
SUPPLEMENTARY MATERIALS: ACTIVE FLUX METHODS FOR1
HYPERBOLIC CONSERVATION LAWS – FLUX VECTOR2

SPLITTING AND BOUND-PRESERVATION∗3

JUNMING DUAN† , WASILIJ BARSUKOW‡ , AND CHRISTIAN KLINGENBERG§4

SM1. 2D flux vector splitting.5

SM1.1. Local Lax-Friedrichs flux vector splitting. This flux vector split-6
ting can be written as7

F ±ℓ =
1

2
(Fℓ(U) ± αℓU),8

where αℓ is determined by9

(α1)i+ 1
2 ,q
=max

s
{∣ϱ1(Us,q)∣} , s ∈ {i − 1

2
, i, i + 1

2
, i + 1, i + 3

2
} , q = j, j + 1

2
,10

(α2)q,j+ 1
2
=max

s
{∣ϱ2(Uq,s)∣} , s ∈ {j − 1

2
, j, j + 1

2
, j + 1, j + 3

2
} , q = i, i + 1

2
,11

and ϱℓ is the spectral radius of the Jacobian matrix ∂Fℓ/∂U .12

SM1.2. Upwind flux vector splitting. The flux can also be split based on13
each characteristic field as follows14

(SM1.1) F ±ℓ =
1

2
(Fℓ(U) ± ∣Jℓ∣U), ∣Jℓ∣ =Rℓ(Λ+ℓ −Λ−ℓ )R−1ℓ ,15

with Jℓ = ∂Fℓ/∂U =RℓΛℓR
−1
ℓ the eigen-decomposition of the Jacobian matrix.16

For the Euler equations, the explicit expressions in the x-direction are17

F ±1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
2γ
α±

ρ
2γ
(α±v1 + a(λ±2 − λ±3))

ρ
2γ
α±v2

ρ
2γ
( 1
2
α± ∥v∥22 + av1(λ±2 − λ±3) + a2

γ−1
(λ±2 + λ±3))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,18

where λ1 = vℓ, λ2 = vℓ +a, λ3 = vℓ −a, α± = 2(γ −1)λ±1 +λ±2 +λ±3 , and a =
√
γp/ρ is the19

sound speed. The expressions in the y-direction can be obtained using the rotational20
invariance.21
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SM2 J.M. DUAN, W. BARSUKOW, AND C. KLINGENBERG

SM1.3. Van Leer-Hänel flux vector splitting for the Euler equations.22
For the x-direction, the flux is split according to the Mach number M = v1/a as23

F1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρaM
ρa2(M2 + 1

γ
)

ρaMv2

ρa3M( 1
2
M2 + 1

γ−1
) + ρaMv2

2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= F +1 +F −1 , F ±1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

± 1
4
ρa(M ± 1)2

± 1
4
ρa(M ± 1)2v1 + p±
± 1

4
ρa(M ± 1)2v2

± 1
4
ρa(M ± 1)2H

⎤⎥⎥⎥⎥⎥⎥⎥⎦

24

with the enthalpy H = (E + p)/ρ, and the pressure-splitting p± = 1
2
(1 ± γM)p.25

SM2. Bound-preserving property of intermediate states. Similar to the26
proofs in [SM18, SM19], the following lemmas hold.27

Lemma SM2.1. For the scalar conservation laws (3.2), the intermediate state ũ =28
1
2
(uL + uR) + 1

2α
(fℓ(uL) − fℓ(uR)) stays in G (4.1) if α ⩾max{ϱℓ(uL), ϱℓ(uR)}.29

Proof. The partial derivatives of the intermediate state satisfy30

∂ũ(uL, uR)
∂uL

= 1

2
(1 + f ′ℓ(uL)

α
) ⩾ 0, ∂ũ(uL, uR)

∂uR
= 1

2
(1 − f ′ℓ(uR)

α
) ⩾ 0.31

As ũ(m0,m0) =m0, ũ(M0,M0) =M0, it holds m0 ⩽ ũ ⩽M0.32

Lemma SM2.2. For the Euler equations, the intermediate state Ũ = 1
2
(UL+UR)+33

1
2α
(Fℓ(UL) −Fℓ(UR)) stays in G (4.2) if α ⩾max{ϱℓ(UL), ϱℓ(UR)}.34

Proof. For the Euler equations, as the intermediate state is a convex combination35
of UL − 1

α
Fℓ(UL) and UR + 1

α
Fℓ(UR), we only need to show that the U ± 1

α
Fℓ(U)36

belongs to G. The density component (ρ ± (ρvℓ)/α) is positive since α > ∣vℓ∣. The37
recovered internal energy is38

ρe(U ± 1

α
Fℓ(U)) = E (U ±

1

α
Fℓ(U)) −

∥ρv (U ± 1
α
Fℓ(U))∥

2

2

2ρ (U ± 1
α
Fℓ(U))

39

= (1 − p2

2(α ± vℓ)2ρ2e
)(1 ± vℓ

α
)ρe,40

so that one has ρe (U ± 1
α
Fℓ(U)) > 0 ⇐⇒ p2

2ρ2e
< (α± vℓ)2 ⇐⇒ γ−1

2γ
a2 < (α± vℓ)2 for41

the perfect gas EOS, which holds as α ⩾ ∣vℓ∣ + a.42

SM3. 1D bound-preserving active flux methods. For the scalar conser-43
vation law (2.2), its solutions satisfy a strict maximum principle (MP) [SM5], i.e.,44

45

(SM3.1) G = {u ∣ m0 ⩽ u ⩽M0} , m0 =min
x

u0(x), M0 =max
x

u0(x).46

For the compressible Euler equations, the admissible state set is47

(SM3.2) G = {U = (ρ, ρv,E) ∣ ρ > 0, p = (γ − 1) (E − (ρv)2/(2ρ)) > 0} .48

which is convex, see e.g. [SM21].49
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SUPPLEMENTARY MATERIALS: BOUND-PRESERVING ACTIVE FLUX SM3

SM3.1. Convex limiting for the cell average. This section presents a convex50
limiting approach to achieve the BP property of the cell average update. The low-51
order scheme is chosen as the first-order LLF scheme52

U
L
i = U

n

i − µi (F̂ L
i+ 1

2
− F̂ L

i− 1
2
) , µi =∆tn/∆xi,53

F̂ L
i+ 1

2
= F LLF(Un

i ,U
n

i+1) =
1

2
(F (Un

i ) +F (U
n

i+1)) −
αi+ 1

2

2
(Un

i+1 −U
n

i ) ,54

αi+ 1
2
=max{ϱ(Un

i ), ϱℓ(U
n

i+1)},55

where ϱ is the spectral radius of ∂F /∂U . Note that here αi+ 1
2

is not the same as56

the one in the LLF FVS (2.12). Following [SM8], the first-order LLF scheme can be57
rewritten as58

(SM3.3) U
L
i = [1 − µi (αi− 1

2
+ αi+ 1

2
)]Un

i + µiαi− 1
2
Ũi− 1

2
+ µiαi+ 1

2
Ũi+ 1

2
,59

with the first-order LLF intermediate states defined as60

(SM3.4) Ũi± 1
2
∶= 1

2
(Un

i +U
n

i±1) ±
1

2αi± 1
2

[F (Un

i ) −F (U
n

i±1)] .61

The proofs of Ũi± 1
2
∈ G are similar to Section SM2, for the scalar case and Euler62

equations.63

Lemma SM3.1. If the time step size ∆tn satisfies64

(SM3.5) ∆tn ⩽ ∆xi

αi− 1
2
+ αi+ 1

2

,65

then (SM3.3) is a convex combination, and the first-order LLF scheme is BP.66

The proof (see e.g. [SM8, SM15]) relies on U
n

i , Ũi± 1
2
∈ G and the convexity of G.67

Upon defining the anti-diffusive flux ∆F̂i± 1
2
∶= F̂ H

i± 1
2

−F̂ L
i± 1

2

with F̂ H
i± 1

2

∶= F (Ui± 1
2
), a68

forward-Euler step applied to the semi-discrete high-order scheme for the cell average69
(2.4) can be written as70

U
H
i = U

n

i − µi(F̂ H
i+ 1

2
− F̂ H

i− 1
2
) = Un

i − µi(F̂ L
i+ 1

2
− F̂ L

i− 1
2
) − µi(∆F̂i+ 1

2
−∆F̂i− 1

2
)71

= [1 − µi (αi− 1
2
+ αi+ 1

2
)]Un

i + µiαi− 1
2
Ũ H,+

i− 1
2

+ µiαi+ 1
2
Ũ H,−

i+ 1
2

,(SM3.6)72

Ũ H,+
i− 1

2

∶=
⎛
⎝
Ũi− 1

2
+
∆F̂i− 1

2

αi− 1
2

⎞
⎠
, Ũ H,−

i+ 1
2

∶=
⎛
⎝
Ũi+ 1

2
−
∆F̂i+ 1

2

αi+ 1
2

⎞
⎠
.73

With the low-order scheme (SM3.3) and high-order scheme (SM3.6) having the same74
abstract form, one can blend them to define the limited scheme for the cell average75
as76

(SM3.7) U
Lim
i = [1 − µi (αi− 1

2
+ αi+ 1

2
)]Un

i + µiαi− 1
2
Ũ Lim,+

i− 1
2

+ µiαi+ 1
2
Ũ Lim,−

i+ 1
2

,77

where the limited intermediate states are78

(SM3.8) Ũ Lim,∓
i± 1

2

= Ũi± 1
2
∓
∆F̂ Lim

i± 1
2

αi± 1
2

∶= Ũi± 1
2
∓
θi± 1

2
∆F̂i± 1

2

αi± 1
2

,79

and θi± 1
2
∈ [0,1] are the blending coefficients. The limited scheme (SM3.7) reduces to80

the first-order LLF scheme if θi± 1
2
= 0, and recovers the high-order AF scheme (2.4)81

when θi± 1
2
= 1.82
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SM4 J.M. DUAN, W. BARSUKOW, AND C. KLINGENBERG

SM3.1.1. Application to scalar conservation laws. Similar to the 2D case,83
the convex limiting is applied to scalar conservation laws (2.2), such that the limited84
cell averages (SM3.7) satisfy the MP umin

i ⩽ ūLimi ⩽ umax
i , where umin

i =minN , umax
i =85

maxN , and N will be defined later. The limited anti-diffusive flux is86

∆f̂Lim
i+ 1

2
=
⎧⎪⎪⎨⎪⎪⎩

min{∆f̂i+ 1
2
, αi+ 1

2
(ũi+ 1

2
− umin

i ), αi+ 1
2
(umax

i+1 − ũi+ 1
2
)} , if ∆f̂i+ 1

2
⩾ 0,

max{∆f̂i+ 1
2
, αi+ 1

2
(umin

i+1 − ũi+ 1
2
), αi+ 1

2
(ũi+ 1

2
− umax

i )} , otherwise.
87

Finally, the limited numerical flux is88

(SM3.9) f̂Lim
i+ 1

2
= f̂L

i+ 1
2
+∆f̂Lim

i+ 1
2
.89

If considering the global MP, N = ⋃i{ūn
i , u

n
i+ 1

2

}. For the local MP, one can choose90

N = min{ūn
i , ũi− 1

2
, ũi+ 1

2
, ūn

i−1, ū
n
i+1}, which consists of the neighboring cell averages91

and intermediate states.92

SM3.1.2. Application to the compressible Euler equations. This section93
aims at enforcing the positivity of density and pressure. To avoid the effect of the94
round-off error, we need to choose the desired lower bounds. Denote the lowest density95
and pressure in the domain by96

(SM3.10) ερ ∶=min
i
{Un,ρ

i ,Un,ρ

i+ 1
2

}, εp ∶=min
i
{p(Un

i ), p(Un
i+ 1

2
)},97

where U∗,ρ and p(U∗) denote the density component and pressure recovered from98
U∗, respectively. The limiting (SM3.8) is feasible if the constraints are satisfied by99
the first-order LLF intermediate states (SM3.4), thus the lower bounds can be defined100
as101

ερi ∶=min{10−13, ερ, Ũρ

i− 1
2

, Ũρ

i+ 1
2

}, εpi ∶=min{10−13, εp, p(Ũi− 1
2
), p(Ũi+ 1

2
)}.102

103
i) Positivity of density. The first step is to impose the density positivity104

Ũ Lim,±,ρ
i+ 1

2

⩾ ε̄ρ
i+ 1

2

∶= min{ερi , ε
ρ
i+1}. Similarly to the derivation of the scalar case, the105

corresponding density component of the limited anti-diffusive flux is106

∆F̂ Lim,∗,ρ
i+ 1

2

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min{∆F̂ ρ

i+ 1
2

, αi+ 1
2
(Ũρ

i+ 1
2

− ε̄ρ
i+ 1

2

)} , if ∆F̂ ρ

i+ 1
2

⩾ 0,

max{∆F̂ ρ

i+ 1
2

, αi+ 1
2
(ε̄ρ

i+ 1
2

− Ũρ

i+ 1
2

)} , otherwise.
107

Then the density component of the limited flux is F̂ Lim,∗,ρ
i+ 1

2

= F̂ L,ρ
i+ 1

2

+∆F̂ Lim,∗,ρ
i+ 1

2

, with108

the other components remaining the same as F̂ H
i+ 1

2

.109

ii) Positivity of pressure. The second step is to enforce pressure positivity110
p(Ũ Lim,±

i+ 1
2

) ⩾ ε̄p
i+ 1

2

∶=min{εpi , ε
p
i+1}. Since111

Ũ Lim,±
i+ 1

2

= Ũi+ 1
2
±
θi+ 1

2
∆F̂ Lim,∗

i+ 1
2

αi+ 1
2

, ∆F̂ Lim,∗
i+ 1

2

= F̂ Lim,∗
i+ 1

2

− F̂ L
i+ 1

2
,112

the constraints lead to two inequalities113

(SM3.11) Ai+ 1
2
θ2i+ 1

2
±Bi+ 1

2
θi+ 1

2
⩽ Ci+ 1

2
,114
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with the coefficients115

Ai+ 1
2
= 1

2
(∆F̂ Lim,∗,ρv

i+ 1
2

)
2

−∆F̂ Lim,∗,ρ
i+ 1

2

∆F̂ Lim,∗,E
i+ 1

2

,116

Bi+ 1
2
= αi+ 1

2
(∆F̂ Lim,∗,ρ

i+ 1
2

ŨE
i+ 1

2
+ Ũρ

i+ 1
2

∆F̂ Lim,∗,E
i+ 1

2

−∆F̂ Lim,∗,ρv
i+ 1

2

Ũρv

i+ 1
2

− ε̃∆F̂ Lim,∗,ρ
i+ 1

2

) ,117

Ci+ 1
2
= α2

i+ 1
2
(Ũρ

i+ 1
2

ŨE
i+ 1

2
− 1

2
(Ũρv

i+ 1
2

)
2

− ε̃Ũρ

i+ 1
2

) , ε̃ = ε̄p
i+ 1

2

/(γ − 1).118

Following [SM12], the inequalities (SM3.11) hold under the linear sufficient condition119

(max{0,Ai+ 1
2
} + ∣Bi+ 1

2
∣) θi+ 1

2
⩽Ci+ 1

2
,120

if making use of θ2
i+ 1

2

⩽ θi+ 1
2
, θi+ 1

2
∈ [0,1]. Thus the coefficient can be chosen as121

θi+ 1
2
=min

⎧⎪⎪⎨⎪⎪⎩
1,

Ci+ 1
2

max{0,Ai+ 1
2
} + ∣Bi+ 1

2
∣

⎫⎪⎪⎬⎪⎪⎭
,122

and the final limited numerical flux is123

(SM3.12) F̂ Lim,∗∗
i+ 1

2

= F̂ L
i+ 1

2
+ θi+ 1

2
∆F̂ Lim,∗

i+ 1
2

.124

SM3.1.3. Shock sensor-based limiting. In 1D, the Jameson’s shock sensor125
[SM11] is126

(φ1)i =
∣p̄i+1 − 2p̄i + p̄i−1∣
∣p̄i+1 + 2p̄i + p̄i−1∣

,127

and the modified Ducros’ shock sensor reduced from the 2D case [SM6] is128

(φ2)i =max{− v̄i+1 − v̄i−1
∣v̄i+1 − v̄i−1∣ + 10−40

, 0} .129

Note that v̄i and p̄i are the velocity and pressure recovered from the cell average U i.130
The blending coefficient is designed as131

θsi+ 1
2
= exp(−κ(φ1)i+ 1

2
(φ2)i+ 1

2
) ∈ (0,1],132

(φs)i+ 1
2
=max{(φs)i, (φs)i+1} , s = 1,2,133

where the problem-dependent parameter κ adjusts the strength of the limiting, and134
its optimal choice needs further investigation. The final limited numerical flux is135

(SM3.13) F̂ Lim
i+ 1

2
= F̂ L

i+ 1
2
+ θsi+ 1

2
∆F̂ Lim,∗∗

i+ 1
2

,136

with ∆F̂ Lim,∗∗
i+ 1

2

= F̂ Lim,∗∗
i+ 1

2

− F̂ L
i+ 1

2

, and F̂ Lim,∗∗
i+ 1

2

given in (SM3.12).137

SM3.2. Scaling limiter for point value. A first-order LLF scheme for the138
point value update can be written as139

(SM3.14) U L
i+ 1

2
= Un

i+ 1
2
− 2∆tn

∆xi +∆xi+1
(F̂ L

i+1(Un
i+ 1

2
,Un

i+ 3
2
) − F̂ L

i (Un
i− 1

2
,Un

i+ 1
2
)) ,140
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with the numerical flux141

F̂ L
i = F̂ LLF(Un

i− 1
2
,Un

i+ 1
2
) = 1

2
(F (Un

i− 1
2
) +F (Un

i+ 1
2
)) − αi

2
(Un

i+ 1
2
−Un

i− 1
2
) ,142

αi =max{ϱ(Un
i− 1

2
), ϱ(Un

i+ 1
2
)}.143

Similarly to Lemma SM3.1, it is straightforward to obtain the following Lemma.144

Lemma SM3.2. The LLF scheme for the point value (SM3.14) is BP under the145
CFL condition146

(SM3.15) ∆tn ⩽ ∆xi +∆xi+1

2(αi + αi+1)
.147

The limited solution is obtained by blending the high-order AF scheme (2.5) with148
the forward-Euler scheme and the LLF scheme (SM3.14) as U Lim

i+ 1
2

= θi+ 1
2
U H

i+ 1
2

+ (1 −149

θi+ 1
2
)U L

i+ 1
2

, such that U Lim
i+ 1

2

∈ G.150

SM3.2.1. Application to scalar conservation laws. This section enforces151
the MP umin

i+ 1
2

⩽ uLim
i+ 1

2

⩽ umax
i+ 1

2

using the scaling limiter [SM18]. The limited solution is152

(SM3.16) uLimi+ 1
2
= θi+ 1

2
uHi+ 1

2
+ (1 − θi+ 1

2
)uLi+ 1

2
,153

with the coefficient154

θi+ 1
2
=min

⎧⎪⎪⎨⎪⎪⎩
1,

RRRRRRRRRRRR

uL
i+ 1

2

− umin
i+ 1

2

uL
i+ 1

2

− uH
i+ 1

2

RRRRRRRRRRRR
,

RRRRRRRRRRRR

umax
i+ 1

2

− uL
i+ 1

2

uH
i+ 1

2

− uL
i+ 1

2

RRRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭
.155

156
The bounds are determined by umin

i+ 1
2

= minN , umax
i+ 1

2

= maxN , where the set N157

consists of all the DoFs in the domain, i.e., N = ⋃i{ūn
i , u

n
i+ 1

2

} for the global MP. One158

can also consider the local MP, e.g., N = {un
i− 1

2

, un
i+ 1

2

, un
i+ 3

2

}, which at least includes159

all the DoFs appeared in the first-order LLF scheme (SM3.14).160

SM3.2.2. Application to the compressible Euler equations. The limiting161
consists of two steps.162

i) Positivity of density. First, the high-order solution U H
i+ 1

2

is modified as163

U Lim,∗
i+ 1

2

, such that U Lim,∗,ρ
i+ 1

2

⩾ ερ
i+ 1

2

∶= min{10−13, ερ,U L,ρ
i+ 1

2

} with ερ given in (SM3.10).164

Solving the inequality yields165

θ∗i+ 1
2
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U L,ρ
i+ 1

2

− ερ
i+ 1

2

U L,ρ
i+ 1

2

−U H,ρ
i+ 1

2

, if U H,ρ
i+ 1

2

< ερ
i+ 1

2

,

1, otherwise.

166

Then the density component of the limited solution is U Lim,∗,ρ
i+ 1

2

= θ∗
i+ 1

2

U H,ρ
i+ 1

2

+ (1 −167

θ∗
i+ 1

2

)U L,ρ
i+ 1

2

, with the other components remaining the same as U H
i+ 1

2

.168

ii) Positivity of pressure. Then the limited solution U Lim,∗
i+ 1

2

is modified as U Lim
i+ 1

2

,169

such that it gives positive pressure, i.e., p(U Lim
i+ 1

2

) ⩾ εp
i+ 1

2

∶= min{10−13, εp, p(U L
i+ 1

2

)},170

with εp given in (SM3.10). Let the final limited solution be171

(SM3.17) U Lim
i+ 1

2
= θ∗∗i+ 1

2
U Lim,∗

i+ 1
2

+ (1 − θ∗∗i+ 1
2
)U L

i+ 1
2
.172
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The pressure is a concave function of the conservative variables (see e.g. [SM20]), so173

that p(U Lim
i+ 1

2

) ⩾ θ∗∗
i+ 1

2

p(U Lim,∗
i+ 1

2

) + (1 − θ∗∗
i+ 1

2

)p(U L
i+ 1

2

) based on Jensen’s inequality and174

U Lim,∗,ρ
i+ 1

2

> 0, U L,ρ
i+ 1

2

> 0, θ∗∗
i+ 1

2

∈ [0,1]. Thus the coefficient can be chosen as175

θ∗∗i+ 1
2
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(U L
i+ 1

2

) − εp
i+ 1

2

p(U L
i+ 1

2

) − p(U Lim,∗
i+ 1

2

)
, if p(U Lim,∗

i+ 1
2

) < εp
i+ 1

2

,

1, otherwise.

176

Theorem SM3.3. If the initial numerical solution U
0

i ,U
0
i+ 1

2

∈ G for all i, and177

the time step size satisfies (SM3.5) and (SM3.15), then the AF methods (2.4)-(2.5)178
equipped with the SSP-RK3 (2.14) and the BP limitings179
● (SM3.9) and (SM3.16) preserve the maximum principle for scalar case;180
● (SM3.12) and (SM3.17) preserve positive density and pressure for the Euler equa-181

tions.182

Remark SM3.4. For uniform meshes, and if taking the maximal spectral radius183
of ∂F /∂U in the domain as ∥ϱ∥

∞
, the following CFL condition184

∆tn ⩽ ∆x

2 ∥ϱ∥
∞

185

fulfills the time step size constraints (SM3.5) and (SM3.15).186

SM4. Additional numerical results.187

Example SM4.1 (1D accuracy test for the Euler equations). This test is used to188
examine the accuracy of using different point value updates, following the setup in189
[SM1]. The domain is [−1,1] with periodic boundary conditions. The adiabatic in-190
dex is chosen as γ = 3 so that the characteristic equations of two Riemann invariants191
w = u±a are wt+wwx = 0. The initial condition is ρ0(x) = 1+ζ sin(πx), v0 = 0, p0 = ργ0192
and ζ ∈ (0,1) controls the range of the density. The exact solution can be obtained193
by the method of characteristics, given by ρ(x, t) = 1

2
(ρ0(x1) + ρ0(x2)) , v(x, t) =194 √

3 (ρ(x, t) − ρ0(x1)), where x1 and x2 are solved from the nonlinear equations x +195 √
3ρ0(x1)t − x1 = 0, x −

√
3ρ0(x2)t − x2 = 0. The problem is solved until T = 0.1 with196

ζ = 1 − 10−7.197
As ζ = 1−10−7, the minimum density and pressure are 10−7 and 10−21 respectively,198

so that the BP limitings are necessary to run this test case. The maximal CFL199
numbers allowing stable simulations are obtained experimentally, which are around200
0.47,0.43,0.32,0.18 for the JS, LLF, SW, and VH FVS, respectively, thus we run201
the test with the same CFL number as 0.18. Figure SM1 shows the errors and202
corresponding convergence rates for the conservative variables in the ℓ1 norm. It is203
seen that the JS and all the FVS except for the SW FVS achieve the designed third-204
order accuracy, showing that our BP limitings do not affect the high-order accuracy.205
To examine the reason why the scheme based on the SW FVS is only second-order206
accurate, Figure SM2 plots the density and velocity profiles obtained using the SW207
FVS with 80 cells. One can observe some defects in the density when the velocity208
is zero, similar to the “sonic point glitch” in the literature [SM16]. One possible209
reason is that the SW FVS is based on the absolute value of the eigenvalues, and the210
corresponding mass flux is not differentiable when the velocity is zero [SM17]. Such211
an issue remains to be further explored in the future.212
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Fig. SM1: Example SM4.1, the accuracy test for the 1D Euler equations. The BP
limitings are necessary.
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Fig. SM2: Example SM4.1, the density (left) and velocity (right) obtained with the
SW FVS and 80 cells for the 1D Euler equations.

Example SM4.2 (Double rarefaction problem). The exact solution to this problem213
contains a vacuum, so that it is often used to verify the BP property of numerical214
methods. The test is solved on a domain [0,1] until T = 0.3 with the initial data215

(ρ, v, p) =
⎧⎪⎪⎨⎪⎪⎩

(7,−1,0.2), if x < 0.5,
(7,1,0.2), otherwise.

216

In this test, the AF method based on any kind of point value update mentioned217
in this paper gives negative density or pressure without the BP limitings. Figure SM3218
shows the density computed with 400 cells and the BP limitings for the cell average219
and point value updates. The CFL number is 0.4 for all kinds of point value updates,220
except for 0.1 for the VH FVS. One observes that the BP AF method gets good221
performance for this example.222

Example SM4.3 (Blast wave interaction). The power law reconstruction is useful223
to reduce oscillations for the fully-discrete AF method [SM3], thus we would also like224
to test its ability for the generalized (semi-discrete) AF method. Figure SM4 shows the225
density profiles and corresponding enlarged views obtained by using the BP limitings226
and power law reconstruction on a uniform mesh of 800 cells. It is seen that the power227
law reconstruction can suppress oscillations, but the results are still more oscillatory228
than those using the shock sensor-based limiting. Note that the CFL number reduces229

This manuscript is for review purposes only.



SUPPLEMENTARY MATERIALS: BOUND-PRESERVING ACTIVE FLUX SM9

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

6

7

ρ

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

6

7

ρ

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

6

7

ρ

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

6

7

ρ

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

v

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0
v

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

v

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

v

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

0.00

0.05

0.10

0.15

0.20

p

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

0.00

0.05

0.10

0.15

0.20

p

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

0.00

0.05

0.10

0.15

0.20

p

average

point

exact

0.0 0.2 0.4 0.6 0.8 1.0

x

0.00

0.05

0.10

0.15

0.20

p

average

point

exact

Fig. SM3: Example SM4.2, double rarefaction Riemann problem. The density, ve-
locity, and pressure are computed by the BP AF methods on a uniform mesh of 400
cells. From left to right: JS, LLF, SW, and VH FVS.

to 0.1 when the power law reconstruction is activated. This kind of reduction of the230
CFL number is also observed in other test cases thus we do not recommend using the231
power law reconstruction for the generalized AF methods, which also motivates us to232
develop the shock sensor-based limiting.233
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Fig. SM4: Example 5.3, blast wave interaction. The density computed with the
power law reconstruction and BP limitings, and the corresponding enlarged views in
[0.62,0.82] are shown in the bottom row. From left to right: JS, LLF, SW, and VH
FVS.

Example SM4.4 (Double Mach reflection). The computational domain is [0,3] ×234
[0,1] with a reflective wall at the bottom starting from x = 1/6. A Mach 10 shock is235
moving towards the bottom wall with an angle of π/6. The pre- and post-shock states236
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are237

(ρ, v1, v2, p) =
⎧⎪⎪⎨⎪⎪⎩

(1.4, 0, 0, 1), x ⩾ 1/6 + (y + 20t)/
√
3,

(8, 8.25 cos(π/6),−8.25 sin(π/6), 116.5), x < 1/6 + (y + 20t)/
√
3.

238

The reflective boundary condition is applied at the wall, while the exact post-shock239
condition is imposed at the left boundary and for the rest of the bottom boundary240
(from x = 0 to x = 1/6). At the top boundary, the exact motion of the Mach 10 shock241
is applied and the outflow boundary condition is used at the right boundary. The242
results are shown at T = 0.2.243

The AF method without the BP limitings gives negative density or pressure near244
the reflective location (1/6,0), so the BP limitings are necessary for this test. The245
numerical solutions are computed without or with the shock sensor (κ = 1) on a series246
of uniform meshes. The density plots with enlarged views around the double Mach247
region are shown in Figure SM5, and the blending coefficients based on the shock248
sensor are shown in Figure SM6. When the shock sensor is not activated, the noise249
after the bow shock is obvious, and it is damped with the help of the shock sensor.250
As mesh refinement, the numerical solutions converge with a good resolution and are251
comparable to those in the literature. Compared to the third-order P 2 DG method252
using the TVB limiter [SM4] with the same mesh resolution (∆x = ∆y = 1/480), the253
roll-ups and vortices are comparable while the AF method uses fewer DoFs (4 versus254
6 per cell).255
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Fig. SM5: Example SM4.4, double Mach reflection. The density obtained with the
BP limitings and without or with the shock sensor. From top to bottom: 720 × 240
mesh without shock sensor, 720 × 240 mesh with κ = 1, 1440 × 480 mesh with κ = 1.
30 equally spaced contour lines from 1.390 to 22.861.
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