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ENERGY STABLE AND CONSERVATIVE DYNAMICAL
LOW-RANK APPROXIMATION FOR THE SU-OLSON PROBLEM*

LENA BAUMANNT, LUKAS EINKEMMER?!, CHRISTIAN KLINGENBERG', AND JONAS
KUSCHS

Abstract. Computational methods for thermal radiative transfer problems exhibit high com-
putational costs and a prohibitive memory footprint when the spatial and directional domains are
finely resolved. A strategy to reduce such computational costs is dynamical low-rank approximation
(DLRA), which represents and evolves the solution on a low-rank manifold, thereby significantly de-
creasing computational and memory requirements. Efficient discretizations for the DLRA evolution
equations need to be carefully constructed to guarantee stability while enabling mass conservation.
In this work, we focus on the Su-Olson closure leading to a linearized internal energy model and
derive a stable discretization through an implicit coupling of internal energy and particle density.
Moreover, we propose a rank-adaptive strategy to preserve local mass conservation. Numerical re-
sults are presented which showcase the accuracy and efficiency of the proposed low-rank method
compared to the solution of the full system.
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energy stability, mass conservation, rank adaptivity
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1. Introduction. Numerically solving the radiative transfer equations is a chal-
lenging task, especially due to the high dimensionality of the solution’s phase space. A
common strategy to tackle this issue is to choose coarse numerical discretizations and
mitigate numerical artifacts [23, 27, 32] which arise due to the insufficient resolution,
see e.g. [3, 15, 1, 24, 39]. Despite the success of these approaches in a large number
of applications, the requirement of picking user-determined and problem dependent
tuning parameters can render them impracticable. Another approach to deal with
the problem’s high dimensionality is the use of model order reduction techniques.
A reduced order method which is gaining a considerable amount of attention in the
field of radiation transport is dynamical low-rank approximation (DLRA) [20] due to
its ability to yield accurate solutions while not requiring an expensive offline train-
ing phase. DLRA’s core idea is to approximate the solution on a low-rank manifold
and evolve it accordingly. Past work in the area of radiative transfer has focused on
asymptotic-preserving schemes [10, 9], mass conservation [34], stable discretizations
[21], imposing boundary conditions [22, 18] and implicit time discretizations [35]. A
discontinuous Galerkin discretization of the DLRA evolution equations for thermal
radiative transfer has been proposed in [5].

A key building block of efficient, accurate and stable methods for DLRA is the
construction of time integrators which are robust irrespective of small singular values
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2 L. BAUMANN, L. EINKEMMER, C. KLINGENBERG, J. KUSCH

in the solution [19]. Three integrators which move on the low-rank manifold while not
being restricted by its curvature are the projector-splitting (PS) integrator [25], the
basis update € Galerkin (BUG) integrator [8], and the parallel integrator [7]. Since
the PS integrator evolves one of the required subflows backward in time, the BUG
and parallel integrator are preferable for diffusive problems while facilitating the con-
struction of stable numerical discretization for hyperbolic problems [21]. Moreover,
the BUG integrator allows for a basis augmentation step [6] which can be used to con-
struct conservative schemes for the Schrédinger equation [6] and the Vlasov—Poisson
equations [14].

In this work we consider the thermal radiative transfer equations using the Su-
Olson closure. This leads to a linearized internal energy model for which we propose
an energy stable and mass conservative DLRA scheme. The main novelties of this
paper are:

o A stable numerical scheme for thermal radiative transfer: We show that a
naive IMEX scheme fails to guarantee energy stability. To overcome this
unphysical behaviour we propose a scheme which advances radiation and
internal energy implicitly in a coupled fashion. In addition, our novel analysis
gives a classic hyperbolic CFL condition that enables us to operate up to a
time step size of At = CFL - Az.

o A mass conservative and rank-adaptive integrator: We employ the basis aug-
mentation step from [6] as well as an adaption of the conservative truncation
strategy from [14, 17] to guarantee local mass conservation and rank adap-
tivity. In contrast to [14, 17] we do not need to impose conservation through
a modified L-step equation, but solely use the basis augmentation strategy
from [6].

Both these properties are extremely important as they ensure key physical principles
and allow us to choose an optimal time step size which reduces the computational
effort. Moreover, we demonstrate numerical experiments which underline the derived
stability and conservation properties of the proposed low-rank method while showing
significantly reduced computational costs and memory requirements compared to the
full-order system.

This paper is structured as follows: After the introduction in Section 1, we review
the background on thermal radiative transfer and dynamical low-rank approximation
in Section 2. In Section 3 we present the evolution equations for the thermal radiative
transfer equations when using the rank-adaptive BUG integrator. Section 4 discretizes
the resulting equations in angle and space. The main method is presented in Section 5
where a stable time discretization is proposed. We discuss local mass conservation of
the scheme in Section 6. Numerical experiments are demonstrated in Section 7.

2. Background.

2.1. Thermal radiative transfer. In this work, we study radiation particles
moving through and interacting with a background material. By absorbing particles,
the material heats up and emits new particles which can in turn again interact with the
background. This process is described by the thermal radiative transport equations

L0uf (1, ) + 0. f(t,3,0) = 0 (Blt,2) — f(t,, 1),
ate<t7x) = O‘(<f<t,$(), )>M - B(t’ aj))v

where we omit boundary and initial conditions for now. This system can be solved
for the particle density f(¢,z,u) and the internal energy e(t,z) of the background
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DYNAMICAL LOW-RANK APPROXIMATION FOR SU-OLSON 3

medium. Here, x € D C R is the spatial variable and p € [—1,1] denotes the
directional (or velocity) variable. The opacity o encodes the rate at which particles
are absorbed by the medium and we use brackets (-),, (-)» to indicate an integration
over the directional domain and the spatial domain, respectively. Moreover, the speed
of light is denoted by ¢ and the black body radiation at the material temperature T’
is denoted by B(T'). It often is described by the Stefan-Boltzmann law
B(T) = acT*,

where a = 4258 ig the radiation density constant and osp the Stefan-Boltzmann
constant. Different closures exist to determine a relation between the temperature T

and the internal energy e. Following the ideas of Pomraning [37] and Su and Olson
[38] we assume e(T) = aB(T'). Without loss of generality we set & = 1 and obtain

(2.1a) Ocf(t,x, 1) + po f(t,z, 1) = o(B(t, ) — f(t 2, 1)),
(2.1b) 0, B(t,x) = o({f(t,2,)), — B(t,z)).

We call this system the Su-Olson problem. It is a linear system for the particle density
f and the internal energy B that is analytically solvable and and serves as a common
benchmark for numerical considerations [33, 30, 31, 28]. Note that we leave out the
speed of light by doing a rescaling of time 7 = t/¢ and in an abuse of notation use
t to denote 7 in the remainder. Constructing numerical schemes to solve the above
equation is challenging. First, the potentially stiff opacity term has to be treated by an
implicit time integration scheme. Second, for three-dimensional spatial domains the
computational costs and memory requirements of finely resolved spatial and angular
discretizations become prohibitive. To tackle the high dimensionality, we choose a
dynamical low-rank approximation which we introduce in the following.

2.2. Dynamical low-rank approximation. The core idea of DLRA is to ap-
proximate the solution of a given equation 0, f(t,z, ) = F(f(t,z,u)) by a represen-
tation of the form

(2.2) ft,mm) = Y Xt )i (0)Vi(t w),

ij=1

where the orthonormal functions {X; : ¢ = 1,...,7} depend only on ¢ and x and the
orthonormal functions {V; : j = 1,...,7} depend only on ¢ and p. The number of basis
functions is set to r and we call r the rank of this approximation. This terminology
stems from the matrix setting for which the concept of DLRA has been introduced
[20]. Then, (2.2) can be interpreted as a continuous analogue to the singular value
decomposition for matrices. As representation (2.2) is not unique we impose the
Cauge conditions (X;, X;), = 0 and (V;,V;),, = 0 from which we can conclude that
{X;} and {V;} are uniquely determined for invertible S = (S;;) € R™*" [20, 10, 13].
That is, we seek for an approximation of f that for each time ¢ lies in the manifold

M, = {f € L*(D x [~1,1]) : f(,z,p) = i Xi(-, )85 (-)V;(+, ) with invertible
ij=1

S = (Si;) e R™", X; € L*(D),V; € L*([-1,1]) and (X;, X}, = 6ij,

Vi, Vi = 5@'}-
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4 L. BAUMANN, L. EINKEMMER, C. KLINGENBERG, J. KUSCH

Note that in the following we denote the full rank and the low-rank solutions as f.
Let f(t,-,-) be a path on M,.. A formal differentiation of f with respect to ¢ leads to

Ft) = 30 (Kl IS0Vt ) + Xilt, ) S5 (Vi (1) + Xalt, )85 (V5(8,) )
i,j=1
These functions restrict the solution dynamics onto the low-rank manifold M, and
constitute the corresponding tangent space which under the Gauge conditions reads

TiM, = { Je D x [~1,1): flowm) = 30 (Kl 2)S5()V; ()

+ Xils @) Sig (W5 (o) + Xil,2) S35 (Wi ()
with S;; € R, X; € L*(D),V; € L*([-1,1]) and (X;, X;)» = 0,

<vaj>u = O}'

Having defined the low-rank manifold and its corresponding tangent space, we now
wish to determine f(¢,-,-) € M, such that 0,f(¢,-,-) € TyfM, and ||0:f(¢,-,-) —
F(f(t,,)lL2(px[~1,1)) is minimized. That is, one wishes to determine f such that

(2.3) (Ouf(t,-) — F(f(t,, )y flap =0 forall f € TrM,.
The orthogonal projector onto the tangent plane 7;M, can be explicitly given as

P(f)F(f) =Y (Vi F()uV; — ZX XVi, F(f)aVi+ > XilXi, F(f))a-

j=1 i,j=1 i=1

With this definition at hand, we can reformulate (2.3) as
5tf(t7$7H) = P(f(ta IZZ,ILL))F(f(t,IL’,M))

To evolve the approximation of the solution in time according to the above equation is
not trivial. Indeed standard time integration schemes suffer from the curvature of the
low-rank manifold, which is proportional to the smallest singular value of the low-rank
solution [20]. Three integrators which move along the manifold without suffering from
its high curvature exist: The projector—splitting integrator [25], the BUG integrator
[8], and the parallel integrator [7]. In this work, we will use the basis-augmented
extension to the BUG integrator [6] which we explain in the following.

The rank-adaptive BUG integrator [6] updates and augments the bases {X;}, {V;}
in parallel in the first two steps. In the third step, a Galerkin step is performed
for the augmented bases followed by a truncation step to a new rank 7. In de-
tail, to evolve the approximation of the distribution function from f(to,z,u) =
> e XD()SEV (1) at time to to f(ti,x,p) = o04_) Xi(2)S5V) (u) at time
t1 =to+ At the integrator performs the following steps:

K-Step: Write K;(t,z) = Y.;_, Xi(t,2)S;;(t). Then we obtain the representa-
tion f(t,x,p) = Z;Zl Kj(t,x)VjO(/,L) with {V’} kept fixed in this step. The basis
functions X?(x) with i = 1,...,7 are updated by solving the partial differential equa-
tion

O K;(t,x) = <V]-0,F (Z Kk(t,x)Vk0>> , Kj(to,x ZXO SY.,
k=1 m
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182

DYNAMICAL LOW-RANK APPROXIMATION FOR SU-OLSON 5

and applying Gram Schmidt to [K;(t1,x), X?] = ZQT A-l(x)Rilj. Then, the updated
and augmented basis in physical space consists of X LH(z) with i = 1,...,2r. Note that
R14 is discarded after this step. Compute M;ﬂ = <X , XY,

L-Step: Write L;(t,pu) = 22:1 S;;(t)V;(t, 1). Then we obtain the representation
ft,oopw) =S XPLi(t, u) with {X?} kept fixed in this step. The basis functions
Vjo(,u) with 7 = 1,...,r are updated by solving the partial differential equation

atLl(t7/”L) = <X103F <ZX?L4(t»N)>> 3 tO? ZSO VO
(=1 T

and applying Gram Schmidt to [L;(t1, p1), V) ()] = Z] nz Vi )R;;. Then, the up-
dated and augmented basis in velocity space con51sts of le( ) with j =1,...,2r. Note
that R?; is discarded after this step. Compute N[j = (17@17 V)

S-step: Update S?j with i,7 = 1,...,7 to §11J with 4,7 = 1,...,2r by solving the
ordinary differential equation

. 2r r
Si(t) = <X VLE DD XESu)Vy > ., Sij(te) = M S, Njp.
0, k=1 o k(=1

Truncation: Let S’\}] be the entries of the matrix S!. Compute the singular value

decomposition of St = f’f)QT with 3 = diag(s;). Given a tolerance ¥, choose the
new rank r; < 2r as the minimal number such that

1/2
2r /

Z 0'j2- <.

j=ri+1

Let S! with entries 51 be the r1 x r; diagonal matrix with the r; largest singular

values and let P! with entrles Pl and Q' with entries QJ; contain the first 7 columns
of2P aEd Q, respectively. Set XZ-( )=, X(x x)PL for i =1,...,r and V' () =
Z]‘rzl le(ﬂ) jlz forj=1,...,m

The updated approximation of the solution after one time step is then given by
flt,z,p) =300 X Hax)SLVE(u). Note that we are not limited to augmenting with

i,j=1 1777
the old basis, which we will use to construct our scheme.

3. Dynamical low-rank approximation for Su-Olson. Let us now derive
the evolution equations of the rank-adaptive BUG integrator for system (2.1), i.e
the partial differential equations appearing in the K- and L-step and the ordinary
differential equation for the S-step. To simplify notation, all derivations are performed
for one spatial and one directional variable. However, the derivation trivially extends
to higher dimensions. We start with considering the evolution equations for the low-
rank approximation of the particle density (2.1a).

K-step: Write K;(t,z) = >:_, Xi(t,2)5;;(t). Then we have the representation
flt,z,p) = Z] 1 K (t )V () for the low-rank approximation of the solution. Again
{Vjo} denotes the set of orthonormal basis functions for the velocity space that shall
be kept fixed in this step. Inserting this representation of f into (2.1a) and projecting

This manuscript is for review purposes only.
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6 L. BAUMANN, L. EINKEMMER, C. KLINGENBERG, J. KUSCH

onto V(u) gives the partial differential equation

(3.1) O K (t, x) Z(‘) K;(t,z)(V} ,MV(J) + o (B(t,z)(V), — Ki(t,2)) .

L-step: Write L;(t,pu) = >27_; Sij(t)V;(t, ). Then we have the representation
ft,z,pw) =>""_, X2(x)L;(t, p) for the low-rank approximation of the solution. Again
{XZO} denotes the set of spatial orthonormal basis functions that shall be kept fixed
in this step. Inserting this representation of f into (2.1a) and projecting onto X (x)
yields the partial differential equation

(32) ath(t H* _:U’Z <Xk’ ;XO> Li(tvu) +o (<X/87B(t7 )>x - Lk(ta :u)) .

=1

Lastly, we derive the augmented Galerkin step of the rank-adaptive BUG integrator.
We denote the time updated spatial basis augmented with X? as X}. The augmented
directional basis 171-1 is constructed in the corresponding way. Then, the augmented
Galerkin step is constructed according to:

S-step: We use the initial condition Si;(to) = 3 k 1! X1x N Sgk(t0)<V1Vk>

~

and approximate the solution f as f(¢,x,u) = ZU Xz )S () 1(u). Inserting

this representation into (2.1a) and testing against X ! and Ve gives the ordinary
differential equation

(3.3)

2r

X ~ d ~ ~ ~ ~ ~ ~ ~

Sut) == 30 (Rh 4 %1} ST T+ 0 ((RE BT, - Sur)
i,j=1 x

from which we get the augmented quantity §”(t) Inserting all augmented low-rank

factors into (2.1b) leads to the partial differential equation

2r
(3.4) aB(tx) =0 | Y X' 2)Syt)(V}), - B(t,x)
ij=1
Before repeating this process and evolving the subequations further in time we trun-

cate back the augmented quantities to a new rank r; using a suitable truncation
strategy.

4. Angular and spatial discretization. Having derived the K-, L- and S-step
of the rank-adaptive BUG integrator, we can now proceed with discretizing in angle
and space. For the angular discretization, we use the modal representations

N—-1 N—-1 N—
()= Y ViPa(p), Vi) = D ViiPa(p), Lt p) = Z
n=0 n=0 n=0

where P, are the normalized Legendre polynomials. Note that in the following, we
use Einstein’s sum convention when not stated otherwise to ensure compactness of
notation. Let us define the matrix A € RV*¥ with entries A,,,, := (P, uPy),. Then

This manuscript is for review purposes only.
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we can rewrite (V,), V), = Vo A, Vp,. The evolution equations with angular
discretization then read

(4.1a)
Ky (t,z) = =0, K;(t, &)V, Ay Vi + 0 (B(t, 2) Vo), — Ki(t, 1)),
(4.1b)

. d
Lk (t) = — <X,S, de?> Lpi(t)Amn + 0 (X2, B(t,))20mo — Link(t))
(4.1c)
BN ~. d -~ ~ ~ ~ ~ ~
) = = (Kb 4o %) Syl0TyAnThe + o (R BT - Buto)

For the angular discretization of (3.4) we get
(4.1d) 8B(t,z) =0 ()?}(x)@j Vi, — B(t, x)) .

To derive a spatial discretization we choose a spatial grid z; < -+ < z,, with
equidistant spacing Ax. The solution in a given cell p is then approximated by

1

Tp41 1 Tp+1

1 Tp+1
Tp

Spatial derivatives are approximated and stabilized through the tridiagonal stencil
matrices D¥ ~ 0, and D** ~ %Aw@m with entries

+1 1 1

x T T

it = oag 0 D= g0 Drbmi =55
Applying the matrix D* € R"=*"= corresponds to a first order and the stabilization
matrix D** € R™=*"= to a second order central differencing scheme. Moreover, from
now on we assume periodic boundary conditions. Recall the symmetric matrix A. It is
diagonalizable in the form A = QMQT with Q orthogonal and M = diag(o7, ..., 0,,)-
We define matrix |A| as |[A| = QM|QT. We then obtain the spatially and angular
discretized matrix ODEs
(4.20)  Epu(t) = — DKy (VS AV + DI Koy (V| Al V3
to (Bp(t)vook - ka(t)> )
(4.2b) Ly (t) = — Apun Lni () X0, D2, X0 + Al Lni (8) X ) Dyw X 0y
+ 0 (8moBp(t) X% — Link(t))
(120 Bult) = R DL REE 7L Ama Ve + hDZE K54 OT) AT
p ()/f;kBp(t)V&e - §M(t)) .
Lastly, we obtain from (4.1d) for the internal energy B the spatially discretized equa-
tion

(4.24) By(t) = o (R3:55()00; = By() = o (upo(t) = Bp(1))

This manuscript is for review purposes only.
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8 L. BAUMANN, L. EINKEMMER, C. KLINGENBERG, J. KUSCH

where we use the notation )?;Z@j (t)@%] =: Uy, (t). We can now show that the semi-
discrete time-dependent system (4.2) is energy stable. For this, let us first give a

definition of the total energy of the system:

DEFINITION 4.1 (Total energy). Let the matriz ut(t) € RN with low-rank en-
tries u;,m(t) = X;iSZ-j (t)VT}U» denote the angularly and spatially discretized approzima-
tion of the solution of (2.1a) and B(t) € R be the spatially discretized approrimation

of the solution of (2.1b). Then we call
Loz o L 2
E(t) = 5l @l + 511BO)I,

with || - || denoting the Frobenius and || - ||g denoting the Fuclidean norm, the total
energy of the system (4.2).

Further, we note the following properties of the chosen spatial stencil matrices which
we write down denoting all sums explicitly:

LEMMA 4.2 (Summation by parts). Let y,z € R" with indices p,q = 1,...,n,.
In addition, we set yo = yn, and Yn+1 = Y1, for z respectively, due to the periodic
boundary conditions. Then the stencil matrices fulfill the following properties:

xr — xT xr _— T — T
E YpDpyzq = E 2pDipaYas E 2pDpezq =0, g YpDpg2q = g 2pDipq Y-
p,q=1 p,q=1 p,q=1 p,q=1 p,q=1

Moreover, let DT € R"% X" be defined as

-1 1
D = , Df =
D,p /72 A p,p+1 2Ax

2
Ny T _ Ng Ng —+
Then, Yty % Dirzg = = Snmy (S0 D) -

Proof. The assertions follow directly by plugging in the definitions of the stencil
matrices and rearranging the sums of the products in an adequate way:

n Uz n
x 1 x 1 xT
Z YpDpgzq = oAz ])Zlyp (zp+1 — 2p—1) = N ;Zp (Yp+1 — Yp—1)

p,q=1
Ny
T
— E 2p DY

p,q=1
Mg Ny
T _ x —
E z2pDipgzq = E 2pDipezq = 0,
p,q=1 p,q=1
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314

315
316

321
322

323

324

7

L

DYNAMICAL LOW-RANK APPROXIMATION FOR SU-OLSON 9

n n n
- 1 & 1 &
Y uDpize= — Az > Ut 20z > Up(zps1 + 1)
p,q=1 p=1 p=1
S S ETINIERIED St
=1 p=1 p,q=1

Ny 1 & 1 &

S D D DTN
p,q=1 p=1 p=t

1 & e
= _m2(22—22p2p+1+22+1) = —EZ(ZP—anLl)Q

p=1 p=1

Ny Ny 2
- Z <Z D;q'zq> :
p=1 g=1

|

With these properties at hand, we can now show dissipation of the total energy:

THEOREM 4.3. The semi-discrete time-continuous system consisting of (4.2) is
energy stable, that is E(t) < 0.

Proof. Let us start from the S-step in (4.2¢)
Ske(t) = — X;kD;qu;iSij (t)vnlemnanw + X;kD;f;X;iSij (t)Vrgj‘A|mnanze
to ()?;k(x)Bp(t)f/OlZ - §M(t)) .
We multiply with )?ékf}/gle, wherea =1,...,n, and 3=0,..., N — 1, sum over k and ¢

and introduce the projections Pt = )?ik)?;k and Pr‘;’l = VT}LE\A@Z. With the notation
X351 () Vij = ug,(t) we get

. V,1 R V,1
ihg(t) = = P Diub () A Py + Poy Dl (£)| Almn Py

pgTqn pg Tqn

Vi1
to (Pj%pr(t)éoumﬁ - u}w(t)) .
Next, we multiply with uéﬂ (t) and sum over « and . Note that

Pt ubs(t) = upg(t)  and  Pyiubs(t) = u,,(t).

This leads to

1d x T

+ 0 (U () Bp(£)d0m — [[u' (1)]%) -

Recall that we can write A = QMQ' with M = diag(o1,...,0n). Inserting this

This manuscript is for review purposes only.
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representation gives

S0 = — (1) D1 (D@04 Qo+ b () D 0 (1)@ Qo
+ (u;m@) o (1)om — [ (1))

= = 0wy, () Dy igr (£) + |0kt (8) Dy gy, (1)

+ (uzl)m(t) p( )50m - ||111(t)||2) )

where @y (t) = up,, (t)Qmr. With the properties of the stencil matrices we get

(@3) gl @l == (DhubaIAL) + o (uo(d)B(0) — ' (B)]3).

Next we consider equation (4.2d). Multiplication with B,(t) and summation over p
gives

(4.4) 55 IBOIE = o (upo(t)Bp(t) — IB(1)]1%) -

For the total energy of the system it holds that E(t) = ||u!(¢)||%+3|B(t)||%. Adding
the evolution equations (4.3) and (4.4) we get

SB(0) = (DjubnOIAILZ) + 0 (wha()By(0) ~ 0 0)7)
+ 0 (ulo(0)B,(0) - IBEO)IE)

= (Db DIAILZ) — 0 (ko) = By(0)” + (b (£)2(1 — 610))
where we rewrote |B(t)[|3 = B,(t)? and [u'(t)||% = (up,,(t))®. This expression is
strictly negative which means that F is dissipated in time. Hence, the system is
energy stable. 0

5. Time discretization. Our goal is to construct a conservative DLRA scheme
which is energy stable under a sharp time step restriction. Constructing time dis-
cretization schemes which preserve the energy dissipation shown in Theorem 4.3 while
not suffering from the potentially stiff opacity term is not trivial. In fact a naive IMEX
time discretization potentially will increase the total energy, which we demonstrate
in the following.

5.1. Naive time discretization. We start from system (4.2) which still de-
pends continuously on the time t. For the time discretization we choose a naive IMEX
Euler scheme where we perform a splitting of nternal energy and radiation transport
equation. That is, we use an explicit Euler step for the transport part of the evolution
equations, treat the internal energy B explicitly and use an implicit Euler step for the
radiation absorption term. Note that the scheme describes the evolution from time
to to time t; = tg + At but holds for all further time steps equivalently. This yields
the fully discrete scheme

1 x 0 0 0 zx 770 0 0
(5.1a) Ky =Ko — AtDZ KD V0 A VI + AtDZY KD V0| Al Vi
+ o (AthVOk — AtK,,),
(5.1b) Ly =Ly — AtX0, D2 XD L0 Ay + AtX 0 DEX XD LY | Al

+ 0 (AtX ) Bpbmo — AtL)) -
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We perform a QR-decomposition of the quantities [K ;k,

ng] and [L;k, Vpok] to obtain
the augmented and time updated bases )A(;k and 17p1k according to the rank-adaptive
BUG integrator [6]. Lastly, we perform a Galerkin step for the augmented bases
according to

(5.1c) Sk, =S80, — AtX}, D2 XSOV A, VL, + AtX ), De XL SOV LA, V1L,

ijrng ijrng

to (At;?;kgm - Atg,gg) :
where gge = X;ngiS?er?j‘/}nlﬁ' The internal energy is then updated via

(5.1d) B} = BY +oat (XLSLV - By ).

However, this numerical method has the undesirable property that it can increase
the total energy during a time step. In Theorem 5.1 we show this analytically. This
behavior is, obviously, completely unphysical.

THEOREM 5.1. Let u® € R™*N with entries u,, = ngSgeVngg denote the angu-
larly and spatially discretized low-rank_approzimation of the function f at time t = to,
and u' € R">*N with entries 7"’(11,6 = XékSiZVﬂle denote the basis augmented angularly
and spatially discretized low-rank approrimation at time t = t1 using the rank-adaptive
BUG integrator. Further, B® € R™ shall denote the spatially discretized low-rank ap-
prozimation of B at time t = tg, and B' € R at time t = t1, respectively. The total
energy at time t = tg is denoted by E° and E' at time t = t1, respectively. Then, there
exist initial value pairs (u®, B®) and time step sizes At such that the naive scheme
(5.1) results in (ut, BY) for which the total energy increases, i.e. for which E' > EY.

Proof. Let us multiply the S-step (5.1c) with )?ékf/ﬂlg and sum over k and /.
Again we make use of the projections P! = )?oltk)?;k and PX’l = ‘A/JLZ‘A//J}Z. With the

definition of §2€ we obtain

(5.2)  uby =ul, — Pay AtDE ud A Pg + P AEDET U, [ Al Py

+ 0 (AP B Py} — Atuls )

Let us choose a constant solution in space, i.e., B; = B! and u}lﬁ = u'dpg for
all spatial indices p,a = 1, ...,n,. The scalar values B! and u! are chosen such that
B' = u! 4+ o where

oAt 4l
14 oAt + 02At2 + Fo3AL3

I<a<

We can now verify that we obtain our chosen values for le) and “(11 3 after a single step
of (5.2) when using the initial condition

(5.3a) B) =B' + oAta =u' + a(1 + cAt),
(5.3b) ugm = (u' + oAt(u' — Bg)) 6mo = (u' — o Ata(l + o At)) Spo.

To show this, note that since the solution is constant in space, all terms containing
the stencil matrices D* and D** drop out and we are left with

60 o (R - 20).
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Since Bg is constant in space and d,,q lies in the span of our basis, we know that
all projections in the above equation are exact. Plugging the initial values (5.3) into
(5.4) we then directly obtain uiﬂ = uldpg. Similarly, by plugging (5.3) into (5.1d),
we obtain B} = B'.

Then, we square both of the initial terms (5.3) to get

(32)2 =(BY)? + 20AtaB + c*At?*a? = (B')? + 20 Ata(u' + o) + a2 At?a?,

(upm)? = ((uh)? = 20Atau' (1 + o At) + 0> At?0* (1 + 0 AL)?) Smo-

Summing over p and m, adding these two terms and multiplying with % yields
E' = E° + 02 At?au! — o Ata® — %UQAt2(X2 - %O’ZAtQOéQ(l + oAt)?.
Note that E' > E if
oAtu! —a — %aAta - %aAta(l +oAt)? > 0.

Rearranging gives

< oAt :
—u.
1+ oAt + 02At2 + %J3At5

(%

This is exactly the domain « is chosen from. Hence, we have E' > E°, which is the
desired result. ]

5.2. Energy stable space-time discretization. We have seen that the naive
scheme presented in (5.1) can increase the total energy in one time step. The main
goal of this section is to construct a novel energy stable time integration scheme for
which the corresponding analysis leads to a classic hyperbolic CFL condition that
enables us to operate up to a time step size of At = CFL - Az. For constructing this
energy stable scheme, we write the original equations in two parts followed by a basis
augmentation and correction step.

In detail, we first solve

(5.5a) Ky =KDy — AtDE KD V) A Vo + AEDES KD V)| Al Vi
(5.5b) wok =L — AtX0. DY X0 L0 Ay + AtX 0 DX LY | Al -

We perform a QR-decomposition of the augmented quantities X*R = [K*, X°] and

V*R = [L*, V] to obtain the augmented and time updated bases X* and V*. Note
that R and R are discarded. With S 5= X;‘O(XJ(.)[ngVkoka*ﬁ we then solve the S-step
equation

* zx yvx Q0 1% *
5+ AEX 2, DI XSOV | Al Vit -

ij ' ny

(5.5¢) Sk = S05—AtX,Dr X3S0V A Vi

ij ' nj m,

Second, we solve the coupled equations for the internal energy B € R™ and the
quantity Ug = (Ujy); € R™ to which we refer as the zeroth order moment according
to

+ o AH(BY —ily),

(5.5¢) Bj =B) + o At(u), — Bj).
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Following [21, Section 6] we perform the opacity update only on L = V*S* according
to

1
5.5 Lt = ——
(5:56) mk 1+ Ato

and perform a QR-decomposition V*scatGxscat, T — T xscat o retrieve the factorized
basis V**¢a* and the coefficients from the matrix S*5¢#, We then augment the basis
matrices according to

(5.5g) X' = qr([ig, X)), V' =ar(fer, V).

Lmk for k 7é 0

Third, the coefficient matrix is updated via

(5.5h)
gl — il,TX*S*,scatv*,scat,T(I _ eleir)vl + XLTﬁéel,Tvl c R(2r+1)><(2r+1)'

Then, we obtain the updated solution XISIVLT g RraxN, Lastly, we truncate this
rank 2r + 1 solution to a new rank r; using a suited truncation strategy such as
proposed in [6] or the conservative truncation strategy of [14]. This finally gives the
low-rank factors X!, S! and V. We show that the given scheme is energy stable and
start with the following Lemma.

LEMMA 5.2. Let us denote uj;, := X1 SlﬂVkﬂ Under the time step restriction
At < Az it holds
At - 1/2
(56) 9 ( ]z ]k:Akl Dgz u}k|A|k¢€)2 - ( ji zk|A| ] ) <0.

Proof. Following [21], we employ a Fourier analysis which allows us to write the
stencil matrices D%®*% in diagonal form. Let us define E € C"*"= with entries

Ero = VAzexplianzy), ka=1,..,n,

with 7 € C being the imaginary unit. Then, the matrix E is orthonormal, i.e., EEH# =
E”E = I (the uppercase H denotes the complex transpose) and it diagonalizes the
stencil matrices:

(5.7) D&% TE = EAS®T |
The matrices A%*® 7T are diagonal with entries
x 1 iamAx —taTmAz i
Aaa:m(e A —¢€ 4 )_A (wa)7
1 ] —iramAx 1
LT ~5As (e“”rm” —2+e A )= Az (cos(wy) — 1) ,
1 . 1
Adio = (emar —1) = (cos(wa) + isin(wa) = 1) ,

T

V2Azx

where we use w, := arAz. Moreover, recall that we can write A = QMQT where
M = diag(o1,- - ,on). We then have with @;; = Ejptem Qmk

At

2Ax

T 1/2
(DjzujkAké Dji u;k|A|k€)2 - ( ji 1k|A| ; )

P‘?JAJIICU’C ASi ujk|UkH ))‘;A}kwk‘lp‘

[At (51— coston) = B2 1= ot ] et
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To ensure negativity, we must have

At <|Z];| 1= cos(w])|> < % - 11 — cos(wjy)] .
Hence, for At < | | equation (5.6) holds. Since |oy| < 1, we have proven the Lemma.O
We can now show energy stability of the proposed scheme:

THEOREM 5.3. Under the time step restriction At < Az, the scheme (5.5) is
energy stable, i.e.,

(5-8) IBY% + [X'STVET|E < B + XSOV

Proof. First, we multiply (5.5¢) with le and sum over j. Then,

(B})? =BYB! + oAt <u;OB; - (B;)Q) .

Let us note that

B (B) 1

opl _ (B; J 1 0y2

BjBj = —~—+—— —5(B; = Bj)

Hence,

5.9 LY =L (89?2 - LB - B0 1ot (ulyB! - (BY)
(5.9) 5 (B) =5 (B))" = 5(Bj = B))" + oAt (ujoBj — (Bj)" ).

To obtain a similar expression for (u;k)z7 we multiply (5.5¢) with X7 V% and
sum over « ~aund B. For simplicity of notation, let us define uj, := X7 575V and
u?k = J*aSgﬁVk*ﬁ as well as the projections Py := X7 X}, and P = VisVim
Then, we obtain the system
(5.10) why = uly — AP, DY ug, Apn Py, + AP DEug, | Al Py,

Next, we define ujl-k =X ;agi 5 ‘7135 and note that by construction we have that

L uh(1 = dko)
Uik = T gAr T ook
Hence, plugging in the schemes for u};, and ﬂ}o, that is, (5.10) and (5.5d) we get
(1+ oAt)uly, = (uly — AtPY DE ), Apy P, + AP DU | Al Py ) (1= Gk0)

Jp~—pqTqn Jp~—prq qn

m=nm m—nm

+ (Xjesgmvo,n ALDE X789, Vi Ao + ALDEEX 5,89 Vi | Alos

+ oALB} )b

Let us note that P,XmPJp k= u}k for k # 0. Hence, multiplying the above equation
with ujlk and summing over j and k gives

1 2 2 TT
3 (ujp,)” = 3 (ul)” — = (ujy, — ulp)? —Atujy, DY ugy Age + Atwgy, DT uly| Al
JrUAtujk(Bj 0o — ujk).
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Let us now add the zero term Atuj, D¥uj, A and add and subtract the term
Atu]kDm uly|Alke. Then,

1 2 1 2 1 -
5 ()" = 5 (i)™ = 5 (e — i) = Aty D (ufy = wig) Age

+Atujy DFF (ugy — wip) | Alke + Atujg D uis| Al e
+oAtuj;, (B} ko — ).

In the following, we use Young’s inequality which states that for a,b € R we have
2 2
a-b< %+ %. We now apply this to the term

— Atul, D% () — uly) Ape + Aty D (uf — uly)| Alre
1 At?
< glu ugy — ujg)? + T(DﬂugkAu o Alke)?.

Hence, using u} kD” L Alge = 7( i Zk|A|k ) we get

1 2 1 2 At? v
2 ()’ < 3 () + O (Db Are — DiFuby|Aleo)? — At (D A1)
(5.11) +oAtug, (B ko — ujy,)-

As for the continuous case, we add (5.11) and (5.9) to obtain a time update equation
2
0. 1(,0 1 (RBo)2.
for B2 = § () + 4 (B9)"

AP
FEl < Eo—i—T(Dﬂu]kAu Djfujy|Alge)® — At ( ji m|A|1/2)
1
+oAt(ulBL = (ul)?) - 5(B} - BY)? + ot (u;OB; - (B})2)

At?
< B S (Db Ave — DiFuby | Alse)? — At (Db A7)

1
(5.12) —0AH(B) — uj;,)* — 5(3} - BY)?.

With Lemma 5.2 we have that

At

S (D5l Ave — Dizul | Alke)? — (Dfll A1) <0

for At < Ax. Since the truncation step is designed to not alter the zero order
moments, we conclude that E' < EY and the full scheme is energy stable under the
time step restriction At < Ax. O

6. Mass conservation. A drawback of dynamical low-rank approximation us-
ing the classical integrators introduced in Section 1 is that the method does not pre-
serve physical invariants. It has been shown in [12] that this problem can be overcome
when using a modified L-step equation. On this basis, [14, 17] have presented conser-
vative DLRA algorithms where they additionally introduced a conservative truncation
step. In contrast to [14, 17] we do not need to consider a modified L-step equation due
to the applied basis augmentation strategy from [6], but use the conservative trun-
cation step. Then we can show that besides being energy stable, our scheme ensures
local conservation of mass. The conservative truncation strategy works as follows:
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1. Compute K = X!S! and split it into two parts K = [K°" K] where
I:{COHS corresponds to the first and K™™ consists of the remaining columns of
K.

Analogously, distribute Vi = [\N/'CO“S,\N/'rem] where Veons corresponds to the
first and V™™ consists of the remaining columns of V.

2. Derive Xcons — Rcons/”f{cons” and Scons — ||f{cons||.

Perform a QR-decomposition of K™™ to obtain Krem = Xremgrem

4. Compute the singular value decomposition of Srem — USW ' with & =
diag(o;). Given a tolerance ¥, choose the new rank r; < 2r as the minimal
number such that

©w

o 1/2
2
Y I <.

j=ri+1

Let S™™ be the r1 x r; diagonal matrix with the ry largest singular values and
let U™ and W™ contain the first 7; columns of U and W, respectively.
Set )/Srem — XremUrem a‘1,1(1 Yrem — Vremwrem'

5. Set X = [Xc°°rs Xr™] and V = [e1, V'*™]. Perform a QR-decomposition of
X =X'R! and V = V'R

6. Set
1_ 1 | SO 0 2T
S'"=R [ 0 grem R'.

The updated solution at time t; =ty + At is then given by u! = X!'S'V1 T,
Then, the scheme is conservative:

THEOREM 6.1. The scheme (5.5) is locally conservative. That is, for the scalar
fluz at time t,, denoted by ®7 = X7,Sp. Vi, where n € {0,1} and u3), = X3,59, V{0,
it fulfills the conservation law
(6.1a) D) =) — AtD}ufyAge + AtDFFufy|Alos + o At(B) — @5),
(6.1b) Bj = B) + o At(®] — Bj).

Proof. The conservatice truncation step is designed such that it does not alter
the first column of X!'S'V1T. Together with the basis augmentation (5.5¢) and
correction step (5.5f) we then know that

5 = X050 Vom = XjeSimVom = Ujo.
Hence, with (5.5d) and (5.5¢) we get that

q)jl :X]QZngVOOm - AthzX:nngV@:nAOé + AtDJIfX:nngVé:n‘Abe
+ oAt(B] — @),

1 _ po 1 1
B! =B + o At(®} — B)).

Since the basis augmentation with X° and V© ensures X9,S9 V), = X789, V5, =
uY,, the local conservation law (6.1) holds. 0

Hence, equipped with a conservative truncation step, the energy stable algorithm
presented in (5.5) conserves mass locally. To give an overview of the algorithm, we
visualize the main steps in Figure 1.

This manuscript is for review purposes only.



DYNAMICAL LOW-RANK APPROXIMATION FOR SU-OLSON 17

e internal energy at time ¢g: B?
input o factored moments at time to: X9, Sp V),
e rank at time to: r
|
[update basis according to (5.5a) and (5.5b).]

* *
Kj[’ Lkm

—(augment basis with X7, Vkom}

* *
V1A Vk'rn

[update coefficient matrix according to (5.5c)]

*
ap

[update scalar flux and internal energy according to (5.5d), (5.5e)%

[perform absorption step according to (5.5f)} B} [t}

*,scat  qk,scat
Vkm ) Saﬂ

4»(augment basis according to (5.5g) with ﬂ}o}i

v 1
Xje

[correct coefficient matrix S7,,, according to (5.511)}

Q1
S@m

vl o1 71
[truncate factors X3, Sy, Vkm]
e internal energy at time t,: Bj

output e factored moments at time t1: X1, S;,., V!,
e rank at time t1: r;

F1G. 1. Flowchart of the stable and conservative method (5.5).

7. Numerical results. In this section we give numerical results to validate the
proposed DLRA algorithm. The source code to reproduce the presented numerical
results is openly available, see [2].

7.1. 1D Plane source. We consider the thermal radiative transfer equations
as described in (2.1a) on the spatial domain D = [—10, 10]. As initial distribution we
choose a cutoff Gausian

1 —1)2
uw(t=0,z) = max [ 107%, ———= exp (—M) ,
V270t 201¢

with constant deviation ojc = 0.03. Particles are initially centered around = = 1 and
move into all directions p € [—1, 1]. The initial value for the internal energy is set to
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B% =1 and we start computations with a rank of » = 20. The opacity o is set to the
constant value of 1. Note that this setting is an extension of the so-called plane source
problem, which is a common test case for the radiative transfer equation [16]. In the
context of dynamical low-rank approximation it has been studied in [6, 21, 34, 36].
We compare the solution of the full coupled-implicit system without DLRA which
reads

(7.1a) ujl-k :u?k - At.D]w-,L-U?EAkZ + Athfu?e|A|kg + crAt(B}-éko - u;k)
(7.1b) B} =B + o At(uj, — Bj)

J

to the presented energy stable mass conservative DLRA solution from (5.5). We
refer to (7.1) as the full system. The total mass at any time ¢, shall be defined as
mt=Az) j (u?o + B;’) As computational parameters we use n, = 1000 cells in the
spatial domain and N = 500 moments to represent the directional variable. The time
step size is chosen as At = CFL - Az with a CFL number of CFL = 0.99. In Figure
2 we present computational results for the solution f(z, 1), the scalar flux ® = (f),
and the temperature T' at the end time to,q = 8. Further, the evolution of the rank
r in time, and the relative mass error % are shown. One can observe that the
DLRA scheme captures well the behaviour of the full system. For a chosen tolerance
of ¥ = 107!||X||2 the rank increases up to r = 24 before it reduces again. The relative
mass error is of order O(10~14). Hence, our proposed scheme is mass conservative up
to machine precision.

7.2. 1D Su-Olson problem. For the next test problem we add a source term
Q(x) to the previously investigated equations leading to

O f (b, 1) + pdef(t, 2, p) = o(B(t, ) — f(t, 2, 1)) + Q)
8tB(ﬁ,£L') = 0(<f(t’$7 )>ll - B(t,ib))

. _ . _ 4
In our example we use the source function Q(x) = X[—0.5,0.5(2)/a with a = ==&

being the radiation constant. Again we consider the spatial domain D = [—10, 10]
and choose the initial condition

1 —1)2
u(t =0,z) = max [ 107%, —— exp <_(x2)) ,
V/2mol, 207c

with constant deviation o;c = 0.03 and particles moving into all directions p €
[-1,1]. The initial value for the internal energy is set to By = 50, the initial value
for the rank to r = 20. The opacity o is again chosen to have the constant value
of 1. As computational parameters we use n, = 1000 cells in the spatial domain
and N = 500 moments to represent the directional variable. The time step size is
chosen as At = CFL - Az with a CFL number of CFL = 0.99. The isotropic source
term generates radiation particles flying through and interacting with a background
material. The interaction is driven by the opacity o. In turn, particles heat up the
material leading to a travelling temperature front, also called a Marshak wave [26].
Again this travelling heat wave can lead to the emission of new particles from the
background material generating a particle wave. At a given time point te,q = 3.16
this waves can be seen in Figure 3 where we display numerical results for the solution
f(x, i), the scalar flux ® = (f), and the temperature 7. We compare the solution of
the full coupled-implicit system differing from (7.1) by an additional source term to the
presented energy stable mass conservative DLRA solution from (5.5) where we have
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f full

0.625

0.600

0.575
©

0.550

0.525

0.500

-10

-10
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0.90
0.89
0.88 1
~ 0.874
0.86 1

0.854

a" J—

full
« DLRA

fm® = |
]

AR EEERRER TR YY!

F1G. 2. Top row: Numerical results for the solution f(x,p) of the plane source problem at time
tend = 8 computed with the full coupled-implicit system (left) and the DLRA system (right). Middle
row: Travelling particle (left) and heat wave (right) for both the full system and the DLRA system.
Bottom row: Ewvolution of the rank in time for the DLRA method (left) and relative mass error

compared for both meth

ods (right).

also added this source term. Further, the evolution of the rank in time is presented for
a tolerance parameter of ¥ = 1072||X||5. Again we observe that the proposed DLRA
scheme approximates well the behaviour of the full system. In addition, a very low
rank is sufficient to obtain accurate results. Note that due to the source term there
is no mass conservation in this example.

7.3. 2D Beam. To approve computational benefits of the presented method we
extend it to a two-dimensional setting. The set of equations becomes:

atf(taxa Q) + Q : fo(tv X, Q)

U(B(tvx) - f(t,X, Q))a

atB(t7x> = U(<f(t;xa )>Q - B(tvx))'
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f full

f DLRA le14

F~ == full == full

1.50 \\\ ..es DLRA 30001 ‘\\ ... DLRA
1.25 \ AN
1 ~
1.00 | 20001 s
©0.75 \ . S~
0.50 AN 1000 1 Sss

0.25 Sa =

0.00

20

15

10

Fic. 3. Top row: Numerical results for the solution f(x,u) of the Su-Olson problem at time
tend = 3.16 computed with the full coupled-implicit system (left) and the DLRA system (right).
Middle row: Travelling particle (left) and heat wave (right) for both the full system and the DLRA
system. Bottom row: Evolution of the rank in time for the DLRA method.

For the numerical experiments let x = (z1,22) € [—1,1] x [-1,1],Q = (Q21,Q9,Q3) €
S? and o = 0.5. The initial condition of the two-dimensional beam is given by

1 x| 1 (2 — ) 4 (3 — Q)3
t=0,x,Q) =10 — |- -
i %, €2) 2no2 CXP ( 202 2o, exp 203 ’

with Q* = %, Oy
B = 1, the initial value for the rank to » = 100. The total mass at any time ¢,
shall be defined as m"™ = Az1Axs > j (u}lo + Bj”) We perform our computations on
a spatial grid with Ncensx = 500 points in ;1 and Ngeysy = 500 points in xo. For
the angular basis we use again a modal approach, namely the spherical harmonics
(Pn) method. Technical details can be found in [4, 31, 29], whereas [36, 22| relates

the method to dynamical low-rank approximation. The polynomial degree shall be

= og = 0.1. The initial value for the internal energy is set to
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chosen large enough such that the behaviour is captured correctly but small enough to
stay in a reasonable computational regime. An increasing order of unknowns usually
leads to an increasing complexity and therefore to the need of a higher polynomial
degree. For our example we use a polynomial degree of npny = 29 corresponding to 900
expansion coefficients in angle. The time step size is chosen as At = CFL - Az with
a CFL number of CFL = 0.7. We compare the solution of the two-dimensional full
system corresponding to (7.1) to the two-dimensional DLRA solution corresponding
to (5.5). The extension to two dimensions is straightforward. In Figure 4 we show
numerical results for the scalar flux ® = [, f(,x, ) dQ2 and the temperature T" at the
time ¢ = 0.5. We again observe the accuracy of the proposed DLRA scheme. For this
setup the computational benefit of the DLRA method is significant as the run time
compared to the solution of the full problem is reduced by a factor of approximately
8 from 20023 seconds t(l) 2509 seconds. For the evolution of the rank r in time and

the relative mass error % we consider a time interval up to ¢ = 1.5. In Figure

5 one can observe that for a chosen tolerance parameter of ¥ = 5 - 1074||X||, the
rank increases but does not approach its allowed maximal value of 100. Further,

the relative mass error stagnates and the DLRA method shows its mass conservation
property.

F1G. 4. Numerical results of the scalar flur and the temperature for the 2D beam example for
the full coupled-implicit system (left) and the DLRA system (right) at the time t = 0.5.
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F1G. 5. Ewvolution of the rank in time for the 2D beam example for the DLRA method (left)
and relative mass error compared for both methods (right) until a time of t = 1.5.

8. Conclusion and outlook. We have introduced an energy stable and mass
conservative dynamical low-rank algorithm for the Su-Olson problem. The key points
leading to these properties consist in treating both equations in a coupled-implicit
way and using a mass conservatice truncation strategy. Numerical examples both in
1D and 2D validate the accuracy of the DLRA method. Its efficiency compared to
the solution of the full system can especially be seen in the two-dimensional setting.
For future work, we propose to implement the parallel integrator of [7] for further en-
hancing the efficiency of the DLRA method. Moreover, we expect to draw conclusions
from this Su-Olson system to the Boltzmann-BGK system and the DLRA algorithm
presented in [11] regarding stability and an appropriate choice of the size of the time
step.
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