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The Active Flux method can be seen as an extended finite volume method. The degrees of freedom of this method
are cell averages, as in finite volume methods, and in addition shared point values at the cell interfaces, giving
rise to a globally continuous reconstruction. Its classical version was introduced as a one-stage fully discrete,
third-order method. Recently, a semi-discrete version of the Active Flux method was presented with various

extensions to arbitrarily high order in one space dimension. In this paper we extend the semi-discrete Active
Flux method on two-dimensional Cartesian grids to arbitrarily high order, by including moments as additional
degrees of freedom (hybrid finite element-finite volume method). The stability of this method is studied for
linear advection. For a fully discrete version, using an explicit Runge-Kutta method, a CFL restriction is derived.
We end by presenting numerical examples for hyperbolic conservation laws.

1. Introduction

The solution of systems of hyperbolic conservation laws is required
by many different physical problems from fluid dynamics. As most of
these problems are fairly complex, numerical methods are needed to
solve them. Finite volume methods evolve cell averages and maintain
conservation in a discrete sense which is important for convergence to
a weak solution. Godunov’s method [1], for example, is a seminal ap-
proach to hyperbolic conservation laws. More recently, Roe and coau-
thors introduced the Active Flux method [2-4] inspired by van Leer’s
scheme V [5] for linear advection. The new method not only uses cell
averages but also point values at the cell interfaces. This allows to recon-
struct the solution piecewise parabolically in a globally continuous fash-
ion. In van Leer [5], the point values at the cell interfaces were updated
by tracing back the characteristics. This way, a method of third order
for linear advection in one spatial dimension arose. Roe’s one-stage fully
discrete Active Flux method (which we will call the classical Active Flux
method, for a review on Cartesian grids see e.g. Chudzik and Helzel [6])
extends this idea to certain nonlinear and/or multi-dimensional hyper-
bolic problems by replacing characteristic transport with suitable either
exact or approximate evolution operators (e.g. Maeng [7], Fan [8], Bar-
sukow et al. [9], Barsukow [10], Chudzik et al.[11]). Depending on the
system of conservation laws finding such an evolution operator may be
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quite challenging. Recently the authors in Abgrall [12], Abgrall and Bar-
sukow [13,14], Abgrall et al. [15] proposed a semi-discrete formulation
of the Active Flux method (which we will call the generalized Active Flux
method) that allows for a more flexible approach to update the point
values.

In Abgrall and Barsukow [13], several extensions of this method to
arbitrary order in one spatial dimension are presented, while the multi-
dimensional method in Abgrall et al. [15] was only third-order accurate.
In this paper we extend this work to obtain a semi-discrete generalized
Active Flux method of arbitrarily high order on Cartesian grids in two
spatial dimensions. The design of the method is based on a hybrid finite
element-finite volume method (see also Abgrall and Barsukow [14]) and
also takes inspiration from the one-dimensional arbitrary-order Active
Flux method with additional point values developed in Abgrall and Bar-
sukow [13].

While this paper focuses on Cartesian grids, we want to also mention
[16], where a semi-discrete Active Flux method on triangular meshes is
presented and results for a third- and fourth-order accurate method are
shown, using the cell average and point values at the cell interfaces.
Furthermore, He[17] and Roe [18], Samani and Roe [19], Samani [20]
consider extensions of the (classical) fully discrete Active Flux method
to arbitrary order. The first approach uses additional point values. In
the latter, they typically enrich the stencil using additional information
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in the form of derivatives at the already defined point values at the cell
interfaces (also called “Hermite Active Flux”).

Here, we aim at using higher moments in the cells and additional
point values at the cell interfaces. For efficiency, we especially aim
at achieving arbitrarily high order with a minimal number of degrees
of freedom while maintaining the compact stencil. Another possibil-
ity is a tensor-like extension of the hybrid finite elementfinite volume
method in Abgrall and Barsukow [14], which is also formally defined in
Kern[21], but it uses more degrees of freedom than actually necessary
for the required order of accuracy.

Using our approach, key features of Active Flux like global continu-
ity of the reconstructed solution and a compact stencil of the method
in space are retained. As the method is based on the semi-discrete ap-
proach, it has the potential to be more easily applicable to different sys-
tems of conservation laws than the classical Active Flux. For integration
in time we use an explicit Runge-Kutta method. While classical Active
Flux is a one-stage fully discrete method, the multiple stages of a Runge-
Kutta method widen the effective stencil of the generalized Active Flux
method. In Roe[18], this has been linked to a reduction of the max-
imal CFL number, compared to the classical Active Flux method. Yet,
Barsukow et al. [22] shows encouraging similarities of the classical and
generalized Active Flux method of third order on Cartesian grids for lin-
ear acoustics, such as stationarity preservation (see Barsukow et al. [9]
for stationarity preservation of the classical Active Flux).

The paper is structured as follows: In Section 2 we briefly recall ar-
bitrarily high-order one-dimensional Active Flux from Abgrall and Bar-
sukow [13,14] and third-order two-dimensional Active Flux from Ab-
grall et al. [15]. Then, our high order method is defined in Section 3.
Section 4 focuses on a stability analysis for linear advection of both the
semi-discrete and the fully discrete method using RK3. Numerical re-
sults up to seventh order are presented for our high-order method in
Section 5, including an example for the 2-d compressible Euler equa-
tions.

2. An overview of the semi-discrete Active Flux method

Consider the hyperbolic system of conservation laws
9,q(t,x)+ V - f(q(1,x)) =0 (€]

for ¢: Rf xQ - R* on the domain Q C RY. Throughout this paper
the focus is on the two-dimensional case d =2 with f=(f~*, ),
f*, f¥: R® - R*. The notation used here is similar to Abgrall et al. [15].

Furthermore, we restrict ourselves to rectangular domains Q =
[Xmin> Xmax] X [Vmin» Ymax] discretized with Cartesian grids with equidis-
tant cell widths Ax and Ay in x- and y-direction. For a Carte-
sian grid of size N, x N, the grid cells will be denoted as C;; =

[xi_%,xi%]x[yj_l,y”%] fori=0,....,N,—1,j =0,...N, -1 centered

atx;; = (x;, y))-
Next, we will give an overview of semi-discrete Active Flux methods,
that we will use and extend in this paper.

w1

2.1. A third-order method on two-dimensional Cartesian grids

In Abgrall et al. [15] a semi-discrete Active Flux method of third or-
der on Cartesian grids was presented for the two-dimensional case. As
for the classical Active Flux method on Cartesian grids (see e.g. Bar-
sukow et al. [9], Helzel et al. [23]), the degrees of freedom for each cell
C;; are the cell average

_ 1
(1) = ——
q;;(®) AxAy/C,

i

q(t, x)dx @
j
and the nodal, vertical and horizontal point values
qi+%,j+%(t) = q<t, Fiplo Vil >’

(3
9410 = q<t,x[,yj+%>, 941,00 = q(t, xH%,y,-)
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at the cell interfaces. All point values are shared, i.e. each cell has access
to eight point values at x,, p € {(i + %,j + %),(i + %,j),(i,j + %)} (see
Fig. 1(a)).

The reconstruction on cell C;; is the biparabolic polynomial g;; ;econ *

[—%, %] X [—%y, %y] — R* (see Barsukow et al. [9], Abgrall et al. [15])
defined on a reference cell with x.; :=x-X; and X, =X, —X;;

which has to satisfy

Ay Ax
1 2 2 _
AxAy /Ay /Ax qij,recon(xref)dxrefdyref = 4ij»
2 YT

. 1 . 1 . 1 . .. 1
ijreconXref,p) =4, VP E {(1 3.0 5), (z + 5,1), (1,1 + 5) }
It can also be written in terms of shape functions, see e.g. Barsukow

et al. [22]. This gives rise to a globally continuous reconstruction ¢,.,,
on Q (see Fig. 1(b)) with

Grecon |C,-j (x) = qij,rccon(xrcf)- (4)

For the update of the point values 4P €

{(i+%,j+%),(i+%,j),(i,j+%)} the quasi-linear form of (1)
atx,

%q,,(t) + Df¥(q,(1)d,4l, (1) + D (q,(1)d,ql,(1) = 0

is considered. In order to introduce stabilization via upwinding, the Ja-
cobians J* = Df*(q,),J” = Df”(q,) are split according to the sign of the
wave speeds

() 1= T*diag(4*

x,17°

=+ xy—1
L AE T

N Vk=1,...,s.
X.

= max(0, A, ,),

Ay r=min(0, 4, )

The derivatives 9,4, are approximated with finite difference formulas
in upwind direction (D¥),q and (D;ﬁ)pq derived from the reconstruction
drecon- 1N directions tangential to the cell interface for the horizontal and
vertical edge point, the derivative of the reconstruction is continuous
and no upwinding is included.

The update of the cell averages is obtained by integrating the con-
servation law (1) over the cell C;; and applying the divergence theorem

d 1
—q;;t)+ —— f(q(t,x)) -ndS =0.
G O* Tay /{)qj (g(t,%) - m

The reconstructed solution is continuous at the cell interfaces and the
flux terms over the cell interfaces are numerically integrated with a
Gauss-Lobatto quadrature with three points, which coincide with the
point values at the cell interfaces.

2.2. Methods of arbitrary order in one dimension

In Abgrall and Barsukow [13], different methods to extend semi-
discrete Active Flux to arbitrarily high order in one dimension were
suggested. Here, two of these concepts are reviewed, and a variation of
the second method is presented.

2.2.1. A method with higher moments

In this paper, we will mainly focus on the hybrid finite element-finite
volume method as also defined in Abgrall and Barsukow [14, Definition
4.1 (Method A)]. For a method of order N + 1 on a compact stencil,
N + 1 degrees of freedom accessible to a cell are needed to approximate
a polynomial of degree N. In addition to the traditional degrees of free-
dom, i.e. the cell averages and the point values at the cell interfaces,
this method uses higher moments

© . iy
q; (1) 1= Ay q(t, x)by (x — x;)dx ke N.
X

i—

=

_Ax Ax
2°72
. This allows to obtain more

The test functions for the moments are b, : [ 1= R, b (x) = x¥

. . . k
with the normalization factors A, = (Z:,l()fl
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OAv ] ]

(a) Sketch of degrees of freedom: cell averages
(Av) and shared point values at vertices (N) and
horizontal (EH) and vertical (EV) edges.
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175 2.00 225 250 275 3.00 325
(b) Visualization of the concept for the globally
continuous reconstruction via a constructed ex-
ample.

Fig. 1. Degrees of freedom and reconstruction for a third-order Active Flux method on two-dimensional Cartesian grids.

(0)

i

information on a compact stencil. The update of the cell average g; = ¢
and higher moments is given as

d 0 = Ax Ax
Lo =-a, <f(q,.+% Ot ( %) = fa,_ (-3 ))

X ]
+Ak/ "2 f(q@ )b (x - x)dx Yk =0,...,N =2
X

for a method of order N + 1. The update of the point values 4,1 =

w1

q(xler 1) uses a Jacobian splitting of D f(g) to include upwinding
2

d =
aqi%(t):—Df(qH%)J“(D;')H%q—Df(qH%) (Dx)H%q-

The polynomial reconstructions g; ..o, [—%, %] — RS of degree N >

2 are used to find a finite difference approximation for (D), 14.
2

2.2.2. A method with additional point values
Another possibility to achieve arbitrarily high order of the Active
Flux method is to introduce further point values g; . = q(x; + Ax¢,), ¢, €

(—%, %) within each cell in addition to the cell averages and the point

values at the cell interfaces g, 1. This method will especially be rele-
vant for the discussion of stability in Section 4. To achieve a method of
order N + 1, N — 2 additional point values are needed and similarly to
Section 2.2.1, a polynomial reconstruction can be defined on the cells C;
(except in the case of a symmetric distribution of an odd number of point
values). In Abgrall and Barsukow [13] this method has been introduced
using evolution operators for the point value updates.

Before proceeding with the arbitrarily high-order two-dimensional
method, we propose a variation of the above method here. Since it is a
challenge to find exact or high-order approximate evolution updates for
the point values for general systems of conservation laws and having in
mind the point value updates of the method reviewed in Section 2.2.1,
it seems straightforward to write a variation of the method from Abgrall
and Barsukow [13], for N + 1 > 4, as the following semi-discretization:

F(G 1) = flg,_1 0
Ax

d _
—q.(t) = —
dtq,( )
d —_F
T qH%(l) == (qi,%(l), Gigy®s -5 iz O, CIH%(I),
Qi+1,§0(’), i1y, @), CIH%(T))

d .
8,0 == (010,040 a1, 0.0,1 )

Va € {0,...,N =3}

with consistent approximations F, F, of 9, f(q) at X1 and x; + Ax¢&,,

respectively. As in Section 2.2.1, a Jacobian splitting can be considered
and a finite difference formula can be derived from the reconstructed
polynomial. For the point values at the cell interfaces it is natural to use
the reconstruction of the cell in upwind direction such that (D} ),.+ % q:=

d _ L d
et qi,recon(xref)lxref:% > (Dx ),'+% q .= AxXrer qi+1,recon(xref)lxret:_% . For the

point values within the cell, the reconstruction is uniquely defined and
__d . s
(Dy)ig,q = Ty irecon (%re)lx, s=axe, - This resembles the approximation
of the derivative tangential to a cell interface in Section 2.1. The version
described in this Section will serve as inspiration in Section 4.

3. A semi-discrete Active Flux method of arbitrarily high order on
two-dimensional Cartesian grids

In the following Section we discuss the extension of the semi-
discrete, third-order Active Flux method (as recapitulated in Section 2.1)
to arbitrary order of accuracy N + 1. It will be constructed in such a way
that

o the reconstructed numerical solution ¢,..,, is globally continuous,

e it uses a compact stencil with a minimal number of degrees of free-
dom per cell, and

o the cell average is always included among the degrees of freedom.

As for the third-order method, the shared point values at the cell inter-
faces will guarantee that the reconstruction is globally continuous and
the inclusion of the cell averages will ensure that the resulting method is
conservative. To gain sufficient information for the reconstruction on a
compact stencil, higher moments are defined. Hence, this work extends
the hybrid finite element—finite volume approach (see Section 2.2.1)
from one spatial dimension to two spatial dimensions on Cartesian grids.
The way the point values are distributed on the edge has an influence
on stability as shall be discussed in Section 4.1. There, similar consid-
erations are made as for the Active Flux method with additional point
values (see Section 2.2.2).

Remark: This approach to extend the generalized Active Flux method
is only one possibility. It uses point values at the cell interfaces analo-
gously to the third order method in 2-d and moments in the interior of
the cell, extending the 1-d method from Section 2.2.1. Using moments
in the interior gives a natural way to minimize the number of degrees
of freedom. Another possibility can be a tensor-like extension of the 1-d
method with moments which will also briefly be considered here. Fur-
ther extensions can be thought of. For example the method described
in Section 2.2.2 could be extended. A similar method considering point
values only is the face-upwinded spectral element (FUSE) method [24]
on quadrilateral meshes.

3.1. Reference element for Cartesian grids

From now on, we define the reference element as C™f :=

|

|
B =
B =
—

X

[—%, %] and the transformation ®;; : C;; - C™f

®,(x, ) = <E> ®)
v

with its inverse @;! : C™ - C;

x; + Axx
O (o, =("" ref ) 6
ij ( ref yrcf) <yj + Ayyref) ( )
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(N,3) (£€2,0)

(€3,1) 3

(0,0)

(€3,0) X (€1, 0)

A V3 A V3

x N N
(NV,0) (€0,0) (€0, 1)

(N, 1)

Fig. 2. Superscripts specifying the degrees of freedom for a cell C;; for
GenAF(M,) of fourth order (a generalized Active Flux method with minimal
number of degrees of freedom, see Notation 2). The circled point values mark
the points belonging to a cell.

3.2. Degrees of freedom

The degrees of freedom used for the generalized Active Flux method
of order N + 1 are shared point values at the cell interfaces and mo-
ments. The notation we introduce here uses a subscripted index ij to
identify the cell and a superscripted index to specify the degree of free-
dom. An example for the superscripts can be seen in Fig. 2.

As described above, the point values at the cell interfaces are chosen
such that the reconstruction g, is globally continuous on the domain
Q and maximal use of these shared degrees of freedom is made. N + 1
shared point values at each cell interface are required to define a unique
polynomial of degree N along each cell interface and achieve g, €
CO(Q, RY). First, the four nodes (= vertices) are included. This leaves
N — 1 points per edge, i.e. 4(N — 1) edge points in total. For cell C;; the
point values are defined as
g :=q(tx?) Vpel, %)
with xf‘;) € 0C;;. The index set
Ip =1y Ul €)
defines all points accessible to the cell. These are

(n) o
e the nodes {th }new’ Iy :={(N,0),...,(N,3)} located at
303
and assembled counterclockwise starting with the lower left node
and
; (e.a) o _ _
e the edge points {x[j Cwely’ Iz :={(e,a)le = £0,...,E3,a =
0,...,N -2} with the edges assembled counterclockwise. The
horizontal edge points with e = 0,2 are located at

(x,-+¢a,yj+ )= (x; + éan’yj+ )

1 1
*3 *3
and the vertical edge points with e = 1,3 at

(xii%’yj'*'fa) = (xzi% ’

Yj +&.AY)
with ¢, € (—%, %). The choice of &, is discussed in Section 4.1.

Since the point values are shared between adjacent cells it is possible
to define the points belonging to a cell, e.g. chosen as the upper right node
n =2 as well as the edge points on the upper horizontal e = £2 and the
right vertical edge e = £1, assembled in the index set

Ty :={(N. D} U {(e,a)le = €1,2,a=0,...,N - 2}. ©)

Thus, on average only 1 node and 2(N — 1) edge points have to be up-
dated per cell.
The moments of order m =k + [, k,I > 0 for cell C; ; are defined as

qjj’."“(z) = Ay / by (@ (X))t x)dx  V(k,]) € I (10)

i
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with the test functions (b )i jen,

by, : |5 M x (=L L SR, b (xy) = x5y an
kil - 35 203 > k(X Y) = X7y

and a corresponding normalization factor

e+ D2k + 12

A= 12
kel AxAy a2

Thus, there are m + 1 moments of order m and the cell averages g;; are
equal to the moments q,.(?’o), i.e.m=0.
Beyond the requirement of including the average among the degrees of
freedom, there are different possibilities to choose the moments. The

two choices considered here are

Iy =1Tyq = {(kDlk,l €Ny, 0< kI <N -2} (tensor-like) (13)
Iy = Iy A = {k, DIk, 1 €Ny, 0 < k+1 <max{0, N —4}} (triangle-like)
14

for N > 2. They entail different reconstruction spaces which will be dis-
cussed in the following Section.

The point values and moments define all our degrees of freedom and
the index set of the nodal and modal degrees of freedom accessible to
each cell is denoted by

Tyor i=1Ip U1y, 15)
and analogously we denote by
Tor i=TpUTyy, (16)

the index set of all degrees of freedom belonging to a cell. Fig. 3 shows
some examples for the reference elements of spatial order N + 1 using
the triangle-like moments (14).

The updates of the degrees of freedom are discussed in the Sec-
tions 3.4 and 3.5.
Remark: Finite elements using nodal and modal degrees of freedom are
also called hybrid finite elements (see e.g. Ern and Guermond [25, Chap-
ter 6.3.3, Chapter 7.6]).

3.3. Reconstruction

Next, the spatial reconstruction ¢, : @, = R’, Q, :=U; ;C;;, is
considered (for 1-d it reduces to the reconstruction in Abgrall and Bar-
sukow [14], and for third order in 2-d to the one in Barsukow et al. [9]).

The polynomial solution reconstruction on cell C;;
qrec()nlCIj € (Precon)s (17)

has to fulfill (7) and (10), and for the method to be of order N + 1 in
space it must at least lie in the bivariate polynomial space

. s
qreconlC,j . Cij -R

PN = span{x"y"|m,n € Ny,0 <m+n <N} 18)

of maximal total degree N, for each element, i.e. P¥ c P"", Here, we
use all degrees of freedom qgj’.), r € Iy, accessible to the cell to define
(17). Clearly, a necessary condition for unisolvence is that the dimension
| Precon| of Precon matches the number of degrees of freedom. Below, two
possible choices for the reconstruction space are presented. Later on,
they are used to define a finite element for the generalized Active Flux

method.

3.3.1. Tensor-like reconstruction space
As a natural extension from the one-dimensional case (see Abgrall
and Barsukow [13,14]) the bi-polynomial space

PNN = span{x"y"|m,n € {0, ,N}} (19)

can be considered for P™", similar to tensor-product finite elements
(see e.g. Ern and Guermond [25, Chapter 6.4]).

This choice satisfies PV ¢ P! and requires | P'°"| = (N + 1) de-
grees of freedom. As discussed in Section 3.2, 4N of these must be point
values which leaves (N — 1)> modal degrees of freedom within each
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o=
D=

(a) N+1=3. (b) N+1=5.

NI
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N|=

X point value
[cell average
(0*" moment)
Pre A moments
of 1% order
¥y moments
of 274 order

>0
D>

N|=
8

x

N[
N[

() N+1=T1.

Fig. 3. Reference elements C™' for GenAF(M},) of order N + 1 (a generalized Active Flux method with minimal number of degrees of freedom, see Notation 2).

Table 1

Monomial basis for serendipity space SV. The circled elements extend
PN, This is used to define a minimal basis for P™", see (20). The bold
lines separate the basis elements required for the edges from the triangle-
shaped remainder that ensures unisolvence of the moments.

1 x x2 xN-2 xN-1 xN
y xy x%y e XNy xN-ly =Ny
y2 xy2 x2y2 xN’ZyZ - -
N2 xyN-2 x2yN-2 _ _ —
YN xyN-! _ _ _ _

N
y .’l,‘_lj“\/ - - - -

cell, i.e. the cell average and the higher moments. Thus, the tensor-
like reconstruction space is associated to the tensor-like choice (13) of
moments spanning PY~2N=2, This choice reduces to the reconstruction
space for the third-order Active Flux method as first introduced in Bar-
sukow et al. [9], Helzel et al. [23], see also Section 2.1.

For the resulting method we introduce the following notation:

Notation 1. The tensor-like generalized Active Flux method on two-
dimensional Cartesian grids with P = PN:N shall be denoted by
GenAF(Mp).

3.3.2. Reconstruction space with minimal number of degrees of freedom
High-order methods need to evolve many degrees of freedom. We
thus aim at finding a computationally more efficient choice for precon
with only the minimal possible number of degrees of freedom needed to
achieve order N + 1 on a Cartesian cell.
Setting P™°" = PN turns out not to be sufficient for unisolvence, as
discussed below. Instead we define

N 2.2 -
precon . _ precon «_ S @span{x“y"} for N=2,3 (20)
min SN for N > 4.
using the so called serendipity space (see also Table 1)
SN 1= PN @ span{xVy,xy"} (21)

known from serendipity finite elements (see e.g. Ern and Guermond [25,
Chapter 6.4.3] and Arnold and Awanou[26]), which are based on the
idea of reducing the degrees of freedom from the tensor-product finite
element.

First, let us consider the case N > 4 for the reconstruction space in
(20) with |SN| = L(N + 1)(N +2)+2 = {8,12,17,23, ... } y5, degrees of
freedom. There must be 4N point values (see Section 3.2). This leaves
us with %(N —3)(N —2) = |PY~4| moments, that we will thus take with
respect to the basis of PN~*. For N = 2,3 with |SV| = 4N, there is an
exception. In order to include the cell average, SV needs to be extended.
In both cases {x2)?} is a suitable choice for the additional basis element.
This choice of moments corresponds to the triangle-like choice (14) and

Table 2
Number of degrees of freedom for GenAF(M,).
order | precon #PVs #Moments
N+1 W+2 4N max{l,l(N—S)(N—Z)}
2 2
3 8 8
4 12[ ] 12 K
5 17 16 1
6 23 20 3
7 30 24 6

coincides with the tensor-like method for N + 1 = 3. An overview of the
number of degrees of freedom can be found in Table 2.

As mentioned above, the choice P = PN (for N > 5) turned out
not to be sufficient for unisolvence of the method on Cartesian cells,
which was verified using MATHEMATICA [27] for N = 5,6, where we
chose I, = Iy A NN =4,0),0,N —4)}. This is because two basis el-
ements of the highest power N in x and y each are needed to be able to
uniquely define the polynomials up to degree N on the two horizontal
and vertical edges, respectively. For N = 2,3,4 it was also necessary to
extend PV in a suitable manner due to our requirements specified at the
beginning of Section 3. For N = 2,3, we chose SN @ {x%)?} as defined
in (20) which we deemed a natural and symmetric choice lying within
PN-N_For N = 4, we tried two versions: First, PN @ {x3y%, x2)?}, which
we found insufficient to achieve unisolvence and second, we tested SV
as in (20). Now, consider the minimal choice of degrees of freedom with
the basis elements spanning Pr**". Then, one can think of associating
the nodal degrees of freedom (nodes and edge points) on the horizontal
edges with the basis elements 1, x, ..., x" and y,xy,...,x"y on an edge
each, and respectively, 1,y,...,y" and x, xy, ..., xy" with the points on
the vertical edges. The moments can then be associated with the basis
elements in (14), which form a triangle in Table 1 (indicated by the bold
lines). As shown with the help of MATHEMATICA [27] for up to order 7,
the basis given in (20) for Pl;elff“ is unisolvent.

Referring to the choice of moments the following notation is intro-
duced:

Notation 2. The generalized Active Flux method on two-dimensional Carte-
sian grids with minimal number of degrees of freedom using P.<*" given
in (20) shall be denoted with GenAF(M,).

3.3.3. A hybrid finite element

Next, the hybrid finite element as defined in Abgrall and Bar-
sukow [14, Definition 3.1] is extended to a Cartesian element in two
spatial dimensions. We also include the interpolation operator and the
reconstruction and follow Ern and Guermond [25, Definitions 5.2, 5.5,
5.7, 5.11, Proposition 5.12] and Abgrall and Barsukow [14]:

Definition 1. Let d =2 and N > 2. Given an index set I, := 15 U T,
with a set of points {x,}perys here {x, = (x,,,)|x,.y, € {i%} or(x, €

&y, € (3D 0r (x, € (£ ).y, € (&) ) with &, € (-3,3) Va=
0,...,N =2}, and a (e.g. monomial) basis {b; ;}xc1,, for either
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Fig. 4. Shape functions for GenAF(M,,) of 7t order.

e PN-2N=2 (1, asin (13)), or
o the polynomial vector space PM with M = max{0, N —4} (I, as in
(14)).

Then, the finite element (K, P,X) is
—cref = |11 11
c k=c" _[ 2’2]X[ 2’2]’
e P given either by
— precon — PN’N, or
— precon — 9N gy span{x?y?} for N < 3 and P = SN for N >3
and
* L= {0i}ies,, the set of degrees of freedom witho; : P - R

Up(v) = U(Xp) Vpelp
op (v) 1= AT / b (vx)dx  V(k, 1) € 1,
" JK

for all v € P and with the normalization factors Aflf = (k+ 12k +
1)2! with respect to K.

We define the shape functions B, : K — R such that
0,(B,) =6, Vr,s€ Iy (22)

which form the canonical basis of P with respect to the finite element.
Fig. 4 shows examples for the shape functions of the GenAF(M,) method
oforder N +1=17.

The interpolation operator corresponding to the finite element is de-
fined to interpolate real-valued functions over K in P. We consider the
space V := L'(K,R). With P c V, the elements in {0/} rer,,; — span-
ning the space of linear forms hom(P,R) — can naturally be extended
to hom(V, R). We denote them by {5, } . Then, the interpolation op-
erator Iy : V — P is defined as

Ig)X) = Y 5,)B,(x) VxeK. (23)

relyop

r&lgop

Finally, the reconstruction R : RHaotls — ps,

R(@rery )® 1= Y 4B,

r€lgof

vx € K 24)

maps the degrees of freedom g, € I, to the polynomial space P*. This
gives the reconstruction (17):

reconlc, 0¥ = R((qf;))reid f) € (Preeony (25)

g qreconlcﬁ(x)= 2 q;;)Br(q)ij(X))~ (26)

relgor
3.4. Update of point values

For the update of the point values it is possible to consider a non-
conservative formulation of (1), which also allows to include stabilizing
upwinding. In spirit we follow Abgrall and Barsukow [13,14], Abgrall
et al. [15]. The quasi-linear form for the system of conservation laws (1)
is
9,q(t,%) + D f*(q(t,%))0,.q(t,x) + D f*(q(t,%))d,q(t,x) = 0, 27

which is considered at x}’.’) to derive the point value updates. Here, the
Jacobians of the fluxes f*, f¥ are given, since they can be calculated
directly, whereas the derivatives of ¢ with respect to x and y have to
be approximated. We intend to use different derivative approximations
( Dx)l(,‘;) ~a,, (Dy)l(.l’f) =~ 9, for each upwind direction. To this end, the di-
agonalized Jacobians

Df¥(g) = T*diag(y, > - » A )T, (28)

D fY(qj;’)) = T¥diag(A,y, ..., 4, )N(T?)7! (29)

are split according to the positive and negative wave speeds to incorpo-
rate upwinding:
Df (" i=Tdiag(A% ... A7 )T,
Df*(gP)™ =T diag(AL,, ..., 4, )T,
O+ . : + + -1
Df¥(q;)" 1= TVdiag(A] |, ..., Ay (T,
DfY (gl i=T¥diag(;, .., 4, )T,
where

AY, = max(0, 4,)), A7, :=min(0, 4, ),

*,0 #,1 *= X Y

This yields
d X X — _
S4® = =D DD~ D)) (D)
! (30)
= D@D g - D (D) (D) Pg.
ij 1

The upwinded finite difference formulas (Df)g.’), (D;L)g.’) are derived with
the help of the reconstructions g,y | Cyo which are differentiable on each
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cell C; ; (see also Abgrall et al. [15], Barsukow et al. [22] for third order):

(DHPq 1= 0 drecon G

cupw X 0

x) (32)

ENC B
(Dy )ij 4 = 0ybrecon Ccupw

P
ij

The upwind cell C"P¥ is the cell adjacent to xg.’ ) from the correspond-

“,»

ing “+”-direction for x or y, i.e. at the node xfj.’) = (xi+l’yj+l)
2 2

.
(D:)i‘; q.= axqreconlc,j (x, yj+%)|x=x,+1 ¢
)

—\®) .
(Dx ),Jp q .= axqreconlcl_,_]’j(x’ yj+%)|X=Xi 1’
"2
+\P) .
(Dy )ij q .= ayqreconlc,-j(x,'.;.%’y)l,V:yH% ’

—\® .
(Dy ),f q.= ayqreconlc

,JH(XH%,y)Iy:y} i

=2
and at the horizontal edge points (x; v Vil )
2

®,._ pH\®, _ p—\P =
(Dx),-j q .= (Dx )ij q= (Dx )ij = axqrecunlcU (x, yj_'_%)lx:x[_'_gas

® .
(D;)if q .= ay‘]reconlCij (x, y)|<x,y>=<x,.+§a 'y/+1)’
2

—\®) .
(Dy )ij q .= aerecon |Ci,j+l (x, y)l(x,y)=(x,+5a ~Yj+l )
2
The derivatives for the vertical edge points (xi+ 1,Y;4¢,) are defined

3 a
analogously. Considering definition (26) for the reconstruction qrmnlcij

the partial derivatives in x- and y-direction are given as

Outlreconlc, (6.0 = ) 417 Vo B (@ (x, ) - 0, P;;(x, y), (33)
r&lyop
yreconlc, 1) = D 4 VB (@;(x, ) - 0,D;;(x, ). (34)
yArecon!Cj;\ s ij v OPrUEij yEij\
r&lyop

An example for the thus derived finite difference formulas for (31) and
(32) can be seen in Fig. 5.

3.5. Update of moments

In the following, an update procedure is derived for the moments, ex-
tending [13-15]. In particular, a conservative update of the cell averages
is obtained, which is key to ensure convergence to the weak solution of
the conservation law. To this end, the weak formulation of (1)

i/u(x)q(t,x)dC+/ v(x)f(q(t,x)) - ndS
dt Je oc

- / Vo(x) - f(q(t,x))dx =0 (35)
c

on a domain C c R, is considered. To find the update for the cell aver-
age and higher moments on cell C;;, Eq. (35) with C := C;; is multiplied
by the normalization factor (12) and the test function v is set to (11).
This yields the semi-discrete update formula for the moments of order
m=k+1

Y1
%q}f’“(r) = —Ak,,< /y bia (@45 (5, 1 90) ¥ (4t x,,1.9)

=z

— by, (‘Dij(x,._%,)’))fx(Q(t, x,._%J))dy

Yl X1

- / / "2 0,by s (D (x, 1) £ (a1, x, y))dxdy
Y. X1
i= ~2

i

¥

+/ i+l bk,,(<1>,-j(x,yj+%))fy(q(t,x,yj+%))

= b (@0, D)/ (a0 x.y,_1)dx

2

Vil [N
- / 2 / 2aybk,,(da-,(x,y>)fY(q(r,x,y»dxdy>, (36)
y. X,
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where the integrals are approximated with the help of a numerical
quadrature formula. Here, we choose either a Gauss-Lobatto or a Gauss-
Legendre quadrature for the integrals. The necessary values at the
quadrature points (both on the cell boundaries and within the cells) are
obtained by evaluating the reconstruction (26). For now, the quadrature
formulas are chosen to be sufficient for polynomials of at least degree
N + max(k, ).

Remark: The nodal degrees of freedom at the cell interfaces (nodes and
edge points) could be included to calculate the quadratures. Yet, along
the edge there are typically more point values than actually necessary
for the quadrature alone. Here, we try to avoid this overintegration and
the potentially larger computational effort. Furthermore, for the bulk
integral, the reconstruction needs to be evaluated at quadrature points
anyway as the pointwise degrees of freedom are located on cell inter-
faces only.

3.6. Method definition

Concluding, a definition is given of the generalized Active Flux
method of arbitrarily high order on Cartesian grids in 2-d.

Definition 2. Given N > 2, the generalized Active Flux method of order
N + 1 on 2-d Cartesian grids is the semi-discretization of (1)

d
S 0= Ay / b (@ (@, x)) -y dS
ij

+ Ay / Vb (@;;(x)) - (g, x)dx  V(k,I) € T,

ij
4w =_F <q.(’>. ) vpel,
de P 22I0 /(i o€ pr€lor

with Iy, Iy, {br,)} and A™ given as in Definition 1, Ay, =

Kl
outward pointing unit normal n;; on oC;;. The set {xﬁ;’ )

values belonging to C;; as it is given by (9). F, is a consistent approximation
of 0,/(q)+9,/¥(g) at point xfj’f) where o, := {(i,j)|xf‘;) €0C;;} defines

(p)
ij "

ref

k1
axhy and the

— contains point
pElp

the index set of the cell neighbours of x

Here, we choose F, as given in (30) with finite difference formulas
(31), (32) derived in Section 3.4.

4. Stability analysis

Stability results for the generalized Active Flux method introduced
in the previous Section are presented for linear advection in two spatial
dimensions. First, the semi-discrete generalized Active Flux method is
studied with the help of an eigenvalue spectrum analysis. We observe
that the stability of the method depends on the location of the edge
points, and this analysis is used to determine a stable distribution. Sec-
ond, a generalized Active Flux method using a third-order Runge-Kutta
method for the discretization in time is considered to determine a sta-
bility bound for the fully discretized system. The methods used for the
stability analysis are for example described in Lomax et al. [28].

4.1. Semi-discrete Active Flux method

The generalized Active Flux method of order N + 1 uses moments
and point values at the cell interfaces as degrees of freedom. In the one-
dimensional case, the choice of the points is straightforward at the cell
interfaces. The two-dimensional case allows more flexibility: out of N +
1 points xf‘.’) along each cell interface, two are located at the nodes, (see
Section 3.2), but the question how the N — 1 edge points are distributed
remains.

Some first numerical tests with a uniform distribution of the edge
points implied that this choice does not lead to a stable method. In Ab-
grall and Barsukow [13] a similar finding was observed for the arbi-
trarily high order one-dimensional Active Flux method with additional



W. Barsukow et al.

1 -1.88 2.67 -14.79 13
o——— o 0@

upwind

ox

O

(a) (D)2

1.5 -3.23 3.23 -1.5
o —o—o—4¢

—
upwind

ox
O

(© (D)5,

0.87-12.62 3.17
q

0.5

-1.17 9.75

0.8

-0.5 ¢
[
0.67 0.29 1.10

-1.17 0.45

(e) (D12,

Computers and Fluids 307 (2026) 106886

-13 1.88 -2.67 14.79 -1

upwind
ox

O

(b) (D).

3.75 1.25 3 1.25 3.75
q p
-6.14 ¢ . ®-6.14

Tupw1nd

Jy
3.33 ¢ H-9 ¢ 3.33
0.31 ¢ ¢ 0.31
-1.25 1.25 1 1.25 -1.25

+1(£2,1)

(@ (D)E2D.
5.32
11pwindJ/T -3.87

dy

O -2.07
1.29
-0.68

() (D).

Fig. 5. Example of finite difference formulas for GenAF(M},) of fifth order at locations of different degrees of freedom, marked by the additional circle (see (31),

(32); coefficients rounded to two decimal points). Upwind direction: “—”.

point values, reviewed in Section 2.2.2. There, the additional points set
within the cells had to be moved closer to the cell interfaces to gain
stability. Inspired by this result we would like to find a similar way to
distribute the edge points for the generalized Active Flux method in 2-d.
Here, the focus is on symmetric distributions of the points with respect
to the edge midpoint. For a fourth and fifth order method this leaves one
free parameter for the edge point distribution and two for a sixth and
seventh order method: Considering the edge [—%, %] in x- or y-direction
the edge points are

o (=&} for N+1=4or{-£0,¢} for N +1 =5, with £ € (0, 3) and
o {=&,-&). 6.6 ) for N+1=6 or {—£,-&,0,&,& ) for N+1=7
with 50!51 E(O’l); €0<51

While it might still be viable to analyze many different setups for a
fourth or fifth order method, for higher orders N + 1 with [%J free
parameters for the edge point distribution this is not feasible. Hence,
the following stability analysis is confined to a few ways to distribute
the edge points that we consider to be a sensible choice. In particular
we will try Gauss and Gauss-Lobatto points. Even with Gauss points, we
still include point values at the nodes in the set of our degrees of free-
dom. Although this choice is inspired by quadrature points, this choice
is generally independent of the actual quadrature, see also Section 3.5.
Also the number of point values is fixed with respect to the order of the
method (see Section 3.2).

Next, the eigenvalue spectrum of the semi-discrete generalized Ac-
tive Flux method is analyzed for scalar linear advection in two spatial
dimensions

0,9(t,x) + V - (ag(t,x)) =0 (37)

with a constant advection speed a = (a,, a,) 1= (cos 6, sin T, 0 =1[0,27)
and periodic boundary conditions. Thereto, the vector q = (g;);,,,, With
Liots = U, j(fd\o;)i ; assembling all degrees of freedom of the discretized
domain Q,, is defined and the semi-discrete generalized Active Flux
method for (37) is re-written as the linear ODE system

La = Aq), 38)

where A assembles the right hand side updates of the method. A neces-
sary condition for stability of the linear ODE system (38) is

Re(4,) <0 Vi € o(A). (39)
This condition becomes sufficient, if the algebraic multiplicity of all 4;
with Re(4;) = 0 equals their geometric multiplicity.

In the following, the GenAF(M,) method of orders N +1=3,...,7
is studied with Gauss, Gauss-Lobatto and uniformly distributed points
on the edges. To cover a range of different advection directions, 6 €
[0, ’2—'] is chosen in increments of é-th, i.e.0=0, 6—’;, e ’2—', for the Gauss
points and i-th for Gauss-Lobatto and uniformly distributed points. The
restriction of 6 to [0, %] is possible due to symmetry properties of the
method. The setup for the grid sizes is N, = N, € {3,5, 10}. The results
use a Gauss integration sufficient for the calculation of the moments for
linear advection, i.e. for moments of order m it is chosen to be sufficient
for polynomials of at least degree N + max(k, /).

Remark: Some further tests with a higher accuracy or different type of
quadrature yielded comparable results.

For the setups described above, the stability of (38) is analyzed nu-
merically due to the size of the update matrices A (e.g. for seventh
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Fig. 6. Scaled 4; € 6(A), i.e. h4,, for GenAF(M,) of order N + 1 with Gauss edge point distribution. § =0 and 7 = Ax = Ay =0.1,0.2, %

order, 10 x 10 grid: 1700 x 1700).! We obtain the following results: only
the method with Gauss edge point distribution is stable for all tested
orders N +1=3,...,7 and corresponding setups. From the computer-
aided analysis one finds that Re(4;) < ¢, i.e. the eigenvalues have a non-
postive real part up to a tolerance ¢, and all 4; with |Re(4;)| < ¢ are at
least semisimple for all i with tolerance ¢ = 5- 10713 for N + 1 = 3,4,5,
e=1-10""2for N+1=6and e =5-10"2 for N + 1 =7 for the Gauss
edge point distribution. In Fig. 6 an example is shown for N +1 =
3,...,7 with 6 = 0 and the three grid sizes. It can also be seen that the
eigenvalues scale with the grid size.

The methods with uniform and with Gauss-Lobatto edge point distri-
bution result in an unstable system (38) for orders N + 1 =4,...,7. For
N +1=15,6,7 the tests show that there exist eigenvalues with positive
real part for all tested 6. For N + 1 = 4, eigenvalues with positive real
part are observed for § = 0, Z. For N + 1 = 3 the edge point distribution
coincides with the Gauss distribution.

In this way, we are led to conclude that Gauss points are a suitable

choice for the distribution of the edge points that yield a stable method
and we will use this distribution further on. Despite the limitations of the
analysis, which has been conducted for orders N + 1 = 3, ...,7 and linear
advection only, we are optimistic that these results will carry over to
higher orders. Furthermore, we apply the Gauss edge point distribution
to linear and non-linear systems of conservation laws in our numerical
examples and have not observed instabilities.
Remark: The semi-discrete GenAF(M) method of orders N +1 =
4 and 5 was also studied for Gauss, Gauss-Lobatto and uniformly dis-
tributed edge points. The setup used for the advection directions is 6 €
[0, %],9 =0, 1"—6§ and the grid sizes are N, = N, = 3,5,10. Again,
only the Gauss edge point distribution yields a stable system (38) for
all setups. For Gauss-Lobatto and uniformly distributed points, positive
eigenvalues are found for 6 = 0, ’5’

4.2. Fully discrete Active Flux method

The semi-discrete formulation of the method (see Definition 2) al-
lows to choose a time discretization. Similarly as in Abgrall and Bar-

! The matrix is assembled using an implementation of the method in C+ +
including the package EIGEN [29]. The actual analysis is done in Python using
the NumPY package [30] (v2.3) with its linear algebra library (LINALG). For
plotting we rely on the MATPLOTLIB [31] (v3.10).

sukow[13,14] we focus on a strong stability preserving Runge-Kutta
method of order three (SSP-RK3).

Based on the approach in Section 4.1 we analyze the stability of a
fully discretized generalized Active Flux method with Gauss edge point
distribution. This allows us to derive a CFL condition for linear ad-
vection (37). First, the ODE system (38) of the semi-discrete method
for linear advection with periodic boundary conditions is diagonalized.
This is possible, because the dimension of the sum of the eigenspaces
for all eigenvalues of A is equal to |I,|, which was computationally
checked up to a tolerance e =5-10"13 for N +1=3,4,5, ¢=1-10"12
for N+1=6and e=5-10"!2 for N + 1 = 7. The diagonalized system
for § = R™'q is given as

d . .
- =A

34O =440 (40)
with A = RAR™', A = diag((4;)er,,,.)- Applying the RK3 method with a
time step At =t,,; —t, to (40) yields the fully discretized system

Q' = GLANG" Vi € gy (41)

with G(z) :=1+4+z+ %zz + éz3 and the stability domain S={ze€
C||G(z)| £ 1}. From this it is possible to find a maximal time step
At (0), dependent on the advection direction, such that 4;Az,, (6) € S
for all i € Iy,. For our computer-based study, we increment the time
step by 107* for N + 1 =3,4,5 and 5- 107> for N + 1 = 6,7 to approx-
imate Af,,. Fig. 7 shows an example for the GenAF(M,) method of
spatial order N +1=3,...,7 for N, = N, =10. The scaled eigenvalues
i,-Atmax(f) are plotted for the approximated maximal time step that still
allows them to fit inside the stability domain for RK3 up to a tolerance
€.

The stable regions for the fully discretized method of spatial or-

der N +1=3,...,7 are plotted as function of the CFLs cfl, = azi' and
cfl, = HZ—i[ in x- and y-direction for 4 = Ax = Ay = 0.1 in Fig. 8.

One observes that the time step depends not only on the magnitude,
but also the direction of the advection, and that the nature of this de-
pendence changes as the order increases. This is studied below in more
detail. In order to compare the CFL constraints for different orders of
accuracy in a simple way, we consider the maximal CFL ata = a, = a,

_ lalAtmay

Cyy = (42)

given in Table 3 for the GenAF(M[,) method discretized with SSP-RK3
in time, 2 = 0.1.

For other grid sizes h the results are comparable, because the eigen-
values 4; scale with % (see Section 4.1).
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Including close ups around origin.

Table 3

C, for GenAF(M,) of order N + 1 in space for linear advec-
tion and RK3 discretization in time. (Two significant digits of
C,, are shown for A = 0.1).

order (N + 1) 3 4 5 6 7

Ce1 (RK3) 027 020 017 012 0088

The stability domain for the third-order method (with M, = MQ)
can approximately be described by

Sype = {(cflx,cflyncflg +ofl2 < rgﬂ} (43)

with ry := \/ECCH and gives the following bound for the time step size:

repymin{Ax, Ay}

/2 2
ax+ay

At < (44)

10

For N + 1 =4 this is still a useful approximation while for higher spatial
orders of the method the domain seems more restricted. Here,

Siq = {(cfl, cf1,) max{cfl,,cfl,} < Cy} (45)
could be considered which gives the bound
Ar < Genrmin{Ax, Ay} 46)

max{a,,a,}

Remark: For N +1=35, GenAF(M,) almost yields a square. Looking
more closely at the results in Fig. 8 this already shows for N + 1 = 4, and
for N + 1 = 6,7 the corner starts to round off again. Comparing these re-
sults one can notice, that for GenAF(M,) with N 4+ 1 =4,5 only point
values at the cell interfaces are added as further degrees of freedom,
seemingly favouring the maximal advection speed. Including higher mo-
ments for N + 1 > 6 inside the cell decreases this effect.

Remark: The GenAF(Mp) method with Gauss edge point distribution and
RK3 for the time discretization was analyzed for N + 1 = 4,5. The stable
1egions SgenAF(M) | N+1=3,4,5 €A1 be approximated by Eq. (43), see Fig. 9.
The bounds r; are found to be ~ 0.2 (Cy; = 0.14) for N + 1 =4, and
~0.125 (C; = 0.089) for N + 1 = 5. Although C, is smaller than with
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Fig. 9. Stable regions () for GenAF(Mp) of order N + 1 in space for linear advection. Ax = Ay = 0.1 and RK3 time discretization. The yellow (' ) and black ()

domains depict the tested area.

M, the stability domain with M seems to be less dependent on the
advection direction. This fits with the observation above, considering
the tensor-like added degrees of freedom.

Comparing the maximal CFL numbers to the one-dimensional case in
Abgrall and Barsukow [14, Table 1 (Method A, RK3)] it can be observed
that for the method in 2-d with M and RK3, the maximal CFL ~ r
for linear advection in x- or y-direction is approximately the same for
the tested N + 1 = 3,4,5.

In Barsukow et al.[22] a similar result for the generalized Active
Flux method of third-order for linear acoustics in 2-d was indicated.
A stability bound of cfl = % < 0.28 was derived using Fourier
analysis.

5. Numerical examples

Numerical results for the generalized Active Flux method
GenAF(M) for orders 3 to 7 on two-dimensional Cartesian grids with a
SSP-RK3 time discretization are shown. In the following we concentrate
on smooth problems. More complex problems with e.g. discontinuities
will need an appropriate limiting strategy, see e.g. Duan et al. [32] for
limiting of the third order Active Flux method. For higher orders this
shall be part of future work.

11

5.1. Linear advection

The first example considers linear advection 9d,q(,x) + d,q(7,x) +
d,q(t,x) =0 on [0, 11? with periodic boundary conditions where initial
data in the shape of a cone of radius r,, =0.2

r

1- forr<r,

max?
"'max

q(0,x) =
otherwise

with r = v/(x —0.5)2 + (y — 0.5)? is being advected diagonally through
the domain. Fig. 10 shows a cross section of the solution at =5 on a
grid with 101 x 101 cells for spatial orders N +1 =3 to 7. A cfl = Cyy
as shown in Table 3 (except for N + 1 = 7: c¢f1 = 0.085) is used to cal-
culate the time step. One observes that the apex of the cone is better
approximated the higher the order of the method.

The second example considers smooth initial data (in resemblance
to Abgrall and Barsukow [13, Section 3.5.1])

2 2
4(0,%) = 0.8 + exp <-( x03 ) - (—y&(‘)’j) >

that are used to show the convergence order of the method with N + 1 =
3,...,7att =0.1. To recover the spatial convergence order N + 1 with a
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Fig. 10. Example of diagonally advected cone. Cross section at y = 0.5 of cell average on grid 101 x 101 at ¢ = 5 for GenAF(M,,) of order N + 1 =3, ..., 7 (left) and

close up (right).
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Fig. 11. Convergence of the cell averages in L!-error for linear advection for
GenAF(M,) of order N + 1 =3,...,7 and RK3 time discretization.

RK3 time discretization Ar> = O(hN*!) is needed, h = Ax = Ay. For the
N-2
cell sizes {A;}; an adaptive cf1(h;) = cfl(h, )(%)T is used starting with
1
h = é and the cfl(h;) = C, as above. In Fig. 11 and the corresponding

Table 4 the convergence of the error of the cell averages in the L!-norm
is shown and a convergence order O(hN*!) is observed.

5.2. Acoustic equations

The following example for the acoustic equations with ¢ > 0
op+cV-v=0
0,v+cVp=0

on [—1, 1]? considers initial conditions with a sine wave in pressure and
zero initial velocity as suggested in Eymann and Roe [4] from Lukacovéa-
Medvid’ova et al. [33]

p(0,x) = %(sin(Zfrx) + sin(27y)),
v(0,x) = (0,0)T

with periodic boundary conditions, for which the exact solution is given
as

p(t,x) = % cos(2zet)(sin(2zx) + sin(2xy)),
v(t,X) = % sin(2zer)(cos(2xx), cosry))T.

We consider ¢ = 1. The solution at t =5 where the exact solution
matches the initial condition is computed (see Fig. 12). The grid size

12
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15
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0.5

> 0.00 0.0
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-0.25 -1.0
-1.5
-0.50 -2.0

-0.75

—0.75 —-0.50 —0.25 0.00 0.25 0.50 0.75
X

Fig. 12. Example for acoustics with sine wave in pressure. Exact solution for the
cell average p®? of pressure on a 60 x 60 grid at t = 5. Remark: The cell average
values are approximated by numerical integration.

Table 4

L'-error ey, and corresponding experimental order of convergence (EOC)
for GenAF(M,) of order N + 1 of the cell averages for linear advection and
RK3 time discretization.

N+1 3 4 5

h ey EOC ¢, EOC ¢, EOC
0.03125 6.87- 107 - 1.15- 107 - 7.65-10° -
0.015625 1.10- 107 2.65 8.06-107° 3.84 3.10-10°  4.62
0.0104167 3.46-107° 2.84 1.55-107¢ 4.07 433-107 486
0.0078125 1.50- 1073 291 4.89-1077 4.01 1.05-1077 494
0.00625 7.76 - 107° 2.95 1.98-1077 4.05 346107 4.96
0.00520833  4.52-107° 2.96 9.50- 1078 4.03 140-107% 497
0.00446429  2.86-107° 2.97 5.11-1078 4.03 6.49-107  4.98
0.00390625  1.92-107¢ 2.98 2.98-1078 4.02 3.34-107 498
N+1 6 7

h e, EOC ¢, EOC

0.03125 1.20- 107 - 3.79-107¢ -

0.015625 2.01-1077 5.90 3.33-1078 6.83

0.0104167 1.77- 1078 5.99 1.99-107° 6.95

0.0078125 3.11-107° 6.05 2.67-1071°  6.98

0.00625 8.13-1071°  6.01 5.60-1071"  7.00

0.00520833  2.72-1071°  6.01 - -

0.00446429  1.07-1071°  6.03 - -

0.00390625  4.81-107""  6.01 - -
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Fig. 13. Example for acoustics with sine wave in pressure. Cross section at y = 0.25 of p®® on grid 60 x 60 at t = 5 for GenAF(M,) of order N +1=3,...,7 (left)
and two close ups (middle, right) zooming in at the left maximum (observe the different scales of the x-axes).

Fig. 14. Gresho vortex for Euler equations. Exact solution for the norm of the
cell average of the momentum [|(pv)*?||, on a 51 x 51 grid at t = 1. Remark: The

1.05
0.90
0.75
0.60
0.45
0.30
0.15
0.00

X

cell average values are approximated by numerical integration.

is N, = N, = 60 and the time step A = cf IM is computed with
cfl = C,, a CFL bound obtained for linear advection, see Table 3 (except
for N + 1 = 7: c¢f1 = 0.085). As for linear advection, a better approxima-
tion of the exact solution is observed for higher orders of the generalized
Active Flux method. In particular, a cross section through a maximum
of the pressure sine wave is shown in Fig. 13.

1.0

5.3. Euler equations

The generalized Active Flux method can also be applied to non-linear
problems like the compressible Euler equations

0,p+V-(pv)=0

0, (V) + V- (pv@® v+ pl) =0

LE+V-(E+pv)=0

In this paper an ideal polytropic gas is considered with E = y%l +

%p||v||§ andy = 14.
A Gresho vortex (see Gresho and Chan[34], Barsukow et al.[35]) on
[0, 177

p(0,x) =1
Z(-y-05,x-05)" r<02
V0.%) = EX(-y-05,x-05)" 02<r<04
0 else
1 Ly (5r)2 0.2
ATt r<®
p(O,x)=<V#—§+4ln(5r)+4—20r+% 02<r<04
V#—%+4ln2—2 else

for M = 0.1 with r = v/(x — 0.5)2 + (y — 0.5)? and periodic boundary con-
ditions is computed at 7 = 1 on a grid of 51 x 51 cells (see Fig. 14). The
time step is calculated with the help of the CFL bound from Table 3 (ex-
cept for N + 1 = 7: c¢f1 = 0.085). Fig. 15 shows the radial plot of the cell
average for the norm of the momentum |[|(pv)%?||, for the generalized
Active Flux method of order 3, ...,7.
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e x order=7
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Fig. 15. Radial plot of ||(,ov)(°~°)||2 for Gresho vortex on 51 x 51 grid at ¢ = 1 for GenAF(M,) of order N + 1 = 3, ...,7 (left) and close up (right).
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6. Conclusion and outlook

This paper presents a generalized Active Flux method on two-
dimensional Cartesian grids of arbitrarily high order using higher mo-
ments in addition to the cell averages and point values at the cell in-
terfaces. It is extending a semi-discrete hybrid finite element—finite vol-
ume version of Active Flux from 1-d. We focused on a method with a
serendipity-like, hybrid finite element using a minimal number of de-
grees of freedom on the Cartesian cells to keep the computational cost
minimal. An alternative is a tensor-like extension of the element from
1-d to 2-d. The point values at the cell interfaces include the nodes and
edge points, such that a globally continuous reconstruction is obtained.
Their update uses a Jacobian splitting of the non-conservative formula-
tion of the system and finite difference formulas for the approximation
of the derivatives of the solution. These are derived using the recon-
struction of the solution on the cells. The moments are updated based
on the weak formulation with the integrals approximated by quadrature
formulas.

The eigenvalue spectrum of the semi-discrete method was analyzed
for linear advection up to order 7. We find that the edge points at the
cell interfaces cannot be distributed arbitrarily. We have identified, at
least for orders up to 7, Gauss points as a suitable choice to achieve a
stable setup of the semi-discrete method. For the time discretization we
relied on a SSP-RK3 method and found CFL bounds of the method up to
order 7 for linear advection. Numerical examples confirm the theoretical
convergence order and demonstrate how the high-order methods allow
to better resolve features of the solution.

Further studies to better understand the effect of suitable edge point
distributions on the stability of the method will be interesting. In future
work, it will also be important to develop a suitable limiting for the
method. To this end, a flux vector splitting for the point value update,
which was recently presented in Duan et al. [32] for third order, could
be considered. Further work shall also consider an extension to 3-d as
well as applications to simulations of turbulent convection and wave
propagation, which require very high orders of accuracy.
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