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SM1. 2D flux vector splitting.

SM1.1. Local Lax-Friedrichs flux vector splitting. This flux vector split-
ting can be written as

F±` =
1

2
(F`(U)± α`U),

where α` is determined by
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and %` is the spectral radius of the Jacobian matrix ∂F`/∂U .

SM1.2. Upwind flux vector splitting. The flux can also be split based on
each characteristic field as follows

(SM1.1) F±` =
1

2
(F`(U)± |J`|U), |J`| = R`(Λ

+
` −Λ−` )R−1` ,

with J` = ∂F`/∂U = R`Λ`R
−1
` the eigen-decomposition of the Jacobian matrix.

For the Euler equations, the explicit expressions in the x-direction are

F±1 =


ρ
2γα

±

ρ
2γ

(
α±v1 + a(λ±2 − λ±3 )

)
ρ
2γα

±v2
ρ
2γ

(
1
2α
± ‖v‖22 + av1(λ±2 − λ±3 ) + a2

γ−1 (λ±2 + λ±3 )
)
 ,

where λ1 = v`, λ2 = v`+a, λ3 = v`−a, α± = 2(γ−1)λ±1 +λ±2 +λ±3 , and a =
√
γp/ρ

is the sound speed. The expressions in the y-direction can be obtained using the
rotational invariance.
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SM1.3. Van Leer-Hänel flux vector splitting for the Euler equations.
For the x-direction, the flux is split according to the Mach number M = v1/a as

F1 =


ρaM

ρa2(M2 + 1
γ )

ρaMv2

ρa3M( 1
2M

2 + 1
γ−1 ) +

ρaMv22
2

 = F+
1 + F−1 , F

±
1 =


± 1

4ρa(M ± 1)2

± 1
4ρa(M ± 1)2v1 + p±

± 1
4ρa(M ± 1)2v2
± 1

4ρa(M ± 1)2H


with the enthalpy H = (E + p)/ρ, and the pressure-splitting p± = 1

2 (1± γM)p.

SM2. Bound-preserving property of intermediate states. Similar to the
proofs in [SM12, SM13], the following lemmas hold.

Lemma SM2.1. For the scalar conservation laws (3.2), the intermediate state ũ =
1
2 (uL + uR) + 1

2α (f`(uL)− f`(uR)) stays in G (4.1) if α > max{%`(uL), %`(uR)}.
Proof. The partial derivatives of the intermediate state satisfy

∂ũ(uL, uR)

∂uL
=

1

2

(
1 +

f ′`(uL)

α

)
> 0,

∂ũ(uL, uR)

∂uR
=

1

2

(
1− f ′`(uR)

α

)
> 0.

As ũ(m0,m0) = m0, ũ(M0,M0) = M0, it holds m0 6 ũ 6M0.

Lemma SM2.2. For the Euler equations, the intermediate state Ũ = 1
2 (UL +

UR) + 1
2α (F`(UL)− F`(UR)) stays in G (4.2) if α > max{%`(UL), %`(UR)}.

Proof. For the Euler equations, as the intermediate state is a convex combination
of UL − 1

αF`(UL) and UR + 1
αF`(UR), we only need to show that the U ± 1

αF`(U)
belongs to G. The density component (ρ± (ρv`)/α) is positive since α > |v`|. The
recovered internal energy is

ρe

(
U ± 1

α
F`(U)

)
= E

(
U ± 1

α
F`(U)

)
−
∥∥ρv (U ± 1

αF`(U)
)∥∥2

2

2ρ
(
U ± 1

αF`(U)
)

=

(
1− p2

2(α± v`)2ρ2e

)(
1± v`

α

)
ρe,

so that one has ρe
(
U ± 1

αF`(U)
)
> 0 ⇐⇒ p2

2ρ2e < (α±v`)2 ⇐⇒ γ−1
2γ a

2 < (α±v`)2
for the perfect gas EOS, which holds as α > |v`|+ a.

SM3. 1D bound-preserving active flux methods. For the scalar conserva-
tion law (2.2), its solutions satisfy a strict maximum principle (MP) [SM4], i.e.,

(SM3.1) G = {u | m0 6 u 6M0} , m0 = min
x
u0(x), M0 = max

x
u0(x).

For the compressible Euler equations, the admissible state set is

(SM3.2) G =
{
U = (ρ, ρv,E)

∣∣∣ ρ > 0, p = (γ − 1)
(
E − (ρv)2/(2ρ)

)
> 0
}
.

which is convex, see e.g. [SM15].

SM3.1. Convex limiting for the cell average. This section presents a convex
limiting approach to achieve the BP property of the cell average update. The low-
order scheme is chosen as the first-order LLF scheme
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U
L
i = U

n

i − µi
(
F̂ L
i+ 1

2
− F̂ L

i− 1
2

)
, µi = ∆tn/∆xi,

F̂ L
i+ 1

2
= F LLF(U

n

i ,U
n

i+1) =
1

2

(
F (U

n

i ) + F (U
n

i+1)
)
−
αi+ 1

2

2

(
U
n

i+1 −U
n

i

)
,

αi+ 1
2

= max{%(U
n

i ), %`(U
n

i+1)},

where % is the spectral radius of ∂F /∂U . Note that here αi+ 1
2
is not the same as

the one in the LLF FVS (2.12). Following [SM6], the first-order LLF scheme can be
rewritten as

(SM3.3) U
L
i =

[
1− µi

(
αi− 1

2
+ αi+ 1

2

)]
U
n

i + µiαi− 1
2
Ũi− 1

2
+ µiαi+ 1

2
Ũi+ 1

2
,

with the first-order LLF intermediate states defined as

(SM3.4) Ũi± 1
2

:=
1

2

(
U
n

i + U
n

i±1

)
± 1

2αi± 1
2

[
F (U

n

i )− F (U
n

i±1)
]
.

The proofs of Ũi± 1
2
∈ G are similar to Section SM2, for the scalar case and Euler

equations.

Lemma SM3.1. If the time step size ∆tn satisfies

(SM3.5) ∆tn 6
∆xi

αi− 1
2

+ αi+ 1
2

,

then (SM3.3) is a convex combination, and the first-order LLF scheme is BP.

The proof (see e.g. [SM6, SM9]) relies on U
n

i , Ũi± 1
2
∈ G and the convexity of G.

Upon defining the anti-diffusive flux ∆F̂i± 1
2

:= F̂ H
i± 1

2

− F̂ L
i± 1

2

with F̂ H
i± 1

2

:=

F (Ui± 1
2
), a forward-Euler step applied to the semi-discrete high-order scheme for

the cell average (2.4) can be written as

U
H
i = U

n

i − µi(F̂ H
i+ 1

2
− F̂ H

i− 1
2
) = U

n

i − µi(F̂ L
i+ 1

2
− F̂ L

i− 1
2
)− µi(∆F̂i+ 1

2
−∆F̂i− 1

2
)

=
[
1− µi

(
αi− 1

2
+ αi+ 1

2

)]
U
n

i + µiαi− 1
2
Ũ H,+
i− 1

2

+ µiαi+ 1
2
Ũ H,−
i+ 1

2

,

(SM3.6)

Ũ H,+
i− 1

2

:=

(
Ũi− 1

2
+

∆F̂i− 1
2

αi− 1
2

)
, Ũ H,−

i+ 1
2

:=

(
Ũi+ 1

2
−

∆F̂i+ 1
2

αi+ 1
2

)
.

With the low-order scheme (SM3.3) and high-order scheme (SM3.6) having the same
abstract form, one can blend them to define the limited scheme for the cell average as

(SM3.7) U
Lim
i =

[
1− µi

(
αi− 1

2
+ αi+ 1

2

)]
U
n

i + µiαi− 1
2
Ũ Lim,+
i− 1

2

+ µiαi+ 1
2
Ũ Lim,−
i+ 1

2

,

where the limited intermediate states are

(SM3.8) Ũ Lim,∓
i± 1

2

= Ũi± 1
2
∓

∆F̂ Lim
i± 1

2

αi± 1
2

:= Ũi± 1
2
∓
θi± 1

2
∆F̂i± 1

2

αi± 1
2

,

and θi± 1
2
∈ [0, 1] are the blending coefficients. The limited scheme (SM3.7) reduces to

the first-order LLF scheme if θi± 1
2

= 0, and recovers the high-order AF scheme (2.4)
when θi± 1

2
= 1.
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SM3.1.1. Application to scalar conservation laws. Similar to the 2D case,
the convex limiting is applied to scalar conservation laws (2.2), such that the limited
cell averages (SM3.7) satisfy the MP umin

i 6 ūLimi 6 umax
i , where umin

i = minN ,
umax
i = maxN , and N will be defined later. The limited anti-diffusive flux is

∆f̂Limi+ 1
2

=

min
{

∆f̂i+ 1
2
, αi+ 1

2
(ũi+ 1

2
− umin

i ), αi+ 1
2
(umax
i+1 − ũi+ 1

2
)
}
, if ∆f̂i+ 1

2
> 0,

max
{

∆f̂i+ 1
2
, αi+ 1

2
(umin
i+1 − ũi+ 1

2
), αi+ 1

2
(ũi+ 1

2
− umax

i )
}
, otherwise.

Finally, the limited numerical flux is

(SM3.9) f̂Limi+ 1
2

= f̂Li+ 1
2

+ ∆f̂Limi+ 1
2
.

If considering the global MP, N =
⋃
i{ūni , uni+ 1

2

}. For the local MP, one can

choose N = min
{
ūni , ũi− 1

2
, ũi+ 1

2
, ūni−1, ū

n
i+1

}
, which consists of the neighboring cell

averages and intermediate states.

SM3.1.2. Application to the compressible Euler equations. This section
aims at enforcing the positivity of density and pressure. To avoid the effect of the
round-off error, we need to choose the desired lower bounds. Denote the lowest density
and pressure in the domain by

(SM3.10) ερ := min
i
{Un,ρ

i ,Un,ρ

i+ 1
2

}, εp := min
i
{p(Un

i ), p(Un
i+ 1

2
)},

where U∗,ρ and p(U∗) denote the density component and pressure recovered from
U∗, respectively. The limiting (SM3.8) is feasible if the constraints are satisfied by
the first-order LLF intermediate states (SM3.4), thus the lower bounds can be defined
as

ερi := min{10−13, ερ, Ũρ

i− 1
2

, Ũρ

i+ 1
2

}, εpi := min{10−13, εp, p(Ũi− 1
2
), p(Ũi+ 1

2
)}.

i) Positivity of density. The first step is to impose the density positivity
Ũ Lim,±,ρ
i+ 1

2

> ε̄ρ
i+ 1

2

:= min{ερi , ερi+1}. Similarly to the derivation of the scalar case, the
corresponding density component of the limited anti-diffusive flux is

∆F̂ Lim,∗,ρ
i+ 1

2

=

min
{

∆F̂ ρ

i+ 1
2

, αi+ 1
2

(
Ũρ

i+ 1
2

− ε̄ρ
i+ 1

2

)}
, if ∆F̂ ρ

i+ 1
2

> 0,

max
{

∆F̂ ρ

i+ 1
2

, αi+ 1
2

(
ε̄ρ
i+ 1

2

− Ũρ

i+ 1
2

)}
, otherwise.

Then the density component of the limited flux is F̂ Lim,∗,ρ
i+ 1

2

= F̂ L,ρ
i+ 1

2

+ ∆F̂ Lim,∗,ρ
i+ 1

2

, with

the other components remaining the same as F̂ H
i+ 1

2

.
ii) Positivity of pressure. The second step is to enforce pressure positivity

p(Ũ Lim,±
i+ 1

2

) > ε̄p
i+ 1

2

:= min{εpi , εpi+1}. Since

Ũ Lim,±
i+ 1

2

= Ũi+ 1
2
±
θi+ 1

2
∆F̂ Lim,∗

i+ 1
2

αi+ 1
2

, ∆F̂ Lim,∗
i+ 1

2

= F̂ Lim,∗
i+ 1

2

− F̂ L
i+ 1

2
,

the constraints lead to two inequalities

(SM3.11) Ai+ 1
2
θ2i+ 1

2
±Bi+ 1

2
θi+ 1

2
6 Ci+ 1

2
,
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with the coefficients

Ai+ 1
2

=
1

2

(
∆F̂ Lim,∗,ρv

i+ 1
2

)2
−∆F̂ Lim,∗,ρ

i+ 1
2

∆F̂ Lim,∗,E
i+ 1

2

,

Bi+ 1
2

= αi+ 1
2

(
∆F̂ Lim,∗,ρ

i+ 1
2

ŨE
i+ 1

2
+ Ũρ

i+ 1
2

∆F̂ Lim,∗,E
i+ 1

2

−∆F̂ Lim,∗,ρv
i+ 1

2

Ũρv

i+ 1
2

− ε̃∆F̂ Lim,∗,ρ
i+ 1

2

)
,

Ci+ 1
2

= α2
i+ 1

2

(
Ũρ

i+ 1
2

ŨE
i+ 1

2
− 1

2

(
Ũρv

i+ 1
2

)2
− ε̃Ũρ

i+ 1
2

)
, ε̃ = ε̄p

i+ 1
2

/(γ − 1).

Following [SM8], the inequalities (SM3.11) hold under the linear sufficient condition(
max

{
0, Ai+ 1

2

}
+
∣∣∣Bi+ 1

2

∣∣∣) θi+ 1
2
6 Ci+ 1

2
,

if making use of θ2
i+ 1

2

6 θi+ 1
2
, θi+ 1

2
∈ [0, 1]. Thus the coefficient can be chosen as

θi+ 1
2

= min

{
1,

Ci+ 1
2

max{0, Ai+ 1
2
}+ |Bi+ 1

2
|

}
,

and the final limited numerical flux is

(SM3.12) F̂ Lim,∗∗
i+ 1

2

= F̂ L
i+ 1

2
+ θi+ 1

2
∆F̂ Lim,∗

i+ 1
2

.

SM3.1.3. Shock sensor-based limiting. In 1D, the Jameson’s shock sensor
[SM7] is

(ϕ1)i =
|p̄i+1 − 2p̄i + p̄i−1|
|p̄i+1 + 2p̄i + p̄i−1|

,

and the modified Ducros’ shock sensor reduced from the 2D case [SM5] is

(ϕ2)i = max

{
− v̄i+1 − v̄i−1
|v̄i+1 − v̄i−1|+ 10−40

, 0

}
.

Note that v̄i and p̄i are the velocity and pressure recovered from the cell average U i.
The blending coefficient is designed as

θsi+ 1
2

= exp(−κ(ϕ1)i+ 1
2
(ϕ2)i+ 1

2
) ∈ (0, 1],

(ϕs)i+ 1
2

= max {(ϕs)i, (ϕs)i+1} , s = 1, 2,

where the problem-dependent parameter κ adjusts the strength of the limiting, and
its optimal choice needs further investigation. The final limited numerical flux is

(SM3.13) F̂ Lim
i+ 1

2
= F̂ L

i+ 1
2

+ θsi+ 1
2
∆F̂ Lim,∗∗

i+ 1
2

,

with ∆F̂ Lim,∗∗
i+ 1

2

= F̂ Lim,∗∗
i+ 1

2

− F̂ L
i+ 1

2

, and F̂ Lim,∗∗
i+ 1

2

given in (SM3.12).

SM3.2. Scaling limiter for point value. A first-order LLF scheme for the
point value update can be written as

(SM3.14) U L
i+ 1

2
= Un

i+ 1
2
− 2∆tn

∆xi + ∆xi+1

(
F̂ L
i+1(Un

i+ 1
2
,Un

i+ 3
2
)− F̂ L

i (Un
i− 1

2
,Un

i+ 1
2
)
)
,
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with the numerical flux

F̂ L
i = F̂ LLF(Un

i− 1
2
,Un

i+ 1
2
) =

1

2

(
F (Un

i− 1
2
) + F (Un

i+ 1
2
)
)
− αi

2

(
Un
i+ 1

2
−Un

i− 1
2

)
,

αi = max{%(Un
i− 1

2
), %(Un

i+ 1
2
)}.

Similarly to Lemma SM3.1, it is straightforward to obtain the following Lemma.

Lemma SM3.2. The LLF scheme for the point value (SM3.14) is BP under the
CFL condition

(SM3.15) ∆tn 6
∆xi + ∆xi+1

2(αi + αi+1)
.

The limited solution is obtained by blending the high-order AF scheme (2.5) with
the forward-Euler scheme and the LLF scheme (SM3.14) as U Lim

i+ 1
2

= θi+ 1
2
U H
i+ 1

2

+ (1−
θi+ 1

2
)U L

i+ 1
2

, such that U Lim
i+ 1

2

∈ G.
SM3.2.1. Application to scalar conservation laws. This section enforces

the MP umin
i+ 1

2

6 uLim
i+ 1

2

6 umax
i+ 1

2

using the scaling limiter [SM12]. The limited solution is

(SM3.16) uLimi+ 1
2

= θi+ 1
2
uHi+ 1

2
+
(

1− θi+ 1
2

)
uLi+ 1

2
,

with the coefficient

θi+ 1
2

= min

{
1,

∣∣∣∣∣u
L
i+ 1

2

− umin
i+ 1

2

uL
i+ 1

2

− uH
i+ 1

2

∣∣∣∣∣ ,
∣∣∣∣∣u

max
i+ 1

2

− uL
i+ 1

2

uH
i+ 1

2

− uL
i+ 1

2

∣∣∣∣∣
}
.

The bounds are determined by umin
i+ 1

2

= minN , umax
i+ 1

2

= maxN , where the set N
consists of all the DoFs in the domain, i.e., N =

⋃
i{ūni , uni+ 1

2

} for the global MP. One

can also consider the local MP, e.g., N =
{
un
i− 1

2

, un
i+ 1

2

, un
i+ 3

2

}
, which at least includes

all the DoFs appeared in the first-order LLF scheme (SM3.14).

SM3.2.2. Application to the compressible Euler equations. The limiting
consists of two steps.

i) Positivity of density. First, the high-order solution U H
i+ 1

2

is modified as

U Lim,∗
i+ 1

2

, such that U Lim,∗,ρ
i+ 1

2

> ερ
i+ 1

2

:= min{10−13, ερ,U L,ρ
i+ 1

2

} with ερ given in (SM3.10).
Solving the inequality yields

θ∗i+ 1
2

=


U L,ρ
i+ 1

2

− ερ
i+ 1

2

U L,ρ
i+ 1

2

−U H,ρ
i+ 1

2

, if U H,ρ
i+ 1

2

< ερ
i+ 1

2

,

1, otherwise.

Then the density component of the limited solution is U Lim,∗,ρ
i+ 1

2

= θ∗
i+ 1

2

U H,ρ
i+ 1

2

+ (1 −
θ∗
i+ 1

2

)U L,ρ
i+ 1

2

, with the other components remaining the same as U H
i+ 1

2

.

ii) Positivity of pressure. Then the limited solutionU Lim,∗
i+ 1

2

is modified asU Lim
i+ 1

2

,
such that it gives positive pressure, i.e., p(U Lim

i+ 1
2

) > εp
i+ 1

2

:= min{10−13, εp, p(U L
i+ 1

2

)},
with εp given in (SM3.10). Let the final limited solution be

(SM3.17) U Lim
i+ 1

2
= θ∗∗i+ 1

2
U Lim,∗
i+ 1

2

+
(

1− θ∗∗i+ 1
2

)
U L
i+ 1

2
.
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The pressure is a concave function of the conservative variables (see e.g. [SM14]),
so that p(U Lim

i+ 1
2

) > θ∗∗
i+ 1

2

p(U Lim,∗
i+ 1

2

) +
(

1− θ∗∗
i+ 1

2

)
p(U L

i+ 1
2

) based on Jensen’s inequality

and U Lim,∗,ρ
i+ 1

2

> 0, U L,ρ
i+ 1

2

> 0, θ∗∗
i+ 1

2

∈ [0, 1]. Thus the coefficient can be chosen as

θ∗∗i+ 1
2

=


p(U L

i+ 1
2

)− εp
i+ 1

2

p(U L
i+ 1

2

)− p(U Lim,∗
i+ 1

2

)
, if p(U Lim,∗

i+ 1
2

) < εp
i+ 1

2

,

1, otherwise.

Theorem SM3.3. If the initial numerical solution U
0

i ,U
0
i+ 1

2

∈ G for all i, and
the time step size satisfies (SM3.5) and (SM3.15), then the AF methods (2.4)–(2.5)
equipped with the SSP-RK3 (2.14) and the BP limitings
• (SM3.9) and (SM3.16) preserve the maximum principle for scalar case;
• (SM3.12) and (SM3.17) preserve positive density and pressure for the Euler equa-
tions.

Remark SM3.4. For uniform meshes, and if taking the maximal spectral radius
of ∂F /∂U in the domain as ‖%‖∞, the following CFL condition

∆tn 6
∆x

2 ‖%‖∞
fulfills the time step size constraints (SM3.5) and (SM3.15).

SM4. Additional numerical results.

Example SM4.1 (1D accuracy test for the Euler equations). This test is used to
examine the accuracy of using different point value updates, following the setup in
[SM1]. The domain is [−1, 1] with periodic boundary conditions. The adiabatic index
is chosen as γ = 3 so that the characteristic equations of two Riemann invariants w =
u±a are wt +wwx = 0. The initial condition is ρ0(x) = 1 + ζ sin(πx), v0 = 0, p0 = ργ0
and ζ ∈ (0, 1) controls the range of the density. The exact solution can be obtained
by the method of characteristics, given by ρ(x, t) = 1

2 (ρ0(x1) + ρ0(x2)) , v(x, t) =√
3 (ρ(x, t)− ρ0(x1)), where x1 and x2 are solved from the nonlinear equations x +√
3ρ0(x1)t − x1 = 0, x −

√
3ρ0(x2)t − x2 = 0. The problem is solved until T = 0.1

with ζ = 1− 10−7.
As ζ = 1− 10−7, the minimum density and pressure are 10−7 and 10−21 respec-

tively, so that the BP limitings are necessary to run this test case. The maximal CFL
numbers allowing stable simulations are obtained experimentally, which are around
0.47, 0.43, 0.32, 0.18 for the JS, LLF, SW, and VH FVS, respectively, thus we run the
test with the same CFL number as 0.18. Figure SM1 shows the errors and corre-
sponding convergence rates for the conservative variables in the `1 norm. It is seen
that the JS and all the FVS except for the SW FVS achieve the designed third-order
accuracy, showing that our BP limitings do not affect the high-order accuracy. To
examine the reason why the scheme based on the SW FVS is only second-order accu-
rate, Figure SM2 plots the density and velocity profiles obtained using the SW FVS
with 80 cells. One can observe some defects in the density when the velocity is zero,
similar to the “sonic point glitch” in the literature [SM10]. One possible reason is that
the SW FVS is based on the absolute value of the eigenvalues, and the corresponding
mass flux is not differentiable when the velocity is zero [SM11]. Such an issue remains
to be further explored in the future.
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Fig. SM1. Example SM4.1, the accuracy test for the 1D Euler equations. The BP limitings
are necessary.
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Fig. SM2. Example SM4.1, the density (left) and velocity (right) obtained with the SW FVS
and 80 cells for the 1D Euler equations.

Example SM4.2 (Double rarefaction problem). The exact solution to this prob-
lem contains a vacuum, so that it is often used to verify the BP property of numerical
methods. The test is solved on a domain [0, 1] until T = 0.3 with the initial data

(ρ, v, p) =

{
(7,−1, 0.2), if x < 0.5,

(7, 1, 0.2), otherwise.

In this test, the AF method based on any kind of point value update mentioned
in this paper gives negative density or pressure without the BP limitings. Figure SM3
shows the density computed with 400 cells and the BP limitings for the cell average
and point value updates. The CFL number is 0.4 for all kinds of point value updates,
except for 0.1 for the VH FVS. One observes that the BP AF method gets good
performance for this example.

Example SM4.3 (Blast wave interaction). The power law reconstruction is useful
to reduce oscillations for the fully-discrete AF method [SM2], thus we would also like
to test its ability for the generalized (semi-discrete) AF method. Figure SM4 shows the
density profiles and corresponding enlarged views obtained by using the BP limitings
and power law reconstruction on a uniform mesh of 800 cells. It is seen that the power
law reconstruction can suppress oscillations, but the results are still more oscillatory
than those using the shock sensor-based limiting. Note that the CFL number reduces
to 0.1 when the power law reconstruction is activated. This kind of reduction of the
CFL number is also observed in other test cases thus we do not recommend using the
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Fig. SM3. Example SM4.2, double rarefaction Riemann problem. The density, velocity, and
pressure are computed by the BP AF methods on a uniform mesh of 400 cells. From left to right:
JS, LLF, SW, and VH FVS.
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Fig. SM4. Example 5.3, blast wave interaction. The density computed with the power law
reconstruction and BP limitings, and the corresponding enlarged views in [0.62, 0.82] are shown in
the bottom row. From left to right: JS, LLF, SW, and VH FVS.

power law reconstruction for the generalized AF methods, which also motivates us to
develop the shock sensor-based limiting.

Example SM4.4 (Double Mach reflection). The computational domain is [0, 3]×
[0, 1] with a reflective wall at the bottom starting from x = 1/6. A Mach 10 shock
is moving towards the bottom wall with an angle of π/6. The pre- and post-shock
states are

(ρ, v1, v2, p) =

{
(1.4, 0, 0, 1), x > 1/6 + (y + 20t)/

√
3,

(8, 8.25 cos(π/6),−8.25 sin(π/6), 116.5), x < 1/6 + (y + 20t)/
√

3.

The reflective boundary condition is applied at the wall, while the exact post-shock
condition is imposed at the left boundary and for the rest of the bottom boundary
(from x = 0 to x = 1/6). At the top boundary, the exact motion of the Mach 10
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Fig. SM5. Example SM4.4, double Mach reflection. The density obtained with the BP limitings
and without or with the shock sensor. From top to bottom: 720 × 240 mesh without shock sensor,
720× 240 mesh with κ = 1, 1440× 480 mesh with κ = 1. 30 equally spaced contour lines from 1.390
to 22.861.
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(right) based on the shock sensor with κ = 1 on the 1440× 480 mesh.

shock is applied and the outflow boundary condition is used at the right boundary.
The results are shown at T = 0.2.

The AF method without the BP limitings gives negative density or pressure near
the reflective location (1/6, 0), so the BP limitings are necessary for this test. The
numerical solutions are computed without or with the shock sensor (κ = 1) on a series
of uniform meshes. The density plots with enlarged views around the double Mach
region are shown in Figure SM5, and the blending coefficients based on the shock
sensor are shown in Figure SM6. When the shock sensor is not activated, the noise
after the bow shock is obvious, and it is damped with the help of the shock sensor.
As mesh refinement, the numerical solutions converge with a good resolution and are
comparable to those in the literature. Compared to the third-order P 2 DG method
using the TVB limiter [SM3] with the same mesh resolution (∆x = ∆y = 1/480), the
roll-ups and vortices are comparable while the AF method uses fewer DoFs (4 versus
6 per cell).
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