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The Active Flux method is a numerical method for conservation laws using a combi-

nation of cell averages and point values, based on ideas from finite volumes and finite

differences. This unusual mix has been shown to work well in many situations. We

expand the theoretical justifications of the Active Flux method by analyzing it from

the point of view of summation-by-parts (SBP) operators, which are routinely used to

analyze finite difference, finite volume, and finite element schemes. We show that the

Active Flux method can be formulated using degenerate SBP operators, yielding a first

and novel approach for showing the energy stability of the Active Flux method.
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ference methods, finite volume methods
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1. Introduction

The Active Flux schemes are a recently developed class of methods introduced to solve systems of

hyperbolic conservation laws (see [17–19]). They combine two types of degrees of freedom: cell

averages and shared point values at the cell interfaces. The Active Flux method uses a globally

continuous approximation, which is conceptually different to other finite volume methods. Yet,

the conservative updates of the cell averages resemble a finite volume method and are given by

the fluxes through the boundary of the cell. The Active Flux method approximates these fluxes
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by quadratures directly using the point values. This is in contrast to many finite volume schemes

that use Riemann solvers to define the fluxes.

Two ways how the point values can be updated in time have emerged. Initially (e.g., in [19, 33]),

it was proposed to use a short-time (approximate) solution of the initial-value problem (IVP) of

the conservation law. Such an approach is appropriate for many equations (see [7, 17] for scalar

conservation laws and for hyperbolic systems of conservation laws in one spatial dimension) and

the resulting method is a one-stage method. The solution of the IVP naturally includes upwinding

which is helpful for stability upon explicit integration in time. Since it is quite challenging to

find short-time (approximate) third-order accurate solutions for multi-dimensional systems of

conservation laws, it was proposed in [5, 6] to complement a semi-discrete version of the cell

average update with an ordinary differential equation (ODE) for the point value and to integrate

both in time using a standard Runge-Kutta method [1–3].

The aim of this paper is to provide the first stability analysis of a semi-discrete Active Flux

scheme using the framework of summation-by-parts (SBP) operators. SBP operators are used

to mimic the integration-by-parts rule on the discrete level. For a good grasp on this concept,

we recommend the review papers [20, 60]. By the SBP property, the continuous energy stability

analysis for a given partial differential equation can be transferred to a (semi-)discrete energy

stability analysis of the numerical scheme. Thus, energy stability may be ensured for a variety of

PDEs when augmented with appropriate numerical boundary conditions, e.g., via simultaneous

approximation terms (SATs) first introduced in [12].

Discrete derivative operators with a SBP property have originally been considered and developed

in the context of finite difference schemes for hyperbolic and parabolic problems, see, e.g., [12, 32,

38, 41, 42, 55], with the aim to construct high-order accurate, conservative and stable numerical

methods for hyperbolic and parabolic PDEs including variable coefficient equations and nonlinear

hyperbolic conservation laws. More recent investigations also focus on SBP operators within

various popular classes of numerical schemes, e.g., finite volume schemes [39, 40], continuous finite

element [4, 28, 29], discontinous Galerkin (DG) schemes [11, 13, 21, 43], flux reconstruction (FR)

schemes [30, 51, 63], as well as meshless methods [27]. In addition, SBP operators based on general

function spaces have been constructed in [22–25].

The classical SBP framework considers central difference operators, whereas the Active Flux

method uses upwinding. The concept of upwinding was introduced directly in the SBP framework

in [36] as a special case of dual-pair derivative operators [16]. Upwind SBP operators can be

interpreted as classical central SBP operators plus artificial dissipation [37, 58] resulting in one-

sided difference stencils. Furthermore, they arise when coupling multiple SBP operators on

subdomains of the complete spatial domain either by interface SATs [49] or by numerical fluxes [44].

In fact, one may conjecture that some form of SBP property must be involved in any type of provably

energy stable numerical method.

This work investigates the SBP properties of the semi-discrete Active Flux method for linear

advection with periodic boundary conditions and analyzes its energy stability. To the best of our

knowledge, this is the first attempt to prove energy stability for this method in the SBP framework.

We start by introducing the Active Flux method and defining periodic SBP operators in section 2.

Section 3 analyzes the Active Flux method in the SBP framework. First, a central version of

Active Flux is considered, which fits the more classical central SBP framework. Then, the semi-

discrete upwind Active Flux method is analyzed using the insight gained from the analysis of

the central scheme. The stability results are summarized in section 4 and verified in section 5

by numerical experiments. As an additional property, nullspace consistency of the Active Flux

difference operators is proven in section 6. In order to increase readability, appendix A collects

some detailed technical aspects employed to study the SBP properties and appendix B provides a

relation to the von Neumann stability concept.
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2. General aspects of Active Flux and SBP operators

We begin by introducing the Active Flux method for conservation laws, originally proposed in [19,

33]. Even though this method shows its real strength in two and three space dimensions, we

restrict ourselves to one space dimension. Consider the scalar conservation law

𝜕𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥 𝑓 (𝑢(𝑥, 𝑡)) = 0 (2.1)

on domain Ω = [𝑥
min

, 𝑥
max

] ⊂ R with 𝑢 : Ω × [0,∞) → R, 𝑓 : R → R and periodic boundary

conditions. Later, (2.1) will be simplified to the linear advection equation (𝑎 ∈ R)

𝜕𝑡𝑢 + 𝑎𝜕𝑥𝑢 = 0. (2.2)

2.1. The Active Flux method

Consider a computational grid with 𝑛 cells [𝑥𝑖− 1

2

, 𝑥𝑖+ 1

2

] and cell centers 𝑥𝑖 =
𝑥
𝑖+ 1

2

+𝑥
𝑖− 1

2

2
, 𝑖 = 0, . . . , 𝑛−

1. For simplicity, all cells have the same size Δ𝑥 := 𝑥𝑖+ 1

2

− 𝑥𝑖− 1

2

.

The Active Flux method uses cell averages 𝑢𝑖 and point values 𝑢𝑖+ 1

2

as degrees of freedom, see

Figure 1. The point values are placed at the cell interfaces and shared by adjacent cells.

Figure 1: A cell that goes from 𝑥𝑖− 1

2

to 𝑥𝑖+ 1

2

is shown: 𝑢𝑖 is the cell average of the solution 𝑢, whereas 𝑢𝑖+ 1

2

and 𝑢𝑖− 1

2

are its point values. With these three pieces of information one can reconstruct a parabola

in this cell. Since the point values are shared with neighboring cells, one associates with each cell

two degrees of freedom, namely 𝑢𝑖− 1

2

and 𝑢𝑖 .

The three pieces of information accessible to each cell (two point values and the cell average)

allow for a parabolic reconstruction 𝑢
recon,𝑖 :

[
−Δ𝑥

2
, Δ𝑥

2

]
, which fulfills

𝑢
recon,𝑖

(
±Δ𝑥

2

)
= 𝑢𝑖± 1

2

,
1

Δ𝑥

∫ Δ𝑥
2

−Δ𝑥
2

𝑢
recon,𝑖(𝑥)d𝑥 = 𝑢𝑖 . (2.3)

One finds𝑢
recon,𝑖 =

6𝑢𝑖−𝑢𝑖+ 1

2

−𝑢
𝑖− 1

2

4
+

𝑢
𝑖+ 1

2

−𝑢
𝑖− 1

2

Δ𝑥 𝑥+3

𝑢
𝑖+ 1

2

+𝑢
𝑖− 1

2

−2𝑢𝑖

Δ𝑥
2

𝑥
2

. The global reconstruction𝑢
recon

(𝑥) : R →
R is piecewise parabolic and continuous:

𝑢
recon

(𝑥) = 𝑢
recon, 𝑗(𝑥 − 𝑥 𝑗) if 𝑥 ∈ [𝑥 𝑗− 1

2

, 𝑥 𝑗+ 1

2

], 𝑗 ∈ N. (2.4)

When integrating the conservation law

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = 0 (2.5)

over the cell, Gauss’ law allows you to couple the cell averages and the point values:

d

d𝑡
𝑢𝑖 +

𝑓 (𝑢𝑖+ 1

2

) − 𝑓 (𝑢𝑖− 1

2

)
Δ𝑥

= 0. (2.6)

Next, we need to determine the point value updates. In this paper, we restrict ourselves to one

upwind and one central point update.

The semi-discrete upwind point update is given by

d

d𝑡
𝑢𝑖+ 1

2

+ 𝑓
′(𝑢𝑖+ 1

2

)(𝑑upw

𝑥 𝑢)𝑖+ 1

2

= 0 (2.7)
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combined with an upwind finite difference formula (𝑑upw

𝑥 𝑢)𝑖+ 1

2

:

(𝑑upw

𝑥 𝑢)𝑖+ 1

2

:=


d

d𝑥𝑢recon
(𝑥𝑖+ 1

2

− 0), 𝑓
′(𝑢𝑖+ 1

2

) > 0,

d

d𝑥𝑢recon
(𝑥𝑖+ 1

2

+ 0), else,
=


d

d𝑥𝑢recon,𝑖

(
Δ𝑥
2

)
, if 𝑓

′(𝑢𝑖+ 1

2

) > 0,

d

d𝑥𝑢recon,𝑖+1

(
−Δ𝑥

2

)
, else.

(2.8)

By construction, the finite differences are thus exact for parabolae. The discontinuity in the

derivative of 𝑢
recon

at 𝑥𝑖+ 1

2

allows one to include upwinding. In [6], the scheme (2.6)-(2.8) has been

found to be 𝐿
2

-stable with RK3 up to a CFL number of about 0.4 using Fourier analysis.

For a positive advection velocity, we have

d

d𝑡
𝑢𝑖+1/2

+
2𝑢𝑖−1/2

− 6𝑢𝑖 + 4𝑢𝑖+1/2

Δ𝑥
= 0. (2.9)

For a negative advection velocity, we have

d

d𝑡
𝑢𝑖+1/2

−
−4𝑢𝑖+1/2

+ 6𝑢𝑖+1
− 2𝑢𝑖+3/2

Δ𝑥
= 0. (2.10)

More about point updates in the Active Flux method can be found in [6] and papers therein. The

semi-discrete Active Flux method can be extended to multiple dimensions and to higher orders of

accuracy, see [8].

The point value update employing a central discretization will be used in the theoretical analysis

below. A central derivative is obtained by taking the average of the two options (2.9) and (2.10)

(𝑑central

𝑥 𝑢)𝑖+ 1

2

:=
1

2

(
d

d𝑥
𝑢

recon,𝑖

(
Δ𝑥

2

)
+ d

d𝑥
𝑢

recon,𝑖+1

(
−Δ𝑥

2

))
, (2.11)

which leads to the following update formula

d

d𝑡
𝑢𝑖+1/2

+
𝑢𝑖−1/2

− 3𝑢𝑖 + 3𝑢𝑖+1
− 𝑢𝑖+3/2

Δ𝑥
= 0. (2.12)

Remark 2.1. The Active Flux method described above is conservative, since summing up the cell-

averages (2.6) leads to conservation. The fact that the point updates inserted into this formula may

themselves be found using a non-conservative update, does not change that (2.6) is conservative.

Indeed (2.6) will guarantee by the Lax-Wendroff theorem that if the solution converges, it converges

to a weak solution. ⊳

2.2. The summation-by-parts approach for showing energy stability

In the following, one-dimensional periodic first-derivative SBP operators are introduced. Consider

a semi-discretization of the linear advection equation (2.2) with 𝑎 = 1 supplemented by periodic

boundary conditions

d

d𝑡
𝑢𝑢𝑢 + 𝐷𝑢𝑢𝑢 = 000, (2.13)

where 𝑢𝑢𝑢 is the vector of unknowns and 𝐷 the corresponding difference operator. A SBP operator

on the interval Ω = [𝑥
min

, 𝑥
max

] is associated to a vector 𝑥𝑥𝑥 of discrete grid nodes within Ω cor-

responding to the unknowns. Due to the matrix-vector formulation of SBP schemes, we use the

notation 111 = (1, . . . , 1)𝑇 , 000 = (0, . . . , 0)𝑇 for the values of these constant functions on the given grid.

A SBP operator 𝐷 mimics the continuous integration-by-parts property on Ω∫ 𝑥
max

𝑥
min

𝑣𝑢𝑥d𝑥 +
∫ 𝑥

max

𝑥
min

𝑣𝑥𝑢d𝑥 = 𝑣𝑢|𝑥max

𝑥
min

(2.14)
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on the discrete level. Here, we restrict ourselves to periodic boundary conditions, i.e. (2.14) = 0.

Then, the periodic SBP property is given as

(v, 𝐷u)𝑀 + (𝐷v, u)𝑀 = 0, (2.15)

where 𝑀 is the symmetric and positive definite norm matrix of the given SBP operator 𝐷 with the

inner product (𝑢, 𝑣)𝑀 = u𝑇
𝑀v.

Considering (2.2) with 𝑎 = 1 and the periodicity of the problem we find

d

d𝑡
∥𝑢∥2

𝐿
2(Ω) = 2

∫ 𝑥
max

𝑥
min

𝑢𝜕𝑡𝑢d𝑥 = −2

∫ 𝑥
max

𝑥
min

𝑢𝜕𝑥𝑢d𝑥 = −𝑢2(𝑥
max

, 𝑡) + 𝑢
2(𝑥

min
, 𝑡) = 0 (2.16)

from (2.14). Using the SBP operator 𝐷 with (2.15), the corresponding semi-discrete operation

yields

d

d𝑡
∥𝑢𝑢𝑢∥2

𝑀 = 2𝑢𝑢𝑢
𝑇
𝑀

d

d𝑡
𝑢𝑢𝑢 = −2𝑢𝑢𝑢

𝑇
𝑀𝐷𝑢𝑢𝑢 = −𝑢𝑢𝑢𝑇

𝑀𝐷𝑢𝑢𝑢 + 𝑢𝑢𝑢
𝑇
𝐷

𝑇
𝑀𝑢𝑢𝑢 = 0, (2.17)

and energy stability is ensured. A periodic SBP operator approximating 𝜕𝑥 is classically defined

as follows:

Definition 2.2. A periodic SBP operator on the interval [𝑥
min

, 𝑥
max

] consists of a grid 𝑥𝑥𝑥, a consistent

derivative matrix 𝐷 (with 𝐷111 = 000 and 𝐷𝑥𝑥𝑥 = 111), and a symmetric and positive definite mass

matrix 𝑀 (also denoted as norm matrix) such that the periodic SBP property

𝑀𝐷 + 𝐷
𝑇
𝑀 = 0 (2.18)

holds. Since

∫ 𝑥
max

𝑥
min

d𝑥 = 𝑥
max

− 𝑥
min

, 𝑀 is scaled such that 111
𝑇
𝑀111 = 𝑥

max
− 𝑥

min
. We call this SBP

operator a diagonal-norm SBP operator if 𝑀 is diagonal. ⊳

Remark 2.3. As seen from Definition 2.2, the periodic SBP property means skew-symmetry of 𝐷

with respect to 𝑀. ⊳

A classical first-derivative SBP operator 𝐷 results from central differences and fulfills (2.18)

in the periodic case, where the norm matrix 𝑀 assumes a role similar to quadrature rules in

finite element discretizations. Upwind SBP operators are a special case of dual-pair operators.

For periodic boundary conditions, dual-pair upwind SBP operators 𝐷+ , 𝐷− discretizing the first

derivative fulfill a similar property: 𝑀𝐷+ + (𝐷−)𝑇𝑀 = 0. However, each of the operators 𝐷+
and 𝐷− regarded separately is based on upwind differencing which leads to a built-in artificial

dissipation when combined with flux splitting [35, 53, 54]. This approach stabilizes both linear and

nonlinear problems while retaining the stability properties associated with SBP schemes. Here,

we use the following definition:

Definition 2.4. A periodic upwind SBP operator on the interval [𝑥
min

, 𝑥
max

] consists of a grid 𝑥𝑥𝑥, a pair

of consistent derivative matrices 𝐷− and 𝐷+, and a symmetric and positive definite mass matrix

𝑀 such that the periodic upwind SBP properties

𝑀𝐷+ + 𝐷
𝑇
−𝑀 = 0, 𝑀(𝐷+ − 𝐷−) is negative semidefinite (2.19)

hold. Again, 𝑀 is scaled to fulfill 111
𝑇
𝑀111 = 𝑥

max
−𝑥

min
. If 𝑀 is diagonal, we speak of a diagonal-norm

upwind SBP operator. ⊳

Using periodic upwind SBP operators, a semi-discretization of the linear advection equation (2.2)

with 𝑎 = 1 is

d

d𝑡
𝑢𝑢𝑢 + 𝐷−𝑢𝑢𝑢 = 000. (2.20)

This method is stable since

d

d𝑡
∥𝑢𝑢𝑢∥2

𝑀 = 2𝑢𝑢𝑢
𝑇
𝑀

d

d𝑡
𝑢𝑢𝑢 = −2𝑢𝑢𝑢

𝑇
𝑀𝐷−𝑢𝑢𝑢 = −𝑢𝑢𝑢𝑇

𝑀𝐷−𝑢𝑢𝑢 + 𝑢𝑢𝑢
𝑇
𝐷

𝑇
+𝑀𝑢𝑢𝑢 = 𝑢𝑢𝑢

𝑇
𝑀(𝐷+ − 𝐷−)𝑢𝑢𝑢 ≤ 0. (2.21)

The energy stability of the scheme
d

d𝑡𝑢𝑢𝑢 − 𝐷+𝑢𝑢𝑢 = 000 for 𝑎 = −1 is shown similarly.
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3. Matrix analysis of the Active Flux method

The following section is dedicated to the analysis of the semi-discrete Active Flux method in the

framework of SBP operators. The difficult part consists in finding a suitable mass matrix 𝑀 whereas

the discrete derivative operator 𝐷 corresponding to the Active Flux method can be constructed in a

straightforward fashion. For this purpose, the Active Flux scheme (2.6) and the point update (2.7)

for the linear scalar advection equation 𝜕𝑡𝑢 + 𝜕𝑥𝑢 = 0 needs to be rewritten in matrix-vector form.

Since periodic boundary conditions are considered, we identify 𝑢𝑛− 1

2

:= 𝑢− 1

2

. In order to prove SBP

properties, we will start with a central version of the Active Flux method since its SBP properties

are easier to detect. Afterwards, in the subsequent section, we will turn to the standard upwind

version of the Active Flux method.

3.1. Central Active Flux discretization

As motivated before, we aim at formulating the central version of the semi-discrete Active Flux

method (given by (2.6) and (2.11)) within the framework of SBP operators which immediately yields

stability. The first step to reach this goal consists in establishing a matrix-vector formulation.

We begin by recalling that for the cell averages, the semi-discrete Active Flux method yields the

update

d

d𝑡
𝑢𝑖 +

𝑢𝑖+1/2
− 𝑢𝑖−1/2

Δ𝑥
= 0 . (3.1)

We also recall that the point values are updated using a central discretization according to (2.11),

which yields

d

d𝑡
𝑢𝑖+1/2

+
𝑢𝑖−1/2

− 3𝑢𝑖 + 3𝑢𝑖+1
− 𝑢𝑖+3/2

Δ𝑥
= 0. (3.2)

Collecting the cell averages 𝑢𝑖 and the point values 𝑢𝑖+1/2
in a single vector 𝑢𝑢𝑢 ∈ R2𝑛

, we can write

the semi-discrete system in matrix-vector form as

d

d𝑡

©­­­­­­­­­­­«

...

𝑢𝑖−1

𝑢𝑖−1/2

𝑢𝑖
𝑢𝑖+1/2

𝑢𝑖+1

...

ª®®®®®®®®®®®¬︸      ︷︷      ︸
=:𝑢𝑢𝑢

+ 1

Δ𝑥

©­­­­­­­­­­­«

. . .

−1 0 1

1 −3 0 3 −1

−1 0 1

1 −3 0 3 −1

−1 0 1

. . .

ª®®®®®®®®®®®¬︸                                             ︷︷                                             ︸
=:𝐷

𝑢𝑢𝑢 = 000 (3.3)

and directly obtain the discrete derivative operator 𝐷. Here and below, we add guiding lines to

the matrices to make it easier to see which entries belong to point values and cell averages.

We observe that 𝐷 is skew-symmetric with respect to the diagonal mass matrix

𝑀 =
Δ𝑥

4

©­­­­­­­­­­­«

. . .

3

1

3

1

3

. . .

ª®®®®®®®®®®®¬
(3.4)

since

𝑀𝐷 = −𝐷𝑇
𝑀. (3.5)
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Therefore, since 𝑀 is diagonal with positive entries, the discretization of 𝜕𝑥 via the Active Flux

method yields a periodic SBP operator according to Definition 2.2. Hence, we have proved the

following theorem.

Theorem 3.1. The central version (2.11) of the semi-discrete Active Flux method can be formulated using
SBP operators with derivative matrix 𝐷 (3.3) and diagonal norm/mass matrix 𝑀 (3.4), satisfying 111

𝑇
𝑀111 =

𝑥
max

− 𝑥
min

.
Remark 3.2. The diagonal mass matrix 𝑀 in (3.4) can be interpreted as a chained trapezoidal rule

in each cell. Using the transformation of the cell averages 𝑢𝑖 =
1

6
𝑢𝑖− 1

2

+ 2

3
𝑢𝑖 ,𝑝 + 1

6
𝑢𝑖+ 1

2

to the cell

midpoints 𝑢𝑖 ,𝑝 derived from the reconstruction 𝑢
recon,𝑖 and inserting this for the terms

3

4
𝑢𝑖 shows

111
𝑇
𝑀𝑢𝑢𝑢 = Δ𝑥

(
· · · + 1

4

𝑢𝑖− 1

2

+
(
1

8

𝑢𝑖− 1

2

+ 1

2

𝑢𝑖 ,𝑝 +
1

8

𝑢𝑖+ 1

2

)
+ 1

4

𝑢𝑖+1/2
+

(
1

8

𝑢𝑖+ 1

2

+ 1

2

𝑢𝑖+1,𝑝 +
1

8

𝑢𝑖+ 3

2

)
+ . . .

)
.

Summing up the point values at cell interfaces and midpoints, we obtain the two variants

111
𝑇
𝑀𝑢𝑢𝑢 =

Δ𝑥

2

(
· · · + 𝑢𝑖− 1

2

+ 𝑢𝑖 ,𝑝 + 𝑢𝑖+ 1

2

+ 𝑢𝑖+1,𝑝 + . . .
)

=
Δ𝑥

2

(
· · · +

(
1

2

𝑢𝑖− 1

2

+ 𝑢𝑖 ,𝑝 +
1

2

𝑢𝑖+ 1

2

)
+

(
1

2

𝑢𝑖+ 1

2

+ 𝑢𝑖+1,𝑝 +
1

2

𝑢𝑖+ 3

2

)
. . .

)
.

Thus, the quadrature induced by the diagonal mass matrix 𝑀 defined by (3.4) can be considered

either as the chained trapezoidal rule on the complete computational domain or in each individual

cell. In fact, transferred to the interface and midpoint nodes 𝑢𝑖 , 𝑢𝑖 ,𝑝 this quadrature rule directly

corresponds to the diagonal mass matrix of the classical second-order SBP operator on equidistant

nodes with grid spacing
Δ𝑥
2

. ⊳

If we only focused on the central Active Flux method, we might stop here since diagonal

norm/mass matrices offer the best structure for many types of equations. However, we are

interested in the upwind version of the Active Flux method, as this version is more commonly

used in practice. It will become clear in the following sections that we cannot use the diagonal

mass matrix 𝑀 (3.4) for the upwind case. Therefore, here, we continue to explore a more general

class of mass matrices.

Among diagonal matrices, (3.4) is unique up to a scalar factor. Allowing for non-diagonal 𝑀,

a mass matrix which induces the SBP property is not unique, as we can see in the following

discussion. The additional parameters introduced here will be required for the upwind Active

Flux method. Firstly, the following lemma shows the non-uniqueness of a symmetric mass matrix

satisfying 𝑀𝐷 = −𝐷𝑇
𝑀.

Lemma 3.3. All the symmetric, pentadiagonal matrices (up to boundary terms) which ensure that the
derivative operator 𝐷 of the central semi-discrete Active Flux method (3.3) is skew-symmetric with respect
to 𝑀, are of the form

𝑀 = Δ𝑥

©­­­­­­­­­­«

. . .

𝑚𝑣𝑣

𝑚𝑣−3𝑚𝑝

2
𝑚𝑣

𝑚𝑣−3𝑚𝑝

2
𝑚𝑣𝑣

3𝑚𝑝−𝑚𝑣+2𝑚𝑣𝑣

6

𝑚𝑣−3𝑚𝑝

2
𝑚𝑝

𝑚𝑣−3𝑚𝑝

2

3𝑚𝑝−𝑚𝑣+2𝑚𝑣𝑣

6

𝑚𝑣𝑣

𝑚𝑣−3𝑚𝑝

2
𝑚𝑣

𝑚𝑣−3𝑚𝑝

2
𝑚𝑣𝑣

. . .

ª®®®®®®®®®®¬
(3.6)

with 𝑚𝑝 , 𝑚𝑣 , 𝑚𝑣𝑣 ∈ R.
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Proof. Due to the alternate setting of point values and cell averages in the Active Flux method, we

use the ansatz

𝑀 = Δ𝑥

©­­­­­­­­«

. . .

𝑚𝑣𝑣 𝑚𝑣𝑝 𝑚𝑣 𝑚
′
𝑣𝑝 𝑚𝑣𝑣

𝑚𝑝𝑝 𝑚
′
𝑣𝑝 𝑚𝑝 𝑚𝑣𝑝 𝑚𝑝𝑝

𝑚𝑣𝑣 𝑚𝑣𝑝 𝑚𝑣 𝑚
′
𝑣𝑝 𝑚𝑣𝑣

. . .

ª®®®®®®®®¬
, (3.7)

where 𝑚𝑣 and 𝑚𝑝 are on the diagonal of 𝑀 corresponding to the cell average (volume) and the

point values, respectively. The skew symmetry 𝑀𝐷 + 𝐷
𝑇
𝑀 = 0 requires

𝑚
′
𝑣𝑝 − 𝑚𝑣𝑝 = 0, (3.8)

3𝑚𝑝𝑝 + 𝑚𝑣𝑝 − 𝑚𝑣𝑣 = 0, (3.9)

3𝑚𝑝 − 3𝑚𝑝𝑝 + 𝑚
′
𝑣𝑝 − 𝑚𝑣 + 𝑚𝑣𝑣 = 0, (3.10)

from which we directly obtain 𝑚
′
𝑣𝑝 = 𝑚𝑣𝑝 . Using this and adding the last two equations (3.9),

(3.10) we can solve for 𝑚𝑣𝑝 and then for 𝑚𝑝𝑝 . Thus, we obtain

𝑚𝑝𝑝 =
3𝑚𝑝 − 𝑚𝑣 + 2𝑚𝑣𝑣

6

, 𝑚𝑣𝑝 =
𝑚𝑣 − 3𝑚𝑝

2

, (3.11)

which leaves us with the structure of 𝑀 as presented in (3.6). □

Remark 3.4. The banded mass matrix (3.6) reduces to the diagonal mass matrix in (3.4) for 𝑚𝑣𝑣 = 0,

𝑚𝑝 = 𝑚𝑣/3, and 𝑚𝑣 = 3

4
. ⊳

Secondly, for the matrix 𝑀 in (3.6) to qualify as a mass matrix of an SBP operator, we require 𝑀

to be positive definite. In the following, we restrict the investigation to 𝑚𝑣𝑣 = 0, since this will be

required later for the upwind version of Active Flux. Moreover, setting 𝑚𝑣𝑣 ≠ 0 would result in a

bigger stencil of 𝑀 in comparison to the stencil of the derivative operators. The following lemma

determines a range of parameters for which 𝑀 is positive definite and gives one case of a positive

semidefinite 𝑀 with multiplicity one of the corresponding zero eigenvalue.

Lemma 3.5. For 𝑚𝑣𝑣 = 0, the matrix 𝑀 in (3.6) has the following properties.

1. If 2𝑚𝑣/9 < 𝑚𝑝 < 2𝑚𝑣/3 and 𝑚𝑣 > 0, then 𝑀 is positive definite.

2. If 𝑚𝑝 = 2𝑚𝑣/9 and 𝑚𝑣 > 0 then 𝑀 is positive semidefinite with an eigenvalue 0 of multiplicity 1.

The technical proof of Lemma 3.5 involving properties of circulant matrices can be found in

Appendix A.

For 𝑚𝑣𝑣 = 0 and 𝑚𝑝 ≠ 2𝑚𝑣/3, it is possible to rescale the matrix 𝑀 in (3.6) to satisfy the classical

constraint 111
𝑇
𝑀111 = 𝑥

max
− 𝑥

min
. Thus, we obtain

Theorem 3.6. The central version (2.11) of the semi-discrete Active Flux method can be formulated using
SBP operators with derivative matrix

𝐷 =
1

Δ𝑥

©­­­­­­­­­­­«

. . .

−1 0 1

1 −3 0 3 −1

−1 0 1

1 −3 0 3 −1

−1 0 1

. . .

ª®®®®®®®®®®®¬
, (3.12)
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and positive definite mass matrix

𝑀 =
3Δ𝑥

8𝑚𝑣 − 12𝑚𝑝

©­­­­­­­­­­«

. . .
𝑚𝑣−3𝑚𝑝

2
𝑚𝑣

𝑚𝑣−3𝑚𝑝

2

3𝑚𝑝−𝑚𝑣

6

𝑚𝑣−3𝑚𝑝

2
𝑚𝑝

𝑚𝑣−3𝑚𝑝

2

3𝑚𝑝−𝑚𝑣

6

𝑚𝑣−3𝑚𝑝

2
𝑚𝑣

𝑚𝑣−3𝑚𝑝

2

. . .

ª®®®®®®®®®®¬
, (3.13)

for 𝑚𝑣 > 0 and 2𝑚𝑣/9 < 𝑚𝑝 < 2𝑚𝑣/3, satisfying 111
𝑇
𝑀111 = 𝑥

max
− 𝑥

min
.

Next, we will use the additional degrees of freedom introduced by the banded structure of the

mass matrix 𝑀 in Theorem 3.6 to generalize the results to the upwind version of the Active Flux

method.

3.2. Upwind version of Active Flux

We first collect the formulas for the upwind semi-discrete Active Flux method. The cell average

update is

d

d𝑡
𝑢𝑖 +

𝑢𝑖+1/2
− 𝑢𝑖−1/2

Δ𝑥
= 0, (3.14)

the upwind point value update for positive advection velocity (see (2.9)) is

d

d𝑡
𝑢𝑖+1/2

+
2𝑢𝑖−1/2

− 6𝑢𝑖 + 4𝑢𝑖+1/2

Δ𝑥
= 0, (3.15)

and for negative advection velocity (see (2.10)), we have

d

d𝑡
𝑢𝑖+1/2

−
−4𝑢𝑖+1/2

+ 6𝑢𝑖+1
− 2𝑢𝑖+3/2

Δ𝑥
= 0. (3.16)

The upwind versions of the Active Flux method correspond to the derivative operators

𝐷+ =
1

Δ𝑥

©­­­­­­­­­­­«

. . .

−1 0 1

−4 6 −2

−1 0 1

−4 6 −2

−1 0 1

. . .

ª®®®®®®®®®®®¬
, 𝐷− =

1

Δ𝑥

©­­­­­­­­­­­«

. . .

−1 0 1

2 −6 4

−1 0 1

2 −6 4

−1 0 1

. . .

ª®®®®®®®®®®®¬
. (3.17)

Unfortunately these operators are not upwind SBP operators with the diagonal mass matrix (3.4).

However we can still achieve this property using a banded mass matrix as for the central approxi-

mation above. In addition, restricting the band width of the mass matrix to the band width of the

derivative operators results in uniqueness of the admissible mass matrix 𝑀 up to a scalar factor.

Lemma 3.7. The symmetric matrix

𝑀 = Δ𝑥

©­­­­­­­­«

. . .

0 −𝑚𝑣/2 𝑚𝑣 −𝑚𝑣/2 0

𝑚𝑣/6 −𝑚𝑣/2 2𝑚𝑣/3 −𝑚𝑣/2 𝑚𝑣/6

0 −𝑚𝑣/2 𝑚𝑣 −𝑚𝑣/2 0

. . .

ª®®®®®®®®¬
(3.18)
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is — up to a scalar factor 𝑚𝑣 ∈ R — the only symmetric matrix which is pentadiagonal (up to boundary
terms) and ensures that the derivative operators 𝐷± of the upwind semi-discrete Active Flux method (3.17)

are adjoint to each other with respect to 𝑀.

Proof. We use the same ansatz as for the proof of Lemma 3.3. Then, the mutual adjointness

𝑀𝐷+ + 𝐷
𝑇
−𝑀 = 0 requires 𝑚𝑣𝑣 = 0 and

𝑚𝑣𝑝 − 𝑚
′
𝑣𝑝 = 0 6𝑚𝑝𝑝 + 4𝑚

′
𝑣𝑝 + 𝑚𝑣 = 0 (3.19)

6𝑚𝑝 + 4𝑚𝑣𝑝 − 𝑚𝑣 + 2𝑚
′
𝑣𝑝 = 0 6𝑚𝑝𝑝 + 2𝑚𝑣𝑝 = 0 (3.20)

This yields 𝑚𝑣𝑝 = 𝑚
′
𝑣𝑝 = −𝑚𝑣/2, 𝑚𝑝 = 2𝑚𝑣/3, 𝑚𝑝𝑝 = 𝑚𝑣/6 and hence (3.18). □

Remark 3.8. Note that the matrix 𝑀 in (3.18) is a special case of the matrix in (3.6) with 𝑚𝑝 = 2𝑚𝑣/3.

In this case, 𝑀 is positive semidefinite as shown in the following lemma. ⊳

Lemma 3.9. The matrix 𝑀 in (3.18) is positive semidefinite for 𝑚𝑣 > 0 with an eigenvalue 0 of multiplicity 1

and eigenvector 111.

Proof. A simple calculation shows that the rows of 𝑀 sum up to zero. Thus, 111 is an eigenvector

of 𝑀 with eigenvalue 0. It is sufficient to consider the case 𝑚𝑣 = 1 to study its multiplicity and to

determine the sign of the other eigenvalues. Using Lemma A.1, the matrix 𝐵𝑘 associated with 𝑀

for 𝑚𝑣 = 1 is given by (with 𝜃 = 2𝜋𝑘
𝑛 , 𝑘 = 0, . . . , 𝑛 − 1)

𝐵𝑘 =

(
1 −(1 + 𝑒

−𝑖𝜃)/2

−(1 + 𝑒
𝑖𝜃)/2 (2 + cos𝜃)/3

)
(3.21)

and its characteristic polynomial is

𝑧
2 − 𝑧

3

(5 + cos𝜃) + 1

6

(1 − cos𝜃). (3.22)

Its value at 𝑧 = 0 can only vanish if 𝜃 = 0. Thus, this eigenvalue only appears once. Furthermore,

for 𝜃 ∈ (0, 2𝜋), the eigenvalues are positive since the roots of the characteristic polynomial are

given by 𝑧
1,2 = 1

6

(
cos𝜃 + 5 ±

√
(cos𝜃 + 5)2 − 6(1 − cos𝜃)

)
> 0. □

Remark 3.10. Classical finite difference SBP operators have the scaling 𝐷 ∝ Δ𝑥
−1

and 𝑀 ∝ Δ𝑥.

Remark 3.2 demonstrates that this expected scaling of the mass matrix 𝑀 also holds for the central

Active Flux method. However, we cannot obtain the scaling 𝑀 ∝ Δ𝑥 by imposing 111
𝑇
𝑀111 = 𝑥

max
−

𝑥
min

since 𝑀111 = 000 for the upwind Active Flux method. Thus, we need to consider another way

to fix the free parameter 𝑚𝑣 in (3.18). To do so, we introduce the vector 111
avg

= (. . . , 0, 1, 0, 1, . . . )𝑇
which has a value unity for all averages and zero for all point values. Then, we compute

111
𝑇
avg

𝑀𝑢𝑢𝑢

Δ𝑥 𝑚𝑣

= · · · + 𝑢𝑖−2
− 𝑢𝑖− 3

2

+ 𝑢𝑖−1
− 𝑢𝑖− 1

2

+ 𝑢𝑖 − 𝑢𝑖+ 1

2

+ 𝑢𝑖+1
− . . .

In particular, we can choose 𝑢𝑢𝑢 = 111
avg

, resulting in

111
𝑇
avg

𝑀111
avg

Δ𝑥 𝑚𝑣

= · · · + 𝑢𝑖−2
+ 𝑢𝑖−1

+ 𝑢𝑖 + 𝑢𝑖+1
+ · · · = 𝑥

max
− 𝑥

min

Δ𝑥
.

This shows that choosing 𝑚𝑣 = 1 yields 111
𝑇
avg

𝑀111
avg

= 𝑥
max

− 𝑥
min

, i.e., the expected scaling of the

mass matrix 𝑀 ∝ Δ𝑥 (when focusing only on the volume contributions). ⊳
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Relaxing the definiteness condition to allow for a positive semidefinite mass matrix 𝑀 still

enables a stability proof for the Active Flux method via SBP properties as we will show in section 4.

At this point however, we still need to prove the upwind SBP property requiring that 𝑀(𝐷+ −𝐷−)
is negative semidefinite. This is the subject of the following lemma.

Lemma 3.11. For 𝑀 in (3.18) and the upwind operators 𝐷± in (3.17), the matrix 𝑀(𝐷+−𝐷−) is symmetric
and negative semidefinite for 𝑚𝑣 > 0.

Proof. Concerning the symmetry, we have

𝑀(𝐷+ − 𝐷−)
𝑚𝑣

=

©­­­­­­­­­­­­­­«

. . .

. . . −8/3 5 −6 5 −8/3 1 −1/3

. . . 1 −3 5 −6 5 −3 1 0

−1/3 1 −8/3 5 −6 5 −8/3 1 −1/3

0 1 −3 5 −6 5 −3 1 0

−1/3 1 −8/3 5 −6 5 −8/3 1 −1/3

0 1 −3 5 −6 5 −3 1 0

. . .

ª®®®®®®®®®®®®®®¬
.

(3.23)

Finally, using Lemma A.1, one finds the eigenvalues to be 0 (𝑛 times) and (calling 𝜃 := 2𝜋𝑘
𝑛 ,

𝑘 = 0, . . . , 𝑛 − 1)

−2

3

(
18 + 17 cos𝜃 + cos (2𝜃)

)
< 0, ∀𝜃. (3.24)

□

Remark 3.12. Following the nomenclature introduced in [27] for central SBP operators, we combine

the previous results (Lemma 3.7, Lemma 3.9, and Lemma 3.11) and say that the semi-discrete

Active Flux upwind operators 𝐷± are degenerate upwind SBP operators when combined with the

semidefinite mass matrix 𝑀 (3.18). ⊳

4. Stability of the Active Flux method via SBP properties

Since the central version of the Active Flux method can be formulated using SBP operators, we

directly obtain stability.

Corollary 4.1. The central version (2.11) of the semi-discrete Active Flux method is stable for the linear
advection (2.2) with periodic boundary conditions.

Proof. This follows immediately from Theorem 3.6 and classical stability properties of SBP opera-

tors. □

Unfortunately, the matrix 𝑀 for which the upwind Active Flux operators𝐷± are mutually adjoint

is only positive semidefinite. Thus, the classical energy stability proof does not guarantee stability

immediately. However, based on Lemma 3.9, we can still obtain a stability result for the Active

Flux method using the framework of SBP operators.

The idea is as follows. We show below that the states associated to zero energy are uniform

(in space) constants. Thus, if the energy is decaying, it is generally speaking possible that a

uniform constant could grow although its energy is zero. However, the time evolution of uniform

constants is easy to check separately, and we find that uniform constants do not grow in time but

are stationary.

11



Theorem 4.2. The upwind Active Flux semi-discretization

d

d𝑡
𝑢𝑢𝑢 + 𝐷−𝑢𝑢𝑢 = 000 (4.1)

using (3.14) and (2.9) of the linear advection equation

𝜕𝑡𝑢 + 𝜕𝑥𝑢 = 0 (4.2)

with periodic boundary conditions is stable.

Proof. Using Lemma 3.9, we decompose the vector 𝑢𝑢𝑢 = 𝑢𝑢𝑢
0
+ 𝑢𝑢𝑢⊥ into the components 𝑢𝑢𝑢

0
∝ 111 in

the kernel of 𝑀 and 𝑢𝑢𝑢⊥ ⊥ 111 in its orthogonal complement. Following the usual upwind SBP

argumentation (2.21), we obtain

d

d𝑡
∥𝑢𝑢𝑢∥2

𝑀 = 2𝑢𝑢𝑢
𝑇
𝑀

d

d𝑡
𝑢𝑢𝑢 = −2𝑢𝑢𝑢

𝑇
𝑀𝐷−𝑢𝑢𝑢 = −𝑢𝑢𝑢𝑇

𝑀𝐷−𝑢𝑢𝑢 + 𝑢𝑢𝑢
𝑇
𝐷

𝑇
+𝑀𝑢𝑢𝑢 ≤ 0, (4.3)

where we have used Lemma 3.11. Since 𝑀111 = 000, ∥𝑢𝑢𝑢∥𝑀 = ∥𝑢𝑢𝑢⊥∥𝑀 and the component in the

orthogonal complement is stable. The component in the kernel of 𝑀 is constant in time and thus

also stable, since

d

d𝑡
𝑢𝑢𝑢

0
= −𝐷−𝑢𝑢𝑢0

= 000. (4.4)

Thus, the method is stable. □

5. Numerical experiment

To exemplify the theoretical stability results, we perform a numerical experiment based on the

linear advection equation 𝜕𝑡𝑢 + 𝜕𝑥𝑢 = 0 with periodic boundary conditions in the interval [0, 2𝜋]
and the initial condition 𝑢(0, 𝑥) = exp(sin(𝑥)). We use the central and upwind semi-discrete Active

Flux methods with 50 volumes and integrate the resulting ODE system in time using the five-stage,

third-order explicit Runge-Kutta method RK3(2)5
F
[3S

*

+
] of [46] with time step size Δ𝑡 = Δ𝑥/2. We

chose this method since it has been optimized for hyperbolic problems and includes an interval

on the imaginary axis in its stability interval as required for stability of central operators.

The energy analysis presented in the previous sections concentrates on the effect of the spatial

semi-discretization. When integrating the resulting ODE in time, the energy behavior also depends

on the time integration scheme. While many explicit Runge-Kutta methods can be shown to cause

additional dissipation for linear problems [50, 56, 57, 61], the analysis of nonlinear problems is

more complex [34, 45, 47]. Since we are interested in a quadratic energy, we could use a symplectic

Runge-Kutta method such as the implicit midpoint rule to preserve the energy evolution caused

by the semi-discretization in space, cf. sections IV.2.1 and IV.4.1 of [26]. However, we would like to

avoid introducing fully implicit methods for hyperbolic problems. Thus, we apply the relaxation

approach discussed and analyzed in [31, 48, 52] to modify an explicit Runge-Kutta method slightly

so that the fully discrete energy evolution is purely caused by the spatial semi-discretization

without additional influence of the time integration method.

The results are shown in Figure 2. In accordance with the theory, the energy is conserved up to

roundoff errors for the central version while the upwind version results in energy dissipation. All

Julia [10] code and instructions required to reproduce these numerical experiments are available

in our reproducibility repository [9]. We used CairoMakie.jl [14] to create the figures.

6. Nullspace consistency of the Active Flux upwind SBP operator

An additional property of the Active Flux difference operators which is not directly related to their

upwind SBP property is nullspace consistency. This property is interesting on its own merit since
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Figure 2: Change of the discrete energy ∥𝑢𝑢𝑢∥2

𝑀 = 𝑢𝑢𝑢
𝑇
𝑀𝑢𝑢𝑢 compared to the initial energy. For the central

version, we use the diagonal mass matrix (3.4); for the upwind version, we use the pentadiagonal

(up to boundary terms) mass matrix (3.18) with 𝑚𝑣 = 1.

it transfers an additional algebraic property from the continuous to the discrete setting. Nullspace

consistency is a rather recently studied mimetic property in the context of derivative operators and

numerical methods for PDEs. It signifies that the nullspace of the continuous operator is correctly

transferred to its discrete counterpart. In the context of SBP schemes, this concept was first

introduced in [59], connected to the investigation of convergence rates of FD schemes. According

to the definition of nullspace consistency, for a nullspace-consistent finite difference operator 𝐷𝑘

approximating the continuous operator 𝜕𝑘
𝑥 , the kernel of 𝐷𝑘 can be mapped one-to-one to the

kernel of 𝜕𝑘
𝑥 . In the context of periodic problems such as those studied in this work, nullspace

consistency means that the creation of spurious modes within the discrete solution is prevented.

The following lemma shows that upwind Active Flux difference operators are nullspace consistent.

Lemma 6.1. The Active Flux difference operators 𝐷− and 𝐷+ are nullspace-consistent, i.e., 𝐷±𝑢𝑢𝑢 = 000 ⇐⇒
𝑢𝑢𝑢 ∝ 111.

Proof. Due to symmetry, it is sufficient to consider 𝐷− as the proof for 𝐷+ follows analogously. The

nullspace of the linear continuous operator 𝜕𝑥 consists of the functions constant in 𝑥. Thus, we

require that the only vectors 𝑢𝑢𝑢 satisfying 𝐷−𝑢𝑢𝑢 = 000 are the constants 𝑢𝑢𝑢 = 𝑐111.

Obviously, all vectors of the form 𝑢𝑢𝑢 = 𝑐111 satisfy 𝐷−𝑢𝑢𝑢 = 000. It remains to show that all the vectors

𝑢𝑢𝑢 with 𝐷−𝑢𝑢𝑢 = 000 are of the form 𝑢𝑢𝑢 = 𝑐111. Then, all vectors in the nullspace of 𝐷− have a counterpart

in the nullspace of 𝜕𝑥 . The linear difference scheme resulting from the condition 𝐷−𝑢𝑢𝑢 = 000 is

∀𝑖 : −𝑢𝑖− 1

2

+ 𝑢𝑖+ 1

2

= 0,

∀𝑖 : 2𝑢𝑖− 1

2

− 6𝑢𝑖 + 4𝑢𝑖+ 1

2

= 0.

From the first equation, we obtain the existence of a constant 𝑐 ∈ R such that 𝑢𝑖+ 1

2

= 𝑐 is constant

for all 𝑖. Inserting this into the second equation then yields 𝑢𝑖 = 𝑐 for all 𝑖, i.e., 𝑢𝑢𝑢 = 𝑐111. □

The central version of the Active Flux method is not nullspace consistent. This goes in line

with the lack of nullspace consistency for periodic problems of the classical central second-order

finite difference operator approximating the first derivative based on the approximation 𝜕𝑥𝑢(𝑥𝑖) ≈
𝑢𝑖+1

−𝑢𝑖−1

2Δ𝑥 .

Lemma 6.2. The central Active Flux difference operator 𝐷 in (3.3) has a two-dimensional nullspace spanned
by the vectors111 and (1,−1, 1,−1, . . . , 1,−1)𝑇 . Therefore, the central version (2.11) of the Active Flux method
is not nullspace-consistent.
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Proof. As before, all vectors of the form 𝑢𝑢𝑢 = 𝑐111 obviously satisfy 𝐷𝑢𝑢𝑢 = 000. Furthermore, the linear

difference scheme resulting from the condition 𝐷𝑢𝑢𝑢 = 000 is given by

∀𝑖 : −𝑢𝑖− 1

2

+ 𝑢𝑖+ 1

2

= 0,

∀𝑖 : 𝑢𝑖− 1

2

− 3𝑢𝑖 + 3𝑢𝑖+1
− 𝑢𝑖+ 3

2

= 0.

From the first equation, we again obtain that 𝑢𝑖+ 1

2

= 𝑐 is constant for all 𝑖. Inserting this into the

second equation now yields 𝑢𝑖+1
= 𝑢𝑖 = 𝑑 for all 𝑖, for a potentially different constant 𝑑. Setting

𝑐 = 1 and 𝑑 = ±1 we obtain the two linearly independent vectors 111 and (1,−1, 1,−1, . . . , 1,−1)𝑇
which span the nullspace of 𝐷. □

Remark 6.3. On finite non-periodic domains, nullspace consistency for central difference approxi-

mations can be restored by suitable boundary closures [59]. ⊳

7. Summary

To the best of our knowledge, we have proven stability using the summation-by-parts technique for

an Active Flux method for the first time. To this end, we considered the linear advection equation

on an interval with periodic boundary conditions. The Active Flux method, a finite volume method

based on a globally continuous approach, has a cell average update plus point updates at the cell

edges. We have studied two ways of updating the point values. First the point value updates

using a central discretization (2.12) are chosen for purposes of theoretical analysis in section 3.1.

In section 3.2 the commonly used upwind (see (2.9) and (2.10)) version of the point value update

is considered. Stability is shown for both cases in section 4. In Section 5, we provide numerical

examples illustrating stability, consistent with the theoretical results in this paper. In Section 6,

we showed that the upwind Active Flux method is nullspace-consistent while the central one is

not. As an additional bonus, the relation between energy stability via summation by parts and

von Neumann stabiliy is shown in appendix B for our PDE at hand.
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A. Properties of block circulant matrices and Proof of Lemma 3.5

Block circulant matrices [15, 62] are an extension of circulant matrices and possess the general

form

𝐴 =

©­­­­­­«

𝐴
0

𝐴
1

𝐴𝑛−1

𝐴𝑛−1
𝐴

0
𝐴

1

𝐴𝑛−1
𝐴

0
𝐴

1

. . .

𝐴
1

𝐴𝑛−1
𝐴

0

ª®®®®®®¬
∈ R𝑛𝑚×𝑛𝑚

, (A.1)

with 𝐴𝑘 ∈ R𝑚×𝑚
for 𝑘 = 0, . . . , 𝑛 − 1.

The semi-discrete Active Flux method in one space dimension on a periodic domain yields

block circulant matrices 𝐷+ , 𝐷− and 𝑀 and consequently also 𝑀(𝐷+ − 𝐷−) has a block circulant
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structure. Due to the alternating difference formulas for point values and for cell averages, the

involved matrices hereby possess a specific structure of 2 × 2 subblocks

𝐴𝑘 =

(
𝑎𝑘 𝑎𝑘+1

𝑏𝑘 𝑏𝑘+1

)
, 𝑘 = 0, . . . , 𝑛 − 1.

We may thus exploit the theory of block circulant matrices to obtain eigenvalues and eigenvectors

of the given matrices.

Lemma A.1 (Eigenvalues of block circulant matrices). The eigenvalues of the 𝑛𝑚 × 𝑛𝑚 matrix (A.1)

are the eigenvalues of all matrices

𝐵𝑘 = 𝐴
0
+ 𝑟

𝑘
𝐴

1
+ . . . 𝑟

𝑘(𝑛−1)
𝐴𝑛−1

, 𝑘 = 0, 1, . . . , 𝑛 − 1, (A.2)

with 𝑟 = e
2𝜋i/𝑛 the roots of unity. If 𝜆 is an eigenvalue of 𝐵𝑘 with corresponding eigenvector 𝑣, then 𝜆 is

also an eigenvalue of 𝐴 with eigenvector (𝑣T

, 𝑟
𝑘
𝑣

T

, 𝑟
2𝑘
𝑣

T

, . . . , 𝑟
(𝑛−1)𝑗

𝑣
T)T.

Proof. Consider the following ansatz for an eigenvector of 𝐴

𝑒𝑘 = (𝑣T

, 𝑟
𝑘
𝑣

T

, 𝑟
2𝑘
𝑣

T

, . . . , 𝑟
(𝑛−1)𝑗

𝑣
T)T , 𝑘 = 0, 1, . . . , 𝑛 − 1, (A.3)

for some yet to be determined 𝑣 ∈ C𝑚
. Then, 𝐴𝑒𝑘 = 𝜆𝑘𝑒𝑘 if

𝐴𝑒𝑘 =

©­­­­­«
𝐴

0
𝑣 + 𝑟

𝑘
𝐴

1
𝑣 + . . . + 𝑟

(𝑛−2)𝑘
𝐴𝑛−2

𝑣 + 𝑟
(𝑛−1)𝑘

𝐴𝑛−1
𝑣

𝐴𝑛−1
𝑣 + 𝑟

𝑘
𝐴

0
𝑣 + 𝑟

2𝑘
𝐴

1
𝑣 + . . . + 𝑟

(𝑛−1)𝑘
𝐴𝑛−2

𝑣
...

𝐴
1
𝑣 + . . . + 𝑟

(𝑛−3)𝑘
𝐴𝑛−2

𝑣 + 𝑟
(𝑛−2)𝑘

𝐴𝑛−1
𝑣 + 𝑟

(𝑛−1)𝑘
𝐴

0
𝑣

ª®®®®®¬
= 𝜆𝑘

©­­­­­«
𝑣

𝑟
𝑘
𝑣
...

𝑟
(𝑛−1)𝑘

𝑣

ª®®®®®¬
. (A.4)

The 𝑖-th component of this equation is (𝑖 = 0, . . . , 𝑛 − 1)

𝑛−1∑
𝑗=𝑛−𝑖

𝑟
(𝑗−𝑛+𝑖)𝑘

𝐴 𝑗𝑣 + 𝑟
𝑖𝑘

𝑛−1−𝑖∑
𝑗=0

𝑟
𝑗𝑘
𝐴 𝑗𝑣 = 𝜆𝑘𝑟

𝑖𝑘
𝑣, (A.5)

which reduces to just one equation for all 𝑖 upon the choice 𝑟 = exp

(
2𝜋i

𝑛

)
. Then, the eigenvalue

problem reduces to

𝑛−1∑
𝑗=0

𝑟
𝑗𝑘
𝐴 𝑗𝑣 = 𝐵𝑘𝑣 = 𝜆𝑘𝑣. (A.6)

□

As shown in [62], all eigenvalues and eigenvectors of 𝐴 can be obtained in this manner. In

addition, while all circulant matrices can be diagonalized, block circulant matrices allow for block

diagonalization. A block circulant matrix does not necessarily possess a complete set of linearly

independent eigenvectors; however, it does so if the matrices 𝐵𝑘 can all be diagonalized. In this

case, the block circulant matrix can be diagonalized as well.

Lemma A.2. Let 𝐹 ∈ C𝑛×𝑛 be the unitary matrix with entries 𝐹𝑗𝑘 = 1√
𝑛
𝑟
(𝑗−1)(𝑘−1)

, 𝑟 = 𝑒
2𝜋i/𝑛 , and

𝐼𝑚 = diag(1, . . . , 1) ∈ R𝑚×𝑚 . For a block circulant matrix 𝐴 ∈ R𝑚𝑛×𝑚𝑛 as in (A.1), we have

(𝐹∗ ⊗ 𝐼𝑚)𝐴(𝐹 ⊗ 𝐼𝑚) = diag(𝐵
0
, . . . , 𝐵𝑛−1

), (A.7)

with 𝐵𝑘 , 𝑘 = 0, . . . , 𝑛 − 1 given in (A.2).
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Proof. Using

𝐹 ⊗ 𝐼𝑚 =
1√
𝑛

©­­­­­­­«

𝐼𝑚 𝐼𝑚 𝐼𝑚 · · · 𝐼𝑚
𝐼𝑚 𝑟𝐼𝑚 𝑟

2

𝐼𝑚 · · · 𝑟
𝑛−1

𝐼𝑚
𝐼𝑚 𝑟

2

𝐼𝑚 𝑟
4

𝐼𝑚 · · · 𝑟
2(𝑛−1)

𝐼𝑚
...

...

𝐼𝑚 𝑟
𝑛−1

𝐼𝑚 𝑟
2(𝑛−1)

𝐼𝑚 · · · 𝑟
(𝑛−1)2

𝐼𝑚

ª®®®®®®®¬
and 𝑟

𝑛
= 1, we first obtain

𝐴(𝐹 ⊗ 𝐼𝑚) =
1√
𝑛

©­­­­­«
𝐵

0
𝐵

1
𝐵

2
· · · 𝐵𝑛−1

𝐵
0

𝐵
1
𝑟 𝐵

2
𝑟

2 · · · 𝐵𝑛−1
𝑟
𝑛−1

...
...

𝐵
0

𝐵
1
𝑟
𝑛−1

𝐵
2
𝑟

2(𝑛−1)
. . . 𝐵𝑛−1

𝑟
(𝑛−1)2

ª®®®®®¬
with 𝐵𝑘 given in (A.2). Using 𝐹

∗
𝑗𝑘 =

1√
𝑛
𝑟
(𝑗−1)(𝑘−1)

with 𝑟 = 𝑒
−2𝜋i/𝑛

, i.e.,

𝐹
∗ ⊗ 𝐼𝑚 =

1√
𝑛

©­­­­­­­«

𝐼𝑚 𝐼𝑚 𝐼𝑚 · · · 𝐼𝑚
𝐼𝑚 𝑟𝐼𝑚 𝑟

2

𝐼𝑚 · · · 𝑟
𝑛−1

𝐼𝑚
𝐼𝑚 𝑟

2

𝐼𝑚 𝑟
4

𝐼𝑚 · · · 𝑟
2(𝑛−1)

𝐼𝑚
...

...

𝐼𝑚 𝑟
𝑛−1

𝐼𝑚 𝑟
2(𝑛−1)

𝐼𝑚 · · · 𝑟
(𝑛−1)2

𝐼𝑚

ª®®®®®®®¬
,

we have

(𝐹∗ ⊗ 𝐼𝑚)𝐴(𝐹 ⊗ 𝐼𝑚) =
1

𝑛

©­­­­­«
𝑛𝐵

0
𝑝(𝑟)𝐵

1
𝑝(𝑟2)𝐵

2
· · · 𝑝(𝑟𝑛−1)𝐵𝑛−1

𝑝(𝑟𝑛−1)𝐵
0

𝑛𝐵
1

𝑝(𝑟)𝐵
2

· · · 𝑝(𝑟𝑛−2)𝐵𝑛−1

... . . .
...

𝑝(𝑟)𝐵
0

𝑝(𝑟2)𝐵
1

𝑝(𝑟3)𝐵
2

· · · 𝑛𝐵𝑛−1

ª®®®®®¬
,

with 𝑝(𝑧) = 1 + 𝑧 + 𝑧
2 + . . . + 𝑧

𝑛−1

, where we exploit 𝑟
𝑘
= 𝑟

𝑛−𝑘
. Finally, for 𝑧 = 𝑟

𝑘
with 𝑘 ≠ 0 we

have 𝑝(𝑧) = 0, since the values 𝑟
𝑘
, 𝑘 = 1, . . . , 𝑛 − 1 are the roots of 𝑧

𝑛
= 1 which differ from 𝑧 = 1

and we may factorize 𝑧
𝑛 − 1 = (𝑧 − 1)(1 + 𝑧 + 𝑧

2 + . . . + 𝑧
𝑛−1). Thus, the block-diagonal form (A.7)

is proven. □

Proof of Lemma 3.5. We use Lemma A.1 and the notation described there. The eigenvalues of 𝑀

can then be determined by the eigenvalues of the matrices 𝐵𝑘 which in this case are given by

𝐵𝑘 =
©­­«
𝑚𝑝 + 2𝑚𝑝𝑝 cos𝜃 𝑚𝑣𝑝

(
1 + 𝑒

−i𝜃
)

𝑚𝑣𝑝

(
1 + 𝑒

i𝜃
)

𝑚𝑣

ª®®¬ , 𝜃 :=
2𝜋𝑘
𝑛

, (A.8)

with 𝑚𝑝𝑝 and 𝑚𝑣𝑝 determined by (3.11). The characteristic polynomial 𝑝 of 𝐵𝑘 is given by

𝑝(𝑧) = 𝑧
2 − 𝑡𝑧 + 𝑑 (A.9)

with 𝑡 and 𝑑 the trace and determinant of 𝐵𝑘 , respectively,

𝑡 = trace(𝐵𝑘) =
1

3

(
3(𝑚𝑝 + 𝑚𝑣) + (3𝑚𝑝 − 𝑚𝑣) cos𝜃

)
, (A.10)

𝑑 = det 𝐵𝑘 =
1

6

(
−3(9𝑚2

𝑝 − 8𝑚𝑝𝑚𝑣 + 𝑚
2

𝑣) − (9𝑚𝑝 − 5𝑚𝑣)(3𝑚𝑝 − 𝑚𝑣) cos𝜃
)
. (A.11)
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We are now interested in a range of parameters 𝑚𝑣 , 𝑚𝑝 for which 𝐵𝑘 has only positive eigenvalues

for any value of 𝜃. From the solution formula of quadratic equations it is clear that for positive

solutions one requires 𝑡 > 0 and 𝑑 > 0 which yields the following inequalities regarding the

coefficients of the characteristic polynomial:

3(𝑚𝑝 + 𝑚𝑣) + (3𝑚𝑝 − 𝑚𝑣) cos𝜃 > 0, (A.12)

−3(9𝑚2

𝑝 − 8𝑚𝑝𝑚𝑣 + 𝑚
2

𝑣) − (9𝑚𝑝 − 5𝑚𝑣)(3𝑚𝑝 − 𝑚𝑣) cos𝜃 > 0. (A.13)

The latter inequality can be rewritten as

𝑚
2

𝑣 − (9𝑚𝑝 − 2𝑚𝑣)(3𝑚𝑝 − 2𝑚𝑣) −
(
(9𝑚𝑝 − 2𝑚𝑣)(3𝑚𝑝 − 2𝑚𝑣) + 𝑚

2

𝑣

)
cos𝜃 > 0 (A.14)

i.e.

𝑚
2

𝑣 − 𝑠 −
(
𝑠 + 𝑚

2

𝑣

)
cos𝜃 > 0 (A.15)

with 𝑠 := (9𝑚𝑝 − 2𝑚𝑣)(3𝑚𝑝 − 2𝑚𝑣). For 𝑚𝑣 > 0, we obtain 𝑠 < 0 precisely for 2𝑚𝑣/9 < 𝑚𝑝 < 2𝑚𝑣/3.

In that case, by the strict triangle inequality, we have

|𝑠 + 𝑚
2

𝑣| < |𝑠| + 𝑚
2

𝑣 = 𝑚
2

𝑣 − 𝑠. (A.16)

Since the condition 𝑎 + 𝑏 cos𝜃 > 0 for all 𝜃 is equivalent to |𝑏| < 𝑎, one thus has proven (A.13) for

the range of parameters considered in the first statement of the Lemma. Furthermore, simply with

𝑚𝑝 , 𝑚𝑣 > 0 one obtains

|3𝑚𝑝 − 𝑚𝑣| ≤ 3|𝑚𝑝| + |𝑚𝑣| < 3(𝑚𝑝 + 𝑚𝑣) (A.17)

and thus (A.12) by the same argument. Thereby, we have proven the assertion that 𝑀 possesses

only positive eigenvalues if 𝑚𝑣 > 0 and 2𝑚𝑣/9 < 𝑚𝑝 < 2𝑚𝑣/3.

Finally considering the case of positive semidefinite matrices 𝑀, we note that the characteristic

polynomial 𝑝 may have a zero eigenvalue, which is the case if and only if 𝑑 = det 𝐵𝑘 = 0. For

instance, this happens if

• 𝜃 = 0 and either 𝑚𝑝 =
2𝑚𝑣

9
or 𝑚𝑝 =

2𝑚𝑣

3
,

• 𝜃 = ±𝜋
2

and 𝑚𝑝 =
4±

√
7

9
𝑚𝑣 =

{
0.738...𝑚𝑣 > 2

3
𝑚𝑣 ,

0.150...𝑚𝑣 < 2

9
𝑚𝑣 .

Analogously, other values of 𝜃 will likewise yield parameter values with 𝐵𝑘 possessing a zero

eigenvalue but will not be further studied here.

Considering the case 𝑚𝑝 =
2𝑚𝑣

9
, we have det 𝐵𝑘 =

1

6
𝑚

2

𝑣(1 − cos𝜃), which only vanishes for 𝜃 = 0,

and since we have trace(𝐵𝑘) ≠ 0 for 𝜃 = 0, 𝑚𝑝 =
2𝑚𝑣

9
, the eigenvalue 0 has multiplicity 1. This

proves the second statement of this lemma. The case 𝑚𝑝 =
2𝑚𝑣

3
is treated in Lemma 3.7. □

B. Relation to von Neumann stability

Von Neumann stability uses the Fourier transform to make statements about the behavior in time

of the 𝐿
2

norm of the solution. In its restricted setting of linear problems on periodic domains it

can also be used to derive a mass matrix that satisfies the periodic SBP property, as will be shown

now.
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B.1. General theory

Since averages and point values are independent, and since their nature and their update equations

differ, when performing von Neumann stability analysis they need to be associated to independent

Fourier modes. We thus write

𝑢𝑗 =

∑
𝜔

�̂�
avg(𝜔) exp(i𝜔 𝑗Δ𝑥) 𝑢𝑗− 1

2

=

∑
𝜔

�̂�
point(𝜔) exp(i𝜔 𝑗Δ𝑥) (B.1)

The summation is over all wave numbers 𝜔 that are compatible with the boundary conditions, i.e.,

𝑞 𝑗+𝑛 =

∑
𝜔

�̂�
avg(𝜔) exp(i𝜔(𝑗 + 𝑛)Δ𝑥) ≡

∑
𝜔

�̂�
avg(𝜔) exp(i𝜔 𝑗Δ𝑥) = 𝑞 𝑗 (B.2)

such that

𝜔Δ𝑥 = 2𝜋
𝑘

𝑛
𝑘 = 0, . . . , 𝑛 − 1. (B.3)

Since the method is linear, Fourier modes do not mix. From now on, we thus perform all

calculations for just one of them and 𝜔 is treated as a parameter. It is useful to introduce the

translation operator

𝜏 := exp(i𝜔Δ𝑥) = exp

(
2𝜋

𝑘

𝑛
i

)
. (B.4)

Indeed, for a single Fourier mode,

𝑢𝑗+1
= �̂�

avg(𝜔) exp(i𝜔(𝑗 + 1)Δ𝑥) = 𝜏𝑢𝑗 and similarly 𝑢𝑗+ 1

2

= 𝜏𝑢𝑗− 1

2

. (B.5)

The dependence of 𝜏 on 𝑘 shall not be made explicit in the notation.

In fact, 𝜏 = 𝑟
𝑘

that has appeared previously in Lemma A.1. The circulant matrices discussed in

appendix A have 2 × 2 blocks associated with one point value and one average. With 𝐴 defined in

(A.1), inserting into 𝐴𝑢𝑢𝑢 a Fourier mode yields

(𝐴𝑢𝑢𝑢)𝑖 =
𝑛−1∑
𝑗=𝑛−𝑖

𝐴 𝑗 �̂�𝜏
𝑗−𝑛+𝑖 +

𝑛−𝑖−1∑
𝑗=0

𝐴 𝑗 �̂�𝜏
𝑖+𝑗 𝜏𝑛=1

= 𝜏𝑖
𝑛−1∑
𝑗=0

𝐴 𝑗 �̂�𝜏
𝑗
= 𝜏𝑖𝐵𝑘 �̂� (B.6)

where �̂� =

(
�̂�

point

�̂�
avg

)
. The parallel to Equation (A.5) is obvious. While the matrices 𝐵𝑘 have been

so far only used to determine the eigenvalues of 𝐴, in fact it makes sense to call 𝐵𝑘 the Fourier
symbol �̂� of 𝐴 that will be henceforth denoted by a hat.

Consider a generic numerical method

d

d𝑡
𝑢𝑢𝑢 + 𝐴𝑢𝑢𝑢 = 0. (B.7)

Von Neumann stability analysis amounts to studying the eigenvalues of �̂�. Using the diagonal-

ization �̂�
−1

Λ̂�̂� of �̂� in

d

d𝑡
�̂��̂� + Λ̂�̂��̂� = 0 (B.8)

and calling �̂� := �̂��̂�, each component �̂�ℓ of �̂� fulfills the ODE

d

d𝑡
�̂�ℓ + 𝜆ℓ�̂�ℓ = 0 (B.9)

solved by �̂�ℓ ,0 exp(−𝜆𝑡). We have preservation of the norm of �̂�ℓ if 𝜆 is purely imaginary. Its norm

decays if 𝜆 has positive real part.
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B.2. Preservation of energy

Consider now a situation in which all eigenvalues of �̂� are purely imaginary. Then
1

�̂�
†
�̂� = �̂�

†
0
�̂�

0
, (B.10)

i.e., the 𝐿
2

norm of �̂� is preserved. The 𝐿
2

norm of �̂� is not preserved, but it needs to be weighted:

�̂�
†
�̂� = �̂�

†
�̂�
†
�̂��̂�. (B.11)

Call �̂� := �̂�
†
�̂�. One observes both the symmetry �̂�

†
= �̂� and the skew-symmetry of �̂��̂�:

�̂��̂� = �̂�
†
�̂��̂� �̂�

−1

�̂�︸︷︷︸
=id

= �̂�
†
Λ̂�̂� = −(�̂�†

Λ̂�̂�)† = −(�̂�†
�̂��̂�)† = −(�̂��̂�)† , (B.12)

where we have used Λ
†
= −Λ. Thus, the Fourier symbol of the matrix 𝑀 is simply �̂�

†
�̂�, with as

many free parameters as the dimension of the space on which �̂� acts, one for each free scaling

parameter of the eigenvector.

Consider now 𝐴 = 𝐷, the space discretization of central Active Flux. �̂� reads(
1

𝜏 − 𝜏 3 − 3

𝜏
𝜏 − 1 0

)
(B.13)

and its eigenvalues are

𝜆�̂�
± =

𝜏 − 1

2𝜏

(
−𝜏 − 1 ±

√
1 + 14𝜏 + 𝜏2

)
. (B.14)

They are indeed imaginary, since upon the transformation 𝜏 ↦→ 1

𝜏 (complex conjugation) they map

into their negative

1

𝜏 − 1

2

𝜏

(
−1

𝜏
− 1 ±

√
1 + 14

1

𝜏
+ 1

𝜏2

)
= −𝜏 − 1

2𝜏

(
−1 − 𝜏 ±

√
𝜏2 + 14𝜏 + 1

)
= −𝜆�̂�

± . (B.15)

An ingenious choice of normalization for the eigenvectors gives rise to the following Fourier symbol

of the mass matrix:

�̂� =

(
𝛼 𝛽
𝛽𝜏 3𝛼 + 𝛽(1 + 𝜏)

)
. (B.16)

Here, 𝛼 and 𝛽 are any Laurent polynomials in 𝜏 under the condition that the matrix remains

Hermitian. This is equivalent to

�̄� = 𝛽𝜏, (B.17)

�̄� = 𝛼. (B.18)

If 𝛽 =
∑𝑠

ℓ=−𝑠 𝛽ℓ𝜏
ℓ
, then condition (B.17) reads

�̄� =

𝑠∑
ℓ=−𝑠

𝛽ℓ𝜏
−ℓ

=

𝑠∑
ℓ=−𝑠

𝛽−ℓ𝜏
ℓ
=

𝑠+1∑
ℓ=−𝑠+1

𝛽ℓ−1
𝜏ℓ =

𝑠∑
ℓ=−𝑠

𝛽ℓ𝜏
ℓ+1

= 𝛽𝜏. (B.19)

The first polynomials for 𝑠 = 0, 1, 2, . . . that fulfill this are, up to scaling and linear combinations,

0, 1 + 1

𝜏
, 𝜏 + 1

𝜏2

, . . . (B.20)

1

The dagger denotes the Hermitian (conjugate) transpose.

19



Similarly, 𝛼 must be symmetric upon the transformation 𝜏 ↦→ 1

𝜏 , i.e. the first few polynomials

(up to scaling and linear combinations) are

1, 𝜏 + 1

𝜏
, 𝜏2 + 1

𝜏2

, . . . (B.21)

One choice is 𝛽 = 0, 𝛼 = 1, yielding matrix (3.4), another is

𝛼 = 𝑚𝑝 +
3𝑚𝑝 − 𝑚𝑣 + 2𝑚𝑣𝑣

6

(
𝜏 + 1

𝜏

)
∈ span

(
1, 𝜏 + 1

𝜏

)
, (B.22)

𝛽 = −(3𝑚𝑝 − 𝑚𝑣)
1 + 𝜏
2𝜏

∈ span

(
1 + 1

𝜏

)
. (B.23)

yielding (3.6). Further choices can thus be systematically derived, for instance using

𝛼 = 𝑚𝑝 + 𝑦

(
𝜏 + 1

𝜏

)
+

𝑚𝑣𝑣𝑣 − 𝑚𝑣𝑣𝑝

3

(
𝜏2 + 1

𝜏2

)
∈ span

(
1, 𝜏 + 1

𝜏
, 𝜏2 + 1

𝜏2

)
,

𝛽 =
−3𝑚𝑝 + 𝑚𝑣

2

(
1 + 1

𝜏

)
+ 𝑚𝑣𝑣𝑝

(
𝜏 + 1

𝜏2

)
∈ span

(
1 + 1

𝜏
, 𝜏 + 1

𝜏2

)
.

with 𝑦 :=
3𝑚𝑝−𝑚𝑣+2𝑚𝑣𝑣−2𝑚𝑣𝑣𝑝

6
one obtains

𝑀 =

©­­­­­­­­­­­­­­­­­­«

. . .

𝑚𝑣𝑣𝑣−𝑚𝑣𝑣𝑝
3

𝑚𝑣𝑣𝑝 𝑦
𝑚𝑣−3𝑚𝑝

2
𝑚𝑝

𝑚𝑣−3𝑚𝑝
2

𝑦 𝑚𝑣𝑣𝑝

𝑚𝑣𝑣𝑣−𝑚𝑣𝑣𝑝
3

𝑚𝑣𝑣𝑣 𝑚𝑣𝑣𝑝 𝑚𝑣𝑣

𝑚𝑣−3𝑚𝑝
2

𝑚𝑣

𝑚𝑣−3𝑚𝑝
2

𝑚𝑣𝑣 𝑚𝑣𝑣𝑝 𝑚𝑣𝑣𝑣
𝑚𝑣𝑣𝑣−𝑚𝑣𝑣𝑝

3
𝑚𝑣𝑣𝑝 𝑦

𝑚𝑣−3𝑚𝑝
2

𝑚𝑝

𝑚𝑣−3𝑚𝑝
2

𝑦 𝑚𝑣𝑣𝑝

𝑚𝑣𝑣𝑣−𝑚𝑣𝑣𝑝
3

𝑚𝑣𝑣𝑣 𝑚𝑣𝑣𝑝 𝑚𝑣𝑣

𝑚𝑣−3𝑚𝑝
2

𝑚𝑣

𝑚𝑣−3𝑚𝑝
2

𝑚𝑣𝑣 𝑚𝑣𝑣𝑝 𝑚𝑣𝑣𝑣

. . .
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