimensional test example we consider a beam in the spatial domain D = [−5, 5] × [−5, 5]
starting at (0, 0) in the middle of the spatial plane and moving to the bottom left. The initial values are
given by

ρ(t = 0,x) =
1

4π
max

Å
10−1,

102

4πσ2
IC

exp

Å
− |x|2

4σ2
IC

ãã
,

g(t = 0,x,v) = C
102

4πσ2
IC

exp

Ç
−|v − vbeam|2

4σ2
IC

å
,

where σIC = 0.01 and C is a normalization constant such that 1
2π

∫
g(t = 0,x,v)e−|v|2/2dv = 1 holds. The

beam velocity vbeam is set to vbeam =

Å
−1
−1

ã
and the collisionality to σ = 1.5. The initial rank is given as

r = 20. Computations are performed on a spatial grid with Nx1
= 128 grid points in x1 and Nx2

= 128 grid
points in x2. For the velocity grid we chooseNv1 = 32 grid points in v1 andNv2 = 32 grid points in v2. As be-
fore, this leads to a time step size of ∆t = CFL·∆x

11 with a CFL number of CFL = 0.7. Figure 7 compares the
density ρ(t, x) at different times up to tEnd = 3.0, computed with the full solver (Mg (reference)) and the re-
duced DLRA scheme with rank 2r (Mg DLRA). At all displayed time steps the DLRA solution resembles the
solution of the full system. In Figure 8, the evolution of the rank in time is shown. We use a tolerance param-

Figure 7: Numerical results for the density ρ(t,x) of the 2D beam test problem at time t = 0 (first column), t = 1 (second
column), t = 2 (third column, and t = 3 (fourth column), computed with the full solver (Mg reference)) (first row) and the
reduced DLRA scheme (Mg DLRA) (second row).

eter of ϑ = 10−4∥Σ∥2 and allow a maximal rank of 200. Due to the choice of σ the solution of the problem is
not low-rank. For this reason, we observe an increasing of the rank up to the maximal allowed value. Also, the
norm ∥f∥2H is depicted over time. It decreases continuously, matching our theoretical considerations. Fur-

ther, it can be observed that the quantities κ+ := maxj

(
1
2π

∑Nv1

k=1

∑Nv2

ℓ=1 g(t,xj , v
1
k, v

2
ℓ )ω

1
kω

2
ℓ e
(v1

k)
2
/2e(v

2
k)

2
/2
)

and κ− := minj

(
1
2π

∑Nv1

k=1

∑Nv2

ℓ=1 g(t,xj , v
1
k, v

2
ℓ )ω

1
kω

2
ℓ e
(v1

k)
2
/2e(v

2
k)

2
/2
)
are equal to 1 up to order O

(
10−12

)
.

Due to the high rank, the running time of the DLRA scheme compared with the full solver is slightly in-
creased. This example illustrates the relation between the choice of σ and the low-rank structure of the
solution. It is expected that for larger values of σ the solution becomes low-rank and hence the computational
benefits of the DLRA scheme are enhanced.
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Figure 8: Left: Evolution of the rank in time for the 2D beam test problem for the reduced DLRA scheme (Mg DLRA). The
rank increases up to the maximal allowed value of r = 200. Middle: Evolution of the H -norm in time for the full solver (Mg
(reference)) and the reduced DLRA scheme (Mg DLRA). Right: Evolution of κ± in time for the full solver (Mg (reference))
and the reduced DLRA scheme (Mg DLRA). The red line has the constant value 1. The deviation of the DLRA scheme from
1 is of order O

(
10−12

)
.

7. Conclusion and outlook

We have derived a multiplicative DLRA discretization for the linear Boltzmann-BGK problem that in
contrast to another presented naive discretization is numerically stable. To show this, we have conducted
a stability analysis leading to a concrete hyperbolic CFL condition. In addition, numerical examples in 1D
and 2D confirm the stability, accuracy and efficiency of the proposed DLRA scheme.
The insights gained from this article can be helpful for future work as the employed multiplicative splitting is
attached to the investigation of more complicated equations, e.g. the non-linear Boltzmann-BGK equation
treated in [14]. However, a direct transition of knowledge is hardly possible as for the non-linear case most of
the theoretical concepts applied here are not available, making the analysis much more difficult to consider.
Further, in the non-linear case a discretization of the conservative form of the equations, i.e. by not splitting
up the term ∂x (Mg), is possible but cannot be efficiently implemented as the Maxwellian M is generally not
low-rank. Even though, we propose to reconsider the chosen discretization in [14] in terms of stabilization,
which may allow for a larger time step size leading to an even more efficient DLRA algorithm.
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Sparse Grids and Applications – Stuttgart 2014. Lecture Notes in Computational Science and Engineering, volume 109,
pages 163–190, Cham, 2016. Springer.

[25] J. Kusch. Second-order robust parallel integrators for dynamical low-rank approximation. arXiv preprint
arXiv:2403.02834, 2024.

[26] J. Kusch, L. Einkemmer, and G. Ceruti. On the stability of robust dynamical low-rank approximations for hyperbolic
problems. SIAM Journal on Scientific Computing, 45(1):A1–A24, 2023.

[27] J. Kusch and P. Stammer. A robust collision source method for rank adaptive dynamical low-rank approximation in
radiation therapy. ESAIM: M2AN, 57(2):865–891, 2023.

[28] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, 2002.
[29] C. Lubich and I. V. Oseledets. A projector-splitting integrator for dynamical low-rank approximation. BIT Numerical

Mathematics, 54(1):171–188, 2014.
[30] C. Patwardhan, M. Frank, and J. Kusch. Asymptotic-preserving and energy stable dynamical low-rank approximation for

thermal radiative transfer equations. arXiv preprint arXiv:2402.16746, 2024.
[31] Z. Peng, R. G. McClarren, and M. Frank. A low-rank method for two-dimensional time-dependent radiation transport

calculations. Journal of Computational Physics, 421:109735, 2020.
[32] M. Prugger, L. Einkemmer, and C. F. Lopez. A dynamical low-rank approach to solve the chemical master equation for

22



biological reaction networks. Journal of Computational Physics, 489:112250, 2023.
[33] H. Struchtrup. Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory.

Springer, Berlin, Heidelberg, 2005.
[34] P. Yin, E. Endeve, C. D. Hauck, and S. R. Schnake. A semi-implicit dynamical low-rank discontinuous Galerkin method

for space homogeneous kinetic equations. Part I: emission and absorption. arXiv preprint arXiv:2308.05914, 2023.

23


	Introduction
	Linear Boltzmann-BGK
	Discretization of the Mg system
	Discretization in velocity and in space
	Time discretization

	Numerical stability
	Naive discretization
	Stable discretization

	Dynamical low-rank approximation for the stable Mg system
	Background on dynamical low-rank approximation
	DLRA algorithm for multiplicative linear Boltzmann-BGK
	Stability of the proposed low-rank scheme

	Numerical results
	1D Plane source
	2D Plane source
	2D Beam

	Conclusion and outlook

