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1. Introduction

The solution of systems of hyperbolic conservation laws is required by
many different physical problems from fluid dynamics. As most of these
problems are fairly complex, numerical methods are needed to solve them.
Finite volume methods evolve cell averages and maintain conservation in a
discrete sense which is important for convergence to a weak solution. Go-
dunov’s method [1], for example, is a seminal approach to hyperbolic conser-
vation laws. More recently, Roe and coauthors introduced the Active Flux
method [2, 3, 4] inspired by van Leer’s scheme V [5] for linear advection. The
new method not only uses cell averages but also point values at the cell in-
terfaces. This allows to reconstruct the solution piecewise parabolically in a
globally continuous fashion. In [5], the point values at the cell interfaces were
updated by tracing back the characteristics. This way, a method of third or-
der for linear advection in one spatial dimension arose. Roe’s one-stage fully
discrete Active Flux method (which we will call the classical Active Flux
method, for a review on Cartesian grids see e.g. [6]) extends this idea to cer-
tain nonlinear and/or multi-dimensional hyperbolic problems by replacing
characteristic transport with suitable either exact or approximate evolution
operators (e.g. [7, 8, 9, 10, 11]). Depending on the system of conservation
laws finding such an evolution operator may be quite challenging. Recently
the authors in [12, 13, 14, 15] proposed a semi-discrete formulation of the
Active Flux method (which we will call the generalized Active Flux method)
that allows for a more flexible approach to update the point values.

In [13], several extensions of this method to arbitrary order in one spatial
dimension are presented, while the multi-dimensional method in [15] was
only third-order accurate. In this paper we extend this work to obtain a
semi-discrete generalized Active Flux method of arbitrarily high order on
Cartesian grids in two spatial dimensions. The design of the method is
based on a hybrid finite element–finite volume method (see also [14]) and
also takes inspiration from the one-dimensional arbitrary-order Active Flux
method with additional point values developed in [13].

While this paper focuses on Cartesian grids, we want to also mention [16],
where a semi-discrete Active Flux method on triangular meshes is presented
and results for a third- and fourth-order accurate method are shown, using
the cell average and point values at the cell interfaces. Furthermore, [17] and
[18, 19, 20] consider extensions of the (classical) fully discrete Active Flux
method to arbitrary order. The first approach uses additional point values.
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In the latter, they typically enrich the stencil using additional information
in the form of derivatives at the already defined point values at the cell
interfaces (also called “Hermite Active Flux”).

Here, we aim at using higher moments in the cells and additional point
values at the cell interfaces. For efficiency, we especially aim at achieving
arbitrarily high order with a minimal number of degrees of freedom while
maintaining the compact stencil. Another possibility is a tensor-like exten-
sion of the hybrid finite element–finite volume method in [14], which is also
formally defined in [21], but it uses more degrees of freedom than actually
necessary for the required order of accuracy.

Using our approach, key features of Active Flux like global continuity of
the reconstructed solution and a compact stencil of the method in space are
retained. As the method is based on the semi-discrete approach, it has the
potential to be more easily applicable to different systems of conservation
laws than the classical Active Flux. For integration in time we use an ex-
plicit Runge-Kutta method. While classical Active Flux is a one-stage fully
discrete method, the multiple stages of a Runge-Kutta method widen the
effective stencil of the generalized Active Flux method. In [18], this has been
linked to a reduction of the maximal CFL number, compared to the classical
Active Flux method. Yet, [22] shows encouraging similarities of the classi-
cal and generalized Active Flux method of third order on Cartesian grids
for linear acoustics, such as stationarity preservation (see [9] for stationarity
preservation of the classical Active Flux).

The paper is structured as follows: In Section 2 we briefly recall arbitrarily
high-order one-dimensional Active Flux from [13, 14] and third-order two-
dimensional Active Flux from [15]. Then, our high order method is defined
in Section 3. Section 4 focuses on a stability analysis for linear advection of
both the semi-discrete and the fully discrete method using RK3. Numerical
results up to seventh order are presented for our high-order method in Section
5, including an example for the 2-d compressible Euler equations.

2. An overview of the semi-discrete Active Flux method

Consider the hyperbolic system of conservation laws

∂tq(t,x) +∇ · f(q(t,x)) = 0 (1)

for q : R+
0 ×Ω → Rs on the domain Ω ⊆ Rd. Throughout this paper the focus

is on the two-dimensional case d = 2 with f = (fx, f y), fx, f y : Rs → Rs.
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The notation used here is similar to [15].
Furthermore, we restrict ourselves to rectangular domains Ω = [xmin, xmax]×

[ymin, ymax] discretized with Cartesian grids with equidistant cell widths ∆x
and ∆y in x- and y-direction. For a Cartesian grid of size Nx ×Ny the grid
cells will be denoted as Cij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] for i = 0, . . . , Nx −

1, j = 0, . . . Ny − 1 centered at xij = (xi, yj).

Next, we will give an overview of semi-discrete Active Flux methods, that
we will use and extend in this paper.

2.1. A third-order method on two-dimensional Cartesian grids

In [15] a semi-discrete Active Flux method of third order on Cartesian
grids was presented for the two-dimensional case. As for the classical Active
Flux method on Cartesian grids (see e.g. [9, 23]), the degrees of freedom for
each cell Cij are the cell average

q̄ij(t) =
1

∆x∆y

∫
Cij

q(t,x)dx (2)

and the nodal, vertical and horizontal point values

qi+ 1
2
,j+ 1

2
(t) = q(t, xi+ 1

2
, yj+ 1

2
),

qi,j+ 1
2
(t) = q(t, xi, yj+ 1

2
), qi+ 1

2
,j(t) = q(t, xi+ 1

2
, yj)

(3)

at the cell interfaces. All point values are shared, i.e. each cell has access to
eight point values at xp, p ∈ {(i± 1

2
, j ± 1

2
), (i± 1

2
, j), (i, j ± 1

2
)} (see Figure

1a).
The reconstruction on cell Cij is the biparabolic polynomial qij,recon :

[−∆x
2
, ∆x

2
] × [−∆y

2
, ∆y

2
] → Rs (see [15, 9]) defined on a reference cell with

xref := x− xij and xref,p := xp − xij which has to satisfy

1

∆x∆y

∫ ∆y
2

−∆y
2

∫ ∆x
2

−∆x
2

qij,recon(xref)dxrefdyref = q̄ij,

qij,recon(xref,p) = qp ∀p ∈ {(i± 1
2
, j ± 1

2
), (i± 1

2
, j), (i, j ± 1

2
)}.

It can also be written in terms of shape functions, see e.g. [22]. This gives
rise to a globally continuous reconstruction qrecon on Ω (see Figure 1b) with

qrecon|Cij
(x) := qij,recon(xref). (4)
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(a) Sketch of degrees of freedom: cell averages
and shared point values.

(b) Visualization of the concept for the globally
continuous reconstruction via a constructed ex-
ample.

Figure 1: Degrees of freedom and reconstruction for a third-order Active Flux method on
two-dimensional Cartesian grids.

For the update of the point values qp, p ∈ {(i+ 1
2
, j+ 1

2
), (i+ 1

2
, j), (i, j+ 1

2
)}

the quasi-linear form of (1) at xp

d

dt
qp(t) +Dfx(qp(t))∂xq|p(t) +Df y(qp(t))∂yq|p(t) = 0

is considered. In order to introduce stabilization via upwinding, the Jaco-
bians Jx = Dfx(qp), J

y = Df y(qp) are split according to the sign of the wave
speeds

(Jx)± := T xdiag(λ±
x,1, . . . , λ

±
x,s)(T

x)−1,

λ+
x,k := max(0, λx,k), λ−

x,k := min(0, λx,k) ∀k = 1, . . . , s.

The derivatives ∂xq|p are approximated with finite difference formulas in up-
wind direction (D±

x )pq and (D±
y )pq derived from the reconstruction qrecon. In

directions tangential to the cell interface for the horizontal and vertical edge
point, the derivative of the reconstruction is continuous and no upwinding is
included.

The update of the cell averages is obtained by integrating the conservation
law (1) over the cell Cij and applying the divergence theorem

d

dt
q̄ij(t) +

1

∆x∆y

∫
∂Cij

f (q(t,x)) · ndS = 0.

The reconstructed solution is continuous at the cell interfaces and the flux
terms over the cell interfaces are numerically integrated with a Gauss-Lobatto
quadrature with three points, which coincide with the point values at the cell
interfaces.
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2.2. Methods of arbitrary order in one dimension

In [13], different methods to extend semi-discrete Active Flux to arbitrar-
ily high order in one dimension were suggested. Here, two of these concepts
are reviewed, and a variation of the second method is presented.

2.2.1. A method with higher moments

In this paper, we will mainly focus on the hybrid finite element–finite
volume method as also defined in [14, Definition 4.1 (Method A)]. For a
method of order N + 1 on a compact stencil, N + 1 degrees of freedom
accessible to a cell are needed to approximate a polynomial of degree N . In
addition to the traditional degrees of freedom, i.e. the cell averages and the
point values at the cell interfaces, this method uses higher moments

q
(k)
i (t) := Ak

∫ x
i+1

2

x
i− 1

2

q(t, x)bk(x− xi)dx k ∈ N.

The test functions for the moments are bk : [−∆x
2
, ∆x

2
] → R, bk(x) = xk

with the normalization factors Ak = (k+1)2k

∆xk+1 . This allows to obtain more

information on a compact stencil. The update of the cell average q̄i = q
(0)
i

and higher moments is given as

d

dt
q
(k)
i (t) =− Ak

(
f(qi+ 1

2
(t))bk

(
∆x
2

)
− f(qi− 1

2
(t))bk

(
−∆x

2

))
+ Ak

∫ x
i+1

2

x
i− 1

2

f(q(t, x))b′k(x− xi)dx ∀k = 0, . . . , N − 2

for a method of order N + 1. The update of the point values qi+ 1
2
= q(xi+ 1

2
)

uses a Jacobian splitting of Df(q) to include upwinding

d

dt
qi+ 1

2
(t) = −Df(qi+ 1

2
)+(D+

x )i+ 1
2
q −Df(qi+ 1

2
)−(D−

x )i+ 1
2
q.

The polynomial reconstructions qi,recon : [−∆x
2
, ∆x

2
] → Rs of degree N ≥ 2

are used to find a finite difference approximation for (D±
x )i+ 1

2
q.

2.2.2. A method with additional point values

Another possibility to achieve arbitrarily high order of the Active Flux
method is to introduce further point values qi,ξa = q(xi+∆xξa), ξa ∈ (−1

2
, 1
2
)
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within each cell in addition to the cell averages and the point values at the
cell interfaces qi± 1

2
. This method will especially be relevant for the discussion

of stability in Section 4. To achieve a method of order N+1, N−2 additional
point values are needed and similarly to Section 2.2.1, a polynomial recon-
struction can be defined on the cells Ci (except in the case of a symmetric
distribution of an odd number of point values). In [13] this method has been
introduced using evolution operators for the point value updates.

Before proceeding with the arbitrarily high-order two-dimensional method,
we propose a variation of the above method here. Since it is a challenge to
find exact or high-order approximate evolution updates for the point values
for general systems of conservation laws and having in mind the point value
updates of the method reviewed in Section 2.2.1, it seems straightforward to
write a variation of the method from [13], for N + 1 ≥ 4, as the following
semi-discretization:

d

dt
q̄i(t) = −

f(qi+ 1
2
(t))− f(qi− 1

2
(t))

∆x
d

dt
qi+ 1

2
(t) = −F

(
qi− 1

2
(t), qi,ξ0(t), . . . , qi,ξN−3

(t), qi+ 1
2
(t),

qi+1,ξ0(t), . . . , qi+1,ξN−3
(t), qi+ 3

2
(t)

)
d

dt
qi,ξa(t) = −F̃a

(
qi− 1

2
(t), qi,ξ0(t), . . . , qi,ξN−3

(t), qi+ 1
2
(t)

)
∀a ∈ {0, . . . , N − 3}

with consistent approximations F , F̃a of ∂xf(q) at xi+ 1
2
and xi+∆xξa, respec-

tively. As in Section 2.2.1, a Jacobian splitting can be considered and a finite
difference formula can be derived from the reconstructed polynomial. For the
point values at the cell interfaces it is natural to use the reconstruction of
the cell in upwind direction such that (D+

x )i+ 1
2
q := d

dxref
qi,recon(xref)|xref=

∆x
2
,

(D−
x )i+ 1

2
q := d

dxref
qi+1,recon(xref)|xref=−∆x

2
. For the point values within the cell,

the reconstruction is uniquely defined and (Dx)i,ξaq :=
d

dxref
qi,recon(xref)|xref=∆xξa .

This resembles the approximation of the derivative tangential to a cell in-
terface in Section 2.1. The version described in this Section will serve as
inspiration in Section 4.
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3. A semi-discrete Active Flux method of arbitrarily high order on
two-dimensional Cartesian grids

In the following Section we discuss the extension of the semi-discrete,
third-order Active Flux method (as recapitulated in Section 2.1) to arbitrary
order of accuracy N + 1. It will be constructed in such a way that

• the reconstructed numerical solution qrecon is globally continuous,

• it uses a compact stencil with a minimal number of degrees of freedom
per cell, and

• the cell average is always included among the degrees of freedom.

As for the third-order method, the shared point values at the cell interfaces
will guarantee that the reconstruction is globally continuous and the inclusion
of the cell averages will ensure that the resulting method is conservative. To
gain sufficient information for the reconstruction on a compact stencil, higher
moments are defined. Hence, this work extends the hybrid finite element–
finite volume approach (see Section 2.2.1) from one spatial dimension to two
spatial dimensions on Cartesian grids.
The way the point values are distributed on the edge has an influence on
stability as shall be discussed in Section 4.1. There, similar considerations
are made as for the Active Flux method with additional point values (see
Section 2.2.2).

3.1. Reference element for Cartesian grids

From now on, we define the reference element as Cref :=
[
−1

2
, 1
2

]
×
[
−1

2
, 1
2

]
and the transformation Φij : Cij → Cref

Φij(x, y) =

( x−xi

∆x
y−yj
∆y

)
(5)

with its inverse Φ−1
ij : Cref → Cij

Φ−1
ij (xref , yref) =

(
xi +∆xxref

yj +∆yyref

)
. (6)
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(0, 0)

(N , 0) (N , 1)

(N , 2)(N , 3)

(E0, 0)

(E1, 0)

(E2, 0)

(E3, 0)

(E0, 1)

(E1, 1)

(E2, 1)

(E3, 1)

Figure 2: Superscripts specifying the degrees of freedom for a cell Cij for GenAF(M )
of fourth order (a generalized Active Flux method with minimal number of degrees of
freedom, see Notation 2). The circled point values mark the points belonging to a cell.

3.2. Degrees of freedom

The degrees of freedom used for the generalized Active Flux method of
order N +1 are shared point values at the cell interfaces and moments. The
notation we introduce here uses a subscripted index ij to identify the cell
and a superscripted index to specify the degree of freedom. An example for
the superscripts can be seen in Figure 2.

As described above, the point values at the cell interfaces are chosen such
that the reconstruction qrecon is globally continuous on the domain Ω and
maximal use of these shared degrees of freedom is made. N +1 shared point
values at each cell interface are required to define a unique polynomial of
degree N along each cell interface and achieve qrecon ∈ C0(Ω,Rs). First, the
four nodes (= vertices) are included. This leaves N − 1 points per edge, i.e.
4(N − 1) edge points in total. For cell Cij the point values are defined as

q
(p)
ij (t) := q

(
t,x

(p)
ij

)
∀p ∈ IP (7)

with x
(p)
ij ∈ ∂Cij. The index set

IP := IN ∪ IE (8)

defines all points accessible to the cell. These are

• the nodes
{
x
(n)
ij

}
n∈IN

, IN := {(N , 0), . . . , (N , 3)} located at

(xi± 1
2
, yj± 1

2
)

and assembled counterclockwise starting with the lower left node and
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• the edge points
{
x
(e,a)
ij

}
(e,a)∈IE

, IE := {(e, a)|e = E0, . . . , E3, a = 0, . . . , N−
2} with the edges assembled counterclockwise. The horizontal edge
points with e = 0, 2 are located at

(xi+ξa , yj± 1
2
) = (xi + ξa∆x, yj± 1

2
)

and the vertical edge points with e = 1, 3 at

(xi± 1
2
, yj+ξa) = (xi± 1

2
, yj + ξa∆y)

with ξa ∈ (−1
2
, 1
2
). The choice of ξa is discussed in Section 4.1.

Since the point values are shared between adjacent cells it is possible to
define the points belonging to a cell, e.g. chosen as the upper right node
n = 2 as well as the edge points on the upper horizontal e = E2 and the right
vertical edge e = E1, assembled in the index set

ĨP := {(N , 2)} ∪ {(e, a)|e = E1, E2, a = 0, . . . , N − 2}. (9)

Thus, on average only 1 node and 2(N − 1) edge points have to be updated
per cell.

The moments of order m = k + l, k, l ≥ 0 for cell Cij are defined as

q
(k,l)
ij (t) := Ak,l

∫
Cij

bk,l(Φij(x))q(t,x)dx ∀(k, l) ∈ IM (10)

with the test functions (bk,l)k,l∈N0

bk,l :
[
−1

2
, 1
2

]
×
[
−1

2
, 1
2

]
→ R, bk,l(x, y) = xkyl (11)

and a corresponding normalization factor

Ak,l =
(k + 1)2k(l + 1)2l

∆x∆y
. (12)

Thus, there are m+1 moments of order m and the cell averages q̄ij are equal

to the moments q
(0,0)
ij , i.e. m = 0.
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x
− 1

2
1
2

y

− 1
2

1
2

(a) N + 1 = 3.

x
− 1

2
1
2

y

− 1
2

1
2

(b) N + 1 = 5.

x
− 1

2
1
2

y

− 1
2

1
2

(c) N + 1 = 7.

point value
cell average
(0th moment)
moments
of 1st order
moments
of 2nd order

Figure 3: Reference elements Cref for GenAF(M ) of order N + 1 (a generalized Active
Flux method with minimal number of degrees of freedom, see Notation 2).

Beyond the requirement of including the average among the degrees of free-
dom, there are different possibilities to choose the moments. The two choices
considered here are

IM = IM,□ := {(k, l)|k, l ∈ N0, 0 ≤ k, l ≤ N − 2} (tensor-like)
(13)

IM = IM, := {(k, l)|k, l ∈ N0, 0 ≤ k + l ≤ max{0, N − 4}} (triangle-like)
(14)

for N ≥ 2. They entail different reconstruction spaces which will be dis-
cussed in the following Section.

The point values and moments define all our degrees of freedom and the
index set of the nodal and modal degrees of freedom accessible to each cell
is denoted by

Idof := IP ∪ IM. (15)

and analogously we denote by

Ĩdof := ĨP ∪ IM (16)

the index set of all degrees of freedom belonging to a cell. Figure 3 shows
some examples for the reference elements of spatial order N + 1 using the
triangle-like moments (14). The updates of the degrees of freedom are dis-
cussed in the Sections 3.4 and 3.5.

Remark: Finite elements using nodal and modal degrees of freedom are also
called hybrid finite elements (see e.g. [24, Chapter 6.3.3,Chapter 7.6]).
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3.3. Reconstruction

Next, the spatial reconstruction qrecon : Ωh → Rs, Ωh := ∪i,jCij, is con-
sidered (for 1-d it reduces to the reconstruction in [14], and for third order
in 2-d to the one in [9]). The polynomial solution reconstruction on cell Cij

qrecon|Cij
: Cij → Rs qrecon|Cij

∈ (P recon)s (17)

has to fulfill (7) and (10), and for the method to be of order N + 1 in space
it must at least lie in the bivariate polynomial space

PN := span{xmyn|m,n ∈ N0, 0 ≤ m+ n ≤ N} (18)

of maximal total degree N , for each element, i.e. PN ⊂ P recon. Here, we
use all degrees of freedom q

(r)
ij , r ∈ Idof accessible to the cell to define (17).

Clearly, a necessary condition for unisolvence is that the dimension |P recon|
of P recon matches the number of degrees of freedom. Below, two possible
choices for the reconstruction space are presented. Later on, they are used
to define a finite element for the generalized Active Flux method.

3.3.1. Tensor-like reconstruction space

As a natural extension from the one-dimensional case (see [14, 13]) the
bi-polynomial space

PN,N := span{xmyn|m,n ∈ {0, · · · , N}} (19)

can be considered for P recon, similar to tensor-product finite elements (see
e.g. [24, Chapter 6.4]).

This choice satisfies PN ⊂ P recon and requires |P recon| = (N +1)2 degrees
of freedom. As discussed in Section 3.2, 4N of these must be point values
which leaves (N − 1)2 modal degrees of freedom within each cell, i.e. the cell
average and the higher moments. Thus, the tensor-like reconstruction space
is associated to the tensor-like choice (13) of moments spanning PN−2,N−2.
This choice reduces to the reconstruction space for the third-order Active
Flux method as first introduced in [9, 23], see also Section 2.1.

For the resulting method we introduce the following notation:

Notation 1. The tensor-like generalized Active Flux method on two-dimensional
Cartesian grids with P recon = PN,N shall be denoted by GenAF(M□).
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1 x x2
. . . xN−2 xN−1 xN

y xy x2y . . . xN−2y xN−1y xNy

y2 xy2 x2y2 . . . xN−2y2 − −
...

...
...

... − ...
...

yN−2 xyN−2 x2yN−2 − ... − −

yN−1 xyN−1 − ... − − −

yN xyN − . . . − − −

Table 1: Monomial basis for serendipity space SN . The circled elements extend PN .
This is used to define a minimal basis for P recon, see (20). The bold lines separate the
basis elements required for the edges from the triangle-shaped remainder that ensures
unisolvence of the moments.

3.3.2. Reconstruction space with minimal number of degrees of freedom

High-order methods need to evolve many degrees of freedom. We thus
aim at finding a computationally more efficient choice for P recon with only
the minimal possible number of degrees of freedom needed to achieve order
N + 1 on a Cartesian cell.

Setting P recon = PN turns out not to be sufficient for unisolvence, as
discussed below. Instead we define

P recon := P recon
min :=

{
SN ⊕ span{x2y2} for N = 2, 3

SN for N ≥ 4.
(20)

using the so called serendipity space (see also Table 1)

SN := PN ⊕ span{xNy, xyN} (21)

known from serendipity finite elements (see e.g. [24, Chapter 6.4.3] and
[25]), which are based on the idea of reducing the degrees of freedom from
the tensor-product finite element.

First, let us consider the case N ≥ 4 for the reconstruction space in
(20) with |SN | = 1

2
(N + 1)(N + 2) + 2 = {8, 12, 17, 23, . . . }N≥2 degrees of

freedom. There must be 4N point values (see Section 3.2). This leaves us
with 1

2
(N−3)(N−2) = |PN−4| moments, that we will thus take with respect

to the basis of PN−4. For N = 2, 3 with |SN | = 4N , there is an exception.
In order to include the cell average, SN needs to be extended. In both cases
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order |P recon
min | #PVs #Moments

N + 1
(N + 1)(N + 2)

2
+ 2 4N max

{
1,

1

2
(N − 3)(N − 2)

}
3 8 +1 8 1

4 12 +1 12 1

5 17 16 1

6 23 20 3

7 30 24 6

Table 2: Number of degrees of freedom for GenAF(M ).

{x2y2} is a suitable choice for the additional basis element. This choice of
moments corresponds to the triangle-like choice (14) and coincides with the
tensor-like method for N + 1 = 3. An overview of the number of degrees of
freedom can be found in Table 2.

As mentioned above, the choice P recon = PN (for N ≥ 5) turned out
not to be sufficient for unisolvence of the method on Cartesian cells, which
was verified using mathematica for N = 5, 6, where we chose IM =
IM, \ {(N − 4, 0), (0, N − 4)}. This is because two basis elements of the
highest power N in x and y each are needed to be able to uniquely define
the polynomials up to degree N on the two horizontal and vertical edges,
respectively. For N = 2, 3, 4 it was also necessary to extend PN in a suitable
manner due to our requirements specified at the beginning of Section 3. For
N = 2, 3, we chose SN ⊕{x2y2} as defined in (20) which we deemed a natural
and symmetric choice lying within PN,N . For N = 4, we tried two versions:
First, PN ⊕ {x3y2, x2y3}, which we found insufficient to achieve unisolvence
and second, we tested SN as in (20). Now, consider the minimal choice of
degrees of freedom with the basis elements spanning P recon

min . Then, one can
think of associating the nodal degrees of freedom (nodes and edge points) on
the horizontal edges with the basis elements 1, x, . . . , xN and y, xy, . . . , xNy
on an edge each, and respectively, 1, y, . . . , yN and x, xy, . . . , xyN with the
points on the vertical edges. The moments can then be associated with the
basis elements in (14), which form a triangle in Table 1 (indicated by the
bold lines). As shown with the help of mathematica for up to order 7, the
basis given in (20) for P recon

min is unisolvent.
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Referring to the choice of moments the following notation is introduced:

Notation 2. The generalized Active Flux method on two-dimensional Carte-
sian grids with minimal number of degrees of freedom using P recon

min given in
(20) shall be denoted with GenAF(M ).

3.3.3. A hybrid finite element

Next, the hybrid finite element as defined in [14, Definition 3.1] is ex-
tended to a Cartesian element in two spatial dimensions. We also include
the interpolation operator and the reconstruction and follow [24, Definitions
5.2, 5.5, 5.7, 5.11, Proposition 5.12] and [14]:

Definition 1. Let d = 2 and N ≥ 2. Given an index set Idof := IP ∪ IM
with a set of points {xp}p∈IP , here {xp = (xp, yp)|xp, yp ∈ {±1

2
} or (xp ∈

{ξa}a, yp ∈ {±1
2
}) or (xp ∈ {±1

2
}, yp ∈ {ξa}a) with ξa ∈ (−1

2
, 1
2
) ∀a =

0, . . . , N − 2}, and a (e.g. monomial) basis {bk,l}k,l∈IM for either

• PN−2,N−2 (IM as in (13)), or

• the polynomial vector space PM with M = max{0, N − 4} (IM as in
(14)).

Then, the finite element (K,P,Σ) is

• K = Cref =
[
−1

2
, 1
2

]
×

[
−1

2
, 1
2

]
,

• P given either by

– P recon = PN,N , or

– P recon = SN ⊕ span{x2y2} for N ≤ 3 and P recon = SN for N > 3

and

• Σ = {σi}i∈Idof the set of degrees of freedom with σi : P → R

σp(v) := v(xp) ∀p ∈ IP

σk,l(v) := Aref
k,l

∫
K
bk,l(x)v(x)dx ∀(k, l) ∈ IM

for all v ∈ P and with the normalization factors Aref
k,l = (k+1)2k(l+1)2l

with respect to K.
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We define the shape functions Br : K → R such that

σr(Bs) = δrs ∀r, s ∈ Idof (22)

which form the canonical basis of P with respect to the finite element. Figure
4 shows examples for the shape functions of the GenAF(M ) method of order
N + 1 = 7.

The interpolation operator corresponding to the finite element is defined
to interpolate real-valued functions over K in P . We consider the space
V := L1(K,R). With P ⊂ V , the elements in {σr}r∈Idof – spanning the
space of linear forms hom(P,R) – can naturally be extended to hom(V,R).
We denote them by {σ̃r}r∈Idof . Then, the interpolation operator IK : V → P
is defined as

IK(v)(x) :=
∑
r∈Idof

σ̃r(v)Br(x) ∀x ∈ K. (23)

Finally, the reconstruction R : R|Idof |·s → P s,

R ((qr)r∈Idof ) (x) :=
∑
r∈Idof

qrBr(x) ∀x ∈ K (24)

maps the degrees of freedom qr ∈ Idof to the polynomial space P s. This gives
the reconstruction (17):

qrecon|Cij
◦ Φ−1

ij = R

((
q
(r)
ij

)
r∈Idof

)
∈ (P recon)s (25)

⇔ qrecon|Cij
(x) =

∑
r∈Idof

q
(r)
ij Br(Φij(x)). (26)

3.4. Update of point values

For the update of the point values it is possible to consider a non-
conservative formulation of (1), which also allows to include stabilizing up-
winding. In spirit we follow [13, 14, 15]. The quasi-linear form for the system
of conservation laws (1) is

∂tq(t,x) +Dfx(q(t,x))∂xq(t,x) +Df y(q(t,x))∂yq(t,x) = 0, (27)

which is considered at x
(p)
ij to derive the point value updates. Here, the

Jacobians of the fluxes fx, f y are given, since they can be calculated directly,
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(a) Node (N , 0). (b) Edge point (E0, 3).

(c) Cell average (0, 0). (d) Moment (1, 1).

Figure 4: Shape functions for GenAF(M ) of 7th order.

whereas the derivatives of q with respect to x and y have to be approximated.
We intend to use different derivative approximations (Dx)

(p)
ij ≃ ∂x, (Dy)

(p)
ij ≃

∂y for each upwind direction. To this end, the diagonalized Jacobians

Dfx(q
(p)
ij ) = T xdiag(λx,1, . . . , λx,s)(T

x)−1, (28)

Df y(q
(p)
ij ) = T ydiag(λy,1, . . . , λy,s)(T

y)−1 (29)

are split according to the positive and negative wave speeds to incorporate
upwinding:

Dfx(q
(p)
ij )+ := T xdiag(λ+

x,1, . . . , λ
+
x,s)(T

x)−1,

Dfx(q
(p)
ij )− := T xdiag(λ−

x,1, . . . , λ
−
x,s)(T

x)−1,

Df y(q
(p)
ij )+ := T ydiag(λ+

y,1, . . . , λ
+
y,s)(T

y)−1,

Df y(q
(p)
ij )− := T ydiag(λ−

y,1, . . . , λ
−
y,s)(T

y)−1,

where
λ+
∗,i := max(0, λ∗,i), λ−

∗,i := min(0, λ∗,i), ∗ = x, y.
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This yields

d

dt
q
(p)
ij (t) =−Dfx(q

(p)
ij )+(D+

x )
(p)
ij q −Dfx(q

(p)
ij )−(D−

x )
(p)
ij q

−Df y(q
(p)
ij )+(D+

y )
(p)
ij q −Df y(q

(p)
ij )−(D−

y )
(p)
ij q.

(30)

The upwinded finite difference formulas (D±
x )

(p)
ij , (D

±
y )

(p)
ij are derived with the

help of the reconstructions qrecon|Cij
, which are differentiable on each cell Cij

(see also [15, 22] for third order):

(D±
x )

(p)
ij q := ∂xqrecon

∣∣
Cupw(x)

∣∣
x
(p)
ij
, (31)

(D±
y )

(p)
ij q := ∂yqrecon

∣∣
Cupw(x)

∣∣
x
(p)
ij
. (32)

The upwind cell Cupw is the cell adjacent to x
(p)
ij from the corresponding

“±”-direction for x or y, i.e. at the node x
(p)
ij = (xi+ 1

2
, yj+ 1

2
)

(D+
x )

(p)
ij q := ∂xqrecon|Cij

(x, yj+ 1
2
)|x=x

i+1
2

,

(D−
x )

(p)
ij q := ∂xqrecon|Ci+1,j

(x, yj+ 1
2
)|x=x

i− 1
2

,

(D+
y )

(p)
ij q := ∂yqrecon|Cij

(xi+ 1
2
, y)|y=y

j+1
2

,

(D−
y )

(p)
ij q := ∂yqrecon|Ci,j+1

(xi+ 1
2
, y)|y=y

j− 1
2

,

and at the horizontal edge points (xi+ξa , yj+ 1
2
)

(Dx)
(p)
ij q := (D+

x )
(p)
ij q = (D−

x )
(p)
ij = ∂xqrecon|Cij

(x, yj+ 1
2
)|x=xi+ξa

,

(D+
y )

(p)
ij q := ∂yqrecon|Cij

(x, y)|(x,y)=(xi+ξa ,yj+1
2
),

(D−
y )

(p)
ij q := ∂yqrecon|Ci,j+1

(x, y)|(x,y)=(xi+ξa ,yj+1
2
).

The derivatives for the vertical edge points (xi+ 1
2
, yj+ξa) are defined analo-

gously. Considering definition (26) for the reconstruction qrecon|Cij
the partial

derivatives in x- and y-direction are given as

∂xqrecon|Cij
(x, y) =

∑
r∈Idof

q
(r)
ij ∇ΦBr(Φij(x, y)) · ∂xΦij(x, y), (33)

∂yqrecon|Cij
(x, y) =

∑
r∈Idof

q
(r)
ij ∇ΦBr(Φij(x, y)) · ∂yΦij(x, y). (34)

An example for the thus derived finite difference formulas for (31) and (32)
can be seen in Figure 5.
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upwind
∂x

131 -1.88 2.67 -14.79

(a) (D+
x )

(N ,2)
ij .

upwind
∂x

-1-13 1.88 -2.67 14.79

(b) (D−
x )

(N ,2)
ij .

upwind
∂x

-1.51.5 -3.23 3.23

(c) (Dx)
(E2,1)
ij .

upwind
∂y

-1.25 -1.25

3.753.75

1.25 1 1.25

0.31

3.33

-6.14

1.25 3 1.25

0.31

3.33

-6.14

-9

(d) (D+
y )

(E2,1)
ij .

upwind
∂x

0.67 0.45

9.750.87

0.29 1.10 -1.17

0.5

0.8

1.5

-12.62 3.17 -1.17

-0.5

0.8

0.5

-3.6

(e) (D+
x )

(E1,2)
ij .

upwind
∂y

-0.68

5.32

1.29

-2.07

-3.87

(f) (Dy)
(E1,2)
ij .

Figure 5: Example of finite difference formulas for GenAF(M ) of fifth order at locations
of different degrees of freedom, marked by the additional circle (see (31), (32); coefficients
rounded to two decimal points). Upwind direction: “→”.
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3.5. Update of moments

In the following, an update procedure is derived for the moments, ex-
tending [13, 14, 15]. In particular, a conservative update of the cell averages
is obtained, which is key to ensure convergence to the weak solution of the
conservation law. To this end, the weak formulation of (1)

d

dt

∫
C

v(x)q(t,x)dC +

∫
∂C

v(x)f (q(t,x)) · ndS

−
∫
C

∇v(x) · f (q(t,x)) dx = 0

(35)

on a domain C ⊂ Rd, is considered. To find the update for the cell average
and higher moments on cell Cij, equation (35) with C := Cij is multiplied
by the normalization factor (12) and the test function v is set to (11). This
yields the semi-discrete update formula for the moments of order m = k + l

d

dt
q
(k,l)
ij (t) = −Ak,l

(∫ y
j+1

2

y
j− 1

2

bk,l
(
Φij(xi+ 1

2
, y)

)
fx

(
q(t, xi+ 1

2
, y)

)
− bk,l

(
Φij(xi− 1

2
, y)

)
fx

(
q(t, xi− 1

2
, y)

)
dy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

∂xbk,l (Φij(x, y)) f
x (q(t, x, y)) dxdy

+

∫ x
i+1

2

x
i− 1

2

bk,l
(
Φij(x, yj+ 1

2
)
)
f y

(
q(t, x, yj+ 1

2
)
)

− bk,l
(
Φij(x, yj− 1

2
)
)
f y

(
q(t, x, yj− 1

2
)
)
dx

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

∂ybk,l (Φij(x, y)) f
y (q(t, x, y)) dxdy

)
,

(36)
where the integrals are approximated with the help of a numerical quadra-
ture formula. Here, we choose either a Gauss-Lobatto or a Gauss-Legendre
quadrature for the integrals. The necessary values at the quadrature points
(both on the cell boundaries and within the cells) are obtained by evaluating
the reconstruction (26). For now, the quadrature formulas are chosen to be
sufficient for polynomials of at least degree N +max(k, l).
Remark: The nodal degrees of freedom at the cell interfaces could be in-
cluded to calculate the quadratures. Yet, along the edge there are typically
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more point values than actually necessary for the quadrature alone. For the
bulk integral, the reconstruction needs to be evaluated at quadrature points
anyway as the pointwise degrees of freedom are located on cell interfaces
only.

3.6. Method definition
Concluding, a definition is given of the generalized Active Flux method

of arbitrarily high order on Cartesian grids in 2-d.

Definition 2. Given N ≥ 2, the generalized Active Flux method of order
N + 1 on 2-d Cartesian grids is the semi-discretization of (1)

d

dt
q
(k,l)
ij (t) =− Ak,l

∫
∂Cij

bk,l(Φij(x))f(q(t,x)) · nijdS

+ Ak,l

∫
Cij

∇xbk,l(Φij(x)) · f(q(t,x))dx ∀(k, l) ∈ IM

d

dt
q
(p)
ij (t) =− Fp

((
q
(r)
ip,jp

)
(ip,jp)∈σp,r∈Idof

)
∀p ∈ ĨP

with Idof , IM, {bk,l} and Aref
k,l given as in Definition 1, Ak,l =

Aref
k,l

∆x∆y
and the

outward pointing unit normal nij on ∂Cij. The set
{
x
(p)
ij

}
p∈ĨP

contains point

values belonging to Cij as it is given by (9). Fp is a consistent approximation

of ∂xf
x(q)+∂yf

y(q) at point x
(p)
ij where σp :=

{
(i, j)

∣∣x(p)
ij ∈ ∂Cij

}
defines the

index set of the cell neighbours of x
(p)
ij .

Here, we choose Fp as given in (30) with finite difference formulas (31),
(32) derived in Section 3.4.

4. Stability analysis

Stability results for the generalized Active Flux method introduced in the
previous Section are presented for linear advection in two spatial dimensions.
First, the semi-discrete generalized Active Flux method is studied with the
help of an eigenvalue spectrum analysis. We observe that the stability of the
method depends on the location of the edge points, and this analysis is used to
determine a stable distribution. Second, a generalized Active Flux method
using a third-order Runge-Kutta method for the discretization in time is
considered to determine a stability bound for the fully discretized system.
The methods used for the stability analysis are for example described in [26].
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4.1. Semi-discrete Active Flux method

The generalized Active Flux method of order N + 1 uses moments and
point values at the cell interfaces as degrees of freedom. In the one-dimensional
case, the choice of the points is straightforward at the cell interfaces. The
two-dimensional case allows more flexibility: out of N + 1 points x

(p)
ij along

each cell interface, two are located at the nodes, (see Section 3.2), but the
question how the N − 1 edge points are distributed remains.

Some first numerical tests with a uniform distribution of the edge points
implied that this choice does not lead to a stable method. In [13] a similar
finding was observed for the arbitrarily high order one-dimensional Active
Flux method with additional point values, reviewed in Section 2.2.2. There,
the additional points set within the cells had to be moved closer to the cell
interfaces to gain stability. Inspired by this result we would like to find a
similar way to distribute the edge points for the generalized Active Flux
method in 2-d. Here, the focus is on symmetric distributions of the points
with respect to the edge midpoint. For a fourth and fifth order method this
leaves one free parameter for the edge point distribution and two for a sixth
and seventh order method: Considering the edge [−1

2
, 1
2
] in x- or y-direction

the edge points are

• {−ξ, ξ} for N + 1 = 4 or {−ξ, 0, ξ} for N + 1 = 5, with ξ ∈ (0, 1
2
) and

• {−ξ1,−ξ0, ξ0, ξ1} for N + 1 = 6 or {−ξ1,−ξ0, 0, ξ0, ξ1} for N + 1 = 7
with ξ0, ξ1 ∈ (0, 1

2
), ξ0 < ξ1

While it might still be viable to analyze many different setups for a fourth
or fifth order method, for higher orders N + 1 with ⌊N−1

2
⌋ free parameters

for the edge point distribution this is not feasible. Hence, the following sta-
bility analysis is confined to a few ways to distribute the edge points that we
consider to be a sensible choice. In particular we will try Gauss and Gauss-
Lobatto points, since we have in mind the update of the moments, where a
quadrature is used to approximate the integrals over the cell interfaces. Even
with Gauss points, we still include point values at the nodes in the set of our
degrees of freedom.

Next, the eigenvalue spectrum of the semi-discrete generalized Active
Flux method is analyzed for scalar linear advection in two spatial dimensions

∂tq(t,x) +∇ · (aq(t,x)) = 0 (37)
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with a constant advection speed a = (ax, ay) := (cos θ, sin θ)T , θ = [0, 2π)
and periodic boundary conditions. Thereto, the vector q = (qi)i∈Idofs with

Idofs =
⋃

i,j(Ĩdof)ij assembling all degrees of freedom of the discretized domain
Ωh is defined and the semi-discrete generalized Active Flux method for (37)
is re-written as the linear ODE system

d

dt
q(t) = Aq(t), (38)

where A assembles the right hand side updates of the method. A necessary
condition for stability of the linear ODE system (38) is

Re(λi) ≤ 0 ∀λi ∈ σ(A). (39)

This condition becomes sufficient, if the algebraic multiplicity of all λi with
Re(λi) = 0 equals their geometric multiplicity.

In the following, the GenAF(M ) method of orders N + 1 = 3, . . . , 7 is
studied with Gauss, Gauss-Lobatto and uniformly distributed points on the
edges. To cover a range of different advection directions, θ ∈ [0, π

2
] is chosen

in increments of 1
32
-th, i.e. θ = 0, π

64
, . . . , π

2
, for the Gauss points and 1

4
-th

for Gauss-Lobatto and uniformly distributed points. The restriction of θ to
[0, π

2
] is possible due to symmetry properties of the method. The setup for

the grid sizes is Nx = Ny ∈ {3, 5, 10}. The results use a Gauss integration
sufficient for the calculation of the moments for linear advection, i.e. for
moments of order m it is chosen to be sufficient for polynomials of at least
degree N +max(k, l).
Remark: Some further tests with a higher accuracy or different type of
quadrature yielded comparable results.

For the setups described above, the stability of (38) is analyzed numeri-
cally due to the size of the update matrices A (e.g. for seventh order, 10×10
grid: 1700 × 1700). We obtain the following results: only the method with
Gauss edge point distribution is stable for all tested orders N + 1 = 3, . . . , 7
and corresponding setups. From the computer-aided analysis one finds that
Re(λi) < ϵ, i.e. the eigenvalues have a non-postive real part up to a tolerance
ϵ, and all λi with |Re(λi)| < ϵ are at least semisimple for all i with tolerance
ϵ = 5 · 10−13 for the Gauss edge point distribution. In Figure 6 an example
is shown for N +1 = 3, . . . , 7 with θ = 0 and the three grid sizes. It can also
be seen that the eigenvalues scale with the grid size.
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(a) N + 1 = 3. (b) N + 1 = 4. (c) N + 1 = 5.

(d) N + 1 = 6. (e) N + 1 = 7.

Figure 6: Scaled λi ∈ σ(A), i.e. hλi, for GenAF(M ) of order N + 1 with Gauss edge
point distribution. θ = 0 and h = ∆x = ∆y = 0.1, 0.2, 1

3 .

The methods with uniform and with Gauss-Lobatto edge point distri-
bution result in an unstable system (38) for orders N + 1 = 4, . . . , 7. For
N + 1 = 5, 6, 7 the tests show that there exist eigenvalues with positive real
part for all tested θ. For N + 1 = 4, eigenvalues with positive real part are
observed for θ = 0, π

2
. For N + 1 = 3 the edge point distribution coincides

with the Gauss distribution.

In this way, we are led to conclude that Gauss points are a suitable choice
for the distribution of the edge points that yield a stable method and we will
use this distribution further on. Despite the limitations of the analysis, which
has been conducted for orders N + 1 = 3, . . . , 7 and linear advection only,
we are optimistic that these results will carry over to higher orders. Further-
more, we apply the Gauss edge point distribution to linear and non-linear
systems of conservation laws in our numerical examples and have not ob-
served instabilities.

Remark: The semi-discrete GenAF(M□) method of orders N + 1 = 4 and 5
was also studied for Gauss, Gauss-Lobatto and uniformly distributed edge
points. The setup used for the advection directions is θ ∈ [0, π

2
], θ = 0, π

16
, . . . , π

2
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and the grid sizes are Nx = Ny = 3, 5, 10. Again, only the Gauss edge point
distribution yields a stable system (38) for all setups. For Gauss-Lobatto
and uniformly distributed points, positive eigenvalues are found for θ = 0, π

2
.

4.2. Fully discrete Active Flux method

The semi-discrete formulation of the method (see Definition 2) allows to
choose a time discretization. Similarly as in [14, 13] we focus on a strong
stability preserving Runge-Kutta method of order three (SSP-RK3).

Based on the approach in Section 4.1 we analyze the stability of a fully
discretized generalized Active Flux method with Gauss edge point distribu-
tion. This allows us to derive a CFL condition for linear advection (37).
First, the ODE system (38) of the semi-discrete method for linear advection
with periodic boundary conditions is diagonalized. This is possible, because
the dimension of the sum of the eigenspaces for all eigenvalues of A is equal
to |Idofs|, which was computationally checked up to a tolerance ϵ = 5 · 10−13.
The diagonalized system for q̂ = R−1q is given as

d

dt
q̂(t) = Λq̂(t) (40)

with A = RΛR−1, Λ = diag((λi)i∈Idofs). Applying the RK3 method with a
time step ∆t = tn+1 − tn to (40) yields the fully discretized system

q̂n+1
i = G(λi∆t)q̂n

i ∀i ∈ Idofs (41)

with G(z) := 1+z+ 1
2
z2+ 1

6
z3 and the stability domain S = {z ∈ C||G(z)| ≤

1}. From this it is possible to find a maximal time step ∆tmax(θ), dependent
on the advection direction, such that λi∆tmax(θ) ∈ S for all i ∈ Idofs. For our
computer-based study, we increment the time step by 10−4 for N+1 = 3, 4, 5
and 5 · 10−5 for N + 1 = 6, 7 to approximate ∆tmax. Figure 7 shows an ex-
ample for the GenAF(M ) method of spatial order N + 1 = 3, . . . , 7 for
Nx = Ny = 10. The scaled eigenvalues λi∆tmax(

π
4
) are plotted for the ap-

proximated maximal time step that still allows them to fit inside the stability
domain for RK3 up to a tolerance ϵ.

The stable regions for the fully discretized method of spatial orderN+1 =
3, . . . , 7 are plotted as function of the CFLs cflx = ax∆t

∆x
and cfly =

ay∆t

∆y
in x-

and y-direction for h = ∆x = ∆y = 0.1 in Figure 8.
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(a) N + 1 = 3: ∆tmax ≈ 0.038. (b) N + 1 = 4: ∆tmax ≈ 0.029. (c) N + 1 = 5: ∆tmax ≈ 0.025.

(d) N + 1 = 6: ∆tmax ≈ 0.018. (e) N + 1 = 7: ∆tmax ≈ 0.013.

(f) Close up for N + 1 = 3. (g) Close up for N + 1 = 4. (h) Close up for N + 1 = 5.

(i) Close up for N + 1 = 6. (j) Close up for N + 1 = 7.

Figure 7: Stability domain SRK3 (–) and scaled eigenvalues λi∆tmax (×) for GenAF(M )
of order N + 1 in space for linear advection with θ = π

4 , and ∆x = ∆y = 0.1. Including
close ups around origin.
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(a) N + 1 = 3. (b) N + 1 = 4. (c) N + 1 = 5.

(d) N + 1 = 6. (e) N + 1 = 7.

Figure 8: Stable regions (■) for GenAF(M ) of order N +1 in space for linear advection.
∆x = ∆y = 0.1 and RK3 time discretization. The yellow (■) and black (■) domains
depict the tested area.
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order (N + 1) 3 4 5 6 7
Ccfl (RK3) 0.27 0.20 0.17 0.12 0.088

Table 3: Ccfl for GenAF(M ) of order N + 1 in space for linear advection and RK3
discretization in time.

One observes that the time step depends not only on the magnitude, but
also the direction of the advection, and that the nature of this dependence
changes as the order increases. This is studied below in more detail. In order
to compare the CFL constraints for different orders of accuracy in a simple
way, we consider the maximal CFL at a = ax = ay

Ccfl := |a|∆tmax

h
(42)

given in Table 3 for the GenAF(M ) method discretized with SSP-RK3 in
time, h = 0.1. For other grid sizes h the results are comparable, because the
eigenvalues λi scale with 1

h
(see Section 4.1).

The stability domain for the third-order method (with M = M□) can
approximately be described by

Scirc =
{
(cflx, cfly)|cfl2

x + cfl2
y ≤ r2cfl

}
(43)

with rcfl :=
√
2Ccfl and gives the following bound for the time step size:

∆t ≤ rcfl min{∆x,∆y}√
a2x + a2y

. (44)

For N+1=4 this is still a useful approximation while for higher spatial orders
of the method the domain seems more restricted. Here,

Ssq = {(cflx, cfly)|max{cflx, cfly} ≤ Ccfl} (45)

could be considered which gives the bound

∆t ≤ Ccfl min{∆x,∆y}
max{ax, ay}

. (46)

Remark: The GenAF(M□) method with Gauss edge point distribution and
RK3 for the time discretization was analyzed for N + 1 = 4, 5. The stable
regions SGenAF(M□)|N+1=3,4,5 can be approximated by equation (43), see Fig-
ure 9. The bounds rcfl are found to be ∼ 0.2 (Ccfl ≈ 0.14) for N +1 = 4, and
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(a) N + 1 = 4. (b) N + 1 = 5.

Figure 9: Stable regions (■) for GenAF(M□) of order N +1 in space for linear advection.
∆x = ∆y = 0.1 and RK3 time discretization. The yellow (■) and black (■) domains
depict the tested area.

∼ 0.125 (Ccfl ≈ 0.089) for N +1 = 5. Although Ccfl is smaller than with M ,
the stability domain with M□ seems to be less dependent on the advection
direction.
Comparing the maximal CFL numbers to the one-dimensional case in [14,
Table 1 (Method A, RK3)] it can be observed that for the method in 2-d
with M□ and RK3, the maximal CFL ≈ rcfl for linear advection in x- or
y-direction is approximately the same for the tested N + 1 = 3, 4, 5.

In [22] a similar result for the generalized Active Flux method of third-
order for linear acoustics in 2-d was indicated. A stability bound of cfl =

|c|∆t
min{∆x,∆y} < 0.28 was derived using Fourier analysis.

5. Numerical examples

Numerical results for the generalized Active Flux method GenAF(M )
for orders 3 to 7 on two-dimensional Cartesian grids with a SSP-RK3 time
discretization are shown.

5.1. Linear advection

The first example considers linear advection ∂tq(t,x)+∂xq(t,x)+∂yq(t,x) =
0 on [0, 1]2 with periodic boundary conditions where initial data in the shape
of a cone of radius rmax = 0.2

q(0,x) =

1− r

rmax

for r < rmax,

0 otherwise
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Figure 10: Example of diagonally advected cone. Cross section at y = 0.5 of cell average
on grid 101 × 101 at t = 5 for GenAF(M ) of order N + 1 = 3, . . . , 7 (left) and close up
(right).

with r =
√
(x− 0.5)2 + (y − 0.5)2 is being advected diagonally through the

domain. Figure 10 shows a cross section of the solution at t = 5 on a grid
with 101×101 cells for spatial orders N+1 = 3 to 7. A cfl = Ccfl as shown in
Table 3 (except for N +1 = 7: cfl = 0.085) is used to calculate the time step.
One observes that the apex of the cone is better approximated the higher
the order of the method.

The second example considers smooth initial data (in resemblance to [13,
Section 3.5.1])

q(0,x) = 0.8 + exp
(
−
(
x−0.5
0.05

)2 − (
y−0.5
0.05

)2)
that are used to show the convergence order of the method with N + 1 =
3, . . . , 7 at t = 0.1. To recover the spatial convergence order N + 1 with
a RK3 time discretization ∆t3 = O(hN+1) is needed, h = ∆x = ∆y. For

the cell sizes {hi}i an adaptive cfl(hi) = cfl(h1)(
hi

h1
)
N−2

3 is used starting with

h1 =
1
32

and the cfl(h1) = Ccfl as above. In Figure 11 the convergence of the
error of the cell averages in the L1-norm is shown and a convergence order
O(hN+1) is observed.

5.2. Acoustic equations

The following example for the acoustic equations with c > 0

∂tp+ c∇ · v = 0

∂tv + c∇p = 0
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Figure 11: Convergence of the cell averages in L1-error for linear advection for GenAF(M )
of order N + 1 = 3, . . . , 7 and RK3 time discretization.

on [−1, 1]2 considers initial conditions with a sine wave in pressure and zero
initial velocity as suggested in [4] from [27]

p(0,x) =
1

c
(sin(2πx) + sin(2πy)),

v(0,x) = (0, 0)T

with periodic boundary conditions, for which the exact solution is given as

p(t,x) =
1

c
cos(2πct)(sin(2πx) + sin(2πy)),

v(t,x) =
1

c
sin(2πct)(cos(2πx), cos(2πy))T.

We consider c = 1. The solution at t = 5 where the exact solution matches
the initial condition is computed (see Figure 12). The grid size is Nx =

Ny = 60 and the time step ∆t = cflmin{∆x,∆y}
c

is computed with cfl = Ccfl, a
CFL bound obtained for linear advection, see Table 3 (except for N +1 = 7:
cfl = 0.085). As for linear advection, a better approximation of the exact
solution is observed for higher orders of the generalized Active Flux method.
In particular, a cross section through a maximum of the pressure sine wave
is shown in Figure 13.
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Figure 12: Example for acoustics with sine wave in pressure. Exact solution for the cell
average p(0,0) of pressure on a 60× 60 grid at t = 5.

Figure 13: Example for acoustics with sine wave in pressure. Cross section at y = 0.25 of
p(0,0) on grid 60 × 60 at t = 5 for GenAF(M ) of order N + 1 = 3, . . . , 7 (left) and two
close ups (middle, right) zooming in at the left maximum (observe the different scales of
the x-axes).
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5.3. Euler equations

The generalized Active Flux method can also be applied to non-linear
problems like the compressible Euler equations

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v + pI) = 0

∂tE +∇ · ((E + p)v) = 0

In this paper an ideal polytropic gas is considered with E = p
γ−1

+ 1
2
ρ∥v∥22

and γ = 1.4.
A Gresho vortex (see [28, 29]) on [0, 1]2

ρ(0,x) = 1

v(0,x) =


5r
r
(−y − 0.5, x− 0.5)T r < 0.2

2−5r
r

(−y − 0.5, x− 0.5)T 0.2 ≤ r < 0.4

0 else

p(0,x) =


1

γM2 − 1
2
+ (5r)2

2
r < 0.2

1
γM2 − 1

2
+ 4 ln(5r) + 4− 20r + (5r)2

2
0.2 ≤ r < 0.4

1
γM2 − 1

2
+ 4 ln 2− 2 else

for M = 0.1 with r =
√

x2 + y2 and periodic boundary conditions is com-
puted at t = 1 on a grid of 51 × 51 cells (see Figure 14). The time step is
calculated with the help of the CFL bound from Table 3 (except forN+1 = 7:
cfl = 0.085). Figure 15 shows the radial plot of the cell average for the norm
of the momentum ∥(ρv)(0,0)∥2 for the generalized Active Flux method of order
3, . . . , 7.

6. Conclusion and outlook

This paper presents a generalized Active Flux method on two-dimensional
Cartesian grids of arbitrarily high order using higher moments in addition
to the cell averages and point values at the cell interfaces. It is extending a
semi-discrete hybrid finite element–finite volume version of Active Flux from
1-d. We focused on a method with a serendipity-like, hybrid finite element
using a minimal number of degrees of freedom on the Cartesian cells to keep
the computational cost minimal. An alternative is a tensor-like extension of
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Figure 14: Gresho vortex for Euler equations. Exact solution for the norm of the cell
average of the momentum ∥(ρv)(0,0)∥2 on a 51× 51 grid at t = 1.

Figure 15: Radial plot of ∥(ρv)(0,0)∥2 for Gresho vortex on 51 × 51 grid at t = 1 for
GenAF(M ) of order N + 1 = 3, . . . , 7 (left) and close up (right).
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the element from 1-d to 2-d. The point values at the cell interfaces include
the nodes and edge points, such that a globally continuous reconstruction
is obtained. Their update uses a Jacobian splitting of the non-conservative
formulation of the system and finite difference formulas for the approximation
of the derivatives of the solution. These are derived using the reconstruction
of the solution on the cells. The moments are updated based on the weak
formulation with the integrals approximated by quadrature formulas.

The eigenvalue spectrum of the semi-discrete method was analyzed for
linear advection up to order 7. We find that the edge points at the cell
interfaces cannot be distributed arbitrarily. We have identified, at least for
orders up to 7, Gauss points as a suitable choice to achieve a stable setup
of the semi-discrete method. For the time discretization we relied on a SSP-
RK3 method and found CFL bounds of the method up to order 7 for linear
advection. Numerical examples confirm the theoretical convergence order
and demonstrate how the high-order methods allow to better resolve features
of the solution.

Further studies to better understand the effect of suitable edge point
distributions on the stability of the method will be interesting. In future
work, it will also be important to develop a suitable limiting for the method.
To this end, a flux vector splitting for the point value update, which was
recently presented in [30] for third order, could be considered. Further work
shall also consider an extension to 3-d as well as applications to simulations
of turbulent convection and wave propagation, which require very high orders
of accuracy.
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