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Abstract

In an electronic plasma an initial disturbance from the equilibrium distribution gives rise
to an oscillating electromagnetic field. The Soviet physicist Lev Davidovich Landau discov-
ered in the 1940s that for the Vlasov-Poisson system this electric field is actually damped.
This phenomenon is referred to as Landau damping. In the present work we consider the
Vlasov-Poisson-BGK system. It differs from the Vlasov-Poisson system by an additional
BGK relaxation operator which takes binary collisions of the plasma particles explicitly into
account. Following Landau’s approach we show that for this system there is also a damping
effect of the electric field. In a first step, we derive the corresponding dispersion relation and
show analytically that under the assumption of large wavelengths and small collision frequen-
cies the damping effect can be split up into a Landau damping part and a collisional damping
due to the BGK relaxation. In a second step, we solve the dispersion relation numerically
and study the behaviour of the zeros of the dispersion relation for different values of the wave
vector and the collision frequency.
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Chapter 1

Introduction

More than 99 % of the visible matter of the universe are made up of plasma [24, 29]. Roughly
speaking, plasma is an overall electrically neutral substance consisting of ions and free elec-
trons which left the orbit around the atomic nuclei. It is often considered as the fourth state
of matter besides solids, liquids and gases that arises from the gaseous state by ionization.
The word plasma, which is Greek and means "formed" or "molded", was introduced by the
American scientist Irving Langmuir in the 1920s [5, 9]. Together with Lewi Tonks he ex-
perimentally produced such an ionized gas by electric discharges in a tube. In his article
"Oscillations in ionized gases" [19] he describes his observations:

"Except near the electrodes, where there are sheaths containing very few electrons,
the ionized gas contains ions and electrons in about equal numbers so that the
resultant space charge is very small. We shall use the name plasma to describe
this region containing balanced charges of ions and electrons."

Further, he discovered that for an initially disturbed plasma not being in this balanced charge
of ions and electrons any more, there are large Coulomb forces. They arise due to the electro-
magnetic field and lead to collective effects of the plasma. This means that a single plasma
particle interacts by long range Coulomb forces with many other ones. In his experiments
Langmuir was able to observe that this leads to high-frequency electron oscillations which
tend to bring back an overall neutrality. These oscillations are often called "Langmuir oscil-
lations" or "Langmuir waves" [9, 16].

1.1 Characterization of a plasma

Following [9, 10], there are three main properties that characterize a plasma. Before stating
them, we first have to introduce another characteristic quantity of plasma, the Debye length.
We consider an unperturbed spatially uniform distribution of ions and free electrons such
that the resulting overall mixture is neutral. Then, a single additional charged particle, a
so-called test particle, is inserted slowly into the distribution. This test particle interacts
with the particles of the plasma. Let us assume that the test particle is of positive charge. In
this case nearby negatively charged electrons will be attracted and nearby positively charged
ions will be repelled by the test particle. The mass of the ions is much larger than the mass
of the electrons. Hence, it is assumed that the ions are immobile and only the electrons are
moving. The result will be a negatively charged cloud of electrons around the test ion. From
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CHAPTER 1. INTRODUCTION

a macroscopic point of view the sphere around the test particle then can again be considered
neutral of charge. This means that the resulting net charge is approximately equal to zero.
It is said that the cloud potential shields the potential of the test particle. For specifying the
distance within which this shielding happens we introduce the Debye length. For T being the
electron temperature, kB the Boltzmann constant, ε0 the electric permittivity of vacuum, e
the elementary charge and n the electron density, the Debye length is defined by

λD =
(
ε0kBT

ne2

)1/2
. (1.1)

The ball around the test particle of radius λD is called Debye sphere and the region in which
the shielding happens is said to be the plasma sheath. Its radius is of several Debye lengths.
Inside the plasma sheath the condition of macroscopic electrical neutrality may not be ful-
filled in contrast to the plasma region outside of it. The ability of cancelling out potentials
is referred to as the Debye shielding property of plasma [5, 9].

The first criterion characterizing a plasma is that the Debye length shall be much smaller
than the physical dimension L of the system. Then, there is enough space such that Debye
shielding can take place and the effects occurring in the plasma sheaths can be neglected.
This criterion implicitly contains the condition of macroscopic neutrality for a plasma as
deviations from neutrality only occur in length scales comparable to the Debye length. This
property is also called the quasi-neutrality of a plasma.

The second criterion concerns the number ND of electrons inside a Debye sphere. It can be
calculated by

ND = 4
3πλ

3
Dn

and shall be much larger than one. Then, the huge amount of electrons inside a Debye sphere
enables the Debye shielding effect to take place.

The third criterion concerns collisions between the particles. Depending on the degree of
ionization some plasmas contain neutral atoms besides the free ions and electrons. In this
case it can happen that the oscillating electrons of the plasma collide with neutral atoms and
the amplitude of the oscillations is damped. Those collisions shall not appear too often. Let
τ denote the mean time that an electron travels between collisions with neutral atoms. Then,
the collision frequency 1

τ shall be small compared to the plasma frequency given by

ωp =
(
ne2

mε0

)1/2

, (1.2)

where m denotes the mass of an electron. If this condition is not fulfilled the weakly ionized
medium can be considered as a neutral gas rather than a plasma.
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CHAPTER 1. INTRODUCTION

In summary, according to [9, 10] a plasma shall exhibit the following properties:

1. λD � L,

2. ND � 1,

3. ωpτ > 1.

1.2 Plasma in nature and in practical applications

Plasma can be found in various forms in nature as well as in practical applications. Stars,
interstellar space, galaxies, intergalactic space and gaseous nebulas are all in a plasma state.
Also the center of our solar system, the Sun, is made of plasma. It generates energy from
thermonuclear fusion processes and sends solar radiation towards the Earth. This is funda-
mental for human living being possible. Also part of the Earth’s atmosphere, the Ionosphere,
is in a plasma state. It reaches from an altitude of approximately 60 kilometres up to several
thousands of kilometres [9]. Inside our atmosphere natural plasma phenomena are rather
limited. Here, polar lights like the aurora borealis or the flash of a lightning bolt are ex-
amples. Besides these plasmas occurring in the nature, there is also a lot of research of
how plasmas can be artificially generated and used in several applications. For instance, the
magnetohydrodynamic generator shall be mentioned. It generates electric energy from the
kinetic energy of a dense plasma in a magnetic field. More examples are plasma propulsion
systems which are often applied by rocket engineers for long-distance interplanetary space
travel missions, particle accelerators or gas lasers. In industry, plasma can be found in the
semiconductor fabrication, for coating or the disinfection of medical instruments. In everyday
life, neon tubes or plasma displays are very common. For more information on the application
of plasma physics the reader is referred to [9, 10].

1.3 The ITER project

Another important field of research in which artificially generated plasmas play an important
role is the one of controlled thermonuclear fusion. Here, the project ITER can be consid-
ered as a milestone on the way to commercialized energy production by fusion reactions.
ITER which is Latin and means "the way" or "the path" is an acronym for International
Thermonuclear Experimental Reactor. The idea for this huge research project came up in
1985. Since then the European Union, the United States, Russia, Japan, China, South Korea
and India have joined. At the moment the construction of ITER takes place in Cadarache in
the south-eastern part of France, before in 2025 the first plasma is scheduled to be created
there. The working principle of ITER is based on the fusion of two light nuclei to a heavier
atom. At the moment the most accessible approach consists in fusing isotopes of hydrogen,
usually deuterium and tritium, under very high temperatures to a heavier helium atom and
a loose neutron. In this process energy is set free. For the fusion in the ITER project the
concept of magnetic confinement is used. There, the plasma is confined under very powerful
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CHAPTER 1. INTRODUCTION

magnetic fields in a toroidal chamber, a so-called tokamak. This name comes from a Russian
acronym standing for "toroidal chamber with magnetic coils". The tokamak of the ITER
project can exemplarily be seen in Figure 1.1.

Figure 1.1: Schematic construction of the ITER tokamak.1

Using these concepts ITER shall serve as a large science and technology demonstration and
the first fusion power plant that generates as much energy as it consumes. A detailed de-
scription of ITER and the principles of fusion energy can be found in [24].

1.4 Plasma models

Depending on the considered problem and the underlying physics an adequate description
of the plasma model has to be chosen. The microscopic, the kinetic and the macroscopic
approach are the three possible main points of view. On a microscopic level the motion of
each particle contributing to the plasma is considered individually and their time evolution
is assumed to be governed by Newton’s laws. This is the most accurate model. As a plasma
usually consists of a very large number of particles this approach requires great effort and
therefore is hardly used in practice. A less detailed but more feasible formulation is given
by kinetic models. This corresponds to a treatment on a mesoscopic level. It is based on a
statistical description of the particle distribution in phase space. Concepts like the particle
distribution function will be introduced in Chapter 2. Kinetic models are often applied to
problems where collective effects dominate over binary collisions. On a macroscopic level the
formulation of the considered problem is given in terms of macroscopic quantities like density,
mean velocity and energy. This is called a macroscopic or also fluid description. In addition,
there are models that specify or combine these three approaches. More information on this
topic is given in [27]. In this work, a kinetic approach will be considered.

1Source: https://www.iter.org/img/resize-900-90/www/content/com/Lists/Machine/Attachments/30/
tkm_cplx_final_plasma2013-07.jpg.
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CHAPTER 1. INTRODUCTION

1.5 Structure of the thesis

The structure of the thesis is as follows. In Chapter 2 mathematical and physical prerequi-
sites, basics for the kinetic description of plasma and Maxwell’s equations will be given.

Chapter 3 is centered around the Vlasov equation which serves as a kinetic model for the time
evolution of plasma in certain regimes. It was first derived from the Boltzmann equation by
Anatoly Alexandrovich Vlasov in 1938 [32]. For the modeling of a plasma the self-consistent
electromagnetic field generated by the plasma particles has to be taken into account. It
gives rise to collective effects. This is achieved by coupling the Vlasov equation to Maxwell’s
equations. Under certain assumptions the magnetic field becomes negligible while the electric
field remains. In this case the resulting set of equations is called the Vlasov-Poisson system.
One important property of this system is the phenomenon of Landau damping. It describes a
damping effect of the electric field that arises due to an initial disturbance and the collective
behaviour of plasma. In 1946, when the Soviet physicist Lev Davidovich Landau discovered
this phenomenon [18], it was a quite astonishing result that damping occurs even without
considering binary collisions of the particles explicitly. Using Landau’s approach we will de-
rive this damping effect mathematically and give a physical interpretation.

In Chapter 4 we will no longer neglect binary collisions and add a collision term, the BGK re-
laxation, to the Vlasov equation. The resulting framework is called the Vlasov-Poisson-BGK
system. It will be shown that for a small initial disturbance there is also a damping effect of
the electric field. To this end, we follow the article by Landau [18] and adapt his approach
to the problem considered here. This gives us a complicated analytical equation, called the
dispersion relation, for which the zeros shall be determined. First, this is achieved for large
wavelengths and small collision frequencies by adapting the methods used in an article by
Warren Preston Wood and Barry William Ninham [35]. We shall formulate parts of their
argumentation in greater detail and from a more mathematical point of view. This will lead
to an expression of the damping coefficient that clearly shows the contribution of Landau
damping as well as of the BGK relaxation to the damping effect. Afterwards, the zeros of the
dispersion relation are calculated numerically. For this part we make use of a code that was
applied in [27] and provided by its author Eric Sonnendrücker such that it could be adapted
to the considered Vlasov-Poisson-BGK framework.

Chapter 5 is devoted to the idea of extending the approaches of this thesis to a multi-species
BGK model based on the work of Marlies Pirner [25]. Moreover, it contains a short summary
and conclusion.
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Chapter 2

Basic concepts

Before discussing the main parts of this thesis, some fundamentals from mathematics and
physics shall be given. These basic concepts are needed throughout the following chapters.
We start by recalling important mathematical quantities and theorems, followed by principles
for the kinetic description of plasma and Maxwell’s equations.

2.1 Mathematical prerequisites

For the correct treatment of the Vlasov-Poisson and the Vlasov-Poisson-BGK system some
integral transforms will be very useful. They will be introduced in the following. After that,
the concept of contour integration as well as important theorems from complex analysis are
given. Finally, some special functions will be treated.

2.1.1 The Fourier transform

The Fourier transform is a powerful tool in classical as well as in modern analysis. Its
basic principles were first presented by Jean Baptiste Joseph Fourier in his book "Théorie
analytique de la chaleur" [13] published in 1822. Since then, a whole theory based on his
ideas has been developed. Before giving its definition, a suitable function space, namely the
Schwartz space, shall be introduced.

Definition 2.1 (Schwartz space, [36]). Let α, β ∈ Nn0 be multi-indices with n ∈ N and
x ∈ Rn. The function space

S(Rn) =
{
f ∈ C∞(Rn) : sup

x∈Rn
|xβDαf(x)| <∞ ∀α, β ∈ Nn0

}

with xβ =
n∏
j=1

x
βj
j und Dαf(x) = ∂α1+α2+...+αn

∂xα1
1 ∂xα2

2 ...∂xαnn
f(x) is called Schwartz space. Its elements

f ∈ S(Rn) are called rapidly decreasing.

On this space the Fourier transform can be defined as follows.

6



CHAPTER 2. BASIC CONCEPTS

Definition 2.2 (Fourier transform, [36]). Let f ∈ S(Rn) and ξ, x ∈ Rn. Then, the Fourier
transform of f is given by

f̂(ξ) = (2π)−n/2
∫
Rn
f(x)e−iξ·x dx.

In the next definition the concept of the inverse Fourier transform is introduced.

Definition 2.3 (Inverse Fourier transform, [36]). Let f ∈ S(Rn) and ξ, x ∈ Rn. Then, the
inverse Fourier transform of f is given by

f̌(x) = (2π)−n/2
∫
Rn
f(ξ)eix·ξ dξ.

On S(Rn), the Fourier transform exhibits the following property.

Lemma 2.4 ([36]). The Fourier transform is a linear homeomorphism from S(Rn) onto itself.
For f ∈ S(Rn) it holds

ˇ̂
f = f = ˆ̌

f

and the notation f̌(x) can be identified with (f̂−1)(x).

This means that the inverse Fourier transform given in Definition 2.3 exactly describes the
corresponding inversion process and the name of the transform is appropriately chosen.

2.1.2 The Laplace transform

Another relevant integral transform is the Laplace transform. It is often used for solving
ordinary or partial differential equations. For its definition it is crucial that the contained
integral exists.

Theorem 2.5 ([6]). Let f : [0,∞[→ C be continuous. If there exist constants a, b ∈ R such
that |f(t)| ≤ aebt for t→∞ and if

∫ T
0 |f(t)| dt <∞ for every finite T > 0, then the integral∫ ∞

0
f(t)e−st dt with s ∈ C

exists for Re(s) > b and converges absolutely and uniformly in the same domain.

With this knowledge we can define the Laplace transform on the corresponding half plane.

Definition 2.6 (Laplace transform, [6]). Let f be a function satisfying all assumptions from
Theorem 2.5. Then, for s ∈ C with Re(s) > b the (one-sided) Laplace transform of f is given
by

Lf(s) = f̃(s) =
∫ ∞

0
f(t)e−st dt.

7



CHAPTER 2. BASIC CONCEPTS

As discussed in [15], the Laplace transform exhibits some useful properties. One of these is
given in the next lemma.

Lemma 2.7 ([15]). The Laplace transform L : f → Lf = f̃ is a linear operator, i.e. it holds

L(f + g) = Lf + Lg and L(λf) = λ Lf,

with λ ∈ C and f, g as in Theorem 2.5.

It is desirable to have an inversion formula for the Laplace transform. The existence of the
contained integral is treated in the next theorem.

Theorem 2.8 ([6, 27]). Let R,M ∈ R be constants such that the function F (s) satisfies the
following conditions:

(i) F (s) is analytic for Re(s) > R,

(ii) |sF (s)| ≤M for all s such that |s| > R.

Then, the integral

f (t) = 1
2πi

∫ c+i∞

c−i∞
F (s)est ds, c > R,

exists for all t > 0.

Note that in Theorem 2.8 the integral is taken along a vertical line parallel to the imaginary
axis such that all singularities of F (s) are located on the left-hand side of it. Knowing about
the existence of the integral we can give a proper definition of the inverse Laplace transform.

Definition 2.9 (Inverse Laplace transform, [6, 27]). The integral transform

f(t) = 1
2πi

∫ c+i∞

c−i∞
F (s)est ds, c > R,

given in Theorem 2.8 is called the inverse Laplace transform.

Inserting the Laplace transform of f into the inverse Laplace transform gives us indeed back
the original function f .

Lemma 2.10 ([6, 27]). Under the assumptions of Theorem 2.8 it holds F (s) = Lf(s), i.e.
we obtain the relation

f(t) = 1
2πi

∫ c+i∞

c−i∞
f̃(s)est ds, c > R.

8
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Adopting a convention often used by physicists, we write s = −iω̄ with ω̄ ∈ C in what follows.
With this notation the Laplace transform of f is given in the form

Lf(ω̄) = f̃(ω̄) =
∫ ∞

0
f(t)eiω̄t dt.

Using linearity the inverse Laplace transform can be written as

f(t) = 1
2πi

∫ ∞+ic

−∞+ic
f̃(ω̄)e−iω̄t dω̄.

Note that in this setting the integral in the inverse Laplace transform is taken along a hori-
zontal line parallel to the real axis such that all singularities of f̃(ω̄) are located below it.

2.1.3 Contour integration and the residue theorem

In the definition of the inverse Laplace transform the integral is taken along a straight line
in the complex plane. Under certain assumptions, this integration contour can be deformed.
We recall important theorems from complex analysis and start with the concept of a path.

Definition 2.11 (Path, [3]). Let γ : [a, b]→ C be a curve that is continuously differentiable
or piecewise continuously differentiable. Then, γ is called a path or a contour. If γ(a) = γ(b),
the path is said to be closed.

With this definition we can introduce the contour integral of a function f .

Definition 2.12 (Contour integral, [3]). Let γ : [a, b] → C be a path and f a continuous
complex-valued function defined on the graph of γ. The contour integral of f on γ is defined
as ∫

γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt.

Sometimes the contour integral itself is difficult to evaluate. Then one can make use of helpful
theorems from complex analysis.

Theorem 2.13 (Cauchy’s integral theorem, [3]). Let Ω ⊆ C be a simply connected domain
and f : Ω→ C an analytic function. If γ is a closed path in Ω, then it holds∫

γ
f(z) dz = 0.

For stating the next theorem we first have to introduce further quantities.

9



CHAPTER 2. BASIC CONCEPTS

Definition 2.14 (Winding number, [4]). Let γ : [a, b]→ C be a path and z0 ∈ C be a point
not lying on the graph of γ. Then,

n(γ, z0) = 1
2πi

∫
γ

dz
z − z0

is called the windung number of γ around z0.

In addition to the winding number also the residue is of importance.

Definition 2.15 (Residue, [3]). Let ε > 0 and f be a function that is analytic in a deleted
neighborhood Uε(z0) of a point z0 and has an isolated singularity at z0. Then, the residue of
f at z0 is defined as

Res(f, z0) = 1
2πi

∫
Cδ(z0)

f(z)dz,

where Cδ(z0) denotes a positively oriented circle of radius 0 < δ < ε around z0.

This allows us to state the residue theorem.

Theorem 2.16 (Residue theorem, [4]). Let f be analytic on a simply connected domain
Ω ⊆ C except for finitely many isolated singularities z1, z2, ..., zp ∈ Ω and γ be a closed
integration path not intersecting any of the singularities. Then,

∫
γ
f(z) dz = 2πi

p∑
j=1

n(γ, zj) Res(f, zj),

where n(γ, zj) denotes the winding number of the path γ around the singularity zj and
Res(f, zj) the residue of f at zj .

The residue theorem will later be used for evaluating the integral in the inverse Laplace
transform.

2.1.4 Special functions

We will also be concerned with some special functions throughout this work. One of it, the
gamma function, is commonly known from complex analysis. Before giving a definition we
state the convergence of the included integral.

Lemma 2.17 ([1]). For z ∈ C with Re(z) > 0 the integral∫ ∞
0

tz−1e−t dt

converges absolutely.

10



CHAPTER 2. BASIC CONCEPTS

We now define the according function.

Definition 2.18 (Gamma function, [1]). For z ∈ C with Re(z) > 0 the integral

Γ(z) =
∫ ∞

0
tz−1e−t dt

is called Euler integral of the second kind. The corresponding function is called the gamma
function.

For special values, the gamma function can be evaluated easily.

Lemma 2.19 ([26]). It holds

Γ
(
n+ 1

2

)
= (2n)!

4nn!
√
π

for all n ∈ N0.

We will make use of this relationship later on. Another special function is the error function.

Definition 2.20 (Error function, [2]). The function erf : C→ C defined by

erf(z) = 2√
π

∫ z

0
e−t

2 dt

is called the (Gauss) error function.

For real arguments x ∈ R, the function erf(x) takes real values. For complex arguments we
can also work with the imaginary error function.

Definition 2.21 (Imaginary error function, [27]). The function erfi : C→ C given by

erfi(z) = −i erf(iz) = 2√
π

∫ z

0
et

2 dt

is called the imaginary error function.

The imaginary error function is a classical special function that can be found in most of the
standard numerical software [27]. This will be of advantage when showing the damping effect
of the electric field in the Vlasov-Poisson-BGK system numerically.

2.2 Principles for the kinetic description of plasma

The main equation around which this thesis is centered is the Vlasov equation. It offers a
kinetic description for the time evolution of plasma. Kinetic models make use of a distribution
function describing the density of particles in phase space.

11
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Definition 2.22 (Distribution function, [25]). A function f : R3×R3×R+
0 → R, (x, v, t)→

f(x, v, t) is called a distribution function if and only if f(x, v, t) dx dv is the number of particles
with velocities in (v, v + dv) located in the interval (x, x+ dx) at time t.

In this definition the phase space corresponds to a six-dimensional space having three com-
ponents for the space vector x and three components for the velocity vector v. Note that the
space and velocity variables are assumed to be independent. Further, it is assumed that the
density of the particles does not vary too fast so that f can be considered as a continuous
function [9].

Compared to a microscopic description, kinetic models concentrate on less information and
therefore have the advantage of being easier to handle. The concept of using a distribution
function hereby corresponds to a statistical approach. If the distribution function is normal-
ized to one, its value can be interpreted as the probability of a particle being at time t at the
point (x, v) in phase space [27]. For a fluid description, macroscopic values are of importance.
They can be obtained from the distribution function by averaging.

Definition 2.23 (Macroscopic quantities, [20, 25]). Let f : Λ× R3 × R+
0 → R with Λ ⊆ R3

be a distribution function. Assuming that all integrals exist, the number density n, the mean
velocity u and the temperature T are given by n(x, t)

n(x, t)u(x, t)
3n(x, t)kBT (x, t)

 =
∫
R3
f(x, v, t)

 1
v

m
∣∣v − u (x, t)

∣∣2
 dv,

where kB denotes the Boltzmann constant and m the mass of the considered particle species.

It is essential that the fluid model can be derived from the kinetic description by taking
moments of the distribution function such that these two perspectives merge into each other.
An important distribution is the Maxwell-Boltzmann distribution.

Definition 2.24 (Maxwell-Boltzmann distribution, [25]). A distribution of the form

M(v) = C exp
(
−|v − U |

2

A

)

with C,A ∈ R+ and U ∈ R3 is called a Maxwell-Boltzmann distribution or a Maxwellian
velocity distribution. If the parameters C,A and U depend on x and t the distribution
M(x, v, t) is called a local Maxwell-Boltzmann distribution or a local Maxwellian velocity
distribution.

In contrast to fluid models, kinetic ones are more accurate. This is illustrated in the following
example.

12
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Example 2.25 ([10, 16]). Consider the following one-dimensional distribution functions for
which the areas under the curves shall have the same size.

Figure 2.1: (a) Maxwellian distribution. (b) Non-Maxwellian distribution.2

Then integration with respect to v gives us the same macroscopic quantities for both cases.
Hence, a fluid description cannot distinguish between those two distributions whereas from
a kinetic point of view they look significantly different.

For the hydrodynamics of liquids and undiluted gases a fluid description often is sufficient
whereas for plasmas at high temperatures in most cases a kinetic description is appropriate
[16].

2.3 Maxwell’s equations

In a plasma we encounter long range Coulomb forces leading to a self-consistent electromag-
netic field generated by the plasma particles themselves. This electromagnetic field can be
described by Maxwell’s equations. Let E(x, t) denote the electric and B(x, t) the magnetic
field. Then in a three-dimensional setting Maxwell’s equations are given by

∇ · E = ρ

ε0
, (Gauss’s law)

∇ ·B = 0, (Gauss’s law for magnetism)

∇× E = −∂B
∂t
, (Faraday’s law)

∇×B = µ0

(
J + ε0

∂E

∂t

)
. (Ampère’s law)

Here, ε0 stands for the electric permittivity of vacuum and µ0 for the magnetic permeability
of vacuum. Further, ρ denotes the electric charge density and J the electric current density.
These quantities can be calculated from the distribution function by

ρ(x, t) =
∑

q

∫
R3
f(x, v, t) dv and J(x, t) =

∑
q

∫
R3
f(x, v, t)v dv,

2Source: [16] Goldston, R.J. and Rutherford P.H., 1998, p.309.
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where q denotes the charge of the particles and the sum is taken over all particle species
contributing to the plasma [16, 25].

14



Chapter 3

The Vlasov-Poisson system

The Vlasov equation is an important partial differential equation for the kinetic modeling
of plasma. In this chapter it will be presented and coupled to Maxwell’s equations resulting
under certain assumptions in the Vlasov-Poisson system. This part is mainly taken from
[27]. Then we will study plasma oscillations for a medium that initially was disturbed from
equilibrium and follow the approach by Landau [18] which he used to show a damping effect
of the electric field. Finally, we will give a physical interpretation of the phenomenon of
Landau damping. Note that for simplicity, we will set the physical constants ε0, µ0 and kB
in the following chapters to one.

3.1 The equations

Let f : Λ×R3×R+
0 → R with Λ ⊆ R3 be a distribution function mapping (x, v, t) to f(x, v, t)

and E(x, t) and B(x, t) denote the electric and magnetic field. For one species of particles
with mass m and charge q and in a non-relativistic setting, the Vlasov equation is given by

∂f

∂t
+ v · ∇xf + q

m
(E + v ×B) · ∇vf = 0. (3.1)

It describes the time evolution of the distribution function of charged particles in an electro-
magnetic field assuming that binary collisions of the particles can be neglected.

We further assume that the electromagnetic field is self-consistent and not externally applied
and that it is not or only very little time-dependent. Its contribution is taken into account
by coupling (3.1) to the stationary Maxwell equations

∇ · E = ρ,

∇ ·B = 0,
∇× E = 0,
∇×B = J.

Note that in this setting the electric and magnetic field are decoupled.

In many cases, the contribution of the magnetic field is very small. Thus, it will be neglected
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in further considerations and we are left with the two Maxwell equations

∇ · E = ρ, (3.2)
∇× E = 0. (3.3)

From (3.3) we get that E can be derived from a scalar potential φ. Thus, we can write
E = −∇φ. Inserting this notation in (3.2), we get the Poisson equation

−∆φ = ρ.

Moreover, we make the assumption that the considered plasma consists only of electrons and
ions. This is justifiable for very warm plasmas [9]. As the ions have a much larger mass than
the electrons they can be assumed immobile and their contribution can be considered in form
of a neutralising background density n0. Then the Vlasov equation for the electron motion
is given by

∂f

∂t
+ v · ∇xf −

e

m
E · ∇vf = 0, (3.4)

where we inserted the negative elementary charge e. The symbol m represents the electron
mass. From Maxwell’s equations, we get for the electric field

E = −∇φ, −∆φ = ρ = e(n0 − n). (3.5)

The macroscopic number density can be calculated from the distribution function by

n(x, t) =
∫
R3
f(x, v, t) dv.

This coupled system is called the Vlasov-Poisson system. It will be the basis for further
considerations in this chapter.

3.2 On Landau damping

In 1946, Landau published his famous article "On the vibrations of the electronic plasma"
[18]. There he treated the Vlasov-Poisson system and showed a damping effect of the electric
field that arises due to an initial disturbance from the equilibrium distribution. Unlike from
Vlasov in [31], he considered an initial value problem involving a Laplace transform of the
distribution function such that an encountered singularity was treated properly. In this way,
he predicted the damping phenomenon from a strictly mathematical point of view [23]. In
experiments, the effect of Landau damping could be successfully observed only about 20 years
later, see [21].

Following Landau’s approach we will consider a linearized version of the Vlasov-Poisson
system. A correct treatment of the non-linear case was first given in 2010 by Clément Mouhot
and Cédric Villani. Their ideas can be found in [22] and [23].
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Our study concerns longitudinal plasma oscillations. These plasma waves are characterised
by a wave vector k determining the direction of the wave propagation and a wave frequency
ω̄. For longitudinal plasma waves it is possible to restrict our studies to a one-dimensional
setting. As in [18] we choose the x-axis along the direction of the wave vector k and obtain

∂f

∂t
+ v

∂f

∂x
− eE

m

∂f

∂v
= 0, (3.6)

where f : Λ×R×R+
0 → R, (x, v, t)→ f(x, v, t) with Λ ⊆ R and the electric field E(x, t) can

be calculated from

∂E

∂x
= e(n0 − n). (3.7)

3.2.1 Landau’s approach

The three main steps Landau performs in order to examine the electric field are a lineariza-
tion of the Vlasov-Poisson system followed by a Fourier transform in the space variable and
a Laplace transform in the time variable. For these parts we shall mainly follow [18].

Let us start with a distribution function f that initially is slightly disturbed from equilibrium.
We shall write

f(x, v, t) = fequ(v) (1 + h(x, v, t)) (3.8)

with h being a perturbation that is small compared to the Maxwellian equilibrium distribution

fequ(v) = n0(
2πT0/m

)1/2 exp
(
− v2

2T0/m

)
. (3.9)

Here, n0 denotes the constant background density of neutralising ions and T0 the constant
equilibrium temperature.

Linearization of the Vlasov-Poisson equation

Plugging the expression (3.8) for the distribution function f in the Vlasov-Poisson equation
(3.6) gives

∂

∂t
(fequ + fequh) + v

∂

∂x
(fequ + fequh)− eE

m

∂

∂v
(fequ + fequh) = 0. (3.10)

For the electric field we get from (3.7)

∂E

∂x
= e

(
n0 −

∫
R
f dv

)
= e

(
n0 −

∫
R
fequ dv −

∫
R
fequh dv

)
= −e

∫
R
fequh dv. (3.11)

17



CHAPTER 3. THE VLASOV-POISSON SYSTEM

As the equilibrium distribution fequ given in (3.9) does not depend on the time variable t
and the space variable x, these partial derivatives vanish in (3.10). Further, one can see from
(3.11) that the electric field depends on the small perturbation h. Therefore, the last term
in (3.10) is non-linear. We obtain the following linearized form

∂

∂t
fequh+ v

∂

∂x
fequh− eE

m

∂

∂v
fequ = 0.

With

∂

∂v
fequ = −vm

T0
fequ

and fequ 6= 0 this equation simplifies to

∂

∂t
h+ v

∂

∂x
h+ evE

T0
= 0. (3.12)

Fourier expansion in the space variable

In [18] Landau suggests to consider solutions of the form

ĥ(v, t)eikx and Ê(t)eikx (3.13)

for the initial distortion h and the electric field E. The notation ĥ and Ê stands for the
corresponding Fourier components. They are obtained by performing a Fourier transform or
a Fourier series expansion depending on the underlying setting. The latter is commonly used
in plasma physics when considering a torus T = R/LZ of side length L [23].

Landau’s ansatz for the solution in (3.13) can be considered as a wave propagating in the di-
rection of the wave vector k. Without loss of generality, we assume that the wave propagates
in a positive direction and use fixed k > 0 throughout this work.

By multiplication with e−ikx and integration with respect to x one gets the following relations
for the Fourier components. From (3.12) one obtains

∂

∂t
ĥ+ ikvĥ+ evÊ

T0
= 0 (3.14)

and from (3.11) one gets for the electric field

ikÊ = −e
∫
R
fequĥdv. (3.15)

Note that for giving expressions (3.14) and (3.15) we have assumed all quantities to be smooth
and integrable enough such that one can interchange the order of integration and the process
of integration and partial differentiation. Further, h and E shall fulfill appropriate boundary
conditions.
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Laplace transform in the time variable

In the next step we would like to eliminate the time-dependence in (3.14). For this purpose,
we apply a Laplace transform in the time variable t. Let us assume that ĥ and Ê fulfill
the conditions from Theorem 2.5 such that their Laplace transforms h̃ and Ẽ exist and are
well-defined. Further, let us use the notation s = −iω̄ with ω̄ ∈ C. Multiplication of (3.14)
and (3.15) with eiω̄t and integration with respect to t results in

(−iω̄ + ikv)h̃+ evẼ

T0
= ĥ(v, 0) and (3.16)

ikẼ = −e
∫
R
fequh̃dv, (3.17)

where ĥ(v, 0) denotes the initial value of the Fourier transform ĥ at time t = 0. Moreover,
we have assumed that the integration order is exchangeable and that ĥ vanishes at very large
times.

Algebraic expression for Ẽ

Solving (3.16) for h̃, inserting this expression into (3.17) and solving for Ẽ gives us

Ẽ(k, ω̄) = N(k, ω̄)
D(k, ω̄) (3.18)

for the electric field with

N(k, ω̄) = e

k2

∫
R

ĥ(v, 0)fequ

v − ω̄
k

dv (3.19)

and

D(k, ω̄) = 1 + e

k2

∫
R

ev
T0
fequ

v − ω̄
k

dv. (3.20)

From equation (3.18) it is possible to draw conclusions for the behaviour of the electric field
for an arbitrary initial distribution. To this end, it is desirable to apply the inverse Laplace
transform to (3.18). Herein, some difficulties arise.

3.2.2 Application of the inverse Laplace transform

For the application of the inverse Laplace transform

Ê(t) = 1
2πi

∫ ∞+ic

−∞+ic
Ẽ(k, ω̄)e−iω̄t dω̄, (3.21)

the function Ẽ(k, ·) has to fulfill the conditions from Theorem 2.8. According to [27], they
are satisfied if Ẽ is analytic for Re(s) = Im(ω̄) > R with R ∈ R being constant. As discussed
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in the following, this analyticity is given for R = 0.

Analyticity of Ẽ for Im(ω̄) > 0

Consider the quotient in (3.18). For Im(ω̄) > 0 the denominator in the integrals in (3.19)
and (3.20) does not vanish. Hence, the expressions N(k, ω̄) and D(k, ω̄) are well-defined.
Being a Maxwellian distribution, fequ is analytic. Assume ĥ(v, 0) to be also analytic. Then
for Im(ω̄) > 0 the expression Ẽ as in (3.18) is the quotient of analytic functions and hence
analytic apart from zeros of the denominator which do not appear in this case. This will be
clear from later considerations. For the moment, Ẽ can be assumed analytic for Im(ω̄) > 0,
and in this case the inverse Laplace transform is well-defined [27].

Analytical continuation of N(k, ω̄) and D(k, ω̄) for Im(ω̄) ≤ 0

In the next step we would like to extend the idea of the inverse Laplace transform and define
an analytical continuation for Im(ω̄) ≤ 0. For this purpose, we first analyse the behaviour of
the integrals in (3.19) and (3.20) for all possible cases of Im(ω̄) as done in [5] and [27].

Let us consider a function of the form

G(ω̄) =
∫
R

g(v)
v − ω̄

k

dv (3.22)

with g being an analytic function. We also want G(ω̄) to be analytic. Depending on the
values of ω̄ and k there appears a zero in the denominator of (3.22) at v = ω̄

k . As before let
us assume k > 0 is fixed. For Im(ω̄) > 0 the pole is situated above the real line. Hence, the
integration in (3.22) can be evaluated without any problems along the real line. This case is
illustrated in Figure 3.1a. For decreasing values of Im(ω̄) the pole at v = ω̄

k starts to drop
downwards. As long as the pole does not cross the integration contour this does not affect the
analyticity of G(ω̄). Otherwise, there would be a discontinuous jump. Hence, the integration
contour has to be chosen such that the pole at v = ω̄

k always lies above it. For Im(ω̄) = 0 the
considered pole lies on the real axis. In this case, an analytical continuation can be given by
integrating along a small semicircle that passes below the pole. This is displayed in Figure
3.1b. For Im(ω̄) < 0 the pole can be found below the real axis. In this case Landau proposed
to integrate around the pole as shown in Figure 3.1c.
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Re(v)

Im(v)

C

0

ω̄

k

(a) Im(ω̄) > 0

Re(v)

Im(v)

C

0

ω̄

k

(b) Im(ω̄) = 0

Re(v)

Im(v)

C

0
ω̄

k

(c) Im(ω̄) < 0

Figure 3.1: Position of the pole v = ω̄
k and adequate integration contours for different values of

Im(ω̄).

Let C denote the corresponding integration contour. Then integrating in (3.22) along C

instead of the real axis gives an entire function G(ω̄). Hence, by adapting the integration
contour, we are able to give an analytical continuation for N(k, ω̄) as in (3.19) and for D(k, ω̄)
as in (3.20).

Analytical continuation of the inverse Laplace transform for Im(ω̄) ≤ 0

Remember that for the application of the inverse Laplace transform as in (3.21), it is crucial
that the integral is taken along a horizontal line parallel to the real axis such that all singu-
larities lie below the contour of integration. This situation is illustrated in Figure 3.2a. The
poles are depicted by the black points. Using the analytical continuations for N(k, ω̄) and
D(k, ω̄) we can shift the integration contour in the inverse Laplace transform downwards and
deform it continuously in the following way such that the poles of Ẽ(k, ω̄) are still situated
below the path of integration.

Re(ω̄)

Im(ω̄)

0

c

(a) Classical integration contour in the inverse
Laplace transform along a horizontal line at
the value c.

Re(ω̄)

Im(ω̄)

0

ϕ1

(b) Deformed integration contour for the ana-
lytical continuation of the inverse Laplace
transform.

Figure 3.2: Integration contours for the inverse Laplace transform and its analytical continuation.
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Using the deformed integration contour ϕ1 from Figure 3.2b we are able to give an analytical
continuation of the inverse Laplace transform for Im(ω̄) ≤ 0 [5, 16].

Evaluation of the inverse Laplace transform using the residue theorem

The integral along the deformed integration path∫
ϕ1
Ẽ(k, ω̄)e−iω̄t dω̄

appearing in the inverse Laplace transform with ϕ1 as in Figure 3.2b shall now be evaluated.
A convenient method giving the value of the integral for an arbitrarily deformed integration
contour consists in using Theorem 2.16, the residue theorem. For its application, the integra-
tion contour has to be closed. This is done by adding a semicircle of radius going to infinity
parametrized by ϕ2 to the integration path ϕ1. This closed new contour shall be denoted by
ϕ = ϕ1 + ϕ2. It can be seen in Figure 3.3.

Re(ω̄)

Im(ω̄)

0

ϕ1

ϕ2

Figure 3.3: Closed integration contour for the application of the residue theorem.

Then it holds by additivity of the integral∫
ϕ
Ẽ(k, ω̄)e−iω̄t dω̄ =

∫
ϕ1
Ẽ(k, ω̄)e−iω̄t dω̄ +

∫
ϕ2
Ẽ(k, ω̄)e−iω̄t dω̄

and the residue theorem gives the following relation for the integral along ϕ

∫
ϕ
Ẽ(k, ω̄)e−iω̄t dω̄ = 2πi

p∑
j=1

n(ϕ, ω̄j) Res(Ẽ, ω̄j)e−iω̄jt.

Here, the poles of Ẽ are denoted by ω̄j with j = 1, ..., p for a finite number p ∈ N. They are
all surrounded once by the integration contour ϕ. Hence, for their winding number it holds
n(ϕ, ω̄j) = 1. Further, for the radius of the semicircle going to infinity the contribution of
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the integral along ϕ2 becomes negligible [27]. We approximatively get

∫
ϕ1
Ẽ(k, ω̄)e−iω̄t dω̄ ≈ 2πi

p∑
j=1

Res(Ẽ, ω̄j)e−iω̄jt.

Plugging this expression in (3.21), we get for the Fourier components of the electric field

Ê(t) ≈
p∑
j=1

Res(Ẽ, ω̄j)e−iω̄jt. (3.23)

3.2.3 Dispersion relation of the Vlasov-Poisson system

We see from (3.23) that for determining the temporal behaviour of the electric field the poles
ω̄j of Ẽ play an important role. Let us first make some considerations how these poles can
appear.

From (3.18) we know that Ẽ(k, ω̄) can be written as the quotient of N(k, ω̄) and D(k, ω̄).
Using the discussed analytical continuations for Im(ω̄) ≤ 0 and assuming that ĥ(v, 0) is
analytic, the expressions N(k, ω̄) and D(k, ω̄) can be treated as entire functions. This implies
that the only poles of Ẽ(k, ω̄) are the zeros of the denominator D(k, ω̄), i.e. the values ω̄j for
which

D(k, ω̄) = 1 + e

k2

∫
C

ev
T0
fequ

v − ω̄
k

dv = 0 (3.24)

holds. This equation is called the corresponding dispersion relation as it can theoretically be
rewritten in the form ω̄ = ω̄(k) [16].

Relation of the zeros of the dispersion relation and the damping effect

It is now a challenging task to analytically determine the zeros of the dispersion relation
(3.24). In the linear setting the main focus is on the zero with the largest imaginary part as
this one is dominating for large times [18, 27]. Let ω̄j be this zero. We shall denote its real
and imaginary part by

ω̄j = ω + iγ

with ω, γ ∈ R. Hence, for large times the Fourier components of the electric field behave like

Ê(t) −→ Res(Ẽ, ω̄j)e−iωteγt.

The growth of this expression is determined by the factor eγt. To show a damping effect
of the electric field, it is therefore crucial that the imaginary part of the largest zero of the
dispersion relation is smaller than zero, i.e. γ < 0.
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Landau’s solution for large wavelengths

In the limiting case of long waves (k → 0), Landau was able to show such a damping effect
in [18] under the assumption that |γ| � |ω|. For further details the reader is referred to [18].
He found for the real part ω of the plasma wave frequency the relation

ω2 ≈ ω2
p + 3 (kvth)2 , (3.25)

where ωp is the electron plasma frequency introduced in (1.2) and vth stands for the thermal
velocity of the electrons given by

vth =
(
T0
m

)1/2
. (3.26)

Equation (3.25) is called the Bohm-Gross dispersion relation for longitudinal electron plasma
waves [9]. For the imaginary part γ of the plasma frequency, Landau obtained the expression

γ ≈ −
(
π

8

)1/2 ω4
p

(kvth)3 exp
(
− ω2

2k2v2
th

)
= −γL. (3.27)

Its value is strictly less than zero. Hence, the desired damping effect named after Landau is
proven.

For a detailed description and explanation of how to obtain the above solution of the disper-
sion relation (3.24) by analytical approximations, we refer to several plasma physics textbooks
such as [10], [12], [16] or [29].

3.3 Physical interpretation of Landau damping

Until now the considerations on Landau damping were quite theoretical. The aim of this
section is to give a more descriptive physical interpretation of this damping phenomenon.
The most common approach is the one from an energetic point of view. We shall follow the
explanations from [9, 10, 12, 16].

When dealing with the dispersion relation, it can be shown that the appearance of the
damping coefficient γ arises from the pole of (3.24) at the point v = ω̄

k . Let us introduce the
notation

vφ = ω̄

k

and call this quantity the phase velocity of the wave of the electric field. Among the plasma
electrons there are particles that move with a velocity that is nearly equal to the phase velocity
of the wave, i.e. with v ≈ vφ. These particles shall be called resonant particles. They are
subject to an almost constant electric field. For this reason they are able to interchange
energy with the wave by wave-particle interaction.

24



CHAPTER 3. THE VLASOV-POISSON SYSTEM

For a better understanding of the process of energy exchange, we shall make use of the
following picture from [10]. Note that this does not faultlessly explain the phenomenon of
Landau damping and shall only serve as a visualization. Let us imagine a surfer trying to
catch a wave in the ocean. If the surfer simply stood motionless in the water, his surfboard
would get up and down as the waves do. In this process there is no energy exchange between
the surfboard and the wave. If the surfer had a little motorboat instead of a board he would
be able to move with a speed much larger than the wave velocity and just ride over the
waves. There would be no significant exchange of energy in this process either. A situation
different from that is given if the surfer is moving with a velocity that is almost equal to the
wave velocity. In this case he is able to interact with the ocean wave. If the surfboard has a
velocity slightly less than the wave velocity it can be accelerated by the wave. In this process
the wave loses energy to the surfer. If the surfboard moves a little bit faster than the wave,
the surfer would kind of push on the wave. In this setting the wave would gain energy from
the surfer. This thought experiment is illustrated in Figure 3.4.

Figure 3.4: Descriptive picture of Landau damping using a surfer riding on a surfboard.3

In a plasma there are both resonant particles moving slower as well as faster than the electric
field wave. On average, due to the Maxwellian distribution function, there are more resonant
electrons with a velocity slightly smaller than the phase velocity.

3Source: [10] Chen, F.F., 2016, p.230.
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Figure 3.5: Resonant particles in the equilibrium Maxwellian distribution function.4

In Figure 3.5 one can see that the equilibrium distribution, denoted by f0(v), is a decreasing
function of |v|. In the strip of width ∆v around ω̄

k the resonant particles can be found. In
this area there are more electrons moving slower than the phase velocity than faster ones.
Hence, in total the wave loses more energy to the plasma particles as it gains from them.
This leads to the observed damping effect of the electric field.

As pointed out in [29], this interpretation is not completely consistent. Another possibility
consists in treating Landau damping as the result of phase mixing. This approach was studied
intensively by Nico van Kampen in [30]. Yet another possibility is given by Clément Mouhot
and Cédric Villani in [23].

4Source: [9] Bittencourt, J.A., 2004, p.503.
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Chapter 4

The Vlasov-Poisson-BGK system

Up to this point the Vlasov-Poisson system consisting of the Vlasov equation (3.4) coupled
to the electric field (3.5) was in the focus of our considerations. It is appropriate when binary
collisions between the particles are neglected. If indeed binary collisions are taken into ac-
count one has to extend the Vlasov equation by a collision operator added to the right-hand
side of (3.4). Thereby, the Boltzmann collision operator is a common choice. Since it is
very complex a simplified version, the BGK operator, shall be used in this work. It will be
introduced in the next section. The Vlasov-Poisson-BGK system will also be given there.
Then the corresponding dispersion relation for this system will be derived. As before, the
zeros of the dispersion relation play a crucial role for determining the damping effect of the
electric field. Hence, the dispersion relation will first be solved analytically, followed by a
numerical treatment that qualitatively confirms the analytical results.

4.1 The equations

As before let f : Λ × R3 × R+
0 → R, (x, v, t) → f(x, v, t) with Λ ⊆ R3 be a distribution

function. The function M : Λ × R3 × R+
0 → R, (x, v, t) → M(x, v, t) shall be a Maxwellian

distribution of the form

M(x, v, t) = n(x, t)
(2πT (x, t)/m)3/2 exp

(
−|v − u(x, t)|2

2T (x, t)/m

)

with n(x, t), u(x, t) and T (x, t) being the macroscopic quantities derived from the function f
as described in Definition 2.23. Using these functions we can define the BGK operator.

Definition 4.1 (BGK operator, [27]). Let ν be a given constant collision frequency. Then,
the operator

QBGK = ν(M − f)

is called the BGK collision operator.

The BGK operator is named after the scientists Prabhu L. Bhatnagar, Eugene P. Gross, and
Max Krook who introduced it in 1954 [8]. It is also known as the Krook operator [27]. It
describes a relaxation of f towards the Maxwellian M and can therefore be interpreted as a
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relaxation time approximation [28]. This relaxation process is sketched in Figure 4.1. The
BGK model conserves mass, momentum and energy. Further, the H-theorem which allows
to define the entropy of a system can be proven. In addition, the BGK model exhibits the
same Maxwellian structure as the Boltzmann equation in equilibrium [25].

Figure 4.1: Relaxation of f towards the Maxwellian distribution M .5

Putting the BGK collision operator on the right-hand side of the Vlasov equation (3.4) gives
us

∂f

∂t
+ v · ∇xf −

e

m
E · ∇vf = ν(M − f),

where ν shall be a small constant collision frequency. For the electric field, we still have from
Maxwell’s equations

E = −∇φ, −∆φ = ρ = e(n0 − n).

This coupled system is called the Vlasov-Poisson-BGK system.

As before, we choose the x-axis along the direction of the wave vector k and assume that
the wave propagates in a positive direction such that k > 0. Under these conditions, we can
restrict our considerations to a one-dimensional setting. Further, we assume that the system
is in equilibrium temperature such that we can make an isothermal approximation with
T0 denoting the constant equilibrium temperature. This is a reasonable assumption when
considering a dilute system with a small collision frequency [34]. The Vlasov-Poisson-BGK
equation then writes

∂f

∂t
+ v

∂f

∂x
− eE

m

∂f

∂v
= ν(M − f) (4.1)

with f : Λ× R× R+
0 → R, (x, v, t)→ f(x, v, t) with Λ ⊆ R and the Maxwellian distribution

M(x, v, t) = n(x, t)
(2πT0/m)1/2 exp

(
−|v − u(x, t)|2

2T0/m

)
, (4.2)

5Source: Adapted from [25] Pirner, M., 2018, p.31.
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where the macroscopic quantities n(x, t) and u(x, t) are determined by(
n(x, t)

n(x, t)u(x, t)

)
=
∫
R
f(x, v, t)

(
1
v

)
dv.

For the electric field we have the relation

∂E

∂x
= e(n0 − n). (4.3)

4.2 On Landau damping coupled with relaxation

The system consisting of (4.1) and (4.3) will be the subject of further considerations. In
detail, we will show a damping effect of the electric field that is partly due to Landau damp-
ing as well as to the BGK relaxation. To this end, we will derive an algebraic expression
related to the electric field from which we can get the corresponding dispersion relation of
the Vlasov-Poisson-BGK system.

4.2.1 Adaption of Landau’s approach

In order to determine the damping phenomenon, we will adapt Landau’s approach from [18]
to the Vlasov-Poisson-BGK system. It consists in linearizing the equations, performing a
Fourier expansion in the space variable and a Laplace transform in the time variable.

Consider a distribution function

f(x, v, t) = fequ(v) (1 + h(x, v, t)) (4.4)

that initially is slightly disturbed from equilibrium. The function h denotes a perturbation
that shall be small compared to the Maxwellian equilibrium distribution

fequ(v) = n0(
2πT0/m

)1/2 exp
(
− v2

2T0/m

)
, (4.5)

where n0 stands for the constant background density of neutralising ions and T0 for the con-
stant equilibrium temperature.

For the macroscopic quantities such as density n(x, t) and mean velocity u(x, t) we get with
the expression from (4.4)

n(x, t) =
∫
R
f dv =

∫
R
fequ dv +

∫
R
fequh dv = n0 + σ(x, t), (4.6)

n(x, t)u(x, t) =
∫
R
fv dv =

∫
R
fequv dv +

∫
R
fequhv dv = µ(x, t), (4.7)
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where we introduced the notations σ(x, t) for the perturbed density and µ(x, t) for the per-
turbed mean velocity as in [20]. Note that the macroscopic velocity of the equilibrium function
given by

∫
R f

equv dv is zero in this setting.

Linearization of the Vlasov-Poisson-BGK equation

We start by plugging the expression for the distribution function f given in (4.4) in the
Vlasov-Poisson-BGK system. The Vlasov-Poisson-BGK equation (4.1) then becomes

∂

∂t
(fequ + fequh) + v

∂

∂x
(fequ + fequh)− eE

m

∂

∂v
(fequ + fequh)

= ν(M − fequ − fequh).
(4.8)

For the electric field we get from (4.3) the same relation as in the Vlasov-Poisson case. With
the notation from (4.6) we can write

∂E

∂x
= −e

∫
R
fequhdv = −eσ. (4.9)

The linearization of the left-hand side of (4.8) is done analogously as in Chapter 3. For the
right-hand side of (4.8) we want to perform a first-order Taylor expansion of M with respect
to the small quantities σ and µ around 0 as done in [20]. So let us consider the Maxwellian
M from (4.2). Using the relations from (4.6) and (4.7), we can write it as

M(x, v, t) = n0 + σ(x, t)
(2πT0/m)1/2 exp

−
∣∣∣v − µ(x,t)

n0+σ(x,t)

∣∣∣2
2T0/m

 .
The zeroth order of the expansion is given by

M|σ=µ=0 = n0
(2πT0/m)1/2 exp

(
− v2

2T0/m

)
= fequ.

For the first order we determine the partial derivatives with respect to σ and µ and evaluate
them for σ = µ = 0 which gives

∂

∂σ
M|σ=µ=0 = 1

(2πT0/m)1/2 exp
(
− v2

2T0/m

)
= 1
n0
fequ,

∂

∂µ
M|σ=µ=0 = n0

(2πT0/m)1/2 exp
(
− v2

2T0/m

)
vm

n0T0
= vm

n0T0
fequ.

Hence, we obtain in a neighborhood of σ = µ = 0

M − fequ ≈ fequ + 1
n0
fequσ + vm

n0T0
fequµ− fequ = fequ

(
σ

n0
+ vmµ

n0T0

)
.

Inserting these results in (4.8), we get in combination with fequ 6= 0 the following linearized
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form of the Vlasov-Poisson-BGK equation

∂

∂t
h+ v

∂

∂x
h+ evE

T0
= ν

(
σ

n0
+ vmµ

n0T0
− h

)
. (4.10)

Fourier expansion in the space variable

In the next step, we seek for a relation concerning the Fourier components of the linearized
Vlasov-Poisson-BGK system. Multiplication of (4.10) and (4.9) with e−ikx and integration
with respect to x gives us

∂

∂t
ĥ+ ikvĥ+ evÊ

T0
= ν

(
σ̂

n0
+ vmµ̂

n0T0
− ĥ

)
and (4.11)

ikÊ = −eσ̂, (4.12)

where

σ̂ =
∫
R
fequĥdv,

µ̂ =
∫
R
fequĥv dv

denote the corresponding Fourier components of σ and µ. Note that for determining the
system consisting of (4.11) and (4.12) we have again assumed all quantities to be smooth
and integrable enough such that one can interchange the order of integration and the process
of integration and partial differentiation. In addition, it is necessary that h and E fulfill
appropriate boundary conditions.

Laplace transform in the time variable

We notice that in (4.11) a partial derivative with respect to t still appears. This one shall be
eliminated by applying a Laplace transform in the time variable. Hence, let us assume that
the functions ĥ, Ê, σ̂ and µ̂ satisfy the conditions from Theorem 2.5. Multiplication of (4.11)
and (4.12) with eiω̄t and integration with respect to t leads to the well-defined system

(−iω̄ + ikv)h̃+ evẼ

T0
− ĥ(v, 0) = ν

(
σ̃

n0
+ vmµ̃

n0T0
− h̃

)
and (4.13)

ikẼ = −eσ̃, (4.14)

where the Laplace transforms of σ̂ and µ̂ are given by

σ̃ =
∫
R
fequh̃ dv, (4.15)

µ̃ =
∫
R
fequh̃v dv. (4.16)
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Note that ĥ(v, 0) in (4.13) denotes the initial value of the Fourier transform ĥ at time t = 0.
Further, we have assumed interchangeability of the order of integration and appropriate
boundary conditions with vanishing ĥ for t→∞.

Algebraic expression for σ̃

We recognize that the system consisting of (4.13) and (4.14) is given in terms of h̃, Ẽ, σ̃ and
µ̃. These quantities do all depend explicitly or implicitly on h̃. Following [8], we would like
to eliminate two of those parameters from the Vlasov-Poisson-BGK system. The easiest way
consists in replacing Ẽ and µ̃ in terms of σ̃. This enables us to finally obtain an algebraic
expression for the Laplace transform σ̃ of the density. Since the Laplace transform of the
density σ̃ is related to the Laplace transform Ẽ of the electric field by (4.14), we can draw
conclusions on the qualitative behaviour of Ẽ from examining σ̃. This will make up the main
part of the following considerations.

In order to eliminate µ̃ from the Vlasov-Poisson-BGK equation, we start by rearranging (4.13)
as follows

(−iω̄ + ikv + ν)h̃ = ν

(
σ̃

n0
+ vmµ̃

n0T0

)
− evẼ

T0
+ ĥ(v, 0).

In the next step we multiply this equation with fequ and integrate over the velocity v. With∫
R f

equv dv = 0 and the notations from (4.15) and (4.16) we get the relation

µ̃ = σ̂(0) + iω̄σ̃

ik
, (4.17)

where σ̂(0) =
∫
R f

equĥ(v, 0) dv denotes the initial value of the Fourier transform σ̂ at time
t = 0. For the Laplace transform Ẽ of the electric field we get from (4.14)

Ẽ = −eσ̃
ik

. (4.18)

Inserting (4.17) and (4.18) into (4.13), we get after rearranging

(−iω̄ + ikv + ν)h̃ = σ̃

(
ν

n0
+ νvmiω̄

ikn0T0
+ e2v

ikT0

)
+ νvm

ikn0T0
σ̂(0) + ĥ(v, 0).

This expression for the Vlasov-Poisson-BGK equation only depends on h̃ and σ̃. These
quantities are related by (4.15). Division by (−iω̄ + ikv + ν), multiplication with fequ and
integration with respect to v leads to

σ̃ = σ̃

∫
R

(
ν
n0

+ νvmiω̄
ikn0T0

+ e2v
ikT0

)
fequ

(−iω̄ + ikv + ν) dv +
∫
R

νvm
ikn0T0

σ̂(0)fequ

(−iω̄ + ikv + ν) dv +
∫
R

ĥ (v, 0) fequ

(−iω̄ + ikv + ν) dv.
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This equation can be solved for σ̃. One obtains the following algebraic expression

σ̃(k, ω̄) = N(k, ω̄)
D(k, ω̄)

with

N(k, ω̄) =
∫
R

(
νvm
ikn0T0

σ̂(0) + ĥ(v, 0)
)
fequ

ikv − iω̄ + ν
dv

and

D(k, ω̄) = 1−
∫
R

(
ν
n0

+ νvmω̄
kn0T0

− e2iv
kT0

)
fequ

ikv − iω̄ + ν
dv.

4.2.2 Dispersion relation of the Vlasov-Poisson-BGK system

As in Chapter 3, one would like to apply the inverse Laplace transform to σ̃ and evaluate it
using the residue theorem. Hence, one has to choose adequate integration contours such that
N(k, ω̄) and D(k, ω̄) as well as the integral in the inverse Laplace transform are well-defined
and analytically continued for Im(ω̄) ≤ 0. This shall be kept in mind when considering the
dispersion relation

D(k, ω̄) = 1−
∫
R

(
ν
n0

+ νvmω̄
kn0T0

− e2iv
kT0

)
fequ

ikv − iω̄ + ν
dv = 0. (4.19)

It can be shown analogously to the Vlasov-Poisson system that the poles of σ̃ are exactly
the zeros of the dispersion relation (4.19) and that the sign of the imaginary part of the
largest such zero determines the long-time behaviour of the electric field. For this reason, the
dispersion relation (4.19) and its zeros will be treated in the following sections.

4.3 Analytical treatment of the dispersion relation

The first aim of this analytical treatment of the dispersion relation of the Vlasov-Poisson-BGK
system consists in showing a damping effect of the electric field. Secondly, the contribution
of Landau damping as well as of the BGK relaxation to the total damping effect shall be
worked out separately. Here, we follow and adapt the proceedings from [34] and [35].
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4.3.1 Rewriting the dispersion relation

We start by considering the dispersion relation (4.19). Inserting the definition of the thermal
velocity (3.26) and the expression (4.5) for the equilibrium distribution function fequ we get

1− 1√
2πvth

∫
R

(
ν + νvω̄

kv2
th
− n0e2iv

mkv2
th

)
exp

(
− v2

2v2
th

)
ikv − iω̄ + ν

dv = 0.

Next, we make the substitution

v =
√

2vthu

and use the notation

X = iω̄ − ν√
2ikvth

(4.20)

to obtain

1 + 1√
2πvth

i

k

∫
R

(
ν +
√

2νuω̄
kvth

−
√

2n0e
2iu

mkvth

)
exp(−u2)
u−X

du = 0. (4.21)

Conditions imposed on the system

As for the Vlasov-Poisson system, we seek for a solution of the dispersion relation in the
limiting case of long waves, i.e. for k → 0. Further, we assume the collision frequency ν to
be sufficiently small such that the restriction

ν√
2kvth

� 1

is satisfied. For the zero of the dispersion relation with the largest imaginary part we shall
again denote ω̄ = ω + iγ. Then we can rewrite X from (4.20) as

X = ω√
2kvth

+ i
ν + γ√
2kvth

= η + iξ (4.22)

with η, ξ ∈ R. The absolute value of the damping coefficient γ shall be very small such that
ξ in (4.22) can be considered a small positive quantity. More precisely, |γ| � |ω| shall hold.
This condition can be justified a posteriori by taking into account that k is very small.

Expansion of the dispersion relation in terms of ξ

In the next step we want to expand the integral in (4.21) in terms of ξ. For this purpose, we
first notice that it is of the form

I(X) =
∫
R

g(u)
u−X

du (4.23)
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with g(u) being an analytic function. For u = X this integral is not defined. We have to
consider its Cauchy principal value.

Definition 4.2 (Cauchy principal value, [33]). For an integral as in (4.23) its Cauchy prin-
cipal value is defined as

P
∫
R

g(u)
u−X

du = lim
ε→0+

(∫ X−ε

−∞

g(u)
u−X

du+
∫ ∞
X+ε

g(u)
u−X

du
)
.

With this definition we can evaluate (4.23) as follows.

Lemma 4.3 (Jackson’s identity, [17]). Let I(X) be an integral as given in (4.23). Then, for
small ξ > 0 it holds

I(X) = I(η + iξ) =
∞∑
j=0

(iξ)j

j!

(
P
∫
R

g(j)(u)
u− η

du+ πig(j)(η)
)
, (4.24)

where P denotes the Cauchy principal value of the integral.

In the following, we will refer to this representation as Jackson’s identity as it was proven
by John David Jackson in [17]. An advantage of this expansion is that the real and the
imaginary parts of the argument appear separated from each other.

Our next goal is to apply Jackson’s identity (4.24) to the dispersion relation. First, we define

A =
√

2n0e
2i

mkvth
and B =

√
2νω̄
kvth

(4.25)

and rewrite (4.21) in the form

1 + 1√
2πvth

i

k

∫
R

(ν +Bu−Au)exp(−u2)
u−X

du = 0. (4.26)

With the notations

g(u) = exp(−u2) and G(u) = u exp(−u2) (4.27)

we get from (4.26) the representation

1 + 1√
2πvth

i

k

(
ν

∫
R

g(u)
u−X

du+ (B −A)
∫
R

G(u)
u−X

du
)

= 0,

to which we now want to apply Jackson’s identity (4.24). To first order in ξ we obtain

1 + 1√
2πvth

i

k

[
ν

(
P
∫
R

g(u)
u− η

du+ πig(η) + iξ P
∫
R

g′(u)
u− η

du− πξg′(η)
)

+ (B −A)
(
P
∫
R

G(u)
u− η

du+ πiG(η) + iξ P
∫
R

G′(u)
u− η

du− πξG′(η)
)]

= 0.
(4.28)
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Evaluation of the principal value integrals

Equation (4.28) contains four principal value integrals. We need to evaluate them for drawing
further conclusions. Since the absolute value of ω is comparably large, the real number η
defined in (4.20) becomes huge for the limiting case of large wavelengths (k → 0). We would
like to obtain an asymptotic expansion of the principal value integrals in terms of the small
quantity η−1. We first notice that with the functions g(u) and G(u) defined in (4.27) we have

g′(u) = −2u exp(−u2) = −2G(u) and G′(u) = exp(−u2)(1− 2u2)

and start by considering the first principal value integral from (4.28). We get

P
∫
R

g(u)
u− η

du = P
∫
R

exp(−u2)
u− η

du = −1
η
P
∫ ∞
−∞

exp(−u2)
1− u

η

du

= −1
η

∫ ∞
−∞

exp(−u2)
∞∑
n=0

(
u

η

)n
du.

In the last step we used that 1
1−u

η
defines the limit of the geometric series. Note that the

considered principal value integral is assumed to have a finite value for η sufficiently large.
Further, the P denoting the principal value integral has been dropped as the integral no
longer has a singularity. Next, we naively interchange summation and integration and obtain

P
∫
R

g(u)
u− η

du = −
∞∑
n=0

1
ηn+1

∫ ∞
−∞

un exp(−u2) du

= −
∞∑
n=0

1
ηn+1

[
(−1)n

∫ ∞
0

un exp(−u2) du+
∫ ∞

0
un exp(−u2) du

]

= −
∞∑
n=0

1
ηn+1

[1
2(−1)n

∫ ∞
0

v
n−1

2 exp(−v) dv + 1
2

∫ ∞
0

v
n−1

2 exp(−v) dv
]

= −
∞∑
n=0

1
ηn+1

[1
2(−1)n

∫ ∞
0

v
n+1

2 −1 exp(−v) dv + 1
2

∫ ∞
0

v
n+1

2 −1 exp(−v) dv
]

= −
∞∑
n=0

1
ηn+1

[1
2(−1)nΓ

(
n+ 1

2

)
+ 1

2Γ
(
n+ 1

2

)]

=


−
∞∑
n=0

1
ηn+1 Γ

(
n+ 1

2

)
for n ∈ 2N0,

0 for n ∈ 2N0 + 1.

Here, we made use of the substitution v = u2. Further, we inserted the gamma function
which was introduced in Definition 2.18. Evaluating the gamma function using the relations
from Lemma 2.19 leads to

P
∫
R

g(u)
u− η

du = −
√
π

η

(
1 + 1

2η2 + 3
4η4 +O

( 1
η6

))
.
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Equivalently, we obtain for the remaining principal value integrals

P
∫
R

G(u)
u− η

du = −
√
π

η

( 1
2η + 3

4η3 + 15
8η5 +O

( 1
η7

))
,

P
∫
R

g′(u)
u− η

du =
√
π

η

(1
η

+ 3
2η3 + 15

4η5 +O
( 1
η7

))
,

P
∫
R

G′(u)
u− η

du =
√
π

η

( 1
η2 + 3

η4 +O
( 1
η6

))
.

Inserting these expansions to order η−4 in the dispersion relation (4.28) gives us

1 + 1√
2πvth

i

k

[
ν

(
−
√
π

η

(
1 + 1

2η2

)
+ πi exp(−η2)

)

+ ν

(
iξ

√
π

η

(1
η

+ 3
2η3

)
+ πξ2η exp(−η2)

)

+ (B −A)
(
−
√
π

η

( 1
2η + 3

4η3

)
+ πiη exp(−η2)

)

+ (B −A)
(
iξ

√
π

η

( 1
η2

)
− πξ(1− 2η2) exp(−η2)

)]
= 0.

With the expressions from (4.25) for A and B and by inserting ω̄ = ω + iγ we get

1− iν√
2kvthη

− iν

2
√

2kvthη3 −
ν
√
π exp(−η2)√

2kvth
− ξν√

2kvthη2 −
3ξν

2
√

2kvthη4

+ iν
√

2πξη exp(−η2)
kvth

− iνω

2k2v2
thη

2 −
3iνω

4k2v2
thη

4 −
√
πη exp(−η2)√

2k2v2
th

− νωξ

k2v2
thη

3

− i
√
πνωξ exp(−η2)

k2v2
th

+ i
√
πνωξ2η2 exp(−η2)

k2v2
th

+ νγ

2k2v2
thη

2 + 3νγ
4k2v2

thη
4

− i
√
πνγη exp(−η2)

k2v2
th

− iνγξ

k2v2
thη

3 +
√
πνγξ exp(−η2)

k2v2
th

−
√
πνγξ2η2 exp(−η2)

k2v2
th

− n0e
2

2k2v2
thmη

2 −
3n0e

2

4k2v2
thmη

4 + i
√
πn0e

2η exp(−η2)
k2v2

thm
+ in0e

2ξ

k2v2
thmη

3

−
√
πn0e

2ξ exp(−η2)
k2v2

thm
+
√
πn0e

2ξ2η2 exp(−η2)
k2v2

thm
= 0.

(4.29)

We can clearly split this equation into its real and imaginary part. They are studied in the
next sections.
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4.3.2 Solution for the real part ω of the plasma wave frequency

The real part of equation (4.29) is given as follows

1− ν
√
π exp(−η2)√

2kvth
− ξν√

2kvthη2 −
3ξν

2
√

2kvthη4 −
√
πη exp(−η2)√

2k2v2
th

− νωξ

k2v2
thη

3

+ νγ

2k2v2
thη

2 + 3νγ
4k2v2

thη
4 +
√
πνγξ exp(−η2)

k2v2
th

−
√
πνγξ2η2 exp(−η2)

k2v2
th

− n0e
2

2k2v2
thmη

2 −
3n0e

2

4k2v2
thmη

4 −
√
πn0e

2ξ exp(−η2)
k2v2

thm
+
√
πn0e

2ξ2η2 exp(−η2)
k2v2

thm
= 0.

In the next step we insert the definition of ξ from (4.22) back into the equation. We obtain

1− ν
√
π exp(−η2)√

2kvth
− (ν + γ) ν

2k2v2
thη

2 −
3 (ν + γ) ν
4k2v2

thη
4 −

√
πη exp(−η2)√

2k2v2
th

− νω (ν + γ)√
2k3v3

thη
3 + νγ

2k2v2
thη

2

+ 3νγ
4k2v2

thη
4 +
√
πνγ (ν + γ) exp(−η2)√

2k3v3
th

−
√
πνγ (ν + γ) 2η2 exp(−η2)√

2k3v3
th

− n0e
2

2k2v2
thmη

2

− 3n0e
2

4k2v2
thmη

4 −
√
πn0e

2 (ν + γ) exp(−η2)√
2k3v3

thm
+
√
πn0e

2 (ν + γ) 2η2 exp(−η2)√
2k3v3

thm
= 0.

Since ν and γ are small quantities, we can neglect terms in ν2 and in νγ. Further, for
ω2

k2v2
th
� 1 it is possible to approximate ω2 ≈ ω2

p. In this case the exponential terms become
very small and can also be neglected. This leads to the simplified equation

1− n0e
2

2k2v2
thmη

2 −
3n0e

2

4k2v2
thmη

4 = 0.

Inserting the definition of η from (4.22) and the definition of the plasma frequency from (1.2)
gives

1−
ω2
p

ω2

(
1 + 3k2v2

th

ω2

)
= 0, (4.30)

which shall be solved for ω. For k2v2
th

ω2 � 1 we can solve equation (4.30) iteratively. In zeroth
order, i.e. for k2v2

th
ω2 = 0, we get ω2 = ω2

p. For the first-order approximation this roughly
approximated solution can be inserted in the small correction term in (4.30). We get

1−
ω2
p

ω2

(
1 + 3k2v2

th

ω2
p

)
≈ 0,

which can be equivalently rewritten as

ω2 ≈ ω2
p + 3k2v2

th. (4.31)

This solution corresponds to the well-known Bohm-Gross dispersion relation (3.25) for lon-
gitudinal electron oscillations in a dilute plasma.
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4.3.3 Solution for the imaginary part γ of the plasma wave frequency

Correspondingly, we consider the imaginary part of (4.29)

− ν√
2kvthη

− ν

2
√

2kvthη3 + ν
√

2πξη exp(−η2)
kvth

− νω

2k2v2
thη

2 −
3νω

4k2v2
thη

4

−
√
πνωξ exp(−η2)

k2v2
th

+
√
πνωξ2η2 exp(−η2)

k2v2
th

−
√
πνγη exp(−η2)

k2v2
th

− νγξ

k2v2
thη

3 +
√
πn0e

2η exp(−η2)
k2v2

thm
+ n0e

2ξ

k2v2
thmη

3 = 0.

As for the real part, we insert the definition of ξ from (4.22) back into the equation and we
obtain

− ν√
2kvthη

− ν

2
√

2kvthη3 + ν
√

2π(ν + γ)η exp(−η2)√
2k2v2

th

− νω

2k2v2
thη

2 −
3νω

4k2v2
thη

4

−
√
πνω(ν + γ) exp(−η2)√

2k3v3
th

+
√
πνω(ν + γ)2η2 exp(−η2)√

2k3v3
th

−
√
πνγη exp(−η2)

k2v2
th

− νγ(ν + γ)√
2k3v3

thη
3 +
√
πn0e

2η exp(−η2)
k2v2

thm
+ n0e

2(ν + γ)√
2k3v3

thmη
3 = 0.

Neglecting terms in νγ and quadratic terms in ν results in

− ν√
2kvthη

− ν

2
√

2kvthη3 −
νω

2k2v2
thη

2 −
3νω

4k2v2
thη

4 +
√
πn0e

2η exp(−η2)
k2v2

thm
+ n0e

2(ν + γ)√
2k3v3

thmη
3 = 0.

With the definition of η from (4.22) and the definition of the plasma frequency from (1.2)
this equation can be rewritten as

−2ν
ω
− νk2v2

th

ω3 − 3νk2v2
th

ω3 +

√
πω2

pω exp
(
− ω2

2k2v2
th

)
√

2k3v3
th

+
2νω2

p

ω3 +
2γω2

p

ω3 = 0.

Solving for the possible damping coefficient γ gives

γ = −
(
π

8

)1/2 ω4

(kvth)3 exp
(
− ω2

2k2v2
th

)
+ νω2

ω2
p

− ν + 2νk2v2
th

ω2
p

.

With the solution for the real part of the plasma wave frequency (4.31) we can express 2k2v2
th

in the last summand as ω2 − ω2
p − k2v2

th. We get

γ = −
(
π

8

)1/2 ω4

(kvth)3 exp
(
− ω2

2k2v2
th

)
+ ν

(
2ω2

ω2
p

− 2− k2v2
th

ω2
p

)
.

Approximating ω2 in the zeroth order by ω2
p gives us

γ ≈ −
(
π

8

)1/2 ω4
p

(kvth)3 exp
(
− ω2

2k2v2
th

)
− ν k

2v2
th

ω2
p

.
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The last summand can be rewritten using the definition of the thermal velocity (3.26), the
plasma frequency (1.2) and the Debye length (1.1). We finally obtain

γ ≈ −
(
π

8

)1/2 ω4
p

(kvth)3 exp
(
− ω2

2k2v2
th

)
− νk2λ2

D

= −γL − γBGK .

This is a strictly negative expression. Hence, the expected damping effect of the electric field
for the Vlasov-Poisson-BGK system is proven. In addition, we were able to show that the
damping coefficient γ is made up of a Landau damping part γL that we already know from
the solution (3.27) of the Vlasov-Poisson system and a collisional damping γBGK that arises
from the BGK relaxation and depends on the small collision frequency ν.

4.4 Numerical treatment of the dispersion relation

The damping effect of the electric field for the Vlasov-Poisson-BGK system shall now be
verified numerically. To this end, we solve the dispersion relation in a numerical way and
study the position and behaviour of the zeros of the dispersion relation for different values of
the wave vector k and the collision frequency ν. Here, we mainly follow and adapt the ideas
from [27].

4.4.1 The plasma dispersion function

If the equilibrium distribution function is a Maxwellian it is possible to express the dispersion
relation in terms of the plasma dispersion function. It was introduced and extensively studied
by Burton D. Fried and Samuel D. Conte in [14] and is defined as follows.

Definition 4.4 (Plasma dispersion function, [27]). Let ζ ∈ C and C be an integration contour
as displayed in Figure 3.1. Then,

Z(ζ) = 1√
π

∫
C

e−z
2

z − ζ
dz (4.32)

is called the plasma dispersion function.

It can be shown that the integral appearing in the definition of the plasma dispersion function
does not depend on the explicit integration contour C [27]. Instead, let us integrate in the
form shown in Figure 4.2.
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Re(z)

Im(z)

C∗

0

ζ

(a) Im(ζ) > 0

Re(z)

Im(z)

C∗

0
ζ

(b) Im(ζ) = 0

Re(z)

Im(z)

C∗
0

ζ

(c) Im(ζ) < 0

Figure 4.2: Integration contour C∗ used in the plasma dispersion.

We denote this integration contour by C∗. It passes around the pole from below and thus
exhibits the same behaviour as the initial integration contour C.

The plasma dispersion function can be rewritten in several ways. One of it makes use of the
imaginary error function introduced in Definition 2.21.

Lemma 4.5 ([27]). The plasma dispersion function defined in (4.32) can also be expressed
as

Z(ζ) = 1√
π

[
P
∫
R

e−(u+ζ)2

u
du+ πie−ζ

2
]

(4.33)

=
√
πe−ζ

2 [i− erfi(ζ)] . (4.34)

Proof. We prove the two representations one after another.

1. For expression (4.33) let us start by considering the integral in the definition (4.32) of
the plasma dispersion function. The integration contour shall be chosen as in Figure
4.2 and split up into the integral C∗1 along the straight line and the integral C∗2 along
the semicircle, i.e.

∫
C∗

e−z
2

z − ζ
dz =

∫
C∗

1

e−z
2

z − ζ
dz +

∫
C∗

2

e−z
2

z − ζ
dz.

These two parts can be parametrized by C∗1 : t → t + i Im(ζ) for |t − Re(ζ)| ≥ δ with
small δ > 0 and C∗2 : θ → ζ − δeiθ for θ ∈ [0, π]. We obtain for the integral along the
straight line

∫
C∗

1

e−z
2

z − ζ
dz =

∫ Re(ζ)−δ

−∞

e−(t+i Im(ζ))2

t+ i Im(ζ)− ζ dt+
∫ ∞

Re(ζ)+δ

e−(t+i Im(ζ))2

t+ i Im(ζ)− ζ dt

=
∫ Re(ζ)−δ

−∞

e−(t+i Im(ζ))2

t− Re(ζ) dt+
∫ ∞

Re(ζ)+δ

e−(t+i Im(ζ))2

t− Re(ζ) dt

=
∫ −δ
−∞

e−(u+ζ)2

u
du+

∫ ∞
δ

e−(u+ζ)2

u
du,
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where we made the substitution u = t − Re(ζ) and used that ζ can be written in the
form ζ = Re(ζ) + i Im(ζ). Letting δ → 0 we get

∫
C∗

1

e−z
2

z − ζ
dz → P

∫
R

e−(u+ζ)2

u
du.

For the integral along the semicircle we have

∫
C∗

2

e−z
2

z − ζ
dz =

∫ π

0

e−(ζ−δeiθ)2

−δeiθ
(−iδeiθ) dθ = i

∫ π

0
e−(ζ−δeiθ)2 dθ.

For δ → 0 we obtain ∫
C∗

2

e−z
2

z − ζ
dz → πie−ζ

2
.

Hence, putting these results together we get expression (4.33) of the plasma dispersion
function

Z(ζ) = 1√
π

[
P
∫
R

e−(u+ζ)2

u
du+ πie−ζ

2
]
.

2. The second expression (4.34) can be derived from the first one. Let us start by consid-
ering the integral appearing in (4.33). We have

P
∫
R

e−(u+ζ)2

u
du = e−ζ

2 P
∫ ∞
−∞

e−u
2
e−2ζu

u
du

= e−ζ
2
(
P
∫ 0

−∞

e−u
2
e−2ζu

u
du+ P

∫ ∞
0

e−u
2
e−2ζu

u
du
)

= e−ζ
2 P
∫ ∞

0
e−u

2 (e−2ζu − e2ζu)
u

du

= 2e−ζ2 P
∫ ∞

0
e−u

2 sinh(−2ζu)
u

du

= −2e−ζ2 P
∫ ∞

0
e−u

2 sinh(2ζu)
u

du.

Here we used the binomial formula, the definition of the hyperbolic sine and the fact
that sinh is an odd function. Until now we considered the principal value integral
because of the point u = 0 appearing in the denominator. Since sinh(2ζu) ∼ 2ζu in the
neighbourhood of u = 0, the singularity at this point vanishes and we can identify the
Riemann and the principal value integral. We denote it by

y(ζ) =
∫ ∞

0
e−u

2 sinh(2ζu)
u

du.
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Then we obtain

y′(ζ) = 2
∫ ∞

0
e−u

2 cosh(2ζu) du

and

y′′(ζ) = 4
∫ ∞

0
ue−u

2 sinh(2ζu) du.

Integration by parts gives us for the last integral

4
∫ ∞

0
ue−u

2 sinh(2ζu) du = 4ζ
∫ ∞

0
e−u

2 cosh(2ζu) du = 2ζy′(ζ),

hence y′′(ζ) = 2ζy′(ζ). This differential equation is solved by y′(ζ) = y′(0)e−ζ2 . With
y′(0) = 2

∫∞
0 e−u

2 du =
√
π we get y′(ζ) =

√
πe−ζ

2 . Then, with y(0) = 0 we obtain
from the fundamental theorem of calculus and with the definition of the imaginary error
function (2.21)

y(ζ) =
√
π

∫ ζ

0
et

2 dt = π

2 erfi(ζ).

With this result we can rewrite (4.33) as

Z(ζ) = 1√
π

[
−2e−ζ2 π

2 erfi(ζ) + πie−ζ
2
]

=
√
πe−ζ

2 [i− erfi(ζ)] .

The plasma dispersion function and its relation to the imaginary error function shall now be
used for the dispersion relation (4.19).

4.4.2 Rewriting the dispersion relation

Using the definition of the thermal velocity (3.26) and expression (4.5) for the equilibrium
distribution function fequ, we get as before from (4.19)

1− 1√
2πvth

∫
R

(
ν + νvω̄

kv2
th
− n0e2iv

mkv2
th

)
exp

(
− v2

2v2
th

)
ikv − iω̄ + ν

dv = 0.
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Splitting the integral in its single summands, we have the relation

1− ν√
2πikvth

∫
R

exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv − νω̄√
2πik2v3

th

∫
R

v exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv

+ n0e
2

√
2πk2v3

thm

∫
R

v exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv = 0.

Here, we recognize two integrals of the type
∫
R

v exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv. To those we add a zero

and obtain for the dispersion relation

1− ν√
2πikvth

∫
R

exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv − νω̄√
2πik2v3

th

∫
R

exp
(
− v2

2v2
th

)
dv

− νω̄√
2πik2v3

th

(
ω̄

k
− ν

ik

)∫
R

exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv + n0e
2

√
2πk2v3

thm

∫
R

exp
(
− v2

2v2
th

)
dv

+ n0e
2

√
2πk2v3

thm

(
ω̄

k
− ν

ik

)∫
R

exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv = 0.

(4.35)

There are two types of integrals in this dispersion relation. They can be evaluated or rewritten
as follows:

1. ∫
R

exp
(
− v2

2v2
th

)
dv =

√
2πvth,

2.

∫
R

exp
(
− v2

2v2
th

)
v − ω̄

k + ν
ik

dv =
∫
R

exp(−u2)√
2vthu− ω̄

k + ν
ik

√
2vth du

=
∫
R

exp(−u2)
u− ω̄√

2kvth
+ ν√

2ikvth

du =
√
πZ

(
ω̄ + iν√

2kvth

)
,

where we made use of the substitution u = v√
2vth

and the definition of the plasma dispersion
function given in (4.32).
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Inserting these expressions into (4.35) gives us

1− ν√
2πikvth

√
πZ

(
ω̄ + iν√

2kvth

)
− νω̄√

2πik2v3
th

√
2πvth

− νω̄√
2πik2v3

th

(
ω̄

k
− ν

ik

)√
πZ

(
ω̄ + iν√

2kvth

)
+ n0e

2
√

2πk2v3
thm

√
2πvth

+ n0e
2

√
2πk2v3

thm

(
ω̄

k
− ν

ik

)√
πZ

(
ω̄ + iν√

2kvth

)
= 0.

With the definition of the plasma frequency (1.2) we finally obtain

1 +
ω2
p + iνω̄

k2v2
th

+ Z

(
ω̄ + iν√

2kvth

)(
ω̄(ω2

p − ν2)
√

2k3v3
th

+ iν√
2kvth

(
1 +

ω̄2 + ω2
p

k2v2
th

))
= 0. (4.36)

This expression of the dispersion relation depends on the plasma dispersion function Z. It
can now be used for our numerical implementation.

4.4.3 Numerical implementation

For the numerical computation of the zeros of the dispersion relation (4.36) we adapt a
Python code that was provided by Eric Sonnendrücker and is used in [27] for the Vlasov-
Poisson case. It is mainly based on a search routine presented in the article "A Numerical
Method for Locating the Zeros of an Analytic Function" [11] by L. Mike Delves and James
N. Lyness which proceeds as follows:

1. Determine the number of zeros of a given analytical function f inside a given integration
contour ϕ. This number K can be obtained by the relation

K = 1
2πi

∫
ϕ

f ′(z)
f(z) dz, (4.37)

which can be deduced from the residue theorem stated in Theorem 2.16. In practice,
we shall choose the integration contour ϕ in form of a rectangular box.

2. If K < 5, go to the next step. Else, subdivide the rectangular box into four smaller
rectangular boxes and go back to the first step.

3. Construct a polynomial that has the same zeros z1, z2, ..., zK as the function f . Compute
the zeros of this polynomial. Here, Delves and Lyness propose to use the relation

sm =
K∑
i=1

zmi = 1
2πi

∫
ϕ
zm

f ′(z)
f(z) dz, m ∈ N (4.38)

together with Newton’s identities for determining the coefficients of the polynomial.

4. Check if the obtained zeros are indeed zeros of the function f . If not, refine them by
iterative methods or further subdivide the rectangular box and start again.
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This scheme can also be identified in the following pseudo code. It defines the class zafpy2
which is later called to determine the zeros of the dispersion relation (4.36). Its complete
formulation is mainly due to Eric Sonnendrücker and can be found in the appendix.

Algorithm 1: Definition of the class zafpy2
Initialization;

Count the number of zeros in a given rectangular box:
Define the function count_zeros:
Data: Vertices xmin, xmax, ymin, ymax of the rectangular box
Result: Number of zeros
Count the number of zeros of a given function by formula (4.37);

Locate the zeros in a given rectangular box:
Define the function get_zeros:
Data: Vertices xmin, xmax, ymin, ymax of the rectangular box, error margin tol for

the validation of the zeros, error margin tolK for K being an integer, maximal
number maxiter for refining the zeros iteratively

Result: Location of the zeros
Get nzeros by applying the function count_zeros;
K=int(round(nzeros.real));

Continuation of the code: See next page;
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if abs(K-nzeros.real) > tolK or K > 5 then
Apply the function refine;

else
Determine the zeros as generalized eigenvalues of Hankel matrices. Construct
them as follows:
if K > 0 then

construct an empty vector s of length 2K;
for m in range (0, 2K) do

Compute the values sm by formula (4.38) and write these values in the
vector s;

end
Construct the Hankel matrices and determine the generalized eigenvalues.
Write them in the vector w;
Check if the obtained zeros are indeed zeros of the original function:
for i in range (len(w)) do

Consider the i-th entry ww = w[i] and insert it in the original function.
The obtained value gives the error;

end
while error > tol and it < maxiter do

Refine ww and determine the new error;
end
Write the refined value in the vector w;
if error > tol then

Apply the function refine;
else

Add the obtained zero to the list of zeros;
end

end
end

Refine the given rectangular box:
Define the function refine:
Data: Vertices xmin, xmax, ymin, ymax of the rectangular box, error margin tol,

error margin tolK , maximal number maxiter
Result: Refined rectangular box subdivided into four smaller rectangular boxes

This algorithm is used for calculating the zeros of the dispersion relation (4.36) for different
fixed values of the wave vector k. We call the class zafpy2 in the next code. It is given here
in a pseudo code form .The original detailed code can be found the appendix.
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Algorithm 2: Determination of the zeros of the dispersion relation (4.36)
Data: Dispersion relation D, vertices xmin, xmax, ymin, ymax of the rectangular box
Result: Zeros of the dispersion relation
Initialization
Define the dispersion relation D in terms of the plasma dispersion function by (4.36);

Determine the zeros of the dispersion relation and give back the zero with the largest
imaginary part:
for k in arange (.2, .6, .1) do

zaf=zafpy2(D, kmode);
zeros=zaf.get_zeros(xmin,xmax,ymin,ymax);
zero_max=zeros[argmax(imag(zeros))];

end

We shall display the numerical results in the next section.

4.4.4 Numerical results

Varying the collision frequency ν, we obtain the following numerical results for the zeros of
the dispersion relation (4.36). We consider the different fixed values k = 0.2, k = 0.3, k = 0.4
and k = 0.5.

k Zero of D with largest γ
0.2 ±1.0640− 5.5107 · 10−5i

0.3 ±1.1598− 0.0126i
0.4 ±1.2851− 0.0661i
0.5 ±1.4157− 0.1534i

(a) Collision frequency ν = 0.
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k Zero of D with largest γ
0.2 ±1.0631− 0.0055i
0.3 ±1.1505− 0.0256i
0.4 ±1.2621− 0.0794i
0.5 ±1.3801− 0.1620i

(b) Collision frequency ν = 0.1.

k Zero of D with largest γ
0.2 ±1.0610− 0.0101i
0.3 ±1.1407− 0.0349i
0.4 ±1.2412− 0.0879i
0.5 ±1.3488− 0.1657i

(c) Collision frequency ν = 0.2.

k Zero of D with largest γ
0.2 ±1.0519− 0.0184i
0.3 ±1.1139− 0.0479i
0.4 ±1.1917− 0.0958i
0.5 ±1.2783− 0.1608i

(d) Collision frequency ν = 0.5.
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k Zero of D with largest γ
0.2 ±1.0434− 0.0208i
0.3 ±1.0942− 0.0494i
0.4 ±1.1590− 0.0918i
0.5 ±1.2334− 0.1471i

(e) Collision frequency ν = 0.8.

Figure 4.3: Zeros of the dispersion relation for different values of the collision frequency.

First of all, one can see that all imaginary parts of the zeros of the dispersion relation are
negative. Hence, we get a damping effect of the electric field. Further, one observes that
the zeros with the largest imaginary parts, the so called Landau poles [7], always remain
close to the real axis. This is important for maintaining an approximate correspondence
between the kinetic Vlasov model and fluid models [5]. In addition, one can see that for
increasing collision frequencies the remaining zeros drop more and more below the real axis.
The collective damping effect gets larger. Apart from these expected results, one can observe
that for larger values of k and increasing collision frequencies ν the imaginary parts γ of the
Landau poles become slightly larger. This confirms that both the assumption k → 0 and
the assumption of small collision frequencies are crucial for the validity of the analytical result.
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Chapter 5

Conclusion and perspectives

In this thesis, we considered the Vlasov-Poisson as well as the Vlasov-Poisson-BGK system.
For a basic understanding we first explained several aspects of plasma in general. We gave a
definition, presented some applications and introduced the research area of plasma physics.
Further, we gave some mathematical and physical prerequisites which are intended to help
the reader understand the following considerations.

Then the Vlasov-Poisson system was introduced. We directly followed Landau’s approach
from [18] and explained the phenomenon of Landau damping in a detailed way. Here we
also discussed how to apply the inverse Laplace transform to the algebraic expression Ẽ of
the electric field and showed how to analytically continue this expression in order to use the
residue theorem. We emphasized the importance of the zeros of the dispersion relation of the
considered problem. Further, we gave a physical interpretation of Landau damping.

The main chapter was centered around the Vlasov-Poisson-BGK system. We explained the
concept of the BGK relaxation and added such an operator to the Vlasov-Poisson equation.
We adapted Landau’s approach and similarly derived a dispersion relation for the Vlasov-
Poisson-BGK system. This relation was first solved analytically. Here, we followed [35] and
obtained sensible results. For the real part of the plasma wave frequency we got the well-
known Bohm-Gross dispersion relation for electron plasma waves. For the imaginary part γ
we could derive a strictly negative expression showing the damping effect of the electric field.
Further, we were able to observe that the damping coefficient γ is composed additively of a
Landau damping part γL and a collisional damping γBGK due to the BGK relaxation in the
form

γ = −γL − γBGK .

In particular, for the collision frequency ν = 0 we obtained the same damping coefficient as in
the Vlasov-Poisson case. Then, we aimed at solving the dispersion relation numerically. We
introduced the plasma dispersion function in order to rewrite the dispersion relation using
the imaginary error function erfi. For the implementation we mainly used a code provided
by Eric Sonnendrücker. Its operating principle is given in [11, 27] and was also explained
in this work. The numerical results showed that the imaginary parts of the zeros of the
dispersion relation are always negative which gives rise to the damping effect of the electric
field. In addition, the dependence of the damping effect on the wave vector k and the collision
frequency ν could be observed.
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Further research on the topic of damping phenomena for the Vlasov-Poisson-BGK system
could be done in a multiple species framework. We propose to consider the two species
kinetic BGK model presented by Marlies Pirner in [25]. It explicitly takes the contribution of
two particle species into account. This leads to a more detailed description of the considered
gas mixture. For a plasma, let us use the index i for all quantities related to the ions. The
index e shall stand for all electron quantities. Then, the one-dimensional two species BGK
model is given in the form

∂

∂t
fi + v

∂

∂x
fi + eE

mi

∂

∂v
fi = νiini(Mi − fi) + νiene(Mie − fi),

∂

∂t
fe + v

∂

∂x
fe −

eE

me

∂

∂v
fe = νeene(Me − fe) + νeini(Mei − fe).

(5.1)

Here, the Maxwellian distributions are defined as

Mk(x, v, t) = nk(x, t)(
2πTk(x, t)/mk

)1/2 exp
(
−|v − uk(x, t)|

2

2Tk(x, t)/mk

)
, k = i, e,

Mkj(x, v, t) = nkj(x, t)(
2πTkj(x, t)/mk

)1/2 exp
(
−|v − ukj(x, t)|

2

2Tkj(x, t)/mk

)
, k, j = i, e, k 6= j,

with nk(x, t) being the macroscopic density, uk(x, t) the macroscopic velocity and Tk(x, t) the
macroscopic temperature of the particles of species k. The further macroscopic quantities
are chosen such that conservation of the number of particles, of the total momentum and of
the total energy holds. The equations from (5.1) are coupled to Maxwell’s equations through
the electric field. It holds

∂E

∂x
= e

∫
R

(fi(x, v, t)− fe(x, v, t)) dv. (5.2)

We propose to consider the coupled system consisting of (5.1) and (5.2) and show a damping
effect of the electric field for an initially slightly disturbed plasma. For the two species BGK
model (5.1) without a BGK operator on the right-hand side this is already done in [25]. For
the entire system with BGK operator we presume that Landau’s approach is applicable in a
similar way as in the one species Vlasov-Poisson-BGK case.
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Appendix

Here the original Python code used in Chapter 4 is displayed. The first one defines the class
zafpy2.

1 import numpy as np
2 import sympy as sym
3 import mpmath as mp # m u l t i p l e p r e c i s i o n a r i t h m e t i c
4 from s c i p y . l i n a l g import hanke l , e i g v a l s
5 from s c i p y . s p e c i a l import e r f i
6 from s c i p y . i n t e g r a t e import quad
7 mp. dps = 30
8

9 mods=[ ’ numpy ’ ,{ ’ e r f i ’ : e r f i } ]
10

11 def Z( x ) :
12 """ Plasma d i s p e r s i o n f u n c t i o n """
13 re tu rn sym . s q r t ( sym . p i )∗ sym . exp(−x ∗∗2)∗(1 j−sym . e r f i ( x ) )
14

15 c l a s s za fpy2 :
16 def __init__ ( s e l f ,D, kmode , max_zeros =20):
17 s e l f . kmode = kmode
18 s e l f . z e r o s = [ ]
19 omegabar = sym . symbol s ( ’ omega ’ )
20 s e l f .D = sym . l ambd i f y ( omegabar ,D( omegabar , kmode ) , ’mpmath ’ )
21 s e l f . max_zeros = max_zeros
22 s e l f . Dprime_over_D = sym . l ambd i f y ( omegabar ,
23 sym . d i f f (D( omegabar , kmode ) , omegabar )/D( omegabar , kmode ) , ’mpmath ’ )
24 s e l f . D_over_Dprime = sym . l ambd i f y ( omegabar ,
25 D( omegabar , kmode )/ sym . d i f f (D( omegabar , kmode ) , omegabar ) , ’mpmath ’ )
26

27 def count_ze ros ( s e l f , xmin , xmax , ymin , ymax , t o l =1.e −3):
28 """ Count the number o f z e r o s i n the box d e f i n e d by xmin , xmax , ymin ,
29 ymax ; Retu rns the number o f z e r o s """
30 k=s e l f . kmode
31 s1 , e r r 1=quad ( lambda t : np . f l o a t ( s e l f . Dprime_over_D ( xmax+1 j ∗ t ) . r e a l ) ,
32 ymin , ymax , e p s r e l=t o l )
33 s2 , e r r 2=quad ( lambda t : np . f l o a t ( s e l f . Dprime_over_D ( xmin+1 j ∗ t ) . r e a l ) ,
34 ymin , ymax , e p s r e l=t o l )
35 s3 , e r r 3=quad ( lambda t : np . f l o a t ( s e l f . Dprime_over_D ( t+1 j ∗ymin ) . imag ) ,
36 xmin , xmax , e p s r e l=t o l )
37 s4 , e r r 4=quad ( lambda t : np . f l o a t ( s e l f . Dprime_over_D ( t+1 j ∗ymax ) . imag ) ,
38 xmin , xmax , e p s r e l=t o l )
39 re tu rn ( s1−s2+s3−s4 )/(2∗ np . p i )
40

41 def ge t_ze ro s ( s e l f , xmin , xmax , ymin , ymax , deg=3, t o l=1e−12, to lK =0.01 ,
42 max i t e r =10, v e r bo s e=Fa l s e ) :
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43 """ Count z e r o s i n the r e c t a n g u l a r box """
44 i f v e r bo s e :
45 p r i n t ( ’ E x p l o r i n g ␣box : ’+s t r ( xmin)+ ’ , ’+s t r ( xmax)+ ’ , ’+s t r ( ymin)+ ’ , ’
46 +s t r ( ymax ) )
47 nz e r o s = s e l f . count_ze ros ( xmin , xmax , ymin , ymax )
48 K=i n t ( round ( n z e r o s . r e a l ) )
49 i f abs (K−nz e r o s . r e a l ) > to lK or K>5:
50 i f v e r bo s e :
51 p r i n t ( ’ r e f i n i n g : ␣ e r r o r=’ , abs (K−nz e r o s . r e a l ) , ’ ␣K=’ , K)
52 s e l f . r e f i n e ( xmin , xmax , ymin , ymax , deg , t o l , to lK , max i te r , v e r bo s e )
53 e l s e :
54 i f v e r bo s e :
55 p r i n t ( ’ found ␣ ’+s t r (K) + ’ ␣ ze ro s , E r r o r=’+s t r ( abs (K−nz e r o s . r e a l ) ) )
56 # Compute s_m i f K>0
57 i f K>0:
58 s=np . z e r o s (2∗K, ’ complex ’ )
59 f o r m i n range (0 ,2∗K) :
60 s1=mp. quad ( lambda t : ( xmax+1 j ∗ t )∗∗m∗
61 s e l f . Dprime_over_D ( xmax+1 j ∗ t ) , [ ymin , ymax ] , maxdegree=deg )/
62 (2∗mp. p i )
63 s2=mp. quad ( lambda t : ( xmin+1 j ∗ t )∗∗m∗
64 s e l f . Dprime_over_D ( xmin+1 j ∗ t ) , [ ymin , ymax ] , maxdegree=deg )/
65 (2∗mp. p i )
66 s3=mp. quad ( lambda t : ( t+1 j ∗ymin )∗∗m∗
67 s e l f . Dprime_over_D ( t+1 j ∗ymin ) , [ xmin , xmax ] , maxdegree=deg )/
68 (2∗1 j ∗mp. p i )
69 s4=mp. quad ( lambda t : ( t+1 j ∗ymax )∗∗m∗
70 s e l f . Dprime_over_D ( t+1 j ∗ymax ) , [ xmin , xmax ] , maxdegree=deg )/
71 (2∗1 j ∗mp. p i )
72 s [m]= s1−s2+s3−s4
73

74 # Compute z e r o s as g e n e r a l i s e d e i g e n v a l u e s o f Hankel m a t r i c e s
75 H = hanke l ( s [ 0 :K] , s [K−1:2∗K−1])
76 H2 = hanke l ( s [ 1 :K+1] , s [K:2∗K] )
77 w = e i g v a l s (H2 ,H)
78 # Check e r r o r on z e r o and per fo rm Newton r e f i n e m e n t i f n e c e s s a r y
79 e r r o r _ f l a g = Fa l s e
80 f o r i i n range ( l en (w ) ) :
81 ww=w[ i ]
82 e r r o r = abs ( s e l f .D(ww) )
83 i t =0
84 whi le e r r o r > t o l and i t <max i t e r :
85 ww=ww− s e l f . D_over_Dprime (ww)
86 e r r o r = abs ( s e l f .D(ww) )
87 i t = i t + 1
88 w[ i ]=ww
89 i f v e r bo s e :
90 p r i n t ( s t r (ww)+ ’ : ␣ e r r o r ␣on␣ ze r o=␣ ’ + s t r ( e r r o r ) +
91 ’ ␣#i t e r=’+s t r ( i t ) )
92 i f ( e r r o r > t o l ) :
93 e r r o r _ f l a g = True
94 break
95 i f e r r o r _ f l a g :
96 s e l f . r e f i n e ( xmin , xmax , ymin , ymax , deg , t o l , to lK , max i te r , v e r bo s e )
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97 e l s e :
98 s e l f . z e r o s=s e l f . z e r o s+w. t o l i s t ( )
99

100 re tu rn s e l f . z e r o s
101

102 def r e f i n e ( s e l f , xmin , xmax , ymin , ymax , deg , t o l , to lK , max i te r , v e r bo s e ) :
103 """ Get z e r o s i n r e f i n e d box """
104 h =[ f l o a t ( xmax−xmin ) , f l o a t ( ymax−ymin ) ]
105 s e l f . g e t_ze ro s ( xmin , xmin+0.5∗h [ 0 ] , ymin+0.5∗h [ 1 ] , ymax , deg , t o l , to lK ,
106 max i te r , v e r bo s e )
107 s e l f . g e t_ze ro s ( xmin+0.5∗h [ 0 ] , xmax , ymin+0.5∗h [ 1 ] , ymax , deg , t o l , to lK ,
108 max i te r , v e r bo s e )
109 s e l f . g e t_ze ro s ( xmin+0.5∗h [ 0 ] , xmax , ymin , ymin+0.5∗h [ 1 ] , deg , t o l , to lK ,
110 max i te r , v e r bo s e )
111 s e l f . g e t_ze ro s ( xmin , xmin+0.5∗h [ 0 ] , ymin , ymin+0.5∗h [ 1 ] , deg , t o l , to lK ,
112 max i te r , v e r bo s e )

The second code determines the zeros of the considered dispersion relation (4.36). Note that
the physical constants are set to one.

1 from za fpy2 import ∗
2 from py l ab import ∗
3 import cmath
4

5 # P h y s i c a l c o n s t a n t s
6 vth=1 # Thermal v e l o c i t y
7 omegap=1 # Plasma f r e q u e n c y
8 a lpha=1 # N o r m a l i z a t i o n
9 nu=0.1 # C o l l i s i o n f r e q u e n c y

10

11 # D i s p e r s i o n r e l a t i o n
12 def D( omegabar , k ) :
13 re tu rn 1+ a lpha ∗ ( ( omegap∗∗2+1 j ∗omegabar∗nu )/ ( vth ∗k )∗∗2) +
14 a lpha ∗Z( ( omegabar+nu∗1 j )/ ( k∗ vth ∗sym . s q r t ( 2 ) ) ) ∗ ( ( omegabar ∗( omegap∗∗2−nu ∗∗2))/
15 ( sym . s q r t (2)∗ vth ∗∗3∗k∗∗3)+(nu∗1 j )/ ( k∗ vth ∗sym . s q r t ( 2 ) )∗
16 (1+( omegabar∗∗2+omegap ∗∗2)/( vth ∗∗2∗k ∗∗2) ) )
17

18 # Determine the z e r o s o f the d i s p e r s i o n r e l a t i o n
19 f o r kmode i n arange ( . 2 , . 6 , . 1 ) :
20 p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
21 p r i n t ( ’mode : ’ , kmode . round ( d e c ima l s=2) )
22 z a f=za fpy2 (D, kmode )
23 xmin=−3;xmax=3
24 # ymin=−5∗kmode ; ymax=.1
25 ymin=−2.5;ymax=.1
26 z e r o s=za f . g e t_ze ro s ( xmin , xmax , ymin , ymax )#, v e r b o s e=True )
27

28 # Determine the z e r o wi th the l a r g e s t imag i na r y p a r t
29 zero_max=z e r o s [ argmax ( imag ( z e r o s ) ) ]
30

31 p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−− ’ )
32 p r i n t ( ’ k=’ , kmode . round ( d e c ima l s =2))
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33 p r i n t ( ’ z e r o ␣wi th ␣ l a r g e s t ␣ imag i na r y ␣ pa r t ␣ ( omega ) : ’ , zero_max )
34 p l o t ( r e a l ( z e r o s ) , imag ( z e r o s ) , ’ . ’ , l a b e l= ’ k=’+s t r ( kmode . round ( d e c ima l s =2)))
35 a x i s ( [ xmin − .1 , xmax+.1 , ymin − .1 , ymax+.1 ] )
36 t i t l e ( ’ z e r o s ␣ o f ␣ d i s p e r s i o n ␣ r e l a t i o n ’ )
37 l e g end ( )
38 show ( )
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