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The Active Flux method can be seen as an extended !nite volume method. The degrees of freedom of this method 
are cell averages, as in !nite volume methods, and in addition shared point values at the cell interfaces, giving 
rise to a globally continuous reconstruction. Its classical version was introduced as a one-stage fully discrete, 
third-order method. Recently, a semi-discrete version of the Active Flux method was presented with various 
extensions to arbitrarily high order in one space dimension. In this paper we extend the semi-discrete Active 
Flux method on two-dimensional Cartesian grids to arbitrarily high order, by including moments as additional 
degrees of freedom (hybrid !nite element–!nite volume method). The stability of this method is studied for 
linear advection. For a fully discrete version, using an explicit Runge-Kutta method, a CFL restriction is derived. 
We end by presenting numerical examples for hyperbolic conservation laws.

1.  Introduction

The solution of systems of hyperbolic conservation laws is required 
by many di"erent physical problems from #uid dynamics. As most of 
these problems are fairly complex, numerical methods are needed to 
solve them. Finite volume methods evolve cell averages and maintain 
conservation in a discrete sense which is important for convergence to 
a weak solution. Godunov’s method [1], for example, is a seminal ap-
proach to hyperbolic conservation laws. More recently, Roe and coau-
thors introduced the Active Flux method [2–4] inspired by van Leer’s 
scheme V [5] for linear advection. The new method not only uses cell 
averages but also point values at the cell interfaces. This allows to recon-
struct the solution piecewise parabolically in a globally continuous fash-
ion. In van Leer[5], the point values at the cell interfaces were updated 
by tracing back the characteristics. This way, a method of third order 
for linear advection in one spatial dimension arose. Roe’s one-stage fully 
discrete Active Flux method (which we will call the classical Active Flux 
method, for a review on Cartesian grids see e.g. Chudzik and Helzel [6]) 
extends this idea to certain nonlinear and/or multi-dimensional hyper-
bolic problems by replacing characteristic transport with suitable either 
exact or approximate evolution operators (e.g. Maeng[7], Fan[8], Bar-
sukow et al. [9], Barsukow[10], Chudzik et al. [11]). Depending on the 
system of conservation laws !nding such an evolution operator may be 
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quite challenging. Recently the authors in Abgrall [12], Abgrall and Bar-
sukow[13,14], Abgrall et al. [15] proposed a semi-discrete formulation 
of the Active Flux method (which we will call the generalized Active Flux 
method) that allows for a more #exible approach to update the point 
values.

In Abgrall and Barsukow[13], several extensions of this method to 
arbitrary order in one spatial dimension are presented, while the multi-
dimensional method in Abgrall et al. [15] was only third-order accurate. 
In this paper we extend this work to obtain a semi-discrete generalized 
Active Flux method of arbitrarily high order on Cartesian grids in two 
spatial dimensions. The design of the method is based on a hybrid !nite 
element–!nite volume method (see also Abgrall and Barsukow[14]) and 
also takes inspiration from the one-dimensional arbitrary-order Active 
Flux method with additional point values developed in Abgrall and Bar-
sukow[13].

While this paper focuses on Cartesian grids, we want to also mention 
[16], where a semi-discrete Active Flux method on triangular meshes is 
presented and results for a third- and fourth-order accurate method are 
shown, using the cell average and point values at the cell interfaces. 
Furthermore, He[17] and Roe[18], Samani and Roe[19], Samani[20] 
consider extensions of the (classical) fully discrete Active Flux method 
to arbitrary order. The !rst approach uses additional point values. In 
the latter, they typically enrich the stencil using additional information 
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in the form of derivatives at the already de!ned point values at the cell 
interfaces (also called “ Hermite Active Flux”).

Here, we aim at using higher moments in the cells and additional 
point values at the cell interfaces. For e$ciency, we especially aim 
at achieving arbitrarily high order with a minimal number of degrees 
of freedom while maintaining the compact stencil. Another possibil-
ity is a tensor-like extension of the hybrid !nite element–!nite volume 
method in Abgrall and Barsukow[14], which is also formally de!ned in 
Kern[21], but it uses more degrees of freedom than actually necessary 
for the required order of accuracy.

Using our approach, key features of Active Flux like global continu-
ity of the reconstructed solution and a compact stencil of the method 
in space are retained. As the method is based on the semi-discrete ap-
proach, it has the potential to be more easily applicable to di"erent sys-
tems of conservation laws than the classical Active Flux. For integration 
in time we use an explicit Runge-Kutta method. While classical Active 
Flux is a one-stage fully discrete method, the multiple stages of a Runge-
Kutta method widen the e"ective stencil of the generalized Active Flux 
method. In Roe[18], this has been linked to a reduction of the max-
imal CFL number, compared to the classical Active Flux method. Yet, 
Barsukow et al. [22] shows encouraging similarities of the classical and 
generalized Active Flux method of third order on Cartesian grids for lin-
ear acoustics, such as stationarity preservation (see Barsukow et al. [9] 
for stationarity preservation of the classical Active Flux).

The paper is structured as follows: In Section 2 we brie#y recall ar-
bitrarily high-order one-dimensional Active Flux from Abgrall and Bar-
sukow[13,14] and third-order two-dimensional Active Flux from Ab-
grall et al. [15]. Then, our high order method is de!ned in Section 3. 
Section 4 focuses on a stability analysis for linear advection of both the 
semi-discrete and the fully discrete method using RK3. Numerical re-
sults up to seventh order are presented for our high-order method in 
Section 5, including an example for the 2-d compressible Euler equa-
tions.

2.  An overview of the semi-discrete Active Flux method

Consider the hyperbolic system of conservation laws
𝜔𝜀𝜗(𝜀, 𝛚) + ε ⋛ 𝛆 (𝜗(𝜀, 𝛚)) = 0 (1)

for 𝜗ϑ ℝ+
0 ϖ ϱ  ℝ𝜛 on the domain ϱ 𝜚 ℝ𝜍 . Throughout this paper 

the focus is on the two-dimensional case 𝜍 = 2 with 𝛆 = (𝜑𝛻,𝜑𝜕), 
𝜑𝛻,𝜑𝜕 ϑ ℝ𝜛  ℝ𝜛. The notation used here is similar to Abgrall et al. [15].

Furthermore, we restrict ourselves to rectangular domains ϱ =
[𝛻min, 𝛻max] ϖ [𝜕min, 𝜕max] discretized with Cartesian grids with equidis-
tant cell widths ς𝛻 and ς𝜕 in 𝛻- and 𝜕-direction. For a Carte-
sian grid of size ℵ𝛻 ϖℵ𝜕 the grid cells will be denoted as ℶℷℸ =
[𝛻ℷφ 1

2
, 𝛻ℷ+ 1

2
] ϖ [𝜕ℸφ 1

2
, 𝜕ℸ+ 1

2
] for ℷ = 0,… ,ℵ𝛻 φ 1, ℸ = 0,…ℵ𝜕 φ 1 centered 

at 𝛚ℷℸ = (𝛻ℷ, 𝜕ℸ ).
Next, we will give an overview of semi-discrete Active Flux methods, 

that we will use and extend in this paper.

2.1.  A third-order method on two-dimensional Cartesian grids

In Abgrall et al. [15] a semi-discrete Active Flux method of third or-
der on Cartesian grids was presented for the two-dimensional case. As 
for the classical Active Flux method on Cartesian grids (see e.g. Bar-
sukow et al. [9], Helzel et al. [23]), the degrees of freedom for each cell 
ℶℷℸ are the cell average

⊳𝜗ℷℸ (𝜀) =
1

ς𝛻ς𝜕 ∱ℶℷℸ

𝜗(𝜀, 𝛚)d𝛚 (2)

and the nodal, vertical and horizontal point values
𝜗ℷ+ 1

2 ,ℸ+
1
2
(𝜀) = 𝜗

⌋

𝜀, 𝛻ℷ+ 1
2
, 𝜕ℸ+ 1

2

⌈

,

𝜗ℷ,ℸ+ 1
2
(𝜀) = 𝜗

⌋

𝜀, 𝛻ℷ, 𝜕ℸ+ 1
2

⌈

, 𝜗ℷ+ 1
2 ,ℸ

(𝜀) = 𝜗
⌋

𝜀, 𝛻ℷ+ 1
2
, 𝜕ℸ

⌈
(3)

at the cell interfaces. All point values are shared, i.e. each cell has access 
to eight point values at 𝛚⊲, ⊲ ∇

⌉

(ℷ ± 1
2 , ℸ ±

1
2 ), (ℷ ±

1
2 , ℸ), (ℷ, ℸ ±

1
2 )
{

 (see 
Fig. 1(a)).

The reconstruction on cell ℶℷℸ is the biparabolic polynomial 𝜗ℷℸ,recon ϑ
[φς𝛻

2 , ς𝛻2 ] ϖ [φς𝜕
2 , ς𝜕2 ]  ℝ𝜛 (see Barsukow et al. [9], Abgrall et al. [15]) 

de!ned on a reference cell with 𝛚ref ϑ= 𝛚 φ 𝛚ℷℸ and 𝛚ref ,⊲ ϑ= 𝛚⊲ φ 𝛚ℷℸ
which has to satisfy

1
ς𝛻ς𝜕 ∱

ς𝜕
2

φ ς𝜕
2
∱

ς𝛻
2

φ ς𝛻
2

𝜗ℷℸ,recon(𝛚ref )d𝛻ref d𝜕ref = ⊳𝜗ℷℸ ,

𝜗ℷℸ,recon(𝛚ref ,⊲) = 𝜗⊲ ∂⊲ ∇
⌉}

ℷ ± 1
2 , ℸ ±

1
2

⦃

,
}

ℷ ± 1
2 , ℸ

⦃

,
}

ℷ, ℸ ± 1
2

⦃{

.

It can also be written in terms of shape functions, see e.g. Barsukow 
et al. [22]. This gives rise to a globally continuous reconstruction 𝜗recon
on ϱ (see Fig. 1(b)) with
𝜗recon⦄ℶℷℸ

(𝛚) ϑ= 𝜗ℷℸ,recon(𝛚ref ). (4)

For the update of the point values 𝜗⊲, ⊲ ∇
⌉

⟨

ℷ + 1
2 , ℸ +

1
2
⟩

,
⟨

ℷ + 1
2 , ℸ

⟩

,
⟨

ℷ, ℸ + 1
2
⟩

{

 the quasi-linear form of (1) 
at 𝛚⊲
d
d𝜀 𝜗⊲(𝜀) +0𝜑𝛻(𝜗⊲(𝜀))𝜔𝛻𝜗⦄⊲(𝜀) +0𝜑𝜕(𝜗⊲(𝜀))𝜔𝜕𝜗⦄⊲(𝜀) = 0

is considered. In order to introduce stabilization via upwinding, the Ja-
cobians 1𝛻 = 0𝜑𝛻(𝜗⊲), 1𝜕 = 0𝜑𝜕(𝜗⊲) are split according to the sign of the 
wave speeds

(1𝛻)± ϑ= 2 𝛻diag(3±𝛻,1,… , 3±𝛻,𝜛)(2
𝛻)φ1,

3+𝛻,4 ϑ= max(0, 3𝛻,4), 3φ𝛻,4 ϑ= min(0, 3𝛻,4) ∂4 = 1,… , 𝜛.

The derivatives 𝜔𝛻𝜗⦄⊲ are approximated with !nite di"erence formulas 
in upwind direction (0±

𝛻 )⊲𝜗 and (0±
𝜕 )⊲𝜗 derived from the reconstruction 

𝜗recon. In directions tangential to the cell interface for the horizontal and 
vertical edge point, the derivative of the reconstruction is continuous 
and no upwinding is included.

The update of the cell averages is obtained by integrating the con-
servation law (1) over the cell ℶℷℸ and applying the divergence theorem
d
d𝜀 ⊳𝜗ℷℸ (𝜀) +

1
ς𝛻ς𝜕 ∱𝜔ℶℷℸ

𝛆 (𝜗(𝜀, 𝛚)) ⋛ 𝛝d5 = 0.

The reconstructed solution is continuous at the cell interfaces and the 
#ux terms over the cell interfaces are numerically integrated with a 
Gauss-Lobatto quadrature with three points, which coincide with the 
point values at the cell interfaces.

2.2.  Methods of arbitrary order in one dimension

In Abgrall and Barsukow[13], di"erent methods to extend semi-
discrete Active Flux to arbitrarily high order in one dimension were 
suggested. Here, two of these concepts are reviewed, and a variation of 
the second method is presented.

2.2.1.  A method with higher moments
In this paper, we will mainly focus on the hybrid !nite element–!nite 

volume method as also de!ned in Abgrall and Barsukow[14, De!nition 
4.1 (Method A)]. For a method of order ℵ + 1 on a compact stencil, 
ℵ + 1 degrees of freedom accessible to a cell are needed to approximate 
a polynomial of degree ℵ . In addition to the traditional degrees of free-
dom, i.e. the cell averages and the point values at the cell interfaces, 
this method uses higher moments

𝜗(4)ℷ (𝜀) ϑ= 64
∱

𝛻
ℷ+ 1

2

𝛻
ℷφ 1

2

𝜗(𝜀, 𝛻)74(𝛻 φ 𝛻ℷ)d𝛻 4 ∇ ℕ.

The test functions for the moments are 74 ϑ [φς𝛻
2 , ς𝛻2 ]  ℝ, 74(𝛻) = 𝛻4

with the normalization factors 64 = (4+1)24
ς𝛻4+1 . This allows to obtain more 
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Fig. 1. Degrees of freedom and reconstruction for a third-order Active Flux method on two-dimensional Cartesian grids.

information on a compact stencil. The update of the cell average ⊳𝜗ℷ = 𝜗(0)ℷ
and higher moments is given as
d
d𝜀 𝜗

(4)
ℷ (𝜀) = φ 64

⌋

𝜑 (𝜗ℷ+ 1
2
(𝜀))74

}

ς𝛻
2

⦃

φ 𝜑 (𝜗ℷφ 1
2
(𝜀))74

}

φς𝛻
2

⦃

⌈

+ 64
∱

𝛻
ℷ+ 1

2

𝛻
ℷφ 1

2

𝜑 (𝜗(𝜀, 𝛻))7−4(𝛻 φ 𝛻ℷ)d𝛻 ∂4 = 0,… ,ℵ φ 2

for a method of order ℵ + 1. The update of the point values 𝜗ℷ+ 1
2
=

𝜗(𝛻ℷ+ 1
2
) uses a Jacobian splitting of 0𝜑 (𝜗) to include upwinding

d
d𝜀 𝜗ℷ+ 1

2
(𝜀) = φ0𝜑 (𝜗ℷ+ 1

2
)+(0+

𝛻 )ℷ+ 1
2
𝜗 φ0𝜑 (𝜗ℷ+ 1

2
)φ(0φ

𝛻 )ℷ+ 1
2
𝜗.

The polynomial reconstructions 𝜗ℷ,recon ϑ [φς𝛻
2 , ς𝛻2 ]  ℝ𝜛 of degree ℵ ∲

2 are used to !nd a !nite di"erence approximation for (0±
𝛻 )ℷ+ 1

2
𝜗.

2.2.2.  A method with additional point values
Another possibility to achieve arbitrarily high order of the Active 

Flux method is to introduce further point values 𝜗ℷ,89 = 𝜗(𝛻ℷ + ς𝛻89), 89 ∇
(φ 1

2 ,
1
2 ) within each cell in addition to the cell averages and the point 

values at the cell interfaces 𝜗ℷ± 1
2
. This method will especially be rele-

vant for the discussion of stability in Section 4. To achieve a method of 
order ℵ + 1, ℵ φ 2 additional point values are needed and similarly to 
Section 2.2.1, a polynomial reconstruction can be de!ned on the cells ℶℷ
(except in the case of a symmetric distribution of an odd number of point 
values). In Abgrall and Barsukow[13] this method has been introduced 
using evolution operators for the point value updates.

Before proceeding with the arbitrarily high-order two-dimensional 
method, we propose a variation of the above method here. Since it is a 
challenge to !nd exact or high-order approximate evolution updates for 
the point values for general systems of conservation laws and having in 
mind the point value updates of the method reviewed in Section 2.2.1, 
it seems straightforward to write a variation of the method from Abgrall 
and Barsukow[13], for ℵ + 1 ∲ 4, as the following semi-discretization: 
⟪

⟫

⟫

⟫

⟫

⟫

❲

⟫

⟫

⟫

⟫

⟫

❳

d
d𝜀 ⊳𝜗ℷ(𝜀) = φ

𝜑 (𝜗ℷ+ 1
2
(𝜀)) φ 𝜑 (𝜗ℷφ 1

2
(𝜀))

ς𝛻
d
d𝜀 𝜗ℷ+ 1

2
(𝜀) = φ.

}

𝜗ℷφ 1
2
(𝜀), 𝜗ℷ,80 (𝜀),… , 𝜗ℷ,8ℵφ3 (𝜀), 𝜗ℷ+ 1

2
(𝜀),

𝜗ℷ+1,80 (𝜀),… , 𝜗ℷ+1,8ℵφ3 (𝜀), 𝜗ℷ+ 3
2
(𝜀)
⦃

d
d𝜀 𝜗ℷ,89 (𝜀) = φ ,.9

}

𝜗ℷφ 1
2
(𝜀), 𝜗ℷ,80 (𝜀),… , 𝜗ℷ,8ℵφ3 (𝜀), 𝜗ℷ+ 1

2
(𝜀)
⦃

∂9 ∇ {0,… ,ℵ φ 3}

with consistent approximations . , ,.9 of 𝜔𝛻𝜑 (𝜗) at 𝛻ℷ+ 1
2
 and 𝛻ℷ + ς𝛻89, 

respectively. As in Section 2.2.1, a Jacobian splitting can be considered 
and a !nite di"erence formula can be derived from the reconstructed 
polynomial. For the point values at the cell interfaces it is natural to use 
the reconstruction of the cell in upwind direction such that (0+

𝛻 )ℷ+ 1
2
𝜗 ϑ=

d
d𝛻ref

𝜗ℷ,recon(𝛻ref )⦄𝛻ref = ς𝛻
2
, (0φ

𝛻 )ℷ+ 1
2
𝜗 ϑ= d

d𝛻ref
𝜗ℷ+1,recon(𝛻ref )⦄𝛻ref =φ ς𝛻

2
. For the 

point values within the cell, the reconstruction is uniquely de!ned and 
(0𝛻)ℷ,89 𝜗 ϑ= d

d𝛻ref
𝜗ℷ,recon(𝛻ref )⦄𝛻ref =ς𝛻89 . This resembles the approximation 

of the derivative tangential to a cell interface in Section 2.1. The version 
described in this Section will serve as inspiration in Section 4.

3.  A semi-discrete Active Flux method of arbitrarily high order on 
two-dimensional Cartesian grids

In the following Section we discuss the extension of the semi-
discrete, third-order Active Flux method (as recapitulated in Section 2.1) 
to arbitrary order of accuracy ℵ + 1. It will be constructed in such a way 
that

• the reconstructed numerical solution 𝜗recon is globally continuous,
• it uses a compact stencil with a minimal number of degrees of free-
dom per cell, and

• the cell average is always included among the degrees of freedom.
As for the third-order method, the shared point values at the cell inter-
faces will guarantee that the reconstruction is globally continuous and 
the inclusion of the cell averages will ensure that the resulting method is 
conservative. To gain su$cient information for the reconstruction on a 
compact stencil, higher moments are de!ned. Hence, this work extends 
the hybrid !nite element–!nite volume approach (see Section 2.2.1) 
from one spatial dimension to two spatial dimensions on Cartesian grids.
The way the point values are distributed on the edge has an in#uence 
on stability as shall be discussed in Section 4.1. There, similar consid-
erations are made as for the Active Flux method with additional point 
values (see Section 2.2.2).
Remark: This approach to extend the generalized Active Flux method 
is only one possibility. It uses point values at the cell interfaces analo-
gously to the third order method in 2-d and moments in the interior of 
the cell, extending the 1-d method from Section 2.2.1. Using moments 
in the interior gives a natural way to minimize the number of degrees 
of freedom. Another possibility can be a tensor-like extension of the 1-d 
method with moments which will also brie#y be considered here. Fur-
ther extensions can be thought of. For example the method described 
in Section 2.2.2 could be extended. A similar method considering point 
values only is the face-upwinded spectral element (FUSE) method [24] 
on quadrilateral meshes.

3.1.  Reference element for Cartesian grids

From now on, we de!ne the reference element as ℶ ref ϑ=
/

φ 1
2 ,

1
2

\

ϖ
/

φ 1
2 ,

1
2

\

 and the transformation +ℷℸ ϑ ℶℷℸ  ℶ ref

+ℷℸ (𝛻, 𝜕) =
( 𝛻φ𝛻ℷ

ς𝛻
𝜕φ𝜕ℸ
ς𝜕

)

(5)

with its inverse +φ1
ℷℸ ϑ ℶ ref  ℶℷℸ

+φ1
ℷℸ (𝛻ref , 𝜕ref ) =

⌋

𝛻ℷ + ς𝛻𝛻ref
𝜕ℸ + ς𝜕𝜕ref

⌈

. (6)
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Fig. 2. Superscripts specifying the degrees of freedom for a cell ℶℷℸ for 
GenAF(<⥳) of fourth order (a generalized Active Flux method with minimal 
number of degrees of freedom, see Notation 2). The circled point values mark 
the points belonging to a cell.

3.2.  Degrees of freedom

The degrees of freedom used for the generalized Active Flux method 
of order ℵ + 1 are shared point values at the cell interfaces and mo-
ments. The notation we introduce here uses a subscripted index ℷℸ to 
identify the cell and a superscripted index to specify the degree of free-
dom. An example for the superscripts can be seen in Fig. 2.

As described above, the point values at the cell interfaces are chosen 
such that the reconstruction 𝜗recon is globally continuous on the domain 
ϱ and maximal use of these shared degrees of freedom is made. ℵ + 1
shared point values at each cell interface are required to de!ne a unique 
polynomial of degree ℵ along each cell interface and achieve 𝜗recon ∇
ℶ0(ϱ,ℝ𝜛). First, the four nodes (= vertices) are included. This leaves 
ℵ φ 1 points per edge, i.e. 4(ℵ φ 1) edge points in total. For cell ℶℷℸ the 
point values are de!ned as
𝜗(⊲)ℷℸ (𝜀) ϑ= 𝜗

⟨

𝜀, 𝛚(⊲)ℷℸ
⟩

∂⊲ ∇ ℏ∳ (7)

with 𝛚(⊲)ℷℸ ∇ 𝜔ℶℷℸ . The index set
ℏ∳ ϑ= ℏ⨋ ± ℏ⨌ (8)

de!nes all points accessible to the cell. These are
• the nodes ⦅𝛚(>)ℷℸ

⦆

>∇ℏ
⨋

, ℏ⨋ ϑ= {(⨋ , 0),… , (⨋ , 3)} located at
(𝛻ℷ± 1

2
, 𝜕ℸ± 1

2
)

and assembled counterclockwise starting with the lower left node 
and

• the edge points ⦅

𝛚(⋆,9)ℷℸ
⦆

(⋆,9)∇ℏ⨌
, ℏ⨌ ϑ= {(⋆, 9)⦄⋆ = ⨌0,… , ⨌3, 9 =

0,… ,ℵ φ 2} with the edges assembled counterclockwise. The 
horizontal edge points with ⋆ = 0, 2 are located at
(𝛻ℷ+89 , 𝜕ℸ± 1

2
) = (𝛻ℷ + 89ς𝛻, 𝜕ℸ± 1

2
)

and the vertical edge points with ⋆ = 1, 3 at
(𝛻ℷ± 1

2
, 𝜕ℸ+89 ) = (𝛻ℷ± 1

2
, 𝜕ℸ + 89ς𝜕)

with 89 ∇ (φ 1
2 ,

1
2 ). The choice of 89 is discussed in Section 4.1.

Since the point values are shared between adjacent cells it is possible 
to de!ne the points belonging to a cell, e.g. chosen as the upper right node 
> = 2 as well as the edge points on the upper horizontal ⋆ = ⨌2 and the 
right vertical edge ⋆ = ⨌1, assembled in the index set
≨ℏ∳ ϑ= {(⨋ , 2)} ± {(⋆, 9)⦄⋆ = ⨌1, ⨌2, 9 = 0,… ,ℵ φ 2}. (9)

Thus, on average only 1 node and 2(ℵ φ 1) edge points have to be up-
dated per cell.

The moments of order 𝐴 = 4 + 𝐵, 4, 𝐵 ∲ 0 for cell ℶℷℸ are de!ned as

𝜗(4,𝐵)ℷℸ (𝜀) ϑ= 64,𝐵
∱ℶℷℸ

74,𝐵(+ℷℸ (𝛚))𝜗(𝜀, 𝛚)d𝛚 ∂(4, 𝐵) ∇ ℏ⨍ (10)

with the test functions (74,𝐵)4,𝐵∇ℕ0

74,𝐵 ϑ
/

φ 1
2 ,

1
2

\

ϖ
/

φ 1
2 ,

1
2

\

 ℝ, 74,𝐵(𝛻, 𝜕) = 𝛻4𝜕𝐵 (11)

and a corresponding normalization factor

64,𝐵 =
(4 + 1)24(𝐵 + 1)2𝐵

ς𝛻ς𝜕 . (12)

Thus, there are 𝐴 + 1 moments of order 𝐴 and the cell averages ⊳𝜗ℷℸ are 
equal to the moments 𝜗(0,0)ℷℸ , i.e. 𝐴 = 0.
Beyond the requirement of including the average among the degrees of 
freedom, there are di"erent possibilities to choose the moments. The 
two choices considered here are
ℏ⨍ = ℏ⨍,⋜ ϑ= {(4, 𝐵)⦄4, 𝐵 ∇ ℕ0, 0 ⨎ 4, 𝐵 ⨎ ℵ φ 2} (tensor-like) (13)
ℏ⨍ = ℏ

⨍,⋝ ϑ= {(4, 𝐵)⦄4, 𝐵 ∇ ℕ0, 0 ⨎ 4 + 𝐵 ⨎ max{0,ℵ φ 4}} (triangle-like)
(14)

for ℵ ∲ 2. They entail di"erent reconstruction spaces which will be dis-
cussed in the following Section.

The point values and moments de!ne all our degrees of freedom and 
the index set of the nodal and modal degrees of freedom accessible to 
each cell is denoted by
ℏdof ϑ= ℏ∳ ± ℏ⨍. (15)

and analogously we denote by
𝐶ℏdof ϑ= ≨ℏ∳ ± ℏ⨍ (16)

the index set of all degrees of freedom belonging to a cell. Fig. 3 shows 
some examples for the reference elements of spatial order ℵ + 1 using 
the triangle-like moments (14).

The updates of the degrees of freedom are discussed in the Sec-
tions 3.4 and 3.5.
Remark: Finite elements using nodal and modal degrees of freedom are 
also called hybrid !nite elements (see e.g. Ern and Guermond[25, Chap-
ter 6.3.3, Chapter 7.6]).

3.3.  Reconstruction

Next, the spatial reconstruction 𝜗recon ϑ ϱ𝐷  ℝ𝜛, ϱ𝐷 ϑ= ±ℷ,ℸℶℷℸ , is 
considered (for 1-d it reduces to the reconstruction in Abgrall and Bar-
sukow[14], and for third order in 2-d to the one in Barsukow et al. [9]). 
The polynomial solution reconstruction on cell ℶℷℸ

𝜗recon⦄ℶℷℸ
ϑ ℶℷℸ  ℝ𝜛 𝜗recon⦄ℶℷℸ

∇ (𝐸 recon)𝜛 (17)

has to ful!ll (7) and (10), and for the method to be of order ℵ + 1 in 
space it must at least lie in the bivariate polynomial space 
𝐸ℵ ϑ= span{𝛻𝐴𝜕>⦄𝐴, > ∇ ℕ0, 0 ⨎ 𝐴 + > ⨎ ℵ} (18)

of maximal total degree ℵ , for each element, i.e. 𝐸ℵ 𝐹 𝐸 recon. Here, we 
use all degrees of freedom 𝜗(𝐺)ℷℸ , 𝐺 ∇ ℏdof  accessible to the cell to de!ne
(17). Clearly, a necessary condition for unisolvence is that the dimension 
⦄𝐸 recon

⦄ of 𝐸 recon matches the number of degrees of freedom. Below, two 
possible choices for the reconstruction space are presented. Later on, 
they are used to de!ne a !nite element for the generalized Active Flux 
method.

3.3.1.  Tensor-like reconstruction space
As a natural extension from the one-dimensional case (see Abgrall 

and Barsukow[13,14]) the bi-polynomial space
𝐸ℵ ,ℵ ϑ= span{𝛻𝐴𝜕>⦄𝐴, > ∇ {0,⋞ ,ℵ}} (19)

can be considered for 𝐸 recon, similar to tensor-product !nite elements 
(see e.g. Ern and Guermond[25, Chapter 6.4]).

This choice satis!es 𝐸ℵ 𝐹 𝐸 recon and requires ⦄𝐸 recon
⦄ = (ℵ + 1)2 de-

grees of freedom. As discussed in Section 3.2, 4ℵ of these must be point 
values which leaves (ℵ φ 1)2 modal degrees of freedom within each 
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Fig. 3. Reference elements ℶ ref  for GenAF(<⥳) of order ℵ + 1 (a generalized Active Flux method with minimal number of degrees of freedom, see Notation 2).

Table 1 
Monomial basis for serendipity space 5ℵ . The circled elements extend 
𝐸ℵ . This is used to de!ne a minimal basis for 𝐸 recon, see (20). The bold 
lines separate the basis elements required for the edges from the triangle-
shaped remainder that ensures unisolvence of the moments.
1 𝛻 𝛻2 … 𝛻ℵφ2 𝛻ℵφ1 𝛻ℵ
𝜕 𝛻𝜕 𝛻2𝜕 … 𝛻ℵφ2𝜕 𝛻ℵφ1𝜕

𝜕2 𝛻𝜕2 𝛻2𝜕2 … 𝛻ℵφ2𝜕2  –  –
⋟ ⋟ ⋟ ⋠  – ⋠ ⋟
𝜕ℵφ2 𝛻𝜕ℵφ2 𝛻2𝜕ℵφ2  – ⋠  –  –
𝜕ℵφ1 𝛻𝜕ℵφ1  – ⋠  –  –  –
𝜕ℵ – … – – –

cell, i.e. the cell average and the higher moments. Thus, the tensor-
like reconstruction space is associated to the tensor-like choice (13) of 
moments spanning 𝐸ℵφ2,ℵφ2. This choice reduces to the reconstruction 
space for the third-order Active Flux method as !rst introduced in Bar-
sukow et al. [9], Helzel et al. [23], see also Section 2.1.

For the resulting method we introduce the following notation:
Notation 1. The tensor-like generalized Active Flux method on two-
dimensional Cartesian grids with 𝐸 recon = 𝐸ℵ ,ℵ  shall be denoted by
GenAF(<⋜).

3.3.2.  Reconstruction space with minimal number of degrees of freedom
High-order methods need to evolve many degrees of freedom. We 

thus aim at !nding a computationally more e$cient choice for 𝐸 recon

with only the minimal possible number of degrees of freedom needed to 
achieve order ℵ + 1 on a Cartesian cell.

Setting 𝐸 recon = 𝐸ℵ  turns out not to be su$cient for unisolvence, as 
discussed below. Instead we de!ne 

𝐸 recon ϑ= 𝐸 recon
min ϑ=

[

5ℵ 𝐻 span{𝛻2𝜕2}  for ℵ = 2, 3
5ℵ  for ℵ ∲ 4.

(20)

using the so called serendipity space (see also Table 1)
5ℵ ϑ= 𝐸ℵ 𝐻 span{𝛻ℵ𝜕, 𝛻𝜕ℵ} (21)

known from serendipity !nite elements (see e.g. Ern and Guermond[25, 
Chapter 6.4.3] and Arnold and Awanou[26]), which are based on the 
idea of reducing the degrees of freedom from the tensor-product !nite 
element.

First, let us consider the case ℵ ∲ 4 for the reconstruction space in
(20) with ⦄5ℵ

⦄ = 1
2 (ℵ + 1)(ℵ + 2) + 2 = {8, 12, 17, 23,…}ℵ∲2 degrees of 

freedom. There must be 4ℵ point values (see Section 3.2). This leaves 
us with 12 (ℵ φ 3)(ℵ φ 2) = ⦄𝐸ℵφ4

⦄ moments, that we will thus take with 
respect to the basis of 𝐸ℵφ4. For ℵ = 2, 3 with ⦄5ℵ

⦄ = 4ℵ , there is an 
exception. In order to include the cell average, 5ℵ  needs to be extended. 
In both cases {𝛻2𝜕2} is a suitable choice for the additional basis element. 
This choice of moments corresponds to the triangle-like choice (14) and 

Table 2 
Number of degrees of freedom for GenAF(<⥳).

 order ⦄𝐸 recon
min ⦄  #PVs  #Moments

ℵ + 1 (ℵ + 1)(ℵ + 2)
2 + 2 4ℵ max

⌉

1, 12 (ℵ φ 3)(ℵ φ 2)
{

3 8 8
4 12 12

 5  17  16  1
 6  23  20  3
 7  30  24  6

coincides with the tensor-like method for ℵ + 1 = 3. An overview of the 
number of degrees of freedom can be found in Table 2.

As mentioned above, the choice 𝐸 recon = 𝐸ℵ  (for ℵ ∲ 5) turned out 
not to be su$cient for unisolvence of the method on Cartesian cells, 
which was veri!ed using -!#.’-!#$%! [27] for ℵ = 5, 6, where we 
chose ℏ⨍ = ℏ

⨍,⋝ ⟥ {(ℵ φ 4, 0), (0,ℵ φ 4)}. This is because two basis el-
ements of the highest power ℵ in 𝛻 and 𝜕 each are needed to be able to 
uniquely de!ne the polynomials up to degree ℵ on the two horizontal 
and vertical edges, respectively. For ℵ = 2, 3, 4 it was also necessary to 
extend 𝐸ℵ  in a suitable manner due to our requirements speci!ed at the 
beginning of Section 3. For ℵ = 2, 3, we chose 5ℵ 𝐻 {𝛻2𝜕2} as de!ned 
in (20) which we deemed a natural and symmetric choice lying within 
𝐸ℵ ,ℵ . For ℵ = 4, we tried two versions: First, 𝐸ℵ 𝐻 {𝛻3𝜕2, 𝛻2𝜕3}, which 
we found insu$cient to achieve unisolvence and second, we tested 5ℵ

as in (20). Now, consider the minimal choice of degrees of freedom with 
the basis elements spanning 𝐸 recon

min . Then, one can think of associating 
the nodal degrees of freedom (nodes and edge points) on the horizontal 
edges with the basis elements 1, 𝛻,… , 𝛻ℵ  and 𝜕, 𝛻𝜕,… , 𝛻ℵ𝜕 on an edge 
each, and respectively, 1, 𝜕,… , 𝜕ℵ  and 𝛻, 𝛻𝜕,… , 𝛻𝜕ℵ  with the points on 
the vertical edges. The moments can then be associated with the basis 
elements in (14), which form a triangle in Table 1 (indicated by the bold 
lines). As shown with the help of -!#.’-!#$%! [27] for up to order 7, 
the basis given in (20) for 𝐸 recon

min  is unisolvent.
Referring to the choice of moments the following notation is intro-

duced:

Notation 2. The generalized Active Flux method on two-dimensional Carte-
sian grids with minimal number of degrees of freedom using 𝐸 recon

min  given 
in (20) shall be denoted with GenAF(<⥳).

3.3.3.  A hybrid !nite element
Next, the hybrid !nite element as de!ned in Abgrall and Bar-

sukow[14, De!nition 3.1] is extended to a Cartesian element in two 
spatial dimensions. We also include the interpolation operator and the 
reconstruction and follow Ern and Guermond[25, De!nitions 5.2, 5.5, 
5.7, 5.11, Proposition 5.12] and Abgrall and Barsukow[14]:
De!nition 1. Let 𝜍 = 2 and ℵ ∲ 2. Given an index set ℏdof ϑ= ℏ∳ ± ℏ⨍
with a set of points {𝛚⊲}⊲∇ℏ∳ , here {𝛚⊲ = (𝛻⊲, 𝜕⊲)⦄𝛻⊲, 𝜕⊲ ∇ {± 1

2 } or (𝛻⊲ ∇
{89}9, 𝜕⊲ ∇ {± 1

2 }) or (𝛻⊲ ∇ {± 1
2 }, 𝜕⊲ ∇ {89}9) with 89 ∇ (φ 1

2 ,
1
2 ) ∂9 =

0,… ,ℵ φ 2}, and a (e.g. monomial) basis {74,𝐵}4,𝐵∇ℏ⨍  for either
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Fig. 4. Shape functions for GenAF(<⥳) of 7th order.

• 𝐸ℵφ2,ℵφ2 (ℏ⨍ as in (13)), or
• the polynomial vector space 𝐸<  with < = max{0,ℵ φ 4} (ℏ⨍ as in
(14)).

Then, the !nite element (𝐼 ,𝐸 ,∓) is
• 𝐼 = ℶ ref =

/

φ 1
2 ,

1
2

\

ϖ
/

φ 1
2 ,

1
2

\

,
• 𝐸  given either by

– 𝐸 recon = 𝐸ℵ ,ℵ , or
– 𝐸 recon = 5ℵ 𝐻 span{𝛻2𝜕2} for ℵ ⨎ 3 and 𝐸 recon = 5ℵ  for ℵ > 3
and

• ∓ = {𝐽ℷ}ℷ∇ℏdof  the set of degrees of freedom with 𝐽ℷ ϑ 𝐸  ℝ

𝐽⊲(𝐾) ϑ= 𝐾(𝛚⊲) ∂ ⊲ ∇ ℏ∳

𝐽4,𝐵(𝐾) ϑ= 6ref
4,𝐵 ∱𝐼

74,𝐵(𝛚)𝐾(𝛚)d𝛚 ∂(4, 𝐵) ∇ ℏ⨍

for all 𝐾 ∇ 𝐸  and with the normalization factors 6ref
4,𝐵 = (4 + 1)24(𝐵 +

1)2𝐵 with respect to 𝐼. 
We de!ne the shape functions 𝐿𝐺 ϑ 𝐼  ℝ such that

𝐽𝐺(𝐿𝜛) = 𝑀𝐺𝜛 ∂𝐺, 𝜛 ∇ ℏdof (22)

which form the canonical basis of 𝐸  with respect to the !nite element. 
Fig. 4 shows examples for the shape functions of the GenAF(<⥳) method 
of order ℵ + 1 = 7.

The interpolation operator corresponding to the !nite element is de-
!ned to interpolate real-valued functions over 𝐼 in 𝐸 . We consider the 
space 𝑁 ϑ= 𝑂1(𝐼 ,ℝ). With 𝐸 𝐹 𝑁 , the elements in {𝐽𝐺}𝐺∇ℏdof  – span-
ning the space of linear forms hom(𝐸 ,ℝ) – can naturally be extended 
to hom(𝑁 ,ℝ). We denote them by { ,𝐽𝐺}𝐺∇ℏdof . Then, the interpolation op-
erator ℏ𝐼 ϑ 𝑁  𝐸  is de!ned as
ℏ𝐼 (𝐾)(𝛚) ϑ=

]

𝐺∇ℏdof
,𝐽𝐺(𝐾)𝐿𝐺(𝛚) ∂𝛚 ∇ 𝐼 . (23)

Finally, the reconstruction 𝑃 ϑ ℝ⦄ℏdof ⦄⋛𝜛  𝐸 𝜛,

𝑃
}

(𝜗𝐺)𝐺∇ℏdof
⦃

(𝛚) ϑ=
]

𝐺∇ℏdof
𝜗𝐺𝐿𝐺(𝛚) ∂𝛚 ∇ 𝐼 (24)

maps the degrees of freedom 𝜗𝐺 ∇ ℏdof  to the polynomial space 𝐸 𝜛. This 
gives the reconstruction (17):

𝜗recon⦄ℶℷℸ
⋡+φ1

ℷℸ = 𝑃
⌋

}

𝜗(𝐺)ℷℸ

⦃

𝐺∇ℏdof

⌈

∇ (𝐸 recon)𝜛 (25)

 𝜗recon⦄ℶℷℸ
(𝛚) =

]

𝐺∇ℏdof
𝜗(𝐺)ℷℸ 𝐿𝐺(+ℷℸ (𝛚)). (26)

3.4.  Update of point values

For the update of the point values it is possible to consider a non-
conservative formulation of (1), which also allows to include stabilizing 
upwinding. In spirit we follow Abgrall and Barsukow[13,14], Abgrall 
et al. [15]. The quasi-linear form for the system of conservation laws (1) 
is

𝜔𝜀𝜗(𝜀, 𝛚) +0𝜑𝛻(𝜗(𝜀, 𝛚))𝜔𝛻𝜗(𝜀, 𝛚) +0𝜑𝜕(𝜗(𝜀, 𝛚))𝜔𝜕𝜗(𝜀, 𝛚) = 0, (27)

which is considered at 𝛚(⊲)ℷℸ  to derive the point value updates. Here, the 
Jacobians of the #uxes 𝜑𝛻,𝜑𝜕 are given, since they can be calculated 
directly, whereas the derivatives of 𝜗 with respect to 𝛻 and 𝜕 have to 
be approximated. We intend to use di"erent derivative approximations 
(0𝛻)

(⊲)
ℷℸ ( 𝜔𝛻, (0𝜕)

(⊲)
ℷℸ ( 𝜔𝜕 for each upwind direction. To this end, the di-

agonalized Jacobians
0𝜑𝛻(𝜗(⊲)ℷℸ ) = 2 𝛻diag(3𝛻,1,… , 3𝛻,𝜛)(2 𝛻)φ1, (28)

0𝜑𝜕(𝜗(⊲)ℷℸ ) = 2 𝜕diag(3𝜕,1,… , 3𝜕,𝜛)(2 𝜕)φ1 (29)

are split according to the positive and negative wave speeds to incorpo-
rate upwinding:
0𝜑𝛻(𝜗(⊲)ℷℸ )+ ϑ= 2 𝛻diag(3+𝛻,1,… , 3+𝛻,𝜛)(2

𝛻)φ1,

0𝜑𝛻(𝜗(⊲)ℷℸ )φ ϑ= 2 𝛻diag(3φ𝛻,1,… , 3φ𝛻,𝜛)(2
𝛻)φ1,

0𝜑𝜕(𝜗(⊲)ℷℸ )+ ϑ= 2 𝜕diag(3+𝜕,1,… , 3+𝜕,𝜛)(2
𝜕)φ1,

0𝜑𝜕(𝜗(⊲)ℷℸ )φ ϑ= 2 𝜕diag(3φ𝜕,1,… , 3φ𝜕,𝜛)(2
𝜕)φ1,

where

3+ω,ℷ ϑ= max(0, 3ω,ℷ), 3φω,ℷ ϑ= min(0, 3ω,ℷ), ω= 𝛻, 𝜕.

This yields
d
d𝜀 𝜗

(⊲)
ℷℸ (𝜀) = φ0𝜑𝛻(𝜗(⊲)ℷℸ )+(0+

𝛻 )
(⊲)
ℷℸ 𝜗 φ0𝜑𝛻(𝜗(⊲)ℷℸ )φ(0φ

𝛻 )
(⊲)
ℷℸ 𝜗

φ0𝜑𝜕(𝜗(⊲)ℷℸ )+(0+
𝜕 )

(⊲)
ℷℸ
𝜗 φ0𝜑𝜕(𝜗(⊲)ℷℸ )φ(0φ

𝜕 )
(⊲)
ℷℸ
𝜗.

(30)

The upwinded !nite di"erence formulas (0±
𝛻 )

(⊲)
ℷℸ , (0±

𝜕 )
(⊲)
ℷℸ  are derived with 

the help of the reconstructions 𝜗recon⦄ℶℷℸ
, which are di"erentiable on each 
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cell ℶℷℸ (see also Abgrall et al. [15], Barsukow et al. [22] for third order):
(0±

𝛻 )
(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝛻𝜗recon

⟦

⟦

⟦ℶupw (𝛚)
⟦

⟦

⟦𝛚(⊲)ℷℸ
, (31)

(0±
𝜕 )

(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝜕𝜗recon

⟦

⟦

⟦ℶupw (𝛚)
⟦

⟦

⟦𝛚(⊲)ℷℸ
. (32)

The upwind cell ℶupw is the cell adjacent to 𝛚(⊲)ℷℸ  from the correspond-
ing “±”-direction for 𝛻 or 𝜕, i.e. at the node 𝛚(⊲)ℷℸ = (𝛻ℷ+ 1

2
, 𝜕ℸ+ 1

2
)

(0+
𝛻 )

(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝛻𝜗recon⦄ℶℷℸ

(𝛻, 𝜕ℸ+ 1
2
)⦄𝛻=𝛻

ℷ+ 1
2
,

(0φ
𝛻 )

(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝛻𝜗recon⦄ℶℷ+1,ℸ (𝛻, 𝜕ℸ+ 1

2
)⦄𝛻=𝛻

ℷφ 1
2
,

(0+
𝜕 )

(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝜕𝜗recon⦄ℶℷℸ

(𝛻ℷ+ 1
2
, 𝜕)⦄𝜕=𝜕

ℸ+ 1
2
,

(0φ
𝜕 )

(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝜕𝜗recon⦄ℶℷ,ℸ+1 (𝛻ℷ+ 1

2
, 𝜕)⦄𝜕=𝜕

ℸφ 1
2
,

and at the horizontal edge points (𝛻ℷ+89 , 𝜕ℸ+ 1
2
)

(0𝛻)
(⊲)
ℷℸ 𝜗 ϑ= (0+

𝛻 )
(⊲)
ℷℸ 𝜗 = (0φ

𝛻 )
(⊲)
ℷℸ = 𝜔𝛻𝜗recon⦄ℶℷℸ

(𝛻, 𝜕ℸ+ 1
2
)⦄𝛻=𝛻ℷ+89 ,

(0+
𝜕 )

(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝜕𝜗recon⦄ℶℷℸ

(𝛻, 𝜕)⦄(𝛻,𝜕)=(𝛻ℷ+89 ,𝜕ℸ+ 1
2
),

(0φ
𝜕 )

(⊲)
ℷℸ 𝜗 ϑ= 𝜔𝜕𝜗recon⦄ℶℷ,ℸ+1 (𝛻, 𝜕)⦄(𝛻,𝜕)=(𝛻ℷ+89 ,𝜕ℸ+ 1

2
).

The derivatives for the vertical edge points (𝛻ℷ+ 1
2
, 𝜕ℸ+89 ) are de!ned

analogously. Considering de!nition (26) for the reconstruction 𝜗recon⦄ℶℷℸ
the partial derivatives in 𝛻- and 𝜕-direction are given as
𝜔𝛻𝜗recon⦄ℶℷℸ

(𝛻, 𝜕) =
]

𝐺∇ℏdof
𝜗(𝐺)ℷℸ ε+𝐿𝐺(+ℷℸ (𝛻, 𝜕)) ⋛ 𝜔𝛻+ℷℸ (𝛻, 𝜕), (33)

𝜔𝜕𝜗recon⦄ℶℷℸ
(𝛻, 𝜕) =

]

𝐺∇ℏdof
𝜗(𝐺)ℷℸ ε+𝐿𝐺(+ℷℸ (𝛻, 𝜕)) ⋛ 𝜔𝜕+ℷℸ (𝛻, 𝜕). (34)

An example for the thus derived !nite di"erence formulas for (31) and
(32) can be seen in Fig. 5.

3.5.  Update of moments

In the following, an update procedure is derived for the moments, ex-
tending [13–15]. In particular, a conservative update of the cell averages 
is obtained, which is key to ensure convergence to the weak solution of 
the conservation law. To this end, the weak formulation of (1)
d
d𝜀 ∱ℶ

𝐾(𝛚)𝜗(𝜀, 𝛚)dℶ +
∱𝜔ℶ

𝐾(𝛚)𝛆 (𝜗(𝜀, 𝛚)) ⋛ 𝛝d5

φ
∱ℶ

ε𝐾(𝛚) ⋛ 𝛆 (𝜗(𝜀, 𝛚))d𝛚 = 0 (35)

on a domain ℶ 𝐹 ℝ𝜍 , is considered. To !nd the update for the cell aver-
age and higher moments on cell ℶℷℸ , Eq. (35) with ℶ ϑ= ℶℷℸ is multiplied 
by the normalization factor (12) and the test function 𝐾 is set to (11). 
This yields the semi-discrete update formula for the moments of order 
𝐴 = 4 + 𝐵

d
d𝜀 𝜗

(4,𝐵)
ℷℸ (𝜀) = φ 64,𝐵

⌋

∱

𝜕
ℸ+ 1

2

𝜕
ℸφ 1

2

74,𝐵
⟨

+ℷℸ (𝛻ℷ+ 1
2
, 𝜕)

⟩

𝜑𝛻⟨𝜗(𝜀, 𝛻ℷ+ 1
2
, 𝜕)

⟩

φ 74,𝐵
⟨

+ℷℸ (𝛻ℷφ 1
2
, 𝜕)

⟩

𝜑𝛻⟨𝜗(𝜀, 𝛻ℷφ 1
2
, 𝜕)

⟩

d𝜕

φ
∱

𝜕
ℸ+ 1

2

𝜕
ℸφ 1

2
∱

𝛻
ℷ+ 1

2

𝛻
ℷφ 1

2

𝜔𝛻74,𝐵
⟨

+ℷℸ (𝛻, 𝜕)
⟩

𝜑𝛻(𝜗(𝜀, 𝛻, 𝜕))d𝛻d𝜕

+
∱

𝛻
ℷ+ 1

2

𝛻
ℷφ 1

2

74,𝐵
⟨

+ℷℸ (𝛻, 𝜕ℸ+ 1
2
)
⟩

𝜑𝜕⟨𝜗(𝜀, 𝛻, 𝜕ℸ+ 1
2
)
⟩

φ 74,𝐵
⟨

+ℷℸ (𝛻, 𝜕ℸφ 1
2
)
⟩

𝜑𝜕⟨𝜗(𝜀, 𝛻, 𝜕ℸφ 1
2
)
⟩

d𝛻

φ
∱

𝜕
ℸ+ 1

2

𝜕
ℸφ 1

2
∱

𝛻
ℷ+ 1

2

𝛻
ℷφ 1

2

𝜔𝜕74,𝐵
⟨

+ℷℸ (𝛻, 𝜕)
⟩

𝜑𝜕(𝜗(𝜀, 𝛻, 𝜕))d𝛻d𝜕
⌈

, (36)

where the integrals are approximated with the help of a numerical 
quadrature formula. Here, we choose either a Gauss-Lobatto or a Gauss-
Legendre quadrature for the integrals. The necessary values at the 
quadrature points (both on the cell boundaries and within the cells) are 
obtained by evaluating the reconstruction (26). For now, the quadrature 
formulas are chosen to be su$cient for polynomials of at least degree 
ℵ + max(4, 𝐵).
Remark: The nodal degrees of freedom at the cell interfaces (nodes and 
edge points) could be included to calculate the quadratures. Yet, along 
the edge there are typically more point values than actually necessary 
for the quadrature alone. Here, we try to avoid this overintegration and 
the potentially larger computational e"ort. Furthermore, for the bulk 
integral, the reconstruction needs to be evaluated at quadrature points 
anyway as the pointwise degrees of freedom are located on cell inter-
faces only.

3.6.  Method de!nition

Concluding, a de!nition is given of the generalized Active Flux 
method of arbitrarily high order on Cartesian grids in 2-d.
De!nition 2. Given ℵ ∲ 2, the generalized Active Flux method of order 
ℵ + 1 on 2-d Cartesian grids is the semi-discretization of (1)
⟪

⟫

⟫

⟫

❲

⟫

⟫

⟫

❳

d
d𝜀 𝜗

(4,𝐵)
ℷℸ (𝜀) = φ64,𝐵

∱𝜔ℶℷℸ

74,𝐵(+ℷℸ (𝛚))𝛆 (𝜗(𝜀, 𝛚)) ⋛ 𝛝ℷℸd5

+ 64,𝐵
∱ℶℷℸ

ε𝛚74,𝐵(+ℷℸ (𝛚)) ⋛ 𝛆 (𝜗(𝜀, 𝛚))d𝛚 ∂(4, 𝐵) ∇ ℏ⨍

d
d𝜀 𝜗

(⊲)
ℷℸ (𝜀) = φ.⊲

⌋

}

𝜗(𝐺)ℷ⊲ ,ℸ⊲

⦃

(ℷ⊲ ,ℸ⊲)∇𝐽⊲ ,𝐺∇ℏdof

⌈

∂⊲ ∇ ≨ℏ∳

with ℏdof , ℏ⨍, {74,𝐵} and 6ref
4,𝐵  given as in De!nition 1, 64,𝐵 =

6ref
4,𝐵

ς𝛻ς𝜕  and the 
outward pointing unit normal 𝛝ℷℸ on 𝜔ℶℷℸ . The set 

⦅

𝛚(⊲)ℷℸ
⦆

⊲∇≨ℏ∳
 contains point 

values belonging to ℶℷℸ as it is given by (9). .⊲ is a consistent approximation 
of 𝜔𝛻𝜑𝛻(𝜗) + 𝜔𝜕𝜑𝜕(𝜗) at point 𝛚(⊲)ℷℸ  where 𝐽⊲ ϑ=

⦅

(ℷ, ℸ)⟦⟦
⟦

𝛚(⊲)ℷℸ ∇ 𝜔ℶℷℸ
⦆ de!nes 

the index set of the cell neighbours of 𝛚(⊲)ℷℸ .

Here, we choose .⊲ as given in (30) with !nite di"erence formulas
(31), (32) derived in Section 3.4.

4.  Stability analysis

Stability results for the generalized Active Flux method introduced 
in the previous Section are presented for linear advection in two spatial 
dimensions. First, the semi-discrete generalized Active Flux method is 
studied with the help of an eigenvalue spectrum analysis. We observe 
that the stability of the method depends on the location of the edge 
points, and this analysis is used to determine a stable distribution. Sec-
ond, a generalized Active Flux method using a third-order Runge-Kutta 
method for the discretization in time is considered to determine a sta-
bility bound for the fully discretized system. The methods used for the 
stability analysis are for example described in Lomax et al. [28].

4.1.  Semi-discrete Active Flux method

The generalized Active Flux method of order ℵ + 1 uses moments 
and point values at the cell interfaces as degrees of freedom. In the one-
dimensional case, the choice of the points is straightforward at the cell 
interfaces. The two-dimensional case allows more #exibility: out of ℵ +
1 points 𝛚(⊲)ℷℸ  along each cell interface, two are located at the nodes, (see 
Section 3.2), but the question how the ℵ φ 1 edge points are distributed 
remains.

Some !rst numerical tests with a uniform distribution of the edge 
points implied that this choice does not lead to a stable method. In Ab-
grall and Barsukow[13] a similar !nding was observed for the arbi-
trarily high order one-dimensional Active Flux method with additional 
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W. Barsukow et al.

Fig. 5. Example of !nite di"erence formulas for GenAF(<⥳) of !fth order at locations of di"erent degrees of freedom, marked by the additional circle (see (31),
(32); coe$cients rounded to two decimal points). Upwind direction: “”.

point values, reviewed in Section 2.2.2. There, the additional points set 
within the cells had to be moved closer to the cell interfaces to gain 
stability. Inspired by this result we would like to !nd a similar way to 
distribute the edge points for the generalized Active Flux method in 2-d. 
Here, the focus is on symmetric distributions of the points with respect 
to the edge midpoint. For a fourth and !fth order method this leaves one 
free parameter for the edge point distribution and two for a sixth and 
seventh order method: Considering the edge [φ 1

2 ,
1
2 ] in 𝛻- or 𝜕-direction 

the edge points are

• {φ8, 8} for ℵ + 1 = 4 or {φ8, 0, 8} for ℵ + 1 = 5, with 8 ∇ (0, 12 ) and
• {φ81,φ80, 80, 81} for ℵ + 1 = 6 or {φ81,φ80, 0, 80, 81} for ℵ + 1 = 7
with 80, 81 ∇ (0, 12 ), 80 < 81

While it might still be viable to analyze many di"erent setups for a 
fourth or !fth order method, for higher orders ℵ + 1 with ⟧ℵφ1

2 ⌊ free 
parameters for the edge point distribution this is not feasible. Hence, 
the following stability analysis is con!ned to a few ways to distribute 
the edge points that we consider to be a sensible choice. In particular 
we will try Gauss and Gauss-Lobatto points. Even with Gauss points, we 
still include point values at the nodes in the set of our degrees of free-
dom. Although this choice is inspired by quadrature points, this choice 
is generally independent of the actual quadrature, see also Section 3.5. 
Also the number of point values is !xed with respect to the order of the 
method (see Section 3.2).

Next, the eigenvalue spectrum of the semi-discrete generalized Ac-
tive Flux method is analyzed for scalar linear advection in two spatial 
dimensions

𝜔𝜀𝜗(𝜀, 𝛚) + ε ⋛ (𝛡𝜗(𝜀, 𝛚)) = 0 (37)

with a constant advection speed 𝛡 = (9𝛻, 9𝜕) ϑ= (cos 𝑄, sin 𝑄)2 , 𝑄 = [0, 2𝑅)
and periodic boundary conditions. Thereto, the vector 𝛠 = (𝜗ℷ)ℷ∇𝛓dofs  with 
𝛓dofs =

⌋

ℷ,ℸ (𝐶ℏdof )ℷℸ assembling all degrees of freedom of the discretized 
domain ϱ𝐷 is de!ned and the semi-discrete generalized Active Flux 
method for (37) is re-written as the linear ODE system

d
d𝜀𝛠(𝜀) = A𝛠(𝜀), (38)

where A assembles the right hand side updates of the method. A neces-
sary condition for stability of the linear ODE system (38) is

Re(3ℷ) ⨎ 0 ∂3ℷ ∇ 𝐽(A). (39)

This condition becomes su$cient, if the algebraic multiplicity of all 3ℷ
with Re(3ℷ) = 0 equals their geometric multiplicity.

In the following, the GenAF(<⥳) method of orders ℵ + 1 = 3,… , 7
is studied with Gauss, Gauss-Lobatto and uniformly distributed points 
on the edges. To cover a range of di"erent advection directions, 𝑄 ∇
[0, 𝑅2 ] is chosen in increments of 

1
32 -th, i.e. 𝑄 = 0, 𝑅

64 ,… , 𝑅2 , for the Gauss 
points and 14 -th for Gauss-Lobatto and uniformly distributed points. The 
restriction of 𝑄 to [0, 𝑅2 ] is possible due to symmetry properties of the 
method. The setup for the grid sizes is ℵ𝛻 = ℵ𝜕 ∇ {3, 5, 10}. The results 
use a Gauss integration su$cient for the calculation of the moments for 
linear advection, i.e. for moments of order 𝐴 it is chosen to be su$cient 
for polynomials of at least degree ℵ + max(4, 𝐵).
Remark: Some further tests with a higher accuracy or di"erent type of 
quadrature yielded comparable results.

For the setups described above, the stability of (38) is analyzed nu-
merically due to the size of the update matrices A (e.g. for seventh
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Fig. 6. Scaled 3ℷ ∇ 𝐽(A), i.e. 𝐷3ℷ, for GenAF(<⥳) of order ℵ + 1 with Gauss edge point distribution. 𝑄 = 0 and 𝐷 = ς𝛻 = ς𝜕 = 0.1, 0.2, 1
3 .

order, 10 ϖ 10 grid: 1700 ϖ 1700).1 We obtain the following results: only 
the method with Gauss edge point distribution is stable for all tested 
orders ℵ + 1 = 3,… , 7 and corresponding setups. From the computer-
aided analysis one !nds that Re(3ℷ) < 𝑆, i.e. the eigenvalues have a non-
postive real part up to a tolerance 𝑆, and all 3ℷ with ⦄Re(3ℷ)⦄ < 𝑆 are at 
least semisimple for all ℷ with tolerance 𝑆 = 5 ⋛ 10φ13 for ℵ + 1 = 3, 4, 5, 
𝑆 = 1 ⋛ 10φ12 for ℵ + 1 = 6 and 𝑆 = 5 ⋛ 10φ12 for ℵ + 1 = 7 for the Gauss 
edge point distribution. In Fig. 6 an example is shown for ℵ + 1 =
3,… , 7 with 𝑄 = 0 and the three grid sizes. It can also be seen that the 
eigenvalues scale with the grid size.

The methods with uniform and with Gauss-Lobatto edge point distri-
bution result in an unstable system (38) for orders ℵ + 1 = 4,… , 7. For 
ℵ + 1 = 5, 6, 7 the tests show that there exist eigenvalues with positive 
real part for all tested 𝑄. For ℵ + 1 = 4, eigenvalues with positive real 
part are observed for 𝑄 = 0, 𝑅2 . For ℵ + 1 = 3 the edge point distribution 
coincides with the Gauss distribution.

In this way, we are led to conclude that Gauss points are a suitable 
choice for the distribution of the edge points that yield a stable method 
and we will use this distribution further on. Despite the limitations of the 
analysis, which has been conducted for orders ℵ + 1 = 3,… , 7 and linear 
advection only, we are optimistic that these results will carry over to 
higher orders. Furthermore, we apply the Gauss edge point distribution 
to linear and non-linear systems of conservation laws in our numerical 
examples and have not observed instabilities.
Remark: The semi-discrete GenAF(<⋜) method of orders ℵ + 1 =
4 and 5 was also studied for Gauss, Gauss-Lobatto and uniformly dis-
tributed edge points. The setup used for the advection directions is 𝑄 ∇
[0, 𝑅2 ], 𝑄 = 0, 𝑅

16 ,… , 𝑅2  and the grid sizes are ℵ𝛻 = ℵ𝜕 = 3, 5, 10. Again, 
only the Gauss edge point distribution yields a stable system (38) for 
all setups. For Gauss-Lobatto and uniformly distributed points, positive 
eigenvalues are found for 𝑄 = 0, 𝑅2 .

4.2.  Fully discrete Active Flux method

The semi-discrete formulation of the method (see De!nition 2) al-
lows to choose a time discretization. Similarly as in Abgrall and Bar-

1 The matrix is assembled using an implementation of the method in C++ 
including the package E$/’( [29]. The actual analysis is done in Python using 
the N0-12 package [30] (v2.3) with its linear algebra library (&$(!&/). For 
plotting we rely on the M!#1&*#&$+ [31] (v3.10).

sukow[13,14] we focus on a strong stability preserving Runge-Kutta 
method of order three (SSP-RK3).

Based on the approach in Section 4.1 we analyze the stability of a 
fully discretized generalized Active Flux method with Gauss edge point 
distribution. This allows us to derive a CFL condition for linear ad-
vection (37). First, the ODE system (38) of the semi-discrete method 
for linear advection with periodic boundary conditions is diagonalized. 
This is possible, because the dimension of the sum of the eigenspaces 
for all eigenvalues of A is equal to ⦄𝛓dofs⦄, which was computationally 
checked up to a tolerance 𝑆 = 5 ⋛ 10φ13 for ℵ + 1 = 3, 4, 5, 𝑆 = 1 ⋛ 10φ12
for ℵ + 1 = 6 and 𝑆 = 5 ⋛ 10φ12 for ℵ + 1 = 7. The diagonalized system 
for 𝑇𝛠 = 𝑃φ1𝛠 is given as
d
d𝜀

𝑇𝛠(𝜀) = ) 𝑇𝛠(𝜀) (40)

with A = 𝑃)𝑃φ1, ) = diag((3ℷ)ℷ∇𝛓dofs ). Applying the RK3 method with a 
time step ς𝜀 = 𝜀>+1 φ 𝜀> to (40) yields the fully discretized system
𝛗𝛠>+1ℷ = 𝑈(3ℷς𝜀) 𝛗𝛠>ℷ ∂ℷ ∇ 𝛓dofs (41)

with 𝑈(𝑉) ϑ= 1 + 𝑉 + 1
2 𝑉

2 + 1
6 𝑉

3 and the stability domain 5 = {𝑉 ∇
ℂ⦄⦄𝑈(𝑉)⦄ ⨎ 1}. From this it is possible to !nd a maximal time step 
ς𝜀max(𝑄), dependent on the advection direction, such that 3ℷς𝜀max(𝑄) ∇ 5
for all ℷ ∇ 𝛓dofs. For our computer-based study, we increment the time 
step by 10φ4 for ℵ + 1 = 3, 4, 5 and 5 ⋛ 10φ5 for ℵ + 1 = 6, 7 to approx-
imate ς𝜀max. Fig. 7 shows an example for the GenAF(<⥳) method of 
spatial order ℵ + 1 = 3,… , 7 for ℵ𝛻 = ℵ𝜕 = 10. The scaled eigenvalues 
3ℷς𝜀max(

𝑅
4 ) are plotted for the approximated maximal time step that still 

allows them to !t inside the stability domain for RK3 up to a tolerance 
𝑆.

The stable regions for the fully discretized method of spatial or-
der ℵ + 1 = 3,… , 7 are plotted as function of the CFLs cf l𝛻 = 9𝛻ς𝜀

ς𝛻  and 
cf l𝜕 =

9𝜕ς𝜀
ς𝜕  in 𝛻- and 𝜕-direction for 𝐷 = ς𝛻 = ς𝜕 = 0.1 in Fig. 8.

One observes that the time step depends not only on the magnitude, 
but also the direction of the advection, and that the nature of this de-
pendence changes as the order increases. This is studied below in more 
detail. In order to compare the CFL constraints for di"erent orders of 
accuracy in a simple way, we consider the maximal CFL at 9 = 9𝛻 = 9𝜕

ℶcf l ϑ=
⦄9⦄ς𝜀max

𝐷 (42)

given in Table 3 for the GenAF(<⥳) method discretized with SSP-RK3 
in time, 𝐷 = 0.1.

For other grid sizes 𝐷 the results are comparable, because the eigen-
values 3ℷ scale with 1𝐷  (see Section 4.1).
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Fig. 7. Stability domain 5RK3 ( ) and scaled eigenvalues 3ℷς𝜀max ( ) for GenAF(<⥳) of order ℵ + 1 in space for linear advection with 𝑄 = 𝑅
4 , and ς𝛻 = ς𝜕 = 0.1. 

Including close ups around origin.

Table 3 
ℶcf l for GenAF(<⥳) of order ℵ + 1 in space for linear advec-
tion and RK3 discretization in time. (Two signi!cant digits of 
ℶcf l are shown for 𝐷 = 0.1).

 order (ℵ + 1) 3 4 5 6 7

ℶcf l (RK3) 0.27 0.20 0.17 0.12 0.088

The stability domain for the third-order method (with <⥳ = <⋜) 
can approximately be described by

5circ =
⌉

(cf l𝛻, cf l𝜕)⦄cf l2𝛻 + cf l2𝜕 ⨎ 𝐺2cf l
{

(43)

with 𝐺cf l ϑ=
⌈

2ℶcf l and gives the following bound for the time step size:

ς𝜀 ⨎
𝐺cf l min{ς𝛻,ς𝜕}

⌉

92𝛻 + 92𝜕
. (44)

For ℵ + 1=4 this is still a useful approximation while for higher spatial 
orders of the method the domain seems more restricted. Here,
5sq =

⦅

(cf l𝛻, cf l𝜕)⦄max{cf l𝛻, cf l𝜕} ⨎ ℶcf l
⦆

(45)

could be considered which gives the bound

ς𝜀 ⨎
ℶcf l min{ς𝛻,ς𝜕}

max{9𝛻, 9𝜕}
. (46)

Remark: For ℵ + 1 = 5, GenAF(<⥳) almost yields a square. Looking 
more closely at the results in Fig. 8 this already shows for ℵ + 1 = 4, and 
for ℵ + 1 = 6, 7 the corner starts to round o" again. Comparing these re-
sults one can notice, that for GenAF(<⥳) with ℵ + 1 = 4, 5 only point 
values at the cell interfaces are added as further degrees of freedom, 
seemingly favouring the maximal advection speed. Including higher mo-
ments for ℵ + 1 ∲ 6 inside the cell decreases this e"ect.
Remark: The GenAF(<⋜) method with Gauss edge point distribution and 
RK3 for the time discretization was analyzed for ℵ + 1 = 4, 5. The stable 
regions 5GenAF(<⋜)⦄ℵ+1=3,4,5 can be approximated by Eq. (43), see Fig. 9. 
The bounds 𝐺cf l are found to be 0 0.2 (ℶcf l 1 0.14) for ℵ + 1 = 4, and 
0 0.125 (ℶcf l 1 0.089) for ℵ + 1 = 5. Although ℶcf l is smaller than with 
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Fig. 8. Stable regions ( ) for GenAF(<⥳) of order ℵ + 1 in space for linear advection. ς𝛻 = ς𝜕 = 0.1 and RK3 time discretization. The yellow ( ) and black ( ) 
domains depict the tested area.

Fig. 9. Stable regions ( ) for GenAF(<⋜) of order ℵ + 1 in space for linear advection. ς𝛻 = ς𝜕 = 0.1 and RK3 time discretization. The yellow ( ) and black ( ) 
domains depict the tested area.

<⥳, the stability domain with <⋜ seems to be less dependent on the 
advection direction. This !ts with the observation above, considering 
the tensor-like added degrees of freedom.
Comparing the maximal CFL numbers to the one-dimensional case in 
Abgrall and Barsukow[14, Table 1 (Method A, RK3)] it can be observed 
that for the method in 2-d with <⋜ and RK3, the maximal CFL 1 𝐺cf l
for linear advection in 𝛻- or 𝜕-direction is approximately the same for 
the tested ℵ + 1 = 3, 4, 5.

In Barsukow et al. [22] a similar result for the generalized Active 
Flux method of third-order for linear acoustics in 2-d was indicated. 
A stability bound of cf l = ⦄𝑊⦄ς𝜀

min{ς𝛻,ς𝜕} < 0.28 was derived using Fourier 
analysis.

5.  Numerical examples

Numerical results for the generalized Active Flux method 
GenAF(<⥳) for orders 3 to 7 on two-dimensional Cartesian grids with a 
SSP-RK3 time discretization are shown. In the following we concentrate 
on smooth problems. More complex problems with e.g. discontinuities 
will need an appropriate limiting strategy, see e.g. Duan et al. [32] for 
limiting of the third order Active Flux method. For higher orders this 
shall be part of future work.

5.1.  Linear advection

The !rst example considers linear advection 𝜔𝜀𝜗(𝜀, 𝛚) + 𝜔𝛻𝜗(𝜀, 𝛚) +
𝜔𝜕𝜗(𝜀, 𝛚) = 0 on [0, 1]2 with periodic boundary conditions where initial 
data in the shape of a cone of radius 𝐺max = 0.2

𝜗(0, 𝛚) =
⟪

⟫

❲

⟫

❳

1 φ 𝐺
𝐺max

for 𝐺 < 𝐺max,

0 otherwise

with 𝐺 =
⌈

(𝛻 φ 0.5)2 + (𝜕 φ 0.5)2 is being advected diagonally through 
the domain. Fig. 10 shows a cross section of the solution at 𝜀 = 5 on a 
grid with 101 ϖ 101 cells for spatial orders ℵ + 1 = 3 to 7. A cf l = ℶcf l
as shown in Table 3 (except for ℵ + 1 = 7: cf l = 0.085) is used to cal-
culate the time step. One observes that the apex of the cone is better 
approximated the higher the order of the method.

The second example considers smooth initial data (in resemblance 
to Abgrall and Barsukow[13, Section 3.5.1])

𝜗(0, 𝛚) = 0.8 + exp
⌋

φ
}

𝛻φ0.5
0.05

⦃2
φ
}

𝜕φ0.5
0.05

⦃2⌈

that are used to show the convergence order of the method with ℵ + 1 =
3,… , 7 at 𝜀 = 0.1. To recover the spatial convergence order ℵ + 1 with a 
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Fig. 10. Example of diagonally advected cone. Cross section at 𝜕 = 0.5 of cell average on grid 101 ϖ 101 at 𝜀 = 5 for GenAF(<⥳) of order ℵ + 1 = 3,… , 7 (left) and 
close up (right).

Fig. 11. Convergence of the cell averages in 𝑂1-error for linear advection for 
GenAF(<⥳) of order ℵ + 1 = 3,… , 7 and RK3 time discretization.

RK3 time discretization ς𝜀3 = ⨏(𝐷ℵ+1) is needed, 𝐷 = ς𝛻 = ς𝜕. For the 
cell sizes {𝐷ℷ}ℷ an adaptive cf l(𝐷ℷ) = cf l(𝐷1)(

𝐷ℷ
𝐷1
)
ℵφ2
3  is used starting with 

𝐷1 =
1
32  and the cf l(𝐷1) = ℶcf l as above. In Fig. 11 and the corresponding 

Table 4 the convergence of the error of the cell averages in the 𝑂1-norm 
is shown and a convergence order ⨏(𝐷ℵ+1) is observed.

5.2.  Acoustic equations

The following example for the acoustic equations with 𝑊 > 0

𝜔𝜀⊲ + 𝑊ε ⋛ 𝛁 = 0
𝜔𝜀𝛁 + 𝑊ε⊲ = 0

on [φ1, 1]2 considers initial conditions with a sine wave in pressure and 
zero initial velocity as suggested in Eymann and Roe[4] from Lukáčová-
Medvid’ová et al. [33]
⊲(0, 𝛚) = 1

𝑊
(sin(2𝑅𝛻) + sin(2𝑅𝜕)),

𝛁(0, 𝛚) = (0, 0)T

with periodic boundary conditions, for which the exact solution is given 
as

⊲(𝜀, 𝛚) = 1
𝑊
cos(2𝑅𝑊𝜀)(sin(2𝑅𝛻) + sin(2𝑅𝜕)),

𝛁(𝜀, 𝛚) = 1
𝑊
sin(2𝑅𝑊𝜀)(cos(2𝑅𝛻), cos(2𝑅𝜕))T.

We consider 𝑊 = 1. The solution at 𝜀 = 5 where the exact solution 
matches the initial condition is computed (see Fig. 12). The grid size 

Fig. 12. Example for acoustics with sine wave in pressure. Exact solution for the 
cell average ⊲(0,0) of pressure on a 60 ϖ 60 grid at 𝜀 = 5. Remark: The cell average 
values are approximated by numerical integration.

Table 4 
𝑂1-error ⋆L1 and corresponding experimental order of convergence (EOC) 
for GenAF(<⥳) of order ℵ + 1 of the cell averages for linear advection and 
RK3 time discretization.
ℵ + 1 3 4 5

𝐷 ⋆L1  EOC ⋆L1  EOC ⋆L1  EOC
0.03125 6.87 ⋛ 10φ4  – 1.15 ⋛ 10φ4  – 7.65 ⋛ 10φ5  –
0.015625 1.10 ⋛ 10φ4 2.65 8.06 ⋛ 10φ6 3.84 3.10 ⋛ 10φ6 4.62
0.0104167 3.46 ⋛ 10φ5 2.84 1.55 ⋛ 10φ6 4.07 4.33 ⋛ 10φ7 4.86
0.0078125 1.50 ⋛ 10φ5 2.91 4.89 ⋛ 10φ7 4.01 1.05 ⋛ 10φ7 4.94
0.00625 7.76 ⋛ 10φ6 2.95 1.98 ⋛ 10φ7 4.05 3.46 ⋛ 10φ8 4.96
0.00520833 4.52 ⋛ 10φ6 2.96 9.50 ⋛ 10φ8 4.03 1.40 ⋛ 10φ8 4.97
0.00446429 2.86 ⋛ 10φ6 2.97 5.11 ⋛ 10φ8 4.03 6.49 ⋛ 10φ9 4.98
0.00390625 1.92 ⋛ 10φ6 2.98 2.98 ⋛ 10φ8 4.02 3.34 ⋛ 10φ9 4.98

ℵ + 1 6 7

𝐷 ⋆L1  EOC ⋆L1  EOC
0.03125 1.20 ⋛ 10φ5  – 3.79 ⋛ 10φ6  –
0.015625 2.01 ⋛ 10φ7 5.90 3.33 ⋛ 10φ8 6.83
0.0104167 1.77 ⋛ 10φ8 5.99 1.99 ⋛ 10φ9 6.95
0.0078125 3.11 ⋛ 10φ9 6.05 2.67 ⋛ 10φ10 6.98
0.00625 8.13 ⋛ 10φ10 6.01 5.60 ⋛ 10φ11 7.00
0.00520833 2.72 ⋛ 10φ10 6.01  –  –
0.00446429 1.07 ⋛ 10φ10 6.03  –  –
0.00390625 4.81 ⋛ 10φ11 6.01  –  –
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Fig. 13. Example for acoustics with sine wave in pressure. Cross section at 𝜕 = 0.25 of ⊲(0,0) on grid 60 ϖ 60 at 𝜀 = 5 for GenAF(<⥳) of order ℵ + 1 = 3,… , 7 (left) 
and two close ups (middle, right) zooming in at the left maximum (observe the di"erent scales of the 𝛻-axes).

Fig. 14. Gresho vortex for Euler equations. Exact solution for the norm of the 
cell average of the momentum {(𝑋𝛁)(0,0){2 on a 51 ϖ 51 grid at 𝜀 = 1. Remark: The 
cell average values are approximated by numerical integration.

is ℵ𝛻 = ℵ𝜕 = 60 and the time step ς𝜀 = cf l min{ς𝛻,ς𝜕}
𝑊  is computed with 

cf l = ℶcf l, a CFL bound obtained for linear advection, see Table 3 (except 
for ℵ + 1 = 7: cf l = 0.085). As for linear advection, a better approxima-
tion of the exact solution is observed for higher orders of the generalized 
Active Flux method. In particular, a cross section through a maximum 
of the pressure sine wave is shown in Fig. 13.

Fig. 15. Radial plot of {(𝑋𝛁)(0,0){2 for Gresho vortex on 51 ϖ 51 grid at 𝜀 = 1 for GenAF(<⥳) of order ℵ + 1 = 3,… , 7 (left) and close up (right).

5.3.  Euler equations

The generalized Active Flux method can also be applied to non-linear 
problems like the compressible Euler equations
𝜔𝜀𝑋 + ε ⋛ (𝑋𝛁) = 0
𝜔𝜀(𝑋𝛁) + ε ⋛ (𝑋𝛁𝑌 𝛁 + ⊲$) = 0
𝜔𝜀𝑍 + ε ⋛ ((𝑍 + ⊲)𝛁) = 0

In this paper an ideal polytropic gas is considered with 𝑍 = ⊲
♭φ1 +

1
2𝑋{𝛁{

2
2 and ♭ = 1.4.

A Gresho vortex (see Gresho and Chan[34], Barsukow et al. [35]) on 
[0, 1]2

𝑋(0, 𝛚) = 1

𝛁(0, 𝛚) =

⟪

⟫

⟫

❲

⟫

⟫

❳

5𝐺
𝐺 (φ𝜕 φ 0.5, 𝛻 φ 0.5)T 𝐺 < 0.2
2φ5𝐺
𝐺 (φ𝜕 φ 0.5, 𝛻 φ 0.5)T 0.2 ⨎ 𝐺 < 0.4

0 else

⊲(0, 𝛚) =

⟪

⟫

⟫

❲

⟫

⟫

❳

1
♭<2 φ 1

2 + (5𝐺)2
2 𝐺 < 0.2

1
♭<2 φ 1

2 + 4 ln(5𝐺) + 4 φ 20𝐺 + (5𝐺)2
2 0.2 ⨎ 𝐺 < 0.4

1
♭<2 φ 1

2 + 4 ln 2 φ 2 else

for < = 0.1 with 𝐺 =
⌈

(𝛻 φ 0.5)2 + (𝜕 φ 0.5)2 and periodic boundary con-
ditions is computed at 𝜀 = 1 on a grid of 51 ϖ 51 cells (see Fig. 14). The 
time step is calculated with the help of the CFL bound from Table 3 (ex-
cept for ℵ + 1 = 7: cf l = 0.085). Fig. 15 shows the radial plot of the cell 
average for the norm of the momentum {(𝑋𝛁)(0,0){2 for the generalized 
Active Flux method of order 3,… , 7.
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6.  Conclusion and outlook

This paper presents a generalized Active Flux method on two-
dimensional Cartesian grids of arbitrarily high order using higher mo-
ments in addition to the cell averages and point values at the cell in-
terfaces. It is extending a semi-discrete hybrid !nite element–!nite vol-
ume version of Active Flux from 1-d. We focused on a method with a 
serendipity-like, hybrid !nite element using a minimal number of de-
grees of freedom on the Cartesian cells to keep the computational cost 
minimal. An alternative is a tensor-like extension of the element from 
1-d to 2-d. The point values at the cell interfaces include the nodes and 
edge points, such that a globally continuous reconstruction is obtained. 
Their update uses a Jacobian splitting of the non-conservative formula-
tion of the system and !nite di"erence formulas for the approximation 
of the derivatives of the solution. These are derived using the recon-
struction of the solution on the cells. The moments are updated based 
on the weak formulation with the integrals approximated by quadrature 
formulas.

The eigenvalue spectrum of the semi-discrete method was analyzed 
for linear advection up to order 7. We !nd that the edge points at the 
cell interfaces cannot be distributed arbitrarily. We have identi!ed, at 
least for orders up to 7, Gauss points as a suitable choice to achieve a 
stable setup of the semi-discrete method. For the time discretization we 
relied on a SSP-RK3 method and found CFL bounds of the method up to 
order 7 for linear advection. Numerical examples con!rm the theoretical 
convergence order and demonstrate how the high-order methods allow 
to better resolve features of the solution.

Further studies to better understand the e"ect of suitable edge point 
distributions on the stability of the method will be interesting. In future 
work, it will also be important to develop a suitable limiting for the 
method. To this end, a #ux vector splitting for the point value update, 
which was recently presented in Duan et al. [32] for third order, could 
be considered. Further work shall also consider an extension to 3-d as 
well as applications to simulations of turbulent convection and wave 
propagation, which require very high orders of accuracy.
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