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Abstract

The degrees of freedom of Active Flux are cell averages and point values along the cell
boundaries. The latter are shared between neighboring cells, which gives rise to a globally
continuous reconstruction. The semi-discrete Active Flux method uses its degrees of freedom
to obtain Finite Difference approximations to the spatial derivatives which are used in the
point value update. The averages are updated using a quadrature of the flux and making use of
the point values as quadrature points. The integration in time employs standard Runge-Kutta
methods. We show that this generalization of the Active Flux method in two and three spatial
dimensions is stationarity-preserving for linear acoustics on Cartesian grids, and present an
analysis of numerical diffusion and stability.
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Mathematics Subject Classification 65M20 - 65M70 - 65MO0S - 35E15

1 Introduction

The classical Active Flux method has been introduced in [13], based on a one-dimensional
method from [17]. From the beginning, it was conjectured that the continuous reconstruction,
i.e., the absence of Riemann problems might help alleviate difficulties that traditional Finite
Volume methods face in multiple dimensions. For instance, they are usually not preserving
discrete involutions, they are not low Mach number compliant for the Euler equations, and
they are not stationarity-preserving. This situation does not improve even if the full multi-
dimensional Riemann problem is solved and used in a Godunov method ([10]).

As a Finite Volume method, Active Flux evolves cell averages as discrete degrees of
freedom, and additionally evolves point values. The latter are located at cell boundaries and
are a way to ensure global continuity of the reconstruction, or—in a Finite Element sense—of
the numerical solution. The first multi-dimensional system that Active Flux was applied to
(in [13]) was linear acoustics. In multiple spatial dimensions, it is an interesting system of
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equations because it cannot be reduced to (multi-dimensional) advection. While the update
of the average is immediately possible via quadrature along the cell boundary (using the
point values as quadrature points), the update of the point values was initially achieved (e.g.,
in [9]) using an exact evolution operator. This operator was derived for linear acoustics in
[10]. The reconstruction served as its initial datum. The structure-preserving properties of
this method have already been analyzed in [9]. It has been found that indeed Active Flux is
stationarity-preserving.

For nonlinear problems it is more difficult to obtain evolution operators of sufficient order
of accuracy, let alone exact ones. Thisled [1, 2] to consider semi-discrete Active Flux methods,
where the same degrees of freedom are used in order to discretize the spatial derivatives,
while integration in time follows the method-of-lines strategy. As has been outlined in [3],
this typically leads to reduced CFL conditions. The advantage of the semi-discrete approach
is its immediate applicability to various kinds of systems of conservation laws. However, one
would not like to lose the structure preservation.

This paper presents an analysis of the semi-discrete Active Flux method on linear problems
and a comparison between the classical and the semi-discrete approaches, with an emphasis
on structure preservation. As is shown below, the structure-preserving properties of the semi-
discrete approach are very similar to those of the classical one. In the context of the low Mach
number limit for the Euler equations this has already been observed experimentally in [4].

The paper is organized as follows: Sect. 2 introduces the equations and the analytical sta-
tionary states and Sect. 3 presents the semi-discrete Active Flux method on two-dimensional
and three-dimensional Cartesian grids. The discrete Fourier transform is introduced in Sect.
4 and is used to analyze stationarity preservation in Sect. 5. Section 6 presents an analysis of
numerical diffusion and stability. Some numerical examples follow in Sect. 7.

We denote by P* univariate polynomials of degree at most k, and by P** bivariate
polynomials with degree at most k in each variable. We also occasionally denote by R[x]
or C[x, y] polynomials in x with real coefficients, and polynomials in x, y with complex
coefficients, respectively. d denotes the number of spatial dimensions, and objects with d
components are typeset in boldface. .#“*”(C) denotes matrices with complex entries of a
rows and b columns. Indices never denote differentiation. 1,, denotes the identity map on
R™.

2 Acoustic Equations and Their Stationary States
2.1 General Linear Systems

Stationary states are solutions to evolutionary partial differential equations (PDEs) that remain
constant in time. To achieve stability, numerical methods add numerical diffusion. A setup
that is stationary according to the PDE might keep being diffused away and no longer be
stationary in the discrete setting. Thus, the stationary states of the discretization are often
a small, not representative subset of the stationary states of the PDE. It is preferable for
numerical schemes to possess numerical stationary states that discretize all the analytic
stationary states of the underlying conservation law; a definition of what this really means is
given in Sect. 5.1. In this section, the stationary states of the linear acoustic equations shall
be analyzed. This is easiest done by applying the Fourier transform to them.
Consider an m x m hyperbolic system of linear PDEs

dq+J-Vg=0, q:[R(J)rx[Rd—HRm,
J=01- . Ja). Ji € 4" (R). ()
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Occasionally we will use the notation J, = Ji, Jy, = J», J; = J3 instead. One Fourier mode
of a function g: [Rar x R — R™ is of the form

(1, %) = §(1, k) exp(ik - x). @)

Here, k € R? is called the wave vector and determines the spatial frequency of the Fourier
mode, while its amplitude ¢ can be chosen differently for each k. General solutions are
obtained as linear combinations of such modes for different values of k. Inserting the mode
into (1) yields

d ., R
34tk =0. 3)

Hyperbolicity guarantees that the matrix J - k = Jijky + - - - 4+ Jyky is diagonalizable. The
mode g exp(tk - X) is stationary if g is in the nullspace of J - k. This can be achieved through
particular choices of Kk, trivially for k = 0, which (since every Fourier mode depends on x
as exp(fk - x)) corresponds to the data being uniformly constant. Non-trivial stationary states
([6]) are those for which no restriction on k is necessary, i.e., where for any k there exists
a Gsat (K) € C"™\{0} such that (J - K)gstat(K) = 0. A necessary condition for the existence
of non-trivial stationary states is det(J - k) = 0 for any k € R¢. Observe that the amplitude
Gstat Of a stationary mode generally depends on k, see below for some examples.

2.2 Acoustic Equations

The acoustic equations in d spatial dimensions are given as
v+ Vp =0, (4a)
hp+V-v=0 (4b)

with the velocity v: [R(J{ x RY — R? and the pressure p: [R(J)r x R — R.
In d spatial dimensions, the matrix J - k reads

Ogxdlk
( dxd )6(%(d+1)><(d+1) 3)

k' |0

and any element (U, P yI e ¢4t of its nullspace has to fulfill

kp =0, ©)
For any K, the following is a nullspace of J - k:
NIEZI)I—trivial = {(U7 O)T: UL k} (8)
Itis d — 1 dimensional. In 3-d, one can choose
NIE(S)I)I—trivial = span{ (_ky, ka 0, O)T, (—kz, 0, kx, O)T] (9)
and in 2-d
NIEi:l-triVial = Span[(—ky, ky, O)F l . (10)

For special values of k there are additional elements in the kernel, which are referred
to as trivial stationary states. They are usually represented well by any kind of numerical
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method and are of little interest in the following. On the contrary, the non-trivial stationary
states in N[(lffr)l_lrivial are usually poorly represented by numerical methods (see [6] for more
details). The following will show that they are well represented by the semi-discrete Active

Flux method.

3 Semi-discrete Active Flux on Two-Dimensional and
Three-Dimensional Cartesian Grids

3.1 Degrees of Freedom

In contrast to classical Finite Volume methods that only involve the cell average as degrees
of freedom, the Active Flux method additionally uses point values distributed on the cell
boundaries as degrees of freedom.

3.1.1 General Remarks

In two spatial dimensions the computational grid consists of cells

PO ) Ty R

and in 3-d
.1 1 | o1
= (i-g)an () s <[ (s-3) o (1 3) ]
1 1 3
X [(k—§> Az, (k+§> Az] C R (12)

We denote by x;; and x; jx the cell centroids.

There is one average in every cell and a certain number of point values located at the
boundary of the cell. The latter are shared. We make a distinction between degrees of freedom
that belong to a cell, whose number we will denote by N dof " and those that are accessible to
a cell.

Definition 1 The degrees of freedom accessible to a cell C;; (or C;ji) are those located in it
or along its boundary, or that are averages over it. Their number per cell is denoted by Nfé‘cf
and they are denoted by

q0.ijsqLijs " s gNdof_1 ij and (13)
q0,ijk> 91,ijks "+ 5 ANIF_1 ijk (14)
in 2-d and 3-d, respectively, with a numbering that is arbitrary but fixed once for all cells,
and we reserve the index 0 for the cell average. Locations of the point values are denoted by

Xrij and xp jjg, r € 1, -+, N;'COCf — 1 and we define the relative coordinate
Ax Ax Ay Ay
Xr 1= Xr,ij — Xij € [—7, 7] S [—7, 7] (15)
or
Ax Ax Ay A Az Az
X =X ijk = Xijk € [—77 7} x [_Ty Ty} x [_7’ 7] (1o
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Fig. 1 Distribution of the point values along the cell boundary for a cell of the two-dimensional (left) and
three-dimensional (right) Cartesian grids. The cell average is depicted with a square located at the center of
the cell

in two and three spatial dimensions, respectively.
Examples are given below.

Definition 2 The degrees of freedom belonging to a cell are a minimal set such that all the
accessible degrees of freedom can be obtained from them through shifts by Ax, Ay (and Az)
in the two/three directions. We agree in the following on choosing the same ones in each cell.
Their number per cell is denoted by N9°f and we denote them by ql.); where X takes values
in a set of identifiers defined below. Locations of degrees of freedom that are point values
are denoted by xff and we define the relative coordinate

xX = xfj — Xjj. (17)

In other words, consider an equivalence relation ~ between any two degrees of free-
dom on an infinite grid, with two degrees of freedom p;, p» being equivalent if there exist
Ay, Ay, A; € Z such that the shift

(x,9,2) > (x + AxAx, y + AyAy, z+ A A7) (18)

maps pj onto p». Forexample, all point values at nodes and all the cell averages are equivalent.
The degrees of freedom belonging to one cell are the quotient DOF/ ~ of all the degrees
of freedom DOF on the grid by ~. Finally, instead of the equivalence classes we speak of
representative elements chosen according to some conventions for definiteness (explained
above and shown in Fig. 1). Degrees of freedom that belong to a cell become important in
the context of the Fourier analysis of Sect. 4, since discrete Fourier modes are the eigenbasis
of the operator defined in (18).

Consider for every accessible degree of freedom r =0, - - - , gydgor_; the number of cells
that share it and denote this number by o, € N. Then .

Noof 1 |
N9of = —. 19
> 2 )
r=0
The distinction between degrees of freedom belonging to a cell and those accessible to it
is due to global continuity and the fact that degrees of freedom are shared. In DG methods,

for example, the accessible degrees of freedom are just the ones that belong to the cell.
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Definition 1 states that each of the degrees of freedom that belong to a cell forms a lattice
with spacing Ax, Ay or Ax, Ay, and Az, respectively. This will become important below
in the context of the Fourier transform.

3.1.2 Degrees of Freedom in Two Spatial Dimensions

In two spatial dimensions (see Fig. 1) we consider a classical distribution of in total § point

values located at the corners and the midpoints of the cell edges. The Ngé‘cf = 9 degrees of

freedom accessible to cell C;;, denoted by g, ;j, ¥ =0, --- , 8, are
N E N
q7,ij == 4i_1,j; q6.ij = q;; s qs,ij = 4j}; (20)
E E
48.ij = ;) j qo,ij == CI{?; qaij =4} (21)
N E N
qLij ‘=4qi_1 15 9ij =4 q3,ij =4 j_1- (22)

Recall that the numbering is arbitrary but needs to be fixed once.

Each corner of a cell is likewise a corner to three other adjacent cells and each midpoint
of a cell edge is shared with one other cell, i.e., Ndof — 4. % +2-2. % + 1 = 4. Therefore,
4 degrees of freedom belong to a cell C;; and we have chosen them in the top right corner as

cell average ‘13 =q0,ij,
— node value q}j =q5,ij,

horizontal edge value qiEjH = g6.ij,

— vertical edge value qS-V = q4.ij,

as shown in Fig. 1.

3.1.3 Degrees of Freedom in Three Spatial Dimensions

The natural extension of the previous two-dimensional situation to three spatial dimensions
results in 26 point values accessible to each cell, i.e., Nf&f = 27. Eight of them are located
at the corners of a cell, 12 at the midpoints of the edges and six at the midpoints of the faces
of a cell, see Fig. 1. Again, as in the two-dimensional case, several cells are sharing these

point values, so that one is left with N9°f = 8 degrees of freedom that belong to cell C; ik

— one cell average qi’?k = q0,ijk-

one node value qil\} ©

E, E.
three edge values qgjc, q; j';{, qi]i‘k, one per edge parallel to the three axes,

F, F,
— three face values qi];'j(, q; j)k’ q; ji» one per face orthogonal to the three axes.

Observe that the values on edges and faces are point values at the respective centroids,
and not averages over these entities.

3.2 Update of the Average

The update of the average will first be described for a generic nonlinear conservation law

oqg+V-f(g) =0, (23)
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since generalization improves clarity in this case. At the end of this section, the special case
of linear systems is explained.

For updating the cell average, the conservation law (23) is integrated over one cell (C;; or
Cijk), and Gauss’ law is applied. This gives

d A
) f(q)ds = 0, 2-d 24
dtql] AxAy ()Caclj/ne (q)ds 2-d (24)
d . 1
f(g)ds =0 3-d 25
It ayar 2 fnf (9)ds Gd 09
FCaCiji
with
A
o) = t,x,y)dxdy, 2-d 26
qi; (1) AxAy/cijq(xy)xy (2-d) (26)
1
A
)= —— t,x,y,z)dxdydz. 3-d 27
;i (1) AxAyAz/c,.ij(xyZ)xyZ (3-d) 27)

In Active Flux, the locations of the point values are chosen such that they can be used as
quadrature points for the flux averages through the edges e/faces f. The distribution of point
values as described in the previous section allows to use Simpsons’ rule, such that

£x £x £y y
d A fi+%,j B fF%J fi,j+% a fi,jf%
—gh =0, 2-d 28
dr T * Ax * Ay 2-d) (282)
A o Ay ;Y
d A i+4.j.k fi—%,] k fz,j+; k fl -k
ar ik Ax Ay
£z £z
ik 1 f ',k—l
SR LY e ) G-d)  (28b)
Az

with the numerical fluxes

= (fx(q D +art @)+ £ a@in). (29)
fijrz (f’(q, L) AP @ + @) ) (30)
e = 3 (P @0+ 4 @ + @
+ 4]”(‘1,//() + 16fx(quk) +4fx(q, ok 1)
+ @0 A @0+ P @)
31

Observe that the numerical fluxes do not come from a Riemann solver, but are simply

quadratures of the physical flux. Observe also that the only approximation made here is
the replacement of integrals by quadratures. While these formulas are valid for nonlinear
conservation laws, below they are used to discretize (1),1.e., with f*(g) = Jiq, f¥(¢) = Joq,

4 (q) = J3q.
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Fig. 2 Shape functions By (top left), Bg (top right), By (bottom left) in two spatial dimensions and a recon-
struction devised by using these shape functions (bottom right)

3.3 Update of the Point Values

The following description of the update of the point values holds on two-dimensional and
three-dimensional Cartesian grids. For simplicity, the formulas are mostly given for the two-
dimensional case only.

For updating the point values, a biparabolic reconstruction

Ax Ax Ay Ay
Grecon,ij- [_77 T:I X |:__ _i| - R™, Grecon,ij € (P2‘2)m

272
is built for each cell. It has to satisfy

A LAy
1 2 2 q
AxAy ‘/;Azx /—Az’ Qrecon,z](X) X = q0,ij )
QIecon,ij(Xr) = qr,ij r=1,---,8,

where g ;; is the average over cell C;; and r is indexing all eight point values on the boundary
of this cell, starting in the lower left corner with g1 ;; and running through all point values
counterclockwise (see Fig. 1). As is customary for Finite Elements, one can compute shape
functions and write the reconstruction as a linear combination of these:

Greconij (5, ) = Y qrijBr(x,y) € (PPH)™. (33)
ref0,1,--,8}

The basis functions involved in equation (33) are given in Appendix A; see Fig. 2 for an
illustration of B7, Bg, and By as well as for an example of the reconstruction (33).

Observe that a biparabolic reconstruction is parabolic along any of the edges of the (Carte-
sian) cell and that the parabola is uniquely defined by the three point values located at any edge.
As the point values are shared with adjacent cells, one concludes that the above biparabolic
reconstructions form a globally continuous reconstruction.
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For the point value update, we are aiming at a semi-discretization of (1), i.e., a dis-
cretization in space is needed. A finite difference approximation to the derivative that uses a
compact stencil and is of maximal order of accuracy can be obtained by differentiating the
reconstruction at the location of the respective point value. The reconstruction is not contin-
uously differentiable in the direction perpendicular to the edges/faces, which is beneficial, as
it allows to include upwinding: the derivative is taken from the cell in the upwind direction.

Observe that the choice of degrees of freedom that belong to the cell C;; privileges the
right upper corner. This means that for positive x, y velocity components, C;; is the upwind

cell for all degrees of freedom qP , P € {N, Ey, Ev}. We therefore denote by Dx} g the
x-derivative of the reconstruction (33) in cell C;; evaluated at the location of the pomt value
P:

| P

]
X ijq = 7(]recon,ij|x:xp e R™. (34)

ax
For negative velocity components, in some cases one differentiates the reconstruction
from cell C; 41, ; at the same location, e.g., for the x-derivative

d
9 L , P e{N,Ev},

T i ST
MR Hi-

The same applies to the formulas D, | and D*| i , and analogously in 3-d. Figure 3 shows
the coefficients occurring in the differencé formulas assi igned to the corresponding point value
or the cell average.

The update of a point value is in 2-d

iq}j_ (J+D|q+J ;! ) (J+D|q+J D3|/ )

P € {N, Eq, Ev} (36a)
and in 3-d

d p + +
= (J DERE D*\qu) (J Dylf g+ 7 D*‘ukq)

+ -
- (‘]z DZ|ijkq +J; D;|ijkq> ’

P € {N,Ey,Ey,E;,F,Fy,F;}, (36b)
where J £, J;—r are the positive/negative parts of Jy, Jy. Given the diagonalization
Je = Rdiag(Ay, -+, Am)R™Y, (37)
one defines
JE = Rdiag(AF, -, A5 R™! (38)

and analogously for Jy.
The above point value update is a Jacobian splitting inspired by the one-dimensional
upwind method. One might consider an alternative point value update

JE =Ty £ ayy, T =Ty £ayl, (39)

where a;y = max(|A(Jy)]), ay = max(|A(Jy)|) with A being an eigenvalue of J, or Jy. This
Jacobian splitting is inspired by the Rusanov method. As will be seen later, when it comes
to structure preservation it is significantly inferior to the upwind splitting.
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Fig. 3 Tllustration of the coefficients occurring in the difference formulas for node values and vertical edge
values. They are placed at the location of the corresponding point value or at the cell center for the average. The
circled dot marks the location of the point value intended to be updated. Cells C;; (left) and C; 1 j (rows 1-3)
N
|l J

/1 Ci, j+1 (row 4) (right) are shown. Upper row: difference formulas Dy |;; and D¥ Hj Second row: difference

formulas Dy |ijv and D}‘ |ijV. Third row: difference formulas Dy |l.jv and Di‘, |ijv, which are equivalent. Fourth

row: difference formulas Dy |N and D% |N
ij yiij
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3.4 Integration in Time

The update equations (28) and (36) for the average and the point values are evolved in time
using Runge-Kutta time integration. One can expect a maximal CFL number of about 0.2,
half of what is known for the one-dimensional situation ([3]). The analysis of Sect. 6 indicates
that for linear acoustics it actually is ~0.28. The stationary states of the numerical method are
by definition those for which the space derivative vanishes, i.e., one is left in this case with
the ordinary differential equation ¢’ () = 0. Any Runge-Kutta method is able to integrate it
exactly, and the choice of the time integrator is thus not relevant for stationarity preservation.

4 The Discrete Fourier Transform
4.1 Fourier Modes
Stationarity preservation of linear numerical schemes for linear hyperbolic systems (1) can be

investigated using the discrete Fourier transform, i.e., by expressing the spatial dependence
of any grid function g;; (or g;jk), q: 7% — R™ as the linear combination

qij = Y 4(k) exp(ikyiAx +1ikyjAy)  or (40)
k

Gijk = Y _ G(K) exp(tkyi Ax +iky jAy + tkkAz). (41)
k

The exponentials are discrete versions of exp(ik - x), having written k = (ky, ky), or k =
(ky, ky, k7). This is possible because the method under consideration is linear and because we
assume an equidistant Cartesian grid. The coefficients ¢ (k) € C™ of the linear combination
are called the discrete Fourier transform of q.

According to Definition 1, each of the degrees of freedom that belong to a cell forms a
lattice with spacings Ax, Ay (and Az, in 3-d), i.e., can be seen as a grid function. When
investigating the semi-discrete Active Flux method using the discrete Fourier transform,
each lattice is associated with its own Fourier mode. We express every degree of freedom
belonging to a cell C;; in 2-d as

gk (1) = Zq"(r, K) exp(fiky Ax + 8jkyAy), X € {A,N, En, Ev} (42)
k

and to a cell C;jx in 3-d as

gl =Y g% (t. k) exp(liky Ax + i jky Ay + tkk: Az),
k

X € {A,N,E,,E,,E;,F,,F,,F;}. (43)
Here g% (¢, k) € C". It is useful to introduce the following

Definition 3 (Translation factor) The translation factors are given as 1, (ky) = exp(Eky Ax),
ty(ky) = exp(tky Ay),t;(k;) = exp(ik; Az). We drop explicit mention of the parameters in
the following.

Index shifts lead to multiplications with shift factors:

gl @ =Y tlt] g% (e, k) exp(ik, Ax + 8jky Ay),
k

@ Springer



Communications on Applied Mathematics and Computation

X € {A,N, Ey, By}, (44)
a1 i rask @ =Y tlt]tf g% (1K) expike Ax +8jky Ay + Bk Az),
k
X € (A,N,E,,E,,E_,F,,F,,E,}, (45)

where t){ is the /-th power of the unit complex number 7, = exp(tky Ax), - - -
Both the summation and the global exponential factor exp(fiky Ax +ijky Ay) will even-
tually drop out of all expressions.

Proposition 1 Consider grid functions q, Q: Z* — R™ and assume that Q is linear in g,
i.e., an expression of the form

Qij= Y. givrjrs. € 4™"R), VI J. (46)
(1,J)ez?

Then by writing

qgij ‘= Z(i(lx, ty)t)i(t;a é(t)h ty) € Cmv Qij = Z Q(t)u [y)t)ict)j’ (47)
Ix,ty Ix,ty
one obtains
0= > tiagecm (48)
(1,J)ez?

The three-dimensional case is analogous.
Proof By direct computation and using linearity.

Note that Q depends on Kk, or equivalently on f,, ¢y, but that we will neglect explicit
mention of these parameters.

Definition 4 (Discrete Fourier transform) Given ¢;; as in Proposition 1, we call g the
discrete Fourier transform of q. We will neglect the common factor t; t"V/ in (47) as it is bound
to cancel in the end and simply write ¢;; = G, gi+1,; = §t.,--- as a formal replacement
rule.

For the degrees of freedom accessible to one cell for the two-dimensional Active Flux one
finds the Fourier transforms by applying the replacement rule of Definition 4 to (20)—(22):

qr.ij = 4" /tx. 46.ij = éEH g5.j =", (49)
qs.ij = q"" /1, q0.ij = ¢, qaij =G, (50)
qrij = §"/(tty), q2.ij = 4™ /1y, a3.ij = 4" /1. (ShH
The Fourier transforms for Active Flux are collected in a block-vector ¢, where
§=@"q"™,¢%, ¢ ec™ =cm (52)
for the two-dimensional case and
G=@G"q%. %45 ™. a0 N e oY = em® (53)

for the three-dimensional case. Here ¢* € C” is the Fourier transform of the average,
4% e €™ is the Fourier transform of the point value on an edge parallel to the i-axis, and
g% e C™ is the Fourier transform of the point value on the face orthogonal to the i-axis.
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4.2 The Fourier Transform of the Reconstruction

Definition 5 Consider the reconstruction grecon,ij € (PRK(R2))™ (i.e., the one in (33)) as a
function of the degrees of freedom accessible to cell C;;, i.e., write

Grecon,ij (X, Y3 40,ij> q1,ijs -+ s NI —1,if)- (54)

We denote by Grecon € (P¥*(C?))" the same polynomial obtained by replacing the degrees
of freedom by their Fourier transforms according to the replacement rule of Definition 4. For
example, in 2-d we have, with the replacement rule (51)

Grecon (¥, y1 ¢™, 4%, 4%V, M) (55)
~N ~Eng ~N ~N ~Ey
A 4 q q . AN~ q 4
‘= (recon,ij <x,y;qA, ,7,f,qEV,qN,qE“,f,7)- (56)
Ity ty L I Ix

We will generally omit explicit mention of the parameters in the following. The three-
dimensional case is analogous.

The reconstruction polynomial grecon,ij (x, y) depends on all parameters accessible to the
cell (9 in case of (33)), but its discrete Fourier transform @(x, y) depends only on those

belonging to one cell (4 in case of (33)), i.e., Nt Grocon can also simply be seen as the
discrete Fourier transform pointwise at each (x, y).

4.3 The Evolution Matrix

Equations (28) and (36) for the average and the point value updates can be combined into

‘11 T Z Z o 54145 =0, VX €T, (57)
YeX Se[-N,NJdczd
where
= {A,N, En, Ev}, I=G,j), (@d (58)
= (AN, E¢, By, B, Fo Fy Fo), I=G.j.b. Gd (69

and af,(. g € 4™*™(R). Upon the Fourier transform one obtains

="+ Y o [[ur=o0. (60)

YEX Se[-N,NJdczd m=1

For the Active Flux method applied to linear acoustics one has, for example for the node
value:

d 1 1 1
0=—¢N +J+ 3GN —4gB L gN— ) + U= 36N + 46891, — 6Nt,) (61
dt+A<q +th+A(q+qqu)<)
1
J+ GN— — 4GB 436N ) + 77— (=Nt + 465V, — 36N). 62
+)Ay<qt), g™ +34 +}Ay(‘Iy+Qy q") (62)

Further such equations are given in Appendix B.
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Definition 6 (Evolution matrix) The evolution matrix associated to the Finite Difference
scheme (57) is the block matrix £(k) € .2™N* *mN*" () with its block-entry (X, ) being

d
<g(k))“ =Y S (63)

Se[-N.NJdczd m=1
such that (60) can be written as

d, R
—§+EK)G =0. (64)
dt
We will frequently omit the argument and simply write £.
For the two-dimensional linear acoustics we choose to write the evolution block matrix
as follows:
Ean Eaky EAEy EAN
o= EEyA EEyEn CExEv CEgN 65)
EevA EEvEy EEvEy CEyN
ENa ENEy ENEy ENN

where e.g., £g,Ey states the influence of the point value at the Ey edge on the point value at
an Ey edge. The explicit form of the blocks can be found in Appendix C.

By comparison with (3) one observes that the evolution matrix £(k) plays the role of
iJ - k. Formulation (64) of the method therefore is ideal for studying the numerical stationary
states, as they are given by the kernel of £ (k).

While the right kernel allows to identify stationary states, the left kernel of £ is related to
involutions: if there exists an w (k) € C"Ndof guch that

w®TE=0, VK, (66)

then
oG =0 (©7)
—w =0.
dt 1
In the case of linear acoustics @ (k)T§ would be the Fourier transform of a discretization of
the vorticity V x v. However, we find that in practice it is very difficult to explicitly compute
the left kernel of £. The existence of a right kernel guarantees the existence of a left kernel

of the same dimension, but we are unable to say anything about the nature of the discrete
vorticity beyond its existence.

5 Using the Discrete Fourier Transform for the Analysis of Stationarity
Preservation

5.1 Stationarity Preservation

For both stationarity-preserving and stationarity-non-preserving methods, on e.g., periodic
domains the solution becomes stationary after long times, since von Neumann stability
prohibits Fourier modes that grow in time: they can only decay or remain stationary. The
difference between stationarity-preserving and stationarity-non-preserving methods is about
how this final stationary state looks like. If the discrete stationary states of the method dis-
cretize all the analytic stationary states of the PDE, then the method is called stationarity
preserving. For linear acoustics, stationarity-preserving methods have stationary states that
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are characterized by a consistent discretization of a divergence-free velocity without any
further constraints and a vanishing pressure. Classical schemes are mostly not stationarity
preserving: their discrete stationary state is instead a discretization of dyu = 0, dyv = 0
(see [5, 6]). Such stationary states are called trivial and are a small subset of divergence-
free velocities, and e.g., vortices are not contained in it. Thus, stationarity non-preserving
methods are only able to preserve shear flows, but cannot consistently discretize vortices, or
generally speaking they are not able to offer discretizations of all the stationary states of the
PDE. Moreover, for stationarity non-preserving methods grid refinement only slows down
the (exponentially quick) transition to the “bad” stationary state, but does not improve the
stationary state itself, i.e., one can say that they lose consistency at the stationary state.

A discrete Fourier mode with the spatial frequency Kk is stationary if it is in the kernel
of £(k) (see (64)). The focus on non-trivial stationary states means that one is keen on
identifying stationary modes for any k (i.e., for general t,, ty, t;). The kernel thus obtained
shall then be compared to the kernel of J - k.

For Finite Difference methods, the condition for a method to be stationarity-preserving is

([Q))
mkin dimker £(k) = rnlzn dimkerJ - k. (68)

For numerical methods with multiple degrees of freedom per cell, such as Active Flux, the
dimension of the space on which &£ operates is N9 times larger than that of J - k. One
might thus impose a correspondingly higher dim ker £ as a condition for the stationarity
preservation. We shall, however, be modest here.

Definition 7 A linear numerical method with N9°f degrees of freedom per cell per variable
is called stationarity-preserving if

§ < mindim ker £ (k) < SNof| (69)

where S := ming dimker J - k.

5.2 A Review of Stationarity Preservation of the Classical Active Flux Method

For the two-dimensional linear acoustics, the matrix £ of Active Flux is a (dense) 12 x 12
complex-valued matrix. Although only its kernel is required (and not a full diagonalization)
it remains a formidable task to compute it. In [9] therefore a slightly easier approach has
been used, and the techniques used therein allow some deeper understanding of the kernel.
They are useful here as well.

The object under consideration in [9] is classical Active Flux, where point values are
updated by means of an evolution operator. The latter maps the reconstruction (used as initial
data) directly to the value at the new time, and the exact evolution operator from [10] has
been used in [9]. Clearly then, a numerical stationary state arises if the reconstruction (=
initial data for the evolution operator) is of constant pressure and divergence-free velocity.
One thus needs to analyze the subset of divergence-free reconstructions.

The reconstruction is in P22 in every variable and thus the divergence is in

Dg;z = {velL™®: vlc; € span{l, x, x2, v, Xy, xzy, yz, xyz}}, (70)

i.e., in an 8-dimensional space (observe the absence of x2y?). Due to continuity, the 9 degrees
of freedom accessible to a cell, which are used in writing the reconstruction polynomial,
cannot all be chosen independently in every cell. It is better at this stage to switch to the
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discrete Fourier transform @1 of the reconstruction, introduced in Sect. 4.2. This allows to
factor out continuity, and let appear the dependence of the reconstruction on only 4 degrees
of freedom per variable that belong to a cell. These can indeed now be chosen freely in each
cell.

Seeking a divergence-free reconstruction in 2-d, one thus ends up with 8 equations for 8
free parameters. Without rank defect the only divergence-free reconstruction would be trivial,
and not representative of the richness of divergence-free vector fields. The linear system turns
out to be not of full rank, however. This remained without a clear explanation in [9], and is
elucidated below in Theorem 3. It was found (see (6.25) and (6.26) in [9]) that as long as the
12 Fourier modes are parallel to

)

0 ( 21446 +12 (ty— Dty +1) 21+4,+17 (6, — Dt + 1) 0

3 f Ayty 3 ty Axty
1466, +72 t,—1 (tx — Dty +1
_ + x+x.y 72()6 )(x+ )(ty+1),0,
ty Ay Axty
ty— Dty +1) £, —1 146ty +12
TR G R A St e
Ayty Ax ty
ty —1

fe — 1
—4(ty + 1 ,4——(ty +1),0), 71
tx+ 1) Ay Ax #+1 ) (71)
the divergence in each cell vanishes. Here, the variables are sorted as (§2, %4, 5V, §V).
One can easily see that this condition indeed can be rewritten as vanishing Finite Difference
discretizations of the divergence. Writing X = (4%, 9%, p¥) with X € {A, N, Ey, Ey} one
finds e.g.,

U441y 4+ 22 (1, — 1)(1 ) oa 1+ 4t 412 (1, — 1)(1 1) a _

0, ™2
Iy 1y Ax Iy IyAy "
te — D1 +1, I+6)(=1+1
G DUEL) N AHCIED N o (3,
Ax Ay
5 B 2
Aoy +6)0 = D gy | QO+ = Doy gy
Axty Ayty
-1 ty—1
Iy HEv Y pEH — 0, (75)
Axty, Ayty
b=l &= DGHD o0 g
Axty 2Aytyty
N 2 _
(I + 61y +17) (1 l)ﬁEV+ ¢ l)(tx_l_l)ﬁEV =0 (17
8Axty 4Ayty ,
) 2
1+ 4[}' + ty)(tx - b LEv ty -1 f)A =0 (78)
6 ALty 2Ayty .
These relations are Fourier transforms of
4 N N
(S I RTST _o Wyl Whalie o (79)
Ax Ay Ax Ay
6 6
<[”EH]i+%>§) [(UEV)E )]H‘% [”Ev]i—%,j [leH]j_%
+ 0, + =0 G0
~ Ay Ax Ay
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6
2 TR (L R (e ISP (e AR e
+ =0, + =0, (@D
Ax 2Ay 8Ax 4Ay
E (€]
(™14 1); [ 1j+1 _
=0 (82)
6Ax 2Ay
having introduced the notation
9l 1 = gi+1 — i, @)1 =div1 —ai (83)
[q)ix1 = qi+1 — qi-1, (q),(a) =gqi-1tagi +qit1. (84)

Theorem 1 Consider the set 'V of globally continuous vector fields v, biparabolic in each
cell:
V= {v: R > R*:v| € (P2’2)2} (85)
ij
with the degrees of freedom of Active Flux and periodic boundaries. Assume the grid to
contain Nceyis cells. Then,
(i) V o~ R8Neels;
(ii) Viiy :={v € V: V.v =0} = RNeets TOWNeeits);
(iii) Any element in Vgiy has continuous normal derivatives, i.e., at every cell interface with
normal n, v - n is continuously differentiable.

Proof (i) and (ii) are clear from what has been said before; O(4/Ncels) takes into account
that the number of divergence-free vector fields is slightly larger than one per cell, as there
are some trivial ones missing in the previous analysis (indeed, no assumptions were made on
Kk or ty, ty). A particular value of, say, z, would mean that at most, any grid function g;; is a
function of j only, i.e., that one can specify O(+/Ncelis) values independently.

The proof of (iii) is obtained by explicit computation. Denote first the # and v components
of Grecon DY Hrecon and Urecon, respectively. If § is parallel to Q from (71), then the x-derivative
of ifrecon is proportional to

(tx = D@ty = 1)

dxltrecon (X, y) = — AxAyirt
xly

(e + D +20 - D) ((ry + 1)+ 20y — 1)&) .

(86)

One then immediately confirms that

— Ax — Ax
Oxltrecon | —=—» Y ) = txOxltrecon | ——=—> ¥ | » (87)
2 2
ie.,
Ax Ax

ax“recon,ij 7’ Y= axurecon,i+l,j _7, y]- (88)

An analogous statement holds for 8),1@.

5.3 Stationarity Preservation of the Semi-discrete Method
The following sections prove that the semi-discrete (generalized) Active Flux method is

stationarity-preserving for the acoustic equations in two and three spatial dimensions. Addi-
tionally, the elements of the nullspace of the evolution matrix and the corresponding numerical
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Table 1 Overview of dimensions relevant for stationarity preservation of semi-discrete Active Flux for linear
acoustics in two and three spatial dimensions

Two-dimensional acoustics Three-dimensional acoustics
# variables = m 3
#ming dimkerJ -k =S 1
# dof used in reconstruction = N3O 9 27
# Fourier modes per variable = N dof 4 8
# rows/columns in & = mN9of 12 32
ming dim ker £ (k) 1 5

stationary states are given and analyzed. Table 1 sums up and compares key data of semi-
discrete Active Flux for above-mentioned equations.

5.3.1 Acoustic Equations in Two Spatial Dimensions

Recall that the finite difference operators used in the update of the point values have been
obtained by differentiating the reconstruction.
Consider instead of (36) first the central Active Flux method, which reads

d 1 P j2 1 P P
Eqil; =I5 (Dx|ij + Dj;l,,-)q BT (Dy}ij + D;|U)q
0 0 3 (D: + D)) |5 u
_ - 0 0 Y(oo+03) 15 [ v ]

Do+ DY)}

1 P
Do)l 0 P

P € (N, Ey, Ev}.

The divergence relevant for the update of ql.l; , P € {N, Eq, Ev} is obtained by considering
the velocity reconstructions in the two/four adjacent cells, taking their divergences at the
location of P (which gives two/four different values) and finally taking the mean of these
values. Recall that the image of (P%2)2 under the (weak) divergence is the broken space Dgf
defined in (70). Obviously computing the mean of the two/four values restores continuity,
i.e., afterwards there is only one value of the divergence associated with each point. This
motivates the following.

Definition 8 The P>2-projected divergence w € P>? is defined by (33) (with m = 1) with
the degrees of freedom given by

1
N . N N
w;j = *(Wi/(Xl-j —Xij) + Wit j(X; —Xiy1,7)

4
Wit O = %)+ Wi O = Xip o), (89%)
1
wh = 5 (W &5 = i) + Wity & = xi41.))) (89b)
1
E E E
w; = 5 (Wij(xin = Xij) + Wi j1(x; — Xi,j+1)) , (89¢)
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A ! ¥ Wi (x)d 89d
Wij = AxAy J_ac J & ) dx. 0

where W (X) := (0xUrecon,ij + 0y Vrecon,ij) (X) is the divergence of the velocity reconstruction

2,242 5 Ax A Ay Ay
(recon,ij» Urecon,ij) € (PT7)" inx € [_Tx, Tx] X I:_T)v T):I

Theorem 2 If the discrete data is such that the P>2-projected divergence of v vanishes (as
a polynomial), and if p is uniformly constant, then the central Active Flux method keeps this
data stationary.

Proof By unisolvence of the P22 space with the degrees of freedom specified in Definition
8, the vanishing of the divergence as a polynomial is equivalent to it being zero at the
four degrees of freedom. By the definitions of the finite difference formulas ((34)—(35)), the
updates of p 51; , P € {N, Ey, Ev} are the degrees of freedom of the P%?-projected divergence
in P. The update equation (24) of the pressure average is, by Gauss’s law and the fact that
the quadrature along the edges is exact for parabolas, equivalent to evaluating the average of
the divergence W;; over the cell (i, j). But this average is assumed to vanish as well, which
concludes the proof.

Central Active Flux can thus be associated with projecting the reconstruction of the diver-
gence back into the space P>2. The map (89) from the velocity variables to values of the
P22 projected divergence in its degrees of freedom is surjective, therefore the 4 equations
for the 8 velocity variables leave a four-dimensional kernel of the evolution matrix. This suf-
ficient condition of stationarity can be verified (using MATHEMATICA) to also be necessary,
which proves the following.

Corollary 1 Central Active Flux for linear acoustics in 2-d is stationarity-preserving and the
kernel of its evolution matrix is four-dimensional.

Recall (38) with
100 000
[Jel=]1000 |, [Jyl=1010]. (90)
001 001

The upwind Active Flux method (36) then writes

A N (R IV
aqs =- 0 3 (Dy - D;‘) |,I; 3 (Dy + D;) },1; v |,
Yoo+ D) L (D +0y) I e P
P € {N, By, Ev}, 1)

where the bow tie denotes further terms of no importance for the present discussion. To gain
insight into its stationarity preservation properties, it is useful to start with Lemma 1.

Lemma 1 DZ;Z is unisolvent with respect to the 8 pointwise degrees of freedom located at

(x,-i%, y_,»i%) , (x,»i%, yj) ; (xi, yA,-i%) : 92)

Proof By explicit computation.
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Observe that these degrees of freedom are just the point values of Active Flux accessible
to each cell, but without continuity.

Theorem 3 The semi-discrete upwind Active Flux method (36) for the linear acoustic equa-
tions in two spatial dimensions is stationarity-preserving. A basis of the one-dimensional
nullspace of its evolution matrix is given by
. (_ AY( 4@+ t)(1+1) (40 +nE+n) o
6AY(—1 4+ ty)1xty 61ty (141y)
Ax(1+ 1,6+ )(=1+1y) 141
A4Ay (=1 + 1) +1y) 7 2t
Ax(1+ 1) (=1 +1,) —1—66,—1;
C 2Ay(—1+1t0t, | 4n,(1+1)
Ax(1+1t)(—=1+1y)

T
— , 1,0) ec'?. (93)
Ay(=1+t)(1 +ty)

’ s Uy

s Uy

s Uy

The variables are ordered as (G*, %1, §¥V, GN). The divergence of the reconstruction van-
ishes iff q is parallel to Q.

Proof A sufficient condition for stationarity is obtained by assuming that p is constant at the
stationary state. Then, additionally to the vanishing (central) divergence

1 o\ (P 1 N

5 (0:=0) [fu+ 5 (Dy - D3))|
the normal derivatives (i.e., the x-derivative of u and the y-derivative of v) need to be con-
tinuous. This brings four additional constraints: one jump across, respectively, a horizontal
and a vertical edge

P
v

; (94)

P

(Dy — DY) |Fu =0, (D= 03)

ol =0 95)

and two jumps at the node. Together with the three pointwise conditions on the central
divergence these are 7 equations for 8 variables.

The stationarity of the cell average of p does not contribute an independent equation
for the following reason. Assume the jumps of the normal derivatives of the velocity to
vanish, i.e., the divergence of the velocity reconstruction to be continuous across the edges.
Then it does not matter whether D, or D} is used to evaluate a derivative, as they give the
same result. One can thus simply modify (91) such that all derivatives are evaluated in cell
(i, j). Stationarity of piI; for all point values P implies that the divergence of the velocity
reconstruction vanishes at all 8 point values along the boundary of cell (i, j). By Lemma
1, these 8 conditions for a polynomial in the eight-dimensional space Dgr’z imply that the
polynomial itself vanishes. (This is the problem considered and solved in [9] for the classical
Active Flux, as has been outlined in Sect. 5.2.) As the divergence vanishes, its average over
the cell vanishes, and by Gauss’ law the cell average pf? is automatically stationary. The
kernel of the evolution matrix for upwind Active Flux is thus at least one-dimensional.

The 12 x 12 matrix £(k) is given in Appendix C. That there are no other linearly inde-
pendent elements in the kernel has been verified using MATHEMATICA due to the excessive
length of computations.

One observes that upwind Active Flux operates on the divergence of the velocity recon-
struction in each cell, without projection (as was the case for central Active Flux earlier).
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Corollary 2 The numerical stationary states (93) of semi-discrete Active Flux on two-
dimensional Cartesian grids are the same as the stationary states (71) of classical Active
Flux on two-dimensional Cartesian grids, see Sect. 5.2.

Thus, in terms of stationarity preservation there is no difference between the behavior
of third-order semi-discrete (generalized) or fully discrete (classical) Active Flux. With the
above reasoning in mind, this is not surprising at all, and is mostly a consequence of the
choice of the reconstruction space.

A final comment is due concerning the rank defect mentioned in Sect. 5.2. As is clear
from the above discussion, a vanishing element in Dg;z amounts to 8 equations. However,
here we do not deal with any kind of element, but with an element obtained as the divergence
of an element in (P%2)2. The map from the velocity variables to an element of Dﬁr’z, that
is induced by taking the divergence of the reconstruction, is not surjective. In the proof of
Theorem 3 it is shown that stationarity of all point values amounts to only 7 equations, and
that the stationarity of the average turns out to be redundant.

The very same argument does not hold for the central Active Flux method: the divergence
can be understood as being projected onto P22, which vanishes upon stationarity, but the
average update continues to involve the cell average of the “true” divergence in th)r’z. This
updated equation for the cell average is not redundant then.

The choice of upwinding matters for stationarity preservation as well. The semi-discrete
Active Flux method with the upwind splitting only involves normal derivatives such as
8fu and Bf,v. The alternative point value update (39) was also investigated for the acoustic
equations in two spatial dimensions. Clearly, this upwinding generates terms such as 8fv
and Byzu in the numerical diffusion. In this case stationarity implies a larger number of
supplementary conditions, further restricting the set of stationary states. Indeed, non-trivial
stationary states no longer exist as, in general, det (k) # 0. For t, =1, = —1 (kyAx =
kyAy = ), for example, it is

110592¢%(Ax + Ay)*(AxAy + 2c¢2(Ax? — AxAy + Ay?))
AxAY®

det£(k) = #0. (96)

5.3.2 Acoustic Equations in Three Spatial Dimensions

Theorem 4

(1) The semi-discrete Active Flux method for the linear acoustic equations (4) in three
spatial dimensions is stationarity-preserving. The kernel of its evolution matrix, given
in Appendix D, is five-dimensional for general k.

(ii) The divergence of the reconstruction vanishes iff ¢ is in the above-mentioned kernel.

Proof The argumentation is similar to the two-dimensional case. There are 3-8 = 24 velocity
variables

AR AN AB L AN L e 97)

’

While central Active Flux amounts to 7 equations for the point values (plus 1 for the average,
i.e., akernel of dimension 16), the upwind method additionally enforces continuity of normal
derivatives. These are 3 - 1 conditions on the faces, 3 - 2 conditions on the edges and 1 - 3
conditions on the node, which makes a kernel of dimension at least 24 — 7 — 3 — 6 —
3 = 5. Despite the excessive length of the expressions under consideration (£ is a 32 x 32
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matrix, given in Appendix D) we confirm using MATHEMATICA that the kernel is indeed
five-dimensional.

One defines th);z,z as the image of (P%>22)2 under the (weak) divergence. As the jumps
vanish, stationarity again implies that the divergence vanishes at the 26 locations of point
values in every cell. A unisolvence lemma similar to Lemma 1 holds again, that we omit.
This implies the second statement.

Thus, the stationary states of this Active Flux method are those that give rise to a
divergence-free reconstruction of the velocity and a uniformly constant pressure. The 5
elements Q1, - - -, Q5 of ker £ are given in Appendix D. We find that the projection onto just
Q1 is consistent with f that is chosen from the subspace spanned by (—ky, kx, 0, 0) alone
and Q5 is consistent with f from the subspace parallel to (—k;, 0, ky, 0), i.e., it so happens
that our choice of basis of ker £ even is consistent with the choice of basis for J - k from (9).
The remaining 3 elements of ker £ correspond to higher order terms.

6 Analysis of Numerical Diffusion
6.1 Linear Advection in One Spatial Dimension

An analysis of numerical diffusion for multi-dimensional acoustics is rather difficult. There-
fore, we first consider the one-dimensional case of Active Flux applied to the linear advection
equation d;q + cdyg = 0 (¢ > 0). Active Flux has two degrees of freedom per cell (one
average and one point value) in this case (see e.g., [2, 7, 13, 14]), and upon the Fourier
transform in space it can be rewritten as

9q+EK)G=0 (98)

with a 2 x 2 evolution matrix £. For a reasonable analysis of numerical diffusion, a time
discretization needs to be specified, and a Runge-Kutta method of order 3 seems well-suited.
Thus, the Fourier transform of the fully discrete method reads

q"t = A" (99)
with the amplification matrix
—q oo 1, 3.3
A=1 A15+2Az & 6At€ . (100)

Figure 4 shows the modulus of the two eigenvalues of A as a function of 8 := Axk € [— &, 7]
for different values of CFL := %.

The reason for having two eigenvalues is the following. The discrete Fourier transform
distinguishes between the modes associated with the different types of degrees of freedom,
i.e., there is a mode for the averages and an independent mode for the point values in the
one-dimensional case. For example k = 0 corresponds to the point values having all the same
value Q) € R and the averages having all the same value Q, € R, but the two values can be
different in general. The point update will see this and generally not remain stationary: while
the “physical” eigenvalue corresponds to the eigenvector (1, 1)T, which means Q, = Op,
the other eigenvalue corresponds to the eigenvector (0, I)T, ie, O, =0, Qp = L. This
highly oscillatory function evolves in time, decaying for small CFL numbers and exploding
for those high enough, as is discussed next.

As linear advection amounts merely to a translation, the exact amplification factor is a
unit complex number. Von Neumann stability therefore requires all the eigenvalues of the
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03 CFL=0.1 J 0s. CFL=0.2 CFL=0.25

°%[  CFL=0.3 CFL=0.35
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Fig. 4 Numerical diffusion analysis of Active Flux for the one-dimensional linear advection. The absolute
value of the two eigenvalues of the 2 x 2 amplification matrix is shown as a function of g := kAx € [— 7, 7].
Observe the different scales on the vertical axes

amplification matrix to not be greater than 1 in an absolute value. Of the two eigenvalues
shown in Fig. 4, one observes that the “physical” eigenvalue remains, in an absolute value,
below and rather close to 1.

It has been elucidated in [16], that for semi-discrete methods stability quite generally
tends to be governed by the “non-physical” eigenvalue. Also in the case of semi-discrete
one-dimensional Active Flux, one can observe it grow as the CFL number is chosen larger
and larger, until for CFL = 0.42 its absolute value surpasses 1. This is consistent with
previous findings ([3, 18]) of 0.41 as the stability limit for semi-discrete Active Flux in one
spatial dimension.

6.2 Acoustic Equations in Two Spatial Dimensions

Finally, to complete the picture, the same analysis is performed for the two-dimensional
Active Flux method for linear acoustics. The absolute values of the 12 eigenvalues are shown
in Fig. 5 (some of them lie on top of each other). For simpler presentation, here Ax = Ay =1
and the wave vector Kk is parametrized as

k:s<°f’s‘/’>. (101)
sin ¢

To perform a comparison between the behavior of the numerics and that of the solutions to
the PDE, one now needs to know the analytical value of the amplification matrix. From (3),
writing A := R~1(J - K)R, one obtains

G(t + A1) = Rexp(—iAD)R™'§(1). (102)
The eigenvalues A of (J - k) are real by hyperbolicity of (1) (they are 0 and *c|k|). Thus,

the eigenvalues of the analytical amplification matrix Re~* R~! are all of modulus one.
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Fig. 5 Numerical diffusion analysis of Active Flux for the two-dimensional linear acoustics. The absolute
value of the 12 eigenvalues of the amplification matrix is shown as a function of s € [— 7, 7] (see (101)) for
different values of At (rows) and ¢ (columns). Here, Ax = Ay =1

Despite the increased complexity, the behavior is similar to that of linear advection. The
instability is governed by the non-physical eigenvalue(s), whose norm becomes larger than
1 between At = 0.28 and Ar = 0.3. We have not observed a strong ¢-dependence of this
value.

7 Numerical Examples
7.1 Acoustic Equations in 2-d

7.1.1 Traveling Waves

We consider a truly multi-dimensional setup of a spherical Gaussian in the pressure:

Vo =DT+ (= D? — Vo)2>

2 : vox) =0 (103)

po(x) = exp (
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Fig. 6 The setup of a spherical Gaussian in the pressure. Left: initial setup. Center: pressure at time r = 0.1

solved on a 50 x 50 grid. Right: scatter plot of the pressure at time ¢ = 0.1 together with a reference solution
(solid line)
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Fig. 7 The error of the numerical solution for the spherical Gaussian wave at time ¢+ = 0.1 upon the grid
refinement. From left to right: u, v, p

withw = 0.05,r9 = % The setup is shown in Fig. 6. It is solved on a domain of [0, 2]* using
RK3 with a CFL number of 0.2 with periodic boundaries. The L' error of the numerical
solution is shown in Fig. 7 as a function of the spatial discretization length. The reference
solution has been obtained with a first-order method solving the radial equations on a grid
of 4 - 10° points. We observe third order accuracy.

7.1.2 Stationary Vortex

We consider a stationary solution of the acoustic equations:

won (B[ e

=0,
Po(x) (x—3)/r max(0,2 — 5r), else

(104)

with r = \/ (x - %)2 + (y - %)2 This setup is solved using the semi-discrete Active Flux
method (third order) on a grid of 50 x 50 using RK3 and a CFL = 0.2 with zero-gradient
boundary conditions.

The aim of this test is to show experimentally that a discrete steady state is indeed parallel
to (93), and we deliberately choose a setup involving many different Fourier modes. First,
one needs to wait until the setup becomes stationary. Then, instead of computing the Fourier
transform, we compute the values of the discrete divergences (72)—(78).

Figure 8 demonstrates that the setup becomes stationary in all variables at about t = 100.
Unsurprisingly this happens later for finer grids (less numerical diffusion) and the stationary
state is also closer to the initial one. Figure 9 shows the time evolution of the discrete
divergences (72)—(78) ((79)—(82)) on a grid of 50 x 50. As our datum is not well-prepared,
they are not zero initially, but as the setup becomes stationary, they attain values at the level of
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Fig.8 Left: initial data of the stationary vortex test. The magnitude of the velocity is color-coded. Right: error
of the numerical solution as a function of time. One observes the stationarization of the setup (the velocity
components are on top of each other)
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Fig.9 Stationary vortex test case. Decay of the 7 discrete divergences (79)—(82) that characterize the stationary
state. Their values reach machine precision after a long time. For comparison, the behavior of some other
discrete divergence is shown; it does not decay to machine zero. The curves lie partly on top of each other,
but we refrain from showing details as the figure is merely intended to show that all the divergences reach
machine zero, and not how

machine precision. This indicates that ker £ is indeed one-dimensional and parallel to (93).
For comparison, the figure shows the time evolution of a different divergence discretization

142ty + 12 (=1 +1,)(1 1) N 1421, + 12 (=1 +1,)(1 1) oa
ty ty Ax 1y tyAy

(105)

that corresponds to

(P i) N [(WA) 221
Ax Ay

) (106)

which can be observed to become stationary (as the entire setup) but not to decay to machine
zero. Figure 10 shows results for the Rusanov-type Jacobian split, shown in Sect. 5.3 not to
be stationarity-preserving. One indeed observes a steady deterioration of the vortex.
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Fig. 10 Rusanov-type Jacobian split (39) does not lead to a stationarity-preserving method. Left: solution of
the stationary vortex test at + = 1000, the magnitude of the velocity is color-coded. The vortex has become
two overlapping shear flows. Right: error of the numerical solution as a function of time. It takes much longer
than shown for the setup to stationarize, and the final state is very far from the initial condition (compare the
errors to those in Fig. 8)
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7.1.3 Well-Prepared Stationary Mode

The next aim is to verify the preservation of the discrete stationary state given by (93). To
this end, the discrete data are well-prepared in a way similar to [8], starting from the Fourier
mode Q exp(ikyi Ax + tky jAy). For it to be stationary, Q has to be parallel to (93). This
would result in complex-valued data. Therefore, we take the average of two such modes with
opposite signs of k, which results in a real-valued grid function:

8(2 4 cos(2Ax m)) sin(20Ay 1) sin(2 w(i Ax + 10 Ay))

3Ay
qlf;% =1 8(2 + cos(20Ay m)) sin(2QAx m) sin2 T(i Ax + 10jAy))
3Ax
0

, (107a)

4sin(10Ay m) sin(w (2i Ax + 20 Ay + 10Ay))(3 4 cos(2Ax m))

Ay
quH = 8cos(10Ay ) sin(2Ax 1) sin(2 t(5Ay + iAx + 10 Ay)) , (107b)

Ax
0

8 cos(Ax m) sin(20Ay m) sin(mw(Ax 4+ 2i Ax + 20 Ay))

Ay
qEV =1 _ 4(3 + cos(20Ay m)) sin(Ax ) sin(m(Ax + 2i Ax +20jAy)) |, (107¢)

Ax
0

16 cos(Ax 1) sin(10Ay ) sin(2 m(Ax/2 + 10j Ay + i Ax + 5Ay))

Ay
q}j = _ 16 sin(Ax 1) cos(10Ay ) sin(2 T(Ax/2 + 10jAy + i Ax + 5AY))

Ax
0

(107d)

The wave numbers are chosen as in [8]: ky = 27 and k, = 10 - 2 7. The setup is solved
using CFL =0.2 on a 50 x 50 grid using periodic boundary conditions. The results are shown
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in Fig. 11, and one observes that the well-prepared setup remains stationary, up to round-off
errors.
Setting iAx = x and jAy =y, as Ax, Ay — 0, this mode can be seen to converge to

~ - Ay
afy — G, ), a9 — q(x,y+7), (108)
E - Ay N - Ax Ay
%-f‘*q(’“”T ’ aoalrgyty) 49
with

10

Gx,y)=| =1 | 16 tsin(2 n(x + 10y)). (110)
0

For comparison, one might therefore consider discrete initial data that have been obtained
by the direct evaluation of the degrees of freedom from (110), i.e., by taking point values and
cell averages of (110). In this case one observes an initial layer (+ < 150) during which the
pressure decays after having attained finite-size values in the first step of the calculation. The
seemingly high value ~ 40 of the error of « is due to generally high values of this component:
the maximum exact value of u is 160 7w =~ 503, i.e., the error actually is only 8%.

7.2 Acoustic Equations in 3-d
7.2.1 Traveling Waves

A test analogous to that of Sect. 7.1.1 is performed to assess the order of accuracy of the
three-dimensional method. The initial data vanish for all velocity components, and the initial
pressure is given by

Y
(x| r0)>. a1

po(x) = eXp ( w2

Again, rg = % and w = 0.05, and the domainis[—1, 1]3. We use RK3 with a CFL number
of 0.1. The L' numerical error as a function of the spatial discretization length is shown in
Fig. 12, which was computed using a reference solution obtained from a one-dimensional
spherically symmetric code on 4 - 10° points. The three-dimensional computations are rather
expensive and do not allow to increase the number of cells as much as one requires to see
third-order accuracy clearly. The data shown indicate a convergence rate of about 2.5.

7.2.2 Stationary Mode

We consider a linear combination of the elements of the kernel, given in Appendix D

5
Qijk = Y _arQr exp(kyi Ax +iky jAy + tk.kA2) (112)

r=1

with g; also given in Appendix D. The reason for the coefficients is that a Finite Difference
formula corresponds to a Laurent polynomial in #y, fy, t,, and all the denominators appearing
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Fig.11 Stationary mode for the two-dimensional acoustics. Top: initial data in u, nodal values are shown. Left:
well-prepared data (107). Right: not well-prepared data directly from (110). There is no visible difference.
Bottom: error of the numerical solution is shown as a function of time. Note the different scales of the vertical
axis. Left: well-prepared data show only linear growth due to round-off errors; the pressure errors are very low.
Right: not discretely well-prepared data. The solution rapidly deviates from the initial state. It stationarizes
after an initial layer at around ¢ ~ 150. The pressure, initially zero, attains finite values in the first step of the
calculation and decays exponentially quickly towards zero again

in the basis elements Qi need to be removed first. The domain is [0, 1]° with periodic
boundaries, discretized by 20° cells and

ky =2m, ky =8m, k;=—4m. (113)

We evolve only its real part, which is possible due to the linearity of the entire problem. Figure
13 shows that indeed, the error is initially at machine precision and grows only linearly due
to round-off errors.

To highest order in Ax, Ay, Az, the values at the nodes are

2k, (ky — 1), =2k, ks, 28Ky, 0)T exp(ik,x + Tk, y + 1k, 2). (114)

One easily verifies that this is a divergence-free Fourier mode. However, if this mode is used
as initial data simply by pointwise evaluation, it is not discretely stationary.

7.2.3 Vortex Ring

We consider a vortex ring centred at the origin, with its centerline a circle of radius R in the
x-y-plane (see Fig. 14).
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Fig. 12 Convergence study for the spherical Gaussian in the pressure. Computations on finer meshes are too
expensive to run, but the data shown on the coarse meshes indicate a convergence order of about 2.5. The error
curves of the three velocities are on top of each other
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Fig. 13 The L! distance between the initial data of a Fourier mode in the kernel of the evolution matrix € for
Active Flux in three spatial dimensions is shown as a function of time. Left: non-well-prepared initialization
according to (114). The mode is not discretely stationary, but upon grid refinement the error decreases at
approximately third order. Right: well-prepared data according to (112). One observes only linear growth due
to round-off errors; note also the different value of the error
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Fig. 14 Coordinate setup for the vortex ring test case
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Fig. 15 View of the vortex ring setup, showing the toroidal boundary of the support of the velocity, cut open
along z = 0 (left) and y = 0 (right). Arrows show the velocity in these planes

Define first

2
r::\/<,/x2+y2—R> +z2 (115)

and angles in the plane and perpendicular to it:
tang = 2, sin® = =, (116)
X

The flow happens only in the plane spanned by

0 cos ¢
and sing | . (117)
1 0

The vector field, divergence-free by construction, is then given by

V)

u = —sin?d cos p ———, (118)
x2 4+ y2
o V(r)
v = —sin v sin g ———, (119)
Vx2 4+ y?
\%4
w :cosﬂi (120)

V2 +y2.

Here V is the radial velocity profile of the vortex ring and is an arbitrary differentiable, for
simplicity compactly supported, function of  only. We choose

1 .1
Vi) = Or, r <0.1, (121
max (0,2 — 10r), else,

and R = %. The pressure p vanishes identically. The setup is shown in Fig. 16 (top), in
slices indicated in Fig. 15. We solve it on a 50° grid covering [0, 1]* using RK3 and a CFL
of 0.1. Results at a later time (#+ = 25) are shown in Fig. 16 (bottom), and they are virtually
indistinguishable. Figure 17 shows the numerical error as a function of time. One observes an
initial layer (as the data are not discretely well-prepared) and the subsequent stationarization
of the setup. A stationarity non-preserving method will diffuse the vortex ring very quickly,
converging for t — oo to a discrete stationary state that is not a consistent discretization of
a vortex in any way.
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Fig. 16 Vortex ring test case. Top: cut of the initial data through the plane z = 0 (left) and y = 0 (right). Color
coded is the magnitude of the velocity, and the arrows (normalized in length) indicate the direction. Bottom:
the same for the numerical solution at time # = 25. The presence of non-zero velocity in regions that initially
were at rest shows that the numerical stationary solution is slightly different from the initial data (which is
natural as they were not well-prepared). The arrows indicate only the direction of the velocity, its magnitude
is visually indistinguishable from zero in regions initially at rest

Fig. 17 Vortex ring test case. L oct00 T T T T T T
error of the numerical solution on
grids of 203 and 353 cells,
computed on the nodal point
values. One observes the
stationarization of the setup, as it
converges towards the numerical
stationary state

00010 1

error of numerical solution

s

0.0001 L H i L L
0 05 10 15 20 25 3.0 35 4.0
Time

@ Springer



Communications on Applied Mathematics and Computation

1.0

L = . R e 20
I 15
08
1.0
. 05
06
0
2 04
05
1.4 -1.0
. 02
- 15
0 - 21 0 e 2= ™. -2.0
A 0 02 04 06 08 10

0 02 04 06

Fig. 18 Spherical Riemann problem. Numerical results for the pressure p at time 0.3 on an 80x 80 grid and
for CFL number 0.1. Left: classical active flux. Right: generalized active flux
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Fig. 19 Spherical Riemann problem. Numerical results for the pressure p along the line y = 0.5 at time 0.3
on an 80x80 grid and for the CFL number 0.1

7.3 Comparison to the Fully Discrete Active Flux Method

As stated in Corollary 2, the numerical stationary states of the semi-discrete (generalized)
and classical Active Flux are the same. The following numerical test shows that the results of
both schemes are also very similar for non-stationary setups for the two-dimensional acoustic
equations.

We consider the spherical Riemann problem

vo(x) =0, (122)

2, if |x|? < 0.08,
po(x) = a (123)
1, else.

The simulation has been performed for different combinations of CFL numbers and grid
sizes and with periodic boundary conditions. Figure 18 shows a comparison of the numerical
results of both methods for the pressure p at time 0.3 on an 80x 80 grid with the CFL number
0.1 as an example. No significant differences were found between the methods for any of
these tested cases. A more detailed comparison of the results of both methods along the line
y = 0.5 also shows no significant differences for p at time 0.3. This is shown in Fig. 19, the
grid size is again 80x 80 and the CFL number 0.1.

@ Springer



Communications on Applied Mathematics and Computation

8 Conclusion

We have shown that the two- and three-dimensional semi-discrete Active Flux methods are
stationarity-preserving when applied to linear acoustics on Cartesian grids. This is the same
conclusion as was drawn for the classical Active Flux method before, the discrete stationary
states are even exactly the same if upwind Jacobian splitting is used for the point value update.
This is a consequence of the choice of the approximation/reconstruction space, common to
both schemes. We also have not been able to find visible differences in the results of the two
methods for non-stationary setups. However, the stability region of the semi-discrete method
is smaller with a maximum CFL number only about half of that of the classical method ([12]).
The semi-discrete method can be applied more easily to nonlinear problems as it does not
require an evolution operator and is structure preserving in very much the same way as the
traditional method.

In the future we will study how this property can be extended to nonlinear conservation
laws, including a theoretical analysis of the low Mach number compliance for the Euler
equations. Experimentally, it has been observed in [4] that the method behaves well in this
regime. Following [11, 15] we will investigate stationarity preservation of Active Flux on
unstructured grids.

Appendix A Shape Functions for Active Flux in Two Spatial Dimensions

The basis functions for the biparabolic reconstruction employed for the two-dimensional
Active Flux are

Bo(x,y) = %(—1 +26)(1 +28)(—=1 421 + 2n), (A1)
Bl(x,y)=T16(—1+2-§)(—1+2f7)(125n—2n—25—1), (A2)
By(x,y) = %(1 —28)(1 +28)(—=1+2n)(1 + 6n), (A3)
B3(x,y) = T16(1+2€)(—1+2n)(12§“n+2n—2$+1), (A4)
By(x,y) = %(1 +28)(=1+65)(1 —2n)(1 + 2n), (AS5)
Bs(x,y)z%(1+25)(1+2n)(12§7l+2n+2€—1), (A6)
Bs(x,y) = %(1 —28)(1 +26)(1 +2n) (=1 + 6nm), (A7)
Bi(x,y) = %6(—14-253)(1+2n)(12$n—2n+23§+1), (A8)
Bg(x,y) = i(—l +286)(1 4 65)(1 —2n)(1 + 2n) (A9)

with & = x/Ax, n = y/Ay. For the numbering, see Fig. 1.
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Appendix B Update Equation for 2-d Upon the Fourier Transform

The update of the nodal point value can be written as
d 1 1 1 1 1
0=—gN+|JF—(3+—)+Jy— (33—t +J ——+3

ar? +|:xAx<+tx>+xAx( x>+}Ay ty+
_ 1 ~N —4 + - ~E

+J; A (—ty —3)]q + [E(Jx —J; zx)]q "
—4 B A

+ [A—yu;r -, t},)} q™. (B1)

The update equation for the point value at a vertical edge is
0= %QEV + [—A%(J; - J;tx)] q* + [Aix (J; (1 + :y) +J; (—i’y‘ - tx>)] gt
+ [i <J+ (2 + 1) + J (=2t — 2))] g"
Ax \'* Iy * *
+[J+L( ! +l+1+l>+ri<—i—5—t —1>
T 4ax \tty 1y t T4ax \ oty oty

1 1 1 1
JF—(1-= J —(1==)|gN B2
B Ay( ry)+ y Ay( ryﬂq (52)

and for the update of the point value at a horizontal edge

d 9 2 1
0= —§G 4+ |——ur—J e+ | —(JF|—+2)+J7(-2—-1))|4"
ar? +[ Ay y)}q Tlay\ Y e v ( K

1 1 t

— (1= )+ (=2 GEv
s (i) o (-2l
PR SO IS PR By Lol
T Ax I T Ax I Y AAy \ ety 1y Iy
1 1 ty

Jy—(———=1—1,—2) |g". B3
* y4AY( Ix g tx)]q ®3)

The update of the average is computed by following the instructions from Sect. 3.1,

d 2 1 2 1
0= —¢A+ | (1==)|¢Bn+ | (1-=)|g"
arf +[3Ay y( ry)]" +[3Ax ( uﬂq

n 1]1 1+1 1 +111 1+1 1 AN (B4)
6Ax " ety Lty 6Ay " ty te  Iily a-

Appendix C Evolution Matrices of Active Flux in Two Spatial Dimensions

The submatrices of the evolution matrix (65) for the acoustic equations (4) in two spatial
dimensions are

Ean = 0343, Ena = 033, (C1)
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EAEy

EAEy

EAN

EEyA

EEnEy

EEuEy

EEgN

EEvA

EEvEn

EEyvEy

EEyN

ENEy =~
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0 0 0
2 1o o -1
3Ay 1 |
0 1——gf 0
5 0 01— %
IAx 0 0 O ,
X 1
1— E’O 0
1 (=146)(1+ty)
0 0 6Ax fxty 2
1 (A4t (=14t2y)
0 0 N —
1 (l4n)d+ty) 1 U4 (=141y) 0
6AX Iely 6Ay Iily
9 (01401
“2ay )
YN0 -1y 141,
| 0 0 0
1 1
o~ 04 +d+r, L—t |
1 _ 1
0 L1, F+d+s
0 0 0
1 0 (414t (A4t (=141y)
~ A Iy Iy
28y | o _ Q1) ()
- [ I )
1 1
0 0 v Clie
0 1 () (141,)2 | (46 (=1422)
8Ay Icly T 8Ay Ixly
L()_1 1 (+)0+6) 1 A4t (=1+))
A\ Tn) T8y g I I——
9 I14+12,01—¢
sy 0 0 O ,
Y\l =1, 0141,
I+t ) (1+2y) 0 (=1+41)(1+ty)
l ty - ty
— 0 0 0
2Ax L) (o Q) (4)
- fy ty )
| (A0 ok
A 0 0 0 ,
T\ Ll ol+asn
1 (46)*(41y) 0 1 (A4
8Ax Lyty 8Ax Lxty
1 1
0 0 = (1 -1
1 CpaEy) 1 1) 1 (4 A
8Ax Ity Ay ty 8Ax Ity
141601 -1t
0O 0 O ,
1—1,01+1

(C2)

(C3)

(C4)

(C5)

(Co)

(C7)

(C8)

(€9

(C10)

(C11)

(C12)

(C13)
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5 (00 0
Enpy =~ |01+ Ty ] (C14)
YNOL =1, 141y
64 -+, ol
2Ax 0 tAx
1 1 1 1
ENN = 0 Ay (6 +5 fy) Ay (Zz\ fy) (C15)

1 ! s
1 (1 iy 1 (1 iy 1 6+ +ix i 6+,y +y
2Ax \ 1y X 2Ay \ty y 2 Ax Ay

Appendix D Evolution Matrix and Its Kernel for Active Flux in Three
Spatial Dimensions

The variables are ordered as Q = (qA E‘,QE‘,qAE~ q ,QF»",C}FZ,QN), where § =
(@, 0,0, p).
The evolution matrix reads

Ean EaE, EAE, EaE, EaF, EaF, &aAF, EaN
EE A EE,E, €E,E, €E,E, EEF, CE,F, EE,F, CEN
Ee A EE\E, €E,E, €E,E, EE,F, €E,F, &E,F, EE,N
£— Ee.A EEE, CRE, EEE, EEF, EEF, EEF, EEN

Dl
&, A ERE, €RE, ERE, &R F, ERF, ERF. EFN ®n
Er A ERiE, ERE, ERE, EFF, EFF, ERF, RN
Er.A EFE, €R.E, €R.E, EF.F, ERF, EFF, ERN
ENA ENE, ENE, ENE, ENF, ENF, ENF, ENN
with the blocks
0000
0000
EAp = 0000 (D2)
0000
0 0
clty=1)(1+1)
0 0 0 9Aytyt,
Eag, = 0 0 c+41)t=1) |, (D3)
9Aztyt;
0 L(zy—l)(1+tz) c(l4ty)(t;—=1) 0’
9Aytyt; 9Aztyt;
ctx—DH(A+17)
0 0 0 9AXxtyt,
0 0 0 0
EAE, = c+t)t=1 | (D4)
9Aziyt,
cltx=D(A+t1;) 0 cd+1)(1z=1) f)t ’
9AXxIt, Azt t;
c(tx =D (I+ty)
0 0 0 9Axtxty -
0 0 o =1
SAE- — 9Aytyty , (DS)
- 0 0 0 0
c(ty=D(A+ty) c(I+t:)(ty—1) 0 0
9Axtyty 9Aytxty
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EAF, =

EAR, =

EAF, =

EAN =
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0 00 4e(te—1)

9Axty
0O 00 O
0O 00 O (D6)
4e(ty—1)
oaw, 00 0
O O 0 O
de(ty—1)
0O 0 O N7 o7
O 0O 0 O
de(ty—1)
0 N7 0 0
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To implement one discrete Fourier mode in Sect. 7.2.2 we use

5
> a0 (D71)
r=1

with
a = ((rx — DQAY(L+ ty + 8tety) (tx — 1) (tz — Dty + 12 + 4141,
ity — D(=32e7ty — 3(1+ 1, + 32e71,)t + 8(4ty + 1. (1 + 1) BAz + 161)))17
+(3(1+rx)—32(1+4rx)zy)tj)))/(2AxAz(zy— D2 +46,2 4122 + 1,8 + 3;1)))),
(D72)
a2 = —((te = D+ (=201 + 1,)(=1 4 28y +1,)(t; = Di?
—t(t; — Dt,(3 — St;‘f + 16Ay(1 +2t))t, + (ty — D1 +£,)(5 + 321))1;)
+81) (—3Azt2 + 3AzE512 + 2(=2 + Ay)ty(t; — D)(1 +4t) + 48] (1. — D)(1 +4t.))
17 (=2Ay(t; — D(1 + 1y +4(1 + 1)1, + (3 4 351,)17)
— (1] = D(—4+ (=9 + 1:(10 — 24Az + 1281, (. — 1) + 3;1))))))

/(28583 (1 + 1)t = DE2 + 402 + Q4+ 18 +31) (D73)

a3 = ((rf — D1+ 1)(=2(1 + ,)(—1 + Ay + 1)t — 1)i2
—t:(1+1)(t; — DB+ (=5 + 8AY)t, + 1, (=3 4 (=27 + 32ty)t,))
+ 867 (—3Azt2 + 3Azt]17 + 41 (1. — 1)(1 + 41,)
+21y(t; = D(=2 =8, + 3Ay(1 + (4 + 1))
+22(1 4+ 1,) Ay (1, — 1)(1 +41,)
— (ty — (=4 + £,(=9 4 1,(10 — 24Az + 1281, (1, — 1) + 3;1))))))
/<16AxAytxty(tz D2 A2 + 22+ 8+ 3zz)))), (D74)
ag = ((rx — (1 + £+ 1,6 + 1)) (=20 + 1) (=1 + Ay + 1,) (2, — D)i2
— (L +1)(t; — D1, (3 = 5t; + 8Ayt, + t,(=3 + 5t;))
+ 248} (= Azt? + Aztt? +2(=2 + Aty (t; — D1+ 1.(4 + 1))
+46 (1 — D+ (4 + 1)) + 171+ 1) QAY(t — 1(1 + 4t;)
—(ty = (=4 +1,(=9 + £,(10 — 24Az + 3@)))))
/(32AxAztx (ty — Dty (1 + 1) (2 + 4117 + 572 + (8 + 3tz)))>, (D75)

as = ((1+ 16 + 1) (201 + 1) (=1 + Ay + 1)t = Di?
— te(t; = D13 = 36] + 8AY(1 +3ty)t + (ty — (L +1,)(5 + 32t)1)
+ 81 (=3Azt7 + 3Azt 2 + 2(—2 + Ap)ty(t; — (1 +4t,)
46 (1 — D +48)) + 11 (=2Ay(t; — (=1 — 4t + t,(—1 + 42:)(1 + 8¢.))
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— (12 = D4+ 1,(=9 + 1,(10 — 24A7 + 1286,(1, — 1) + 3@)))))
/(32AyAztxty 2+ 46,2+ 22+ 1.8+ 3@))). (D76)
This gives the following mode:
i]a,ér

o Aaxa+ A+ (Ay/Ax(L+ 1) 12 = D+1/Ax(EF — D2 = 1) + 8ty (Az/Ax(t} — Diz+Ay/Axty (12 = 1))
-\ 36AyAzixtyt;

s
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361y tyl; ’
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(tx = D/Ax(1 = 13) + dtxty (Ay/Ax +2/Ax (13 = D) +17) 0
2Ayty T

JAL/Ax/Az(ty — 1)(1 +fx)fy(1 +ly)(tz -1,

s

s

Ax(1+ 1) (1/Ax(Ay — Aye2) + Az(ty — D)(1/Ax/Az — 4/ Axtet; — 1/Ax/Azt? + 81/ Ax/Aztxty (12 — 1))
2AyAzt;
(tx — DA +1y)(1/Ax/Az — 4/ Axtet; — 1/Ax/Azt? + 8/ Ax/Aztxty (12 — 1))
2t ’

s
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4t T
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A4 )(Ay/Ax + 1/ Ax(ty = D)tz = 1) (e = DA +1)(tz = 1) (tx = D +1) 0
AyAz ’ AxAz ’ Ax )
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