SIAM J. MATH. ANAL. @ 2023 Society for Industrial and Applied Mathematics
Vol. 55, No. 2, pp. 1007-1047

BGK MODEL FOR TWO-COMPONENT GASES NEAR A GLOBAL
MAXWELLIAN™
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Abstract. In this paper, we establish the existence of the unique global-in-time classical so-
lutions to the two-component Bhatnagar—Gross—Krook (BGK) model suggested in [C. Klingenberg,
M. Pirner, and G. Puppo, Kinet. Relat. Models, 10 (2017), pp. 445-465] when the initial data is
a small perturbation of global equilibrium. For this, we carefully analyze the dissipative nature of
the linearized two-component relaxation operator and observe that the partial dissipation from the
intraspecies and the interspecies linearized relaxation operators are combined in a complementary
manner to give rise to the desired dissipation estimate of the model. We also observe that the conver-
gence rate of the distribution function increases as the momentum-energy interchange rate between
the different components of the gas increases.
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1. Introduction. In this paper, we study the existence and the asymptotic
behavior of the Bhatnagar—Gross—Krook (BGK) model for two-component gases sug-
gested in [47]:

O F1 +v -V Fy =ni(Mq1 — Fi) + ng(Mig — Fr),
(1.1) O Fy +v -V Fy=no MQQ—F2)+TL1(M21 —FQ),
Fy(x,v,0) = Fip(z,v), Fy(x,v,0) = Fyo(z,v).

—~~

The distribution function F;(x,v,t) denotes the number density of the ith species
particle at the phase point (z,v) € T3 xR? at time t € RT for i = 1,2. The intraspecies
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Maxwell distributions in the BGK operator M; are defined as

n; lv — Uy|? ,
Mii = —exp <—2T> (i=1,2).
om Lo mi

i

Here m; (i = 1,2) denotes the mass of a molecule in the ith component, and we assume
that my > my throughout the paper without loss of generality. The number density
n;, the bulk velocity U;, and the temperature T; of the ith particle are defined by

nz(x7t):/ FZ‘(SC,’U,t)dU,
R3

1
Ui(z,t) = — Fi(x,v,t)vdv,
n; Jrs

Ti(.CB,t) =

3 /RS Fi(z,v,t)m;|v — Uy |*dv.

The interspecies Maxwellian distributions are defined by

ny v — Upa|? no v — Up |?
Mz = ———5exp <_‘2T12> ’ Mm:ﬁe}(p <_2T21 ’
\/2m2L

\/2m iz my

mi ma

where the interspecies bulk velocities Uio, Uz and the interspecies temperatures 11,
Ty, are defined by

Uiy = 66U + (1 = 8)Us,

Usy = "2 (1~ §)U, + (1 ~ Mg —5)> Us,
mo ma
and
Tiy =wTi + (1 — w) Ty +y|Uz — Ur|?,
To1=(1—w)Ty +wlh+ (;ml(l —0) (:;(5— 1)+1+5) —“Y) Uz = UL .

Here, the free parameters § and w denote the momentum interchange rate and the
temperature interchange rate, respectively. In (1.1), n;(M;; — F;) (i = 1,2) are the
intraspecies relaxation operators for the ith gas component, while n;(M,;; —F;) (i # j)
are the interspecies relaxation operators between different components of the gas.
We note that the interspecies relaxation operators describe the interchange of the
macroscopic momentum and the temperature between two different species of gas.
These relaxation operators satisfy the cancellation properties

/ (Mu_F)(lamivvmi|v|2) dUZO, 1=1,2
R3

Mlg —F1 dU— / (M21 —Fg)dUZO
R3

R3

.

7‘L1 M12 —Fl)mlvdv+/ ng(./\/lzl —Fg)mgvdv:0,

R3 R3

/ ny Mlg—Fl)ml"U‘ dU+/ n2(M21—F2)m2‘U’2d'U:O,
R3 R3
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leading to the following conservation laws of the density, total momentum, and total
energy:

d d
— Fi(z,v,t)dvde = — Fy(z,v,t)dvdx =0,
dt T3 xR3 dt T3 xR3
d
(1.2) — (Fy(z,v,t)myv + Fa(x,v,t)mev) dvdx =0,
dt T3 xR3
d
— (F1 (2,0, t)ma|v]* + Fo(z,v,t)ma|v|*) dvdz = 0.
dt T3 XRS

To ensure the positivity of all temperatures, the free parameters w, 4, and ~ are
restricted to

my

mo

1+m§5<1, 0<w<1,

ma

and

0§7§”“(1—5)[<1+W>5+1—”“].
3 Mo mo

For more details, see [47].

The main goal of this paper is to establish the global-in-time classical solution of
the mixture BGK model when the initial data is close to global equilibrium. For this,
we consider the following global equilibrium for each particle distribution function:

3
/Mo _ malv|?

3 2
A/ _ mq|v|
e 2 y

e 2, p2(v) = ngg
var Vo
for some fixed parameters my and ngo, £ = 1,2. We note that nyg is the total mass
of the kth component.

We then define the perturbations fr (k=1,2) by Fy = pux + /fir fr and rewrite
the mixture BGK model (1.1) in terms of fj as

Ocfir +v -V fi =Lii(f1) + Li2(f1, f2) + T (f1) + Ti2(f1s f2)s
Ocfo +v-Vyfo=Laa(f2) + La1(f1, f2) + T22(f2) + Ta1(f1, fo).

On the right-hand side (R.H.S), Li; and Loy denote the linearized part of the
intraspecies relaxation operators and Lo and L9, are the linearized operators for
interspecies relaxation operators that include terms describing the interchange of mo-
mentum and energy. Finally, I'11, I'og, I'12, and I's; are nonlinear perturbations. For
detailed derivation of (1.3), see section 2.

We introduce

p1(v) =nio

(1.3)

L(f1, fo) = (L11(f1) + L12(f1, f2), Laa(f2) + La1(f1, f2)),

and

I'(f1, f2) = T1ii(f1) + Tia(fi1, f2), Taa(f2) + Tar(f1, f2)),

to rewrite (1.3) in the following succinct form:

(O +v - Vi) (f1, f2) = L(f1, f2) + T(f1, fo)-

To state our main result, we need to set up several notations.
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e The constant C' in the estimates will be defined generically.
e (-,-)r2 and (-,-)z2 denote the standard L? inner product on R? and T2 xR3,
respectively:

oz = [ 1@odv, (fg)sz, = [ f@lgtavdude

® ||-|lz2 and |[-[|z2 = denote the standard L? norms in R3 and T2 x R3, respec-
tively: ’

1= ([ @Pao) ez, = ([ 1o Paue)

e We define an L? inner product between two vectors (f1, f2) and (g1, g2) as

(et o))z = [ (@0 ()+ fa)mo)do,
(Rt (orgeiz, = [ (Ble0)a(e0) + fole,vga(e,v) dod.

T3 xR3
e The standard L? norm of a vector denotes

1
2

[Go)ae ol =( [ (5P +lgwP)ar)

1
2

| (f(z,v),9(z,0)) |22, = (/T

e We use the following notations for multi-indices differential operators:

(1f (2, 0)[2 + g, v)[2) dvdm)

3 xR3

Oé:[a070417042,@3], 5:[/31752753]7
and

8§ _ a;léo 9L H¥2 93 §hL P2 HPs |

xr1 X2 X3 TU1 Tv2 TU3

e We employ the following convention for simplicity:
95 (f1, f2) = (85 f1,08 f2).
e We define the high-order energy norm &y, n,(f1(t), f2(t)):

Enum (i) fa®) = D 05 (fi1 (1), fa(8)) N2 -

|0¢|SN1, |B‘SN2
N1+ N2=N

For notational simplicity, we use £(t) to denote En, n, (f1(t), f2(t)) when the
dependency on (N7, N3) is not relevant.
We are now ready to state our main result.

THEOREM 1.1. Let N > 3. We set the macroscopic quantities of the initial data
to the same as that of the global equilibria:
1 1
/ Fio(z,v) myv dvda::/ wx(v) myv dvdz,
T3 x R3 mi|v? T3 xR3 m|v?

for k=1,2. We define fro as Fro = pr + ik fro- Then there exists € > 0 such that
if Eny Ny (f10, f20) < €, then there exists a unique global-in-time classical solution of
(1.1) satisfying the following:
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o The two distribution functions are nonnegative:

Fr(z,v,t) = pg + ik fr > 0.

e The conservation laws hold (1.2).
o The distribution functions converge exponentially to the global equilibrium:

ENny.vs (f1, f2) () < Ce ™ EN, N, (f10, f20)-

In the case of No =0, that is, if En, 0(f10,f20) < €, we have the following
more detailed convergence estimate:

Enyo(f1, f2)(t) < Ce*"min{(lfé)’(lfw)}tgm,o(floa f20)-

o Let (f1,f2) and (f1, f2) be solutions corresponding to the initial data ( fio, f20)
and (f10, f20), respectively, then the system satisfies the following L? stability:

Do 0% = ), 0%(fa = f)llez,

lo| <N

<C Z 10%(f10 — fi0), 0*(fao — fzo)”Lg,)v

la| <N

Remark 1.2. (1) The convergence rate in the case of Na =0 shows that the higher
interchange rate (6 and w close to 0) gives the faster convergence rates.
(2) In the mathematical perspective L? energy analysis is relevant in that the dissipa-
tive property of the linearized operator can be captured only in L? space. High-order
regularity is required to close the nonlinear terms using Sobolev embeddings. From
the physical point of view, the assumption on the small high-order energy norm on the
initial data means that initially the gas velocity distribution is a small perturbation
of the global equilibrium.

The main result is obtained by an extended application of the high-order energy
methods for BGK models in [71, 74], which in turn is based on the energy methods
developed to study the existence and asymptotic behavior of classical solutions for
Boltzmann type equations near equilibriums [38, 39, 40]. The most important step
in such energy methods is the derivation of the full dissipative mechanism of the
linearized operator. Unlike the results mentioned above, we observe that the partial
dissipation from the intraspecies and the interspecies linearized relaxation operators
has to be combined in a complementary manner to obtain the desired dissipation
estimate of the model. We also observe that the energy-momentum interchange rate
is directly related to the asymptotic convergence rate. More precisely, to investigate
the dissipative property of L, we decompose the linearized interspecies relaxation
operator L;; (i # j) further into the mass interaction part L}j and the momentum-
energy interaction part L?j.

so that Lyp = Li, + L%, and Loy = L, + L2,. (Precise definitions of LY, and L%,
will be given in section 2 for (k=1,2).) We first derive from an explicit computation
that the intraspecies operator L;; and the mass interaction part of the interspecies
operator LI, and Li, give rise to the following partial dissipative estimate:

(1.4) (Luy+ Lig) fr, fi)rz , + (L2 + L) fa, fa) 2,
' = —(n10+n20)|(I = P, 1 = P)(f1, )72
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where I is the identity operator, and Py (k= 1,2) is the L? projection onto the linear
space spanned by

NN AN TS

We also used the notation (I — P1,I — P5)(f1,f2) = (f1 — P1f1,fa — Pafs) for sim-
plicity. We note that the dissipation estimate above is too weak in that it involves
10-dimensional degeneracy, which is 4-dimensional bigger than the 6-dimensional con-
servation laws in (1.2). It is the additional dissipation from the momentum-energy
interaction parts L3,, L3; of the interspecies operators Lis and La; that make up for
the deficiency,

(L3 fi)ez, + (L3, f2) 2, < —min{(1 =), (1 —w)} (n10 +n20)

(1.5) ) )

< (1P P (s ) I3, = P f2) e )
where P is an orthonormal L? x L? projection on the space spanned by the following
6-dimensional basis:

(V71,0 (0, /72), (my v/, mavy /1), (ol = 3) /77, (malol® — 3)/7iz) .

Then partial dissipation estimates (1.4) and (1.5) complement each other to give rise
to the following two-component dissipation estimate for L:

(1.6)
(Lfs f2)s (s f2))az, < —(mao+moo) (max{d,wh| (1 = P T = P)(f1, £2) 32,

+min{(1-26),(1—w)} | - P)(fl,fz)llig,u)-

The dissipation estimate (1.6), together with further analysis on the degeneracy
part through the standard micro-macro decomposition, provides the following full
coercivity depending on the interchange rates:

(L(O*(f1, f2)),0%(fr, f2)) 2 , < —mmin{(1 —§), (1 — w)} Z ||(3a(f17f2)||%§w-

la| <N

Due to the presence of the momentum interchange rate 6 and the energy interchange
rate w between different components in the dissipation estimate, we see that the larger
interchange rate (when ¢ and w are close to zero) leads to the stronger dissipation
and, therefore, the faster convergence to the global equilibrium:

ST 10 (A1), fa)3s < e AC-DI S 5o (£,(0), f(0)[32

la| <N la| <N

1.1. Literature review. We start with a review of the mathematical results of
the mono-species BGK model. Perthame established the first result on global weak
solutions for general initial data in [52]. In [53], the authors considered weighted-
L bounds to obtain the uniqueness. Desvillettes considered the convergence to
equilibrium in a weak sense [26]. Ukai proved the existence of the stationary solution
on a finite interval with inflow boundary condition in [67]. In [75], the L>® work in [52]
is generalized to an weighted LP space. Classical solutions near-global equilibrium is
constructed in [7] using the spectral analysis of Ukai [66] and by using the nonlinear
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energy method of Yan Guo [38, 39, 40| in [71]. The nonlinear energy method is
then employed further to study several types of BGK models [5, 6, 44, 71, 73, 74].
Saint-Raymond considered the hydrodynamic limits of the BGK model in [58, 59].
For the numerical study of the BGK model, we refer to [8, 14, 22, 23, 24, 25, 48,
56, 57].

Various BGK models to describe the dynamics of multicomponent gases are pro-
posed in the literature. The first mixture BGK model was suggested by Gross and
Krook in [37] where conditions required for the two-species conservation laws are pre-
sented without precise definitions of equilibrium coefficients. Several physicists have
proposed possible recipes for such equilibrium coefficients for the two-species BGK
model in [35, 43, 60]. Extension to the N-species model was made in [33]. The first
consistent multispecies BGK model was derived in [1], in which the authors used
only a single relaxation operator instead of the combination of inter- and intraspecies
relation operators. Fick’s law and Newton’s law are considered in [17] under the re-
striction T;; = T}j; for i # j (i,j =1,...,N). The mixture BGK model imitating the
velocity and temperature relaxation of the mixture Boltzmann equation is suggested
in [42] with the restriction U;; = Uj; and T;; = Tj;. The authors in [47] suggested
the mixture BGK model that can control the interchange rate of momentum and
temperature through free parameters in a binary mixture. The arbitrary N-species
mixture BGK model imitating the interchange of the momentum and temperature of
the Boltzmann equation was suggested in [13].

The BGK model for gas mixtures has also been extended to the ES-BGK model,
polyatomic molecules, chemical reactions, or the quantum case; see, for example,
[4, 11, 12, 36, 46, 48, 55, 62, 72]. For the applications of the mixture BGK models, we
refer to [8, 9, 14, 27, 28, 31, 54, 56]. The literature on mathematical analysis of the
mixture BGK models is limited. The existence of mild solutions for [47] can be found
in [45]. In [49], the authors prove exponential relaxation to equilibrium with explicit
rates by constructing an entropy functional. The hypocoercivity for the model [47] is
investigated in [49].

A review of the multispecies Boltzmann equation is in order. In [39], the author
established the global existence for the mixture of a charged particle described by the
Vlasov-Maxwell-Boltzmann equation. The mild solution and uniform L' stability
are obtained in [41]. A mass diffusion problem of the mixture and the cross-species
resonance is studied for a one-dimensional case in [61] based on the work in [50]. In
[16], the author constructed the global-in-time mild solution near-global equilibrium
for the mixture Boltzmann equation. The Vlasov—Poisson—Boltzmann equation was
considered in [30] about large time asymptotic profiles when the different-species
gases tend to two distinct global Maxwellians. In [32], the existence and uniqueness
are constructed in spatially homogeneous settings when an initial data has upper
and lower bounds for some polynomial moments. The authors in [15] obtained some
energy estimates.

For physical or engineering references on the studies on multicomponent gases at
the kinetic level, we refer to [2, 3, 51, 60, 61, 63, 64, 65, 67, 68, 70]. Some general
reviews of the Boltzmann and the BGK model can be found in [10, 18, 19, 20, 21, 29,
34, 69].

This paper is organized as follows. In section 2, we linearized the system (1.1)
to obtain (1.3). In section 3, we derive the dissipation estimate of the linearized
relaxation operator. The local-in-time classical solution is constructed in section 4.
In section 5, the full coercivity of L is recovered when the energy norm is sufficiently
small. Last, we establish the global-in-time classical solution in section 6.
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2. Linearization of the mixture BGK model.

2.1. Linearization of the mixture Maxwellian. In this part, we linearize the
interspecies Maxwellian M1 and May;. We first define the macroscopic projection
on L? and state the linearization result of the monospecies local Maxwellian M y.

DEFINITION 2.1. We define the macroscopic projection operator Py in L2 for
k=1,2:

pkle/ f@dvm+nz43fyﬂdv.vm
6n,€ / f(mglv]? — 3)/prdv(m|v]® — 3)/ik.

We denote the 5-dimensional basis as (i =2,3,4)

1 mg my|v]? —
(2.1) €k1=\/T% I i = nikovz‘fl\/,uk, eps = ——— N \/Mk

The 5-dimensional basis set {e;}i=1,... 5 and {ez;}i=1,.. 5 construct an orthonormal
basis in L2, respectively. So, we can write

Pif= > (fiew)rzeni and Pof = Y (fiezi)r2e.

1<i<5 1<i<5

LEMMA 2.2 (see [71]). The monospecies BGK Mazwellian My, is linearized as
follows:

Mk (Fr) = i + 1 Pr fre + /1 T (fres fr),

where the nonlinear term Ty (fr, fx) is given by

[3 n@aUeaTO, UQ,UQ
Crr(frs fr) = / kO, R0k T kO, Zk )Mgk(e)(l—ﬁ)dﬁ
1<”<5 VI Rij(nko, Tio)
X (freri) 12 (fr> exs) L2
for k =1,2. The function P;j(x1,...,z5) denotes a generic polynomial depending
on (x1,...,x5) and R;j(z,y) denotes a generic monomial R;;(x,y) = z™y™, where

n,m € NU{0}. The precise definition of the macroscopic fields (nko, Ukg, Tro) will be
given in Proposition 2.3.

Proof. The linearization of the monospecies BGK Maxwellian My, is in [71] for
the case ngg = 1 and my = 1. For a general niy and my, the linearization of Mg
is a special case of the linearization of M1s and My with the choice § =w =1 (see
(2.10) and (2.11), respectively). O

PROPOSITION 2.3. The two-species BGK Maxwellians Mys and Moy are lin-
earized as follows:

Mia(F) = py + Prfiy/i+(1-9) Z (\/Z;S\/E<f2,e2i>L%_<flpeli>Lg> e1iv/
2<i<d

+(1-w) <\/E<f2»€25>m—<f1’615> )615\ﬁ+\ﬁF12(f1,f2)
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and

Mo (F) :M2+P2f2\/ﬁ+%(1—5) Z (\/ij Zj<flaeli>L%_<f27€2i>L%> e2i\/ 12
2<i<4

+(1-w) (\/ %<f17€15>L% - <f27625>Lg> eas/ 2 + /p2l'21(f1, f2).

We give the precise definition of the nonlinear terms I'yo and I'sy in section 2.2.

Proof. We first define the following transition of the macroscopic fields, which
shows the transition from the macroscopic fields of global Maxwellian (§ = 0) to the
macroscopic fiels of the local Maxwellian (6 = 1) (we note that (ngg, Ugs, Tko)|o=1 =
(nk, Uy, Ti,) and (e, Uk, Tko)lo=0 = (1%0,0,1)):

(2.2) Nk — an —+ (1 — 9)7’%0, leQng = GnkUk, Gkg = HGk,

where

3ng Ty + mknk|Uk|2 — 3ny
Gk - \/6 )

for k=1,2. We also denote two-species macroscopic fields as

(2.3)
Ui20 = 0U1p + (1 — 6)Ugp,
Uz19 = m(1 —0)Up + <1 - m(1 — 6)> Usg,
mQ m2
Tio9 = wTig + (1 — w)Tag + y|Uzp — Usgl?,

1 m
T519 = (1 — OJ)T19 + wThy + (3m1(1 — (5) <’ml(5 — 1) +1+ 5) — 'y) |U29 — U19‘2.
2

Then we consider the two-species BGK Maxwellians M5 and M7, which depend on
0:

n v —Ujz0|?
M (6) = 7193exp (_‘129> :

T120
o T1ze 2 mi
my
2
n2¢ |v — Usi
M21(9):73€Xp <_2TZIG .
o L2160 e
ma

The definition of ngg, Ug, Tre gives
(nko, Uko, Tko) lo=1 = (nie, Ug, Tk)  and  (nkg, Uko, Tko) lo=0 = (nk0,0,1),
so we have
Mia(1) = Mz, Mi2(0) = p,
and

Mai(1) =Mai, Mo (0) = po,
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where we used Uyog = Us1g =0 and 199 = T510 = 1. We apply the Taylor expansion
to M12(9) and ./\/l21 (9)

1
Mua(1) = i+ Mi(0) + / ",(60)(1 — 6)do,
0
and

Mo1(1) = po + M5 (0) + [ ML (0)(1 —0)db.
0

By the chain rule, we compute the linear term M;;(0):

(2.4)

v [ d(n1g,m19U1e, G1o, 129, 120U, G29) ’
My (0) =
do
" <a(meaanw?Gle,n29,n29U29,G29)

1
v n " M 9 ,
a(nle,U19,T19,n29,U29,T20) ) ( (n160,U16,T10,m26,U20,T20) l]( )) —o

for (i,5) = (1,2) or (2,1). Although M2 does not depend on ny, we use the above
form for the convenience of the calculation. In this proposition, we focus on the linear
terms M,(0) and M, (0). The exact form of the nonlinear terms will be presented

in section 2.2. The remaining proof proceeds by stating some auxiliary lemmas below.
O

LEMMA 2.4 (see [71]). Let us define

30T +mn|U* —3n

G
V6
Then we have
i 1 0 0 0 0 T
U, n 0 0 0
J: W g UQ 0 n 0 0 ,
(n, U,T) Us 0 0 n 0
3T+m|UI’=3  2nUym  2nUsm  2nUsm  3n
L V6 V6 V6 V6 V6
and
[ 1 0 0 0 0
_% % 0 0 0
R
mUPP-3T+3 _2mU; _2mUs _2mUs \/El
| 3n 3 n 3 n 3 n 3n |

Proof. In the case of m; = 1, it is proved in [71], and by the same explicit
calculation, we can extend the result for general m;. We omit it. O

2.1.1. Linearization of Mj,. We first consider the calculation of M/,(0) in
(2.4).
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LEMMA 2.5. We have

OIMiz(0) 1 OM12(0)
— 9) 2| 5 ,
( ) anl@ —o n 0“1 ( ) 8U10 —o mivpy
8M12( ) m1’U‘2 -3 8M12(0)
(3) 8T19 9:0 w 2 IL[/17 ( ) 8U29 9:0 ( (S)mlvl_,bl,
OM5(6) o my|v|? —

Proof. For readability, we ignore the dependence on 6.
(1) By an explicit computation, we have

oM 1
- z_ L
n1 ny
(2) Note that both Uy and T2 depend on U;. So, the chain rule gives
oMz OUi2 OMi2 n 0T OM 2

oU; a oU; 0Uis oU; 0T1s
v—Ups

= (5m1

31 — Ul
Mg —2y(Us — Uy) <—+ WM) Mo

12 T12 2T122

(3) An explicit calculation gives

8/\412 8T12 8/\/112 < 31 m1|v—U12|2>
= =w a2 M12

oT, 9Ty dTa  \ 2T 272,

(4) Similar to case (2), both U;2 and T2 depend on Us.

OMiz  OUip OMio n OT19 OM2
oU, - OUs 0OUis oUy 0T19
—Uio

2(1—5)7711 Mo+ 27Uz — Uy) (-2-1—

(5) By an explicit computation, we have

_ 2
OMiz _ T3 0Miz _ () (_3 1 +m1!vU12!> My

oy, — 9Ty 0T 2To 272,
Substituting
(2.5) (n16, Ur, T10, U2, T2p)| ,_y = (n10, Ur0, Th0, Uz0, T20) = (n10,0,1,0,1)
and
(2.6) Ui2glo=0 = U210l9=0 =0,  Ti26]9=0 = T216]6=0 =1,
in the above computations, we get the desired result. a

Now we proceed with the proof of Proposition 2.3 for M2(F'). By the definition
of the transition of the macroscopic fields (2.2) and the definition of the basis (2.1),
we have
(2.7)
d(nye,nkeUre, Gre)

2
o ( | v, [ ooy, [ fkm’“'”‘ N/ dv)
—(<fka€k1>L%7<fka€k2>L37<fk7€k3>L%7<fka€k4>L%7<fkaek5>L5)7
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for k=1,2. For notational brevity, we define

O(nko,nkoUko, Gro)

Jrg =
w0 O(nko,Uke, Tio)

Then applying Lemma 2.4 gives

and

(2 8) (3(7119,n19U19,G19,n297n29U29’G29)>_1
0(n19,U19, 19,129, U9, T29)

[ 0],
6=0 0 Jée‘e:o

where we used

1 1
Ji 0 J 0
2.9 = 1 .
(29) [ 0 Jo ] [ 0 Jyt }
We substitute (2.7), (2.8), and Lemma 2.5 into (2.4) to obtain

12(0) = fl\ﬁdv%- /flv\ﬁdv

oy m1|v \/5 / m1|v \ﬁdv
3n10 Jgs

+—(1 m”’“l/ Fav/fiadv

2
L B R R
3 nag R3

Using the definition of the basis in (2.1), we simplify it as follows:

5mlvu1

(2.10)
1200) = (frsen)zenv/m +6 > (fi,en)pzeny/imn +w(fi,eis) €15/

2<i<4

n / n
(1=0) /-2 Z (f2,e2i) r2e1iv/p+(1-w) Tm<f2,€25>Lg€15M-
2 9<i<a 20

Adding and subtracting the term

(1=6) > (frer)rzenyin + (1 —w)(fi,e15) ze15v/1

2<i<4
gives
/ N /M
12(0)=Pifiy/i+(1-6) <\/ m\/njz(fz,ezzﬁg - <f1,€1¢>Lg> eriv/i
2<i<4

F(1-w) <\/Z> faceashiz = rsexshz ) exsyir

This completes the proof for the linearization of Mjs.
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2.1.2. Linearization of My;. Now we consider the calculation of Mo,
in (2.4).
LEMMA 2.6. We have

OMaig 1 OMa1g ( m >

1 = — o, 2 =11——(1-=9) ) mavpus,

(1) e |ps 1 (2) Moo oy mg( ) ) mavpg
8./\/1219 mQI’UP -3 8/\/1219 mq

3 — W lio, 4 =—(1—=90)movus,

(3) T |,y 2 Iz (4) o oy m2( Jmavpiz
OMa1g malv|2 —3

5 =(1—w)—/———uo.

6) G| =)

Proof. (1) By an explicit computation, we have

0 1
ﬁzi_/\/lﬂ_

8712 o
(2) Note that Us; and T5; depend on Us,. The chain rule gives
OMay1  OUzi OMgr 0T OMoy

U, _ 0U, 90Uy | 0U, 0To;

So we differentiate

0Uz1 OMoy my v — Uz
Radde LNy B
8U2 8U21 < m2( )) e T21 M21’
and
8T21 8/\/[21 . 1 mq
U, 0T =2 <3m1(1 J) <m2 (0—-1)+1 +5> 'y>
31 m2|v — U21’2
x (Uz — Uy) <—2 Tos + 272, Moy
(3) We have

8M21 8T21 8./\/121 < 31 m2|v—U21|2>
= =w oo M21

T, 9T, 0Ty \ 2T»n 272,
(4) Since both Us; and Ty depend on Uy,

aMQl o aUZl aMZl + aTQl 8-/\/121
U,  OU, OUy — OU; 0Ty’

we compute

OUz1 OMa _ @(1 _ 5)m v — Uy
8U1 8U21 mo 2 T21

and

8T21 ale 1 ma
=—2(=m(1=8)—0B-1)+1 —
S et =2 (-9 (-1 +145) 1)
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(5) We have

_ 2
OMay  OTo OMa (1-w) < 31 ma|v — Uz )Mﬂ.

oTy, — OTy 0Ty 2Ty 272

Similar to Lemma 2.5, substituting (2.5) and (2.6) in the above calculations gives
desired results. 0

Substituting (2.7), (2.8), and Lemma 2.6 into (2.4) yields

51(0 /f2\ﬁdv+(1_ﬂm1;(1_5>m21w2/ fav/padv

mg\v|2 \/5 / mglv
d
YT 3 n2o Jrs \ﬁ Y

(1 — §)mavpiy

+ = / fivy/prdv

mol|v]? — 2 mi|v
F (1w Y 2” \/77110/11%3 1| \ﬁdv

Using the notation of the basis in (2.1), it is equal to

/21(0) = <f2,€21>L2 321\/7
(1—(1— )) Z (f2,€2i) 12 €2i\/ 12 + w(f2, €25) 2 €25/ 12

2<i<4

(2.11) n
+7 (1-0 = Z (fi,e1:) L2€2i1/ [
2<z<4
n
+(1- W)\/> n720<f17€15>/:g€25\//72-
10

Adding and subtracting the term

@(1 —0) Z (f2,€2i) 2 €2iv/ 2 + (1 — w)(f2, e25) L2 €25/ 112

ma -
2<i<4

gives

51(0) = Py fo\/112

+ mii(l - 5)2;4 (\/ %\/ %Uh@uﬁg - <f2,62i>Lg> e2iv/H2
#=0) (224 fre10)12 — faveashsz ) exsv

This completes the proof for the linearization of Ma;y.

2.2. Linearization of the mixture BGK model. In this part, we linearize
the mixture BGK model (1.1). Applying the linearization of the BGK Maxwellian



TWO-COMPONENT BGK MODEL NEAR A GLOBAL MAXWELLIAN 1021

lemma, that is, Lemma 2.2, and Proposition 2.3, we substitute F; = pu1 + /i1 f1 on
(1.1); and divide it by /1 to have

1 1
@ﬁ%ﬂpVﬁH:n«PJyaﬁ+vﬂlA,Mﬁ@ﬂl—@%)

+%%Hﬁ—ﬁ+¢%() a—mw)

+(1—W) (\/E<f27625>L2 _<f17615>L%> 615:|.

Splitting ng by ng = (ng — nxo) + nro,

(2.12) Nk = Nk — Nko + Nko = / Tev/Hkdv + ngo = /o fr, €x1) Lz + nko,
R3
we can have the following linearized equation:

(2.13) Ocf1 +v-Vafi=Li(f1) + Li2(f1, f2) +T1a(f1) +Ti2(f1, f2),

where L1 (f1) = n10(P1f1— f1). The linear term L5 is decomposed as Ly = Li,+ L3,
with L1, = ngo (P fi—f1). And L3, denotes the linear term describing the interchange
of momentum and temperature of each species as follows:

le(f17f2)n20[ (1-46 (\/nw\/ (f2,€2i)L f1,€1z>L2> €15
2<z<4 20
+(1-w) <\/ —~ (fayeas)r2 — (f1,e15)L > 615}

The nonlinear terms I';; and I'15 denote

(2.14)

['11(f1) = (n1 —no)(Prf1 — f1) —0)do,

C12(f1, f2) = (n2 — nao) (Prf1 — f1) +ne—— /M —0)dd

+ (n2 — nao) [(1 - 5) 2, (\ / Zi;zq / m72<f2,€2i>Lg - <f1,€1¢>Lg> €1
+(1-w) (\/ %Z(fz,e%ﬁg - <f1,€15>Lg> 615}

Similarly, we substitute Fy = o + /2 f2 on (1.1)3 and divide it by /u2 to have
Ocfa+v-Vyfa=na(Pafs — f2+/ —0)do)

+n1(Pofa— fo+ \/172/0 M3, (0)(1 —0)do)

my N2 (M2
+m [mQ (1-9) 2<§i<4 (\/ g \ g Feridez = <f2762i>L3> €2i
+(1-w) <\/7 @<f17615>L% - <f2,€25>Lg> 625]7
n10
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which yields
(2.15) Oef2+v-Vafo=Loa(f2) + L3, (f1, f2) + Ta2(f2) + Ta1(f1, f2),

where Loo(f2) =noo(Pafo — f2). The linear term Lo also decomposed as Loy = L3, +
L3, with LY, =nio(Pafo — f2). And L3, denotes the interchange of the momentum
and temperature between other species.

L21(f1,f2)—n10{m1 1— <\/T20U flyelz f2,€2z>L >€2i
2<z<4 10
+(1-w) (\/ 7<f1,€15>L;{ - <f27€25>L%> 625]-
nio

The nonlinear terms I's5 and I'y; denote

Ioa(f2) = (N2 — nao)(Pafa — fa) —i—n2/ —0)do,

Lo1(f1, f2) = (n1 — nio) (Pafa — f2) +Tl1/ —0)do

+ (n1 — n1o) [ﬂmt(l - 5)%154 (\/ :Lljz\/m71<f1’eli>L% - <f2,€2¢>Lg> €2
+(1-w) (@ / @<f17615>L% - (f2,€25>Lg> 625]-
n10

Overall, we can write the linearized mixture BGK model (1.1) as

Ocfr +v-Vafi =Lu(fi) + Lia(f1, f2) + T (fr) + Tia(fi, f2),
(2.16) O¢fo +v-Vafo=Loo(f2) + Lo1(f1, f2) + T22(f2) + T21(f1, f2),
f1(96,v,0):f10(33av)7 fg(l’,’U,O):fgo($,U),

where f19 = (F10—u1)/v/11, and fog = (Fap — pi2)/+/fi2- The linearized mixture BGK
model (2.16) satisfies the following conservation laws:

\//Tlfl(xavvt)dvd:v: \/MQfQ(x,U,t)dUdl‘:O,
T3 xR3 T3 xR3
(2.17) /3 . (Vi fi(z,v,t)myv + /2 fa(z,v,t)mev) dudx =0,
T3 xR

/ (\//Tlfl (z,v,t)mq|v]* + \//Tgfg(m,v,t)mz\v\Q) dvdz =0.
T3 xRR3

3. Dissipative property of the linearized relaxation operator. In this
part, we investigate the dissipative property of the linearized two-component relax-
ation operator. For simplicity of the notation, we denote the linear operator and the
nonlinear perturbation as the vector forms,

Ly =L (f1) + Li2(f1, f2),
Ly = Lao(f2) + La1(f1, f2),

and

I'y=T1(f1) + T2 fr, f2),
[y =Ta2(f2) + Ta1(f1, fo),
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then we can write (2.13) and (2.15) as

(3.1) (Or +v-Va)(f1, f2) = L(f1, f2) + T(f1, f2),

where L(f1,f2) = (L1,L2) and T'(f1, f2) = (I'1,I'2). We also define the following
6-dimensional orthonormal basis:

1 1
1 \/nTo(\/Ml’ ), Ea \/@( VH2),
1
Ei: 71— ) i— ':374757
im0 + Mana (miv 24/ 1, M2V 2\/#2) (@ )

1
o — 2 _3) /i1, 2 _3) /).
6 m((ml‘fw ) M1 (mQ,U’ ) MQ)

We also denote E; = (E}, E?) for i = 1,...,6. The macroscopic projection operator
for mixture can be written as

P(f1,f2)= Y ((f1, f2), Ei) 2 Es.

1<i<6
The following is the main result of this section.

PRroOPOSITION 3.1. We have the following dissipation property for the linear op-
erator L:

(L1, f2), (frs foD) 2, < —(mio+ o) (max{8,w} (T = P, T = Ba)(fu, f2)ll3z
+min {(1—8),(1—w)} |- P)(f17f2)||2L§w)'

Proof. By an explicit computation, we have
(3.2)
(L(f1, f2), (frof2) ez, = (Lafr, fo)ez, + (Laf2, f2)rz
= —(n1o +n20) (I = Pr, T = Po)(f1, fo)llzz , + (Ligs fi) 2, + (L3y, fo)rz -

We decompose the proof into the following four steps.
Step 1. We consider the dissipation from the momentum and temperature inter-
change part of the interspecies linearized relaxation operator. We claim that

(Liy, f1) L2 + (L3, f2) 2 <0,

and the equality holds if and only if

1 1
/ Jivy/prdv = / f2U\/M2dU,
n10 JRrs 20 JRr3
and
1 2 1 2
— [ filmulo]” =3)yumdv=— [ fa(ma|v]” = 3)/p2dv.
n10 JRr3 20 JRr3

e Proof of the claim. By the definition of L%, in (2.14), we have

<L%27f1>L% =(1- 5)2;4 (\/ %2\/ %<f2,€2i>Lg - <f17€1i>L3> <f1,€1i>Lgn20

n
+(1-w) ( nflz<f2,€25>Lg - <f17615>L3> (f1,e15)L2n20
=1 + 1.
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Similarly,

<L§17f2>L% = %(1 —9) < 20 72<f1a61i>L% —(f2,e2:)r > <f27622>L2n10
2<i<4

nio y M

+
3|3
—
c
/N IA

(fi,e15)r2 — <f2,€25>Lg> (f2,€25) 210

By an explicit computation, we have

2
n

I +1I3=—(1—-9)ng (\/ 10\/ f2,€21 f17€11>L)
2<i<4 20

(3.3) )
—(1 = d)minionazo </ Jovy/padv — — flU\/lTldU> <0,
n20 JR3 n10 Jr3

and

o 2

I+ Iy = —(1 —w)ngo <\/ nzz (f2,€25)L2 — <f1,615>L3>
(] — ) Mmon20 (1 2 _
(3.4) =—(1-w) o <n20 /R3 fa(mal|v|* — 3)\/padv
1 2
_—— fl(m1|v| —3)\/7d’l)>
10

<0.
which proves the claim of this step.

Step 2. To estimate the gap of the macroscopic projection (Pi, Py) with P, we
compute the following term:

1Py, Po)(fr. f2) = P(frs fo)l72

We note that the element of (Py, P2)(f1, f2) can be written as the linear combination
of the 10-dimensional basis

{(V111,0), (0, y/112), (v/111,0), (0, vy/i2), (|v[*v/111,0) , (0, [v]*/112) }

so that (Py, P»)P = P. Therefore,
1P, Po)(f1, f2) = P(f. f2) 122 = I(Pr, Po)(fu, f2) 22, — I1P(f1s f2)l1Ze
Since we have
1 2 my 2
| Py fie|dv=— (/ fk\/ﬂkdv> + — </ ka\/MkdU>
R3 Tnko R3 Niko R3
2
(/ Sr(melv]* = 3)\/Mk:dv> ,
R3

Gnko



TWO-COMPONENT BGK MODEL NEAR A GLOBAL MAXWELLIAN 1025

and

/ P(f, fo) o

L ) 2 (] )

/flmlv\ﬁdvjt/ fzmgvfdv>

minio + manao <

2
! ( flmalof? = 3) o + [ f(mz\v\2—3)xﬁuzdv> ,
R3 R3

6n1o + 6129

which follows directly from explicit computations, we can write

I(PLfr, Pefo)llZs | = IIP(fr, f2)llT | =11y + 1D,

where
(3.5)
1 2 1 2
I, = R dv) + i "
Y manao ( Rsfl 104/ 141 ) p— ( Rsz 2V 2 >
2
1
_ g .
minio + mangg ((/RS fimivy/pq v—i—/RS famavy/fiz v) )
2
! MMan20 minio
_ i ;
minip + Mango [ minio flmﬂ}f ’ mango JRrs Jamzv/iez U]
and
(3.6)
1 ) 2
I, = fl ml’U’ —3)/pidv +7 fa(ma|v|? = 3)\/iadv
67110 N2 -

2
2 2
_6n10+6ngo<</ fmalv|® — \ﬁdv+/ Flmalo]? = )fdv))
_; @ 2
6110 + 6199 {\/710/]1&3 fi(ma|v| 3) /i dv
2
_\/T / fa(malol” - 3>ﬂzd”]

Step 3. In this step, we compare (L%Q,f1>Lg,1] + (L%l,fgh;;m with ||(Py, P2)(f1, f2) —
P(f1,f2)||3. computed in Step 1 and Step 2, respectively. We claim that

(L3, fi)rz , + L3y, fo)rz , < —min{(1 = 4), (1 —w)} (10 + nao)

3.7
0 < (1P B )22~ IPU RIS )

which is equivalent to

1 1
(38) (n10+n20)(111 +I[2)§—max{1_6,1_

w} (I1 + I3) + (Is + 1)],
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where I; (i=1,2,3,4) are defined in Step 1, and II; (i =1,2) are defined in (3.5) and
(3.6). We first compare Iy with I + I4. Multiplying (n19 + ngg) on (3.6) yields

(n1o + noo) Iz = {\/ng/ fr(my|v)® = 3)/prdv
2
1/7110/ fa( m2|v|2 3)/edv|
n20

which is equal to — 2= (I + I4) by (3.4):

(]2 + 1).

1
(39) (TL10 + 7120)[]2 = 1 —

Second, we compare [} with I; + I3. We multiply (ni1o + ngg) on (3.5):

Nn10 + N2o Man2g
(n1o + neo) Il = fimivy/purdv
minip + Mangg minio Jrs

2
_,jtano f2m2v\/;72dv}

maonao JRr3

2
1 moN20 minio
<— |4/ —— flmlv\/ 1dv — fgmg?)\/ 5 dv
ma [ minio man2o

where we used the assumption mj; > ms. From (3.3), we compute

2
1 1
—ma (I + I3) = (1 — 6)mimaniongo (/ fav/padv — / f1v\/uldv>
N20 JRr3 n10 JRr3
which means that

1
(310) (’I’Llo—ano)Ill <_17—5(Il +Ig)

Combining the estimates (3.9) and (3.10) yields the desired estimate (3.8).
Step 4. Finally, we go back to the estimate (3.2). Applying (3.7) on (3.2) yields

(LU f2) (1 f2D) ez, < (mao +mz0) (1P P P2 I3, = 1 £2) )
—min {(1 = 8), (1= w)} (o +n20) (I|(P1, P) (1, )32, = 1P, f2) e ) -
Thus,

(L(f1, f2), (f1: f2)) 2,

10 + N2g

< —lI(fr, f)lIZ2 | +max{s,w}|(Pr, P2)(f1, f2)lZ: |
+min{(1-6),(1 = w)}IP(f1, f)ll72

Finally, by splitting 1 = max{d,w} + min{(1 — §),(1 — w)} on the coefficient of
|(f1, f2)||32, we conclude that

(L(f1, f2), (f1, f2)) 12

x,v

< ~(mo + o) (max{6.w}| (I = 1.1~ P)(fi. fo)l72
+min{(1-6),(1=w)} (T = P)(f1, )32, ). 0
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LEMMA 3.2. The kernel of the linear operator L satisfies

KerL = span{(y/p1,0), (0, /12),
oy, 120y /2), (1 of? = 3) /AT, (malol? — 3) 7))

Proof. We prove the following equivalence condition:

(L(f1, f2),(f1, fo))r2, =0 & L(f1,f2)=0.
(«=) This is trivial.
(=) By Proposition 3.1, (L(f1, f2),(f1, f2))z2 , = 0 implies (f1, f2) = P(f1, f2).
Now it is enough to show that L(P(f1, f2)) =0. By direct computation,
L(P(f1, f2)) = (n1o + n2o) (Pr, P2)(P(f1, f2)) — P(f1. f2))
+ (L1 (Pf) + L3, (Pf))-

The first term is equal to 0 since (Py, Po)P = P. From Step 1 of Proposition 3.1, we
can observe that A; = A2 =0 implies L3, = L3, =0, where

mo / flv\ﬁdv - / fgv\ﬁdv
Ay =— fl(m1’U’2_3)\//TldU—/ fa(ma|v|? = 3)/uzdv.
R3 N20 JRrs3

ni1o

Thus we want to prove that Ay = A> =0 when (f1, f2) = P(f1, f2) =221 < <6((f1, f2),
Ek>L2 FEj.. From the orthogonality of the basis E,% with v; /1,

—— /]R S [ o) B ez B e

1<k<6

nzo/Rs Z ((f1,f2), Ex) 12 E}| viy/p2dv

1<k<6

= <(f17f2)7 z—|—2 ( EZ+2U1\/ dU - - i2+2’l)7;\/,172d’0) ,

n20
for i =1,2,3. By definition of EZ-+2, we have
((f1,/2), Eiv2) 12 (
110 JR3

A=
Vminio + mangg

1
mlvf,uldv - — mgvf,uzdv> =0.
20 3

Similarly, we compute

”/ > [((f1fo) Br)r B] (malol” = 3) o

1<k<6
- / Z ((f1, f2)s Bi) 2 ER] (ma]o]? — 3)y/pizdv
20 JR3 1 <h<6
((f1,f2), E6)r2 ( 1 / 9 9 1 5 9 )
=Y — miq|v _3 d’U_i mo|v _3 dv
oo \no R3( 1[v]® = 3)7 o~ R3( 2|v]|" —3) 2

=0,

where we used

/ (m|v)? —3)2uidv:/ (mZ|v|* — 6m;|v]* + 9) psdv = 6nyp.
R3 RS



1028 G.-C. BAE, C. KLINGENBERG, M. PRINER, AND S.-B. YUN

Thus, L2,(Pf) = L3,(Pf)=0. Therefore, we conclude that L(P(f1,f2)) =0 and the
kernel of L is spanned by the basis of P. This completes the proof. a

Remark 3.3. Note that in the extreme cases § =1 or w =1, we have as follow:
e Foro=1land 0<w<1

KerL = span{(y/p1,0),(0,+/p2), (vy/11,0), (0, v/p2)
((mafo]? = 3)y/n, (malo|* = 3)\/i2) }-
e For0<d<landw=1
KerL = span{(\/it1,0), (0,/p2), (mivy/p1, mavy/pi2),
(Io]*v/#1,0) , (0, [v]*v/pi2) }-
e Ford=w=1
KerL = span{(\/i1,0),(0,+/p2), (vy/11,0), (0,v/p12)
(Io1*V1,0) , (0, [vl* /aiz) }-

However, § =1 or w = 1 corresponds respectively to the cases where no interchange
of momentum or temperature occurs. We exclude the cases in the sequel.

4. Local existence. In this section, we prove the local-in-time existence of the
mixture BGK model. We start with estimates of the macroscopic fields.

4.1. Estimate of the macroscopic fields.
LEMMA 4.1. For sufficiently small E(t), there exists a positive constant C > 0,
such that

(1) nwo (2, t) —nol < CVE(),

(2) [Uijo(a, ) < CVE(®),

(3) |Tijo(x,1) — 1| < CVE(®),
for k=1,2 and (i,7) = (1,2) or (2,1).

Proof. We recall the estimates for the mono-species macroscopic fields in [71]:

Inke(x,t) —nrol,  |[Ure(z,t)|,  |Tho(x,t) — 1| < C/E(L).

Therefore, from the definition of Uiag, Us1g, Th26, and Th1p in (2.3), we have
|Ur26] < 8|Ug| + (1 —0)|Usg| < C/E(2),
m m
U1g] < —(1 = 8)|Urg| + (1 ——(1- 5)) |Uzg| < C/E(L),
mo ma

|Ti20| = w|T1g| + (1 — w)|Tag| +7|Uas — Ure|* < C/E(t) + CE(t),

and
1 m
(Tato] = (1 — w)[Tro| + w|Too| + (Smla ) (1@— D41 +5) —7> Usg — Uol?

<CVE[M) + CE(1),

for sufficiently small £(t). O
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LEMMA 4.2. For |a| > 1 and sufficiently small E(t), there exists a positive con-
stant C,, >0 such that

(1) [0%nng (2, )| < CallO® frll L2,
(2) [0°Usgo(a. )| < Ca D~ 10 filzz,

ot <o
(3) [0°Tijo(z, )| <Ca D 0% fillzz +Ca Y 0% (f1, f2)l7z,
jar]<la jax <ol

for k=1,2 and (i,7) = (1,2) or (2,1).
Proof. We recall (2.3) and use the estimates from [71]:

(41) |8ank9(x7t)|7 |aaUk9(x7t)|7 |aaTk9(xvt)|§COé Z ||aa1fk”L12, (k:172)’

loy [<]ex]

to get

|0°Uta0] < 8|0°Ung| + (1= 6)|[0°Uz0 < Co > 110™ (f1. f2)ll12,

oy |<]ex]

\aaUmsZ;(l—a)\aanH(1—22(1—6)) Ul <Co 3 0% (Fro )22

lar| <]l
and

’8QT129| = w|8°‘T19\ + (1 — w)]@ang| +78°‘|U29 — U19‘2,
|8QT219| = (1 - w)|8aT19‘ +w|8aT29|
my

+ (;ml(l — ) <(6— 1) +1 +5) —7> 0%|Usg — Usgl?.

mao

Then by Young’s inequality and using (4.1)s, we have

0%|Usg — Usp|* = Z 209 (Uzg — Ung) - 0°*(Uzg — Uiyp)

a1 toa=«

SCOL Z ||aal(f17f2)H%%7

lar|<|ef
which gives the desired result. a

4.2. Estimate of the nonlinear term. We now consider the estimates of non-
linear perturbation I'.

LEMMA 4.3. There exist nonnegative integers \, v, & and general polynomial Piy,
satisfying

_ Pun(nig,n20,U19,Us0,T10,T29,v — Uije)

(V9. 2) M (0) 1 = M;(0)

b ) )\ 5 j R
nygnse T

where Pim (21, .., %n) = 3, arzt -2k and the indices ki,...,k, are nonnegative

integer, ij =12 orij =21, and 1 <1, m < 10.
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Proof. The estimates of Mi5(0) and My (6) are similar. We only consider the
former case. We compute

8(711977119[]19,G197n29,n29U297G29) -1
Vv 0) =
(0, ) Maz2(6) < d(n16,Urg, Tho, 20, U290, T20)

X v(n197U19,Tw,nze,Uze,Tze)Ml?(Q)-
Then, as in (2.9), we have

Jb 0
V(Hw,Hze)Mm(e) = |: 89 J2_91 :| X v(nw,Uw,T197n29,U207T26)M12(‘9)

— [ Jl:@iv(nw,Uw,Tw)Ml?(e) :| ]
J29 v(n297U29,T20)M12(0>

Applying the same process one more time, we get

_[Je 0
V(Hle,Hze)Mm(e)_{ 0 J2—01:|

J10'V (10,010, 710) M12(0)
* v(n107U197T197n297U297T29) |: JQ_GIV(H297U297T29)M12(6)

where the second line on the R.H.S. is equal to

v(7119 Uio,T10) (‘]10 V(nw U19,T19)M12(9)) v(nw,Ule,Tw) (‘]29 V(n297U29,T29)M12(0)):|.
v(n29,U29,T29) (Jw v(nw,Uw,Tw)Ml?(e)) v(nzayUzeyTw) (']20 v(nw,Uze,TQe)Ml?( ))

Thus we get

T T
2 11 12
V(H19,H29)M12( ) |: Ty, Too :| )

where

Ti; Jz@ v(ma, Uio,Ti0) <J39 v(nge, Ujo,T. ]9)M12(9)),

for 4,5 =1,2. Each T;; is a 5 x 5 matrix. For simplicity, we only consider the (1,1)
and (1,2) components of V( Hyo s )M12( ). We can treat other components similarly.

Recall that the first row of J;,' is (1,0,0,0,0) so that

d OMys(0) 0 1
2 - - _— o
{V(Hw,Hze)Mu(e)}H - Onig Onig N onig nloMIQ(e) 0-

Now we consider the (1 2) component of V( Hio,Hao) M5(0) which is an inner product
of the first row of J;, ! which is (1,0,0,0,0), and the second column of V(, , 17,7
{Jw V (n16,U19,T16)M12(0)}. Thus, we only need the (1,2) component of V.., v,,.7,4)

{JIG V(n1e,U1e7Tw)M12( )}

(Vg 129 M12(0) 112 = [V 0101000 {016' Vinse.Uro. 10y Ma2(0) ] 1

(4.2) b

- Ww [Jlielv(nw,Uw,Tw)./\/llg(@)] 5
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The second component of [Jiglv(nwyw’;pw)./\/llg(9)] is equal to the inner product of
the second row of J;,' and V.., 17,y 7,0 Mi2(0):

Y 1

[Jlielv(nlg,U197T19)M12(0)j| 5 = ( Ti1e 5 Tw’ 0; 070) . V(nw,Uw,Tw)Mw(@)

Uy oMu(6) | 1 oMy(0)
nig Onig nie OUpg

Substituting this into (4.2) gives

0 Ur19 OM12(0 1 OM.(0
{V%HIQ,HQQ)MIQ(Q)}IQZ (— 110 12( )_‘_7 12( ))

Onig nig  Onig nig OUiig
_ U110 OM12(6) ~ Uiy 0? M12(0) _ LaMu(Q)
n%e 87119 AT:] (971%9 n%e 8U119
1 9P Mus(0)

n1p 01900110
Then, from Lemma 2.5(1) and (2), we have

Uiie

{V%H107H29)M12(‘9)}12 = 3 Mlg(e)
16
1 v — Ui < 31 m1|U—U1292>)
+ — | dm————= — 2~4(Usqy — U - + Moo (0).
) < Y o (U2 10) 2 Thoo 272, 12(6)

We observe that the (1,2) component of V%ng Hze)M12(0) is expressed in the form
presented in this lemma. a

We are now ready to estimate the nonlinear terms. The intraspecies part is
established in [71].

LEMMA 4.4 (see [71]). For sufficiently small £(t), we have the following inequality
fork=1,2:

O5Thi(fi). 92 <C > 0™ fillL2 1102 fill 2

len|+|ez|<al

QHL%-

Thus we focus on the interspecies part.

LEMMA 4.5. Let N >3 and |a| + |8] < N. For sufficiently small £(t), we have

(O5Ti5,9)2<C > 0™ (f1, £)llz2 1052 (f1, f2) |22 llgll 22
lar|+|az| <|af
for (i,7) = (1,2) or (2,1).

Proof. We only consider the I'y5 since the estimate of 'y is similar. Therefore,
we focus on the estimates of the nonlinear terms I'15 and I's;. For convenience, we
divide I';5 into three parts:

o =T124 +T125 +Ti2c,
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where

o4 = (n2 —noo)(Prf1 — f1),
1
ﬁz | Moo

I2c = (ng —ngp) {(1 —9) Z ( n1o <f27 €2z>L2 - <f1,61i>Lg> €14
oSied V 20\ ma
+(1-w) (\/ %Z(]‘é,e%ﬁg —(f1,€15)L2 ) 615]

We first write I'12p in a concise form before we delve into the estimate. For this,
compute applying the chain rule twice on M,;:

M’.’.( )
d (dngl dMU + d(ngerl) dMij + dGel dMi]‘
d(g do dn91 do d(nglUgl) do dG91
+ dngz d./\/lzj d(ngngg) d./\/l” dGeg dMU)
do dngg df d(nggUgg) df ngg

T 2
= (nl — 1o, nlUl’ Gl’ n2—n20, anQ’ Gz) {v(nw,n19U197G19,ﬂze,ﬂ29U297G29)Mij (9)}

X (n1 —nig,n Uy, G1,n2 — ngg, nals, Ga).
Therefore, if we define
(4.3) Hj, = (ng,np Uk, Gr), and Hio = (nge,nkoUrs, Gro),

we can rewrite I'1op as

n
Tiop = — (Hy — Hyg, Hy — Ha)"

N
1

x/ {V?Hw,Hw)Mij(Q)}(1—9)d9(H1 — Hio, Ha — Hayp).
0

Now we estimate each part of I'y5.
e Estimate of I'1o4: We take a derivative 8; on I'io4:

35F12A— Z Co, 0™ 2—7120)332(P1f1—f1)-

a1taz=a

From (2.12), we have
(4.4) 9%(n2 —n20) < C[|0° f2| 2.

For an estimate of the macroscopic projection P fi, since dzei; has an exponential
decay, we get

105 Py f1llz2 = |0 P10 f1ll2 < Cpl|0” f1llL2-
Thus we have

(4.5) (05(Pifr—f1),9)p2 <C (|’8af1||Lg + ||a§f1HLg) lgllz:-
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Combining (4.4) and (4.5), we obtain

(05T124,9)12 <C > 0% f2ll 2 <||3a2f1HLg + !’3§2f1\|L3) lgllzz-
lar|+]az|+]BISN

e Estimate of T'12c: We take a derivative 85‘ on I'1a¢:

95T 120 = Z Ca, 0 (N2 — nao)

al1toas=a

Nio [T
X 1-96 — [ — (0™ , €24 2 — (92 ,€14) L2 361
[( )239 <\/ a0V m2< f2,e2i)r2 — (0% f1,e1 >LU> €1
110 ; qay s
+(1-w) (\/ a0 (0% fa,e95) 12 — (0 f1,615>Lg) 55615}

Since each e1; and es; has exponential decay for i =1,...,5, we can have
(4.6) (0% fr,eni)rz <Cl10% fillzz, (0% f2,e2i)p2 < C[|0% fo| L2,
and

(4.7) (Operi,g)rz <Cllgllcz,  (9pezig)rz < CligllLz-

Thus by using (4.4), (4.6), and (4.7), we get

(05T 120, 9) 2 <C Z 109 fall 22|02 (f1, f2)ll L2192 -

[or [+]az| <]

e FEstimate of I'1op: Taking 65‘ on I'1op gives

(4.8)
03T 125 =Y Ca,0™°nyd® (Hy — Hyo, Hy — Ha)"
Sai=a
! 1
x /O 05 {MV%HIQ,HZQ)MM(@)} (1—6)d00“*(Hy — Hio, Hz — Hao).

By the definition of Hy in (4.3), applying (2.7) yields
0% (Hy — Hyo) = 0% (ng — ko, nik Uk, Gi) = ((0° frrex1)r2, - -, (0% frrens)12)
for k=1,2. Thus we have

(4.9) |0%(Hi — Hro)| < C|0° fi|

2.
L'u

For notational simplicity, we set

Alm:/o 8‘32{\/;Tlv%H”’H”)MH(Q)}l,m(l_e)de'

Then by Lemma 4.3, we can write it as
(4.10)

m L

M12(0)} (1—6)d6.
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By the product rule, we have

P {le(nw,nzm U1, Uz0,T109, Tog, v — Ui2p) }
B §
n10n20T129

=Co Y. {sza 'n1g, 0% nag, 0**Usg, 0" Uzg, 0 T19, 0" Tog, 05" (v — U120))
Sai=a

X O ! z }
(GVICTY Y,
If |o;| < N — 2, then by Sobolev embedding H? CC L> and Lemma 4.2, we have
0“1k (2, 1)] +[0%Ugo (2, 1)] + [0 Tio (2, 8)| < CO% fill Lz < VE@).

Since N > 3, there is at most one «; that exceeds N — 2. Thus, for sufficiently small
E(t), we have

A

m ) 7U 7U aT aT ) _U
ag{Pl (10,120, Uso, Vo T, Too 129)}gcmrraaf\|LgP,m<v>.
YL TYAYY:

Substituting it in (4.10) yields

91120 4

—U 2 2
At < OV/EW)0° F |12 i (0)05 exp <‘ Pl b ) |

Similarly, the derivative of the exponential part can be bounded as follows:

o lv—Urgo* | mulv|®
8ﬁexp<— T2 + 1

v—Ui)® | ma|v]?
< CVEWO™ Il L2 Pim (v) exp <_| QTmleQe' + 14|1 | )

By Lemma 4.1(3), a sufficiently small £(t) guarantees T129 < 3/2, so that

2mqlv — Uiogl?2  mq|v|?
(A )13 < C | Py exp (- 22ale—Thaol | oAy
3 2 1.2
4.11 my|v — 4U;99|?
( ) SCHP(U)GXP <—1’120’+2m1\U129]2) HgHL%
6 L2
<Cllgllzz,

where we used ¢2™11U1261* < € for sufficiently small £(t). Substituting (4.9) and (4.11)
on (4.8) gives the desired result. O

4.3. Local existence. In this part, we prove the existence of a local-in-time
classical solution of the mixture BGK model (1.1).

THEOREM 4.6. Let Fig = p1 + /u1fio > 0 and Fog = ps + /2 foo > 0. There
exists Ty >0 and My > 0 such that if £(0) < MO , then there exists a unique local-in-
time solution (Fy,Fy) of (1.1) such that

1. the distribution functions Fy(x,v,t) and Fy(x,v,t) are nonnegative;
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2. the high-order energy E(t) is uniformly bounded:

sup £(t) < My,
0<t<T,

3. the high-order energy is continuous in t € [0,T});
4. the conservation laws (2.17) hold for all t € [0,T%).

Proof. We define an iteration of the mixture BGK model (1.1) as follows:

OFTTY 4V FP T =ng (F) (M (FP) — F°

+ ng(F3) (Mo (FI', Fy') — Fi't,
OFIH v Vo Pt = nyp (FIN) (Moo (F3Y) — F3H

+ny (F") (May (F, F) — F ),

(4.12)

and F"(x,v,0) = Fig(z,v) and Fyt(z,v,0) = Fyo(z,v) for all n > 0. And ni(F})
and ny(F3') denote

ny (Fy') = /R3 F{'(z,v,t)dv, no(Fy') = /R3 F} (z,v,t)dv.

We start the iteration with F(z,v,t) = Fio(z,v) and F9(x,v,t) = Fyo(z,v).
We split F' = p1 + /1 fT* and F3' = po + /pafq for all n € N and use the
linearization of the Maxwellian given in Proposition 2.3 and Lemma 2.2 to get

O S +v - Vo fi = (nuo + noo) (P = FITH)+ L3, (1, £5)+T 11 (1) + T2 (f1 £3),
O Syt +v - Vo f3t = (nuo + noo) (Pofs — 5 )+ L3 (1 £3) +Ta2(f3) + Tar (f1, £3)-

Then the local existence can be constructed by the standard argument as in [39]. The
key ingredient is the uniform control of the high-order energy norm in each iteration
step. So we first prove the following auxiliary lemma below. a

LEMMA 4.7. Let £(0) < 2o, Then there exists Ty > 0 and My > 0 such that
E(f™(t)) < My for alln>0 and t € [0,T%].

Proof. We take 05 on each side of (2.13) and (2.15):
3 —
OGO + v V05 1T 4D 05T I = (1o + 1) (95 PLO” fT — 95 f1)
i=1

+OF L3 (f1 15) + 05T (F7) + 0§ Taa(F7 13),

and

3 —
O30 S5 +v- V08 f3 + D 05TR 3 = (na0 + nao) (s P20 f3 — 95 f31)
=1
+OSLE (7 ) + 05T oa (f3) + 05T an (J7, 13,

where k; = (1,0,0), k2 = (0,1,0), ks = (0,0,1), and k; = (0,1,0,0), k2 = (0,0,1,0),

1
k3 =(0,0,0,1). We then take the inner product with 9§ nH
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5 dt” ganHL;U + (10 +n20) 105 f1 |72
=—Z<agt,§ LR e,

<36P13af1 5T e <3,3L%2(f1 3,08 FT ) L
<86F11(f1) 8[3fn+1> Lz, <5’5F12(f1 af2) aﬁfn+1>
:Il+[2+13+[4+15.

(4.13)

Applying the Holder inequality on I7, we have

3

L= (0525 08 s, < Z logtke M s, 198 £ ez,
i=1
1
< Z 105 /141 -
loe|+]BI<N
Since dgey; and Ogeg; have exponential decay,
105 PLO f1' |22, < Call0* f1'll22,

Thus Young’s inequality implies

= (0 P10 f1', 05 1" )12, < CallO“ ST 1172 + ClOG ST IZ:

z,v

To estimate I3, we take 9 on L7,

95 LTy (f1, f2) = nao [(1 —0) 2;4 (\/ %2\/ %(3672,622')% - <3af1761z‘>Lz> Iger
+(1-w) (\/ Z;z (0% fa,ea5) 2 — (0% f1,e15)L > 36615],

and apply the Holder inequality:
= (05 L (1 30, 05 f1 ) ee,
<c [ (1"l +Clo g7 o) 155
<CI0(f7, f) ez M08 1 ez,
Since I, and I5 are similar, we only consider I5. Applying Lemma 4.5, we have

= G )05 s, <0 S0 [l

lar|+|az|<|a|

< [|0°2 (f1', £3) 2 108 f1 " | 2 da.

Without loss of generality, we assume that |a1| < |az|. Then the Sobolev embedding
H? cc L™ implies

Is = (08Taa(f1, 13), 08 1 1) 12

2
§C< 3 Hf?‘“(f{‘,f?)IILgJ 108 £ 12

lay [<|ex]
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Combining the estimate from Iy to I5, and taking >, 5<x on (4.13), we have

1
=Y *Ha@f"HHL;U+(n10+”20) > log e,

(4.14) 2 ol 1Bl<N |a|+|BI<N
S CE™M(t) 4 CEML(t) + C/EN(t)\/EMHL(E) + CE™ (1) \/EnFL(t).

Similarly,

1
B Z *Hag n+1||L2 + Z (n10 + n20) |05 n+1||ng
(4.15) || +]8|<N la|+]8|<N

< CE™(t) + CEML(t) + C\/EM (1) \/ENTL(t) + CE™(t)\/ENTL(2).

Combining (4.14) and (4.15) yields

1d

57 —EML () + (1o + ngo)E™TL(t) S CE™(t) + CE™TL(t)

+ CVEM)VEML(t) + CE™(t)\/EMHL(2).

We integrate in time to get
gn+1 (t) < gn+1(0)

o, /t(cgn<s>+cgn+1<s)+c¢5n IVETLE) + CE"(1)y/ETF(D) ) ds.
0

We now apply an induction argument. We have £°(0) < % from the assumption.
Assume we have

sup E™(t) < My, E™TH0) < My)/2.
0<t<T,

Then, from (4.16), we see that
M,

sup £ () < =2+ CT, My + CT, sup E"I(t)
0<t<T, 2 0<t<T,
+CTi/My | sup EntL(t)+ CT.My | sup E™H1(t).

0<t<T. 0<t<T.

By using Young’s inequality, we have
M,

(1-3CT,) sup EMYt) <=2 4207, M+ CT, M.
0<t<T., 2

Therefore, for sufficiently small T, and My > 0, we can derive

sup E"TL(t) < M.
0<t<T.

This completes the proof. a

Now we can complete the proof of Theorem 4.6. First, Lemma 4.7 gives the strong
compactness of {f"} with sufficient regularity. Therefore, taking the limit n — oo
yields the desired local-in-time solution.
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For the nonnegativity of the solution, we see from (4.12) and the nonnegativity
of the Maxwellian M;; for 7,7 =1,2 that

OFM 4y VL FM 4 (ny (FI') + no(FR)) Frtt
=n1 (FT" ) M1 (FY") + no(F5 ) Mo (FT', F3') > 0,
O v VL EPT 4 (ny (FI') + no(F3)) Fatt
=no(F3 ) Moo (F3') + na (F]") Mo (FT', F3') > 0.

n+1
Fk

Then the mild formulation of the solution gives the desired nonnegativity for

(k=1,2):

Fr (z,v,t) > e f&(m(FanQ(F;))th;H(1.7 v,0) > 0.
Therefore, an induction argument leads to the nonnegativity for F}' for all n, which
gives the desired nonnegativity of the local-in-time solution Fj.

It remains to prove the continuity of the energy norm. For this, we sum (4.14)
and (4.15), which also hold for F}, (k=1,2), and integrate over time to get

E(t) — E(5)| < C sup (1+\/ )+ E(r Z S 10% fiory e
sSTst 5 |a|<N k=1,2 ’

Since the energy norm is bounded, the R.H.S. converges to 0 when s — t. Thus we
have continuity of £(t).

Finally, substituting Fj = pux, + \/fix fr. to (1.2) gives the conservation laws (2.17).
The uniqueness and stability will be given at the end of section 6.

5. Coercivity estimate. We write the macroscopic part P(f1, f2) of the distri-
bution function (f1, f2) as

P(f17f2) = al(x>t) (\//717 O) + a2($7t) (07 \//TQ) + b(x7t) v (ml\//Tl’ m2\//72)
+e(@, )|l (may/in, may/i2),

where

(5.1)
f(a) = — / Fo/Firdy
nko
i ([ Ama - s)imdos [ pmabo ).
b(z,t) = 1 < f1m1v\/;71dv+/ fzmzv\/;ngv),
R3 RS

minio + Mangg
e(z,t) = ( [ b =3y o + [ patmall? - 3)@@) ,

for k=1,2. We substitute

67110 + 6n20

(f1, f2) = = P)(f1, f2) + P(f1, f2),
into (3.1) to get

{0 +v -V} P(f1, f2) = {0y +v -V — LY(I = P)(f1, f2)

(5.2) + (T11(f1) + Tia(f1, f2),Taa(f2) + Tar(f1, f2))-
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We write the L.H.S. of (5.2) in the form

{ (Orar +v - Vgar) (p1,0) + (Oraz + v - Vyaz) (0,/12)

v Ob(my i, ma/iz) + > viv(0a,by + On,bi) (ma /i, may/Tiz2)

1<i<j<3
+ ) (O,bi + Ope) v} (may/ix, may/iz) + 0?0 - Vac(ma /i, mz\/;Tz)},

1<i<3

as a linear expansion with respect to the following 17 bases:

{(v11,0),(0,/h2),v(v/p11,0),v(0, \/1u2),
vivj (mav/pr, may/iz), vlo (ma /i, may/i2) 3.

Therefore, comparing both sides of (5.2), we obtain the following system:

(5.3)

0¢a1 =la1 + ha1,
Oraz = la2 + has,
Oz, a1 +m10sb; = ly1; + he1i,
Op, a2 + ma0ib; = ly2; + heai,
Op;bj + O0p,; by = lppi + hows (17 ),
Oz, bi + 0rc = lpei + hies,
Og,c=lci + hei,

where (la1, a2, b1, (b2, lobiy lbeis Lei) and (ha1, ha2, hiti, hi2i, Pibi, Ricis Pei) are the coef-
ficients corresponding to the expansion of [ and h,

I(f1, fa) = {0 +v-Vy — LYI — P)(f1, f2),
h(fi, f2) = (Ti1(f1) + Tia(f1, f2), Ta2(f2) + T21(f1, f2)),

with respect to (5.3). For brevity, we denote
) 3
l=1la1+la2+ Z (Iori + Lv2i + lbbi + lbei + lei)
i=1

3
h="ha1 + haz + Z (ho1i + ho2i + hovi + Roci + hei) -

=1

LEMMA 5.1. We have

/11‘3 ay(z,t)dx = /11‘3 as(z,t)dr = /]1‘3 bz, t)dx = /TS c(z, t)dz = 0.

Proof. This follows from the conservation laws (2.17) and the definition of a1, as,
b, and ¢ in (5.1). O

LEMMA 5.2 (see [39]). Let 0 <|a| < N with N >3; then we have

[0°a1llzz + 10%asllzz + 19%0llzz + 0%cllzz < > (19°Tcz +10°Rlrz ) -

la|<N-1
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Proof. The proof can be found in [39, Proof of Theorem 3, p. 620]. We omit it. O

LEMMA 5.3. For sufficiently small energy norm E(t), we have

1 D 0%z, <C Y T =P (frs fa)llez s

la|<N-1 lal<N
2) > oAz, <CVM Y [10%(f1, f2)llzz -
la|<N lal<N

Proof. (1) The proof can be found in [39, Lemma 7, p. 616]. We omit it.
(2) Let us define {e}}}7; to be the orthonormal basis corresponding to the basis
(5.3). Then we can write

17 17
6;‘=ZC’i]‘€j, h(fl,fz)zzwei‘hgef,
j=1 i=1
so that
(h,en) 2 = Z CijCnilh,ef) L2,
1<i,j<17
forn=1,...,17. For the estimate of h, we compute

H /8°‘h(f1, f2)e;dv

L2 = H /aarll(fl)(|v|k\/171)dv

L2

" / T (i, f2) ([v]* /T do
L2
+ / 0°Ts(f2) (Ju]" /i) dv
L2
n / 0°Ton (f1. o) (o] iz)do||
L2

for k=0,1,2,3. For sufficiently small £(¢), by Lemma 4.4, we have

<Cc )

2
L3 o |+ a2 | <]

H/aafmm(fm)lvl’“\/umdv 10%" finll 2211072 fin 2

L2

Similarly, we have from Lemma 4.5

<c >

2
L3 log |+ ez | <] |

10 (f1s )l 2 10°2 (f1, fim) Il 2

9y
2
Lz

H / 0T (s Fo [0l i

for I # m. Without loss of generality, we assume that |a;| < |as| and apply the
Sobolev embedding H? CC L* to obtain

D 0%k, <C Y0 sup 0% (fr f)llzs D 199 (fr f)llze,,

la|<N a1 | <Jag| TET oz | <N

<OVED Y 10 f)le .

jal<N

which gives the desired result. O
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We are now ready to derive the full coercivity estimate. By Lemma 5.2, we have

S0P )3, < S0 (I0Panl3s +10%asll3s + 19°0]3, + 0 cll3: )

la|<N |la| <N
< Y (10°03; + 19°RIE: ) -
la]<N-1

We then apply Lemma 5.3 to get

> 107 P(fr £2)l72

la| <N

<C Y NI=PO*(fr. fo)llfz, +CVM Y (0% (fr, f2)lIZe

la|<N lal<N
Adding 3, <y (I = P)O*(f1, f2)||2. on each side, we obtain

C+1
10%(fr. f)llZ2 < —— = I(1 = PY(0%(f1, f2))IIZ2
gzv FrT1-oVM cwzgzv B

Combining it with the estimate in Proposition 3.1, we derive the full coercivity
estimate

(5.4) (LO*(f1,f2),0%(f1, f2))rz , < —mmin{(1 —0), (1 —w)} > ||3a(f1,f2)||%gw,

lo| <N
when £(t) is sufficiently small.

6. Global existence. In this section, we extend the local-in-time solution to
the global one by establishing a uniform energy estimate. Let (f1, f2) be the classical
local-in-time solution constructed in Theorem 4.6. We take 0% on (2.13) and take the
inner product with 9°f1 in L2, to have

HaaleLz L =L (1), 0% fi)pz , + (0% Laa(f1, f2), 0% fi) 1z,
+ (0% f1,0%(I'1 + F12)>L§)v-

Similarly, we get from (2.15) that

HaaszLQ =(0%L22(f2),0%f2) 12, + (0% La1(f1, f2), 0% f2) 12 ,
+(0%f2,0%(Ta2 +T'21)) 12 -
Combining (6.1) and (6.2) yields

> th\laafkllpv (LO°(f1, f2),0% (f1. f2)) 12
,2

k=1

(6.1) 2 dt

(6.2) 2 dt

’I‘U

+(0%f1,0%(T11 +T2))rz | +(0%f2,0%(Ta2 +T'21)) 22 -

Then the first term of the R.H.S is controlled by the full coercivity estimate (5.4),
and the nonlinear terms on the second line are estimated by Lemmas 4.4 and 4.5:

S 3 (510l umin{(-9),0 - [0l )

|| <N k=1,2

< Coy/emolt) 3 10°(fu. f2) 5.

la| <N
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For M, satisfying Theorem 4.6 and (5.4), we define

M= {]\407772min{(1 _2)22,(1—@2}}’ T = sup {t | En, 0(t) <2M} > 0.

2 4 0 teRT
We restrict our initial data to satisfy the following energy bound:
Eny0(0) < M <2M,.

Once we define

=3 Y 10l

|| <N k=1,2

then y(t) satisfies

y'(t) + 2nmin {(1 —6), (1 — w)} y(t) < 2Co1/Eny 0(t)y(t)
<nmin{(1—4), (1 —w)}y(t).
Thus we obtain
y(t) < ety (0) < y(0) < M < 2M,
which is possible only when T'= co. Note that this also gives
S0 (0). fo0) 3, <m0 S e £,(0), £2(0))]3
la|<N la| <N
Now we consider the general case of f having momentum derivatives. Taking 85‘ on
(2.13) and (2.15) and applying an inner product with 03 f1 and 05 fa, respectively, we
have

2dtH8,6’f1HL2 . (n10+n20)Ha§f1H%g,v

(6.3) :—Z@?fz’?ffl’a?flmv
=1
+ (10 +120) (s P10 f1,05 fi) 12, + (05 L5(f1, f2), 08 fi)rz
+ (05 (P11 (f1) + T1a2(f1, f2)), 05 f1) 12
and
2dtH(9/3f2||L2 L (10 +n20) 105 2172,
(6.4) = _Z 8a+;]§ f2,05 fa)rz,

+ (mo +120) (05 P20 f2, 05 fo) 12 | + (95 L3y (f1, f2), 05 fo) 12,
+ (05 (Ta2(f2) + Ta1(f1, f2)), 05 fa)rz

Combining (6.3) and (6.4), and applying the Holder inequality and Young’s inequality,
we can obtain

Z(

k=1,2

&.‘Q‘

1
Sl Al2s  + (o + a0~ 20105 0l )

I\D‘,_.

3
o C o 3
Z > 195 s, + 5 S0 10 l3s, + CER, (0,

k=1,2
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for some positive constant e satisfying (n19 + n29)/2 > € > 0. We sum this over
|B] =m + 1 and multiply both sides with en,,:

Enm
> ( 5 dtHa,BkaLQv+677m(n10+n20_2€ 105 fllZ2. >

|B|l=m+1 | k=1,2

3
- N Cim o
< ST ST SO E A+ TR S N0l + CE 1)

|Bl=m+1 k=1,2 i=1 k=1,2

Combining the previous cases |3| < m, the R.H.S of the inequality can be bounded
by the energy En, |5 with |3] <m and En, o. Thus, we can conclude from induction
that

d *
5 % (o 0l a0 ) < Con€d, 0

la|+|B|<N k=1,2
[Bl<m+1

Applying the same continuity argument as when § =0, we can construct the global-
in-time classical solution. We mention that when |3| = 0, the parameter 79 depends
onl—0and 1 —w, and Cy =1/2. But when |5| > 1, both C,,+1 and 7,,,+1 depend on
the parameter 7,,. That is why we cannot extract a decay rate depending explicitly
on the parameter § and w when the velocity derivatives are involved.

We now derive the uniqueness and the stability of the solutions. Let (f1, f2) and
(f1, f2) be the solutions to the system (2.16) with initial data (f10, f20) and (f10, f20),
respectively. Note that Lis and Lo are bilinear,

Lij(fl)fQ) _L’Lj(fla.fQ) :L’L](fl - flaf2 - f2)
so that substracting the two equations for (f1, f2) and (f1, fo) gives
(0 +v-Va) (fr = fi) =Lul(fi — f1)+L12 — f1.f2— f2)
+T11(f1) =T (f1) + Ti2(f1, f2) — Ti2(f1, fo),

(f1

)
(0 +v-Va) (fo — f2) = Loa(f2 — f2) + Lar(f1 — f1, f2 — J2)
+ Taa(f2) — Taa(f2) + Ta1(f1, f2) — D1 (f1, fo).
2),

Following the same procedure as in (6.1) and (6.2), we obtain

2dtHaa(f1 lz:

(6.5) = (0% (Lu1(fr = f1) + Lao(fr = fr, fa = f2)) , 0%(fr = f1))z2
+ (0% (Tua(fr) = Tu(f1)) ,0%(fr = fi)) ez,
+ (0% (Tra(f1, f2) = Tra(f1, f2)) . 0% (FL = fi)) ez, s
and
Haa( ~ )12,
(6.6) (0% (Loz(f2 — f2) + Lot (f1 — f1, fa = f2)) ,0%(f2 — f2)>L§’U

= (
+ (0% (Toa(f2) = T2a(f2)) , 0%(fo — fo)) 12,
+ (0% (Ta1(fr. fo) = Ta1(fi1, f2)) ,0%(fo = fo)) 12,



1044 G.-C. BAE, C. KLINGENBERG, M. PRINER, AND S.-B. YUN
Combining (6.5) and (6.6) yields

2dt||8a(f1 fl)aaa(fz—fz)uig,v
< 5w Z ||8"‘(f1—fl),ﬁ"‘(fQ—fQ)H%iw

|la| <N

(67) —}-Z Fk:k: fk Fkk(fk)) 7aa(fk_fk)>L?cu

+< (Ti2(f1, f2) = Tra(fis f2)) .0 (fr = fi))ez,
+ (0% (T21(f1, f2) = Ta1(f1, f2)) , 0% (f2 *.f2)>L§7U,

where 75, =nmin{(1 — ), (1 —w)}, and we used the full coercivity estimate (5.4) for
(fi = f1,f2 = f2).

We now turn to the estimates of nonlinear terms. We only consider the estimate
of the second line of (6.7), because the remaining part can be treated in an almost
identitcal manner. For this, we consider

Lk (fi, 9o, he) = (n;];—”ko)(Pkg 9)
" [ 2y, M0 0 - ot~ i),

where the definition of H can be found in (4.3). We split the nonlinear term as

Ciok (Fes fios £1) — oot (Fres fios Fio) = Dok (Fres fros F10) — oot (Fres fies Fe)
+ L (frs fros fr) = Do (Fres Fios )
+ Lrk(frs fros f2) = Diok (fes s fi)-

Following the procedure of the proof of Lemma 4.5, the quantity

</01;A%{ 2o M ()}(1_9)d0—/01;/%{ 2 M ()}(1—9)d9,fk—fk>

can be bounded by C|| fx — fx||2. for sufficiently small energy norm. Thus, applying
Lemma 4.4, we have ’

Z (0% (TCrie(fr) = Trr(fr)) , 0% (fe — fa)) 22,

la|<N

ey (aafkuLg,ﬁuawu;U

la|<N
110 fllZ + 10% fellzz  10° il e, + ||aafk||%g,v) < 0% (i~ Fi)l32

<VED Y 10— Fl -

la| <N

L2

sV

Similarly, the third line and the fourth line of (6.7) are estimated as

D (0 (Tiy(frr fo) = Tig (i, f2)) . 0%(fi = fi)) ez,

lal<N

<VE(t) Z 10%(f1 — f1),0%(f2 — f2)||2L§,v'

la| <N
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Combining all the estimates, we have

1 d = =
5 > %Haa(fl_fl)aaa(fQ_]%)H%i,v
lal<N
< — (0 = VED) 3 10(F = ). 0% (2= P2,

la|<N

Therefore, when £(t) is sufficiently small, the Gronwall inequality yields the desired

result,
DO (= ), 0%(fr = F)llZe, <€t Y 110 (fro = F10),0%(fo0 = f20) 122 s
lal<N ’ la|<N ’

which also gives the uniqueness of the solution.
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