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Abstract
The degrees of freedom of Active Flux are cell averages and point values along the cell
boundaries. The latter are shared between neighboring cells, which gives rise to a globally
continuous reconstruction. The semi-discrete Active Fluxmethod uses its degrees of freedom
to obtain Finite Difference approximations to the spatial derivatives which are used in the
point value update. The averages are updated using a quadrature of the flux andmaking use of
the point values as quadrature points. The integration in time employs standard Runge-Kutta
methods. We show that this generalization of the Active Flux method in two and three spatial
dimensions is stationarity-preserving for linear acoustics on Cartesian grids, and present an
analysis of numerical diffusion and stability.

Keywords Active flux · Stationarity-preserving · Linear acoustics · Fourier transform

Mathematics Subject Classification 65M20 · 65M70 · 65M08 · 35E15

1 Introduction

The classical Active Flux method has been introduced in [13], based on a one-dimensional
method from [17]. From the beginning, it was conjectured that the continuous reconstruction,
i.e., the absence of Riemann problems might help alleviate difficulties that traditional Finite
Volume methods face in multiple dimensions. For instance, they are usually not preserving
discrete involutions, they are not low Mach number compliant for the Euler equations, and
they are not stationarity-preserving. This situation does not improve even if the full multi-
dimensional Riemann problem is solved and used in a Godunov method ([10]).

As a Finite Volume method, Active Flux evolves cell averages as discrete degrees of
freedom, and additionally evolves point values. The latter are located at cell boundaries and
are a way to ensure global continuity of the reconstruction, or—in a Finite Element sense—of
the numerical solution. The first multi-dimensional system that Active Flux was applied to
(in [13]) was linear acoustics. In multiple spatial dimensions, it is an interesting system of

B Wasilij Barsukow
wasilij.barsukow@math.u-bordeaux.fr

1 Institut de Mathématiques de Bordeaux (IMB), CNRS UMR 5251, 351 Cours de la Libération,
33405 Talence, France

2 Institute for Mathematics, University of Wurzburg, Emil-Fischer-Strasse 40, 97074 Wurzburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-025-00512-3&domain=pdf
http://orcid.org/0000-0003-2300-105X


Communications on Applied Mathematics and Computation

equations because it cannot be reduced to (multi-dimensional) advection. While the update
of the average is immediately possible via quadrature along the cell boundary (using the
point values as quadrature points), the update of the point values was initially achieved (e.g.,
in [9]) using an exact evolution operator. This operator was derived for linear acoustics in
[10]. The reconstruction served as its initial datum. The structure-preserving properties of
this method have already been analyzed in [9]. It has been found that indeed Active Flux is
stationarity-preserving.

For nonlinear problems it is more difficult to obtain evolution operators of sufficient order
of accuracy, let alone exact ones.This led [1, 2] to consider semi-discreteActiveFluxmethods,
where the same degrees of freedom are used in order to discretize the spatial derivatives,
while integration in time follows the method-of-lines strategy. As has been outlined in [3],
this typically leads to reduced CFL conditions. The advantage of the semi-discrete approach
is its immediate applicability to various kinds of systems of conservation laws. However, one
would not like to lose the structure preservation.

This paper presents an analysis of the semi-discreteActive Fluxmethod on linear problems
and a comparison between the classical and the semi-discrete approaches, with an emphasis
on structure preservation. As is shown below, the structure-preserving properties of the semi-
discrete approach are very similar to those of the classical one. In the context of the lowMach
number limit for the Euler equations this has already been observed experimentally in [4].

The paper is organized as follows: Sect. 2 introduces the equations and the analytical sta-
tionary states and Sect. 3 presents the semi-discrete Active Flux method on two-dimensional
and three-dimensional Cartesian grids. The discrete Fourier transform is introduced in Sect.
4 and is used to analyze stationarity preservation in Sect. 5. Section 6 presents an analysis of
numerical diffusion and stability. Some numerical examples follow in Sect. 7.

We denote by Pk univariate polynomials of degree at most k, and by Pk,k bivariate
polynomials with degree at most k in each variable. We also occasionally denote by R[x]
or C[x, y] polynomials in x with real coefficients, and polynomials in x , y with complex
coefficients, respectively. d denotes the number of spatial dimensions, and objects with d
components are typeset in boldface. M a×b(C) denotes matrices with complex entries of a
rows and b columns. Indices never denote differentiation. 1m denotes the identity map on
Rm .

2 Acoustic Equations and Their Stationary States

2.1 General Linear Systems

Stationary states are solutions to evolutionary partial differential equations (PDEs) that remain
constant in time. To achieve stability, numerical methods add numerical diffusion. A setup
that is stationary according to the PDE might keep being diffused away and no longer be
stationary in the discrete setting. Thus, the stationary states of the discretization are often
a small, not representative subset of the stationary states of the PDE. It is preferable for
numerical schemes to possess numerical stationary states that discretize all the analytic
stationary states of the underlying conservation law; a definition of what this really means is
given in Sect. 5.1. In this section, the stationary states of the linear acoustic equations shall
be analyzed. This is easiest done by applying the Fourier transform to them.

Consider an m × m hyperbolic system of linear PDEs

∂t q + J · ∇q = 0, q : R+
0 × Rd → Rm,

J = (J1, · · · , Jd), Ji ∈ Mm×m(R). (1)
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Occasionally we will use the notation Jx ≡ J1, Jy ≡ J2, Jz ≡ J3 instead. One Fourier mode
of a function q: R+

0 × Rd → Rm is of the form

q(t, x) = q̂(t,k) exp(ik · x). (2)

Here, k ∈ Rd is called the wave vector and determines the spatial frequency of the Fourier
mode, while its amplitude q̂ can be chosen differently for each k. General solutions are
obtained as linear combinations of such modes for different values of k. Inserting the mode
into (1) yields

d

dt
q̂ + iJ · kq̂ = 0. (3)

Hyperbolicity guarantees that the matrix J · k = J1k1 + · · · + Jdkd is diagonalizable. The
mode q̂ exp(ik · x) is stationary if q̂ is in the nullspace of J · k. This can be achieved through
particular choices of k, trivially for k = 0, which (since every Fourier mode depends on x
as exp(ik · x)) corresponds to the data being uniformly constant. Non-trivial stationary states
([6]) are those for which no restriction on k is necessary, i.e., where for any k there exists
a q̂stat(k) ∈ Cm\{0} such that (J · k)q̂stat(k) = 0. A necessary condition for the existence
of non-trivial stationary states is det(J · k) = 0 for any k ∈ Rd . Observe that the amplitude
q̂stat of a stationary mode generally depends on k, see below for some examples.

2.2 Acoustic Equations

The acoustic equations in d spatial dimensions are given as

∂tv + ∇ p = 0, (4a)

∂t p + ∇ · v = 0 (4b)

with the velocity v : R+
0 × Rd → Rd and the pressure p : R+

0 × Rd → R.
In d spatial dimensions, the matrix J · k reads(

0d×d k

kT 0

)
∈ M (d+1)×(d+1) (5)

and any element (U, P)T ∈ Cd+1 of its nullspace has to fulfill

kP = 0, (6)

kTU = 0. (7)

For any k, the following is a nullspace of J · k:
N (d)
non-trivial := {(U, 0)T: U ⊥ k}. (8)

It is d − 1 dimensional. In 3-d, one can choose

N (3)
non-trivial = span

{
(−ky, kx , 0, 0)

T, (−kz, 0, kx , 0)
T
}

(9)

and in 2-d

N (2)
non-trivial = span

{
(−ky, kx , 0)

T
}
. (10)

For special values of k there are additional elements in the kernel, which are referred
to as trivial stationary states. They are usually represented well by any kind of numerical
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method and are of little interest in the following. On the contrary, the non-trivial stationary
states in N (d)

non-trivial are usually poorly represented by numerical methods (see [6] for more
details). The following will show that they are well represented by the semi-discrete Active
Flux method.

3 Semi-discrete Active Flux on Two-Dimensional and
Three-Dimensional Cartesian Grids

3.1 Degrees of Freedom

In contrast to classical Finite Volume methods that only involve the cell average as degrees
of freedom, the Active Flux method additionally uses point values distributed on the cell
boundaries as degrees of freedom.

3.1.1 General Remarks

In two spatial dimensions the computational grid consists of cells

Ci j =
[(

i − 1

2

)
�x,

(
i + 1

2

)
�x

]
×

[(
j − 1

2

)
�y,

(
j + 1

2

)
�y

]
⊂ R2 (11)

and in 3-d

Ci jk =
[(

i − 1

2

)
�x,

(
i + 1

2

)
�x

]
×

[(
j − 1

2

)
�y,

(
j + 1

2

)
�y

]

×
[(

k − 1

2

)
�z,

(
k + 1

2

)
�z

]
⊂ R3. (12)

We denote by xi j and xi jk the cell centroids.
There is one average in every cell and a certain number of point values located at the

boundary of the cell. The latter are shared.Wemake a distinction between degrees of freedom
that belong to a cell, whose number we will denote by N dof , and those that are accessible to
a cell.

Definition 1 The degrees of freedom accessible to a cell Ci j (or Ci jk) are those located in it
or along its boundary, or that are averages over it. Their number per cell is denoted by N dof

acc
and they are denoted by

q0,i j , q1,i j , · · · , qNdof
acc−1,i j and (13)

q0,i jk, q1,i jk, · · · , qNdof
acc−1,i jk (14)

in 2-d and 3-d, respectively, with a numbering that is arbitrary but fixed once for all cells,
and we reserve the index 0 for the cell average. Locations of the point values are denoted by
xr ,i j and xr ,i jk , r ∈ 1, · · · , N dof

acc − 1 and we define the relative coordinate

xr := xr ,i j − xi j ∈
[
−�x

2
,
�x

2

]
×

[
−�y

2
,
�y

2

]
(15)

or

xr := xr ,i jk − xi jk ∈
[
−�x

2
,
�x

2

]
×

[
−�y

2
,
�y

2

]
×

[
−�z

2
,
�z

2

]
(16)
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Fig. 1 Distribution of the point values along the cell boundary for a cell of the two-dimensional (left) and
three-dimensional (right) Cartesian grids. The cell average is depicted with a square located at the center of
the cell

in two and three spatial dimensions, respectively.

Examples are given below.

Definition 2 The degrees of freedom belonging to a cell are a minimal set such that all the
accessible degrees of freedom can be obtained from them through shifts by�x ,�y (and�z)
in the two/three directions. We agree in the following on choosing the same ones in each cell.
Their number per cell is denoted by N dof and we denote them by qX

i j where X takes values
in a set of identifiers defined below. Locations of degrees of freedom that are point values
are denoted by xXi j and we define the relative coordinate

xX := xXi j − xi j . (17)

In other words, consider an equivalence relation ∼ between any two degrees of free-
dom on an infinite grid, with two degrees of freedom p1, p2 being equivalent if there exist
Ax , Ay, Az ∈ Z such that the shift

(x, y, z) 	→ (x + Ax�x, y + Ay�y, z + Az�z) (18)

maps p1 onto p2. For example, all point values at nodes and all the cell averages are equivalent.
The degrees of freedom belonging to one cell are the quotient DOF/ ∼ of all the degrees
of freedom DOF on the grid by ∼. Finally, instead of the equivalence classes we speak of
representative elements chosen according to some conventions for definiteness (explained
above and shown in Fig. 1). Degrees of freedom that belong to a cell become important in
the context of the Fourier analysis of Sect. 4, since discrete Fourier modes are the eigenbasis
of the operator defined in (18).

Consider for every accessible degree of freedom r = 0, · · · , qNdof
acc−1 the number of cells

that share it and denote this number by αr ∈ N. Then

N dof =
Ndof
acc−1∑
r=0

1

αr
. (19)

The distinction between degrees of freedom belonging to a cell and those accessible to it
is due to global continuity and the fact that degrees of freedom are shared. In DG methods,
for example, the accessible degrees of freedom are just the ones that belong to the cell.
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Definition 1 states that each of the degrees of freedom that belong to a cell forms a lattice
with spacing �x,�y or �x,�y, and �z, respectively. This will become important below
in the context of the Fourier transform.

3.1.2 Degrees of Freedom in Two Spatial Dimensions

In two spatial dimensions (see Fig. 1) we consider a classical distribution of in total 8 point
values located at the corners and the midpoints of the cell edges. The N dof

acc = 9 degrees of
freedom accessible to cell Ci j , denoted by qr ,i j , r = 0, · · · , 8, are

q7,i j := qNi−1, j ; q6,i j := qEHi j ; q5,i j := qNi j ; (20)

q8,i j := qEVi−1, j ; q0,i j := qAi j ; q4,i j := qEVi j ; (21)

q1,i j := qNi−1, j−1; q2,i j := qEHi, j−1; q3,i j := qNi, j−1. (22)

Recall that the numbering is arbitrary but needs to be fixed once.
Each corner of a cell is likewise a corner to three other adjacent cells and each midpoint

of a cell edge is shared with one other cell, i.e., N dof = 4 · 1
4 + 2 · 2 · 1

2 + 1 = 4. Therefore,
4 degrees of freedom belong to a cell Ci j and we have chosen them in the top right corner as

– cell average qAi j = q0,i j ,

– node value qNi j = q5,i j ,

– horizontal edge value qEHi j = q6,i j ,

– vertical edge value qEVi j = q4,i j ,

as shown in Fig. 1.

3.1.3 Degrees of Freedom in Three Spatial Dimensions

The natural extension of the previous two-dimensional situation to three spatial dimensions
results in 26 point values accessible to each cell, i.e., N dof

acc = 27. Eight of them are located
at the corners of a cell, 12 at the midpoints of the edges and six at the midpoints of the faces
of a cell, see Fig. 1. Again, as in the two-dimensional case, several cells are sharing these
point values, so that one is left with N dof = 8 degrees of freedom that belong to cell Ci jk :
– one cell average qAi jk = q0,i jk ,

– one node value qNi jk ,

– three edge values qEx
i jk , q

Ey
i jk , q

Ez
i jk , one per edge parallel to the three axes,

– three face values qFxi jk , q
Fy
i jk , q

Fz
i jk , one per face orthogonal to the three axes.

Observe that the values on edges and faces are point values at the respective centroids,
and not averages over these entities.

3.2 Update of the Average

The update of the average will first be described for a generic nonlinear conservation law

∂t q + ∇ · f(q) = 0, (23)
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since generalization improves clarity in this case. At the end of this section, the special case
of linear systems is explained.

For updating the cell average, the conservation law (23) is integrated over one cell (Ci j or
Ci jk), and Gauss’ law is applied. This gives

d

dt
qAi j + 1

�x�y

∑
e⊂∂Ci j

∫
e
ne · f(q) ds = 0, (2-d) (24)

d

dt
qAi jk + 1

�x�y�z

∑
f ⊂∂Ci jk

∫
f
n f · f(q) ds = 0 (3-d) (25)

with

qAi j (t) = 1

�x�y

∫
Ci j

q(t, x, y) dx dy, (2-d) (26)

qAi jk(t) = 1

�x�y�z

∫
Ci jk

q(t, x, y, z) dx dy dz. (3-d) (27)

In Active Flux, the locations of the point values are chosen such that they can be used as
quadrature points for the flux averages through the edges e/faces f . The distribution of point
values as described in the previous section allows to use Simpsons’ rule, such that

d

dt
qAi j +

f̂ x
i+ 1

2 , j
− f̂ x

i− 1
2 , j

�x
+

f̂ y
i, j+ 1

2
− f̂ y

i, j− 1
2

�y
= 0, (2-d) (28a)

d

dt
qAi jk +

f̂ x
i+ 1

2 , j,k
− f̂ x

i− 1
2 , j,k

�x
+

f̂ y
i, j+ 1

2 ,k
− f̂ y

i, j− 1
2 ,k

�y

+
f̂ z
i, j,k+ 1

2
− f̂ z

i, j,k− 1
2

�z
= 0 (3-d) (28b)

with the numerical fluxes

f̂ x
i+ 1

2 , j
= 1

6

(
f x (qNi j ) + 4 f x (qEVi j ) + f x (qNi, j−1)

)
, (29)

f̂ y
i, j+ 1

2
= 1

6

(
f y(qNi−1, j ) + 4 f y(qEHi j ) + f y(qNi j )

)
, (30)

f̂ x
i+ 1

2 , j,k
= 1

36

(
f x (qNi jk) + 4 f x (qEz

i jk) + f x (qNi, j,k−1)

+ 4 f x (q
Ey
i jk) + 16 f x (qFxi jk) + 4 f x (q

Ey
i, j,k−1)

+ f x (qNi, j−1,k) + 4 f x (qEz
i, j−1,k) + f x (qNi, j−1,k−1)

)
,

.... (31)

Observe that the numerical fluxes do not come from a Riemann solver, but are simply
quadratures of the physical flux. Observe also that the only approximation made here is
the replacement of integrals by quadratures. While these formulas are valid for nonlinear
conservation laws, below they are used to discretize (1), i.e.,with f x (q) = J1q , f y(q) = J2q ,
f z(q) = J3q .
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Fig. 2 Shape functions B7 (top left), B8 (top right), B0 (bottom left) in two spatial dimensions and a recon-
struction devised by using these shape functions (bottom right)

3.3 Update of the Point Values

The following description of the update of the point values holds on two-dimensional and
three-dimensional Cartesian grids. For simplicity, the formulas are mostly given for the two-
dimensional case only.

For updating the point values, a biparabolic reconstruction

qrecon,i j :
[
−�x

2
,
�x

2

]
×

[
−�y

2
,
�y

2

]
→ Rm, qrecon,i j ∈ (P2,2)m

is built for each cell. It has to satisfy

1

�x�y

∫ �x
2

− �x
2

∫ �y
2

− �y
2

qrecon,i j (x) dx = q0,i j ,

qrecon,i j (xr ) = qr ,i j r = 1, · · · , 8,

(32)

where q0,i j is the average over cell Ci j and r is indexing all eight point values on the boundary
of this cell, starting in the lower left corner with q1,i j and running through all point values
counterclockwise (see Fig. 1). As is customary for Finite Elements, one can compute shape
functions and write the reconstruction as a linear combination of these:

qrecon,i j (x, y) :=
∑

r∈{0,1,··· ,8}
qr ,i j Br (x, y) ∈ (P2,2)m . (33)

The basis functions involved in equation (33) are given in Appendix A; see Fig. 2 for an
illustration of B7, B8, and B0 as well as for an example of the reconstruction (33).

Observe that a biparabolic reconstruction is parabolic along any of the edges of the (Carte-
sian) cell and that the parabola is uniquely definedby the three point values located at any edge.
As the point values are shared with adjacent cells, one concludes that the above biparabolic
reconstructions form a globally continuous reconstruction.
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For the point value update, we are aiming at a semi-discretization of (1), i.e., a dis-
cretization in space is needed. A finite difference approximation to the derivative that uses a
compact stencil and is of maximal order of accuracy can be obtained by differentiating the
reconstruction at the location of the respective point value. The reconstruction is not contin-
uously differentiable in the direction perpendicular to the edges/faces, which is beneficial, as
it allows to include upwinding: the derivative is taken from the cell in the upwind direction.

Observe that the choice of degrees of freedom that belong to the cell Ci j privileges the
right upper corner. This means that for positive x , y velocity components, Ci j is the upwind
cell for all degrees of freedom qP

i j , P ∈ {N,EH,EV}. We therefore denote by Dx
∣∣P
i j q the

x-derivative of the reconstruction (33) in cell Ci j evaluated at the location of the point value
P:

Dx
∣∣P
i j q := ∂

∂x
qrecon,i j

∣∣
x=xP ∈ Rm . (34)

For negative velocity components, in some cases one differentiates the reconstruction
from cell Ci+1, j at the same location, e.g., for the x-derivative

D∗
x

∣∣P
i j q :=

⎧⎨
⎩

∂

∂x
qrecon,i+1, j

∣∣
x=xPi j−xi+1, j

, P ∈ {N,EV},
Dx

∣∣P
i j q, P ∈ {EH}.

(35)

The same applies to the formulas Dy
∣∣P
i j and D∗

y

∣∣P
i j , and analogously in 3-d. Figure 3 shows

the coefficients occurring in the difference formulas assigned to the corresponding point value
or the cell average.

The update of a point value is in 2-d

d

dt
q P
i j = −

(
J+
x Dx

∣∣P
i j q + J−

x D∗
x

∣∣P
i j q

)
−

(
J+
y Dy

∣∣P
i j q + J−

y D∗
y

∣∣P
i j q

)
,

P ∈ {N,EH,EV} (36a)

and in 3-d
d

dt
q P
i jk = −

(
J+
x Dx

∣∣P
i jkq + J−

x D∗
x

∣∣P
i jkq

)
−

(
J+
y Dy

∣∣P
i jkq + J−

y D∗
y

∣∣P
i jkq

)
−

(
J+
z Dz

∣∣P
i jkq + J−

z D∗
z

∣∣P
i jkq

)
,

P ∈ {N,Ex ,Ey,Ez,Fx ,Fy,Fz}, (36b)

where J±
x , J±

y are the positive/negative parts of Jx , Jy . Given the diagonalization

Jx = Rdiag(λ1, · · · , λm)R−1, (37)

one defines

J±
x := Rdiag(λ±

1 , · · · , λ±
m)R−1 (38)

and analogously for Jy .
The above point value update is a Jacobian splitting inspired by the one-dimensional

upwind method. One might consider an alternative point value update

J̃±
x := Jx ± ax1m, J̃±

y := Jy ± ay1m, (39)

where ax = max(|λ(Jx )|), ay = max(|λ(Jy)|) with λ being an eigenvalue of Jx or Jy . This
Jacobian splitting is inspired by the Rusanov method. As will be seen later, when it comes
to structure preservation it is significantly inferior to the upwind splitting.
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Fig. 3 Illustration of the coefficients occurring in the difference formulas for node values and vertical edge
values. They are placed at the location of the corresponding point value or at the cell center for the average. The
circled dot marks the location of the point value intended to be updated. Cells Ci j (left) and Ci+1, j (rows 1–3)

/ Ci, j+1 (row 4) (right) are shown. Upper row: difference formulas Dx
∣∣N
i j and D∗

x
∣∣N
i j . Second row: difference

formulas Dx
∣∣EV
i j and D∗

x
∣∣EV
i j . Third row: difference formulas Dy

∣∣EV
i j and D∗

y
∣∣EV
i j , which are equivalent. Fourth

row: difference formulas Dy
∣∣N
i j and D∗

y
∣∣N
i j
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3.4 Integration in Time

The update equations (28) and (36) for the average and the point values are evolved in time
using Runge-Kutta time integration. One can expect a maximal CFL number of about 0.2,
half of what is known for the one-dimensional situation ([3]). The analysis of Sect. 6 indicates
that for linear acoustics it actually is∼0.28. The stationary states of the numerical method are
by definition those for which the space derivative vanishes, i.e., one is left in this case with
the ordinary differential equation q ′(t) = 0. Any Runge-Kutta method is able to integrate it
exactly, and the choice of the time integrator is thus not relevant for stationarity preservation.

4 The Discrete Fourier Transform

4.1 Fourier Modes

Stationarity preservation of linear numerical schemes for linear hyperbolic systems (1) can be
investigated using the discrete Fourier transform, i.e., by expressing the spatial dependence
of any grid function qi j (or qi jk), q : Zd → Rm as the linear combination

qi j =
∑
k

q̂(k) exp(ikx i�x + iky j�y) or (40)

qi jk =
∑
k

q̂(k) exp(ikx i�x + iky j�y + ikzk�z). (41)

The exponentials are discrete versions of exp(ik · x), having written k = (kx , ky), or k =
(kx , ky, kz). This is possible because themethod under consideration is linear and because we
assume an equidistant Cartesian grid. The coefficients q̂(k) ∈ Cm of the linear combination
are called the discrete Fourier transform of q.

According to Definition 1, each of the degrees of freedom that belong to a cell forms a
lattice with spacings �x , �y (and �z, in 3-d), i.e., can be seen as a grid function. When
investigating the semi-discrete Active Flux method using the discrete Fourier transform,
each lattice is associated with its own Fourier mode. We express every degree of freedom
belonging to a cell Ci j in 2-d as

qX
i j (t) =

∑
k

q̂ X (t,k) exp(iikx�x + i jky�y), X ∈ {A,N,EH,EV} (42)

and to a cell Ci jk in 3-d as

qX
i jk(t) =

∑
k

q̂ X (t,k) exp(iikx�x + i jky�y + ikkz�z),

X ∈ {A,N,Ex ,Ey,Ez,Fx ,Fy,Fz}. (43)

Here q̂ X (t,k) ∈ Cm . It is useful to introduce the following

Definition 3 (Translation factor) The translation factors are given as tx (kx ) = exp(ikx�x),
ty(ky) = exp(iky�y),tz(kz) = exp(ikz�z). We drop explicit mention of the parameters in
the following.

Index shifts lead to multiplications with shift factors:

qX
i+I , j+J (t) =

∑
k

t Ix t
J
y · q̂ X (t,k) exp(iikx�x + i jky�y),
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X ∈ {A,N,EH,EV}, (44)

qX
i+I , j+J ,k+K (t) =

∑
k

t Ix t
J
y t

K
z · q̂ X (t,k) exp(iikx�x + i jky�y + ikkz�z),

X ∈ {A,N,Ex ,Ey,Ez,Fx ,Fy,Fz}, (45)

where t Ix is the I -th power of the unit complex number tx = exp(ikx�x), · · · .
Both the summation and the global exponential factor exp(iikx�x + i jky�y) will even-

tually drop out of all expressions.

Proposition 1 Consider grid functions q, Q : Z2 → Rm and assume that Q is linear in q ,
i.e., an expression of the form

Qi j =
∑

(I ,J )∈Z2

αI J qi+I , j+J , αI J ∈ Mm×m(R), ∀I , J . (46)

Then by writing

qi j :=
∑
tx ,ty

q̂(tx , ty)t
i
x t

j
y , q̂(tx , ty) ∈ Cm, Qi j :=

∑
tx ,ty

Q̂(tx , ty)t
i
x t

j
y (47)

one obtains

Q̂ =
∑

(I ,J )∈Z2

t Ix t
J
y αI J q̂ ∈ Cm . (48)

The three-dimensional case is analogous.

Proof By direct computation and using linearity.

Note that Q̂ depends on k, or equivalently on tx , ty , but that we will neglect explicit
mention of these parameters.

Definition 4 (Discrete Fourier transform) Given qi j as in Proposition 1, we call q̂ the

discrete Fourier transform of q. We will neglect the common factor t ix t
j
y in (47) as it is bound

to cancel in the end and simply write qi j ≡ q̂ , qi+1, j ≡ q̂tx , · · · as a formal replacement
rule.

For the degrees of freedom accessible to one cell for the two-dimensional Active Flux one
finds the Fourier transforms by applying the replacement rule of Definition 4 to (20)–(22):

q7,i j ≡ q̂N/tx , q6,i j ≡ q̂EH , q5,i j ≡ q̂N, (49)

q8,i j ≡ q̂EV/tx , q0,i j ≡ q̂A, q4,i j ≡ q̂EV , (50)

q1,i j ≡ q̂N/(tx ty), q2,i j ≡ q̂EH/ty, q3,i j ≡ q̂N/ty . (51)

The Fourier transforms for Active Flux are collected in a block-vector q̂, where

q̂ = (q̂A, q̂EH , q̂EV , q̂N) ∈ CmNdof = Cm·4 (52)

for the two-dimensional case and

q̂ = (q̂A, q̂Ex , q̂Ey , q̂Ez , q̂Fx , q̂Fy , q̂Fz , q̂N) ∈ CmNdof = Cm·8 (53)

for the three-dimensional case. Here q̂A ∈ Cm is the Fourier transform of the average,
q̂Ei ∈ Cm is the Fourier transform of the point value on an edge parallel to the i-axis, and
q̂Fi ∈ Cm is the Fourier transform of the point value on the face orthogonal to the i-axis.
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4.2 The Fourier Transform of the Reconstruction

Definition 5 Consider the reconstruction qrecon,i j ∈ (Pk,k(R2))m (i.e., the one in (33)) as a
function of the degrees of freedom accessible to cell Ci j , i.e., write

qrecon,i j (x, y; q0,i j , q1,i j , · · · , qNdof
acc−1,i j ). (54)

We denote by q̂recon ∈ (Pk,k(C2))m the same polynomial obtained by replacing the degrees
of freedom by their Fourier transforms according to the replacement rule of Definition 4. For
example, in 2-d we have, with the replacement rule (51)

q̂recon(x, y; q̂A, q̂EH , q̂EV , q̂N) (55)

:= qrecon,i j

(
x, y; q̂A,

q̂N

tx ty
,
q̂EH

ty
,
q̂N

ty
, q̂EV , q̂N, q̂EH ,

q̂N

tx
,
q̂EV

tx

)
. (56)

We will generally omit explicit mention of the parameters in the following. The three-
dimensional case is analogous.

The reconstruction polynomial qrecon,i j (x, y) depends on all parameters accessible to the
cell (9 in case of (33)), but its discrete Fourier transform q̂recon(x, y) depends only on those
belonging to one cell (4 in case of (33)), i.e., N dof. q̂recon can also simply be seen as the
discrete Fourier transform pointwise at each (x, y).

4.3 The EvolutionMatrix

Equations (28) and (36) for the average and the point value updates can be combined into

d

dt
q X
I +

∑
Y∈�

∑
S∈[−N ,N ]d⊂Zd

αX
Y ,Sq

Y
I+S = 0, ∀X ∈ �, (57)

where

� = {A,N,EH,EV}, I = (i, j), (2-d) (58)

� = {A,N,Ex ,Ey,Ez,Fx ,Fy,Fz}, I = (i, j, k), (3-d) (59)

and αX
Y ,S ∈ Mm×m(R). Upon the Fourier transform one obtains

d

dt
q̂ X +

∑
Y∈�

∑
S∈[−N ,N ]d⊂Zd

αX
Y ,Sq̂

Y
d∏

m=1

t Smm = 0. (60)

For the Active Flux method applied to linear acoustics one has, for example for the node
value:

0 = d

dt
q̂N + J+

x
1

�x

(
3q̂N − 4q̂EH + q̂N

1

tx

)
+ J−

x
1

�x

(−3q̂N + 4q̂EH tx − q̂Ntx
)

(61)

+ J+
y

1

�y

(
q̂N

1

ty
− 4q̂EV + 3q̂N

)
+ J−

y
1

�y

(−q̂Nty + 4q̂EV ty − 3q̂N
)
. (62)

Further such equations are given in Appendix B.
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Definition 6 (Evolution matrix) The evolution matrix associated to the Finite Difference
scheme (57) is the block matrix E(k) ∈ MmNdof×mNdof

(C) with its block-entry (X , Y ) being

(
E(k)

)
X ,Y

=
∑

S∈[−N ,N ]d⊂Zd

αX
Y ,S

d∏
m=1

t Smm (63)

such that (60) can be written as
d

dt
q̂ + E(k)q̂ = 0. (64)

We will frequently omit the argument and simply write E .
For the two-dimensional linear acoustics we choose to write the evolution block matrix

as follows:

E =

⎛
⎜⎜⎝

EAA EAEH EAEV EAN
EEHA EEHEH EEHEV EEHN
EEVA EEVEH EEVEV EEVN
ENA ENEH ENEV ENN

⎞
⎟⎟⎠ , (65)

where e.g., EEHEV states the influence of the point value at the EV edge on the point value at
an EH edge. The explicit form of the blocks can be found in Appendix C.

By comparison with (3) one observes that the evolution matrix E(k) plays the role of
iJ ·k. Formulation (64) of the method therefore is ideal for studying the numerical stationary
states, as they are given by the kernel of E(k).

While the right kernel allows to identify stationary states, the left kernel of E is related to
involutions: if there exists an ω(k) ∈ CmNdof such that

ω(k)TE = 0, ∀k, (66)

then

d

dt
ω(k)Tq̂ = 0. (67)

In the case of linear acoustics ω(k)Tq̂ would be the Fourier transform of a discretization of
the vorticity ∇ × v. However, we find that in practice it is very difficult to explicitly compute
the left kernel of E . The existence of a right kernel guarantees the existence of a left kernel
of the same dimension, but we are unable to say anything about the nature of the discrete
vorticity beyond its existence.

5 Using the Discrete Fourier Transform for the Analysis of Stationarity
Preservation

5.1 Stationarity Preservation

For both stationarity-preserving and stationarity-non-preserving methods, on e.g., periodic
domains the solution becomes stationary after long times, since von Neumann stability
prohibits Fourier modes that grow in time: they can only decay or remain stationary. The
difference between stationarity-preserving and stationarity-non-preserving methods is about
how this final stationary state looks like. If the discrete stationary states of the method dis-
cretize all the analytic stationary states of the PDE, then the method is called stationarity
preserving. For linear acoustics, stationarity-preserving methods have stationary states that
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are characterized by a consistent discretization of a divergence-free velocity without any
further constraints and a vanishing pressure. Classical schemes are mostly not stationarity
preserving: their discrete stationary state is instead a discretization of ∂xu = 0, ∂yv = 0
(see [5, 6]). Such stationary states are called trivial and are a small subset of divergence-
free velocities, and e.g., vortices are not contained in it. Thus, stationarity non-preserving
methods are only able to preserve shear flows, but cannot consistently discretize vortices, or
generally speaking they are not able to offer discretizations of all the stationary states of the
PDE. Moreover, for stationarity non-preserving methods grid refinement only slows down
the (exponentially quick) transition to the “bad” stationary state, but does not improve the
stationary state itself, i.e., one can say that they lose consistency at the stationary state.

A discrete Fourier mode with the spatial frequency k is stationary if it is in the kernel
of E(k) (see (64)). The focus on non-trivial stationary states means that one is keen on
identifying stationary modes for any k (i.e., for general tx , ty, tz). The kernel thus obtained
shall then be compared to the kernel of J · k.

For Finite Difference methods, the condition for a method to be stationarity-preserving is
([6])

min
k

dim ker E(k) = min
k

dim ker J · k. (68)

For numerical methods with multiple degrees of freedom per cell, such as Active Flux, the
dimension of the space on which E operates is N dof times larger than that of J · k. One
might thus impose a correspondingly higher dim ker E as a condition for the stationarity
preservation. We shall, however, be modest here.

Definition 7 A linear numerical method with N dof degrees of freedom per cell per variable
is called stationarity-preserving if

S � min
k

dim ker E(k) � SN dof, (69)

where S := mink dim ker J · k.

5.2 A Review of Stationarity Preservation of the Classical Active Flux Method

For the two-dimensional linear acoustics, the matrix E of Active Flux is a (dense) 12 × 12
complex-valued matrix. Although only its kernel is required (and not a full diagonalization)
it remains a formidable task to compute it. In [9] therefore a slightly easier approach has
been used, and the techniques used therein allow some deeper understanding of the kernel.
They are useful here as well.

The object under consideration in [9] is classical Active Flux, where point values are
updated by means of an evolution operator. The latter maps the reconstruction (used as initial
data) directly to the value at the new time, and the exact evolution operator from [10] has
been used in [9]. Clearly then, a numerical stationary state arises if the reconstruction (=
initial data for the evolution operator) is of constant pressure and divergence-free velocity.
One thus needs to analyze the subset of divergence-free reconstructions.

The reconstruction is in P2,2 in every variable and thus the divergence is in

D2,2
br := {v ∈ L∞: v|Ci j ∈ span{1, x, x2, y, xy, x2y, y2, xy2}}, (70)

i.e., in an 8-dimensional space (observe the absence of x2y2). Due to continuity, the 9 degrees
of freedom accessible to a cell, which are used in writing the reconstruction polynomial,
cannot all be chosen independently in every cell. It is better at this stage to switch to the
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discrete Fourier transform q̂recon of the reconstruction, introduced in Sect. 4.2. This allows to
factor out continuity, and let appear the dependence of the reconstruction on only 4 degrees
of freedom per variable that belong to a cell. These can indeed now be chosen freely in each
cell.

Seeking a divergence-free reconstruction in 2-d, one thus ends up with 8 equations for 8
free parameters.Without rank defect the only divergence-free reconstructionwould be trivial,
and not representative of the richness of divergence-free vector fields. The linear system turns
out to be not of full rank, however. This remained without a clear explanation in [9], and is
elucidated below in Theorem 3. It was found (see (6.25) and (6.26) in [9]) that as long as the
12 Fourier modes are parallel to

Q̂ =
(

− 2

3

1 + 4tx + t2x
tx

· (ty − 1)(ty + 1)

�yty
,
2

3

1 + 4ty + t2y
ty

· (tx − 1)(tx + 1)

�xtx
, 0,

− 1 + 6tx + t2x
tx

· ty − 1

�y
, 2

(tx − 1)(tx + 1)

�xtx
(ty + 1), 0,

− 2(tx + 1)
(ty − 1)(ty + 1)

�yty
,
tx − 1

�x
· 1 + 6ty + t2y

ty
, 0,

− 4(tx + 1)
ty − 1

�y
, 4

tx − 1

�x
(ty + 1), 0

)
, (71)

the divergence in each cell vanishes. Here, the variables are sorted as (q̂A, q̂EH , q̂EV , q̂N).
One can easily see that this condition indeed can be rewritten as vanishing Finite Difference
discretizations of the divergence. Writing q̂ X = (û X , v̂X , p̂X ) with X ∈ {A,N,EH,EV} one
finds e.g.,

1 + 4ty + t2y
ty

(tx − 1)(1 + tx )

tx�x
ûA + 1 + 4tx + t2x

tx

(ty − 1)(1 + ty)

ty�y
v̂A = 0, (72)

(tx − 1)(1 + ty)

�x
ûN + (1 + tx )(−1 + t y)

�y
v̂N = 0, (73)

(1 + 6ty + t2y )(tx − 1)

�xty
ûEH + (1 + 6tx + t2x )(ty − 1)

�yty
v̂EV = 0, (74)

tx − 1

�xtx
ûEV + ty − 1

�yty
v̂EH = 0, (75)

tx − 1

�xtx
ûEV + (ty − 1)(tx + 1)

2�ytx ty
v̂N = 0, (76)

(1 + 6ty + t2y )(tx − 1)

8�xty
ûEV + (t2y − 1)(tx + 1)

4�yty
v̂EV = 0, (77)

(1 + 4ty + t2y )(tx − 1)

6�xtx ty
ûEV + t2y − 1

2�yty
v̂A = 0. (78)

These relations are Fourier transforms of

〈[uA]i±1〉(4)j

�x
+ [〈vA〉(4)i ] j±1

�y
= 0,

{[uN]i+ 1
2
} j+ 1

2

�x
+

[{vN}i+ 1
2
] j+ 1

2

�y
= 0, (79)

〈[uEH ]i+ 1
2
〉(6)j

�x
+

[〈vEV〉(6)i ] j+ 1
2

�y
= 0,

[uEV ]i− 1
2 , j

�x
+

[vEHi ] j− 1
2

�y
= 0, (80)
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[uEV ]i+ 1
2 , j+1

�x
+

[{vN}i+ 1
2
] j+ 1

2

2�y
= 0,

〈[uEV ]i+ 1
2
〉(6)j

8�x
+

[{vEV}i+ 1
2
] j±1

4�y
= 0, (81)

〈[uEV ]i+ 1
2
〉(4)j

6�x
+ [vAi+1] j±1

2�y
= 0 (82)

having introduced the notation

[q]i+ 1
2

= qi+1 − qi , {q}i+ 1
2

= qi+1 − qi , (83)

[q]i±1 = qi+1 − qi−1, 〈q〉(α)
i = qi−1 + αqi + qi+1. (84)

Theorem 1 Consider the set V of globally continuous vector fields v, biparabolic in each
cell:

V =
{
v : R2 → R2 : v

∣∣∣Ci j ∈ (P2,2)2
}

(85)

with the degrees of freedom of Active Flux and periodic boundaries. Assume the grid to
contain Ncells cells. Then,

(i) V � R8Ncells ;
(ii) Vdiv := {v ∈ V : ∇ · v = 0} � RNcells+O(

√
Ncells);

(iii) Any element in Vdiv has continuous normal derivatives, i.e., at every cell interface with
normal n, v · n is continuously differentiable.

Proof (i) and (ii) are clear from what has been said before; O(
√
Ncells) takes into account

that the number of divergence-free vector fields is slightly larger than one per cell, as there
are some trivial ones missing in the previous analysis (indeed, no assumptions were made on
k or tx , ty). A particular value of, say, tx would mean that at most, any grid function qi j is a
function of j only, i.e., that one can specify O(

√
Ncells) values independently.

The proof of (iii) is obtained by explicit computation. Denote first the u and v components
of q̂recon by ûrecon and v̂recon, respectively. If q̂ is parallel to Q̂ from (71), then the x-derivative
of ûrecon is proportional to

∂x ûrecon(x, y) = −2
(tx − 1)(ty − 1)

�x�ytx ty

(
(tx + 1) + 2(tx − 1)

x

�x

)(
(ty + 1) + 2(ty − 1)

y

�y

)
.

(86)

One then immediately confirms that

∂x ûrecon

(
�x

2
, y

)
= tx∂x ûrecon

(
−�x

2
, y

)
, (87)

i.e.,

∂xurecon,i j

(
�x

2
, y

)
= ∂xurecon,i+1, j

(
−�x

2
, y

)
. (88)

An analogous statement holds for ∂y v̂recon.

5.3 Stationarity Preservation of the Semi-discrete Method

The following sections prove that the semi-discrete (generalized) Active Flux method is
stationarity-preserving for the acoustic equations in two and three spatial dimensions. Addi-
tionally, the elements of the nullspace of the evolutionmatrix and the corresponding numerical
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Table 1 Overview of dimensions relevant for stationarity preservation of semi-discrete Active Flux for linear
acoustics in two and three spatial dimensions

Two-dimensional acoustics Three-dimensional acoustics

# variables = m 3 4

# mink dim ker J · k = S 1 2

# dof used in reconstruction = Ndof
acc 9 27

# Fourier modes per variable = Ndof 4 8

# rows/columns in E = mNdof 12 32

mink dim ker E(k) 1 5

stationary states are given and analyzed. Table 1 sums up and compares key data of semi-
discrete Active Flux for above-mentioned equations.

5.3.1 Acoustic Equations in Two Spatial Dimensions

Recall that the finite difference operators used in the update of the point values have been
obtained by differentiating the reconstruction.

Consider instead of (36) first the central Active Flux method, which reads

d

dt
q P
i j = −Jx

1

2

(
Dx

∣∣P
i j + D∗

x

∣∣P
i j

)
q − Jy

1

2

(
Dy

∣∣P
i j + D∗

y

∣∣P
i j

)
q

= −

⎛
⎜⎜⎝

0 0 1
2

(
Dx + D∗

x

) ∣∣P
i j

0 0 1
2

(
Dy + D∗

y

) ∣∣P
i j

1
2

(
Dx + D∗

x

) ∣∣P
i j

1
2

(
Dy + D∗

y

) ∣∣P
i j 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
u

v

p

⎞
⎟⎟⎠ ,

P ∈ {N,EH,EV}.
The divergence relevant for the update of qP

i j , P ∈ {N,EH,EV} is obtained by considering
the velocity reconstructions in the two/four adjacent cells, taking their divergences at the
location of P (which gives two/four different values) and finally taking the mean of these
values. Recall that the image of (P2,2)2 under the (weak) divergence is the broken space D2,2

br
defined in (70). Obviously computing the mean of the two/four values restores continuity,
i.e., afterwards there is only one value of the divergence associated with each point. This
motivates the following.

Definition 8 The P2,2-projected divergence w ∈ P2,2 is defined by (33) (with m = 1) with
the degrees of freedom given by

wN
i j := 1

4

(
Wi j (xNi j − xi j ) + Wi+1, j (xNi j − xi+1, j )

+ Wi, j+1(xNi j − xi, j+1) + Wi+1, j+1(xNi j − xi+1, j+1)
)
, (89a)

w
EV
i j := 1

2

(
Wi j (x

EV
i j − xi j ) + Wi+1, j (x

EV
i j − xi+1, j )

)
, (89b)

w
EH
i j := 1

2

(
Wi j (x

EH
i j − xi j ) + Wi, j+1(x

EH
i j − xi, j+1)

)
, (89c)
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wA
i j := 1

�x�y

∫ �x
2

− �x
2

∫ �y
2

− �y
2

Wi j (x) dx, (89d)

whereWi j (x) := (∂xurecon,i j+∂yvrecon,i j )(x) is the divergence of the velocity reconstruction

(urecon,i j , vrecon,i j ) ∈ (P2,2)2 in x ∈ [−�x
2 , �x

2

] ×
[
−�y

2 ,
�y
2

]
.

Theorem 2 If the discrete data is such that the P2,2-projected divergence of v vanishes (as
a polynomial), and if p is uniformly constant, then the central Active Flux method keeps this
data stationary.

Proof By unisolvence of the P2,2 space with the degrees of freedom specified in Definition
8, the vanishing of the divergence as a polynomial is equivalent to it being zero at the
four degrees of freedom. By the definitions of the finite difference formulas ((34)–(35)), the
updates of pPi j , P ∈ {N,EH,EV} are the degrees of freedom of the P2,2-projected divergence
in P . The update equation (24) of the pressure average is, by Gauss’s law and the fact that
the quadrature along the edges is exact for parabolas, equivalent to evaluating the average of
the divergence Wi j over the cell (i, j). But this average is assumed to vanish as well, which
concludes the proof.

Central Active Flux can thus be associated with projecting the reconstruction of the diver-
gence back into the space P2,2. The map (89) from the velocity variables to values of the
P2,2-projected divergence in its degrees of freedom is surjective, therefore the 4 equations
for the 8 velocity variables leave a four-dimensional kernel of the evolution matrix. This suf-
ficient condition of stationarity can be verified (using mathematica) to also be necessary,
which proves the following.

Corollary 1 Central Active Flux for linear acoustics in 2-d is stationarity-preserving and the
kernel of its evolution matrix is four-dimensional.

Recall (38) with

|Jx | =
⎛
⎝ 1 0 0
0 0 0
0 0 1

⎞
⎠ , |Jy | =

⎛
⎝ 0 0 0
0 1 0
0 0 1

⎞
⎠ . (90)

The upwind Active Flux method (36) then writes

d

dt
q P
i j = −

⎛
⎜⎜⎝

1
2

(
Dx − D∗

x

) ∣∣P
i j 0 1

2

(
Dx + D∗

x

) ∣∣P
i j

0 1
2

(
Dy − D∗

y

) ∣∣P
i j

1
2

(
Dy + D∗

y

) ∣∣P
i j

1
2

(
Dx + D∗

x

) ∣∣P
i j

1
2

(
Dy + D∗

y

) ∣∣P
i j ��

⎞
⎟⎟⎠

⎛
⎜⎜⎝
u

v

p

⎞
⎟⎟⎠ ,

P ∈ {N,EH,EV}, (91)

where the bow tie denotes further terms of no importance for the present discussion. To gain
insight into its stationarity preservation properties, it is useful to start with Lemma 1.

Lemma 1 D2,2
br is unisolvent with respect to the 8 pointwise degrees of freedom located at(

xi± 1
2
, y j± 1

2

)
,
(
xi± 1

2
, y j

)
,
(
xi , y j± 1

2

)
. (92)

Proof By explicit computation.
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Observe that these degrees of freedom are just the point values of Active Flux accessible
to each cell, but without continuity.

Theorem 3 The semi-discrete upwind Active Flux method (36) for the linear acoustic equa-
tions in two spatial dimensions is stationarity-preserving. A basis of the one-dimensional
nullspace of its evolution matrix is given by

Q̂ =
(

− �x(1 + tx (4 + tx ))(−1 + ty)

6�y(−1 + tx )tx ty
,
(1 + tx )(1 + ty(4 + ty))

6tx ty(1 + ty)
, 0,

− �x(1 + tx (6 + tx ))(−1 + ty)

4�y(−1 + tx )tx (1 + ty)
,
1 + tx
2tx

, 0,

− �x(1 + tx )(−1 + ty)

2�y(−1 + tx )ty
,−−1 − 6ty − t2y

4ty(1 + ty)
, 0,

− �x(1 + tx )(−1 + ty)

�y(−1 + tx )(1 + ty)
, 1, 0

)T

∈ C12. (93)

The variables are ordered as (q̂A, q̂EH , q̂EV , q̂N). The divergence of the reconstruction van-
ishes iff q̂ is parallel to Q̂.

Proof A sufficient condition for stationarity is obtained by assuming that p is constant at the
stationary state. Then, additionally to the vanishing (central) divergence

1

2

(
Dx − D∗

x

) ∣∣P
i j u + 1

2

(
Dy − D∗

y

) ∣∣P
i jv (94)

the normal derivatives (i.e., the x-derivative of u and the y-derivative of v) need to be con-
tinuous. This brings four additional constraints: one jump across, respectively, a horizontal
and a vertical edge(

Dx − D∗
x

) ∣∣P
i j u = 0,

(
Dy − D∗

y

) ∣∣P
i jv = 0 (95)

and two jumps at the node. Together with the three pointwise conditions on the central
divergence these are 7 equations for 8 variables.

The stationarity of the cell average of p does not contribute an independent equation
for the following reason. Assume the jumps of the normal derivatives of the velocity to
vanish, i.e., the divergence of the velocity reconstruction to be continuous across the edges.
Then it does not matter whether Dx or D∗

x is used to evaluate a derivative, as they give the
same result. One can thus simply modify (91) such that all derivatives are evaluated in cell
(i, j). Stationarity of pPi j for all point values P implies that the divergence of the velocity
reconstruction vanishes at all 8 point values along the boundary of cell (i, j). By Lemma
1, these 8 conditions for a polynomial in the eight-dimensional space D2,2

br imply that the
polynomial itself vanishes. (This is the problem considered and solved in [9] for the classical
Active Flux, as has been outlined in Sect. 5.2.) As the divergence vanishes, its average over
the cell vanishes, and by Gauss’ law the cell average pAi j is automatically stationary. The
kernel of the evolution matrix for upwind Active Flux is thus at least one-dimensional.

The 12 × 12 matrix E(k) is given in Appendix C. That there are no other linearly inde-
pendent elements in the kernel has been verified using mathematica due to the excessive
length of computations.

One observes that upwind Active Flux operates on the divergence of the velocity recon-
struction in each cell, without projection (as was the case for central Active Flux earlier).

123



Communications on Applied Mathematics and Computation

Corollary 2 The numerical stationary states (93) of semi-discrete Active Flux on two-
dimensional Cartesian grids are the same as the stationary states (71) of classical Active
Flux on two-dimensional Cartesian grids, see Sect. 5.2.

Thus, in terms of stationarity preservation there is no difference between the behavior
of third-order semi-discrete (generalized) or fully discrete (classical) Active Flux. With the
above reasoning in mind, this is not surprising at all, and is mostly a consequence of the
choice of the reconstruction space.

A final comment is due concerning the rank defect mentioned in Sect. 5.2. As is clear
from the above discussion, a vanishing element in D2,2

br amounts to 8 equations. However,
here we do not deal with any kind of element, but with an element obtained as the divergence
of an element in (P2,2)2. The map from the velocity variables to an element of D2,2

br , that
is induced by taking the divergence of the reconstruction, is not surjective. In the proof of
Theorem 3 it is shown that stationarity of all point values amounts to only 7 equations, and
that the stationarity of the average turns out to be redundant.

The very same argument does not hold for the central Active Flux method: the divergence
can be understood as being projected onto P2,2, which vanishes upon stationarity, but the
average update continues to involve the cell average of the “true” divergence in D2,2

br . This
updated equation for the cell average is not redundant then.

The choice of upwinding matters for stationarity preservation as well. The semi-discrete
Active Flux method with the upwind splitting only involves normal derivatives such as
∂2x u and ∂2yv. The alternative point value update (39) was also investigated for the acoustic
equations in two spatial dimensions. Clearly, this upwinding generates terms such as ∂2x v

and ∂2y u in the numerical diffusion. In this case stationarity implies a larger number of
supplementary conditions, further restricting the set of stationary states. Indeed, non-trivial
stationary states no longer exist as, in general, det E(k) �= 0. For tx = ty = −1 (kx�x =
ky�y = π), for example, it is

det E(k) = 110 592c6(�x + �y)4(�x�y + 2c2(�x2 − �x�y + �y2))

�x9�y9
�= 0. (96)

5.3.2 Acoustic Equations in Three Spatial Dimensions

Theorem 4

(i) The semi-discrete Active Flux method for the linear acoustic equations (4) in three
spatial dimensions is stationarity-preserving. The kernel of its evolution matrix, given
in Appendix D, is five-dimensional for general k.

(ii) The divergence of the reconstruction vanishes iff q̂ is in the above-mentioned kernel.

Proof The argumentation is similar to the two-dimensional case. There are 3·8 = 24 velocity
variables

ûA, ûN, ûEx , · · · , v̂A, v̂N, · · · , ŵFz . (97)

While central Active Flux amounts to 7 equations for the point values (plus 1 for the average,
i.e., a kernel of dimension 16), the upwindmethod additionally enforces continuity of normal
derivatives. These are 3 · 1 conditions on the faces, 3 · 2 conditions on the edges and 1 · 3
conditions on the node, which makes a kernel of dimension at least 24 − 7 − 3 − 6 −
3 = 5. Despite the excessive length of the expressions under consideration (E is a 32 × 32
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matrix, given in Appendix D) we confirm using mathematica that the kernel is indeed
five-dimensional.

One defines D2,2,2
br as the image of (P2,2,2)2 under the (weak) divergence. As the jumps

vanish, stationarity again implies that the divergence vanishes at the 26 locations of point
values in every cell. A unisolvence lemma similar to Lemma 1 holds again, that we omit.
This implies the second statement.

Thus, the stationary states of this Active Flux method are those that give rise to a
divergence-free reconstruction of the velocity and a uniformly constant pressure. The 5
elements Q1, · · · , Q5 of ker E are given in Appendix D. We find that the projection onto just
Q1 is consistent with f that is chosen from the subspace spanned by (−ky, kx , 0, 0) alone
and Q2 is consistent with f from the subspace parallel to (−kz, 0, kx , 0), i.e., it so happens
that our choice of basis of ker E even is consistent with the choice of basis for J · k from (9).
The remaining 3 elements of ker E correspond to higher order terms.

6 Analysis of Numerical Diffusion

6.1 Linear Advection in One Spatial Dimension

An analysis of numerical diffusion for multi-dimensional acoustics is rather difficult. There-
fore, we first consider the one-dimensional case of Active Flux applied to the linear advection
equation ∂t q + c∂xq = 0 (c > 0). Active Flux has two degrees of freedom per cell (one
average and one point value) in this case (see e.g., [2, 7, 13, 14]), and upon the Fourier
transform in space it can be rewritten as

∂t q̂ + E(k)q̂ = 0 (98)

with a 2 × 2 evolution matrix E . For a reasonable analysis of numerical diffusion, a time
discretization needs to be specified, and a Runge-Kutta method of order 3 seems well-suited.
Thus, the Fourier transform of the fully discrete method reads

q̂n+1 = A(k)q̂n (99)

with the amplification matrix

A = 1 − �tE + 1

2
�t2E2 − 1

6
�t3E3. (100)

Figure 4 shows themodulus of the two eigenvalues ofA as a function ofβ := �xk ∈ [− π,π]
for different values of CFL := c�t

�x .
The reason for having two eigenvalues is the following. The discrete Fourier transform

distinguishes between the modes associated with the different types of degrees of freedom,
i.e., there is a mode for the averages and an independent mode for the point values in the
one-dimensional case. For example k = 0 corresponds to the point values having all the same
value Qp ∈ R and the averages having all the same value Qa ∈ R, but the two values can be
different in general. The point update will see this and generally not remain stationary: while
the “physical” eigenvalue corresponds to the eigenvector (1, 1)T, which means Qa = Qp,
the other eigenvalue corresponds to the eigenvector (0, 1)T, i.e., Qa = 0, Qp = 1. This
highly oscillatory function evolves in time, decaying for small CFL numbers and exploding
for those high enough, as is discussed next.

As linear advection amounts merely to a translation, the exact amplification factor is a
unit complex number. Von Neumann stability therefore requires all the eigenvalues of the
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Fig. 4 Numerical diffusion analysis of Active Flux for the one-dimensional linear advection. The absolute
value of the two eigenvalues of the 2×2 amplification matrix is shown as a function of β := k�x ∈ [−π, π].
Observe the different scales on the vertical axes

amplification matrix to not be greater than 1 in an absolute value. Of the two eigenvalues
shown in Fig. 4, one observes that the “physical” eigenvalue remains, in an absolute value,
below and rather close to 1.

It has been elucidated in [16], that for semi-discrete methods stability quite generally
tends to be governed by the “non-physical” eigenvalue. Also in the case of semi-discrete
one-dimensional Active Flux, one can observe it grow as the CFL number is chosen larger
and larger, until for CFL = 0.42 its absolute value surpasses 1. This is consistent with
previous findings ([3, 18]) of 0.41 as the stability limit for semi-discrete Active Flux in one
spatial dimension.

6.2 Acoustic Equations in Two Spatial Dimensions

Finally, to complete the picture, the same analysis is performed for the two-dimensional
Active Flux method for linear acoustics. The absolute values of the 12 eigenvalues are shown
in Fig. 5 (some of them lie on top of each other). For simpler presentation, here�x = �y = 1
and the wave vector k is parametrized as

k = s

(
cosϕ

sin ϕ

)
. (101)

To perform a comparison between the behavior of the numerics and that of the solutions to
the PDE, one now needs to know the analytical value of the amplification matrix. From (3),
writing 
 := R−1(J · k)R, one obtains

q̂(t + �t) = R exp(−i
t)R−1q̂(t). (102)

The eigenvalues 
 of (J · k) are real by hyperbolicity of (1) (they are 0 and ±c|k|). Thus,
the eigenvalues of the analytical amplification matrix Re−i
t R−1 are all of modulus one.
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Fig. 5 Numerical diffusion analysis of Active Flux for the two-dimensional linear acoustics. The absolute
value of the 12 eigenvalues of the amplification matrix is shown as a function of s ∈ [−π,π] (see (101)) for
different values of �t (rows) and ϕ (columns). Here, �x = �y = 1

Despite the increased complexity, the behavior is similar to that of linear advection. The
instability is governed by the non-physical eigenvalue(s), whose norm becomes larger than
1 between �t = 0.28 and �t = 0.3. We have not observed a strong ϕ-dependence of this
value.

7 Numerical Examples

7.1 Acoustic Equations in 2-d

7.1.1 TravelingWaves

We consider a truly multi-dimensional setup of a spherical Gaussian in the pressure:

p0(x) = exp

(√
(x − 1)2 + (y − 1)2 − r0)2

w2

)
, v0(x) = 0 (103)
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Fig. 6 The setup of a spherical Gaussian in the pressure. Left: initial setup. Center: pressure at time t = 0.1
solved on a 50× 50 grid. Right: scatter plot of the pressure at time t = 0.1 together with a reference solution
(solid line)

Fig. 7 The error of the numerical solution for the spherical Gaussian wave at time t = 0.1 upon the grid
refinement. From left to right: u, v, p

withw = 0.05, r0 = 1
2 . The setup is shown in Fig. 6. It is solved on a domain of [0, 2]2 using

RK3 with a CFL number of 0.2 with periodic boundaries. The L1 error of the numerical
solution is shown in Fig. 7 as a function of the spatial discretization length. The reference
solution has been obtained with a first-order method solving the radial equations on a grid
of 4 · 105 points. We observe third order accuracy.

7.1.2 Stationary Vortex

We consider a stationary solution of the acoustic equations:

p0(x) = 0, v0(x) =
(−(

y − 1
2

)
/r(

x − 1
2

)
/r

)
·
{
5r , r < 0.2,

max(0, 2 − 5r), else
(104)

with r =
√(

x − 1
2

)2 + (
y − 1

2

)2
. This setup is solved using the semi-discrete Active Flux

method (third order) on a grid of 50 × 50 using RK3 and a CFL = 0.2 with zero-gradient
boundary conditions.

The aim of this test is to show experimentally that a discrete steady state is indeed parallel
to (93), and we deliberately choose a setup involving many different Fourier modes. First,
one needs to wait until the setup becomes stationary. Then, instead of computing the Fourier
transform, we compute the values of the discrete divergences (72)–(78).

Figure 8 demonstrates that the setup becomes stationary in all variables at about t = 100.
Unsurprisingly this happens later for finer grids (less numerical diffusion) and the stationary
state is also closer to the initial one. Figure 9 shows the time evolution of the discrete
divergences (72)–(78) ((79)–(82)) on a grid of 50 × 50. As our datum is not well-prepared,
they are not zero initially, but as the setup becomes stationary, they attain values at the level of
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Fig. 8 Left: initial data of the stationary vortex test. The magnitude of the velocity is color-coded. Right: error
of the numerical solution as a function of time. One observes the stationarization of the setup (the velocity
components are on top of each other)

Fig. 9 Stationary vortex test case. Decay of the 7 discrete divergences (79)–(82) that characterize the stationary
state. Their values reach machine precision after a long time. For comparison, the behavior of some other
discrete divergence is shown; it does not decay to machine zero. The curves lie partly on top of each other,
but we refrain from showing details as the figure is merely intended to show that all the divergences reach
machine zero, and not how

machine precision. This indicates that ker E is indeed one-dimensional and parallel to (93).
For comparison, the figure shows the time evolution of a different divergence discretization

1 + 2ty + t2y
ty

(−1 + tx )(1 + tx )

tx�x
ûA + 1 + 2tx + t2x

tx

(−1 + ty)(1 + ty)

ty�y
v̂A (105)

that corresponds to

〈[uA]i±1〉(2)j

�x
+ [〈vA〉(2)i ] j±1

�y
, (106)

which can be observed to become stationary (as the entire setup) but not to decay to machine
zero. Figure 10 shows results for the Rusanov-type Jacobian split, shown in Sect. 5.3 not to
be stationarity-preserving. One indeed observes a steady deterioration of the vortex.
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Fig. 10 Rusanov-type Jacobian split (39) does not lead to a stationarity-preserving method. Left: solution of
the stationary vortex test at t = 1 000, the magnitude of the velocity is color-coded. The vortex has become
two overlapping shear flows. Right: error of the numerical solution as a function of time. It takes much longer
than shown for the setup to stationarize, and the final state is very far from the initial condition (compare the
errors to those in Fig. 8)

7.1.3 Well-Prepared Stationary Mode

The next aim is to verify the preservation of the discrete stationary state given by (93). To
this end, the discrete data are well-prepared in a way similar to [8], starting from the Fourier
mode Q̂ exp(ikx i�x + iky j�y). For it to be stationary, Q̂ has to be parallel to (93). This
would result in complex-valued data. Therefore, we take the average of two such modes with
opposite signs of k, which results in a real-valued grid function:

qAi j =

⎛
⎜⎜⎜⎝

8(2 + cos(2�x π)) sin(20�y π) sin(2π(i�x + 10 j�y))

3�y

−8(2 + cos(20�y π)) sin(2�x π) sin(2π(i�x + 10 j�y))

3�x
0

⎞
⎟⎟⎟⎠ , (107a)

qEHi j =

⎛
⎜⎜⎜⎝

4 sin(10�y π) sin(π(2i�x + 20 j�y + 10�y))(3 + cos(2�x π))

�y

−8 cos(10�y π) sin(2�x π) sin(2π(5�y + i�x + 10 j�y))

�x
0

⎞
⎟⎟⎟⎠ , (107b)

qEVi j =

⎛
⎜⎜⎜⎝

8 cos(�x π) sin(20�y π) sin(π(�x + 2i�x + 20 j�y))

�y

−4(3 + cos(20�y π)) sin(�x π) sin(π(�x + 2i�x + 20 j�y))

�x
0

⎞
⎟⎟⎟⎠ , (107c)

qNi j =

⎛
⎜⎜⎜⎝

16 cos(�x π) sin(10�y π) sin(2π(�x/2 + 10 j�y + i�x + 5�y))

�y

−16 sin(�x π) cos(10�y π) sin(2π(�x/2 + 10 j�y + i�x + 5�y))

�x
0

⎞
⎟⎟⎟⎠ .

(107d)

The wave numbers are chosen as in [8]: kx = 2π and ky = 10 · 2π. The setup is solved
using CFL = 0.2 on a 50×50 grid using periodic boundary conditions. The results are shown
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in Fig. 11, and one observes that the well-prepared setup remains stationary, up to round-off
errors.

Setting i�x = x and j�y = y, as �x,�y → 0, this mode can be seen to converge to

qAi j → q̃(x, y), qEHi j → q̃

(
x, y + �y

2

)
, (108)

qEHi j → q̃

(
x, y + �y

2

)
, qNi j → q̃

(
x + �x

2
, y + �y

2

)
(109)

with

q̃(x, y) =
⎛
⎝ 10

−1
0

⎞
⎠ 16π sin(2π(x + 10y)). (110)

For comparison, one might therefore consider discrete initial data that have been obtained
by the direct evaluation of the degrees of freedom from (110), i.e., by taking point values and
cell averages of (110). In this case one observes an initial layer (t � 150) during which the
pressure decays after having attained finite-size values in the first step of the calculation. The
seemingly high value∼ 40 of the error of u is due to generally high values of this component:
the maximum exact value of u is 160π � 503, i.e., the error actually is only 8%.

7.2 Acoustic Equations in 3-d

7.2.1 TravelingWaves

A test analogous to that of Sect. 7.1.1 is performed to assess the order of accuracy of the
three-dimensional method. The initial data vanish for all velocity components, and the initial
pressure is given by

p0(x) = exp

(
(|x| − r0)2

w2

)
. (111)

Again, r0 = 1
2 andw = 0.05, and the domain is [−1, 1]3.We use RK3with a CFL number

of 0.1. The L1 numerical error as a function of the spatial discretization length is shown in
Fig. 12, which was computed using a reference solution obtained from a one-dimensional
spherically symmetric code on 4 ·106 points. The three-dimensional computations are rather
expensive and do not allow to increase the number of cells as much as one requires to see
third-order accuracy clearly. The data shown indicate a convergence rate of about 2.5.

7.2.2 Stationary Mode

We consider a linear combination of the elements of the kernel, given in Appendix D

Qi jk =
5∑

r=1

ar Q̂r exp(ikx i�x + iky j�y + ikzk�z) (112)

with ai also given in Appendix D. The reason for the coefficients is that a Finite Difference
formula corresponds to a Laurent polynomial in tx , ty, tz , and all the denominators appearing

123



Communications on Applied Mathematics and Computation

Fig. 11 Stationary mode for the two-dimensional acoustics. Top: initial data in u, nodal values are shown. Left:
well-prepared data (107). Right: not well-prepared data directly from (110). There is no visible difference.
Bottom: error of the numerical solution is shown as a function of time. Note the different scales of the vertical
axis. Left: well-prepared data show only linear growth due to round-off errors; the pressure errors are very low.
Right: not discretely well-prepared data. The solution rapidly deviates from the initial state. It stationarizes
after an initial layer at around t � 150. The pressure, initially zero, attains finite values in the first step of the
calculation and decays exponentially quickly towards zero again

in the basis elements Q̂i need to be removed first. The domain is [0, 1]3 with periodic
boundaries, discretized by 203 cells and

kx = 2π, ky = 8π, kz = −4π . (113)

We evolve only its real part, which is possible due to the linearity of the entire problem. Figure
13 shows that indeed, the error is initially at machine precision and grows only linearly due
to round-off errors.

To highest order in �x,�y,�z, the values at the nodes are

(2kz(ky − i),−2kxkz, 2ikx , 0)
T exp(ikx x + iky y + ikzz). (114)

One easily verifies that this is a divergence-free Fourier mode. However, if this mode is used
as initial data simply by pointwise evaluation, it is not discretely stationary.

7.2.3 Vortex Ring

We consider a vortex ring centred at the origin, with its centerline a circle of radius R in the
x-y-plane (see Fig. 14).
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Fig. 12 Convergence study for the spherical Gaussian in the pressure. Computations on finer meshes are too
expensive to run, but the data shown on the coarse meshes indicate a convergence order of about 2.5. The error
curves of the three velocities are on top of each other

Fig. 13 The L1 distance between the initial data of a Fourier mode in the kernel of the evolution matrix E for
Active Flux in three spatial dimensions is shown as a function of time. Left: non-well-prepared initialization
according to (114). The mode is not discretely stationary, but upon grid refinement the error decreases at
approximately third order. Right: well-prepared data according to (112). One observes only linear growth due
to round-off errors; note also the different value of the error

Fig. 14 Coordinate setup for the vortex ring test case
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Fig. 15 View of the vortex ring setup, showing the toroidal boundary of the support of the velocity, cut open
along z = 0 (left) and y = 0 (right). Arrows show the velocity in these planes

Define first

r :=
√(√

x2 + y2 − R

)2

+ z2 (115)

and angles in the plane and perpendicular to it:

tan ϕ = y

x
, sin ϑ = z

r
, (116)

The flow happens only in the plane spanned by⎛
⎝ 0
0
1

⎞
⎠ and

⎛
⎝ cosϕ

sin ϕ

0

⎞
⎠ . (117)

The vector field, divergence-free by construction, is then given by

u = − sin ϑ cosϕ
V (r)√
x2 + y2

, (118)

v = − sin ϑ sin ϕ
V (r)√
x2 + y2

, (119)

w = cosϑ
V (r)√
x2 + y2

. (120)

Here V is the radial velocity profile of the vortex ring and is an arbitrary differentiable, for
simplicity compactly supported, function of r only. We choose

V (r) =
{
10r , r < 0.1,

max(0, 2 − 10r), else,
(121)

and R = 1
4 . The pressure p vanishes identically. The setup is shown in Fig. 16 (top), in

slices indicated in Fig. 15. We solve it on a 503 grid covering [0, 1]3 using RK3 and a CFL
of 0.1. Results at a later time (t = 25) are shown in Fig. 16 (bottom), and they are virtually
indistinguishable. Figure 17 shows the numerical error as a function of time. One observes an
initial layer (as the data are not discretely well-prepared) and the subsequent stationarization
of the setup. A stationarity non-preserving method will diffuse the vortex ring very quickly,
converging for t → ∞ to a discrete stationary state that is not a consistent discretization of
a vortex in any way.
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Fig. 16 Vortex ring test case. Top: cut of the initial data through the plane z = 0 (left) and y = 0 (right). Color
coded is the magnitude of the velocity, and the arrows (normalized in length) indicate the direction. Bottom:
the same for the numerical solution at time t = 25. The presence of non-zero velocity in regions that initially
were at rest shows that the numerical stationary solution is slightly different from the initial data (which is
natural as they were not well-prepared). The arrows indicate only the direction of the velocity, its magnitude
is visually indistinguishable from zero in regions initially at rest

Fig. 17 Vortex ring test case. L1

error of the numerical solution on
grids of 203 and 353 cells,
computed on the nodal point
values. One observes the
stationarization of the setup, as it
converges towards the numerical
stationary state
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Fig. 18 Spherical Riemann problem. Numerical results for the pressure p at time 0.3 on an 80×80 grid and
for CFL number 0.1. Left: classical active flux. Right: generalized active flux

Fig. 19 Spherical Riemann problem. Numerical results for the pressure p along the line y = 0.5 at time 0.3
on an 80×80 grid and for the CFL number 0.1

7.3 Comparison to the Fully Discrete Active Flux Method

As stated in Corollary 2, the numerical stationary states of the semi-discrete (generalized)
and classical Active Flux are the same. The following numerical test shows that the results of
both schemes are also very similar for non-stationary setups for the two-dimensional acoustic
equations.

We consider the spherical Riemann problem

v0(x) = 0, (122)

p0(x) =
{
2, if |x|2 < 0.08,

1, else.
(123)

The simulation has been performed for different combinations of CFL numbers and grid
sizes and with periodic boundary conditions. Figure 18 shows a comparison of the numerical
results of both methods for the pressure p at time 0.3 on an 80×80 grid with the CFL number
0.1 as an example. No significant differences were found between the methods for any of
these tested cases. A more detailed comparison of the results of both methods along the line
y = 0.5 also shows no significant differences for p at time 0.3. This is shown in Fig. 19, the
grid size is again 80×80 and the CFL number 0.1.
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8 Conclusion

We have shown that the two- and three-dimensional semi-discrete Active Flux methods are
stationarity-preserving when applied to linear acoustics on Cartesian grids. This is the same
conclusion as was drawn for the classical Active Flux method before, the discrete stationary
states are even exactly the same if upwind Jacobian splitting is used for the point value update.
This is a consequence of the choice of the approximation/reconstruction space, common to
both schemes. We also have not been able to find visible differences in the results of the two
methods for non-stationary setups. However, the stability region of the semi-discrete method
is smaller with amaximumCFL number only about half of that of the classical method ([12]).
The semi-discrete method can be applied more easily to nonlinear problems as it does not
require an evolution operator and is structure preserving in very much the same way as the
traditional method.

In the future we will study how this property can be extended to nonlinear conservation
laws, including a theoretical analysis of the low Mach number compliance for the Euler
equations. Experimentally, it has been observed in [4] that the method behaves well in this
regime. Following [11, 15] we will investigate stationarity preservation of Active Flux on
unstructured grids.

Appendix A Shape Functions for Active Flux in Two Spatial Dimensions

The basis functions for the biparabolic reconstruction employed for the two-dimensional
Active Flux are

B0(x, y) = 9

4
(−1 + 2ξ)(1 + 2ξ)(−1 + 2η)(1 + 2η), (A1)

B1(x, y) = 1

16
(−1 + 2ξ)(−1 + 2η)(12ξη − 2η − 2ξ − 1), (A2)

B2(x, y) = 1

4
(1 − 2ξ)(1 + 2ξ)(−1 + 2η)(1 + 6η), (A3)

B3(x, y) = 1

16
(1 + 2ξ)(−1 + 2η)(12ξη + 2η − 2ξ + 1), (A4)

B4(x, y) = 1

4
(1 + 2ξ)(−1 + 6ξ)(1 − 2η)(1 + 2η), (A5)

B5(x, y) = 1

16
(1 + 2ξ)(1 + 2η)(12ξη + 2η + 2ξ − 1), (A6)

B6(x, y) = 1

4
(1 − 2ξ)(1 + 2ξ)(1 + 2η)(−1 + 6η), (A7)

B7(x, y) = 1

16
(−1 + 2ξ)(1 + 2η)(12ξη − 2η + 2ξ + 1), (A8)

B8(x, y) = 1

4
(−1 + 2ξ)(1 + 6ξ)(1 − 2η)(1 + 2η) (A9)

with ξ = x/�x , η = y/�y. For the numbering, see Fig. 1.
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Appendix B Update Equation for 2-d Upon the Fourier Transform

The update of the nodal point value can be written as

0 = d

dt
q̂N +

[
J+
x

1

�x

(
3 + 1

tx

)
+ J−

x
1

�x
(−3 − tx ) + J+

y
1

�y

(
1

ty
+ 3

)

+J−
y

1

�y

(−ty − 3
)]

q̂N +
[−4

�x
(J+

x − J−
x tx )

]
q̂EH

+
[−4

�y
(J+

y − J−
y ty)

]
q̂EV . (B1)

The update equation for the point value at a vertical edge is

0 = d

dt
q̂EV +

[
− 9

�x
(J+

x − J−
x tx )

]
q̂A +

[
1

�x

(
J+
x

(
1 + 1

ty

)
+ J−

x

(
− tx
ty

− tx

))]
q̂EH

+
[

2

�x

(
J+
x

(
2 + 1

tx

)
+ J−

x (−2tx − 2)

)]
q̂EV

+
[
J+
x

1

4�x

(
1

tx ty
+ 1

ty
+ 1 + 1

tx

)
+ J−

x
1

4�x

(
− 1

ty
− tx

ty
− tx − 1

)

+ J+
y

1

�y

(
1 − 1

ty

)
+ J−

y
1

�y

(
1 − 1

ty

)]
q̂N (B2)

and for the update of the point value at a horizontal edge

0 = d

dt
q̂EH +

[
− 9

�y
(J+

y − J−
y ty)

]
q̂A +

[
2

�y

(
J+
y

(
1

ty
+ 2

)
+ J−

y

(−2 − ty
))]

q̂EH

+
[

1

�y

(
J+
y

(
1 + 1

tx

)
+ J−

y

(
−ty − ty

tx

))]
q̂EV

+
[
J+
x

1

�x

(
1 − 1

tx

)
+ J−

x
1

�x

(
1 − 1

tx

)
+ J+

y
1

4�y

(
1

tx ty
+ 1

ty
+ 1 + 1

tx

)

+ J−
y

1

4�y

(
− 1

tx
− 1 − ty − ty

tx

)]
q̂N. (B3)

The update of the average is computed by following the instructions from Sect. 3.1,

0 = d

dt
q̂A +

[
2

3�y
Jy

(
1 − 1

ty

)]
q̂EH +

[
2

3�x
Jx

(
1 − 1

tx

)]
q̂EV

+
[

1

6�x
Jx

(
1 − 1

tx
+ 1

ty
− 1

tx ty

)
+ 1

6�y
Jy

(
1 − 1

ty
+ 1

tx
− 1

tx ty

)]
q̂N. (B4)

Appendix C EvolutionMatrices of Active Flux in Two Spatial Dimensions

The submatrices of the evolution matrix (65) for the acoustic equations (4) in two spatial
dimensions are

EAA = 03×3, ENA = 03×3, (C1)
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EAEH = 2

3�y

⎛
⎜⎝
0 0 0
0 0 1 − 1

ty
0 1 − 1

ty
0

⎞
⎟⎠ , (C2)

EAEV = 2

3�x

⎛
⎝ 0 0 1 − 1

tx
0 0 0

1 − 1
tx

0 0

⎞
⎠ , (C3)

EAN =

⎛
⎜⎜⎝

0 0 1
6�x

(−1+tx )(1+ty)
tx ty

0 0 1
6�y

(1+tx )(−1+ty)
tx ty

1
6�x

(−1+tx )(1+ty)
tx ty

1
6�y

(1+tx )(−1+ty)
tx ty

0

⎞
⎟⎟⎠ , (C4)

EEHA = − 9

2�y

⎛
⎝0 0 0
0 1 + ty 1 − ty
0 1 − ty 1 + ty

⎞
⎠ , (C5)

EEHEH = 1

�y

⎛
⎜⎝
0 0 0
0 1

ty
+ 4 + ty

1
ty

− ty
0 1

ty
− ty

1
ty

+ 4 + ty

⎞
⎟⎠ , (C6)

EEHEV = 1

2�y

⎛
⎜⎝
0 0 0

0 (1+tx )(1+ty)
tx

− (1+tx )(−1+ty )
tx

0 − (1+tx )(−1+ty)
tx

(1+tx )(1+ty)
tx

)

⎞
⎟⎠ , (C7)

EEHN =

⎛
⎜⎜⎜⎝

0 0 1
�x

(
1 − 1

tx

)
,

0 1
8�y

(1+tx )(1+ty)2

tx ty
− 1

8�y
(1+tx )(−1+t2y )

tx ty
1

�x

(
1 − 1

tx

)
− 1

8�y
(1+tx )(1+ty)2

tx ty
1

8�y
(1+tx )(−1+t2y )

tx ty

⎞
⎟⎟⎟⎠ , (C8)

EEVA = − 9

2�y

⎛
⎝1 + tx 0 1 − tx

0 0 0
1 − tx 0 1 + tx

⎞
⎠ , (C9)

EEVEH = 1

2�x

⎛
⎜⎝

(1+tx )(1+ty)
ty

0 − (−1+tx )(1+ty)
ty

0 0 0

− (−1+tx )(1+ty)
ty

0 (1+tx )(1+ty)
ty

)

⎞
⎟⎠ , (C10)

EEVEV = 1

�x

⎛
⎝

1
tx

+ 4 + tx 0 1
tx

− tx
0 0 0

1
tx

− tx 0 1
tx

+ 4 + tx

⎞
⎠ , (C11)

EEVN =

⎛
⎜⎜⎜⎝

1
8�x

(1+tx )2(1+ty)
tx ty

0 − 1
8�x

(−1+t2x )(1+ty)
tx ty

0 0 1
�y

(
1 − 1

ty

)
− 1

8�x
(−1+t2x )(1+ty)

tx ty
1

�y

(
1 − 1

ty

)
1

8�x
(1+tx )2(1+ty)

tx ty

⎞
⎟⎟⎟⎠ , (C12)

ENEH = − 2

�x

⎛
⎝1 + tx 0 1 − tx

0 0 0
1 − tx 0 1 + tx

⎞
⎠ , (C13)
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ENEV = − 2

�y

⎛
⎝0 0 0
0 1 + ty 1 − ty
0 1 − ty 1 + ty

⎞
⎠ , (C14)

ENN =

⎛
⎜⎜⎜⎜⎝

6+ 1
tx

+tx
2�x 0

1
tx

−tx
2�x

0 1
2�y

(
6 + 1

ty
+ ty

)
1

2�y

(
1
ty

− ty
)

1
2�x

(
1
tx

− tx
)

1
2�y

(
1
ty

− ty
)

1
2

(
6+ 1

tx
+tx

�x + 6+ 1
ty

+ty
�y

)
⎞
⎟⎟⎟⎟⎠ . (C15)

Appendix D Evolution Matrix and Its Kernel for Active Flux in Three
Spatial Dimensions

The variables are ordered as Q̂ = (q̂A, q̂Ex , q̂Ey , q̂Ez , q̂Fx , q̂Fy , q̂Fz , q̂N), where q̂ =
(û, v̂, ŵ, p̂).

The evolution matrix reads

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EAA EAEx EAEy EAEz EAFx EAFy EAFz EAN
EExA EExEx EExEy EExEz EExFx EExFy EExFz EExN

EEyA EEyEx EEyEy EEyEz EEyFx EEyFy EEyFz EEyN

EEzA EEzEx EEzEy EEzEz EEzFx EEzFy EEzFz EEzN

EFxA EFxEx EFxEy EFxEz EFxFx EFxFy EFxFz EFxN
EFyA EFyEx EFyEy EFyEz EFyFx EFyFy EFyFz EFyN
EFzA EFzEx EFzEy EFzEz EFzFx EFzFy EFzFz EFzN
ENA ENEx ENEy ENEz ENFx ENFy ENFz ENN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D1)

with the blocks

EAA =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D2)

EAEx =

⎛
⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 c(ty−1)(1+tz)
9�yty tz

0 0 0 c(1+ty)(tz−1)
9�zty tz

0 c(ty−1)(1+tz)
9�yty tz

c(1+ty)(tz−1)
9�zty tz

0

⎞
⎟⎟⎟⎟⎠ , (D3)

EAEy =

⎛
⎜⎜⎜⎝

0 0 0 c(tx−1)(1+tz)
9�xtx tz

0 0 0 0
0 0 0 c(1+tx )(tz−1)

9�ztx tz
c(tx−1)(1+tz)

9�xtx tz
0 c(1+tx )(tz−1)

9�ztx tz
0

⎞
⎟⎟⎟⎠ , (D4)

EAEz =

⎛
⎜⎜⎜⎜⎝

0 0 0 c(tx−1)(1+ty)
9�xtx ty

0 0 0 c(1+tx )(ty−1)
9�ytx ty

0 0 0 0
c(tx−1)(1+ty)

9�xtx ty
c(1+tx )(ty−1)

9�ytx ty
0 0

⎞
⎟⎟⎟⎟⎠ , (D5)
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EAFx =

⎛
⎜⎜⎝

0 0 0 4c(tx−1)
9�xtx

0 0 0 0
0 0 0 0

4c(tx−1)
9�xtx

0 0 0

⎞
⎟⎟⎠ , (D6)

EAFy =

⎛
⎜⎜⎜⎝
0 0 0 0

0 0 0 4c(ty−1)
9�yty

0 0 0 0

0 4c(ty−1)
9�yty

0 0

⎞
⎟⎟⎟⎠ , (D7)

EAFz =

⎛
⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 4c(tz−1)

9�ztz

0 0 4c(tz−1)
9�ztz

0

⎞
⎟⎟⎟⎠ , (D8)

EAN =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 c(tx−1)(1+ty )(1+tz)
36�xtx ty tz

0 0 0 c(1+tx )(ty−1)(1+tz)
36�ytx ty tz

0 0 0 c(1+tx )(1+ty )(tz−1)
36�ztx ty tz

c(tx−1)(1+ty)(1+tz)
36�xtx ty tz

c(1+tx )(ty−1)(1+tz)
36�ytx ty tz

c(1+tx )(1+ty)(tz−1)
36�ztx ty tz

0

⎞
⎟⎟⎟⎟⎟⎠ ,

(D9)

EExA =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D10)

EExEx =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 c+cty(6+ty)
2�yty

0 − c(t2y−1)
2�yty

0 0 c+ctz(6+tz)
2�ztz

− c(t2z −1)
2�ztz

0 − c(t2y−1)
2�yty

− c(t2z −1)
2�ztz

1
2c

(
6+1/ty+ty

�y + 1+tz(6+tz)
�ztz

)

⎞
⎟⎟⎟⎟⎟⎠ , (D11)

EExEy =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D12)

EExEz =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D13)

EExFx =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D14)

EExFy =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 − 2c(1+tz)

�z
2c(tz−1)

�z

0 0 2c(tz−1)
�z − 2c(1+tz)

�z

⎞
⎟⎟⎠ , (D15)
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EExFz =

⎛
⎜⎜⎜⎝
0 0 0 0

0 − 2c(1+ty)
�y 0 2c(ty−1)

�y
0 0 0 0

0 2c(ty−1)
�y 0 − 2c(1+ty)

�y

⎞
⎟⎟⎟⎠ , (D16)

EExN =

⎛
⎜⎜⎝

0 0 0 c(tx−1)
�xtx

0 0 0 0
0 0 0 0

c(tx−1)
�xtx

0 0 0

⎞
⎟⎟⎠ , (D17)

EEyA =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D18)

EEyEx =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D19)

EEyEy =

⎛
⎜⎜⎜⎜⎜⎝

c+ctx (6+tx )
2�xtx

0 0 − c(t2x −1)
2�xtx

0 0 0 0

0 0 c+ctz(6+tz)
2�ztz

− c(t2z −1)
2�ztz

− c(t2x −1)
2�xtx

0 − c(t2z −1)
2�ztz

1
2c

(
6+1/tx+tx

�x + 1+tz(6+tz)
�ztz

)

⎞
⎟⎟⎟⎟⎟⎠ , (D20)

EEyEz =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D21)

EEyFx =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 − 2c(1+tz)

�z
2c(tz−1)

�z

0 0 2c(tz−1)
�z − 2c(1+tz)

�z

⎞
⎟⎟⎠ , (D22)

EEyFy =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D23)

EEyFz =

⎛
⎜⎜⎝

− 2c(1+tx )
�x 0 0 2c(tx−1)

�x
0 0 0 0
0 0 0 0

2c(tx−1)
�x 0 0 − 2c(1+tx )

�x

⎞
⎟⎟⎠ , (D24)

EEyN =

⎛
⎜⎜⎜⎝
0 0 0 0

0 0 0 c(ty−1)
�yty

0 0 0 0

0 c(ty−1)
�yty

0 0

⎞
⎟⎟⎟⎠ , (D25)
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EEzA =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D26)

EEzEx =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D27)

EEzEy =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D28)

EEzEz =

⎛
⎜⎜⎜⎜⎜⎝

c+ctx (6+tx )
2�xtx

0 0 − c(t2x −1)
2�xtx

0 c+cty(6+ty)
2�yty

0 − c(t2y−1)
2�yty

0 0 0 0

− c(t2x −1)
2�xtx

− c(t2y−1)
2�yty

0 1
2c

(
6+1/tx+tx

�x + 1+ty(6+ty)
�yty

)

⎞
⎟⎟⎟⎟⎟⎠ , (D29)

EEzFx =

⎛
⎜⎜⎜⎝
0 0 0 0

0 − 2c(1+ty)
�y 0 2c(ty−1)

�y
0 0 0 0

0 2c(ty−1)
�y 0 − 2c(1+ty)

�y

⎞
⎟⎟⎟⎠ , (D30)

EEzFy =

⎛
⎜⎜⎝

− 2c(1+tx )
�x 0 0 2c(tx−1)

�x
0 0 0 0
0 0 0 0

2c(tx−1)
�x 0 0 − 2c(1+tx )

�x

⎞
⎟⎟⎠ , (D31)

EEzFz =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D32)

EEzN =

⎛
⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 c(tz−1)

�ztz

0 0 c(tz−1)
�ztz

0

⎞
⎟⎟⎟⎠ , (D33)

EFxA =

⎛
⎜⎜⎝

− 27c(1+tx )
4�x 0 0 27c(tx−1)

4�x
0 0 0 0
0 0 0 0

27c(tx−1)
4�x 0 0 − 27c(1+tx )

4�x

⎞
⎟⎟⎠ , (D34)

EFxEx =

⎛
⎜⎜⎜⎝

c(1+tx )(1+ty)(1+tz)
8�xty tz

0 0 − c(tx−1)(1+ty)(1+tz)
8�xty tz

0 0 0 0
0 0 0 0

− c(tx−1)(1+ty)(1+tz)
8�xty tz

0 0 c(1+tx )(1+ty)(1+tz)
8�xty tz

⎞
⎟⎟⎟⎠ , (D35)
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EFxEy =

⎛
⎜⎜⎜⎜⎝

c(1+tx )2(1+tz)
8�xtx tz

0 0 − c(t2x −1)(1+tz)
8�xtx tz

0 0 0 0
0 0 0 c(tz−1)

�ztz

− c(t2x −1)(1+tz)
8�xtx tz

0 c(tz−1)
�ztz

c(1+tx )2(1+tz)
8�xtx tz

⎞
⎟⎟⎟⎟⎠ , (D36)

EFxEz =

⎛
⎜⎜⎜⎜⎝

c(1+tx )2(1+ty)
8�xtx ty

0 0 − c(t2x −1)(1+ty)
8�xtx ty

0 0 0 c(ty−1)
�yty

0 0 0 0

− c(t2x −1)(1+ty)
8�xtx ty

c(ty−1)
�yty

0 c(1+tx )2(1+ty)
8�xtx ty

⎞
⎟⎟⎟⎟⎠ , (D37)

EFxFx =

⎛
⎜⎜⎜⎝

c+ctx (4+tx )
�xtx

0 0 c−ct2x
�xtx

0 0 0 0
0 0 0 0

c−ct2x
�xtx

0 0 c+ctx (4+tx )
�xtx

⎞
⎟⎟⎟⎠ , (D38)

EFxFy =

⎛
⎜⎜⎜⎝

c(1+tx )(1+ty)
2�xty

0 0 − c(tx−1)(1+ty)
2�xty

0 0 0 0
0 0 0 0

− c(tx−1)(1+ty)
2�xty

0 0 c(1+tx )(1+ty)
2�xty

⎞
⎟⎟⎟⎠ , (D39)

EFxFz =

⎛
⎜⎜⎜⎝

c(1+tx )(1+tz)
2�xtz

0 0 − c(tx−1)(1+tz)
2�xtz

0 0 0 0
0 0 0 0

− c(tx−1)(1+tz)
2�xtz

0 0 c(1+tx )(1+tz)
2�xtz

⎞
⎟⎟⎟⎠ , (D40)

EFxN =

⎛
⎜⎜⎜⎜⎝

c(1+tx )2(1+ty)(1+tz)
32�xtx ty tz

0 0 − c(t2x −1)(1+ty)(1+tz)
32�xtx ty tz

0 0 0 0
0 0 0 0

− c(t2x −1)(1+ty)(1+tz)
32�xtx ty tz

0 0 c(1+tx )2(1+ty)(1+tz)
32�xtx ty tz

⎞
⎟⎟⎟⎟⎠ , (D41)

EFyA =

⎛
⎜⎜⎜⎝
0 0 0 0

0 − 27c(1+ty)
4�y 0 27c(ty−1)

4�y
0 0 0 0

0 27c(ty−1)
4�y 0 − 27c(1+ty)

4�y

⎞
⎟⎟⎟⎠ , (D42)

EFyEx =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 c(1+ty)2(1+tz)
8�yty tz

0 − c(t2y−1)(1+tz)
8�yty tz

0 0 0 c(tz−1)
�ztz

0 − c(t2y−1)(1+tz)
8�yty tz

c(tz−1)
�ztz

c(1+ty)2(1+tz)
8�yty tz

⎞
⎟⎟⎟⎟⎟⎠ , (D43)

EFyEy =

⎛
⎜⎜⎜⎝
0 0 0 0

0 c(1+tx )(1+ty)(1+tz)
8�ytx tz

0 − c(1+tx )(ty−1)(1+tz)
8�ytx tz

0 0 0 0

0 − c(1+tx )(ty−1)(1+tz)
8�ytx tz

0 c(1+tx )(1+ty)(1+tz)
8�ytx tz

⎞
⎟⎟⎟⎠ , (D44)
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EFyEz =

⎛
⎜⎜⎜⎜⎝

0 0 0 c(tx−1)
�xtx

0 c(1+tx )(1+ty)2

8�ytx ty
0 − c(1+tx )(t2y−1)

8�ytx ty
0 0 0 0

c(tx−1)
�xtx

− c(1+tx )(t2y−1)
8�ytx ty

0 c(1+tx )(1+ty )2

8�ytx ty

⎞
⎟⎟⎟⎟⎠ , (D45)

EFyFx =

⎛
⎜⎜⎜⎝
0 0 0 0

0 c(1+tx )(1+ty)
2�ytx

0 − c(1+tx )(ty−1)
2�ytx

0 0 0 0

0 − c(1+tx )(ty−1)
2�ytx

0 c(1+tx )(1+ty)
2�ytx

⎞
⎟⎟⎟⎠ , (D46)

EFyFy =

⎛
⎜⎜⎜⎜⎝
0 0 0 0

0 c+cty(4+ty)
�yty

0
c−ct2y
�yty

0 0 0 0

0
c−ct2y
�yty

0 c+cty(4+ty)
�yty

⎞
⎟⎟⎟⎟⎠ , (D47)

EFyFz =

⎛
⎜⎜⎜⎝
0 0 0 0

0 c(1+ty)(1+tz)
2�ytz

0 − c(ty−1)(1+tz)
2�ytz

0 0 0 0

0 − c(ty−1)(1+tz)
2�ytz

0 c(1+ty)(1+tz)
2�ytz

⎞
⎟⎟⎟⎠ , (D48)

EFyN =

⎛
⎜⎜⎜⎜⎝
0 0 0 0

0 c(1+tx )(1+ty)2(1+tz)
32�ytx ty tz

0 − c(1+tx )(t2y−1)(1+tz)
32�ytx ty tz

0 0 0 0

0 − c(1+tx )(t2y−1)(1+tz)
32�ytx ty tz

0 c(1+tx )(1+ty)2(1+tz)
32�ytx ty tz

⎞
⎟⎟⎟⎟⎠ , (D49)

EFzA =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 − 27c(1+tz)

4�z
27c(tz−1)

4�z

0 0 27c(tz−1)
4�z − 27c(1+tz)

4�z

⎞
⎟⎟⎠ , (D50)

EFzEx =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 c(ty−1)
�yty

0 0 c(1+ty)(1+tz)2

8�zty tz
− c(1+ty)(t2z −1)

8�zty tz

0 c(ty−1)
�yty

− c(1+ty)(t2z −1)
8�zty tz

c(1+ty)(1+tz)2

8�zty tz

⎞
⎟⎟⎟⎟⎟⎠ , (D51)

EFzEy =

⎛
⎜⎜⎜⎜⎝

0 0 0 c(tx−1)
�xtx

0 0 0 0

0 0 c(1+tx )(1+tz)2

8�ztx tz
− c(1+tx )(t2z −1)

8�ztx tz
c(tx−1)
�xtx

0 − c(1+tx )(t2z −1)
8�ztx tz

c(1+tx )(1+tz)2

8�ztx tz

⎞
⎟⎟⎟⎟⎠ , (D52)

EFzEz =

⎛
⎜⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 c(1+tx )(1+ty)(1+tz)
8�ztx ty

− c(1+tx )(1+ty)(tz−1)
8�ztx ty

0 0 − c(1+tx )(1+ty)(tz−1)
8�ztx ty

c(1+tx )(1+ty)(1+tz)
8�ztx ty

⎞
⎟⎟⎟⎠ , (D53)
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EFzFx =

⎛
⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 c(1+tx )(1+tz)

2�ztx
− c(1+tx )(tz−1)

2�ztx
0 0 − c(1+tx )(tz−1)

2�ztx
c(1+tx )(1+tz)

2�ztx

⎞
⎟⎟⎟⎠ , (D54)

EFzFy =

⎛
⎜⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 c(1+ty)(1+tz)
2�zty

− c(1+ty)(tz−1)
2�zty

0 0 − c(1+ty)(tz−1)
2�zty

c(1+ty)(1+tz)
2�zty

⎞
⎟⎟⎟⎠ , (D55)

EFzFz =

⎛
⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 c+ctz(4+tz)
�ztz

c−ct2z
�ztz

0 0
c−ct2z
�ztz

c+ctz(4+tz)
�ztz

⎞
⎟⎟⎟⎟⎠ , (D56)

EFzN =

⎛
⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 c(1+tx )(1+ty )(1+tz)2

32�ztx ty tz
− c(1+tx )(1+ty)(t2z −1)

32�ztx ty tz

0 0 − c(1+tx )(1+ty)(t2z −1)
32�ztx ty tz

c(1+tx )(1+ty)(1+tz)2

32�ztx ty tz

⎞
⎟⎟⎟⎟⎠ , (D57)

ENA =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D58)

ENEx =

⎛
⎜⎜⎝

− 2c(1+tx )
�x 0 0 2c(tx−1)

�x
0 0 0 0
0 0 0 0

2c(tx−1)
�x 0 0 − 2c(1+tx )

�x

⎞
⎟⎟⎠ , (D59)

ENEy =

⎛
⎜⎜⎜⎝
0 0 0 0

0 − 2c(1+ty)
�y 0 2c(ty−1)

�y
0 0 0 0

0 2c(ty−1)
�y 0 − 2c(1+ty)

�y

⎞
⎟⎟⎟⎠ , (D60)

ENEz =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 − 2c(1+tz)

�z
2c(tz−1)

�z

0 0 2c(tz−1)
�z − 2c(1+tz)

�z

⎞
⎟⎟⎠ , (D61)

ENFx =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D62)

ENFy =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D63)
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ENFz =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (D64)

ENN =

⎛
⎜⎜⎜⎜⎜⎜⎝

c+ctx (6+tx )
2�xtx

0 0 − c(t2x −1)
2�xtx

0 c+cty(6+ty)
2�yty

0 − c(t2y−1)
2�yty

0 0 c+ctz(6+tz)
2�ztz

− c(t2z −1)
2�ztz

− c(t2x −1)
2�xtx

− c(t2y−1)
2�yty

− c(t2z −1)
2�ztz

1
2c

(
6+1/tx+tx

�x + 6+1/ty+ty
�y + 1+tz(6+tz)

�ztz

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(D65)

The kernel of E is spanned by (Q̂1, Q̂2, Q̂3, Q̂4, Q̂5) given by

Q̂1 =
(

− �x(1 + tx (4 + tx ))(ty − 1)(t2z + 4tx t2z + t2x (2 + tz(8 + 3tz)))

54�yt2x (t
2
x − 1)ty t2z

,

(1 + ty(4 + ty))(t2z + 4tx t2z + t2x (2 + tz(8 + 3tz)))

54t2x ty(1 + ty)t2z
, 0, 0,

− �x(1 + tx (6 + tx ))(ty − 1)

4�y(tx − 1)tx (1 + ty)
, 0,

�z(1 + tx )(ty − 1)(1 + tz)

2�ytx (1 + ty)(tz − 1)
, 0,

0,
1

4
+ 1

4ty
+ 1

1 + ty
,−�z(ty − 1)(1 + tz)

2�yty(tz − 1)
, 0,

− �x(ty − 1)(4t2x + tx (3 + 19tx )tz + (1 + tx )(2 + 9tx )t2z )

12�y(tx − 1)tx (1 + ty)t2z
,

4t2x + tx (3 + 19tx )tz + (1 + tx )(2 + 9tx )t2z
12tx (1 + tx )t2z

, 0, 0,

− �x(ty − 1)(2t2z + t2x (4 + tz)(1 + 3tz) + tx tz(−3 + 5tz))

24�y(tx − 1)tx ty t2z
,

(1 + ty(6 + ty))(4t2x + tx (3 + 19tx )tz + (1 + tx )(2 + 9tx )t2z )

48tx (1 + tx )ty(1 + ty)t2z
,

− (
�z(ty − 1)(1 + tz(6 + tz))

8�yty(tz − 1)tz
), 0,

− �x(1 + tx (6 + tx ))(ty − 1)(4t2x + tx (3 + 19tx )tz + (1 + tx )(2 + 9tx )t2z )

48�yt2x (t
2
x − 1)(1 + ty)t2z

,

2t2z + t2x (4 + tz)(1 + 3tz) + tx tz(−3 + 5tz)

24t2x t
2
z

,
�z(1 + tx )(ty − 1)(1 + tz(6 + tz))

8�ytx (1 + ty)(tz − 1)tz
, 0,

0, 0, 0, 0,

− �x(1 + tx )(ty − 1)

�y(tx − 1)(1 + ty)
, 1, 0, 0

)
, (D66)

Q̂2 =
(

− �x(1 + tx (4 + tx ))(1 + ty)(tz − 1)(2t2z + t2x (tz − 2)(1 + 3tz) + tx tz(3 + 11tz))

108�zt2x (t
2
x − 1)ty t2z (1 + tz)

,

− �y(1 + ty(4 + ty))(tx − tz)(tz − 1)(tx + tz + 4tx tz)

54�zt2x (ty − 1)ty t2z (1 + tz)
,
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(1 + tx )(1 + ty)(1 + tz(4 + tz))

36tx ty tz(1 + tz)
, 0,

− (�x(1 + tx (6 + tx ))(tz − 1)

4�z(tx − 1)tx (1 + tz)
, 0,

1 + tx
2tx

, 0,

0, 0, 0, 0,

− �x(tz − 1)(t2z + tx tz(3 + 7tz) + t2x (−1 + tz(−1 + 3tz)))

6�z(tx − 1)tx t2z (1 + tz)
,

− �y(1 + ty)(tx − tz)(tz − 1)(tx + tz + 4tx tz)

6�ztx (1 + tx )(ty − 1)t2z (1 + tz)
,
1

4
+ 1

4tz
+ 1

1 + tz
, 0,

�x(1 + ty)(tx − tz)(tz − 1)(tx + tz + 4tx tz)

12�z(tx − 1)tx ty t2z (1 + tz)
,

− �y(1 + ty(6 + ty))(tx − tz)(tz − 1)(tx + tz + 4tx tz)

24�ztx (1 + tx )(ty − 1)ty t2z (1 + tz)
, 0, 0,

− �x(1 + tx (6 + tx ))(tz − 1)(t2z + tx tz(3 + 7tz) + t2x (−1 + tz(−1 + 3tz)))

24�zt2x (t
2
x − 1)t2z (1 + tz)

,

− �y(1 + ty)(tx − tz)(tz − 1)(tx + tz + 4tx tz)

12�zt2x (ty − 1)t2z (1 + tz)
,
(1 + tx )(1 + tz(6 + tz))

8tx tz(1 + tz)
, 0,

0, 0, 0, 0,

− �x(1 + tx )(tz − 1)

�z(tx − 1)(1 + tz)
, 0, 1, 0

)
, (D67)

Q̂3 =
(

− 2�x(1 + tx (4 + tx ))(tz − 1)

9�z(t2x − 1)tz
, 0,

2(1 + tz(4 + tz))

9tz(1 + tz)
, 0,

0,− 2�yty(tz − 1)

�z(ty − 1)(1 + tz))
,

2ty
1 + ty

, 0,

0, 0, 0, 0,

− 2�xtx ty(tz − 1)

�z(tx − 1)(1 + ty)tz
,

2�ytx ty(tz − 1)

�z(1 + tx )(ty − 1)tz
, 0, 0,

− �xtx (tz − 1)

�z(tx − 1)tz
,
�ytx (1 + ty(6 + ty))(tz − 1)

2�z(1 + tx )(t2y − 1)tz
, 0, 0,

− �x(1 + tx (6 + tx ))ty(tz − 1)

2�z(t2x − 1)(1 + ty)tz
, 0,

ty(1 + tz(6 + tz))

2(1 + ty)tz(1 + tz)
, 0,

0,−�y(1 + ty(6 + ty))(tz − 1)

2�z(t2y − 1)(1 + tz)
, 1, 0, 0, 0, 0, 0

)
, (D68)

Q̂4 =
(8�x(1 + tx (4 + tx ))(t2y − 1)(tx − tz)(tx + tz + 4tx tz)

27�y(tx − 1)tx (1 + tx )2(1 + ty(6 + ty))t2z
,

− 8(1 + ty(4 + ty))(tx − tz)(tx + tz + 4tx tz)

27tx (1 + tx )(1 + ty(6 + ty))t2z
, 0, 0,

0,
4ty(1 + ty)

1 + ty(6 + ty)
,− 4�z(ty − 1)ty(1 + tz)

�y(1 + ty(6 + ty))(tz − 1)
, 0,

− 4�xtx (t2y − 1)

�y(tx − 1)(1 + ty(6 + ty))
, 0,

4�ztx (t2y − 1)(1 + tz)

�y(1 + tx )(1 + ty(6 + ty))(tz − 1)
, 0,
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4�x(ty − 1)ty(2t2x + tx (3 + 11tx )tz + (−2 + tx )(1 + 3tx )t2z )

3�y(t2x − 1)(1 + ty(6 + ty))t2z
,

− 4ty(1 + ty)(2t2x + tx (3 + 11tx )tz + (−2 + tx )(1 + 3tx )t2z )

3(1 + tx )2(1 + ty(6 + ty))t2z
, 0, 0,

4�x(t2y − 1)(tx − tz)(tx + tz + 4tx tz)

3�y(t2x − 1)(1 + ty(6 + ty))t2z
,

− (2t2x + tx (3 + 11tx )tz + (−2 + tx )(1 + 3tx )t2z )

3(1 + tx )2t2z
,

�ztx (t2y − 1)(1 + tz(6 + tz))

�y(1 + tx )(1 + ty(6 + ty))(tz − 1)tz
, 0,

�x(1 + tx (6 + tx ))(ty − 1)ty(2t2x + tx (3 + 11tx )tz + (−2 + tx )(1 + 3tx )t2z )

3�y(tx − 1)tx (1 + tx )2(1 + ty(6 + ty))t2z
,

− 4ty(1 + ty)(tx − tz)(tx + tz + 4tx tz)

3tx (1 + tx )(1 + ty(6 + ty))t2z
,− �z(ty − 1)ty(1 + tz(6 + tz))

�y(1 + ty(6 + ty))(tz − 1)tz)
, 0,

− �x(1 + tx (6 + tx ))(t2y − 1)

�y(t2x − 1)(1 + ty(6 + ty))
, 1, 0, 0, 0, 0, 0, 0

)
, (D69)

Q̂5 =
(
0, 0, 0, 0, 0, 0, 0, 0,

4tx (1 + tx )

1 + tx (6 + tx )
,− 4�ytx (t2x − 1)(1 + ty(6 + ty))

�x(1 + tx )(1 + tx (6 + tx ))(t2y − 1)
,

4�ztx (t2x − 1)(1 + tz)

�x(1 + tx )(1 + tx (6 + tx ))(tz − 1)
, 0,

− 4tx (1 + tx )(ty − 1)ty(1 + tz)

(1 + tx (6 + tx ))(t2y − 1)tz
,− 4�ytx (t2x − 1)ty(1 + ty)(1 + tz)

�x(1 + tx )(1 + tx (6 + tx ))(t2y − 1)tz
,

4�ztx (t2x − 1)(ty − 1)ty(1 + tz(6 + tz))

�x(1 + tx )(1 + tx (6 + tx ))(t2y − 1)(tz − 1)tz
, 0,

0,−�ytx (t2x − 1)(1 + ty(6 + ty))(1 + tz)

�x(1 + tx )(1 + tx (6 + tx ))(t2y − 1)tz
,

�ztx (t2x − 1)(1 + tz(6 + tz))

�x(1 + tx )(1 + tx (6 + tx ))(tz − 1)tz
, 0,

− (ty − 1)ty(1 + tz)

(t2y − 1)tz
,
2�y(tx − 1)(1 + tx )ty(1 + ty)(1 + tz)

�x(1 + tx (6 + tx ))(t2y − 1)tz
, 0, 0,

1, 0,−2�z(tx − 1)(1 + tx )(1 + tz)

�x(1 + tx (6 + tx ))(tz − 1)
, 0,

0,− 16�ytx (t2x − 1)ty(1 + ty)

�x(1 + tx )(1 + tx (6 + tx ))(t2y − 1)
,

16�ztx (t2x − 1)(ty − 1)ty(1 + tz)

�x(1 + tx )(1 + tx (6 + tx ))(t2y − 1)(tz − 1)
, 0

)
. (D70)
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To implement one discrete Fourier mode in Sect. 7.2.2 we use

5∑
r=1

ar Q̂r (D71)

with

a1 =
(
(tx − 1)(2�y(1 + ty + 8tx ty)(tx − tz)(tz − 1)(tx + tz + 4tx tz)

+ tx (t
2
y − 1)(−32t2x ty − 3(1 + tx + 32t2x ty)tz + 8(4ty + tx (1 + tx )(3�z + 16ty))t

2
z

+(3(1+tx )−32(1+4tx )ty)t
3
z ))

)
/
(
2�x�z(ty−1)(t2z +4tx t

2
z +t2x (2 + tz(8 + 3tz)))

)
,

(D72)

a2 = −
(
(tx − 1)(1 + tz)(−2(1 + ty)(−1 + 2�y + ty)(tz − 1)t2z

− tx (tz − 1)tz(3 − 3t2y + 16�y(1 + 2ty)tz + (ty − 1)(1 + ty)(5 + 32ty)tz)

+ 8t3x (−3�zt2z + 3�zt2y t
2
z + 2(−2 + �y)ty(tz − 1)(1 + 4tz) + 4t3y (tz − 1)(1 + 4tz))

+ t2x (−2�y(tz − 1)(1 + ty + 4(1 + ty)tz + (3 + 35ty)t
2
z )

− (t2y − 1)(−4 + tz(−9 + tz(10 − 24�z + 128ty(tz − 1) + 3tz)))))
)

/
(
2�x�y(1 + ty)(tz − 1)(t2z + 4tx t

2
z + t2x (2 + tz(8 + 3tz)))

)
, (D73)

a3 =
(
(t2x − 1)(1 + tz)(−2(1 + ty)(−1 + �y + ty)(tz − 1)t2z

− tx (1 + ty)(tz − 1)tz(3 + (−5 + 8�y)tz + ty(−3 + (−27 + 32ty)tz))

+ 8t3x (−3�zt2z + 3�zt2y t
2
z + 4t3y (tz − 1)(1 + 4tz)

+ 2ty(tz − 1)(−2 − 8tz + 3�y(1 + tz(4 + tz))))

+ t2x (1 + ty)(2�y(tz − 1)(1 + 4tz)

− (ty − 1)(−4 + tz(−9 + tz(10 − 24�z + 128ty(tz − 1) + 3tz)))))
)

/
(
16�x�ytx ty(tz − 1)(t2z + 4tx t

2
z + t2x (2 + tz(8 + 3tz)))

)
, (D74)

a4 =
(
(tx − 1)(1 + tx )(1 + ty(6 + ty))(−2(1 + ty)(−1 + �y + ty)(tz − 1)t2z

− tx (1 + ty)(tz − 1)tz(3 − 5tz + 8�ytz + ty(−3 + 5tz))

+ 24t3x (−�zt2z + �zt2y t
2
z + 2(−2 + �y)ty(tz − 1)(1 + tz(4 + tz))

+ 4t3y (tz − 1)(1 + tz(4 + tz))) + t2x (1 + ty)(2�y(tz − 1)(1 + 4tz)

− (ty − 1)(−4 + tz(−9 + tz(10 − 24�z + 3tz)))))
)

/
(
32�x�ztx (ty − 1)ty(1 + ty)(t

2
z + 4tx t

2
z + t2x (2 + tz(8 + 3tz)))

)
, (D75)

a5 =
(
(1 + tx (6 + tx ))(−2(1 + ty)(−1 + �y + ty)(tz − 1)t2z

− tx (tz − 1)tz(3 − 3t2y + 8�y(1 + 3ty)tz + (ty − 1)(1 + ty)(5 + 32ty)tz)

+ 8t3x (−3�zt2z + 3�zt2y t
2
z + 2(−2 + �y)ty(tz − 1)(1 + 4tz)

+ 4t3y (tz − 1)(1 + 4tz)) + t2x (−2�y(tz − 1)(−1 − 4tz + ty(−1 + 4tz)(1 + 8tz))
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− (t2y − 1)(−4 + tz(−9 + tz(10 − 24�z + 128ty(tz − 1) + 3tz)))))
)

/
(
32�y�ztx ty(t

2
z + 4tx t

2
z + t2x (2 + tz(8 + 3tz)))

)
. (D76)

This gives the following mode:
5∑

r=1

ar Q̂r

=
(

− �x(1 + 4tx +t2x )(�y/�x(1 + ty )(t2z − 1)+1/�x(t2y − 1)(t2z − 1) + 8tx (�z/�x(t2y − 1)tz+�y/�xty (t2z − 1)))

36�y�ztx ty tz
,

(tx − 1)(1 + tx )(1 + 4ty + t2y )(8/�xtx tz + 1/�x/�z(t2z − 1))

36tx ty tz
,

(tx − 1)(1 + tx )(1/�x + 1/�xty + 8/�xtx ty )(1 + 4tz + t2z )

36tx ty tz
, 0,

− �x(1 + 6tx + t2x )(�y/�x + 1/�x(ty − 1))(tz − 1)

4�y�ztx
, 41/�x/�z(tx − 1)(1 + tx )ty (1 + ty )(tz − 1),

(tx − 1)(1 + tx )(1/�x�y + �z(ty − 1)(1/�x/�z − 8/�x/�ztx ty ))(1 + tz )

2�ytx
, 0,

− 2�xtx (1 + tx )(�y/�x + 2/�x(t2y − 1))(tz − 1)

�y�z
,
1/�x/�z(tx − 1)(1 + 6ty + t2y )(tz − 1)

4ty
,

(tx − 1)(1/�x(1 − t2y ) + 4tx ty (�y/�x + 2/�x(t2y − 1)))(1 + tz )

2�yty
, 0,

�x(1 + tx )(1/�x(�y − �yt2z ) + �z(ty − 1)(1/�x/�z − 4/�xtx tz − 1/�x/�zt2z + 81/�x/�ztx ty (t2z − 1)))

2�y�ztz
,

− (tx − 1)(1 + ty )(1/�x/�z − 4/�xtx tz − 1/�x/�zt2z + 8/�x/�ztx ty (t2z − 1))

2tz
,

1/�x(tx − 1)(1 + 6tz + t2z )

4tz
, 0,

− �xtx (1 + tx )(�z/�x(t2y − 1)tz + �y/�xty (t2z − 1))

�y�zty tz
,

− (tx − 1)(1 + 6ty + t2y )(1/�x/�z − 41/�xtx tz − 1/�x/�zt2z + 8/�x/�ztx ty (t2z − 1))

8ty tz
,

(tx − 1)(1/�x(1 − t2y ) + 4tx ty (�y/�x + 2/�x(t2y − 1)))(1 + 6tz + t2z )

8�yty tz
, 0,

�x(1 + 6tx + t2x )(1/�x(�y − �yt2z ) + �z(ty − 1)(1/�x/�z − 4/�xtx tz − 1/�x/�zt2z + 81/�x/�ztx ty (t2z − 1)))

8�y�ztx tz
,

(tx − 1)(1 + tx )(1 + ty )

�x
,

(tx − 1)(1 + tx )(�y/�x + �z(ty − 1)(1/�x/�z − 8/�x/�ztx ty ))(1 + 6tz + t2z )

8�ytx tz
, 0,

− �x(1 + 6tx + t2x )(�y/�x + 2/�x(t2y − 1))(tz − 1)

2�y�z
,

(tx − 1)(1 + tx )(1 + 6ty + t2y )(tz − 1)

�x�z
,

(tx − 1)(1 + tx )(1 + tz )

�x
, 0,

− �x(1 + tx )(�y/�x + 1/�x(ty − 1))(tz − 1)

�y�z
,

(tx − 1)(1 + ty )(tz − 1)

�x�z
,

(tx − 1)(1 + tz )

�x
, 0

)
.
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