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ACTIVE FLUX METHODS FOR HYPERBOLIC CONSERVATION
LAWS—FLUX VECTOR SPLITTING AND

BOUND-PRESERVATION\rightarrow 

JUNMING DUAN†, WASILIJ BARSUKOW‡, AND CHRISTIAN KLINGENBERG§

Abstract. The active flux (AF) method is a compact high-order finite volume method that
simultaneously evolves cell averages and point values at cell interfaces. Within the method of lines
framework, the existing Jacobian splitting-based point value update incorporates the upwind idea
but su!ers from a stagnation issue for nonlinear problems due to inaccurate estimation of the up-
wind direction, and also from a mesh alignment issue partially resulting from decoupled point value
updates. This paper proposes to use flux vector splitting for the point value update, o!ering a
natural and uniform remedy to those two issues. To improve robustness, this paper also develops
bound-preserving (BP) AF methods for hyperbolic conservation laws. Two cases are considered:
preservation of the maximum principle for the scalar case and preservation of positive density and
pressure for the compressible Euler equations. The update of the cell average is rewritten as a convex
combination of the original high-order fluxes and robust low-order (local Lax–Friedrichs or Rusanov)
fluxes, and the desired bounds are enforced by choosing the right amount of low-order fluxes. A
similar blending strategy is used for the point value update. In addition, a shock sensor–based lim-
iting is proposed to enhance the convex limiting for the cell average, which can suppress oscillations
well. Several challenging tests are conducted to verify the robustness and e!ectiveness of the BP AF
methods, including flow past a forward-facing step and high Mach number jets.
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convex limiting, shock sensor
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1. Introduction. This paper focuses on the development of robust active flux
(AF) methods for hyperbolic conservation laws. The AF method is a new finite vol-
ume method [17, 16, 18, 36] that was inspired by [39]. Apart from cell averages, it
incorporates additional degrees of freedom (DoFs) as point values located at the cell
interfaces, evolved simultaneously with the cell average. The original AF method em-
ploys a globally continuous representation of the numerical solution using a piecewise
quadratic reconstruction, leading naturally to a third-order accurate method with a
compact stencil. The introduction of point values at the cell interfaces avoids the us-
age of Riemann solvers as in usual Godunov methods, because the numerical solution
is continuous across the cell interface and the numerical flux is available directly.

The independence of the point value update adds flexibility to the AF methods.
Based on the evolution of the point value, there are generally two kinds of AF methods.
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A812 J. DUAN, W. BARSUKOW, AND C. KLINGENBERG

The original one uses exact or approximate evolution operators and Simpson’s rule for
flux quadrature in time; i.e., it does not require time integration methods like Runge–
Kutta methods. Exact evolution operators have been studied for linear equations
in [8, 19, 18, 39]. Approximate evolution operators have been explored for Burgers’
equation [17, 16, 36, 5], the compressible Euler equations in one spatial dimension
[17, 27, 5], and hyperbolic balance laws [7, 6], etc. One of the advantages of the AF
method over standard finite volume methods is its structure-preserving property. For
instance, it preserves the vorticity and stationary states for multidimensional acoustic
equations [8], and it is naturally well-balanced for acoustics with gravity [7].

Since it may not be convenient to derive exact or approximate evolution operators
for nonlinear systems, especially in multidimensions, another kind of generalized AF
method was presented in [1, 2, 3]. A method of lines was used, where the cell average
and point value updates are written in semidiscrete form and advanced in time with
time integration methods. In the point values update, the Jacobian matrix is split
based on the sign of the eigenvalues (Jacobian splitting (JS)), and upwind-biased sten-
cils are used to compute the approximation of derivatives. There are some deficiencies
of the JS-based AF methods, e.g., the stagnation issue [27] for nonlinear problems,
and mesh alignment issue in 2D to be introduced in subsection 3.2. Some remedies
are suggested for the stagnation issue, e.g., using discontinuous reconstruction [27] or
evaluating the upwind direction using more neighboring information [5].

Solutions to hyperbolic conservation laws often stay in an admissible state set G,
also called the invariant domain. For instance, the solutions to initial value problems of
scalar conservation laws satisfy a strict maximum principle (MP) [14]. Physically, both
the density and pressure in the solutions to the compressible Euler equations should
stay positive. It is desired to conceive so-called bound-preserving (BP) methods, i.e.,
those guaranteeing that the numerical solutions at a later time will stay in G, if the
initial numerical solutions belong to G. The BP property of numerical methods is very
important for both theoretical analysis and numerical stability. Many BP methods
have been developed in the past few decades, e.g., a series of works by Shu and
collaborators [46, 28, 43], a recent general framework on BP methods [42], and the
convex limiting approach [21, 25, 30], which can be traced back to the flux-corrected
transport schemes for scalar conservation laws [13, 23, 33, 31]. The previous studies
on the AF methods pay limited attention to high-speed flows, or problems involving
strong discontinuities, with some e!orts on the limiting for the point value update; see,
e.g., [5, 27, 10]. Although those limitings can reduce oscillations, the new cell average
may violate the bound even for linear advection [5, 27], and it is not straightforward to
extend them to the multidimensional case. In [10, 9], the authors proposed to adopt
a discontinuous reconstruction based on the scaling limiter [46]. The flux is computed
based on the limited point values, resulting in BP AF methods for scalar conservation
laws. In a very recent paper, the multidimensional optimal order detection–based [11]
stabilization was adopted to achieve the BP property [4] in an a posteriori fashion.

This paper presents a new way for the point value update to cure the stagnation
and mesh alignment issues, develops suitable BP limitings for the AF methods, and
proposes a shock sensor–based limiting to further suppress oscillations. The main
contributions and findings in this work can be summarized as follows.

i). We propose to employ the flux vector splitting (FVS) for the point value
update, which can cure both the stagnation and the mesh alignment issues
e!ectively, because the FVS couples the neighboring information in a uniform
and natural way. The AF method based on the FVS is also shown to give
better results than the JS, especially the local Lax–Friedrichs (LLF) FVS, in
terms of the CFL number and shock-capturing ability.
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BOUND-PRESERVING ACTIVE FLUX A813

ii). We develop BP limitings for both the cell average and point value by blending
the high-order AF methods with the first-order LLF method in a convex
combination. The main idea is to retain as much as possible of the high-
order method while guaranteeing the numerical solutions to be BP, and the
blending coe!cients are computed by enforcing the bounds. We show that
using a suitable time step size and BP limitings, the BP AF methods satisfy
the MP for scalar conservation laws and preserve positive density and pressure
for the compressible Euler equations.

iii). We design a shock sensor–based limiting, which helps to reduce oscillations by
detecting shock strength. It is shown to strongly improve the shock-capturing
ability in the numerical tests.

iv). Several challenging numerical tests are used to demonstrate the robustness
and e""ectiveness of our BP AF methods. Moreover, for the forward-facing
step problem, our BP AF method captures small-scale features better com-
pared to the third-order discontinuous Galerkin (DG) method with the total
variation bounded (TVB) limiter on the same mesh resolution, while using
fewer DoFs, demonstrating its e!ciency and potential for high Mach number
flows.

The remainder of this paper is organized as follows. Section 2 introduces the 1D
AF methods based on the FVS for the point value update. Section 3 extends our FVS-
based AF methods to the 2D case. To design BP methods, section 4 describes our
convex limiting approach for the cell average and the limiting for the point value. The
shock sensor–based limiting is also proposed in section 4 to suppress oscillations. The
1D limitings can be reduced from the 2D case, and more details are given in section
SM3 in the supplementary material. Some numerical tests are conducted in section
5 to experimentally demonstrate the accuracy, BP properties, and shock-capturing
ability of the methods. Section 6 concludes the paper with final remarks.

2. 1D active flux methods. This section presents the generalized AF methods
using the method of lines for the 1D hyperbolic conservation laws

U t +F (U)x = 0, U(x,0) =U0(x),(2.1)

where U \rightarrow Rm is the vector of m conservative variables, F \rightarrow Rm is the flux function,
and U0(x) is assumed to be initial data of bounded variation. Two cases are of
particular interest. The first is a scalar conservation law (m= 1)

ut + f(u)x = 0, u(x,0) = u0(x).(2.2)

The second case is that of compressible Euler equations of gas dynamics with U =
(\omega ,\omega v,E)\rightarrow and F = (\omega v,\omega v2+p, (E+p)v)\rightarrow , where \omega denotes the density, v the velocity,
p the pressure, and E = 1

2\omega v
2+\omega e the total energy with e the specific internal energy.

The perfect gas equation of state p = (\varepsilon \uparrow 1)\omega e is used to close the system with the
adiabatic index \varepsilon > 1. Note that this paper uses bold symbols to refer to vectors and
matrices such that they are easier to distinguish from scalars.

Assume that a 1D computational domain is divided into N cells Ii = [xi\uparrow 1

2

, xi+ 1

2

]
with cell centers xi = (xi\uparrow 1

2

+ xi+ 1

2

)/2 and cell sizes \#xi = xi+ 1

2

\uparrow xi\uparrow 1

2

, i= 1, . . . ,N .
The DoFs of the AF methods are the approximations to cell averages of the conser-
vative variable as well as point values at the cell interfaces, allowing some freedom
in the choice of the point values, e.g., conservative variables, primitive variables, en-
tropy variables, etc. This paper only considers using the conservative variables, and
the DoFs are denoted by
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A814 J. DUAN, W. BARSUKOW, AND C. KLINGENBERG

U i(t) =
1

!xi

\Biggr) 

Ii

Uh(x, t) dx, U i+ 1

2

(t) =Uh(xi+ 1

2

, t),(2.3)

where Uh(x, t) is the numerical solution. The cell average is updated by integrating
(2.1) over Ii in the following semidiscrete finite volume manner:

dU i

dt
=\rightarrow 1

!xi

\Biggl[ 
F (U i+ 1

2

)\rightarrow F (U i\rightarrow 1

2

)
\Biggr] 
.(2.4)

Thus, the accuracy of (2.4) is determined by the approximation accuracy of the point
values. It has so far (e.g., in [2]) been considered su""cient to update the point values
with any finite-di\#erence-like formula

dU i+ 1

2

dt
=\rightarrow R

\Biggl\lfloor 
U i+ 1

2
\rightarrow l1(t),U i+1\rightarrow l1(t), · · · ,U i+l2(t),U i+ 1

2
+l2(t)

\Biggr\rfloor 
, l1, l2 \leftrightsquigarrow 0,(2.5)

with R a consistent approximation of \omega F /\omega x at xi+ 1

2

, as long as it gave rise to a
stable method. This paper explores further conditions on R for nonlinear problems.

2.1. Stagnation issue when using Jacobian splitting. Let us first briefly
describe the point value update based on the JS [2], which reads

dU i+ 1

2

dt
=\rightarrow 

\Biggl[ 
J+(U i+ 1

2

)D+
i+ 1

2

(U) + J\rightarrow (U i+ 1

2

)D\rightarrow 
i+ 1

2

(U)
\Biggr] 
,(2.6)

where the splitting of the Jacobian matrix J = J+ + J\rightarrow is defined as

J± =R!±R\rightarrow 1
, !± =diag{\varepsilon ±

1 , . . . ,\varepsilon 
±
m},

based on the eigendecomposition \omega F /\omega U = R!R\rightarrow 1, ! = diag{\varepsilon 1, . . . ,\varepsilon m}, where
\varepsilon 1, . . . ,\varepsilon m are the eigenvalues, with the columns of R the corresponding eigenvectors,
and a

+ =max{a,0}, a\rightarrow =min{a,0}. To derive the approximation of the derivatives
in (2.6), one can first obtain a high-order reconstruction for U in the upwind cell,
and then di\#erentiate the reconstructed polynomial. As an example, a parabolic
reconstruction in cell Ii is

U para,1(x) =\rightarrow 3(2U i \rightarrow U i\rightarrow 1

2

\rightarrow U i+ 1

2

)
x
2

!x
2
i

+ (U i+ 1

2

\rightarrow U i\rightarrow 1

2

)
x

!xi

+
1

4
(6U i \rightarrow U i\rightarrow 1

2

\rightarrow U i+ 1

2

)(2.7)

satisfying U para,1(±!xi/2) =U i± 1

2

, 1
!xi

\Biggl\lceil !xi/2
\rightarrow !xi/2

U para,1(x) dx=U i. Then the deriv-
atives are

D+
i+ 1

2

(U) =U \uparrow 
para,1(!xi/2) =

1

!xi
(2U i\rightarrow 1

2

\rightarrow 6U i + 4U i+ 1

2

),(2.8a)

D\rightarrow 
i+ 1

2

(U) =
1

!xi+1
(\rightarrow 4U i+ 1

2

+ 6U i+1 \rightarrow 2U i+ 3

2

).(2.8b)

One of the deficiencies of using the JS is the stagnation issue that appears in
certain setups for nonlinear problems, as observed in [27, 5]. As shown in Example
5.1 for Burgers’ equation, the numerical solution based on the JS without limiting
gives a spike in the cell average at the initial discontinuity x = 0.2, which grows
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BOUND-PRESERVING ACTIVE FLUX A815

linearly in time. The reason for this behavior is the inaccurate estimation of the
upwind direction at the cell interface, required to split the Jacobian in (2.6). In this
example, there are two successive point values with di!erent signs near the initial
discontinuity: ui\rightarrow 1

2

= 2, ui+ 1

2

= \rightarrow 1. At the cell interface xi\rightarrow 1

2

or xi+ 1

2

, depending
on the details of initialization, the upwind discretization in (2.8) only uses the data
from the left or right, leading to zero derivatives, and thus the point values ui\rightarrow 1

2

and
ui+ 1

2

stay unchanged. However, according to the update of the cell average (2.4), ūi

increases gradually (which is the observed spike). Proposed solutions to handle the
stagnation issue involve estimating the Jacobian not only at the relevant cell interface
but also at the neighboring interfaces, and to select a better upwind direction (e.g.,
[5]) or achieve the same by blending (e.g., [9]). As will be shown below, using FVS
instead of the JS naturally has a similar e!ect.

2.2. Point value update using flux vector splitting. In this paper, we pro-
pose to use the FVS for the point value update, which was originally used to identify
the upwind directions and is simpler and somewhat more e""cient than Godunov-type
methods for solving hyperbolic systems [38]. The FVS for the point value update
reads

dU i+ 1

2

dt
=\rightarrow [ \Biggr) D

+
F+(U) + \Biggr) D

\rightarrow 
F\rightarrow (U)]i+ 1

2

,(2.9)

where the flux F is split into the positive and negative parts F =F++F\rightarrow satisfying

\omega 

\Biggl[ 
\varepsilon F+

\varepsilon U

\Biggr] 
\leftrightsquigarrow 0, \omega 

\Biggl[ 
\varepsilon F\rightarrow 

\varepsilon U

\Biggr] 
\looparrowleft 0,(2.10)

i.e., all the eigenvalues of \omega F+

\omega U and \omega F\rightarrow 

\omega U are nonnegative and nonpositive, respectively.
Di!erent FVS can be adopted as long as they satisfy the constraint (2.10), to be
discussed later. Finite di!erence formulae to approximate the flux derivatives are
obtained as follows. From the reconstruction of U (2.7), one can evaluate the flux F ,
as well as the split fluxes F± pointwise. We compute them at the endpoints of the
cell and in the middle. Then a parabolic reconstruction for, say, F+ in the cell Ii is
obtained as follows:

F+
para,2(x) = 2(F+

i\rightarrow 1

2

\rightarrow 2F+
i +F+

i+ 1

2

)
x
2

\#x
2
i

+ (F+
i+ 1

2

\rightarrow F+
i\rightarrow 1

2

)
x

\#xi
+F+

i ,

satisfying F+
para,2(±\#xi/2) = F+

i± 1

2

= F+(U i± 1

2

), and F+
para,2(0) = F+

i = F+(U i).

The cell-centered point value is U i = (\rightarrow U i\rightarrow 1

2

+ 6U i \rightarrow U i+ 1

2

)/4. Then the discrete
derivatives are

( \Biggr) D
+
F+)i+ 1

2

= (F+
para,2)

\uparrow (\#xi/2) =
1

\#xi
(F+

i\rightarrow 1

2

\rightarrow 4F+
i + 3F+

i+ 1

2

),(2.11a)

( \Biggr) D
\rightarrow 
F\rightarrow )i+ 1

2

=
1

\#xi+1
(\rightarrow 3F\rightarrow 

i+ 1

2

+ 4F\rightarrow 
i+1 \rightarrow F\rightarrow 

i+ 3

2

).(2.11b)

These finite di!erences are third-order accurate. While the reconstructions of both
U and F are parabolic, the coe""cients in the formula (2.11) di!er from that in [2]
because (2.11) uses the cell-centered value rather than the cell average.

The FVS-based point value update borrows the information from the neighbors
naturally, and can eliminate the generation of the spike e!ectively, as shown in Fig-
ure 1, similar to the idea of the remedy in [5]. Note that we still use the original
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A816 J. DUAN, W. BARSUKOW, AND C. KLINGENBERG

−1.0 −0.5 0.0 0.5 1.0

x

0

10

20

30

40

u

reference

average

point

−1.0 −0.5 0.0 0.5 1.0

x

−4

−2

0

2

4

u

reference

average

point

−1.0 −0.5 0.0 0.5 1.0

x

−3

−2

−1

0

1

2

3

4

u

reference

average

point

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

u

reference

average

point

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0
u

reference

average

point

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

u

reference

average

point

Fig. 1. Example 5.1, self-steepening shock for the Burgers’ equation. The numerical solutions
computed without limiting (top row) and with the BP limitings imposing the local MP (bottom row).
From left to right: JS, LLF, and upwind FVS.

continuous reconstruction in the AF methods. We remark that, in AF methods, it
is not clear how to define the point values at discontinuities, and thus there may be
other methods to fix the stagnation issue.

2.2.1. Local Lax–Friedrichs flux vector splitting. The first FVS we con-
sider is the LLF FVS, defined as

F± =
1

2
(F (U)± \omega U),

where the choice of \omega should fulfill (2.10) across the spatial stencil. In our implemen-
tation, it is determined by

\omega i+ 1

2

=max
r

{\varepsilon (U r)} , r \rightarrow 
\Biggr) 
i\uparrow 1

2
, i, i+

1

2
, i+ 1, i+

3

2

\Biggl[ 
,(2.12)

where \varepsilon is the spectral radius of \vargamma F /\vargamma U . One can also choose \omega to be the maxi-
mal spectral radius in the whole domain, corresponding to the (global) LF splitting.
Note, however, that a larger \omega generally leads to a smaller time step size and more
dissipation.

2.2.2. Upwind flux vector splitting. One can also split the Jacobian matrix
based on each characteristic field,

F± =
1

2
(F (U)± |J |U), |J |=R(!+ \uparrow !\rightarrow )R\rightarrow 1

.(2.13)

Note that we evaluate the Jacobian at three locations in the cell Ii to get corresponding
F+. For linear systems, one has F = JU , so (2.13) reduces to the JS, because in this
case

F± =
1

2
(J ± |J |)U =R!±R\rightarrow 1U = J±U ,

with J± a constant matrix so that \Biggr] D
±
F±(U) = J± \Biggr] D

±
U , which is the same as

J±D±U if D+ and \Biggr] D
+

are derived from the same reconstructed polynomial. In
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BOUND-PRESERVING ACTIVE FLUX A817

other words, for linear systems, the AF methods using this FVS are the same as the
original JS-based AF methods.

Such an FVS is also known as the Steger–Warming (SW) FVS [37] for the Euler
equations, since the “homogeneity property” F = JU holds [38]. One can write down
the SW FVS explicitly:

F± =

\Biggr) 

\Biggl[ \Biggr] 

\omega 
2\varepsilon \omega 

±

\omega 
2\varepsilon 

\Biggl\lfloor 
\omega 
±
v+ a(\varepsilon ±

2 \rightarrow \varepsilon 
±
3 )

\Biggr\rfloor 

\omega 
2\varepsilon (

1
2\omega 

±
v
2 + av(\varepsilon ±

2 \rightarrow \varepsilon 
±
3 ) +

a2

\varepsilon \rightarrow 1 (\varepsilon 
±
2 + \varepsilon 

±
3 ))

\Biggl\lceil 

\Biggr\rceil \Biggl\{ ,

where \varepsilon 1 = v, \varepsilon 2 = v + a, \varepsilon 3 = v \rightarrow a, \omega 
± = 2(\vargamma \rightarrow 1)\varepsilon ±

1 + \varepsilon 
±
2 + \varepsilon 

±
3 , and a=

\Biggr\} 
\vargamma p/\varpi is

the sound speed.

Remark 2.1. It should be noted that F± in this FVS may not be di!erentiable
with respect to U for nonlinear systems (e.g., Euler), as the splitting is based on the
absolute value. In [40], the mass flux of F± is shown to be not di!erentiable, which
might explain the accuracy degradation in Example 5.7.

2.2.3. van Leer–Hänel flux vector splitting for the Euler equations.
Another popular FVS for the Euler equations was proposed by van Leer [40] and
improved by [26]. The flux can be split based on the Mach number M = v/a as

F =

\Biggr) 

\Biggr] 
\varpi aM

\varpi a
2(M2 + 1

\varepsilon )
\varpi a

3
M( 12M

2 + 1
\varepsilon \rightarrow 1 )

\Biggl\lceil 

\Biggl\{ =F+ +F\rightarrow 
, F± =

\Biggr) 

\Biggr] 
± 1

4\varpi a(M ± 1)2

± 1
4\varpi a(M ± 1)2v+ p

±

± 1
4\varpi a(M ± 1)2H

\Biggl\lceil 

\Biggl\{ ,

with the enthalpy H = (E + p)/\varpi , and the pressure splitting p
± = 1

2 (1± \vargamma M)p. This
FVS gives a quadratic di!erentiable splitting with respect to the Mach number.

Remark 2.2. Di!erent FVS may lead to di!erent stability conditions, but it is
di""cult to perform the analysis theoretically. We provide experimental CFL numbers
for di!erent FVS in some 1D tests. Our numerical tests in section 5 show that the AF
methods based on the FVS generally give better results than the JS, and the LLF FVS
is the best among all the three FVS in terms of the CFL number and nonoscillatory
property for high-speed flows involving strong discontinuities.

2.3. Time discretization. The fully discrete scheme is obtained by using the
strong stability preserving third-order Runge-Kutta (SSP-RK3) method [20]

U\uparrow =Un +\#t
nL (Un) ,

U\uparrow \uparrow =
3

4
Un +

1

4
(U\uparrow +\#t

nL (U\uparrow )) ,

Un+1 =
1

3
Un +

2

3
(U\uparrow \uparrow +\#t

nL (U\uparrow \uparrow )) ,

(2.14)

where L is the right-hand side of the semidiscrete schemes (2.4) or (2.5). The time
step size is determined by the usual CFL condition

\#t
n =

CCFL

max
i

{\varrho (U i)/\#xi}
.(2.15)

3. 2D active flux methods on Cartesian meshes. This section presents the
generalized AF methods using the method of lines for the 2D hyperbolic conservation
laws

U t +F 1(U)x +F 2(U)y = 0, U(x, y,0) =U0(x, y).(3.1)
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u
i+1

2
,j+1

2

u
i+1

2
,j−1

2

u
i−1

2
,j−1

2

u
i−1

2
,j+1

2

u
i−1

2
,j

u
i+1

2
,j

u
i,j−1

2

u
i,j+1

2

ui,j

ūi,j

Fig. 2. The DoFs for the third-order AF method: cell average (circle), face-centered values
(squares), and values at corners (dots). Note that the cell-centered point value ui,j (cross) is used
in constructing the scheme but does not belong to the DoFs.

We will consider the scalar conservation law

ut + f1(u)x + f2(u)y = 0, u(x, y,0) = u0(x, y),(3.2)

and the Euler equations with U = (\omega ,\omega v,E)\rightarrow , F 1 = (\omega v1,\omega v21 + p,\omega v1v2, (E + p)v1)\rightarrow ,
F 2 = (\omega v2,\omega v1v2,\omega v22 + p, (E + p)v2)\rightarrow , where v = (v1, v2) is the velocity vector, and
the other notations are the same as for 1D in section 2. The SSP-RK3 method is used
to obtain the fully discrete method.

Assume that a 2D computational domain is divided into N1 \rightarrow N2 cells, Ii,j =
[xi\uparrow 1

2

, xi+ 1

2

] \rightarrow [yj\uparrow 1

2

, yj+ 1

2

] with the cell sizes !xi = xi+ 1

2

\uparrow xi\uparrow 1

2

,!yj = yj+ 1

2

\uparrow 
yj\uparrow 1

2

, and cell centers (xi, yj) = ( 12 (xi\uparrow 1

2

+ xi+ 1

2

), 12 (yj\uparrow 1

2

+ yj+ 1

2

)), i= 1, . . . ,N1, j =

1, . . . ,N2. The DoFs consist of the cell average U i,j(t) =
1

!xi!yj

\Biggr) 
Ii,j

Uh(x, y, t) dxdy,
the face-centered values U i+ 1

2
,j(t) =Uh(xi+ 1

2

, yj , t),U i,j+ 1

2

(t) =Uh(xi, yj+ 1

2

, t), and
the value at the corner U i+ 1

2
,j+ 1

2

(t) = Uh(xi+ 1

2

, yj+ 1

2

, t), where Uh(x, y, t) is the
numerical solution. A sketch of the DoFs for the third-order AF method (for the
scalar case) is given in Figure 2.

The cell average is evolved as follows:

dU i,j

dt
=\uparrow 1

!xi
(\Biggl[ F i+ 1

2
,j \uparrow \Biggl[ F i\uparrow 1

2
,j)\uparrow 

1

!yj
(\Biggl[ F i,j+ 1

2

\uparrow \Biggl[ F i,j\uparrow 1

2

),(3.3)

where \Biggl[ F i+ 1

2
,j and \Biggl[ F i,j+ 1

2

are the numerical fluxes

\Biggl[ F i+ 1

2
,j =

1

!yj

\Biggr] y
j+1

2

y
j\rightarrow 1

2

F 1

\Biggl\lfloor 
Uh(xi+ 1

2

, y)
\Biggr\rfloor 
dy,

\Biggl[ F i,j+ 1

2

=
1

!xi

\Biggr] x
i+1

2

x
i\rightarrow 1

2

F 2

\Biggl\lfloor 
Uh(x, yj+ 1

2

)
\Biggr\rfloor 
dx.

(3.4)

To achieve third-order accuracy, one can use Simpson’s rule:

\Biggl[ F i+ 1

2
,j =

1

6

\Biggl\lfloor 
F 1(U i+ 1

2
,j\uparrow 1

2

) + 4F 1(U i+ 1

2
,j) +F 1(U i+ 1

2
,j+ 1

2

)
\Biggr\rfloor 
.(3.5)

3.1. Point value update using flux vector splitting. For the evolution of
the point values, consider the following general form:

dU\omega 

dt
=\uparrow R(U c(t),U\omega \uparrow (t)), c\downarrow C(\varepsilon ),\varepsilon \downarrow \downarrow ""(\varepsilon ),(3.6)
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BOUND-PRESERVING ACTIVE FLUX A819

where R is a consistent approximation of \omega F 1/\omega x + \omega F 2/\omega y at the point \varepsilon , and
C(\varepsilon ) and !(\varepsilon ) are the spatial stencils containing the cell averages and point values,
respectively. One can use the JS in [3] or employ the FVS for the point value update;
e.g., for the point value at the corner (xi+ 1

2

, yj+ 1

2

), the FVS-based update reads

dU i+ 1

2
,j+ 1

2

dt
=\rightarrow 

2\Biggr) 

\omega =1

\Biggl[ 
\Biggr] D

+

\omega F
+
\omega (U) + \Biggr] D

\rightarrow 
\omega F

\rightarrow 
\omega (U)

\Biggl\lfloor 

i+ 1

2
,j+ 1

2

,(3.7)

where the fluxes are split as F \omega = F+
\omega + F\rightarrow 

\omega , \vargamma (
\varepsilon F+

\omega 
\varepsilon U ) \leftrightsquigarrow 0, \vargamma (

\varepsilon F\rightarrow 
\omega 

\varepsilon U ) \looparrowleft 0. The explicit
expressions of the 2D FVS used in this paper can be found in the supplementary

material section SM1. The finite di""erence operators \Biggr] D
±
1 and \Biggr] D

±
2 can be obtained

similarly to subsection 2.2. For third-order accuracy, starting with a biparabolic
reconstruction ofU and computing a biparabolic interpolation of F±

\omega , one thus obtains
\Biggr] D

±
1 in the x-direction as

\Biggr\rfloor 
\Biggr] D

+

1 F
+
1

\Biggl\lceil 

i+ 1

2
,j+ 1

2

=
1

\#xi

\Biggr\rfloor 
(F 1)

+
i\rightarrow 1

2
,j+ 1

2

\rightarrow 4(F 1)
+
i,j+ 1

2

+ 3(F 1)
+
i+ 1

2
,j+ 1

2

\Biggl\lceil 
,

\Biggr\rfloor 
\Biggr] D

\rightarrow 
1 F

\rightarrow 
1

\Biggl\lceil 

i+ 1

2
,j+ 1

2

=
1

\#xi+1

\Biggr\rfloor 
\rightarrow 3(F 1)

\rightarrow 
i+ 1

2
,j+ 1

2

+ 4(F 1)
\rightarrow 
i+1,j+ 1

2

\rightarrow (F 1)
\rightarrow 
i+ 3

2
,j+ 1

2

\Biggl\lceil 
.

For the face-centered point value at (xi+ 1

2

, yj), the FVS-based update reads

dU i+ 1

2
,j

dt
=\rightarrow [ \Biggr] D

+

1 F
+
1 (U) + \Biggr] D

\rightarrow 
1 F

\rightarrow 
1 (U)]i+ 1

2
,j \rightarrow ( \Biggr] D2F 2(U))i+ 1

2
,j ,(3.8)

where
\Biggr\rfloor 
\Biggr] D

+

1 F
+
1

\Biggl\lceil 

i+ 1

2
,j
=

1

\#xi

\Biggr\rfloor 
(F 1)

+
i\rightarrow 1

2
,j
\rightarrow 4(F 1)

+
i,j + 3(F 1)

+
i+ 1

2
,j

\Biggl\lceil 
,

\Biggr\rfloor 
\Biggr] D

\rightarrow 
1 F

\rightarrow 
1

\Biggl\lceil 

i+ 1

2
,j
=

1

\#xi+1

\Biggr\rfloor 
\rightarrow 3(F 1)

\rightarrow 
i+ 1

2
,j
+ 4(F 1)

\rightarrow 
i+1,j \rightarrow (F 1)

\rightarrow 
i+ 3

2
,j

\Biggl\lceil 
,

\Biggr\rfloor 
\Biggr] D2F 2

\Biggl\lceil 

i+ 1

2
,j
=

1

\#yj

\Biggr\rfloor 
(F 2)i+ 1

2
,j+ 1

2

\rightarrow (F 2)i+ 1

2
,j\rightarrow 1

2

\Biggl\lceil 
,

and the cell-centered point value is computed from the biparabolic reconstruction [3]
as

U i,j =
1

16

\Biggl[ 
36U i,j \rightarrow 4(U i\rightarrow 1

2
,j +U i+ 1

2
,j +U i,j\rightarrow 1

2

+U i,j+ 1

2

)(3.9)

\rightarrow (U i\rightarrow 1

2
,j\rightarrow 1

2

+U i+ 1

2
,j\rightarrow 1

2

+U i\rightarrow 1

2
,j+ 1

2

+U i+ 1

2
,j+ 1

2

)
\Biggl\lfloor 
.

The update for the point value at (xi, yj+ 1

2

) is omitted here, which is similar to (3.8).

3.2. Mesh alignment issue when using Jacobian splitting. The mesh
alignment issue was observed for the fully discrete AF methods in [34], where the
convergence rate reduces to 2 for the linear advection problem, when the advection
velocity is aligned with the grid. For the generalized AF methods based on the JS,
such an issue is also observed. Consider Example 5.8, where we solve a quasi-2D Sod
shock tube along the x-direction on a 100\uparrow 2 uniform mesh. As shown in Figure 3,
the density based on the JS shows large deviations between the contact discontinu-
ity and shock wave. From Figure 4, it can be seen that the solutions of the DoFs
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Fig. 3. Example 5.8, quasi-2D Sod shock tube. The density are computed without (top row)
and with the shock sensor–based limiting (\omega = 1, bottom row). From left to tight: JS, LLF, SW, and
VH FVS.
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Fig. 4. Example 5.8, quasi-2D Sod shock tube. Based on the JS, the solutions that belong to
di!erent kinds of DoFs are decoupled.

at the corner (xi+ 1

2

, yj+ 1

2

) and horizontal face (xi, yj+ 1

2

) are decoupled from that at
the vertical face (xi+ 1

2

, yj) and cell averages. The reason is complicated because the
mesh alignment issue seems to be caused by the decoupled point value update and its
interaction with the JS.

3.3. Boundary treatment. The numerical boundary conditions can be imple-
mented using ghost cells as usual finite volume methods. Take the reflective boundary
for the Euler equations as an example. Let x= xN1\rightarrow 1

2

be the boundary, then the cell
averages and point values in the ghost cell IN1,j are given by

UN1,j =M(UN1\rightarrow 1,j), UN1+ 1

2
,j =M

\Biggr) 
UN1\rightarrow 3

2
,j

\Biggl[ 
,

UN1,j\rightarrow 1

2

=M
\Biggr) 
UN1\rightarrow 1,j\rightarrow 1

2

\Biggl[ 
, UN1+ 1

2
,j\rightarrow 1

2

=M
\Biggr) 
UN1\rightarrow 3

2
,j\rightarrow 1

2

\Biggl[ 
,

where M reverses the sign of the \omega v1 component while keeping others unchanged.
Then the point value update at the boundary can be computed in the same way as the
interior points, but the numerical flux on the boundary for the cell average is computed
through the LLF flux as suggested in [4]. For instance, the flux F 1(UN1\rightarrow 1

2
,j\rightarrow 1

2

) on

the right-hand side of (3.5) is replaced by \Biggr] F
LLF

1 (UN1\rightarrow 1,j\rightarrow 1

2

,M(UN1\rightarrow 1,j\rightarrow 1

2

)).
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BOUND-PRESERVING ACTIVE FLUX A821

4. 2D bound-preserving active flux methods. In this paper, the admissi-
ble state set G is assumed to be convex. Two cases are considered. For the scalar
conservation law (3.2), its solutions satisfy a strict MP [14], i.e.,

G = {u |m0 \leftrightsquigarrow u\leftrightsquigarrow M0} , m0 =min
x,y

u0(x, y), M0 =max
x,y

u0(x, y).(4.1)

For the compressible Euler equations, the admissible state set is

G = {U = (\omega ,\omega v,E) | \omega > 0, p= (\varepsilon \rightarrow 1)(E \rightarrow \uparrow \omega v\uparrow 2/(2\omega ))> 0},(4.2)

which is convex; see, e.g., [47].

Definition 4.1. An AF method is called BP if starting from cell averages and
point values in the admissible state set G, the cell averages and point values remain
in G at the next time step.

Note that to avoid the e!ect of the round-o! error, we need to choose the desired
lower bounds for the density and pressure. In the numerical tests, we will enforce
\omega \looparrowleft \vargamma 

\omega , p \looparrowleft \vargamma 
p, with \vargamma 

\omega 
,\vargamma 

p to be defined later. Since the DoFs in the AF methods
include both cell averages and point values, it is necessary to design suitable BP
limitings for both of them to achieve the BP property. The limiting for the cell
average has not been addressed much in the literature, except for a very recent work
[4]. The 1D limitings can be reduced from this section, given in section SM3 in the
supplementary material.

4.1. Convex limiting for the cell average. This section presents a convex
limiting approach to achieve the BP property of the cell average update. The basic
idea of the convex limiting approaches [21, 25, 30] is to enforce the preservation
of local or global bounds by constraining individual numerical fluxes. The BP or
invariant domain-preserving properties of flux-limited approximations are shown using
representations in terms of intermediate states that stay in convex admissible state
sets [21, 24]. The low-order scheme is chosen as the first-order LLF scheme

U
L

i,j =U
n
i,j \rightarrow µ1,i

\Biggr) 
\Biggl[ F
L

i+ 1

2
,j \rightarrow \Biggl[ F

L

i\rightarrow 1

2
,j

\Biggr] 
\rightarrow µ2,j

\Biggr) 
\Biggl[ F
L

i,j+ 1

2

\rightarrow \Biggl[ F
L

i,j\rightarrow 1

2

\Biggr] 
,

where \Biggl[ F
L

i+ 1

2
,j and \Biggl[ F

L

i,j+ 1

2

are the LLF fluxes. Take the x-direction as an example,

\Biggl[ F
L

i+ 1

2
,j := \Biggl[ F

LLF

1 (U
n
i,j ,U

n
i+1,j)

=
1

2

\Biggr) 
F 1(U

n
i,j) +F 1(U

n
i+1,j)

\Biggr] 
\rightarrow 

(\varpi 1)i+ 1

2
,j

2
(U

n
i+1,j \rightarrow U

n
i,j),

(\varpi 1)i+ 1

2
,j = max

\Biggl\lfloor 
\varrho 1(U

n
i,j), \varrho 1(U

n
i+1,j)

\Biggr\rfloor 
,

µ1,i = ""t
n
/""xi,(4.3)

where \varrho 1 is the spectral radius of \varsigma F 1/\varsigma U . Note that here \varpi i+ 1

2
,j is not the same as

the one in the LLF FVS. Following [22], the first-order LLF scheme can be rewritten
as

U
L

i,j =
\Biggl\lceil 
1\rightarrow µ1,i

\Biggr) 
(\varpi 1)i\rightarrow 1

2
,j + (\varpi 1)i+ 1

2
,j

\Biggr] 
\rightarrow µ2,j

\Biggr) 
(\varpi 2)i,j\rightarrow 1

2

+ (\varpi 2)i,j+ 1

2

\Biggr] \Biggr\rceil 
U

n
i,j

+ µ1,i(\varpi 1)i\rightarrow 1

2
,j
\Biggl\{ U i\rightarrow 1

2
,j + µ1,i(\varpi 1)i+ 1

2
,j
\Biggl\{ U i+ 1

2
,j

+ µ2,j(\varpi 2)i,j\rightarrow 1

2

\Biggl\{ U i,j\rightarrow 1

2

+ µ2,j(\varpi 2)i,j+ 1

2

\Biggl\{ U i,j+ 1

2

,(4.4)
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A822 J. DUAN, W. BARSUKOW, AND C. KLINGENBERG

with four intermediate states, and the explicit expressions in the x-direction are

\Biggr) U i± 1

2
,j =

1

2

\Biggl[ 
U

n
i,j +U

n
i±1,j

\Biggr] 
± 1

2(\omega 1)i± 1

2
,j

\Biggl\lfloor 
F 1

\Biggl[ 
U

n
i,j

\Biggr] 
\rightarrow F 1

\Biggl[ 
U

n
i±1,j

\Biggr] \Biggr\rfloor 
.(4.5)

The proofs of \Biggr) U i± 1

2
,j ,

\Biggr) U i,j± 1

2

\uparrow G are given in the supplementary material section
SM2, for the scalar case and Euler equations.

Lemma 4.2. If the time step size !t
n satisfies

!t
n \leftrightsquigarrow 1

2
min

\Biggl\lceil 
!xi

(\omega 1)i\rightarrow 1

2
,j + (\omega 1)i+ 1

2
,j

,
!yj

(\omega 2)i,j\rightarrow 1

2

+ (\omega 2)i,j+ 1

2

\Biggr\rceil 
,(4.6)

then (4.4) is a convex combination, and the first-order LLF scheme is BP.

The proof (see, e.g., [22, 35]) relies on U
n
i,j ,

\Biggr) U i± 1

2
,j ,

\Biggr) U i,j± 1

2

\uparrow G and the convexity
of G.

Upon defining the antidi""usive flux !\Biggl\{ F i± 1

2
,j = \Biggl\{ F

H

i± 1

2
,j\rightarrow \Biggl\{ F

L

i± 1

2
,j , and when \Biggl\{ F

H

i± 1

2
,j

is given in (3.4), a forward-Euler step applied to the semidiscrete high-order scheme
for the cell average (3.3) can be written as

U
H

i,j =U
n
i,j \rightarrow µ1,i

\Biggl[ 
\Biggl\{ F
L

i+ 1

2
,j \rightarrow \Biggl\{ F

L

i\rightarrow 1

2
,j

\Biggr] 
\rightarrow µ2,j

\Biggl[ 
\Biggl\{ F
L

i,j+ 1

2

\rightarrow \Biggl\{ F
L

i,j\rightarrow 1

2

\Biggr] 

\rightarrow µ1,i

\Biggl[ 
!\Biggl\{ F i+ 1

2
,j \rightarrow !\Biggl\{ F i\rightarrow 1

2
,j

\Biggr] 
\rightarrow µ2,j

\Biggl[ 
!\Biggl\{ F i,j+ 1

2

\rightarrow !\Biggl\{ F i,j\rightarrow 1

2

\Biggr] 

=
\Biggl\lfloor 
1\rightarrow µ1,i

\Biggl[ 
(\omega 1)i\rightarrow 1

2
,j + (\omega 1)i+ 1

2
,j

\Biggr] 
\rightarrow µ2,j

\Biggl[ 
(\omega 2)i,j\rightarrow 1

2

+ (\omega 2)i,j+ 1

2

\Biggr] \Biggr\rfloor 
U

n
i,j

+ µ1,i(\omega 1)i\rightarrow 1

2
,j
\Biggr) U
H,+

i\rightarrow 1

2
,j + µ1,i(\omega 1)i+ 1

2
,j
\Biggr) U
H,\rightarrow 
i+ 1

2
,j

+ µ2,j(\omega 2)i,j\rightarrow 1

2

\Biggr) U
H,+

i,j\rightarrow 1

2

+ µ2,j(\omega 2)i,j+ 1

2

\Biggr) U
H,\rightarrow 
i,j+ 1

2

,(4.7)

with the high-order intermediate states

\Biggr) U
H,\uparrow 
i± 1

2
,j := \Biggr) U i± 1

2
,j \downarrow 

!\Biggl\{ F i± 1

2
,j

(\omega 1)i± 1

2
,j

, \Biggr) U
H,\uparrow 
i,j± 1

2

:= \Biggr) U i,j± 1

2

\downarrow 
!\Biggl\{ F i,j± 1

2

(\omega 2)i,j± 1

2

.

With the low-order scheme (4.4) and high-order scheme (4.7) having the same abstract
form, one can blend them to define the limited scheme for the cell average as

U
Lim

i,j =
\Biggl\lfloor 
1\rightarrow µ1,i

\Biggl[ 
(\omega 1)i\rightarrow 1

2
,j + (\omega 1)i+ 1

2
,j

\Biggr] 
\rightarrow µ2,j

\Biggl[ 
(\omega 2)i,j\rightarrow 1

2

+ (\omega 2)i,j+ 1

2

\Biggr] \Biggr\rfloor 
U

n
i,j

+ µ1,i(\omega 1)i\rightarrow 1

2
,j
\Biggr) U
Lim,+

i\rightarrow 1

2
,j + µ1,i(\omega 1)i+ 1

2
,j
\Biggr) U
Lim,\rightarrow 
i+ 1

2
,j

+ µ2,j(\omega 2)i,j\rightarrow 1

2

\Biggr) U
Lim,+

i,j\rightarrow 1

2

+ µ2,j(\omega 2)i,j+ 1

2

\Biggr) U
Lim,\rightarrow 
i,j+ 1

2

,(4.8)

where the limited intermediate states are

\Biggr) U
Lim,\uparrow 
i± 1

2
,j = \Biggr) U i± 1

2
,j \downarrow 

!\Biggl\{ F
Lim

i± 1

2
,j

(\omega 1)i± 1

2
,j

:= \Biggr) U i± 1

2
,j \downarrow 

\varepsilon i± 1

2
,j!\Biggl\{ F i± 1

2
,j

(\omega 1)i± 1

2
,j

,

\Biggr) U
Lim,\uparrow 
i,j± 1

2

= \Biggr) U i,j± 1

2

\downarrow 
!\Biggl\{ F

Lim

i,j± 1

2

(\omega 2)i,j± 1

2

:= \Biggr) U i,j± 1

2

\downarrow 
\varepsilon i,j± 1

2

!\Biggl\{ F i,j± 1

2

(\omega 2)i,j± 1

2

,(4.9)

and \varepsilon i± 1

2
,j ,\varepsilon i,j± 1

2

\uparrow [0,1] are the blending coe\#cients. The limited scheme (4.8)
reduces to the first-order LLF scheme if \varepsilon i± 1

2
,j = \varepsilon i,j± 1

2

= 0 and recovers the high-
order AF scheme (3.3) when \varepsilon i± 1

2
,j = \varepsilon i,j± 1

2

= 1.
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BOUND-PRESERVING ACTIVE FLUX A823

Proposition 4.3. If the cell average at the last time step U
n
i,j and the limited

intermediate states \Biggr) U
Lim,\rightarrow 
i± 1

2
,j, \Biggr) U

Lim,\rightarrow 
i,j± 1

2

belong to the admissible state set G, then the

limited average update (4.8) is BP, i.e., U
Lim

i,j \rightarrow G, under the CFL condition (4.6). If
the SSP-RK3 (2.14) is used for the time integration, the high-order scheme is also
BP.

Proof. Under the constraint (4.6), the limited cell average update U
Lim

i,j is a convex

combination of U
n
i,j

\Biggr) U
Lim,\rightarrow 
i± 1

2
,j , and \Biggr) U

Lim,\rightarrow 
i,j± 1

2

; thus it belongs to G due to
the convexity of G. Because the SSP-RK3 is a convex combination of forward-Euler
stages, the high-order scheme equipped with the SSP-RK3 is also BP according to the
convexity.

Remark 4.4. The scheme (4.8) is conservative as it amounts to using the x-

directional numerical flux \Biggl[ F
L

i+ 1

2
,j+\omega i+ 1

2
,j!\Biggl[ F i+ 1

2
,j = \omega i+ 1

2
,j
\Biggl[ F
H

i+ 1

2
,j+(1\uparrow \omega i+ 1

2
,j)\Biggl[ F

L

i+ 1

2
,j ,

which is a convex combination of the high-order and low-order fluxes.

Remark 4.5. It should be noted that the time step size (4.6) is determined based
on the solutions at t

n. If the constraint is not satisfied at the later stage of the
SSP-RK3, the BP property may not be achieved because (4.8) is no longer a convex
combination. In our implementation, we start from the usual CFL condition (2.15).
Then, if the high-order AF solutions need BP limitings and (4.5) is not BP or (4.6) is
not satisfied, the numerical solutions are set back to the last time step, and we rerun
with a halved time step size until (4.5) is BP and the constraint (4.6) is satisfied. This
is a typical implementation in other BP methods, e.g., [45].

The remaining task is to determine the coe""cients at each interface \omega i± 1

2
,j ,\omega i,j± 1

2

such that \Biggr) U
Lim,\rightarrow 
i± 1

2
,j ,

\Biggr) U
Lim,\rightarrow 
i,j± 1

2

\rightarrow G and stay as close as possible to the high-order solutions

\Biggr) U
H

i± 1

2
,j ,

\Biggr) U
H

i,j± 1

2

; i.e., the goal is to find the largest \omega i± 1

2
,j ,\omega i,j± 1

2

\rightarrow [0,1] such that

\Biggr) U
Lim,\rightarrow 
i± 1

2
,j ,

\Biggr) U
Lim,\rightarrow 
i,j± 1

2

\rightarrow G. The explanations will be given for the x-direction.

4.1.1. Application to scalar conservation laws. This section is devoted to
applying the convex limiting approach to scalar conservation laws (3.2) such that the
limited cell averages (4.8) satisfy the MP u

min
i,j \leftrightsquigarrow ū

Lim

i,j \leftrightsquigarrow u
max
i,j , where u

min
i,j = minN ,

u
max
i,j =maxN , and N will be defined later. According to the convex decomposition,

the blending coe""cient \omega i+ 1

2
,j \rightarrow [0,1] or !f̂

Lim

i+ 1

2
,j

should be chosen such that u
min
i,j \leftrightsquigarrow 

ũ
Lim,\uparrow 
i+ 1

2
,j

\leftrightsquigarrow u
max
i,j , u

min
i+1,j \leftrightsquigarrow ũ

Lim,+
i+ 1

2
,j

\leftrightsquigarrow u
max
i+1,j . Solving the first condition, i.e., u

min
i,j \leftrightsquigarrow 

ũi+ 1

2
,j\uparrow !f̂

Lim

i+ 1

2
,j
/\varepsilon i+ 1

2
,j \leftrightsquigarrow u

max
i,j , one has !f̂

Lim

i+ 1

2
,j
\leftrightsquigarrow \varepsilon i+ 1

2
,j(ũi+ 1

2
,j\uparrow u

min
i,j ) if !f̂i+ 1

2
,j \looparrowleft 

0, or !f̂
Lim

i+ 1

2
,j
\looparrowleft \varepsilon i+ 1

2
,j(ũi+ 1

2
,j \uparrow u

max
i,j ) if !f̂i+ 1

2
,j < 0. Solving the second condition

u
min
i+1,j \leftrightsquigarrow ũ

Lim,+
i+ 1

2
,j
\leftrightsquigarrow u

max
i+1,j in the same way and combining the two sets of results yields

!f̂
Lim

i+ 1

2
,j =

\Biggr] 
min

\Biggl\lfloor 
!f̂i+ 1

2
,j ,!f̂

+
i+ 1

2
,j

\Biggr\rfloor 
if!f̂i+ 1

2
,j \looparrowleft 0,

max
\Biggl\lfloor 
!f̂i+ 1

2
,j ,!f̂

\uparrow 
i+ 1

2
,j

\Biggr\rfloor 
otherwise,

!f̂
+
i+ 1

2
,j
= (\varepsilon 1)i+ 1

2
,j min

\Biggl\lfloor 
ũi+ 1

2
,j \uparrow u

min
i,j , u

max
i+1,j \uparrow ũi+ 1

2
,j

\Biggr\rfloor 
,

!f̂
\uparrow 
i+ 1

2
,j
= (\varepsilon 1)i+ 1

2
,j max

\Biggl\lfloor 
u
min
i+1,j \uparrow ũi+ 1

2
,j , ũi+ 1

2
,j \uparrow u

max
i,j

\Biggr\rfloor 
.

Finally, the limited numerical flux is

f̂
Lim

i+ 1

2
,j = f̂

L

i+ 1

2
,j +!f̂

Lim

i+ 1

2
,j .(4.10)
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If considering the global MP, N =
\Biggr) 

i,j,\omega {ūn
i,j , u

n
\omega }. One can also enforce the local MP,

which helps to suppress spurious oscillations [21, 31, 22], by choosing

N =
\Biggl[ 
ū
n
i,j , ũi\rightarrow 1

2
,j , ũi+ 1

2
,j , ũi,j\rightarrow 1

2

, ũi,j+ 1

2

, ū
n
i\rightarrow 1,j , ū

n
i+1,j , ū

n
i,j\rightarrow 1, ū

n
i,j+1

\Biggr] 
,

which includes the intermediate states and neighboring cell averages.

4.1.2. Application to the compressible Euler equations. This section aims
at enforcing the positivity of density and pressure. To avoid the e!ect of the round-
o! error, we need to choose the desired lower bounds. Denote the lowest density and
pressure in the domain by

\omega 
\varepsilon :=min

i,j,\omega 
{Un,\varepsilon 

i,j ,U
n,\varepsilon 
\omega }, \omega p :=min

i,j,\omega 
{p(Un

i,j), p(U
n
\omega )},(4.11)

where U\uparrow ,\varepsilon and p(U\uparrow ) denote the density component and pressure recovered from U\uparrow ,
respectively, and \varepsilon denotes the locations of point values in the DoFs. The limiting
(4.9) is feasible if the constraints are satisfied by the first-order LLF intermediate
states (4.5); thus the lower bounds can be defined as

\omega 
\varepsilon 
i,j :=min

\Biggl[ 
10\rightarrow 13

,\omega 
\varepsilon 
, \Biggl\lfloor U

\varepsilon 

i\rightarrow 1

2
,j ,

\Biggl\lfloor U
\varepsilon 

i+ 1

2
,j ,

\Biggl\lfloor U
\varepsilon 

i,j\rightarrow 1

2

, \Biggl\lfloor U
\varepsilon 

i,j+ 1

2

\Biggr] 
,

\omega 
p
i,j :=min

\Biggl[ 
10\rightarrow 13

,\omega 
p
, p( \Biggl\lfloor U i\rightarrow 1

2
,j), p( \Biggl\lfloor U i+ 1

2
,j), p( \Biggl\lfloor U i,j\rightarrow 1

2

), p( \Biggl\lfloor U i,j+ 1

2

)
\Biggr] 
.

i) Positivity of density. The first step is to impose the density positivity
\Biggl\lfloor U
Lim,±,\varepsilon 

i+ 1

2
,j \leftrightsquigarrow \omega 

\varepsilon 
i+ 1

2
,j
:= min{\omega \varepsilon i,j ,\omega 

\varepsilon 
i+1,j}. Similarly to the derivation of the scalar case,

the corresponding density component of the limited antidi!usive flux is

""\Biggr\rfloor F
Lim,\varepsilon 

i+ 1

2
,j =

\Biggl\lceil 
\Biggr\rceil 

\Biggl\{ 
min

\Biggl[ 
""\Biggr\rfloor F

\varepsilon 

i+ 1

2
,j , (\vargamma 1)i+ 1

2
,j

\Biggr\} 
\Biggl\lfloor U

\varepsilon 

i+ 1

2
,j \rightarrow \omega 

\varepsilon 
i+ 1

2
,j

\Biggl\langle \Biggr] 
if""\Biggr\rfloor F

\varepsilon 

i+ 1

2
,j \leftrightsquigarrow 0,

max
\Biggl[ 
""\Biggr\rfloor F

\varepsilon 

i+ 1

2
,j , (\vargamma 1)i+ 1

2
,j

\Biggr\} 
\omega 
\varepsilon 
i+ 1

2
,j
\rightarrow \Biggl\lfloor U

\varepsilon 

i+ 1

2
,j

\Biggl\langle \Biggr] 
otherwise.

Then the density component of the limited numerical flux is \Biggr\rfloor F
Lim,\uparrow ,\varepsilon 
i+ 1

2
,j = \Biggr\rfloor F

L,\varepsilon 

i+ 1

2
,j +

""\Biggr\rfloor F
Lim,\varepsilon 

i+ 1

2
,j , with the other components remaining the same as \Biggr\rfloor F

H

i+ 1

2
,j .

ii) Positivity of pressure. The second step is to enforce pressure positivity

p( \Biggl\lfloor U
Lim,±
i+ 1

2
,j)\leftrightsquigarrow \omega 

p
i+ 1

2
,j
:=min{\omega pi,j ,\omega 

p
i+1,j}. Since

\Biggl\lfloor U
Lim,±
i+ 1

2
,j = \Biggl\lfloor U i+ 1

2
,j ±

\varpi i+ 1

2
,j""\Biggr\rfloor F

Lim,\uparrow 
i+ 1

2
,j

\vargamma i+ 1

2
,j

, ""\Biggr\rfloor F
Lim,\uparrow 
i+ 1

2
,j = \Biggr\rfloor F

Lim,\uparrow 
i+ 1

2
,j \rightarrow \Biggr\rfloor F

L

i+ 1

2
,j ,

the constraints lead to two inequalities after some algebraic operations

Ai+ 1

2
,j\varpi 

2
i+ 1

2
,j ±Bi+ 1

2
,j\varpi i+ 1

2
,j \looparrowleft Ci+ 1

2
,j ,(4.12)

with the coe\#cients (the subscript (·)i+ 1

2
,j is omitted on the right-hand side)

Ai+ 1

2
,j =

1

2

\Biggr\rangle \Biggr\rangle \Biggr\rangle ""\Biggr\rfloor F
Lim,\uparrow ,\varepsilon v\Biggr\rangle \Biggr\rangle \Biggr\rangle 

2

2
\rightarrow ""\Biggr\rfloor F

Lim,\uparrow ,\varepsilon 
""\Biggr\rfloor F

Lim,\uparrow ,E
,

Bi+ 1

2
,j = \vargamma 1

\Biggr\} 
""\Biggr\rfloor F

Lim,\uparrow ,\varepsilon \Biggl\lfloor U
E
+ \Biggl\lfloor U

\varepsilon 
""\Biggr\rfloor F

Lim,\uparrow ,E
\rightarrow ""\Biggr\rfloor F

Lim,\uparrow ,\varepsilon v
· \Biggl\lfloor U

\varepsilon v
\rightarrow \omega ""\Biggr\rfloor F

Lim,\uparrow ,\varepsilon \Biggl\langle 
,

Ci+ 1

2
,j = \vargamma 

2
1

\Bigg/ 
\Biggl\lfloor U

\varepsilon \Biggl\lfloor U
E
\rightarrow 1

2

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggl\lfloor U
\varepsilon v
\Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

2
\rightarrow \omega \Biggl\lfloor U

\varepsilon 
\Bigg\backslash 
, \omega = \omega 

p
i+ 1

2
,j
/(\varrho \rightarrow 1).
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BOUND-PRESERVING ACTIVE FLUX A825

Following [30], the inequalities (4.12) hold under the linear su!cient condition

\Biggr) 
max{0,Ai+ 1

2
,j}+ |Bi+ 1

2
,j |
\Biggl[ 
\omega i+ 1

2
,j \leftrightsquigarrow Ci+ 1

2
,j ,

if making use of \omega 2
i+ 1

2
,j
\leftrightsquigarrow \omega i+ 1

2
,j , \omega i+ 1

2
,j \rightarrow [0,1]. Thus the coe!cient can be chosen as

\omega i+ 1

2
,j =min

\Biggr] 
1,

Ci+ 1

2
,j

max{0,Ai+ 1

2
,j}+ |Bi+ 1

2
,j |

\Biggl\lfloor 
,

and the final limited numerical flux is

\Biggr\rfloor F
Lim,\rightarrow \rightarrow 
i+ 1

2
,j = \Biggr\rfloor F

L

i+ 1

2
,j + \omega i+ 1

2
,j""\Biggr\rfloor F

Lim,\rightarrow 
i+ 1

2
,j .(4.13)

4.1.3. Shock sensor–based limiting. Spurious oscillations are observed, es-
pecially near strong shock waves, if only the BP limitings are employed; see Example
5.10. We propose to further limit the numerical fluxes using another parameter \omega s

i+ 1

2
,j

based on shock sensors. Consider the Jameson’s shock sensor in [29],

(\varepsilon 1)i,j =
|p̄i+1,j \uparrow 2p̄i,j + p̄i\uparrow 1,j |
|p̄i+1,j + 2p̄i,j + p̄i\uparrow 1,j |

,

and a modified Ducros’ shock sensor [15]

(\varepsilon 2)i,j =max

\Biggl\lceil 
\Biggr\rceil 

\Biggl\{ 
\uparrow (\downarrow · v̄)i,j\Biggr\} 

(\downarrow · v̄)2i,j + (\downarrow \updownarrow v̄)2i,j + 10\uparrow 40
, 0

\Biggl\langle 
\Biggr\rangle 

\Bigg/ ,

where

(\downarrow · v̄)i,j \nearrow 
2 ((v̄1)i+1,j \uparrow (v̄1)i\uparrow 1,j)

""xi +""xi+1
+

2((v̄2)i,j+1 \uparrow (v̄2)i,j\uparrow 1)

""yj +""yj+1
,

(\downarrow \updownarrow v̄)i,j \nearrow 
2 ((v̄2)i+1,j \uparrow (v̄2)i\uparrow 1,j)

""xi +""xi+1
\uparrow 2 ((v̄1)i,j+1 \uparrow (v̄1)i,j\uparrow 1)

""yj +""yj+1
,

with v̄i,j and p̄i,j the velocity and pressure recovered from the cell average U i,j . We
consider the sign of the velocity divergence such that the shock waves can be located
better. The blending coe!cient is designed as

\omega 
s
i+ 1

2
,j = exp

\Biggr) 
\uparrow \vargamma (\varepsilon 1)i+ 1

2
,j(\varepsilon 2)i+ 1

2
,j

\Biggl[ 
\rightarrow (0,1],

(\varepsilon s)i+ 1

2
,j =max

\Bigg\backslash 
(\varepsilon s)i,j , (\varepsilon s)i+1,j

\Big/ 
, s= 1,2,

where the problem-dependent parameter \vargamma adjusts the strength of the limiting, and
its optimal choice needs further investigation. The final limited numerical flux is

\Biggr\rfloor F
Lim

i+ 1

2
,j = \Biggr\rfloor F

L

i+ 1

2
,j + \omega 

s
i+ 1

2
,j""

\Biggr\rfloor F
Lim,\rightarrow \rightarrow 
i+ 1

2
,j ,(4.14)

with ""\Biggr\rfloor F
Lim,\rightarrow \rightarrow 
i+ 1

2
,j = \Biggr\rfloor F

Lim,\rightarrow \rightarrow 
i+ 1

2
,j \uparrow \Biggr\rfloor F

L

i+ 1

2
,j , and \Biggr\rfloor F

Lim,\rightarrow \rightarrow 
i+ 1

2
,j given in (4.13).
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,j−1
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2
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,j ui+3
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2
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2
ui−1

2
,j+1

2

Fig. 5. The stencils for the first-order LLF schemes.

4.2. Scaling limiter for point value. To achieve the BP property, it is also
necessary to introduce BP limiting for the point value, because using the BP limiting
for cell average alone cannot guarantee the bounds; see Example 5.5. As there is
no conservation requirement on the point value update, a simple scaling limiter [32]
is directly performed on the high-order solution rather than on the flux for the cell
average.

The first step is to define suitable first-order LLF schemes. The stencils are shown
in Figure 5.

For the point value at the corner, one can choose

U L

i+ 1

2
,j+ 1

2

=Un
i+ 1

2
,j+ 1

2

\rightarrow 2!t
n

!xi +!xi+1

\Biggr) 
\Biggl[ F
L

i+1,j+ 1

2

\rightarrow \Biggl[ F
L

i,j+ 1

2

\Biggr] 
(4.15)

\rightarrow 2!t
n

!yj +!yj+1

\Biggr) 
\Biggl[ F
L

i+ 1

2
,j+1 \rightarrow \Biggl[ F

L

i+ 1

2
,j

\Biggr] 
,

with the LLF numerical fluxes

\Biggl[ F
L

i+1,j+ 1

2

:= \Biggl[ F
LLF

1

\Biggr) 
Un

i+ 1

2
,j+ 1

2

,Un
i+ 3

2
,j+ 1

2

\Biggr] 
, \Biggl[ F

L

i+ 1

2
,j+1 := \Biggl[ F

LLF

2

\Biggr) 
Un

i+ 1

2
,j+ 1

2

,Un
i+ 1

2
,j+ 3

2

\Biggr] 
.

Note that the x-directional LLF flux has been used in (4.3). For the vertical face-
centered point value, we choose the first-order LLF scheme as

U L

i+ 1

2
,j = Un

i+ 1

2
,j \rightarrow 

2!t
n

!xi +!xi+1

\Biggr) 
\Biggl[ F
L

i+1,j \rightarrow \Biggl[ F
L

i,j

\Biggr] 
\rightarrow !t

n

!yj

\Biggr) 
\Biggl[ F
L

i+ 1

2
,j+ 1

2

\rightarrow \Biggl[ F
L

i+ 1

2
,j\rightarrow 1

2

\Biggr] 
,

(4.16)

with the LLF numerical fluxes

\Biggl[ F
L

i+1,j := \Biggl[ F
LLF

1

\Biggr) 
Un

i+ 1

2
,j ,U

n
i+ 3

2
,j

\Biggr] 
, \Biggl[ F

L

i+ 1

2
,j+ 1

2

:= \Biggl[ F
LLF

2

\Biggr) 
Un

i+ 1

2
,j ,U

n
i+ 1

2
,j+ 1

2

\Biggr] 
.

The LLF scheme for the face-centered value on the horizontal face can be chosen as

U L

i,j+ 1

2

=Un
i,j+ 1

2

\rightarrow !t
n

!xi

\Biggr) 
\Biggl[ F
L

i+ 1

2
,j+ 1

2

\rightarrow \Biggl[ F
L

i\rightarrow 1

2
,j+ 1

2

\Biggr] 
\rightarrow 2!t

n

!yj +!yj+1

\Biggr) 
\Biggl[ F
L

i,j+1 \rightarrow \Biggl[ F
L

i,j

\Biggr] 
,

(4.17)

with similarly defined LLF numerical fluxes as for the vertical face.
Similarly to Lemma 4.2, it is straightforward to obtain the following Lemma.
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BOUND-PRESERVING ACTIVE FLUX A827

Lemma 4.6. The LLF schemes (4.15)–(4.17) for the point value update are BP
under the following time step size constraint

!t
n \leftrightsquigarrow 1

2
min

\Biggr) 
!xi +!xi+1

2
\Biggl[ 
(\omega 1)i,j+ 1

2

+ (\omega 1)i+1,j+ 1

2

\Biggr] , !yj +!yj+1

2
\Biggl[ 
(\omega 2)i+ 1

2
,j + (\omega 2)i+ 1

2
,j+1

\Biggr] ,

!xi +!xi+1

2 ((\omega 1)i,j + (\omega 1)i+1,j)
,

!yj

(\omega 2)i+ 1

2
,j+ 1

2

+ (\omega 2)i+ 1

2
,j\rightarrow 1

2

,

!xi

(\omega 1)i+ 1

2
,j+ 1

2

+ (\omega 1)i\rightarrow 1

2
,j+ 1

2

,
!yj +!yj+1

2 ((\omega 2)i,j + (\omega 2)i,j+1)

\Biggl\lfloor 
,(4.18)

where (\omega 1)\uparrow and (\omega 2)\uparrow are the viscosity coe!cients in the LLF schemes.

The limited solution is obtained by blending the high-order AF scheme (3.6) with
the forward-Euler scheme and the LLF schemes (4.15)–(4.17) as U Lim

\omega = \varepsilon \omega U
H

\omega + (1\rightarrow 
\varepsilon \omega )U

L

\omega such that U Lim

\omega \uparrow G.
Remark 4.7. In the FVS, the cell-centered value obtained based on Simpson’s rule

U i = (\rightarrow U i\rightarrow 1

2

+ 6U i \rightarrow U i+ 1

2

)/4 in 1D or (3.9) in 2D is not a convex combination;
thus it is possible that U i,U i,j /\uparrow G. For the scalar case, it does not a""ect the BP
property. However, for the Euler equations, the computation of F i (resp., (F \varepsilon )i,j)
requires that U i \uparrow G (resp., U i,j \uparrow G); thus the scaling limiter [45] is applied in the
cell Ii (resp., Ii,j), a procedure also mentioned in [10]. See more details in Remark
4.8.

4.2.1. Application to scalar conservation laws. This section enforces the
MP u

min
\omega \leftrightsquigarrow u

Lim

\omega \leftrightsquigarrow u
max
\omega using the scaling limiter [44]. The limited solution is

u
Lim

\omega = \varepsilon \omega u
H

\omega + (1\rightarrow \varepsilon \omega )u
L

\omega ,(4.19)

with the coe\#cient

\varepsilon \omega =min

\Biggr\rfloor 
1,

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 
u
L

\omega \rightarrow m0

uL\omega \rightarrow uH\omega 

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil ,
\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 
M0 \rightarrow u

L

\omega 

uH\omega \rightarrow uL\omega 

\Biggl\lceil \Biggl\lceil \Biggl\lceil \Biggl\lceil 

\Biggr\rceil 
.

The bounds are determined by u
min
\omega = minN , umax

\omega = maxN , where the set N
consists of all the DoFs in the domain, i.e., N =

\Biggl\{ 
i,j,\omega {ūn

i,j , u
n
\omega } for the global MP.

One can also consider the neighboring DoFs for the local MP. For the point value at
the corner (xi+ 1

2

, yj+ 1

2

), we choose

N =
\Biggr\} 
u
n
i+ 1

2
,j+ 1

2

, u
n
i\rightarrow 1

2
,j+ 1

2

, u
n
i+ 3

2
,j+ 1

2

, u
n
i+ 1

2
,j\rightarrow 1

2

, u
n
i+ 1

2
,j+ 3

2

\Biggl\langle 
,

which should at least include all the DoFs that appeared in the first-order LLF scheme
(4.15). For the point value at the vertical face center (xi+ 1

2

, yj), similarly we choose

N =
\Biggr\} 
u
n
i+ 1

2
,j , u

n
i\rightarrow 1

2
,j , u

n
i+ 3

2
,j , u

n
i+ 1

2
,j\rightarrow 1

2

, u
n
i+ 1

2
,j+ 1

2

\Biggl\langle 
.

For the point value at the horizontal face center (xi, yj+ 1

2

), we choose

N =
\Biggr\} 
u
n
i,j+ 1

2

, u
n
i,j\rightarrow 1

2

, u
n
i,j+ 3

2

, u
n
i\rightarrow 1

2
,j+ 1

2

, u
n
i+ 1

2
,j+ 1

2

\Biggl\langle 
.
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4.2.2. Application to the compressible Euler equations. The limiting con-
sists of two steps.

i) Positivity of density. First, the high-order solution U H

\omega is modified as U Lim,\rightarrow 
\omega 

such that its density component satisfies U Lim,\rightarrow ,\varepsilon 
\omega \leftrightsquigarrow \omega 

\varepsilon 
\omega := min{10\uparrow 13

,\omega 
\varepsilon 
,U L,\varepsilon 

\omega } with
\omega 
\varepsilon given in (4.11). Solving the inequality yields

\varepsilon 
\rightarrow 
\omega =

\Biggr) 
\Biggl[ 

\Biggr] 

U L,\varepsilon 
\omega \rightarrow \omega 

\varepsilon 
\omega 

U L,\varepsilon 
\omega \rightarrow U H,\varepsilon 

\omega 

if U H,\varepsilon 
\omega < \omega 

\varepsilon 
\omega ,

1 otherwise.

Then the density component of the limited solution is U Lim,\rightarrow ,\varepsilon 
\omega = \varepsilon 

\rightarrow 
\omega U

H,\varepsilon 
\omega + (1 \rightarrow 

\varepsilon 
\rightarrow 
\omega )U

L,\varepsilon 
i+ 1

2

, with the other components remaining the same as U H

\omega .

ii) Positivity of pressure. Then the limited solution U Lim,\rightarrow 
\omega is modified as U Lim

\omega 

such that it gives positive pressure, i.e., p(U Lim

\omega )\leftrightsquigarrow \omega 
p
\omega := min{10\uparrow 13

,\omega 
p
, p(U L

\omega )}, with
\omega 
p given in (4.11). Let the final limited solution be

U Lim

\omega = \varepsilon 
\rightarrow \rightarrow 
\omega U Lim,\rightarrow 

\omega + (1\rightarrow \varepsilon 
\rightarrow \rightarrow 
\omega )U L

\omega .(4.20)

The pressure is a concave function of the conservative variables (see, e.g., [46]), so that
p(U Lim

\omega )\leftrightsquigarrow \varepsilon 
\rightarrow \rightarrow 
\omega p(U Lim,\rightarrow 

\omega )+(1\rightarrow \varepsilon 
\rightarrow \rightarrow 
\omega )p(U L

\omega ) based on Jensen’s inequality andU Lim,\rightarrow ,\varepsilon 
\omega > 0,

U L,\varepsilon 
\omega > 0, \varepsilon \rightarrow \rightarrow \omega \uparrow [0,1]. Thus the coe!cient can be chosen as

\varepsilon 
\rightarrow \rightarrow 
\omega =

\Biggr) 
\Biggl[ 

\Biggr] 

p(U L

\omega )\rightarrow \omega 
p
\omega 

p(U L

\omega )\rightarrow p(U Lim,\rightarrow 
\omega )

if p(U Lim,\rightarrow 
\omega )< \omega 

p
\omega ,

1 otherwise.

Remark 4.8. To compute the high-order FVS-based point value update, we should
limit the cell-centered value U i in 1D (resp., U i,j in 2D) at the beginning of each
Runge–Kutta stage. For example, in 2D, we modify U i,j as U Lim

i,j = \varepsilon i,jU i,j + (1 \rightarrow 
\varepsilon i,j)U i,j such that

U Lim,\varepsilon 
i,j \leftrightsquigarrow min{10\uparrow 13

,U
\varepsilon 
i,j}, p(U Lim

i,j )\leftrightsquigarrow min{10\uparrow 13
, p(U i,j)}.

The computation of \varepsilon i,j is similar to the procedure in this section.

Let us summarize the main results of the BP AF methods in this paper.

Proposition 4.9. If the initial numerical solution U
0
i,j ,U

0
\omega \uparrow G for all i, j,\vargamma , and

the time step size satisfies (4.6) and (4.18), then the AF methods (3.3)–(3.6) equipped
with the SSP-RK3 (2.14) and the BP limitings

• (4.10) and (4.19) preserve the MP for scalar case;
• (4.13) and (4.20) preserve positive density and pressure for the Euler equa-
tions.

Remark 4.10. For uniform meshes, and if taking the maximal spectral radius of
\varpi F 1/\varpi U and \varpi F 2/\varpi U in the domain as \downarrow \varrho 1\downarrow \downarrow and \downarrow \varrho 2\downarrow \downarrow , the CFL condition

""t
n \looparrowleft 1

4
min

\Biggl\lfloor 
""x

\downarrow \varrho 1\downarrow \downarrow 
,

""y

\downarrow \varrho 2\downarrow \downarrow 

\Biggr\rfloor 

fulfills the time step size constraints (4.6) and (4.18).
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Fig. 6. Example 5.2, LeBlanc Riemann problem. The density computed with the BP limitings
and the shock sensor–based limiting (\omega = 10) on a uniform mesh of 6,000 cells. From left to right:
JS, LLF, SW, and VH FVS.

5. Numerical results. This section presents some numerical tests to verify the
accuracy, BP property, and shock-capturing ability of the proposed BP AF methods.
The adiabatic index is \omega = 1.4 for the Euler equations except for Example 5.11, where
it is 5/3. In the 2D plots, the numerical solutions are visualized on a refined mesh
with half the mesh size, where the values at the grid points are the cell averages or
point values on the original mesh. Note that the BP limitings naturally reduce some
oscillations. Some additional tests are provided in section SM4 in the supplementary
material, including a 1D accuracy test for the Euler equations, double rarefaction
problem, blast wave interaction problem using the power law reconstruction [5], and
double Mach reflection problem.

Example 5.1 (Self-steepening shock). Consider the 1D Burgers’ equation ut +
( 12u

2)x = 0 on the domain [\rightarrow 1,1] with periodic boundary conditions. The initial
condition is a square wave, u0(x) = 2 if |x|< 0.2, otherwise u0(x) =\rightarrow 1.

Figure 1 shows the cell averages and point values at T = 0.5 based on di!erent
point value updates with 200 cells. The CFL number is 0.2. The spike generation
when using the JS has been observed in [27], and the reason is also discussed in
subsection 2.2. Such an issue cannot be eliminated by our BP limitings alone but can
be cured by additionally using the FVS for the point value update. The numerical
solutions based on the FVS agree well with the reference solution when the limitings
are activated.

Example 5.2 (LeBlanc shock tube). This is a Riemann problem with an extremely
large initial pressure ratio. This test is solved until T = 5\uparrow 10\rightarrow 6 on the domain [0,1]
with the initial data (\varepsilon , v, p) = (2,0,109) if x< 0.5, otherwise (\varepsilon , v, p) = (10\rightarrow 3

,0,1).
Without the BP limitings, the simulation will stop due to negative density or

pressure. Figure 6 shows the density computed on a uniform mesh of 6000 cells with
the BP limitings and shock sensor–based limiting. Note that the numerical methods
typically need a small mesh size to accurately obtain the right location of the shock
wave. The CFL number is 0.4 for the JS, LLF, and SW FVS and 0.1 for the VH FVS
for stability. The numerical solutions agree well with the exact solution with only a
few undershoots at the discontinuities.

Example 5.3 (Blast wave interaction [41]). This test describes the interaction of
two strong shocks in the domain [0,1] with reflective boundary conditions. The test
is solved until T = 0.038.

Due to the low-pressure region, the schemes blow up without the BP limitings.
Figure 7 shows the density plots obtained by using the BP limitings and shock sensor–
based limiting on a uniform mesh of 800 cells. The CFL number is 0.4 for the JS,
LLF, and SW FVS and 0.36 for the VH FVS. The numerical solutions agree well the
reference solution with a few overshoots/undershoots.
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Fig. 7. Example 5.3, blast wave interaction. The density computed with the BP limitings and
the shock sensor–based limiting (\omega = 1). The corresponding enlarged views in x \rightarrow [0.62,0.82] are
shown in the bottom row.
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Fig. 8. Example 5.5, 2D advection equation. From left to right: without any limiting, with BP
limitings imposing the global MP, cut-line along y= x.

Remark 5.4. In the numerical tests, the maximal CFL numbers for stability are
obtained experimentally. Note that the reduction of the CFL numbers is due to
di!erent stability bounds for di!erent point value updates and is not related to the
BP property. The study of such an issue is beyond the scope of this paper, which will
be explored in the future.

Example 5.5 (2D advection equation). This test solves ut + ux + uy = 0 on the
periodic domain [0,1]\rightarrow [0,1] with the following initial data:

u0(x, y) =

\Biggr) 
\Biggl[ \Biggr] 

\Biggl[ \Biggl\lfloor 

1\uparrow |5r| if r=
\Biggr\rfloor 

(x\uparrow 0.3)2 + (y\uparrow 0.3)2 < 0.2,

1 if max{|x\uparrow 0.7| , |y\uparrow 0.7|}< 0.2,

0 otherwise.

For the advection equation, the JS and LLF FVS are equivalent. The results on
the uniform 100 \rightarrow 100 mesh obtained without and with BP limitings at T = 2 are
presented in Figure 8. The BP limitings suppress the overshoots and undershoots
well near the discontinuities. Table 1 lists whether the numerical solutions stay in the
bound [0,1]. The bound is only preserved when both the BP limitings for the cell
average and point value are activated, demonstrating that it is necessary to use the
two kinds of BP limitings simultaneously.

Example 5.6 (2D Burgers’ equation). We solve ut + ( 12u
2)x + ( 12u

2)y = 0 on the
periodic domain [0,1]\rightarrow [0,1], with the initial condition u0(x, y) = 0.5+sin(2\omega (x+y)).
This test is solved until T = 0.3, when the shock waves have emerged.
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Table 1
Example 5.5, 2D advection equation. We list whether the numerical solutions stay in the bound

[0,1] with di!erent limitings.
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Fig. 9. Example 5.6, 2D Burgers’ equation. From left to right: without limiting, with BP
limitings imposing the global MP, cut-line along y= x.
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Fig. 10. Example 5.6, 2D Burgers’ equation. The blending coe""cients in the limitings. From
left to right: \omega i+ 1

2
,j and \omega i,j+ 1

2

for the cell average, \omega \omega for the point value.

Figure 9 plots the solutions using the LLF FVS on the uniform 100\rightarrow 100 mesh
without and with limitings. The oscillations near the shock waves are suppressed
well when the limitings are activated, and the numerical solutions agree well with the
reference solution. The blending coe!cients \omega i+ 1

2
,j ,\omega i,j+ 1

2

for the cell average and \omega \omega 

for the point value when using the global MP are also presented in Figure 10, verifying
that the limitings are only locally activated near the shock waves.

Example 5.7 (2D isentropic vortex). The domain is [\uparrow 5,5]\rightarrow [\uparrow 5,5] with periodic
boundary conditions, and the initial condition is

\varepsilon = T

1

\omega \rightarrow 1

0 , (v1, v2) = (1,1) + k0(y,\uparrow x), p= T0\varepsilon , k0 =
\vargamma 

2\varpi 
e
0.5(1\rightarrow r2)

, T0 = 1\uparrow \varrho \uparrow 1

2\varrho 
k
2
0,

where r
2 = x

2 + y
2, and \vargamma = 10.0828 is the vortex strength. The lowest initial density

and pressure are around 7.83\rightarrow 10\rightarrow 15 and 1.78\rightarrow 10\rightarrow 20, respectively, so that the BP
limitings are necessary to run this test case. The problem is solved until T = 1.
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Fig. 11. Example 5.7, 2D isentropic vortex problem. The errors and convergence rates.

Figure 11 shows the errors and corresponding convergence rates of the conserva-
tive variables in the \omega 

1 norm with the CFL number 0.2. The BP AF methods based
on the JS, LLF, and VH FVS achieve the third-order accuracy, which is not a!ected
by the BP limitings. The convergence rate based on the SW FVS reduces to around
2, due to the nonsmoothness of the SW FVS as mentioned in Remark 2.1.

Example 5.8 (Quasi-2D Sod shock tube). This test solves the Sod shock tube
problem along the x-direction on the domain [0,1]\rightarrow [0,1] with a 100\rightarrow 2 uniform mesh
until T = 0.2. The initial condition is (\varepsilon , v1, v2, p) = (1,0,0,1) if x < 0.5, otherwise
(\varepsilon , v1, v2, p) = (0.125,0,0,0.1).

The density plots obtained by using di!erent ways for the point value update
without and with the shock sensor (\vargamma = 1) are shown in Figure 3. The density based
on the JS shows large deviations between the contact discontinuity and shock wave,
which cannot be reduced by the limiting. Seen from Figure 4, the solutions belonging
to the DoFs for di!erent point values are decoupled, known as the mesh alignment
issue, which was explained in subsection 3.2. The results of all the FVS-based methods
agree well with the exact solution when the limiting is activated. The FVS-based AF
methods are more advantageous in simulations since they can cure both the stagnation
and mesh alignment issues. To save space, in the following tests, we only show the
results obtained using the LLF FVS.

Example 5.9 (Sedov blast wave). The domain is [\uparrow 1.1,1.1] \rightarrow [\uparrow 1.1,1.1] with
outflow boundary conditions. The initial density is one, the velocity is zero, and the
total energy is 10\rightarrow 12 everywhere except that, for the centered cell, the total energy of
the cell average and the point values on its faces are 0.979264

!x!y with ""x= 2.2/N1,""y=
2.2/N2, which is used to emulate a \varpi -function at the center.

This test is solved until T = 1 and the BP limitings are necessary; otherwise,
the simulation fails due to negative pressure. The density plots obtained with the
shock sensor (\vargamma = 0.5) are shown in Figure 12. The circular shock wave is well-
captured and the numerical solutions converge to the exact solution without spurious
oscillations. The blending coe\#cients based on the shock sensor are presented in
Figure 13, indicating that the limiting is locally activated.

Example 5.10 (A Mach 3 wind tunnel with a forward-facing step). The initial
condition is a Mach 3 flow (\varepsilon , v1, v2, p) = (1.4,3,0,1). The computational domain is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 12. Example 5.9, 2D Sedov blast wave. The density plots computed by the BP AF method.
From left to right: 10 equally spaced contour lines from 0 to 5.423 on the uniform 101 \rightarrow 101 and
201\rightarrow 201 meshes, respectively, cut-line along y= x.

−1.1 0.0 1.1
−1.1

0.0

1.1

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

−1.1 0.0 1.1
−1.1

0.0

1.1

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fig. 13. Example 5.9, 2D Sedov blast wave. The shock sensor–based blending coe!cients \omega s
i+ 1

2
,j

(left) and \omega s
i,j+ 1

2

(right) on the 201\rightarrow 201 uniform mesh.

[0,3]\rightarrow [0,1], and the step is of height 0.2 located from x = 0.6 to x = 3. The inflow
and outflow boundary conditions are applied at the entrance (x= 0) and exit (x= 3),
respectively, and the reflective boundary conditions are imposed at other boundaries.

The density computed by the BP AF method without and with the shock sensor–
based limiting at T = 4 are shown in Figure 14, and the blending coe!cients \omega s

i+ 1

2
,j
,

\omega 
s
i,j+ 1

2

are presented in Figure 15. If only the BP limitings are used, there are oscilla-
tions in the numerical solutions, but the BP property is not violated. The numerical
solutions can be improved by our shock sensor–based limiting. Our BP AF method
can capture the main features and well-developed Kelvin–Helmholtz roll-ups that orig-
inate from the triple point. The noise after the shock waves is reduced by the shock
sensor–based limiting, while the roll-ups are preserved well. Compared to the results
obtained by the third-order P

2 DG method with the TVB limiter [12], the vortices
are better captured with the same mesh size ""x = ""y = 1/160,1/320. Note that
the AF method uses fewer DoFs, showing its e!ciency and potential for high Mach
number flows.

Example 5.11 (High Mach number astrophysical jets). This test follows the setup
in [45]. The first case considers a Mach 80 jet on a computational domain [0,2] \rightarrow 
[\uparrow 0.5,0.5], initially filled with ambient gas with (\varepsilon , v1, v2, p) = (0.5,0,0,0.4127). A jet
is injected into the domain with (\varepsilon , v1, v2, p) = (5,30,0,0.4127) at the left boundary
when |y|< 0.05. The free boundary conditions are applied on other boundaries. The
second case considers a Mach 2000 jet on a computational domain [0,1]\rightarrow [\uparrow 0.25,0.25].
The initial condition and boundary conditions are the same as the first case except
that the state of the jet is (\varepsilon , v1, v2, p) = (5,800,0,0.4127). The adiabatic index is
\vargamma = 5/3, and the output time is 0.07 and 0.001 for the two cases, respectively.
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Fig. 14. Example 5.10, forward-facing step problem. 30 equally spaced contour lines of the
density from 0.098 to 6.566. From top to bottom: 480\rightarrow 160 mesh without shock sensor, 480\rightarrow 160
mesh with \omega = 1, 960\rightarrow 320 mesh with \omega = 1.
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Fig. 15. Example 5.10, forward-facing step problem. The blending coe!cients \varepsilon s
i+ 1

2
,j

(left) and

\varepsilon s
i,j+ 1

2

(right) based on the shock sensor with \omega = 1 on the 960\rightarrow 320 mesh.

The numerical solutions obtained by the BP AF methods with the shock sensor
on the uniform 400\rightarrow 200 mesh are shown in Figure 16. The main flow structures and
small-scale features are captured well, comparable to those in [45].

6. Conclusion. In the AF methods, it is pivotal to design suitable point values
update at cell interfaces, to achieve stability and high-order accuracy. The point
value update based on the JS may lead to the stagnation and mesh alignment issues.
This paper proposed to use the FVS for the point value update instead of the JS,
which keeps the continuous reconstruction as the original AF methods, and o!ers a
natural and uniform remedy to those two issues. To further improve the robustness
of the AF methods, this paper developed BP AF methods for hyperbolic conservation
laws, achieved by blending the high-order AF methods with the first-order LLF or
Rusanov methods for both the cell average and point value updates, where the convex
limiting and scaling limiter were employed, respectively. The shock sensor–based
limiting was proposed to further improve the shock-capturing ability. The challenging
numerical tests verified the robustness and e!ectiveness of our BP AF methods and
also showed that the LLF FVS is generally superior to others in terms of the CFL
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Fig. 16. Example 5.11, the Mach 80 jet (top row) and Mach 2000 jet (bottom row). log10 \omega 
(left) and log10 p (right) obtained with the BP limitings and shock sensor–based limiting (\varepsilon = 1 for
Mach 80 and 10 for Mach 2000, respectively).

number and nonoscillatory property. Moreover, for the forward-facing step problem,
the present FVS-based BP AF method was able to capture small-scale features better
compared to the third-order discontinuous Galerkin method with the TVB limiter on
the same mesh resolution [12], while using fewer DoFs, demonstrating the e!ciency
and potential of our BP AF method for high Mach number flows.
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