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Abstract
The degrees of freedom of Active Flux are cell averages and point values along
the cell boundaries. These latter are shared between neighbouring cells, which
gives rise to a globally continuous reconstruction. The semi-discrete Active
Flux method uses its degrees of freedom to obtain Finite Difference approxi-
mations to the spatial derivatives which are used in the point value update.
The averages are updated using a quadrature of the flux and making use of the
point values as quadrature points. The integration in time employs standard
Runge-Kutta methods. We show that this generalization of the Active Flux
method in two and three spatial dimensions is stationarity preserving for linear
acoustics on Cartesian grids, and present an analysis of numerical diffusion and
stability.
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1 Introduction

The classical Active Flux method has been introduced in [1], based on
a one-dimensional method from [2]. From the beginning, it was conjectured
that the continuous reconstruction, i.e. the absence of Riemann problems
might help alleviate difficulties that traditional Finite Volume methods are
facing in multiple dimensions. For instance, they are usually not preserving
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discrete involutions, they are not low Mach number compliant for the Euler
equations, and not stationarity preserving. This situation does not improve
even if the full multi-dimensional Riemann problem is solved and used in a
Godunov method ([3]).

As Finite Volume methods, Active Flux evolves cell averages as discrete
degrees of freedom, and additionally evolves point values. These latter are
located at cell boundaries and are a way to ensure global continuity of the
reconstruction, or – in a Finite Element sense – of the numerical solution. The
first multi-dimensional system that Active Flux was applied to (in [1]) was
linear acoustics. In multiple spatial dimensions, it is an interesting system
of equations because it cannot be reduced to (multi-dimensional) advection.
While the update of the average is immediately possible via quadrature along
the cell boundary (using the point values as quadrature points), the update
of the point values was initially achieved (e.g. in [4]) using an exact evolution
operator. This operator was derived for linear acoustics in [3]. The reconstruc-
tion was serving as its initial datum. The structure preserving properties of
this method have already been analyzed in [4]. It has been found that indeed
Active Flux is stationarity preserving.

For nonlinear problems it is more difficult to obtain evolution operators of
sufficient order of accuracy, let alone exact ones. This led [5, 6] to consider
semi-discrete Active Flux methods, where the same degrees of freedom are
used in order to discretize the spatial derivatives, while integration in time
follows the method-of-lines strategy. As has been outlined in [7], this typically
leads to reduced CFL conditions. The advantage of the semi-discrete approach
is its immediate applicability to various kinds of systems of conservation laws.
However, one would like not to lose structure preservation.

This paper presents an analysis of the semi-discrete Active Flux method on
linear problems and a comparison between the classical and the semi-discrete
approaches, with an emphasis on structure preservation. As is shown below,
the structure preserving properties of the semi-discrete approach are very sim-
ilar to those of the classical one. In the context of the low Mach number limit
for the Euler equations this has already been observed experimentally in [8].

The paper is organized as follows: Section 2 introduces the equations and
the analytical stationary states and Section 3 presents the semi-discrete Ac-
tive Flux method on two-dimensional and three-dimensional Cartesian grids.
The discrete Fourier transform is introduced in Section 4 and is used to ana-
lyze stationarity preservation in Section 5. Section 6 presents an analysis of
numerical diffusion and stability. Some numerical examples follow in Section
7.

We denote by P k univariate polynomials of degree at most k, and by P k,k
bivariate polynomials with degree at most k in each variable. We also oc-
casionally denote by R[x] or C[x, y] polynomials in x with real coefficients,
and polynomials in x, y with complex coefficients, respectively. d denotes the
number of spatial dimensions, and objects with d components are typeset in
boldface. M a×b(C) denotes matrices with complex entries of a rows and b
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columns. Indices never denote differentiation. 1m denotes the identity map
on Rm.

2 Acoustic equations and their stationary states

2.1 General linear systems

Stationary states are solutions to evolutionary partial differential equations
(PDEs) that remain constant in time. To achieve stability, numerical methods
add numerical diffusion. A setup that is stationary according to the PDE
might keep being diffused away and no longer be stationary in the discrete
setting. Thus, the stationary states of the discretization are often a small, not
representative subset of the stationary states of the PDE. It is preferable for
numerical schemes to possess numerical stationary states that discretize all the
analytic stationary states of the underlying conservation law; a definition of
what this really means is given in Section 5.1. In this section, the stationary
states of the linear acoustic equations shall be analyzed. This is easiest done
upon applying the Fourier transform to them.

Consider a m×m hyperbolic system of linear PDEs

∂tq + J · ∇q = 0 q : R+
0 × Rd → Rm (1)

J = (J1, ..., Jd), Ji ∈Mm×m(R).

Occasionally we will use notation Jx ≡ J1, Jy ≡ J2, Jz ≡ J3 instead. One
Fourier mode of a function q : R+

0 × Rd → Rm is of the form

q(t,x) = q̂(t,k) exp(ik · x). (2)

Here, k ∈ Rd is called the wave vector and determines the spatial frequency
of the Fourier mode, while its amplitude q̂ can be chosen differently for each
k. General solutions are obtained as linear combinations of such modes for
different values of k. Inserting the mode into (1) yields

d

dt
q̂ + iJ · kq̂ = 0. (3)

Hyperbolicity guarantees that the matrix J ·k = J1k1+ · · ·+Jdkd is diagonal-
izable. The mode q̂ exp(ik ·x) is stationary if q̂ is in the nullspace of J ·k. This
can be achieved through particular choices of k, trivially for k = 0, which
(since every Fourier mode depends on x as exp(ik · x)) corresponds to the
data being uniformly constant. Non-trivial stationary states ([9]) are those
for which no restriction on k is necessary, i.e. where for any k there exists
a q̂stat(k) ∈ Cm\{0} such that (J · k)q̂stat(k) = 0. A necessary condition for
the existence of non-trivial stationary states is det(J · k) = 0 ∀k ∈ Rd. Ob-
serve that the amplitude q̂stat of a stationary mode generally depends on k,
see below for some examples.
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2.2 Acoustic equations

The acoustic equations in d spatial dimensions are given as

∂tv +∇p = 0 (4a)
∂tp+∇ · v = 0 (4b)

with velocity v : R+
0 × Rd → Rd and pressure p : R+

0 × Rd → R.
In d spatial dimensions, the matrix J · k reads(

0d×d k
kT 0

)
∈M (d+1)×(d+1) (5)

and any element (U, P )T ∈ Cd+1 of its nullspace has to fulfill

kP = 0 (6)

kTU = 0 (7)

For any k, the following is a nullspace of J · k:

N
(d)
non-trivial := {(U, 0)

T : U ⊥ k}. (8)

It is d− 1 dimensional. In 3-d, one can choose

N
(3)
non-trivial = span

{
(−ky, kx, 0, 0)T, (−kz, 0, kx, 0)T

}
(9)

and in 2-d

N
(2)
non-trivial = span

{
(−ky, kx, 0)T

}
. (10)

For special values of k there are additional elements in the kernel, which
are referred to as trivial stationary states. They are usually represented well
by any kind of numerical method and of little interest in the following. On
the contrary, the non-trivial stationary states in N (d)

non-trivial are usually poorly
represented by numerical methods (see [9] for more details). The following will
show that they are well represented by the semi-discrete Active Flux method.

3 Semi-discrete Active Flux on 2-d and 3-d Cartesian Grids

3.1 Degrees of Freedom

In contrast to classical Finite Volume methods that only involve the cell
average as degree of freedom, the Active Flux method additionally uses point
values distributed on the cell boundaries as degrees of freedom.
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3.1.1 General remarks

In two spatial dimensions the computational grid consists of cells

Cij =
[(
i− 1

2

)
∆x,

(
i+

1

2

)
∆x

]
×
[(
j − 1

2

)
∆y,

(
j +

1

2

)
∆y

]
⊂ R2 (11)

and in 3-d

Cijk =

[(
i− 1

2

)
∆x,

(
i+

1

2

)
∆x

]
×
[(
j − 1

2

)
∆y,

(
j +

1

2

)
∆y

]
(12)

×
[(
k − 1

2

)
∆z,

(
k +

1

2

)
∆z

]
⊂ R3.

We denote by xij and xijk the cell centroid.
There is one average in every cell and a certain number of point values

located at the boundary of the cell. These latter are shared. We make a
distinction between degrees of freedom that belong to a cell, whose number we
will denote by Ndof, and those that are accessible to a cell:

Definition 1 The degrees of freedom accessible to a cell Cij (or Cijk) are those
located in it or along its boundary, or that are averages over it. Their number
per cell is denoted by Ndof

acc and they are denoted by

q0,ij , q1,ij , · · · , qNdof
acc−1,ij and (13)

q0,ijk, q1,ijk, · · · , qNdof
acc−1,ijk (14)

in 2-d and 3-d, respectively, with a numbering that is arbitrary but fixed once
for all cells, and we reserve the index 0 for the cell average. Locations of the
point values are denoted by xr,ij and xr,ijk, r ∈ 1, . . . , Ndof

acc − 1 and we define
the relative coordinate

xr := xr,ij − xij ∈
[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
(15)

or

xr := xr,ijk − xijk ∈
[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
×
[
−∆z

2
,
∆z

2

]
(16)

in two and three spatial dimensions, respectively.

Examples are given below.

Definition 2 The degrees of freedom belonging to a cell are a minimal set
such that all the accessible degrees of freedom can be obtained from them
through shifts by ∆x, ∆y (and ∆z) in the two/three directions. We agree in
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the following on choosing the same ones in each cell. Their number per cell is
denoted by Ndof and we denote them by qXij where X takes values in a set of
identifiers defined below. Locations of degrees of freedom that are point values
are denoted by xXij and we define the relative coordinate

xX := xXij − xij . (17)

In other words, consider an equivalence relation ∼ between any two de-
grees of freedom on an infinite grid, with two degrees of freedom p1, p2 being
equivalent if there exist Ax, Ay, Az ∈ Z such that the shift

(x, y, z) 7→ (x+Ax∆x, y +Ay∆y, z +Az∆z) (18)

maps p1 onto p2. For example, all point values at nodes and all the cell
averages are equivalent. The degrees of freedom belonging to one cell is the
quotient DOF/ ∼ of all the degrees of freedom DOF on the grid by ∼. Finally,
instead of the equivalence classes we speak of representative elements chosen
according to some conventions for definiteness (explained above and shown on
Figure 1). Degrees of freedom that belong to a cell become important in the
context of the Fourier analysis of Section 4, since discrete Fourier modes are
the eigenbasis of the operator defined in (18).

Consider for every accessible degree of freedom r = 0, . . . , qNdof
acc−1 the num-

ber of cells that share it and denote this number by αr ∈ N. Then

Ndof =

Ndof
acc−1∑
r=0

1

αr
. (19)

The distinction between degrees of freedom belonging to a cell and those
accessible to it is due to global continuity and the fact that degrees of freedom
are shared. In DG methods, for example, the accessible degrees of freedom are
just the ones that belong to the cell.

Definition 1 states that each of the degrees of freedom that belong to a cell
forms a lattice with spacing ∆x,∆y or ∆x,∆y and ∆z, respectively. This will
become important below in the context of the Fourier transform.

3.1.2 Degrees of freedom in two spatial dimensions

In two spatial dimensions (see Figure 1) we consider a classical distribution
of in total 8 point values located at the corners and the midpoints of the cell
edges. The Ndof

acc = 9 degrees of freedom accessible to cell Cij , denoted by qr,ij ,
r = 0, . . . , 8, are

q7,ij := qNi−1,j q6,ij := qEH
ij q5,ij := qNij (20)

q8,ij := qEV
i−1,j q0,ij := qAij q4,ij := qEV

ij (21)

q1,ij := qNi−1,j−1 q2,ij := qEH
i,j−1 q3,ij := qNi,j−1 (22)
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Fig. 1 Distribution of the point values along the cell boundary for a cell of a
two-dimensional (left) and three-dimensional (right) Cartesian grid. The cell
average is depicted with a square located at the center of the cell.

Recall that the numbering is arbitrary but needs to be fixed once.
Each corner of a cell is likewise a corner to three other adjacent cells and

each midpoint of a cell edge is shared with one other cell, i.e. Ndof = 4 · 14 +
2 · 2 · 12 + 1 = 4. Therefore, 4 degrees of freedom belong to a cell Cij and we
have chosen them in the top right corner as

– cell average qAij = q0,ij ,

– node value qNij = q5,ij ,

– horizontal edge value qEH
ij = q6,ij ,

– vertical edge value qEV
ij = q4,ij .

as shown in Figure 1.

3.1.3 Degrees of freedom in three spatial dimensions

The natural extension of the previous two-dimensional situation to three
spatial dimensions results in 26 point values accessible to each cell, i.e. Ndof

acc =
27. Eight of them are located at the corners of a cell, 12 at the midpoints of
the edges and six at the midpoints of the faces of a cell, see Figure 1. Again,
as in the 2-d case, several cells are sharing these point values, so that one is
left with Ndof = 8 degrees of freedom that belong to cell Cijk:

– one cell average qAijk = q0,ijk,

– one node value qNijk,

– three edge values qExijk, q
Ey
ijk, q

Ez
ijk, one per edge parallel to the three axes,

– three face values qFxijk, q
Fy
ijk, q

Fz
ijk, one per face orthogonal to the three axes.
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Observe that the values on edges and faces are point values at the respective
centroids, and not averages over these entities.

3.2 Update of the Average

The update of the average will first be described for a generic nonlinear
conservation law

∂tq +∇ · f(q) = 0, (23)

since generalization improves clarity in this case. At the end of the Section
the special case of linear systems is explained.

For updating the cell average, the conservation law (23) is integrated over
one cell (Cij or Cijk), and Gauss’ law is applied. This gives

d

dt
qAij +

1

∆x∆y

∑
e⊂∂Cij

∫
e

ne · f(q) ds = 0 (2-d) (24)

d

dt
qAijk +

1

∆x∆y∆z

∑
f⊂∂Cijk

∫
f

nf · f(q) ds = 0 (3-d) (25)

with

qAij(t) =
1

∆x∆y

∫
Cij
q(t, x, y) dx dy (2-d) (26)

qAijk(t) =
1

∆x∆y∆z

∫
Cijk

q(t, x, y, z) dxdy dz (3-d) (27)

In Active Flux, the locations of the point values are chosen such that they can
be used as quadrature points for the flux averages through the edges e/faces
f . The distribution of point values as described in the previous Section allows
to use Simpsons’ rule, such that

d

dt
qAij +

f̂x
i+ 1

2 ,j
− f̂x

i− 1
2 ,j

∆x
+
f̂y
i,j+ 1

2

− f̂y
i,j− 1

2

∆y
= 0 (2-d) (28a)

d

dt
qAijk +

f̂x
i+ 1

2 ,j,k
− f̂x

i− 1
2 ,j,k

∆x
+
f̂y
i,j+ 1

2 ,k
− f̂y

i,j− 1
2 ,k

∆y
(28b)

+
f̂z
i,j,k+ 1

2

− f̂z
i,j,k− 1

2

∆z
= 0 (3-d)
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with the numerical fluxes

f̂xi+ 1
2 ,j

=
1

6

(
fx(qNij) + 4fx(qEV

ij ) + fx(qNi,j−1)
)

(29)

f̂y
i,j+ 1

2

=
1

6

(
fy(qNi−1,j) + 4fy(qEH

ij ) + fy(qNij)
)

(30)

f̂xi+ 1
2 ,j,k

=
1

36

(
fx(qNijk) + 4fx(qEzijk) + fx(qNi,j,k−1) (31)

+ 4fx(q
Ey
ijk) + 16fx(qFxijk) + 4fx(q

Ey
i,j,k−1)

+ fx(qNi,j−1,k) + 4fx(qEzi,j−1,k) + fx(qNi,j−1,k−1)
)

etc.

Observe that the numerical fluxes do not come from a Riemann solver,
but are simply quadratures of the physical flux. Observe also that the only
approximation made here is the replacement of integrals by quadratures. While
these formulas are valid for nonlinear conservation laws, below they are used
to discretize (1), i.e. with fx(q) = J1q, fy(q) = J2q, fz(q) = J3q.

3.3 Update of the Point Values

The following description of the update of the point values holds on 2-d
and 3-d Cartesian grids. For simplicity, the formulas are mostly given for the
2-d case only.

For updating the point values, a biparabolic reconstruction

qrecon,ij :

[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
→ Rm, qrecon,ij ∈ (P 2,2)m

is built for each cell. It has to satisfy

1

∆x∆y

∫ ∆x
2

−∆x2

∫ ∆y
2

−∆y2
qrecon,ij(x) dx = q0,ij

qrecon,ij(xr) = qr,ij r = 1, ..., 8

(32)

where q0,ij is the average over cell Cij and r is indexing all eight point values on
the boundary of this cell, starting in the lower left corner with q1,ij and running
through all point values counterclockwise (see Figure 1). As is customary for
Finite Elements, one can compute shape functions and write the reconstruction
as a linear combination of these:

qrecon,ij(x, y) :=
∑

r∈{0,1,...,8}

qr,ijBr(x, y) ∈ (P 2,2)m. (33)

The basis functions involved in equation (33) are given in Appendix A; see
Figure 2 for an illustration of B7, B8 and B0 as well as for an example of the
reconstruction (33).

Observe that a biparabolic reconstruction is parabolic along any of the
edges of the (Cartesian) cell and that the parabola is uniquely defined by the
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Fig. 2 Shape functions B7 (top left), B8 (top right), B0 (bottom left) in two
spatial dimensions and a reconstruction devised by using these shape functions
(bottom right).

three point values located at any edge. As the point values are shared with
adjacent cells, one concludes that the above biparabolic reconstructions form
a globally continuous reconstruction.

For the point value update, we are aiming at a semi-discretization of (1),
i.e. a discretization in space is needed. A Finite Difference approximation to
the derivative that uses a compact stencil and is of maximal order of accuracy
can be obtained by differentiating the reconstruction at the location of the
respective point value. The reconstruction is not continuously differentiable in
the direction perpendicular to the edges/faces, which is beneficial, as it allows
to include upwinding: the derivative is taken from the cell in upwind direction.

Observe that the choice of degrees of freedom that belong to the cell
Cij privileges the right upper corner. This means that for positive x, y
velocity components, Cij is the upwind cell for all degrees of freedom qPij ,

P ∈ {N,EH,EV}. We therefore denote by Dx

∣∣P
ij
q the x-derivative of the re-

construction (33) in cell Cij evaluated at the location of the point value P :

Dx

∣∣P
ij
q :=

∂

∂x
qrecon,ij

∣∣
x=xP

∈ Rm. (34)

For negative velocity components, in some cases one differentiates the re-
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construction from cell Ci+1,j at the same location, e.g. for the x-derivative

D∗x
∣∣P
ij
q :=


∂

∂x
qrecon,i+1,j

∣∣
x=xPij−xi+1,j

P ∈ {N,EV}

Dx

∣∣P
ij
q P ∈ {EH}

(35)

The same applies to the formulas Dy

∣∣P
ij

and D∗y
∣∣P
ij
, and analogously in 3-d.

Figure 3 shows the coefficients occurring in the difference formulas assigned to
the corresponding point value or the cell average.

The update of a point value is in 2-d

d

dt
qPij = −

(
J+
x Dx

∣∣P
ij
q + J−x D

∗
x

∣∣P
ij
q
)
−
(
J+
y Dy

∣∣P
ij
q + J−y D

∗
y

∣∣P
ij
q
)
, (36a)

P ∈ {N,EH,EV}

and in 3-d

d

dt
qPijk = −

(
J+
x Dx

∣∣P
ijk
q + J−x D

∗
x

∣∣P
ijk
q
)
−
(
J+
y Dy

∣∣P
ijk
q + J−y D

∗
y

∣∣P
ijk
q
)

(36b)

−
(
J+
z Dz

∣∣P
ijk
q + J−z D

∗
z

∣∣P
ijk
q
)
,

P ∈ {N,Ex,Ey,Ez,Fx,Fy,Fz}

where J±x , J±y are the positive/negative parts of Jx, Jy. Given the diagonali-
zation

Jx = Rdiag(λ1, ..., λm)R−1 (37)

one defines

J±x := Rdiag(λ±1 , ..., λ
±
m)R−1 (38)

and analogously for Jy.
The above point value update is a Jacobian splitting inspired by the 1-d

upwind method. One might consider an alternative point value update

J̃±x := Jx ± ax1m J̃±y := Jy ± ay1m (39)

where ax = max(|λ(Jx)|), ay = max(|λ(Jy)|) with λ being an eigenvalue of Jx
or Jy. This Jacobian splitting is inspired by the Rusanov method. As will be
seen later, when it comes to structure preservation it is significantly inferior
to the upwind splitting.

3.4 Integration in Time

The update equations (28) and (36) for the average and the point values
are evolved in time using Runge-Kutta time integration. One can expect a
maximal CFL number of about 0.2, half of what is known for the 1-d situation
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Fig. 3 Illustration of the coefficients occurring in the difference formulas for node
values and vertical edge values. They are placed at the location of the
corresponding point value or at the cell center for the average. The circled dot
marks the location of the point value intended to be updated. Cells Cij (left) and
Ci+1,j (rows 1–3) / Ci,j+1 (row 4) (right) are shown. Upper row: Difference
formulas Dx

∣∣N
ij

and D∗
x

∣∣N
ij
. Second row: Difference formulas Dx

∣∣EV

ij
and D∗

x

∣∣EV

ij
.

Third row: Difference formulas Dy

∣∣EV

ij
and D∗

y

∣∣EV

ij
, which are equivalent. Fourth

row: Difference formulas Dy

∣∣N
ij

and D∗
y

∣∣N
ij
.
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([7]). The analysis of Section 6 indicates that for linear acoustics it actually is
∼0.28. The stationary states of the numerical method are by defnition those
for which the space derivative vanishes, i.e. one is left in this case with the
ordinary differential equation q′(t) = 0. Any Runge-Kutta method is able to
integrate it exactly, and the choice of the time integrator is thus not relevant
for stationarity preservation.

4 The discrete Fourier transform

4.1 Fourier modes

Stationarity preservation of linear numerical schemes for linear hyperbolic
systems (1) can be investigated using the discrete Fourier transform, i.e. by
expressing the spatial dependence of any grid function qij (or qijk), q : Zd →
Rm as the linear combination

qij =
∑
k

q̂(k) exp(ikxi∆x+ ikyj∆y) or (40)

qijk =
∑
k

q̂(k) exp(ikxi∆x+ ikyj∆y + ikzk∆z). (41)

The exponentials are discrete versions of exp(ik · x), having written k =
(kx, ky), or k = (kx, ky, kz). This is possible because the method under con-
sideration is linear and because we assume an equidistant Cartesian grid. The
coefficients q̂(k) ∈ Cm of the linear combination are called the discrete Fourier
transform of q.

According to Definition 1, each of the degrees of freedom that belong to a
cell forms a lattice with spacings ∆x, ∆y (and ∆z, in 3-d), i.e. can be seen
as a grid function. When investigating the semi-discrete Active Flux method
using the discrete Fourier transform, each lattice is associated with its own
Fourier mode. We express every degree of freedom belonging to a cell Cij in
2-d as

qXij (t) =
∑
k

q̂X(t,k) exp(iikx∆x+ ijky∆y) X ∈ {A,N,EH,EV} (42)

and to a cell Cijk in 3-d as

qXijk(t) =
∑
k

q̂X(t,k) exp(iikx∆x+ ijky∆y + ikkz∆z) (43)

X ∈ {A,N,Ex,Ey,Ez,Fx,Fy,Fz}

Here q̂X(t,k) ∈ Cm. It is useful to introduce the following

Definition 3 (Translation factor) The translation factors are given as tx(kx) =
exp(ikx∆x), ty(ky) = exp(iky∆y),tz(kz) = exp(ikz∆z). We drop explicit men-
tion of the parameters in the following.
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Index shifts lead to multiplications with shift factors:

qXi+I,j+J(t) =
∑
k

tIxt
J
y · q̂X(t,k) exp(iikx∆x+ ijky∆y) (44)

X ∈ {A,N,EH,EV}

qXi+I,j+J,k+K(t) =
∑
k

tIxt
J
y t
K
z · q̂X(t,k) exp(iikx∆x+ ijky∆y + ikkz∆z) (45)

X ∈ {A,N,Ex,Ey,Ez,Fx,Fy,Fz},

where tIx is the I-th power of the unit complex number tx = exp(ikx∆x), etc.
Both the summation and the global exponential factor exp(iikx∆x+ijky∆y)

will eventually drop out of all expressions:

Proposition 1 Consider grid functions q,Q : Z2 → Rm and assume that Q is
linear in q, i.e. an expression of the form

Qij =
∑

(I,J)∈Z2

αIJqi+I,j+J αIJ ∈Mm×m(R) ∀I, J. (46)

Then by writing

qij :=
∑
tx,ty

q̂(tx, ty)t
i
xt
j
y, q̂(tx, ty) ∈ Cm Qij :=

∑
tx,ty

Q̂(tx, ty)t
i
xt
j
y (47)

one obtains

Q̂ =
∑

(I,J)∈Z2

tIxt
J
y αIJ q̂ ∈ Cm. (48)

The 3-d case is analogous.

Proof By direct computation and using linearity.

Note that Q̂ depends on k, or equivalently on tx, ty, but that we will neglect
explicit mention of these parameters.

Definition 4 (Discrete Fourier transform) Given qij as in Proposition 1, we call
q̂ the discrete Fourier transform of q. We will neglect the common factor tixtjy
in (47) as it is bound to cancel in the end and simply write qij ≡ q̂, qi+1,j ≡ q̂tx
etc. as a formal replacement rule.

For the degrees of freedom accessible to one cell for 2-d Active Flux one
finds the Fourier transforms by applying the replacement rule of Definition 4
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to Equations (20)–(22):

q7,ij ≡ q̂N/tx q6,ij ≡ q̂EH q5,ij ≡ q̂N (49)

q8,ij ≡ q̂EV/tx q0,ij ≡ q̂A q4,ij ≡ q̂EV (50)

q1,ij ≡ q̂N/(txty) q2,ij ≡ q̂EH/ty q3,ij ≡ q̂N/ty (51)

The Fourier transforms for Active Flux are collected in a block-vector q̂,
where

q̂ = (q̂A, q̂EH , q̂EV , q̂N) ∈ CmN
dof

= Cm·4 (52)

for the two-dimensional case and

q̂ = (q̂A, q̂Ex , q̂Ey , q̂Ez , q̂Fx , q̂Fy , q̂Fz , q̂N) ∈ CmN
dof

= Cm·8 (53)

for the three-dimensional case. Here q̂A ∈ Cm is the Fourier transform of
the average, q̂Ei ∈ Cm is the Fourier transform of the point value on an edge
parallel to the i-axis and q̂Fi ∈ Cm is the Fourier transform of the point value
on the face orthogonal to the i-axis.

4.2 The Fourier transform of the reconstruction

Definition 5 Consider the reconstruction qrecon,ij ∈ (P k,k(R2))m (i.e. the one
in (33)) as a function of the degrees of freedom accessible to cell Cij , i.e. write

qrecon,ij(x, y; q0,ij , q1,ij , · · · , qNdof
acc−1,ij). (54)

We denote by q̂recon ∈ (P k,k(C2))m the same polynomial obtained by replacing
the degrees of freedom by their Fourier transforms according to the replace-
ment rule of Definition 4. For example, in 2-d we have, with the replacement
rule (51)

q̂recon(x, y; q̂
A, q̂EH , q̂EV , q̂N) (55)

:= qrecon,ij

(
x, y; q̂A,

q̂N

txty
,
q̂EH

ty
,
q̂N

ty
, q̂EV , q̂N, q̂EH ,

q̂N

tx
,
q̂EV

tx

)
. (56)

We will generally omit explicit mention of the parameters in the following.
The 3-d case is analogous.

The reconstruction polynomial qrecon,ij(x, y) depends on all parameters
accessible to the cell (9 in case of (33)), but its discrete Fourier transform
q̂recon(x, y) depends only on those belonging to one cell (4 in case of (33)),
i.e. Ndof. q̂recon can also simply be seen as the discrete Fourier transform
pointwise at each (x, y).
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4.3 The evolution matrix

Equations (28) and (36) for the average and the point value updates can
be combined into

d

dt
qXI +

∑
Y ∈Σ

∑
S∈[−N,N ]d⊂Zd

αXY,Sq
Y
I+S = 0 ∀X ∈ Σ (57)

where

Σ = {A,N,EH,EV} I = (i, j) (2-d) (58)
Σ = {A,N,Ex,Ey,Ez,Fx,Fy,Fz} I = (i, j, k) (3-d) (59)

and αXY,S ∈Mm×m(R). Upon the Fourier transform one obtains

d

dt
q̂X +

∑
Y ∈Σ

∑
S∈[−N,N ]d⊂Zd

αXY,S q̂
Y

d∏
m=1

tSmm = 0. (60)

For the Active Flux method applied to linear acoustics one has, for example
for the node value:

0 =
d

dt
q̂N + J+

x

1

∆x

(
3q̂N − 4q̂EH + q̂N

1

tx

)
+ J−x

1

∆x

(
−3q̂N + 4q̂EHtx − q̂Ntx

)
(61)

+ J+
y

1

∆y

(
q̂N

1

ty
− 4q̂EV + 3q̂N

)
+ J−y

1

∆y

(
−q̂Nty + 4q̂EV ty − 3q̂N

)
.

(62)

Further such equations are given in Appendix B.

Definition 6 (Evolution matrix) The evolution matrix associated to the Finite
Difference scheme (57) is the block matrix E(k) ∈MmNdof×mNdof

(C) with its
block-entry (X,Y ) being

(
E(k)

)
X,Y

=
∑

S∈[−N,N ]d⊂Zd

αXY,S

d∏
m=1

tSmm (63)

such that (60) can be written as

d

dt
q̂ + E(k)q̂ = 0. (64)

We will frequently omit the argument and simply write E .
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For 2-dimensional linear acoustics we choose to write the evolution block
matrix as follows

E =



EAA EAEH
EAEV

EAN

EEHA EEHEH
EEHEV

EEHN

EEVA EEVEH EEVEV EEVN

ENA ENEH ENEV ENN

 (65)

where e.g. EEHEV
states the influence of the point value at the EV edge on

the point value at a EH edge. The explicit form of the blocks can be found in
Appendix C.

By comparison with (3) one observes that the evolution matrix E(k) plays
the role of iJ ·k. Formulation (64) of the method therefore is ideal for studying
the numerical stationary states, as they are given by the kernel of E(k).

While the right kernel allows to identify stationary states, the left kernel
of E is related to involutions: If there exists an ω(k) ∈ CmNdof such that

ω(k)TE = 0 ∀k, (66)

then

d

dt
ω(k)Tq̂ = 0. (67)

In the case of linear acoustics ω(k)Tq̂ would be the Fourier transform of a
discretization of the vorticity ∇ × v. However, we find that in practice it is
very difficult to explicitly compute the left kernel of E . The existence of a right
kernel guarantees the existence of a left kernel of the same dimension, but we
are unable to say anything about the nature of the discrete vorticity beyond
its existence.

5 Using the discrete Fourier transform for the analysis of
stationarity preservation

5.1 Stationarity preservation

For both stationarity preserving and stationarity non-preserving methods,
on e.g. periodic domains the solution becomes stationary after long times,
since von Neumann stability prohibits Fourier modes that grow in time: they
can only decay or remain stationary. The difference between stationarity pre-
serving and stationarity non-preserving methods is about how this final sta-
tionary state looks like. If the discrete stationary states of the method dis-
cretize all the analytic stationary states of the PDE, then the method is called
stationarity preserving. For linear acoustics, stationarity preserving methods
have stationary states that are characterized by a consistent discretization of a
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divergence-free velocity without any further constraints and a vanishing pres-
sure. Classical schemes mostly are not stationarity preserving: their discrete
stationary state is instead a discretization of ∂xu = 0, ∂yv = 0 (see [9],[10]).
Such stationary states are called trivial and are a small subset of divergence-
free velocities, and e.g. vortices are not contained in it. Thus, stationarity
non-preserving methods are only able to preserve shear flows, but cannot con-
sistently discretize vortices, or generally speaking they are not able to offer
discretizations of all the stationary states of the PDE. Moreover, for stationar-
ity non-preserving methods grid refinement only slows down the (exponentially
quick) transition to the “bad” stationary state, but does not improve the sta-
tionary state itself, i.e. one can say that they lose consistency at stationary
state.

A discrete Fourier mode with spatial frequency k is stationary if it is in
the kernel of E(k) (see (64)). The focus on non-trivial stationary states means
that one is keen on identifying stationary modes for any k (i.e. for general
tx, ty, tz). The kernel thus obtained shall then be compared to the kernel of
J · k.

For Finite Difference methods, the condition for a method to be stationarity
preserving is ([9])

min
k

dimker E(k) = min
k

dimkerJ · k (68)

For numerical methods with multiple degrees of freedom per cell, such as Active
Flux, the dimension of the space on which E operates is Ndof times larger than
that of J · k. One might thus impose a correspondingly higher dimker E as a
condition for stationarity preservation. We shall, however, be modest here:

Definition 7 A linear numerical method with Ndof degrees of freedom per cell
per variable is called stationarity preserving if

S 6 min
k

dimker E(k) 6 SNdof (69)

where S := mink dimkerJ · k.

5.2 A review of stationarity preservation of the classical Active Flux
method

For 2-d linear acoustics, the matrix E of Active Flux is a (dense) 12 × 12
complex-valued matrix. Although only its kernel is required (and not a full
diagonalization) it remains a formidable task to compute it. In [4] therefore a
slightly easier approach has been used, and the techniques used therein allow
some deeper understanding of the kernel. They are useful here as well.

The object under consideration in [4] is classical Active Flux, where point
values are updated by means of an evolution operator. The latter maps the
reconstruction (used as initial data) directly to the value at the new time, and
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the exact evolution operator from [3] has been used in [4]. Clearly then, a
numerical stationary state arises if the reconstruction (= initial data for the
evolution operator) is of constant pressure and divergence-free velocity. One
thus needs to analyze the subset of divergence-free reconstructions.

The reconstruction is in P 2,2 in every variable and thus the divergence is
in

D2,2
br := {v ∈ L∞ : v|Cij ∈ span{1, x, x2, y, xy, x2y, y2, xy2}}, (70)

i.e. in an 8-dimensional space (observe the absence of x2y2). Due to continuity,
the 9 degrees of freedom accessible to a cell, which are used in writing the
reconstruction polynomial, cannot all be chosen independently in every cell.
It is better at this stage to switch to the discrete Fourier transform q̂recon of the
reconstruction, introduced in Section 4.2. This allows to factor out continuity,
and let appear the dependence of the reconstruction on only 4 degrees of
freedom per variable that belong to a cell. These can indeed now be chosen
freely in each cell.

Seeking a divergence-free reconstruction in 2-d, one thus ends up with 8
equations for 8 free parameters. Without rank defect the only divergence-
free reconstruction would be trivial, and not representative of the richness of
divergence-free vector fields. The linear system turns out to be not of full rank,
however. This remained without a clear explanation in [4], and is elucidated
below in Theorem 3. It was found (see equations (6.25) and (6.26) in [4]) that
as long as the 12 Fourier modes are parallel to

Q̂ =

(
−

2

3

1 + 4tx + t2x
tx

·
(ty − 1)(ty + 1)

∆yty
,

2

3

1 + 4ty + t2y

ty
·
(tx − 1)(tx + 1)

∆xtx
, 0,

−
1 + 6tx + t2x

tx
·
ty − 1

∆y
, 2

(tx − 1)(tx + 1)

∆xtx
(ty + 1), 0,

− 2(tx + 1)
(ty − 1)(ty + 1)

∆yty
,

tx − 1

∆x
·
1 + 6ty + t2y

ty
, 0,

− 4(tx + 1)
ty − 1

∆y
, 4

tx − 1

∆x
(ty + 1), 0

)
(71)

the divergence in each cell vanishes. Here, the variables are sorted as (q̂A, q̂EH , q̂EV , q̂N).
One can easily see that this condition indeed can be rewritten as vanishing Fi-
nite Difference discretizations of the divergence. Writing q̂X = (ûX , v̂X , p̂X)
with X ∈ {A,N,EH,EV} one finds e.g.
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1 + 4ty + t2y
ty

(tx − 1)(1 + tx)

tx∆x
ûA +

1 + 4tx + t2x
tx

(ty − 1)(1 + ty)

ty∆y
v̂A = 0 (72)

(tx − 1)(1 + ty)

∆x
ûN +

(1 + tx)(−1 + ty)

∆y
v̂N = 0 (73)

(1 + 6ty + t2y)(tx − 1)

∆xty
ûEH +

(1 + 6tx + t2x)(ty − 1)

∆yty
v̂EV = 0 (74)

tx − 1

∆xtx
ûEV +

ty − 1

∆yty
v̂EH = 0 (75)

tx − 1

∆xtx
ûEV +

(ty − 1)(tx + 1)

2∆ytxty
v̂N = 0 (76)

(1 + 6ty + t2y)(tx − 1)

8∆xty
ûEV +

(t2y − 1)(tx + 1)

4∆yty
v̂EV = 0 (77)

(1 + 4ty + t2y)(tx − 1)

6∆xtxty
ûEV +

t2y − 1

2∆yty
v̂A = 0 (78)

These relations are Fourier transforms of

〈[uA]i±1〉(4)j
∆x

+
[〈vA〉(4)i ]j±1

∆y
= 0

{[uN]i+ 1
2
}j+ 1

2

∆x
+

[{vN}i+ 1
2
]j+ 1

2

∆y
= 0

(79)

〈[uEH ]i+ 1
2
〉(6)j

∆x
+

[〈vEV〉(6)i ]j+ 1
2

∆y
= 0

[uEV ]i− 1
2 ,j

∆x
+

[vEH
i ]j− 1

2

∆y
= 0

(80)

[uEV ]i+ 1
2 ,j+1

∆x
+

[{vN}i+ 1
2
]j+ 1

2

2∆y
= 0

〈[uEV ]i+ 1
2
〉(6)j

8∆x
+

[{vEV}i+ 1
2
]j±1

4∆y
= 0

(81)

〈[uEV ]i+ 1
2
〉(4)j

6∆x
+

[vAi+1]j±1

2∆y
= 0 (82)

having introduced the notation

[q]i+ 1
2
= qi+1 − qi {q}i+ 1

2
= qi+1 − qi (83)

[q]i±1 = qi+1 − qi−1 〈q〉(α)i = qi−1 + αqi + qi+1. (84)

Theorem 1 Consider the set V of globally continuous vector fields v, bi-
parabolic in each cell:

V =

{
v : R2 → R2 : v

∣∣∣
Cij
∈ (P 2,2)2

}
(85)
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with the degrees of freedom of Active Flux and periodic boundaries. Assume
the grid to contain Ncells cells. Then,

(i) V ' R8Ncells

(ii) Vdiv := {v ∈ V : ∇ · v = 0} ' RNcells+O(
√
Ncells)

(iii) Any element in Vdiv has continuous normal derivatives, i.e. at every cell
interface with normal n, v · n is continuously differentiable.

Proof (i) and (ii) are clear from what has been said before; O(
√
Ncells) takes into

account that the number of divergence-free vector fields is slightly larger than one
per cell, as there are some trivial ones missing in the previous analysis (indeed, no
assumptions were made on k or tx, ty). A particular value of, say, tx would mean
that at most, any grid function qij is a function of j only, i.e. that one can specify
O(
√
Ncells) values independently.
The proof of (iii) is obtained by explicit computation. Denote first the u and v

components of q̂recon by ûrecon and v̂recon, respectively. If q̂ is parallel to Q̂ from (71),
then the x-derivative of ûrecon is proportional to

∂xûrecon(x, y) = −2
(tx − 1)(ty − 1)

∆x∆ytxty

(
(tx + 1) + 2(tx − 1)

x

∆x

)(
(ty + 1) + 2(ty − 1)

y

∆y

)
(86)

One then immediately confirms that

∂xûrecon

(
∆x

2
, y

)
= tx∂xûrecon

(
−∆x

2
, y

)
, (87)

i.e.

∂xurecon,ij

(
∆x

2
, y

)
= ∂xurecon,i+1,j

(
−∆x

2
, y

)
. (88)

An analogous statement holds for ∂y v̂recon.

5.3 Stationarity preservation of the semi-discrete method

The following sections prove that the semi-discrete (generalized) Active
Flux is stationarity preserving for the acoustic equations in two and three spa-
tial dimensions. Additionally, the elements of the nullspace of the evolution
matrix and the corresponding numerical stationary states are given and ana-
lyzed. Table 1 sums up and compares key data of semi-discrete Active Flux
for above-mentioned equations.
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2-d acoustics 3-d acoustics
# variables = m 3 4
# mink dimkerJ · k = S 1 2
# dof used in reconstruction = Ndof

acc 9 27
# Fourier modes per variable = Ndof 4 8
# rows/columns in E = mNdof 12 32
mink dimker E(k) 1 5

Table 1 Overview of dimensions relevant for stationarity preservation of
semi-discrete Active Flux for linear acoustics in 2 and 3 spatial dimensions.

5.3.1 Acoustic Equations in Two Spatial Dimensions

Recall that the finite difference operators used in the update of the point
values have been obtained by differentiating the reconstruction.

Consider instead of (36) first the central Active Flux method, which
reads

d

dt
qPij = −Jx

1

2

(
Dx

∣∣P
ij
+D∗x

∣∣P
ij

)
q − Jy

1

2

(
Dy

∣∣P
ij
+D∗y

∣∣P
ij

)
q

= −


0 0 1

2 (Dx +D∗x)
∣∣P
ij

0 0 1
2

(
Dy +D∗y

) ∣∣P
ij

1
2 (Dx +D∗x)

∣∣P
ij

1
2

(
Dy +D∗y

) ∣∣P
ij

0



u

v

p


P ∈ {N,EH,EV}

The divergence relevant for the update of qPij , P ∈ {N,EH,EV} is obtained
by considering the velocity reconstructions in the two/four adjacent cells, tak-
ing their divergences at the location of P (which gives two/four different val-
ues) and finally taking the mean of these values. Recall that the image of
(P 2,2)2 under the (weak) divergence is the broken space D2,2

br defined in (70).
Obviously computing the mean of the two/four values restores continuity, i.e.
afterwards there is only one value of the divergence associated with each point.
This motivates the following

Definition 8 The P 2,2-projected divergence w ∈ P 2,2 is defined by (33) (with
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m = 1) with the degrees of freedom given by

wN
ij :=

1

4

(
Wij(x

N
ij − xij) +Wi+1,j(x

N
ij − xi+1,j) (89a)

+Wi,j+1(x
N
ij − xi,j+1) +Wi+1,j+1(x

N
ij − xi+1,j+1)

)
wEV
ij :=

1

2

(
Wij(x

EV
ij − xij) +Wi+1,j(x

EV
ij − xi+1,j)

)
(89b)

wEH
ij :=

1

2

(
Wij(x

EH
ij − xij) +Wi,j+1(x

EH
ij − xi,j+1)

)
(89c)

wA
ij :=

1

∆x∆y

∫ ∆x
2

−∆x2

∫ ∆y
2

−∆y2
Wij(x) dx (89d)

where Wij(x) := (∂xurecon,ij + ∂yvrecon,ij)(x) is the divergence of the velocity
reconstruction (urecon,ij , vrecon,ij) ∈ (P 2,2)2 in x ∈

[
−∆x2 ,

∆x
2

]
×
[
−∆y2 ,

∆y
2

]
.

Theorem 2 If the discrete data is such that the P 2,2-projected divergence of
v vanishes (as a polynomial), and if p is uniformly constant, then the central
Active Flux method keeps this data stationary.

Proof By unisolvence of the P 2,2 space with the degrees of freedom specified in
Definition 8, the vanishing of the divergence as a polynomial is equivalent to it being
zero at the four degrees of freedom. By virtue of the definitions of the finite difference
formulas (Equations (34)–(35)), the updates of pPij , P ∈ {N,EH,EV} are the degrees
of freedom of the P 2,2-projected divergence in P . The update equation (24) of the
pressure average is, by Gauss’ law and the fact that the quadrature along the edges
is exact for parabolas, equivalent to evaluating the average of the divergence Wij

over the cell (i, j). But this average is assumed to vanish as well, which concludes
the proof.

Central Active Flux can thus be associated with projecting the reconstruc-
tion of the divergence back into the space P 2,2. The map (89) from the velocity
variables to values of the P 2,2-projected divergence in its degrees of freedom
is surjective, therefore the 4 equations for the 8 velocity variables leave a
four-dimensional kernel of the evolution matrix. This sufficient condition of
stationarity can be verified (using mathematica) to also be necessary, which
proves

Corollary 5.1 Central Active Flux for linear acoustics in 2 dimensions is sta-
tionarity preserving and the kernel of its evolution matrix is 4-dimensional.
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Recall (38) with

|Jx| =

 1 0 0
0 0 0
0 0 1

 |Jy| =

 0 0 0
0 1 0
0 0 1

 (90)

The upwind Active Flux method (36) then writes

d

dt
qPij = −


1
2 (Dx −D∗x)

∣∣P
ij

0 1
2 (Dx +D∗x)

∣∣P
ij

0 1
2

(
Dy −D∗y

) ∣∣P
ij

1
2

(
Dy +D∗y

) ∣∣P
ij

1
2 (Dx +D∗x)

∣∣P
ij

1
2

(
Dy +D∗y

) ∣∣P
ij

./



u

v

p


(91)

P ∈ {N,EH,EV}

where the bow tie denotes further terms of no importance for the present
discussion. To gain insight into its stationarity preservation properties, it is
useful to start with the

Lemma 1 D2,2
br is unisolvent with respect to the 8 pointwise degrees of freedom

located at (
xi± 1

2
, yj± 1

2

)
,
(
xi± 1

2
, yj

)
,
(
xi, yj± 1

2

)
(92)

Proof By explicit computation.

Observe that these degrees of freedom are just the point values of Active
Flux accessible to each cell, but without continuity.

Theorem 3 The semi-discrete upwind Active Flux method (36) for the linear
acoustic equations in two spatial dimensions is stationarity preserving. A basis
of the 1-dimensional nullspace of its evolution matrix is given by

Q̂ =

(
− ∆x(1 + tx(4 + tx))(−1 + ty)

6∆y(−1 + tx)txty
,

(1 + tx)(1 + ty(4 + ty))

6txty(1 + ty)
, 0, (93)

− ∆x(1 + tx(6 + tx))(−1 + ty)

4∆y(−1 + tx)tx(1 + ty)
,

1 + tx
2tx

, 0,

− ∆x(1 + tx)(−1 + ty)

2∆y(−1 + tx)ty
, −

−1− 6ty − t2y
4ty(1 + ty)

, 0,

− ∆x(1 + tx)(−1 + ty)

∆y(−1 + tx)(1 + ty)
, 1, 0

)T
∈ C12.

The variables are ordered as (q̂A, q̂EH , q̂EV , q̂N). The divergence of the recon-
struction vanishes iff q̂ is parallel to Q̂.
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Proof A sufficient condition for stationarity is obtained by assuming that p is con-
stant at the stationary state. Then, additionally to the vanishing (central) divergence

1

2
(Dx −D∗

x)
∣∣P
ij
u+

1

2

(
Dy −D∗

y

) ∣∣P
ij
v (94)

the normal derivatives (i.e. the x-derivative of u and the y-derivative of v) need to be
continuous. This brings four additional constraints: one jump across, respectively, a
horizontal and a vertical edge

(Dx −D∗
x)

∣∣P
ij
u = 0

(
Dy −D∗

y

) ∣∣P
ij
v = 0 (95)

and two jumps at the node. Together with the three pointwise conditions on the
central divergence these are 7 equations for 8 variables.

The stationarity of the cell average of p does not contribute an independent
equation for the following reason. Assume the jumps of the normal derivatives of the
velocity to vanish, i.e. the divergence of the velocity reconstruction to be continuous
across the edges. Then it does not matter whether Dx or D∗

x is used to evaluate a
derivative, as they give the same result. One can thus simply modify (91) such that
all derivatives are evaluated in cell (i, j). Stationarity of pPij for all point values P
implies that the divergence of the velocity reconstruction vanishes at all 8 point values
along the boundary of cell (i, j). By Lemma 1, these 8 conditions for a polynomial
in the 8-dimensional space D2,2

br imply that the polynomial itself vanishes. (This is
the problem considered and solved in [4] for the classical Active Flux, as has been
outlined in Section 5.2.) As the divergence vanishes, its average over the cell vanishes,
and by Gauss’ law the cell average pAij is automatically stationary. The kernel of the
evolution matrix for upwind Active Flux is thus at least 1-dimensional.

The 12×12 matrix E(k) is given in Appendix C. That there are no other linearly
independent elements in the kernel has been verified using mathematica due to the
excessive length of computations.

One observes that upwind Active Flux operates on the divergence of the
velocity reconstruction in each cell, without projection (as was the case for
central Active Flux earlier).

Corollary 5.2 The numerical stationary states (94) of semi-discrete Active
Flux on 2-d Cartesian grids are the same as the stationary states (71) of
classical Active Flux on 2-d Cartesian grids, see Section 5.2.

Thus, in terms of stationarity preservation there is no difference between
the behaviour of third-order semi-discrete (generalized) or fully discrete (clas-
sical) Active Flux. With the above reasoning in mind, this is not surprising at
all, and is mostly a consequence of the choice of the reconstruction space.

A final comment is due concerning the rank defect mentioned in Section
5.2. As is clear from the above discussion, a vanishing element in D2,2

br amounts
to 8 equations. However, here we do not deal with any kind of element, but
with an element obtained as the divergence of an element in (P 2,2)2. The map
from the velocity variables to an element of D2,2

br , that is induced by taking the
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divergence of the reconstruction, is not surjective. In the proof of Theorem 3
it is shown that stationarity of all point values amounts to only 7 equations,
and that the stationarity of the average turns out to be redundant.

The very same argument does not hold true for the central Active Flux
method: the divergence can be understood as being projected onto P 2,2, which
vanishes upon stationarity, but the average update continues to involve the
cell average of the “true” divergence in D2,2

br . This update equation for the cell
average is not redundant then.

The choice of upwinding matters for stationarity preservation as well. The
semi-discrete Active Flux method with the upwind splitting only involves nor-
mal derivatives such as ∂2xu and ∂2yv. The alternative point value update (39)
also was investigated for the acoustic equations in two spatial dimensions.
Clearly, this upwinding generates terms such as ∂2xv and ∂2yu in the numerical
diffusion. In this case stationarity implies a larger number of supplementary
conditions, further restricting the set of stationary states. Indeed, non-trivial
stationary states no longer exist as, in general, det E(k) 6= 0. For tx = ty = −1
(kx∆x = ky∆y = π), for example, it is

det E(k) = 110592c6(∆x+∆y)4(∆x∆y + 2c2(∆x2 −∆x∆y +∆y2)))

∆x9∆y9
6= 0.

(96)

5.3.2 Acoustic equations in three spatial dimensions

Theorem 4 (i) The semi-discrete Active Flux method for the linear acoustic
equations (4) in three spatial dimensions is stationarity preserving. The
kernel of its evolution matrix, given in Appendix D, is 5-dimensional for
general k.

(ii) The divergence of the reconstruction vanishes iff q̂ is in the above-mentioned
kernel.

Proof The argumentation is similar to the 2-dimensional case. There are 3 · 8 = 24
velocity variables

ûA, ûN, ûEx , . . . , v̂A, v̂N, . . . , ŵFz . (97)

While central Active Flux amounts to 7 equations for the point values (plus 1 for
the average, i.e. a kernel of dimension 16), the upwind method additionally enforces
continuity of normal derivatives. These are 3·1 conditions on the faces, 3·2 conditions
on the edges and 1 · 3 conditions on the node, which makes a kernel of dimension
at least 24 − 7 − 3 − 6 − 3 = 5. Despite the excessive length of the expressions
under consideration (E is a 32× 32 matrix, given in Appendix D) we confirm using
mathematica that the kernel is indeed 5-dimensional.

One defines D2,2,2
br as the image of (P 2,2,2)2 under the (weak) divergence. As

the jumps vanish, stationarity again implies that the divergence vanishes at the 26
locations of point values in every cell. A unisolvence Lemma similar to Lemma 1
holds again, that we omit. This implies the second statement.
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Thus, the stationary states of this Active Flux method are those that give
rise to a divergence-free reconstruction of the velocity and a uniformly constant
pressure. The 5 elements Q1, · · · , Q5 of ker E are given in Appendix D. We
find that the projection onto just Q1 is consistent with f that is chosen from
the subspace spanned by (−ky, kx, 0, 0) alone and Q2 is consistent with f from
the subspace parallel to (−kz, 0, kx, 0), i.e. it so happens that our choice of
basis of ker E even is consistent with the choice of basis for J ·k from (9). The
remaining 3 elements of ker E correspond to higher order terms.

6 Analysis of Numerical Diffusion

6.1 Linear advection in one spatial dimension

An analysis of numerical diffusion for multi-dimensional acoustics is rather
difficult. Therefore, we first consider the one-dimensional case of Active Flux
applied to the linear advection equation ∂tq + c∂xq = 0 (c > 0). Active Flux
has two degrees of freedom per cell (one average and one point value) in this
case (see e.g. [1, 6, 11, 12]), and upon the Fourier transform in space it can
be rewritten as

∂tq̂ + E(k)q̂ = 0 (98)

with a 2× 2 evolution matrix E . For a reasonable analysis of numerical diffu-
sion, a time discretization needs to be specified, and a Runge-Kutta method
of order 3 seems well-suited. Thus, the Fourier transform of the fully discrete
method reads

q̂n+1 = A(k)q̂n (99)

with the amplification matrix

A = 1−∆tE + 1

2
∆t2E2 − 1

6
∆t3E3. (100)

Figure 4 shows the modulus of the two eigenvalues of A as a function of
β := ∆xk ∈ [−π, π] for different values of CFL := c∆t

∆x .
The reason for having two eigenvalues is the following: The discrete Fourier

transform distinguishes between the modes associated to the different types of
degrees of freedom, i.e. there is a mode for the averages and an independent
mode for the point values in the one-dimensional case. For example k = 0
corresponds to the point values having all the same value Qp ∈ R and the
averages having all the same value Qa ∈ R, but the two values can be different
in general. The point update will see this and generally not remain stationary:
while the “physical” eigenvalue corresponds to the eigenvector (1, 1)T, which
means Qa = Qp, the other eigenvalue corresponds to the eigenvector (0, 1)T,
i.e. Qa = 0, Qp = 1. This highly oscillatory function evolves in time, decaying
for small CFL numbers and exploding for those high enough, as is discussed
next.
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Fig. 4 Numerical diffusion analysis of Active Flux for 1-d linear advection. The
absolute value of the two eigenvalues of the 2× 2 amplification matrix is shown as a
function of β := k∆x ∈ [−π, π]. Observe the different scales on the vertical axes.

As linear advection amounts merely to a translation, the exact amplifi-
cation factor is a unit complex number. Von Neumann stability therefore
requires all the eigenvalues of the amplification matrix to not be greater than
1 in absolute value. Of the two eigenvalues shown in Figure 4, one observes
that the “physical” eigenvalue remains, in absolute value, below and rather
close to 1.

It has been elucidated in [13], that for semi-discrete methods stability quite
generally tends to be governed by the “non-physical” eigenvalue. Also in the
case of semi-discrete one-dimensional Active Flux, one can observe it grow as
the CFL number is chosen larger and larger, until for CFL = 0.42 its absolute
value surpasses 1. This is consistent with previous findings ([7, 14]) of 0.41 as
the stability limit for semi-discrete Active Flux in one spatial dimension.

6.2 Acoustic equations in two spatial dimensions

Finally, to complete the picture, the same analysis is performed for the
two-dimensional Active Flux method for linear acoustics. The absolute values
of the 12 eigenvalues are shown in Figure 5 (some of them lie on top of each
other). For simpler presentation, here ∆x = ∆y = 1 and the wave vector k is
parametrized as

k = s

(
cosϕ
sinϕ

)
(101)



30

To perform a comparison between the behaviour of the numerics and that of
the solutions to the PDE, one now needs to know the analytical value of the
amplification matrix. From (3), writing Λ := R−1(J · k)R, one obtains

q̂(t+∆t) = R exp(−iΛt)R−1q̂(t) (102)

The eigenvalues Λ of (J · k) are real by hyperbolicity of (1) (they are 0 and
±c|k|). Thus, the eigenvalues of the analytical amplification matrix Re−iΛtR−1

are all of modulus one.
Despite the increased complexity, the behaviour is similar to that of linear

advection. The instability is governed by the non-physical eigenvalue(s), whose
norm becomes larger than 1 between ∆t = 0.28 and ∆t = 0.3. We have not
observed a strong ϕ-dependence of this value.

7 Numerical examples

7.1 Acoustic Equations in 2-d

7.1.1 Traveling waves

We consider a truly multi-dimensional setup of a spherical Gaussian in the
pressure:

p0(x) = exp

(√
(x− 1)2 + (y − 1)2 − r0)2

w2

)
v0(x) = 0 (103)

with w = 0.05, r0 = 1
2 . The setup is shown in Figure 6. It is solved on a domain

of [0, 2]2 using RK3 with a CFL number of 0.2 with periodic boundaries. The
L1 error of the numerical solution is shown in Figure 7 as a function of the
spatial discretization length. The reference solution has been obtained with a
first-order method solving the radial equations on a grid of 4 · 105 points. We
observe third order accuracy.

7.1.2 Stationary vortex

We consider a stationary solution of the acoustic equations:

p0(x) = 0 v0(x) =

(
−(y − 1

2 )/r
(x− 1

2 )/r

)
·

{
5r r < 0.2

max(0, 2− 5r) else
(104)

with r =

√(
x− 1

2

)2
+
(
y − 1

2

)2. This setup is solved using the semi-discrete
Active Flux method (3rd order) on a grid of 50× 50, using RK3 and a CFL =
0.2, with zero-gradient boundary conditions.

The aim of this test is to show experimentally that a discrete steady state
is indeed parallel to (9), and we deliberately choose a setup involving many
different Fourier modes. First, one needs to wait until the setup becomes
stationary. Then, instead of computing the Fourier transform, we compute
the values of the discrete divergences (72)–(78).
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Fig. 5 Numerical diffusion analysis of Active Flux for 2-d linear acoustics. The
absolute value of the 12 eigenvalues of the amplification matrix is shown as a
function of s ∈ [−π, π] (see (101)) for different values of ∆t (rows) and ϕ (columns).
Here, ∆x = ∆y = 1.

Fig. 6 The setup of a spherical Gaussian in the pressure. Left: Initial setup.
Center: Pressure at time t = 0.1 solved on a 50× 50 grid. Right: Scatter plot of the
pressure at time t = 0.1 together with a reference solution (solid line).
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Fig. 7 The error of the numerical solution for the spherical Gaussian wave at time
t = 0.1 upon grid refinement. From left to right: u, v, p.

Figure 8 demonstrates that the setup becomes stationary in all variables at
about t = 100. Unsurprisingly this happens later for finer grids (less numerical
diffusion) and the stationary state is also closer to the initial one. Figure 9
shows the time evolution of the discrete divergences (72)–(78) ((79)–(82)) on a
grid of 50× 50. As our datum is not well-prepared, they are not zero initially,
but as the setup becomes stationary, they attain values at the level of machine
precision. This indicates that ker E is indeed one-dimensional and parallel
to (9). For comparison, the Figure shows the time evolution of a different
divergence discretization

1 + 2ty + t2y
ty

(−1 + tx)(1 + tx)

tx∆x
ûA +

1 + 2tx + t2x
tx

(−1 + ty)(1 + ty)

ty∆y
v̂A (105)

that corresponds to

〈[uA]i±1〉(2)j
∆x

+
[〈vA〉(2)i ]j±1

∆y
(106)

which can be observed to become stationary (as the entire setup) but not to
decay to machine zero.

7.1.3 Well-prepared stationary mode

The next aim is to verify the preservation of the discrete stationary state
given by (94). To this end, the discrete data are well-prepared in a way similar
to [15], starting from the Fourier mode Q̂ exp(ikxi∆x+ ikyj∆y). For it to be
stationary, Q̂ has to be parallel to (94). This would result in complex-valued
data. Therefore, we take the average of two such modes with opposite signs
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Fig. 8 Left: Initial data of the stationary vortex test. The magnitude of the
velocity is color-coded. Right: Error of the numerical solution as a function of time.
One observes the stationarization of the setup (the velocity components are on top
of each other).

Fig. 9 Stationary vortex test case. Decay of the 7 discrete divergences (79)–(82)
that characterize the stationary state. Their values reach machine precision after
long times. For comparison, the behaviour of some other discrete divergence is
shown; it does not decay to machine zero. The curves lie partly on top of each
other, but we refrain from showing details as the Figure is merely intended to show
that all the divergences reach machine zero, and not how.
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Fig. 10 Rusanov-type Jacobian split (39) does not lead to a stationarity
preserving method. Left: Solution of the stationary vortex test at t = 1000, the
magnitude of the velocity is color-coded. The vortex has become two overlapping
shear flows. Right: Error of the numerical solution as a function of time. It takes
much longer than shown for the setup to stationarize, and the final state is very far
from the initial condition (compare the errors to those in Fig. 8).

of k, which results in a real-valued grid function:

qAij =


8(2 + cos(2∆xπ)) sin(20∆yπ) sin(2π(i∆x+ 10j∆y))

3∆y

−8(2 + cos(20∆yπ)) sin(2∆xπ) sin(2π(i∆x+ 10j∆y))

3∆x
0

 (107a)

qEH
ij =


4 sin(10∆yπ) sin(π(2i∆x+ 20j∆y + 10∆y))(3 + cos(2∆xπ))

∆y

−8 cos(10∆yπ) sin(2∆xπ) sin(2π(5∆y + i∆x+ 10j∆y))

∆x
0


(107b)

qEV
ij =


8 cos(∆xπ) sin(20∆yπ) sin(π(∆x+ 2i∆x+ 20j∆y))

∆y

−4(3 + cos(20∆yπ)) sin(∆xπ) sin(π(∆x+ 2i∆x+ 20j∆y))

∆x
0


(107c)

qNij =


16 cos(∆xπ) sin(10∆yπ) sin(2π(∆x/2 + 10j∆y + i∆x+ 5∆y))

∆y

−16 sin(∆xπ) cos(10∆yπ) sin(2π(∆x/2 + 10j∆y + i∆x+ 5∆y))

∆x
0


(107d)

The wave numbers are chosen as in [15]: kx = 2π and ky = 10 · 2π. The setup
is solved using CFL = 0.2 on a 50×50 grid using periodic boundary conditions.
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The results are shown in Figure 11, and one observes that the well-prepared
setup remains stationary, up to round-off errors.

Setting i∆x = x and j∆y = y, as ∆x,∆y → 0, this mode can be seen to
converge to

qAij → q̃(x, y) qEH
ij → q̃

(
x, y +

∆y

2

)
(108)

qEH
ij → q̃

(
x, y +

∆y

2

)
qNij → q̃

(
x+

∆x

2
, y +

∆y

2

)
(109)

with

q̃(x, y) =

 10
−1
0

 16π sin(2π(x+ 10y)). (110)

For comparison, one might therefore consider discrete initial data that have
been obtained by the direct evaluation of the degrees of freedom from (110), i.e.
by taking point values and cell averages of (110). In this case one observes an
initial layer (t 6 150) during which the pressure decays after having attained
finite-size values in the first step of the calculation. The seemingly high value
∼ 40 of the error of u is due to generally high values of this component: the
maximum exact value of u is 160π ' 503, i.e. the error actually is only 8%.

7.2 Acoustic Equations in 3-d

7.2.1 Traveling waves

A test analogous to that of Section 7.1.1 is performed to assess the order
of accuracy of the three-dimensional method. The initial data vanish for all
velocity components, and the initial pressure is given by

p0(x) = exp

(
(|x| − r0)2

w2

)
. (111)

Again, r0 = 1
2 and w = 0.05, and the domain is [−1, 1]3. We use RK3

with a CFL number of 0.1. The L1 numerical error as a function of the
spatial discretization length is shown in Figure 12, which was computed using
a reference solution obtained from a 1-d spherically symmetric code on 4 · 106
points. The three-dimensional computations are rather expensive and do not
allow to increase the number of cells as much as one requires to see third-order
accuracy clearly. The data shown indicate a convergence rate of about 2.5.

7.2.2 Stationary mode

We consider a linear combination of the elements of the kernel, given in
Appendix D

Qijk =

5∑
r=1

arQ̂r exp(ikxi∆x+ ikyj∆y + ikzk∆z) (112)
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Fig. 11 Stationary mode for 2-d acoustics. Top. Initial data in u, nodal values are
shown. Left: Well-prepared data (107). Right: Not well-prepared data directly
from (110). There is no visible difference. Bottom: Error of the numerical solution
is shown as a function of time. Note the different scales of the vertical axis. Left:
Well-prepared data show only linear growth due to round-off errors; the pressure
errors are very low. Right: Not discretely well-prepared data. The solution rapidly
deviates from the initial state. It stationarizes after an initial layer at around
t ' 150. The pressure, initially zero, attains finite values in the first step of the
calculation and decays exponentially quickly towards zero again.
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Fig. 12 Convergence study for the spherical Gaussian in the pressure.
Computations on finer meshes are too expensive to run, but the data shown on the
coarse meshes indicate a convergence order of about 2.5. The error curves of the
three velocities are on top of each other.

with ai also given in Appendix D. The reason for the coefficients is that a Finite
Difference formula corresponds to a Laurent polynomial in tx, ty, tz, and all
the denominators appearing in the basis elements Q̂i need to be removed first.
The domain is [0, 1]3 with periodic boundaries, discretized by 203 cells and

kx = 2π ky = 8π kz = −4π (113)

We evolve only its real part, which is possible due to the linearity of the
entire problem. Figure 13 shows that indeed, the error is initially at machine
precision and grows only linearly due to round-off errors.

To highest order in ∆x,∆y,∆z, the values at the nodes are

(2kz(ky − i),−2kxkz, 2ikx, 0)
T exp(ikxx+ ikyy + ikzz) (114)

One easily verifies that this is a divergence-free Fourier mode. However, if this
mode is used as initial data simply by pointwise evaluation, it is not discretely
stationary.

7.2.3 Vortex ring

We consider a vortex ring centred at the origin, with its centerline a circle
of radius R in the x-y-plane (see Figure 14).

Define first

r :=

√(√
x2 + y2 −R

)2
+ z2 (115)
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Fig. 13 The L1 distance between the initial data of a Fourier mode in the kernel
of the evolution matrix E for Active Flux in three spatial dimensions shown as
function of time. Left: Non-well-prepared initialization according to (114). The
mode is not discretely stationary, but upon grid refinement the error decreases at
approximately third order. Right: Well-prepared data according to (112). One
observes only linear growth due to round-off errors; note also the different value of
the error.

Fig. 14 Coordinate setup for the vortex ring test case.
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and angles in the plane and perpendicular to it:

tanϕ =
y

x
sinϑ =

z

r
(116)

The flow happens only in the plane spanned by 0
0
1

 and

 cosϕ
sinϕ
0

 (117)

The vector field, divergence-free by construction, is then given by

u = − sinϑ cosϕ
V (r)√
x2 + y2

(118)

v = − sinϑ sinϕ
V (r)√
x2 + y2

(119)

w = cosϑ
V (r)√
x2 + y2

(120)

Here V is the radial velocity profile of the vortex ring and is an arbitrary dif-
ferentiable, for simplicity compactly supported, function of r only. We choose

V (r) =

{
10r r < 0.1

max(0, 2− 10r) else
(121)

and R = 1
4 . The pressure p vanishes identically. The setup is shown in Figure

16 (top), in slices indicated in Figure 15. We solve it on a 503 grid covering
[0, 1]3 using RK3 and a CFL of 0.1. Results at a later time (t = 25) are shown
in Figure 16 (bottom), they are virtually indistinguishable. Figure 17 shows
the numerical error as a function of time. One observes an initial layer (as the
data are not discretely well-prepared) and the subsequent stationarization of
the setup. A stationarity non-preserving method will diffuse the vortex ring
very quickly, converging for t→∞ to a discrete stationary state that is not a
consistent discretization of a vortex in any way.

7.3 Comparison to the fully discrete Active Flux method

As stated in Corollary 5.2, the numerical stationary states of the semi-
discrete (generalized) and classical Active Flux are the same. The following
numerical test shows that the results of both schemes are also very similar for
non-stationary setups for the 2-d acoustic equations.

We consider the spherical Riemann problem

v0(x) = 0 (122)

p0(x) =

{
2 if |x|2 < 0.08

1 else.
(123)
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Fig. 15 View of the vortex ring setup, showing the toroidal boundary of the
support of the velocity, cut open along z = 0 (left) and y = 0 (right). Arrows show
the velocity in these planes.

Fig. 16 Vortex ring test case. Top: Cut of the initial data through the plane z = 0
(left) and y = 0 (right). Color coded is the magnitude of the velocity, and the
arrows (normalized in length) indicate the direction. Bottom: The same for the
numerical solution at time t = 25. The presence of non-zero velocity in regions that
initially were at rest shows that the numerical stationary solution is slightly
different from the initial data (which is natural as they were not well-prepared).
The arrows indicate only the direction of the velocity, its magnitude is visually
indistinguishable from zero in regions initially at rest.
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Fig. 17 Vortex ring test case. L1 error of the numerical solution on grids of 203

and 353 cells, computed on the nodal point values. One observes the
stationarization of the setup, as it converges towards the numerical stationary state.

Fig. 18 Spherical Riemann problem. Numerical results for the pressure p at time
0.3 on an 80×80 grid and for CFL number 0.1. Left: Classical active flux. Right:
Generalized active flux.

The simulation has been performed for different combinations of CFL numbers
and grid sizes and with periodic boundary conditions. Figure 18 shows a
comparison of the numerical results of both methods for the pressure p at
time 0.3 on an 80×80 grid with CFL number 0.1 as an example. No significant
differences were found between the methods for any of these tested cases. A
more detailed comparison of the results of both methods along the line y = 0.5
also shows no significant differences for p at time 0.3. This is shown in Figure
19, the grid size is again 80×80 and the CFL number 0.1.

8 Conclusion

We have shown that the two- and three-dimensional semi-discrete Active
Flux method is stationarity preserving when applied to linear acoustics on
Cartesian grids. This is the same conclusion as has been drawn for the classical
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Fig. 19 Spherical Riemann problem. Numerical results for the pressure p along
the line y = 0.5 at time 0.3 on an 80×80 grid and for CFL number 0.1.

Active Flux method before, the discrete stationary states are even exactly the
same if upwind Jacobian splitting is used for the point value update. This is a
consequence of the choice of the approximation/reconstruction space, common
to both schemes. We also have not been able to find visible differences in the
results of the two methods for non-stationary setups. However, the stability
region of the semi-discrete method is smaller with a maximum CFL number
only about half of that of the classical method ([16]). The semi-discrete method
can be applied more easily to nonlinear problems as it does not require an
evolution operator, and it being structure preserving in very much the same
way as the traditional method is encouraging.

In the future we will study how this property can be extended to nonlin-
ear conservation laws, including a theoretical analysis of low Mach number
compliance for the Euler equations. Experimentally, it has been observed in
[8] that the method behaves well in this regime. Following [17], [18] we will
investigate stationarity preservation of Active Flux on unstructured grids.
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A Shape functions for Active Flux in two spatial dimensions

The basis function for the biparabolic reconstruction employed for the two-
dimensional Active Flux are

B0(x, y) =
9

4
(−1 + 2ξ)(1 + 2ξ)(−1 + 2η)(1 + 2η). (124)

B1(x, y) =
1

16
(−1 + 2ξ)(−1 + 2η)(12ξη − 2η − 2ξ − 1) (125)

B2(x, y) =
1

4
(1− 2ξ)(1 + 2ξ)(−1 + 2η)(1 + 6η) (126)

B3(x, y) =
1

16
(1 + 2ξ)(−1 + 2η)(12ξη + 2η − 2ξ + 1) (127)

B4(x, y) =
1

4
(1 + 2ξ)(−1 + 6ξ)(1− 2η)(1 + 2η) (128)

B5(x, y) =
1

16
(1 + 2ξ)(1 + 2η)(12ξη + 2η + 2ξ − 1) (129)

B6(x, y) =
1

4
(1− 2ξ)(1 + 2ξ)(1 + 2η)(−1 + 6η) (130)

B7(x, y) =
1

16
(−1 + 2ξ)(1 + 2η)(12ξη − 2η + 2ξ + 1) (131)

B8(x, y) =
1

4
(−1 + 2ξ)(1 + 6ξ)(1− 2η)(1 + 2η) (132)

(133)

with ξ = x/∆x, η = y/∆y. For the numbering, see Figure 1.

B Update equation for 2-d upon the Fourier transform

The update of the nodal point value can be written as

0 =
d

dt
q̂N +

[
J+
x

1

∆x

(
3 +

1

tx

)
+ J−x

1

∆x
(−3− tx) + J+

y

1

∆y

(
1

ty
+ 3

)
(134)

+J−y
1

∆y
(−ty − 3)

]
q̂N +

[
−4
∆x

(J+
x − J−x tx)

]
q̂EH

+

[
−4
∆y

(J+
y − J−y ty)

]
q̂EV .
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The update equation for the point value at a vertical edge is

0 =
d

dt
q̂EV +

[
− 9

∆x
(J+
x − J−x tx)

]
q̂A +

[
1

∆x

(
J+
x

(
1 +

1

ty

)
+ J−x

(
− tx
ty
− tx

))]
q̂EH

(135)

+

[
2

∆x

(
J+
x

(
2 +

1

tx

)
+ J−x (−2tx − 2)

)]
q̂EV

+

[
J+
x

1

4∆x

(
1

txty
+

1

ty
+ 1 +

1

tx

)
+ J−x

1

4∆x

(
− 1

ty
− tx
ty
− tx − 1

)
+ J+

y

1

∆y

(
1− 1

ty

)
+ J−y

1

∆y

(
1− 1

ty

)]
q̂N

and for the update of the point value at a horizontal edge

0 =
d

dt
q̂EH +

[
− 9

∆y
(J+
y − J−y ty)

]
q̂A +

[
2

∆y

(
J+
y

(
1

ty
+ 2

)
+ J−y (−2− ty)

)]
q̂EH

(136)

+

[
1

∆y

(
J+
y

(
1 +

1

tx

)
+ J−y

(
−ty −

ty
tx

))]
q̂EV

+

[
J+
x

1

∆x

(
1− 1

tx

)
+ J−x

1

∆x

(
1− 1

tx

)
+ J+

y

1

4∆y

(
1

txty
+

1

ty
+ 1 +

1

tx

)
+ J−y

1

4∆y

(
− 1

tx
− 1− ty −

ty
tx

)]
q̂N.

The update of the average is computed by following the instructions from
Section 3.1

0 =
d

dt
q̂A +

[
2

3∆y
Jy

(
1− 1

ty

)]
q̂EH +

[
2

3∆x
Jx

(
1− 1

tx

)]
q̂EV (137)

+

[
1

6∆x
Jx

(
1− 1

tx
+

1

ty
− 1

txty

)
+

1

6∆y
Jy

(
1− 1

ty
+

1

tx
− 1

txty

)]
q̂N.

C Evolution matrices of Active Flux in two spatial dimensions

The submatrices of the evolution matrix (65) for the acoustic equations (4)
in two spatial dimensions are

EAA = 03×3 ENA = 03×3 (138)

EAEH
=

2

3∆y

0 0 0
0 0 1− 1

ty

0 1− 1
ty

0

 (139)

EAEV =
2

3∆x

 0 0 1− 1
tx

0 0 0
1− 1

tx
0 0

 (140)
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EAN =


0 0 1

6∆x
(−1+tx)(1+ty)

txty

0 0 1
6∆y

(1+tx)(−1+ty)
txty

1
6∆x

(−1+tx)(1+ty)
txty

1
6∆y

(1+tx)(−1+ty)
txty

0

 (141)

EEHA = − 9

2∆y

0 0 0
0 (1 + ty) (1− ty)
0 (1− ty) (1 + ty)

 (142)

EEHEH
=

1

∆y

0 0 0
0 ( 1

ty
+ 4 + ty) ( 1

ty
− ty)

0 ( 1
ty
− ty) ( 1

ty
+ 4 + ty)

 (143)

EEHEV
=

1

2∆y

0 0 0

0
(1+tx)(1+ty)

tx
− (1+tx)(−1+ty)

tx

0 − (1+tx)(−1+ty)
tx

(1+tx)(1+ty)
tx

)

 (144)

EEHN =


0 0 1

∆x

(
1− 1

tx

)
0 1

8∆y
(1+tx)(1+ty)

2

txty
− 1

8∆y

(1+tx)(−1+t2y)
txty

1
∆x

(
1− 1

tx

)
− 1

8∆y
(1+tx)(1+ty)

2

txty
1

8∆y

(1+tx)(−1+t2y)
txty

 (145)

EEVA = − 9

2∆y

(1 + tx) 0 (1− tx)
0 0 0

(1− tx) 0 (1 + tx)

 (146)

EEVEH
=

1

2∆x


(1+tx)(1+ty)

ty
0 − (−1+tx)(1+ty)

ty

0 0 0

− (−1+tx)(1+ty)
ty

0
(1+tx)(1+ty)

ty
)

 (147)

EEVEV
=

1

∆x

( 1
tx

+ 4 + tx) 0 ( 1
tx
− tx)

0 0 0
( 1
tx
− tx) 0 ( 1

tx
+ 4 + tx)

 (148)

EEVN =


1

8∆x
(1+tx)

2(1+ty)
txty

0 − 1
8∆x

(−1+t2x)(1+ty)
txty

0 0 1
∆y

(
1− 1

ty

)
− 1

8∆x
(−1+t2x)(1+ty)

txty
1
∆y

(
1− 1

ty

)
1

8∆x
(1+tx)

2(1+ty)
txty

 (149)

ENEH = − 2

∆x

(1 + tx) 0 (1− tx)
0 0 0

(1− tx) 0 (1 + tx)

 , (150)

ENEV
= − 2

∆y

0 0 0
0 (1 + ty) (1− ty)
0 (1− ty) (1 + ty)

 (151)
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ENN =


6+ 1

tx
+tx

2∆x 0
1
tx
−tx

2∆x

0 1
2∆y

(
6 + 1

ty
+ ty

)
1

2∆y

(
1
ty
− ty

)
1

2∆x

(
1
tx
− tx

)
1

2∆y

(
1
ty
− ty

)
1
2

[
6+ 1

tx
+tx

∆x +
6+ 1

ty
+ty

∆y

]
 ,

(152)

D Evolution matrix and its kernel for Active Flux in three spatial
dimensions

The variables are ordered as Q̂ = (q̂A, q̂Ex , q̂Ey , q̂Ez , q̂Fx , q̂Fy , q̂Fz , q̂N), where
q̂ = (û, v̂, ŵ, p̂).

The evolution matrix reads:

E =



EAA EAEx EAEy EAEz EAFx EAFy EAFz EAN

EExA EExEx EExEy EExEz EExFx EExFy EExFz EExN
EEyA EEyEx EEyEy EEyEz EEyFx EEyFy EEyFz EEyN
EEzA EEzEx EEzEy EEzEz EEzFx EEzFy EEzFz EEzN
EFxA EFxEx EFxEy EFxEz EFxFx EFxFy EFxFz EFxN
EFyA EFyEx EFyEy EFyEz EFyFx EFyFy EFyFz EFyN
EFzA EFzEx EFzEy EFzEz EFzFx EFzFy EFzFz EFzN
ENA ENEx ENEy ENEz ENFx ENFy ENFz ENN


(153)
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with the blocks

EAA =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (154)

EAEx =


0 0 0 0

0 0 0
c(ty−1)(1+tz)

9∆ytytz

0 0 0
c(1+ty)(tz−1)

9∆ztytz

0
c(ty−1)(1+tz)

9∆ytytz

c(1+ty)(tz−1)
9∆ztytz

0

 (155)

EAEy =


0 0 0 c(tx−1)(1+tz)

9∆xtxtz
0 0 0 0

0 0 0 c(1+tx)(tz−1)
9∆ztxtz

c(tx−1)(1+tz)
9∆xtxtz

0 c(1+tx)(tz−1)
9∆ztxtz

0

 (156)

EAEz =


0 0 0

c(tx−1)(1+ty)
9∆xtxty

0 0 0
c(1+tx)(ty−1)

9∆ytxty

0 0 0 0
c(tx−1)(1+ty)

9∆xtxty

c(1+tx)(ty−1)
9∆ytxty

0 0

 (157)

EAFx =


0 0 0 4c(tx−1)

9∆xtx
0 0 0 0
0 0 0 0

4c(tx−1)
9∆xtx

0 0 0

 (158)

EAFy =


0 0 0 0

0 0 0
4c(ty−1)
9∆yty

0 0 0 0

0
4c(ty−1)
9∆yty

0 0

 (159)

EAFz =


0 0 0 0
0 0 0 0

0 0 0 4c(tz−1)
9∆ztz

0 0 4c(tz−1)
9∆ztz

0

 (160)

EAN =


0 0 0

c(tx−1)(1+ty)(1+tz)
36∆xtxtytz

0 0 0
c(1+tx)(ty−1)(1+tz)

36∆ytxtytz

0 0 0
c(1+tx)(1+ty)(tz−1)

36∆ztxtytz
c(tx−1)(1+ty)(1+tz)

36∆xtxtytz

c(1+tx)(ty−1)(1+tz)
36∆ytxtytz

c(1+tx)(1+ty)(tz−1)
36∆ztxtytz

0


(161)
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EExA =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (162)

EExEx =


0 0 0 0

0
c+cty(6+ty)

2∆yty
0 − c(t

2
y−1)

2∆yty

0 0 c+ctz(6+tz)
2∆ztz

− c(t
2
z−1)

2∆ztz

0 − c(t
2
y−1)

2∆yty
− c(t

2
z−1)

2∆ztz
1
2c
(

6+1/ty+ty
∆y + 1+tz(6+tz)

∆ztz

)
 (163)

EExEy =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (164)

EExEz =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (165)

EExFx =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (166)

EExFy =


0 0 0 0
0 0 0 0

0 0 − 2c(1+tz)
∆z

2c(tz−1)
∆z

0 0 2c(tz−1)
∆z − 2c(1+tz)

∆z

 (167)

EExFz =


0 0 0 0

0 − 2c(1+ty)
∆y 0

2c(ty−1)
∆y

0 0 0 0

0
2c(ty−1)
∆y 0 − 2c(1+ty)

∆y

 (168)

EExN =


0 0 0 c(tx−1)

∆xtx
0 0 0 0
0 0 0 0

c(tx−1)
∆xtx

0 0 0

 (169)
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EEyA =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (170)

EEyEx =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (171)

EEyEy =


c+ctx(6+tx)

2∆xtx
0 0 − c(t

2
x−1)

2∆xtx
0 0 0 0

0 0 c+ctz(6+tz)
2∆ztz

− c(t
2
z−1)

2∆ztz

− c(t
2
x−1)

2∆xtx
0 − c(t

2
z−1)

2∆ztz
1
2c
(

6+1/tx+tx
∆x + 1+tz(6+tz)

∆ztz

)

(172)

EEyEz =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (173)

EEyFx =


0 0 0 0
0 0 0 0

0 0 − 2c(1+tz)
∆z

2c(tz−1)
∆z

0 0 2c(tz−1)
∆z − 2c(1+tz)

∆z

 (174)

EEyFy =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (175)

EEyFz =


− 2c(1+tx)

∆x 0 0 2c(tx−1)
∆x

0 0 0 0
0 0 0 0

2c(tx−1)
∆x 0 0 − 2c(1+tx)

∆x

 (176)

EEyN =


0 0 0 0

0 0 0
c(ty−1)
∆yty

0 0 0 0

0
c(ty−1)
∆yty

0 0

 (177)
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EEzA =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (178)

EEzEx =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (179)

EEzEy =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (180)

EEzEz =


c+ctx(6+tx)

2∆xtx
0 0 − c(t

2
x−1)

2∆xtx

0
c+cty(6+ty)

2∆yty
0 − c(t

2
y−1)

2∆yty

0 0 0 0

− c(t
2
x−1)

2∆xtx
− c(t

2
y−1)

2∆yty
0 1

2c
(

6+1/tx+tx
∆x +

1+ty(6+ty)
∆yty

)

(181)

EEzFx =


0 0 0 0

0 − 2c(1+ty)
∆y 0

2c(ty−1)
∆y

0 0 0 0

0
2c(ty−1)
∆y 0 − 2c(1+ty)

∆y

 (182)

EEzFy =


− 2c(1+tx)

∆x 0 0 2c(tx−1)
∆x

0 0 0 0
0 0 0 0

2c(tx−1)
∆x 0 0 − 2c(1+tx)

∆x

 (183)

EEzFz =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (184)

EEzN =


0 0 0 0
0 0 0 0

0 0 0 c(tz−1)
∆ztz

0 0 c(tz−1)
∆ztz

0

 (185)
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EFxA =


− 27c(1+tx)

4∆x 0 0 27c(tx−1)
4∆x

0 0 0 0
0 0 0 0

27c(tx−1)
4∆x 0 0 − 27c(1+tx)

4∆x

 (186)

EFxEx =


c(1+tx)(1+ty)(1+tz)

8∆xtytz
0 0 − c(tx−1)(1+ty)(1+tz)8∆xtytz

0 0 0 0
0 0 0 0

− c(tx−1)(1+ty)(1+tz)8∆xtytz
0 0

c(1+tx)(1+ty)(1+tz)
8∆xtytz

 (187)

EFxEy =


c(1+tx)

2(1+tz)
8∆xtxtz

0 0 − c(t
2
x−1)(1+tz)
8∆xtxtz

0 0 0 0

0 0 0 c(tz−1)
∆ztz

− c(t
2
x−1)(1+tz)
8∆xtxtz

0 c(tz−1)
∆ztz

c(1+tx)
2(1+tz)

8∆xtxtz

 (188)

EFxEz =


c(1+tx)

2(1+ty)
8∆xtxty

0 0 − c(t
2
x−1)(1+ty)
8∆xtxty

0 0 0
c(ty−1)
∆yty

0 0 0 0

− c(t
2
x−1)(1+ty)
8∆xtxty

c(ty−1)
∆yty

0
c(1+tx)

2(1+ty)
8∆xtxty

 (189)

EFxFx =


c+ctx(4+tx)

∆xtx
0 0

c−ct2x
∆xtx

0 0 0 0
0 0 0 0

c−ct2x
∆xtx

0 0 c+ctx(4+tx)
∆xtx

 (190)

EFxFy =


c(1+tx)(1+ty)

2∆xty
0 0 − c(tx−1)(1+ty)2∆xty

0 0 0 0
0 0 0 0

− c(tx−1)(1+ty)2∆xty
0 0

c(1+tx)(1+ty)
2∆xty

 (191)

EFxFz =


c(1+tx)(1+tz)

2∆xtz
0 0 − c(tx−1)(1+tz)2∆xtz

0 0 0 0
0 0 0 0

− c(tx−1)(1+tz)2∆xtz
0 0 c(1+tx)(1+tz)

2∆xtz

 (192)

EFxN =


c(1+tx)

2(1+ty)(1+tz)
32∆xtxtytz

0 0 − c(t
2
x−1)(1+ty)(1+tz)

32∆xtxtytz

0 0 0 0
0 0 0 0

− c(t
2
x−1)(1+ty)(1+tz)

32∆xtxtytz
0 0

c(1+tx)
2(1+ty)(1+tz)

32∆xtxtytz

 (193)
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EFyA =


0 0 0 0

0 − 27c(1+ty)
4∆y 0

27c(ty−1)
4∆y

0 0 0 0

0
27c(ty−1)

4∆y 0 − 27c(1+ty)
4∆y

 (194)

EFyEx =


0 0 0 0

0
c(1+ty)

2(1+tz)
8∆ytytz

0 − c(t
2
y−1)(1+tz)
8∆ytytz

0 0 0 c(tz−1)
∆ztz

0 − c(t
2
y−1)(1+tz)
8∆ytytz

c(tz−1)
∆ztz

c(1+ty)
2(1+tz)

8∆ytytz

 (195)

EFyEy =


0 0 0 0

0
c(1+tx)(1+ty)(1+tz)

8∆ytxtz
0 − c(1+tx)(ty−1)(1+tz)8∆ytxtz

0 0 0 0

0 − c(1+tx)(ty−1)(1+tz)8∆ytxtz
0

c(1+tx)(1+ty)(1+tz)
8∆ytxtz

 (196)

EFyEz =


0 0 0 c(tx−1)

∆xtx

0
c(1+tx)(1+ty)

2

8∆ytxty
0 − c(1+tx)(t

2
y−1)

8∆ytxty

0 0 0 0
c(tx−1)
∆xtx

− c(1+tx)(t
2
y−1)

8∆ytxty
0

c(1+tx)(1+ty)
2

8∆ytxty

 (197)

EFyFx =


0 0 0 0

0
c(1+tx)(1+ty)

2∆ytx
0 − c(1+tx)(ty−1)2∆ytx

0 0 0 0

0 − c(1+tx)(ty−1)2∆ytx
0

c(1+tx)(1+ty)
2∆ytx

 (198)

EFyFy =


0 0 0 0

0
c+cty(4+ty)

∆yty
0

c−ct2y
∆yty

0 0 0 0

0
c−ct2y
∆yty

0
c+cty(4+ty)

∆yty

 (199)

EFyFz =


0 0 0 0

0
c(1+ty)(1+tz)

2∆ytz
0 − c(ty−1)(1+tz)2∆ytz

0 0 0 0

0 − c(ty−1)(1+tz)2∆ytz
0

c(1+ty)(1+tz)
2∆ytz

 (200)

EFyN =


0 0 0 0

0
c(1+tx)(1+ty)

2(1+tz)
32∆ytxtytz

0 − c(1+tx)(t
2
y−1)(1+tz)

32∆ytxtytz

0 0 0 0

0 − c(1+tx)(t
2
y−1)(1+tz)

32∆ytxtytz
0

c(1+tx)(1+ty)
2(1+tz)

32∆ytxtytz

 (201)



54

EFzA =


0 0 0 0
0 0 0 0

0 0 − 27c(1+tz)
4∆z

27c(tz−1)
4∆z

0 0 27c(tz−1)
4∆z − 27c(1+tz)

4∆z

 (202)

EFzEx =


0 0 0 0

0 0 0
c(ty−1)
∆yty

0 0
c(1+ty)(1+tz)

2

8∆ztytz
− c(1+ty)(t

2
z−1)

8∆ztytz

0
c(ty−1)
∆yty

− c(1+ty)(t
2
z−1)

8∆ztytz

c(1+ty)(1+tz)
2

8∆ztytz

 (203)

EFzEy =


0 0 0 c(tx−1)

∆xtx
0 0 0 0

0 0 c(1+tx)(1+tz)
2

8∆ztxtz
− c(1+tx)(t

2
z−1)

8∆ztxtz
c(tx−1)
∆xtx

0 − c(1+tx)(t
2
z−1)

8∆ztxtz

c(1+tx)(1+tz)
2

8∆ztxtz

 (204)

EFzEz =


0 0 0 0
0 0 0 0

0 0
c(1+tx)(1+ty)(1+tz)

8∆ztxty
− c(1+tx)(1+ty)(tz−1)8∆ztxty

0 0 − c(1+tx)(1+ty)(tz−1)8∆ztxty

c(1+tx)(1+ty)(1+tz)
8∆ztxty

 (205)

EFzFx =


0 0 0 0
0 0 0 0

0 0 c(1+tx)(1+tz)
2∆ztx

− c(1+tx)(tz−1)2∆ztx

0 0 − c(1+tx)(tz−1)2∆ztx

c(1+tx)(1+tz)
2∆ztx

 (206)

EFzFy =


0 0 0 0
0 0 0 0

0 0
c(1+ty)(1+tz)

2∆zty
− c(1+ty)(tz−1)2∆zty

0 0 − c(1+ty)(tz−1)2∆zty

c(1+ty)(1+tz)
2∆zty

 (207)

EFzFz =


0 0 0 0
0 0 0 0

0 0 c+ctz(4+tz)
∆ztz

c−ct2z
∆ztz

0 0
c−ct2z
∆ztz

c+ctz(4+tz)
∆ztz

 (208)

EFzN =


0 0 0 0
0 0 0 0

0 0
c(1+tx)(1+ty)(1+tz)

2

32∆ztxtytz
− c(1+tx)(1+ty)(t

2
z−1)

32∆ztxtytz

0 0 − c(1+tx)(1+ty)(t
2
z−1)

32∆ztxtytz

c(1+tx)(1+ty)(1+tz)
2

32∆ztxtytz

 (209)
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ENA =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (210)

ENEx =


− 2c(1+tx)

∆x 0 0 2c(tx−1)
∆x

0 0 0 0
0 0 0 0

2c(tx−1)
∆x 0 0 − 2c(1+tx)

∆x

 (211)

ENEy =


0 0 0 0

0 − 2c(1+ty)
∆y 0

2c(ty−1)
∆y

0 0 0 0

0
2c(ty−1)
∆y 0 − 2c(1+ty)

∆y

 (212)

ENEz =


0 0 0 0
0 0 0 0

0 0 − 2c(1+tz)
∆z

2c(tz−1)
∆z

0 0 2c(tz−1)
∆z − 2c(1+tz)

∆z

 (213)

ENFx =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (214)

ENFy =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (215)

ENFz =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (216)

ENN =


c+ctx(6+tx)

2∆xtx
0 0 − c(t

2
x−1)

2∆xtx

0
c+cty(6+ty)

2∆yty
0 − c(t

2
y−1)

2∆yty

0 0 c+ctz(6+tz)
2∆ztz

− c(t
2
z−1)

2∆ztz

− c(t
2
x−1)

2∆xtx
− c(t

2
y−1)

2∆yty
− c(t

2
z−1)

2∆ztz
1
2c
(

6+1/tx+tx
∆x +

6+1/ty+ty
∆y + 1+tz(6+tz)

∆ztz

)


(217)

The kernel of E are spanned by (Q̂1, Q̂2, Q̂3, Q̂4, Q̂5) given by
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Q̂1 =
(
− ∆x(1 + tx(4 + tx))(ty − 1)(t2z + 4txt

2
z + t2x(2 + tz(8 + 3tz)))

54∆yt2x(t
2
x − 1)tyt2z

,

(1 + ty(4 + ty))(t
2
z + 4txt

2
z + t2x(2 + tz(8 + 3tz)))

54t2xty(1 + ty)t2z
, 0, 0,

− ∆x(1 + tx(6 + tx))(ty − 1)

4∆y(tx − 1)tx(1 + ty)
, 0,

∆z(1 + tx)(ty − 1)(1 + tz)

2∆ytx(1 + ty)(tz − 1)
, 0,

0,
1

4
+

1

4ty
+

1

1 + ty
,−∆z(ty − 1)(1 + tz)

2∆yty(tz − 1)
, 0,

− ∆x(ty − 1)(4t2x + tx(3 + 19tx)tz + (1 + tx)(2 + 9tx)t
2
z)

12∆y(tx − 1)tx(1 + ty)t2z
,

4t2x + tx(3 + 19tx)tz + (1 + tx)(2 + 9tx)t
2
z

12tx(1 + tx)t2z
, 0, 0,

− ∆x(ty − 1)(2t2z + t2x(4 + tz)(1 + 3tz) + txtz(−3 + 5tz))

24∆y(tx − 1)txtyt2z
,

(1 + ty(6 + ty))(4t
2
x + tx(3 + 19tx)tz + (1 + tx)(2 + 9tx)t

2
z)

48tx(1 + tx)ty(1 + ty)t2z
,

− (
∆z(ty − 1)(1 + tz(6 + tz))

8∆yty(tz − 1)tz
), 0,

− ∆x(1 + tx(6 + tx))(ty − 1)(4t2x + tx(3 + 19tx)tz + (1 + tx)(2 + 9tx)t
2
z)

48∆yt2x(t
2
x − 1)(1 + ty)t2z

,

2t2z + t2x(4 + tz)(1 + 3tz) + txtz(−3 + 5tz)

24t2xt
2
z

,
∆z(1 + tx)(ty − 1)(1 + tz(6 + tz))

8∆ytx(1 + ty)(tz − 1)tz
, 0,

0, 0, 0, 0,

− ∆x(1 + tx)(ty − 1)

∆y(tx − 1)(1 + ty)
, 1, 0, 0

)
(218)
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Q̂2 =
(
− ∆x(1 + tx(4 + tx))(1 + ty)(tz − 1)(2t2z + t2x(tz − 2)(1 + 3tz) + txtz(3 + 11tz))

108∆zt2x(t
2
x − 1)tyt2z(1 + tz)

,

− ∆y(1 + ty(4 + ty))(tx − tz)(tz − 1)(tx + tz + 4txtz)

54∆zt2x(ty − 1)tyt2z(1 + tz)
,

(1 + tx)(1 + ty)(1 + tz(4 + tz))

36txtytz(1 + tz)
, 0,

− (∆x(1 + tx(6 + tx))(tz − 1)

4∆z(tx − 1)tx(1 + tz)
, 0,

1 + tx
2tx

, 0,

0, 0, 0, 0,

− ∆x(tz − 1)(t2z + txtz(3 + 7tz) + t2x(−1 + tz(−1 + 3tz)))

6∆z(tx − 1)txt2z(1 + tz)
,

− ∆y(1 + ty)(tx − tz)(tz − 1)(tx + tz + 4txtz)

6∆ztx(1 + tx)(ty − 1)t2z(1 + tz)
,
1

4
+

1

4tz
+

1

1 + tz
, 0,

∆x(1 + ty)(tx − tz)(tz − 1)(tx + tz + 4txtz)

12∆z(tx − 1)txtyt2z(1 + tz)
,

− ∆y(1 + ty(6 + ty))(tx − tz)(tz − 1)(tx + tz + 4txtz)

24∆ztx(1 + tx)(ty − 1)tyt2z(1 + tz)
, 0, 0,

− ∆x(1 + tx(6 + tx))(tz − 1)(t2z + txtz(3 + 7tz) + t2x(−1 + tz(−1 + 3tz)))

24∆zt2x(t
2
x − 1)t2z(1 + tz)

,

− ∆y(1 + ty)(tx − tz)(tz − 1)(tx + tz + 4txtz)

12∆zt2x(ty − 1)t2z(1 + tz)
,
(1 + tx)(1 + tz(6 + tz))

8txtz(1 + tz)
, 0,

0, 0, 0, 0,

− ∆x(1 + tx)(tz − 1)

∆z(tx − 1)(1 + tz)
, 0, 1, 0

)
(219)

Q̂3 =
(
− 2∆x(1 + tx(4 + tx))(tz − 1)

9∆z(t2x − 1)tz
, 0,

2(1 + tz(4 + tz))

9tz(1 + tz)
, 0,

0,− 2∆yty(tz − 1)

∆z(ty − 1)(1 + tz))
,

2ty
1 + ty

, 0,

0, 0, 0, 0,

− 2∆xtxty(tz − 1)

∆z(tx − 1)(1 + ty)tz
,

2∆ytxty(tz − 1)

∆z(1 + tx)(ty − 1)tz
, 0, 0,

− ∆xtx(tz − 1)

∆z(tx − 1)tz
,
∆ytx(1 + ty(6 + ty))(tz − 1)

2∆z(1 + tx)(t2y − 1)tz
, 0, 0,

− ∆x(1 + tx(6 + tx))ty(tz − 1)

2∆z(t2x − 1)(1 + ty)tz
, 0,

ty(1 + tz(6 + tz))

2(1 + ty)tz(1 + tz)
, 0,

0,−∆y(1 + ty(6 + ty))(tz − 1)

2∆z(t2y − 1)(1 + tz)
, 1, 0, 0, 0, 0, 0

)
(220)
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Q̂4 =
(8∆x(1 + tx(4 + tx))(t

2
y − 1)(tx − tz)(tx + tz + 4txtz)

27∆y(tx − 1)tx(1 + tx)2(1 + ty(6 + ty))t2z
,

− 8(1 + ty(4 + ty))(tx − tz)(tx + tz + 4txtz)

27tx(1 + tx)(1 + ty(6 + ty))t2z
, 0, 0,

0,
4ty(1 + ty)

1 + ty(6 + ty)
,− 4∆z(ty − 1)ty(1 + tz)

∆y(1 + ty(6 + ty))(tz − 1)
, 0,

−
4∆xtx(t

2
y − 1)

∆y(tx − 1)(1 + ty(6 + ty))
, 0,

4∆ztx(t
2
y − 1)(1 + tz)

∆y(1 + tx)(1 + ty(6 + ty))(tz − 1)
, 0,

4∆x(ty − 1)ty(2t
2
x + tx(3 + 11tx)tz + (−2 + tx)(1 + 3tx)t

2
z)

3∆y(t2x − 1)(1 + ty(6 + ty))t2z
,

− 4ty(1 + ty)(2t
2
x + tx(3 + 11tx)tz + (−2 + tx)(1 + 3tx)t

2
z)

3(1 + tx)2(1 + ty(6 + ty))t2z
, 0, 0,

4∆x(t2y − 1)(tx − tz)(tx + tz + 4txtz)

3∆y(t2x − 1)(1 + ty(6 + ty))t2z
,

− (2t2x + tx(3 + 11tx)tz + (−2 + tx)(1 + 3tx)t
2
z)

3(1 + tx)2t2z
,

∆ztx(t
2
y − 1)(1 + tz(6 + tz))

∆y(1 + tx)(1 + ty(6 + ty))(tz − 1)tz
, 0,

∆x(1 + tx(6 + tx))(ty − 1)ty(2t
2
x + tx(3 + 11tx)tz + (−2 + tx)(1 + 3tx)t

2
z)

3∆y(tx − 1)tx(1 + tx)2(1 + ty(6 + ty))t2z
,

− 4ty(1 + ty)(tx − tz)(tx + tz + 4txtz)

3tx(1 + tx)(1 + ty(6 + ty))t2z
,− ∆z(ty − 1)ty(1 + tz(6 + tz))

∆y(1 + ty(6 + ty))(tz − 1)tz)
, 0,

−
∆x(1 + tx(6 + tx))(t

2
y − 1)

∆y(t2x − 1)(1 + ty(6 + ty))
, 1, 0, 0, 0, 0, 0, 0

)
(221)
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Q̂5 =
(
0, 0, 0, 0, 0, 0, 0, 0,

4tx(1 + tx)

1 + tx(6 + tx)
,− 4∆ytx(t

2
x − 1)(1 + ty(6 + ty))

∆x(1 + tx)(1 + tx(6 + tx))(t2y − 1)
,

4∆ztx(t
2
x − 1)(1 + tz)

∆x(1 + tx)(1 + tx(6 + tx))(tz − 1)
, 0,

− 4tx(1 + tx)(ty − 1)ty(1 + tz)

(1 + tx(6 + tx))(t2y − 1)tz
,− 4∆ytx(t

2
x − 1)ty(1 + ty)(1 + tz)

∆x(1 + tx)(1 + tx(6 + tx))(t2y − 1)tz
,

4∆ztx(t
2
x − 1)(ty − 1)ty(1 + tz(6 + tz))

∆x(1 + tx)(1 + tx(6 + tx))(t2y − 1)(tz − 1)tz
, 0,

0,−∆ytx(t
2
x − 1)(1 + ty(6 + ty))(1 + tz)

∆x(1 + tx)(1 + tx(6 + tx))(t2y − 1)tz
,

∆ztx(t
2
x − 1)(1 + tz(6 + tz))

∆x(1 + tx)(1 + tx(6 + tx))(tz − 1)tz
, 0,

− (ty − 1)ty(1 + tz)

(t2y − 1)tz
,
2∆y(tx − 1)(1 + tx)ty(1 + ty)(1 + tz)

∆x(1 + tx(6 + tx))(t2y − 1)tz
, 0, 0,

1, 0,−2∆z(tx − 1)(1 + tx)(1 + tz)

∆x(1 + tx(6 + tx))(tz − 1)
, 0,

0,− 16∆ytx(t
2
x − 1)ty(1 + ty)

∆x(1 + tx)(1 + tx(6 + tx))(t2y − 1)
,

16∆ztx(t
2
x − 1)(ty − 1)ty(1 + tz)

∆x(1 + tx)(1 + tx(6 + tx))(t2y − 1)(tz − 1)
, 0
)

(222)

To implement one discrete Fourier mode in Section 7.2.2 we use

5∑
r=1

arQ̂r (223)
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with
a1 =

(
(tx − 1)(2∆y(1 + ty + 8txty)(tx − tz)(tz − 1)(tx + tz + 4txtz) (224)

+ tx(t
2
y − 1)(−32t2xty − 3(1 + tx + 32t2xty)tz + 8(4ty + tx(1 + tx)(3∆z + 16ty))t

2
z

+ (3(1 + tx)− 32(1 + 4tx)ty)t
3
z))

)
/
(
2∆x∆z(ty − 1)(t2z + 4txt

2
z + t2x(2 + tz(8 + 3tz)))

)
a2 = −

(
(tx − 1)(1 + tz)(−2(1 + ty)(−1 + 2∆y + ty)(tz − 1)t2z (225)

− tx(tz − 1)tz(3− 3t2y + 16∆y(1 + 2ty)tz + (ty − 1)(1 + ty)(5 + 32ty)tz)

+ 8t3x(−3∆zt2z + 3∆zt2yt
2
z + 2(−2 +∆y)ty(tz − 1)(1 + 4tz) + 4t3y(tz − 1)(1 + 4tz))

+ t2x(−2∆y(tz − 1)(1 + ty + 4(1 + ty)tz + (3 + 35ty)t
2
z)

− (t2y − 1)(−4 + tz(−9 + tz(10− 24∆z + 128ty(tz − 1) + 3tz)))))
)

/
(
2∆x∆y(1 + ty)(tz − 1)(t2z + 4txt

2
z + t2x(2 + tz(8 + 3tz)))

)
a3 =

(
(t2x − 1)(1 + tz)(−2(1 + ty)(−1 +∆y + ty)(tz − 1)t2z (226)

− tx(1 + ty)(tz − 1)tz(3 + (−5 + 8∆y)tz + ty(−3 + (−27 + 32ty)tz))

+ 8t3x(−3∆zt2z + 3∆zt2yt
2
z + 4t3y(tz − 1)(1 + 4tz) + 2ty(tz − 1)(−2− 8tz + 3∆y(1 + tz(4 + tz))))

+ t2x(1 + ty)(2∆y(tz − 1)(1 + 4tz)− (ty − 1)(−4 + tz(−9 + tz(10− 24∆z + 128ty(tz − 1) + 3tz)))))
)

/
(
16∆x∆ytxty(tz − 1)(t2z + 4txt

2
z + t2x(2 + tz(8 + 3tz)))

)
a4 =

(
(tx − 1)(1 + tx)(1 + ty(6 + ty))(−2(1 + ty)(−1 +∆y + ty)(tz − 1)t2z (227)

− tx(1 + ty)(tz − 1)tz(3− 5tz + 8∆ytz + ty(−3 + 5tz))

+ 24t3x(−∆zt2z +∆zt2yt
2
z + 2(−2 +∆y)ty(tz − 1)(1 + tz(4 + tz))

+ 4t3y(tz − 1)(1 + tz(4 + tz))) + t2x(1 + ty)(2∆y(tz − 1)(1 + 4tz)

− (ty − 1)(−4 + tz(−9 + tz(10− 24∆z + 3tz)))))
)

/
(
32∆x∆ztx(ty − 1)ty(1 + ty)(t

2
z + 4txt

2
z + t2x(2 + tz(8 + 3tz)))

)
a5 =

(
(1 + tx(6 + tx))(−2(1 + ty)(−1 +∆y + ty)(tz − 1)t2z (228)

− tx(tz − 1)tz(3− 3t2y + 8∆y(1 + 3ty)tz + (ty − 1)(1 + ty)(5 + 32ty)tz)

+ 8t3x(−3∆zt2z + 3∆zt2yt
2
z + 2(−2 +∆y)ty(tz − 1)(1 + 4tz)

+ 4t3y(tz − 1)(1 + 4tz)) + t2x(−2∆y(tz − 1)(−1− 4tz + ty(−1 + 4tz)(1 + 8tz))

− (t2y − 1)(−4 + tz(−9 + tz(10− 24∆z + 128ty(tz − 1) + 3tz)))))
)

/
(
32∆y∆ztxty(t

2
z + 4txt

2
z + t2x(2 + tz(8 + 3tz)))

)
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