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Abstract Active Flux is an extension of the Finite Volume method and ad-
ditionally incorporates point values located at cell boundaries. This gives rise
to a globally continuous approximation of the solution. Originally, the Ac-
tive Flux method emerged as a fully discrete method, and required an exact
or approximate evolution operator for the point value update. For nonlin-
ear problems such an operator is often difficult to obtain, in particular for
multiple spatial dimensions. We demonstrate that a new semi-discrete Active
Flux method (first described in [AB23a] for one space dimension) can be used
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to solve nonlinear hyperbolic systems in multiple dimensions without requir-
ing evolution operators. We focus here on the compressible Euler equations
of inviscid hydrodynamics and third-order accuracy. We introduce a multi-
dimensional limiting strategy and demonstrate the performance of the new
method on both Riemann problems and subsonic flows.

Keywords Compressible Euler equations · Active Flux · High-order methods

Mathematics Subject Classification (2020) 65M08 · 65M20 · 65M70 ·
76M12

1 Introduction

The Active Flux method uses as its degrees of freedom both cell averages and
point values at cell interfaces. The point values are shared between adjacent
cells. In one spatial dimension, any choice of the reconstruction in one cell
that interpolates those point values will give rise to a globally continuous
reconstruction. In multiple spatial dimensions, it also seems natural to ensure
global continuity, i.e. continuity all along the cell interface and not just in
the point values. Traditionally, discontinuous reconstructions were favored for
hyperbolic conservation laws; in [RMF18], Active Flux is found to perform
better than the Discontinuous Galerkin method.

While the averages require a conservative update, the update of the point
values is essentially not restricted by more than the condition that the result-
ing method should be stable. To this end it needs to incorporate upwinding,
and the earliest version of the Active Flux method ([vL77], for linear advection
in 1-d) traced a characteristic back to the time level tn where a reconstruction
of the data was evaluated. In [HKS19], approximate evolution operators were
derived using a Cauchy-Kowalevskaya/ADER procedure. As the reconstruc-
tion is globally only C0, Riemann problems in the derivatives were solved.
This led to Active Flux methods for nonlinear systems of conservation laws
in one spatial dimension. For scalar, nonlinear conservation laws, a fixpoint
iteration can be used to systematically generate approximations to the speed
of the characteristic of arbitrary order of accuracy ([Bar21a,CHK21]). This
approach was extended in [Bar21a] to hyperbolic systems of conservation laws
in one spatial dimension, even if they do not allow for characteristic variables.
Predictor-corrector estimates of the eigenvalues and the eigenvectors of the
Jacobian led to third-order accurate approximate evolution operators. They
were used, for example, in [BB23] to solve the one-dimensional shallow water
equations in presence of dry areas.

For hyperbolic systems in multiple spatial dimensions, even if they are
linear, characteristic curves in general no longer exist. Also, values in general
are not transported, but the solution is a convolution of the initial data with
a more or less complicated kernel. For the acoustic equations with the speed
of sound c, for example, the solution in x at time t depends on the initial data
in a disc with radius ct around x. This disc is the interior of the intersection
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of the hypersurface of initial data with the cone of bicharacteristics which
has its vertex at (t,x). In [ER13], [FR15], a solution operator was given for
the acoustic equations, which relied on smoothness of the initial data, and in
[BK22] a solution in the sense of distributions was obtained which could be
used to solve e.g. Riemann problems. These operators can be implemented
efficiently and used to update the point values in an Active Flux method for
linear acoustics ([BHKR19], [CH23]). An approximate evolution operator for
linear acoustics based on bicharacteristics is used in [CH23].

For the Euler equations, splitting and linearization is suggested in [RMF18].
Generally, when studying the approximation error using Taylor series for non-
linear problems, evolution operators designed using linearization are found to
require an additional fix in order to achieve third-order accuracy. For the one-
dimensional case, in [Bar21a] a general algorithm to achieve third order of accu-
racy on non-linear problems while solving only linear ones was derived. Analo-
gous high-order approximate evolution operators for general multi-dimensional
nonlinear systems of conservation laws are currently unavailable, but for the
Euler equations some suggestions can be found in [Mae17].

All these Active Flux methods are fully-discrete. In [Zen14,Abg22], a semi-
discrete version of Active Flux was introduced. In order to obtain an equation
for the point values, the spatial derivative in the PDE is discretized using finite
difference formulae. This approach is immediately applicable to all kinds of
nonlinear problems without the need to derive an evolution operator, but at
the price of a reduced CFL condition. In [Roe21], a link is made between the
semi-discrete approach and the reduced CFL condition for high-order methods
with a compact stencil in space.

In [AB23a,AB23b] the semi-discrete Active Flux has been applied to one-
dimensional nonlinear problems, and extended to arbitrary order. The aim
of the present work is, maintaining 3rd order of accuracy, to extend it to the
multi-dimensional Euler equations. The paper is organized as follows: Section 2
describes the method and Section 3 presents a novel multi-dimensional limiting
strategy. Numerical results are shown in Section 4.

2 The semi-discrete Active Flux method

Here, we let ourselves guide by the semi-discrete approach of [AB23a] and
extend it to multi-dimensional Cartesian grids, while aiming at third-order
accuracy. Consider a hyperbolic m×m system of conservation laws in d spatial
dimensions1

∂tq +∇ · f(q) = 0 q : R+
0 × Rd → Rm (1)

For simplicity, we restrict ourselves to two spatial dimensions (d = 2) and
write f = (fx, fy), ∇qfx = Jx, ∇qfy = Jy whenever convenient.

1 Boldface letters denote “spatial” vectors, i.e. those whose natural dimension is that of
space (d). Other collections of scalars (such as the conserved quantities q) are not typeset
in boldface.
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Figure 1 Degrees of freedom employed in the third-order accurate Active Flux method on
Cartesian grids. Stars denote point values, the cross denotes the cell average. Every cell has
access to 8 point values and one average. Point values are shared with adjacent cells; per
cell there is one average and 4 · 1

4
+ 4 · 1

2
= 3 point values.

2.1 Update of the averages

Integrating (1) over the Cartesian cell

Cij :=
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
(2)

and denoting the cell average by

q̄ij(t) :=
1

∆x∆y

∫
Cij

q(t,x)dx (3)

one finds

d

dt
q̄ij +

1

∆x∆y

∫
∂Cij

n · f(q) = 0 (4)

As there are degrees of freedom located at the boundary ∂Cij of cell Cij , we in-
tend to use them as quadrature points for a sufficiently accurate quadrature of
the integral appearing in (4). Inspired by previous approaches (e.g. [BHKR19,
HKS19]) we use three Gauss-Lobatto points per edge, where the extreme points
(corners) are shared (see Figure 1). This is in contrast to [Zen19] where a dis-
tribution of point values based on a Gauss-Legendre quadrature along the edge
is suggested, or [Zen14] where only second-order accuracy is obtained. Note
also that we enforce global continuity: the point values on an edge are the same
as seen from either of the adjacent cells and a value at a corner is involved
in the update of four cells. This is in contrast to e.g. discontinuous Galerkin
methods.

On Cartesian grids it is convenient to adopt the following notation for the
8 point values on the boundary of cell Cij :

qi− 1
2 ,j+

1
2

qi,j+ 1
2

qi+ 1
2 ,j+

1
2

qi− 1
2 ,j

qi+ 1
2 ,j

qi− 1
2 ,j−

1
2

qi,j− 1
2

qi+ 1
2 ,j−

1
2
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Then,

d

dt
q̄ij +

1

∆x∆y

∫ y
j+ 1

2

y
j− 1

2

dy
(
fx(q(t, xi+ 1

2
, y))− fx(q(t, xi− 1

2
, y))

)
(5)

+
1

∆x∆y

∫ x
i+ 1

2

x
i− 1

2

dx
(
fy(q(t, x, yj+ 1

2
))− fy(q(t, x, yj− 1

2
))
)

= 0

using Simpson’s rule (ω− 1
2

= ω 1
2

= 1
6 , ω0 = 2

3 ) becomes

d

dt
q̄ij(t) +

1

∆x

∑
K=− 1

2 ,0,
1
2

ωK

(
fx(qi+ 1

2 ,j+K
(t))− fx(qi− 1

2 ,j+K
(t))
)

(6)

+
1

∆y

∑
K=− 1

2 ,0,
1
2

ωK

(
fy(qi+K,j+ 1

2
(t))− fy(qi+K,j− 1

2
(t))
)

= 0

This method is conservative, with e.g. the x-flux through the cell interface
(i+ 1

2 , j) being given by

f̂xi+ 1
2 ,j

=
∑

K=− 1
2 ,0,

1
2

ωKf
x(qi+ 1

2 ,j+K
) (7)

=
fx(qi+ 1

2 ,j−
1
2
) + 4fx(qi+ 1

2 ,j
) + fx(qi+ 1

2 ,j+
1
2
)

6
(8)

It is also at least 3rd order accurate, as it is exact for biparabolic functions.

2.2 Update of the point values

The update of the cell averages, as described above, now needs to be com-
plemented by an update of the point values. In the one-dimensional case,
it was proposed in [AB23a] to replace the spatial derivatives appearing in
(1) by finite differences. Here, the multi-dimensional case will be addressed.
Note first that hyperbolicity of (1) implies that it is always possible to define
the positive and negative parts of the Jacobians via their eigenvalues. With
Jx = Rdiag(λ1, . . . , λm)R−1 one has

(Jx)+ := Rdiag(λ+1 , . . . , λ
+
m)R−1 (9)

(Jx)− := Rdiag(λ−1 , . . . , λ
−
m)R−1 (10)

where, for scalars a ∈ R the positive/negative parts are simply a+ = max(0, a),
a− = min(0, a).

The finite difference formulae are obtained by differentiating a reconstruc-
tion. Define first the unique biparabolic polynomial

qij,recon ∈ P 2,2, qij,recon :

[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
→ Rm (11)

P 2,2 = span(1, x, x2, y, xy, x2y, y2, xy2, x2y2) (12)
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that interpolates the degrees of freedom accessible to cell ij:

qij,recon

(
−∆x

2
,
∆y

2

)
= qi− 1

2 ,j+
1
2

qij,recon

(
∆x

2
,
∆y

2

)
= qi+ 1

2 ,j+
1
2

qij,recon

(
−∆x

2
,−∆y

2

)
= qi− 1

2 ,j−
1
2

qij,recon

(
∆x

2
,−∆y

2

)
= qi+ 1

2 ,j−
1
2

qij,recon

(
0,
∆y

2

)
= qi,j+ 1

2
qij,recon

(
−∆x

2
, 0

)
= qi− 1

2 ,j

qij,recon

(
∆x

2
, 0

)
= qi+ 1

2 ,j
qij,recon

(
0,−∆y

2

)
= qi,j− 1

2

and

1

∆x∆y

∫ ∆x
2

−∆x2

∫ ∆y
2

−∆y2
qij,recon(x, y) dydx = q̄ij (13)

This reconstruction has already been used in [BHKR19,HKS19] and is
given there explicitly. Then we define the finite differences in the corner as

(Dx)+
i+ 1

2 ,j+
1
2

q := ∂xqij,recon

(
x,
∆y

2

)∣∣∣∣
x=∆x

2

(14)

(Dx)−
i+ 1

2 ,j+
1
2

q := ∂xqi+1,j,recon

(
x,
∆y

2

)∣∣∣∣
x=−∆x2

(15)

(Dy)+
i+ 1

2 ,j+
1
2

q := ∂yqij,recon

(
∆x

2
, y

)∣∣∣∣
y=∆y

2

(16)

(Dy)−
i+ 1

2 ,j+
1
2

q := ∂yqi,j+1,recon

(
∆x

2
, y

)∣∣∣∣
y=−∆y2

(17)

Observe that due to continuity,

(Dx)+
i+ 1

2 ,j+
1
2

q = ∂xqi,j+1,recon

(
x,−∆y

2

) ∣∣∣
x=∆x

2

(18)

such that this would be an equivalent definition that gives the same result
(and similarly for the other finite differences). Analogously, we define the finite
differences on the edges

(Dx)+
i+ 1

2 ,j
q := ∂xqij,recon (x, 0)|x=∆x

2
(19)

(Dx)−
i+ 1

2 ,j
q := ∂xqi+1,j,recon (x, 0)|x=−∆x2 (20)

(Dy)i+ 1
2 ,j
q := ∂xqij,recon

(
∆x

2
, y

)∣∣∣∣
y=0

(21)



A semi-discrete Active Flux method for the Euler equations on Cartesian grids 7

Observe that due to continuity, there is no distinction between (Dy)+
i+ 1

2 ,j
and

(Dy)−
i+ 1

2 ,j
. Here, again, the symmetric definition

(Dy)i+ 1
2 ,j
q := ∂yqi+1,j,recon

(
−∆x

2
, y

)∣∣∣∣
y=0

(22)

yields the same result. The derivatives at (i, j + 1
2 ) are obtained analogously.

For reference we now state their explicit forms:

(Dx)
+
i+ 1

2 ,j
q =

1

4∆x

(
4
(
−9q̄ij + 2

(
qi− 1

2 ,j
+ 2qi+ 1

2 ,j

))
+ 4

(
qi,j− 1

2
+ qi,j+ 1

2

)
+qi− 1

2 ,j−
1
2

+ qi+ 1
2 ,j−

1
2

+ qi− 1
2 ,j+

1
2

+ qi+ 1
2 ,j+

1
2

)
(Dx)

−
i+ 1

2 ,j
q = − 1

4∆x

(
−36q̄i+1,j + 8

(
2qi+ 1

2 ,j
+ qi+ 3

2 ,j

)
+ qi+ 1

2 ,j−
1
2

+4
(
qi+1,j− 1

2
+ qi+1,j+ 1

2

)
+ qi+ 3

2 ,j−
1
2

+ qi+ 1
2 ,j+

1
2

+ qi+ 3
2 ,j+

1
2

)
(Dy)i+ 1

2 ,j
q =

qi+ 1
2 ,j+

1
2
− qi+ 1

2 ,j−
1
2

∆y

(Dy)
+
i,j+ 1

2
q =

1

4∆y

(
4
(
qi− 1

2 ,j
− 9q̄ij + qi+ 1

2 ,j

)
+ qi− 1

2 ,j−
1
2

+ qi− 1
2 ,j+

1
2

+qi+ 1
2 ,j−

1
2

+ qi+ 1
2 ,j+

1
2

+ 8
(
qi,j− 1

2
+ 2qi,j+ 1

2

))
(Dy)

−
i,j+ 1

2
q = − 1

4∆y

(
4
(
qi− 1

2 ,j+1 − 9q̄i,j+1 + qi+ 1
2 ,j+1

)
+ qi− 1

2 ,j+
1
2

+qi+ 1
2 ,j+

1
2

+ qi− 1
2 ,j+

3
2

+ qi+ 1
2 ,j+

3
2

+ 8
(

2qi,j+ 1
2

+ qi,j+ 3
2

))
(Dx)i,j+ 1

2
q =

qi+ 1
2 ,j+

1
2
− qi− 1

2 ,j+
1
2

∆x

(Dx)
+
i+ 1

2 ,j+
1
2
q =

qi− 1
2 ,j+

1
2
− 4qi,j+ 1

2
+ 3qi+ 1

2 ,j+
1
2

∆x

(Dx)
−
i+ 1

2 ,j+
1
2
q =

4qi+1,j+ 1
2
− 3qi+ 1

2 ,j+
1
2
− qi+ 3

2 ,j+
1
2

∆x

(Dy)
+
i+ 1

2 ,j+
1
2
q =

qi+ 1
2 ,j−

1
2
− 4qi+ 1

2 ,j
+ 3qi+ 1

2 ,j+
1
2

∆y

(Dy)
−
i+ 1

2 ,j+
1
2
q =

4qi+ 1
2 ,j+1 − 3qi+ 1

2 ,j+
1
2
− qi+ 1

2 ,j+
3
2

∆y

However, in some situations one might be willing to employ a different
reconstruction, as is, for instance, the case in Section 3 concerned with limiting.
At this point one has to resort to the more general formulae (14)–(21).

Finally, the upwinding is defined as

(JxDx
i+K,j+L)upwq := (Jx)+(Dx)+i+K,j+Lq + (Jx)−(Dx)−i+K,j+Lq (23)
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with K,L ∈ {−1
2 , 0,

1
2} and an analogous definition for Jy. We content our-

selves here with simple upwinding based on the x- and y-Jacobians separately.
The multi-dimensionality advertised in works of Roe and collaborators is not
entirely lost, though, because the degree of freedom at the node couples the
waves from different directions in a truly multi-dimensional manner (different
from DG methods, say).

We propose to update the point values as follows:

d

dt
qi+ 1

2 ,j
+ (JxDx

i+ 1
2 ,j

)upwq + JyDy

i+ 1
2 ,j
q = 0 (24)

d

dt
qi,j+ 1

2
+ JxDx

i,j+ 1
2
q + (JyDy

i,j+ 1
2

)upwq = 0 (25)

d

dt
qi+ 1

2 ,j+
1
2

+ (JxDx
i+ 1

2 ,j+
1
2
)upwq + (JyDy

i+ 1
2 ,j+

1
2

)upwq = 0 (26)

As the finite differences are exact for biparabolic function, one expects 3rd

order of accuracy.

The complete method consists of the ODEs (7) (average update), (24)–(25)
(point values at edge midpoints) and (26) (point values at nodes). We propose
to integrate these with an SSP-RK3 method. In [AB23b], it was shown for
linear advection in one spatial dimension that this approach leads to a stable
scheme with a maximum CFL number of 0.41, a value lower than what can be
achieved if an evolution operator is available ([CHK21]), but comparable e.g.
to CFL numbers of DG methods. In two space dimensions we expect stability
at least for half the CFL number, i.e. 0.2, or possibly higher.

3 Limiting

Existing approaches to limiting in the context of standard Finite Volume meth-
ods modify the values of the reconstruction at a cell interface. They cannot be
used for Active Flux due to its global continuity and the fact that point values
at cell interfaces are prescribed and cannot be modified arbitrarily. Limiting
employed in [HKS19] therefore gives up on continuity. Approaches to limiting
that maintain continuity so far have only been treating the situation in which
a parabolic reconstruction of monotonic discrete data (point values and aver-
age) is not monotonic, i.e. has an artificial extremum. In [RLM15], a piecewise
linear/parabolic reconstruction is used in this case, and in [Bar21a] the same
situation is handled by replacing the parabola by a power law. One can show
that then the reconstruction is always monotonic whenever the discrete data
are. Such modified reconstructions are effective in drastically reducing spuri-
ous oscillations, but they do not guarantee to remove them entirely. This is
because the update of the averages is not limited and can itself create artificial
extrema in the discrete data. However, in absence of better approaches, e.g.
the power-law reconstruction is a viable limiting strategy. In particular, it is
not computationally intensive.
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In multiple spatial dimensions, a similar strategy is presented here for the
first time. The multi-dimensional case is, however, much more complex because
every cell has access to 8 point values. Even monotonicity is a vague concept,
because data can be monotonic along one direction and non-monotonic along
the other. We focus only on the degrees of freedom accessible to a cell. As
long as the cell average is between the smallest and the largest point values
we propose to reconstruct in such a way that the value of the reconstruction
at any point inside the cell is also between the smallest and the largest point
value. This is always possible, as will be shown. We additionally impose a
monotonicity constraint along any edge, i.e. we reconstruct in a monotonic
fashion if the data are monotonic. Finally, we also impose global continuity.

Consider point values at edge centers qN, qS, qW, qE and at vertices qNE,
qSE, qNW, qSW of a (reference) Cartesian cell c = [−∆x2 ,

∆x
2 ]× [−∆y2 ,

∆y
2 ] and

a cell average q̄ to be given. We will refer to the four edges as N-edge, S-
edge, W-edge and E-edge, respectively. The reconstruction will be denoted by
qrecon : c→ R for simplicity. There exist two ways how the reconstruction can
create new extrema, which can occur independently of each other:

1. It can happen that the parabolic reconstruction along an edge (as part of
a biparabolic reconstruction in the cell) overshoots/undershoots the three
point values along the edge in question. For the example of an N-edge, this
happens if either
– the point values qNW, qN, qNE are not monotonic and qNW 6= qNE, or if
– they are monotonic (i.e. either qNW < qN < qNE or qNW > qN > qNE),

but ∣∣∣∣qN − qNE + qNW

2

∣∣∣∣ > |qNE − qNW|
4

(27)

such that the parabolic reconstruction has an extremum not present in
the discrete data.

In this case the reconstruction along the edge will be chosen continuous
piecewise linear (“hat”). We will say that the reconstruction along the
edge is limited, or just that the “edge is limited”. To ensure continuity,
the reconstruction in any cell with a limited edge can then no longer be
biparabolic, but needs to be modified as detailed below and in Section A.1.

2. Define

m := min(qN, qS, qW, qE, qNE, qSE, qNW, qSW) (28)

M := max(qN, qS, qW, qE, qNE, qSE, qNW, qSW) (29)

It can happen that despite

m < q̄ < M (30)

the reconstruction qrecon inside the cell c has an extremum with no coun-
terpart in the discrete data, i.e.

∃x ∈ c such that either qrecon(x) < m or qrecon(x) > M (31)
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Figure 2 Left : An example of a plateau reconstruction. Here, qNW = 1, qW = 1.35,
qSW = 0.6, qS = 0.4, qSE = 0, qE = −0.2, qNE = 0.0, qN = 1, q̄ = 0.9 (the S-edge is on the
left and ∆x = ∆y = 1). All edges but the S-edge are reconstructed as hats, the S-edge is
reconstructed parabolically. Right : A piecewise-biparabolic reconstruction of the same data;
one clearly observes an overshoot. The isolines have a spacing of 0.1.

This situation will be improved by introducing a piecewise defined recon-
struction with a central region where the function is constant (“plateau”),
and connecting the plateau to the (parabolic or hat) reconstructions along
the edges in a continuous fashion. More details are given below and in Sec-
tion A.2; Figures 2 and 3 show examples. This new reconstruction fulfills

m < qrecon(x) < M ∀x ∈ c (32)

We will say that the reconstruction inside the cell is limited, or just
that the “cell is limited”.
This situation appears already in 1-d, in which case it has been suggested in
[Bar21a] to replace the parabolic reconstruction in the cell by a power law.
A multi-dimensional analogue of the power law seems unfeasible, though,
and we resort here to a piecewise defined, but easier function.

The two situations are independent: any number of edges along the bound-
ary of a cell might require limiting, and this will not generally imply anything
about whether the cell itself is to be limited. The possible presence of hat func-
tions along the boundary requires the reconstruction inside the cell to flexibly
adapt to the different combinations of edge-reconstructions in order to be con-
tinuous. For instance, the plateau reconstruction needs to connect the plateau
continuously to either a parabola, or a hat function (see Section A.2). Also,
if there exists at least one edge that is reconstructed as a hat function, then
one cannot use a biparabolic reconstruction inside the cell any longer, even
if the cell is not limited. If at least one edge is limited, but the cell is not, a
piecewise-biparabolic reconstruction will be used, detailed in Section A.1.

As we are aiming at a globally continuous reconstruction, that is computed
locally from merely the cell average and the point values of the cell, the re-
construction along an edge can only depend on the three values associated
to this edge, and cannot depend on other values in the cell. Indeed, if edge-
reconstruction of one of edges of c were to depend on, say, the average in the
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Figure 3 Left : An example of a plateau reconstruction. qNE = 1, qNW = 2, qSW =
−4, qSE = 0, qN = −1, qS = 4, qW = −5, qE = −3, q̄ = 2 (the W-edge is on the left and
∆x = ∆y = 1). All edges are reconstructed as hats. Right : A piecewise-biparabolic recon-
struction of the same data; one clearly observes an overshoot. The isolines have a spacing
of 0.25.

cell c, then the reconstruction in the neighbouring cell c′ would also need to
know about the average in c.

Due to the particular choice of degrees of freedom for Active Flux the re-
construction has to fulfill two types of conditions: It is supposed to interpolate
the point values at cell interfaces and its average is supposed to be equal to
the given one. The latter condition – merely to simplify the calculations – will
be replaced by a (yet unknown) point value qC at cell center which is kept
as a variable in the formulae. Once the type of reconstruction in all regions
of the cell has been determined, their integrals over the respective domains of
definition can easily be found as functions of qC, and qC is then determined by
imposing the average of the reconstruction over the entire cell. This is a linear
equation in qC due to linearity of the interpolation problem which makes qC
enter linearly everywhere. The explicit formulae below therefore also depend
on qC, but the reconstruction in a cell in the end only depends on the point
values along its boundary and on its average. This detour does not change the
result but simplifies the algorithm.

The overall structure of the reconstruction algorithm is:

1. Decide for every edge of the cell whether it is reconstructed parabolically,
or as a hat function.

2. Assume as hypothesis that the cell does not require limiting (i.e. that it
is reconstructed in a piecewise biparabolic fashion) and compute the value
of qC that ensures that the average of the reconstruction agrees with the
given cell average.

3. Check (30) and if true, decide whether the piecewise-biparabolic recon-
struction obtained in 2 has an artificial extremum in the sense of what has
been described above2

2 This happens numerically by testing a given number of locations.
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4. If this is the case, the cell needs to be limited with a plateau reconstruction.
Compute the parameters η, qp (see below) of the plateau reconstruction
that ensure maximum principle preservation and the correct value of the
average of the reconstruction.

A pedagogical derivation of the reconstruction algorithm is given in Section
A. Here, we only state all the relevant results in a concise way.

Theorem 1 The following reconstruction qrecon :
[
−∆x2 ,

∆x
2

]
×
[
−∆y2 ,

∆y
2

]
→

R is continuous, interpolates all the point values along the boundary of the cell,
its average agrees with the given cell average and the reconstruction has the
following properties:

(i) If Condition (30), i.e. m < q̄ < M is fulfilled, then m ≤ qrecon(x) ≤ M
for all x inside the cell.

(ii) If qNW < qN < qNE, then qNW ≤ qrecon(x) ≤ qNE for all x along the
N-edge, and similarly for all the other edges.

The definition of the reconstruction is as follows: If m < q̄ < M is not
fulfilled, or if additionally m < qpw. biparab.

recon (x, y) < M for all (x, y) ∈ c, then

qrecon(x, y) := qpw. biparab.
recon (x, y) (33)

otherwise

qrecon(x, y) := qplateaurecon (x, y), (34)

the two types of reconstruction being defined as follows:

1. The piecewise-barabolic reconstruction:

qpw. biparab.
recon (x, y) := (35)

qWrecon

(
qSW − Q̄

2
, qW − Q̄,

qNW − Q̄
2

, x, y,S,N,W,
q̄ − Q̄

4

)
(36)

+ qSrecon

(
qSE − Q̄

2
, qS − Q̄,

qSW − Q̄
2

, x, y,E,W,S,
q̄ − Q̄

4

)
+ qNrecon

(
qNW − Q̄

2
, qN − Q̄,

qNE − Q̄
2

, x, y,W,E,N,
q̄ − Q̄

4

)
+ qErecon

(
qNE − Q̄

2
, qE − Q̄,

qSE − Q̄
2

, x, y,N,S,E,
q̄ − Q̄

4

)
+ Q̄

with Q̄ := qSW+qW+qNW+qN+qNE+qE+qSE+qS
8 (other choices are possible) and

qSrecon(qSE, qS, qSW, x, y,E,W,S, q̄) = qWrecon(qSE, qS, qSW, y,−x,E,W,S, q̄)
(37)

qNrecon(qNW, qN, qNE, x, y,W,E,N, q̄) = qWrecon(qNW, qN, qNE,−y, x,W,E,N, q̄)
(38)

qErecon(qNE, qE, qSE, x, y,N,S,E, q̄) = qWrecon(qNE, qE, qSE,−x,−y,N,S,E, q̄)
(39)
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and

qWrecon(qSW, qW, qNW, x, y,S,N,W, q̄) (40)

=



(88) N,S,W parabolic

(89)–(90) W parabolic, N,S hat

(92)–(93) W,S parabolic, N hat

(95)–(96) W,N parabolic, S hat

(102) and (100) W hat, N,S parabolic

(102) and (103)–(104) W,N hat, S parabolic

(100) and (106)–(107) W,S hat, N parabolic

(103)–(104) and (106)–(107) W,S,N hat

Here, N/S/E/W denote the edges of the cell. qC fulfills


qC = 1
16

(36q̄ − qNW − qSW − 4qW) N,S,W parabolic

qC = 1
32

(72q̄ − 3qNW − 3qSW − 8qW) W parabolic, N,S hat

qC = 1
32

(72q̄ − 3qNW − 2qSW − 8qW) W,S parabolic, N hat

qC = 1
32

(72q̄ − 2qNW − 3qSW − 8qW) W,N parabolic, S hat

q̄ =
2qC
9

+
qSW+qW

24
+

2qC
9

+
qNW+qW

24
W hat, N,S parabolic

q̄ =
2qC
9

+
qSW+qW

24
+

2qC
9

+ 1
576

(35qNW + qSW + 22qW) W,N hat, S parabolic

q̄ =
2qC
9

+
qNW+qW

24
+

2qC
9

+ 1
576

(qNW + 35qSW + 22qW) W,S hat, N parabolic

q̄ =
2qC
9

+ 1
576

(35qNW + qSW + 22qW) +
2qC
9

+ 1
576

(qNW + 35qSW + 22qW) W,S,N hat

2. The plateau reconstruction:

qplateaurecon (x, y) :=



qp if (x, y) ∈
[
∆x
(
η − 1

2

)
,∆x

(
1
2
− η
)]
×
[
∆y
(
η − 1

2

)
,∆y

(
1
2
− η
)]

qtrapeze,Wrecon (qSW, qW, qNW, x, y,W, η, qp) if (x, y) ∈W-trapeze

qtrapeze,Srecon (qSE, qS, qSW, x, y,S, η, qp) if (x, y) ∈ S-trapeze

qtrapeze,Nrecon (qNW, qN, qNE, x, y,N, η, qp) if (x, y) ∈ N-trapeze

qtrapeze,Erecon (qNE, qE, qSE, x, y,E, η, qp) if (x, y) ∈ E-trapeze

with

qtrapeze,Wrecon (qSW, qW, qNW, x, y,W, η, qp) =

{
(117) (x, y) ∈W parabolic

(126)–(127) (x, y) ∈W hat

(41)

defined only in

W-trapeze =

{
(x, y) s.t. x ∈

[
−
∆x

2
,−∆x

(
1

2
− η
)]

and y ∈
[
x

∆y
∆x,−

x

∆y
∆x

]}
(42)

The reconstructions of the other trapezes are

qtrapeze,Srecon (qSE, qS, qSW, x, y,S, η, qp) = qtrapeze,Wrecon (qSE, qS, qSW, y,−x,S, η, qp)
(43)

qtrapeze,Nrecon (qNW, qN, qNE, x, y,N, η, qp) = qtrapeze,Wrecon (qNW, qN, qNE,−y, x,N, η, qp)
(44)

qtrapeze,Erecon (qNE, qE, qSE, x, y,E, η, qp) = qtrapeze,Wrecon (qNE, qE, qSE,−x,−y,E, η, qp)
(45)



14 Rémi Abgrall et al.

The parameters qp and η are found according to the procedure descrobed in
Section A.2.4.

Proof Continuity is a consequence of Theorems 5 and 6 and of the fact that
the reconstruction along any edge only involves the points on this edge. The
pointwise and average interpolation property follows from Theorems 4 and 7.
Preservation of the maximum principle along the edges is clear from (27) and
the idea of reconstructing a hat function along the edge; preservation of the
maximum principle for the cell follows from Theorem 7.

�

Theorem 2 The usage of the reconstruction from Theorem 1 in every cell
leads to a globally continuous reconstruction.

Proof It follows by construction (see Sections A.1.1, A.2.1) that the recon-
struction in a cell c continuously turns into the reconstruction along the edge
as c 3 (x, y)→ s ∈ ∂c. The reconstructions along the edges only depend on the
three point values located on the edge, and thus the limit as (x, y) approaches
the same edge from the other cell is the same.

�

4 Numerical results

Here, the Euler equations with q = (ρ, ρu, ρv, e),

fx = (ρu, ρu2 + p, ρuv, u(e+ p)) (46)

fy = (ρv, ρuv, ρv2 + p, v(e+ p)) (47)

e =
p

γ − 1
+

1

2
ρ(u2 + v2) (48)

and γ = 1.4 are solved using the Active Flux method described above. Initial
data are denoted by ρ0, u0, v0, p0.

4.1 Convergence studies

For a convergence analysis, the following initial data (similar to those used in
[HKS19,Bar21a]) are solved until t = 0.05 on grids of different resolution:

u0(x, y) = v0(x, y) = 0 r :=

√
(x− 1

2
)2 + (y − 1

2
)2 (49)

ρ0(x, y) = p0(x, y) = 1 +
1

2
exp

(
−80r2

)
(50)

Figure 4 shows the setup and the error, computed with respect to a reference
solution obtained on a grid of 1024× 1024 covering [0, 1]2.
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To facilitate comparison with other methods, we have also performed a
convergence analysis using the setup of an isentropic (p = ργ), traveling vortex
as in [HS99], Example 3.3:(

u0(x, y)
v0(x, y)

)
=

(
1
1

)
+
Γ

2π
exp

(
1− r2

2

)(
−y
x

)
(51)

T0(x, y) :=
p0(x, y)

ρ0(x, y)
= 1− (γ − 1)Γ 2

8γπ2
exp(1− r2) (52)

r :=
√

(x− 10)2 + (y − 10)2 (53)

The exact solution is pure advection with speed (1, 1). We use Γ = 5 and
compute the errors at time t = 2. This vortex is not compactly supported,
but its rotational velocity decays rapidly. We choose a larger domain than
[HS99], namely [0, 20]2, to ensure that the rotational velocity of the vortex has
decreased to the level of machine error at the boundary of the domain.

In both cases limiting is not used and we use a CFL number of 0.2. In
Figure 4 one observes third order accuracy in agreement with the expectation.

4.2 Spherical shock tube

As a first test with discontinuities, Figure 5 shows a 2-dimensional version of
Sod’s shock tube:

ρ0(x, y) =

{
1 r < 0.3

0.125 else
p0(x, y) =

{
1 r < 0.3

0.1 else
(54)

u0(x, y) = v0(x, y) = 0 (55)

with r =
√

(x− 1
2 )2 + (y − 1

2 )2. We use a CFL number of 0.05, a reduction

we find helpful to avoid negative pressure. One observes that the limiting
is successful in suppressing oscillations at the shock and around the rarefac-
tion. However, both the limited and the unlimited versions show some scatter
around the contact wave, the origin of which will be studied as future work.
Global continuity does not impede Active Flux from converging to weak solu-
tions, because the update of the averages is conservative and fulfills a version
of the Lax-Wendroff-theorem ([Abg22]).

4.3 Multi-dimensional Riemann problems

In [LL98], particular multi-dimensional Riemann problems were studied, de-
signed such that the one-dimensional Riemann problems outside the central
interaction region result in elementary waves. Inside the interaction region
these Riemann problems display a lot of sophisticated structure. They will
illustrate the ability of the proposed method to solve complex interactions of
shocks, rarefactions and slip lines. All the Riemann problems shown in Figure
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Figure 4 Convergence study. Top left : Setup (49)–(50) at initial time and at t = 0.05,
shown as a scatter plot as a function of radius, computed on a 256× 256 grid. Bottom left :
Setup (51)–(52) at initial time on a grid of 100× 100, shown as a scatter plot. Right top: `1

error of the numerical solution of the point values, i.e. the average of 1
|Ω|
∑
ij |qi+ 1

2
,j+ 1

2
(tn)−

qref(t
n, xi+ 1

2
, yj+ 1

2
)|∆x∆y for the setup (49)–(50). The analogous error of the averages has

virtually the same values and is not shown. Right bottom: Same for the setup (51)–(52).

6 are solved on grids with ∆x = ∆y = 1
200 (the original publication used 1

400 )
with a domain slightly larger than the one shown (to exclude the influence of
boundary conditions). A CFL number of 0.05 was used, as well as limiting,
as described in Section 3. Figures 7–8 show results on even coarser meshes.
Figures 9–10 show a comparison between results obtained with and without
limiting. It seems that the intricate structures in the interaction region are not
significantly smeared out by the limiting while oscillations at shocks are very
efficiently suppressed.

4.4 Low Mach number vortex

In e.g. [BEK+17] a subsonic vortex from [GC90] has been used to assess the low
Mach number properties of the numerical method. The velocity field associated
with this stationary solution of the Euler equations is divergence-free. The
Mach number of the flow is modified by changing the background pressure,
see [BEK+17] for setup details. While numerical methods that are not low
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Figure 5 Radial scatter plot of the two-dimensional version of Sod’s shock tube solved on a
100× 100 grid. The solid line shows a finely resolved solution of the one-dimensional, radial
Euler equations obtained with a standard Finite Volume method. We show the pressure
offset by 0.1 for better readability of the plot. Left : No limiting. Right : Limiting used. The
limiting is successful at suppressing oscillations at the shock and around the rarefaction. As
in a radial scatter plot points from different locations end up shown in the same location,
around the contact wave one rather observes scatter than oscillations, i.e. a deviation from
radial symmetry.

Figure 6 Multi-dimensional Riemann problems solved on a grid with ∆x = ∆y = 1
200

using
limiting as described in Section 3. Configurations 6 (top left), 11 (top right), 12 (bottom left)
and 16 (bottom right) from [LL98] are shown. Density is shown in color and contour.
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Figure 7 Setup as in Figure 6, but solved on a grid with ∆x = ∆y = 1
100

.

Mach compliant diffuse the vortex on acoustic time scales, low Mach number
compliant methods apply only advective diffusion, i.e. the rate of decay of
the numerical solution is asymptotically independent of the Mach number.
Figure 11 shows the vortex on a 50× 50 grid for different values of the Mach
number until t = 1 with a CFL number of 0.2. One observes the independence
of the results on the Mach number leading us to the conclusion that Active
Flux is well-suited for subsonic/low Mach number flows. This parallels the
finding in [BHKR19] where is was shown that Active Flux (upon usage of
the exact evolution operator) is stationarity preserving and thus low Mach
compliant for linear acoustics. We also observe that the advective diffusion
leads to a (Mach number independent) smearing of the vortex, to levels that
would require solving this setup on a 200 × 200 grid with a first-order low
Mach number compliant method ([Bar21b]).

The good low Mach number behaviour of the proposed method is due to
the way how the point values are evolved, and thus not trivial. For comparison,
in Figure 12 the results of a simulation are shown which uses

(Jx)+ :=
1

2
(Jx + s1) (56)

(Jx)− :=
1

2
(Jx − s1) s := max

k
|λk| (57)
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Figure 8 Setup as in Figure 6, but solved on a grid with ∆x = ∆y = 1
50

.

Figure 9 Influence of limiting on the central region in Configuration 12. Left : Limiting off.
Right : Limiting on. Without limiting one observes some undershoots in the vicinity of the
vortices. The structure of the solution feature is, however, not degraded by applying the
limiter.
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Figure 10 Influence of limiting on Configuration 12. Density is shown along the lines
x = 0.4325 and x = 0.7525 (as indicated in the inset). One observes that limiting successfully
removes spurious oscillations in the vicinity of discontinuities. However, it also gently shifts
the location of the central double-vortex and smears out the feature along the x = y diagonal
in the first quadrant.

Figure 11 The Gresho vortex at various maximal Mach numbers (10−2, 10−3, 10−4 from
left to right). While the Mach number decreases by a factor of 10 from one plot to the other,
the effect of numerical diffusion remains the same asymptotically, i.e. the observed diffusion
is purely advective, not acoustic.
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Figure 12 The Gresho vortex as in Figure 11 solved using (56)–(57) instead of (9)–(10).
The presence of numerical diffusion in the terms associated to acoustics makes the choice
(9)–(10) unsuitable for low Mach number computations.

instead of (9)–(10). One observes artefacts typical of numerical diffusion asso-
ciated to the acoustic terms, and thus a method unsuitable for the low Mach
number regime.

4.5 Kelvin-Helmholtz instability

A special kind of a Kelvin-Helmholtz instability triggered by the passage of
an acoustic wave has been used in [MRKG03] to assess the properties of a
numerical method for subsonic flow. This setup is of interest because acoustic
phenomena are present on top of a low Mach number flow. On a domain[
− 1
M , 1

M
]
×
[
0, 2

5M
]
, the initial data consist of those of a right-running sound

wave qs on top of a vertically stratified background qbg

q0(x, y) = qbg(y) + qs(x) (58)

with

ρbg0 (y) = 1 + ϕ(y) ρs0(x) =
M
5
ψ(x) (59)

ubg0 (y) = 0 us0(x) =
√
γψ(x) (60)

vbg0 (y) = 0 ps0(x) =
1

M
γψ(x) (61)

pbg0 (y) =
1

M2
vs0(x) = 0 (62)

and

ϕ(y) :=

{
2My y < 4

2M(y − 4)− 0.4 else
ψ(x) := 1 + cos(πMx) (63)
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For the linearized Euler equations

∂tρ
s(t, x) + ρ̄∂xu

s(t, x) = 0 (64)

∂tu
s(t, x) +

1

ρ̄
∂xp

s(t, x) = 0 (65)

∂tp
s(t, x) + ρ̄c2∂xu

s(t, x) = 0 (66)

with c2 = 5γ
M2 and ρ̄ = 1√

5
the initial data qs0(x) evolve as follows

ρs(t, x) = ρs0(x− ct) us(t, x) = us0(x− ct) ps(t, x) = ps0(x− ct). (67)

This justifies referring to qs0 as the initial data of a right-running sound wave.
The non-linearity of the full Euler equations leads to its self-steepening over
time.

Additionally, due to the saw-tooth-shaped change in y-direction of the
background density, the sound wave is not moving the same way above and
below the interface located initially at y = 4. A shear flow is induced, which
causes a Kelvin-Helmholtz-type instability. Here we show this setup on grids
of 400×80 (Figure 13) and 800×160 (Figure 14) with a CFL of 0.15, periodic
boundaries andM = 1

20 . No limiting was used. Figure 15 shows the results at
additional times to facilitate comparison to [MRKG03]. Numerical methods
that are not low Mach number compliant would add so much diffusion to the
subsonic background flow that the instability would be artificially stabilized
(unless the grid is refined excessively). One observes that here, the method
is able to adequately3 evolve both the instability (comparable to results in
[PP11] obtained using a high-order DG method) and the sound waves (which
have become weak shocks) passing through the domain. This leads to the
hypothesis that the proposed Active Flux method is well-suited for all-speed
regimes.

5 Conclusions

Active Flux combines aspects of Finite Volume and Finite Element methods.
The evolution of cell averages ensures shock-capturing properties, while the
presence of point values at cell interfaces leads to a globally continuous recon-
struction, which is a great difference to Godunov methods. The incorporation
of additional degrees of freedom and thus the compact nature of the stencil
makes the method high-order, but efficient for parallelization or the imple-
mentation of boundary conditions. The shared degrees of freedom imply less
memory cost than DG methods. Finally, point values do not need to be ex-
pressed in conservative variables, i.e. Active Flux offers more freedom than
conventional approaches.

3 without claiming that the solution is physically correct, of course, as we are solving only
the Euler equations and are neglecting viscosity and other effects crucial for such setups.
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Figure 13 A Kelvin-Helmholtz instability is triggered by the passage of acoustic waves
(visible as weak shocks). The setup is computed on a 400× 80 grid without using limiting.
Density is shown at times t = 3, 6, 9, 12.

For Active Flux, an emphasis on multi-dimensional thinking was put from
the beginning, e.g. in [ER13]. This, again, is different from Godunov methods
which are rooted in one-dimensional thinking even when applied in multiple
dimensions. Interestingly, in the framework of Godunov methods, structure
preservation is not obtained even if all the multi-dimensional Riemann prob-
lems are solved exactly (see [BK22]). As has been shown in [BHKR19] for
linear acoustics, using an exact evolution operator for Active Flux results in a
method that is stationarity preserving.

Due to the inherent high-order nature of Active Flux, sufficiently high-
order evolution operators for nonlinear, multi-dimensional systems, that can
be used in fully discrete Active Flux methods are non-trivial to derive. For a
semi-discrete Active Flux method ([Abg22,AB23a]), it is easier to find spatial
discretizations that use the degrees of freedom of Active Flux and to immedi-
ately write down evolution equations for the point values. The semi-discrete
problem can then be integrated in time using standard methods, at the price
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Figure 14 Same setup as Figure 13, but on a grid of 800× 160.

of a reduced CFL number. The incorporation of truly multi-dimensional in-
formation is also more difficult.

To show that, however, such an Active Flux method can be successfully
used to solve the multi-dimensional Euler equations is the aim of the present
work. One finds that, endowed with a limiting strategy, Active Flux is in-
deed able to solve complex flow problems. This has been demonstrated here
for examples of multi-dimensional Riemann problems and for subsonic flows,
highlighting in particular the ability of Active Flux to cope with low Mach
number flows. This leads us to conjecture that also the semi-discrete Active
Flux method possesses structure-preserving properties. A comparison between
the semi-discrete and the fully discrete, classical approach to Active Flux in the
setting of linear acoustics is subject of a manuscript currently in preparation.

The semi-discrete approach can in principle be applied to other hyperbolic
systems of conservation laws. Further research is necessary to understand the
theoretical aspects of this method, such as entropy inequalities, or to construct
appropriate boundary conditions. The presented approach to limiting is rather
a proof of concept than a final choice. Future work will be directed towards bet-
ter limiting procedures, a study of other choices of the point value update and
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Figure 15 From top to bottom: 400 × 80, t = 11; 800 × 160, t = 11; 400 × 80, t = 14;
800× 160, t = 14. Density is shown. These times are the ones shown in [MRKG03].

towards preservation of physical conditions such as positivity of the pressure.
A comparison between the classical and the semi-discrete approach for non-
linear problems, and to this end further development of high-order evolution
operators for multi-dimensional nonlinear systems also need to be addressed
in future.
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A Detailed derivation of the multi-dimensional limiting

A.1 Piecewise-biparabolic reconstruction

If none of the edges needs to be limited, then the natural choice of the reconstruction is
biparabolic, as it has been used already since [BHKR19,HKS19]. However, if one of the
edges is reconstructed as a hat, then something else needs to be done inside the cell in order
to ensure continuity. We generally choose to subdivide the cell into regions (quadrants or
halves, depending on the situation) and to reconstruct biparabolically in every such region
while maintaining global continuity.

Then, if the discrete data fulfill condition (30), the reconstruction is tested (in an ap-
proximate way) to check whether m ≤ qrecon(x, y) ≤ M holds inside the cell. In case not,
the reconstruction is discarded and replaced by the plateau reconstruction of Section A.2.

Linearity of the problem (in the point values and the average) will be exploited by
considering all point values apart from qSW, qW, qNW to vanish:

Definition 1 Consider all point values apart from qSW, qW, qNW to vanish. Then a recon-
struction of the cell that interpolates these values pointwise and whose average agrees with
q̄ is called the edge-basis-function qWrecon of the W-edge:

qWrecon

(
−
∆x

2
,
∆y

2

)
= qNW qWrecon

(
−
∆x

2
, 0

)
= qW (68)

qWrecon

(
−
∆x

2
,−

∆y

2

)
= qSW

1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

qWrecon(x, y)dxdy = q̄ (69)

Similar notions will be used for the other edges.

Observe that an edge-basis-function is a reconstruction of the entire cell. In the follow-
ing, only the edge-basis-functions for the W-edge will be given explicitly, as those for the
other edges can be obtained by rotation, as long as ∆y = ∆x (otherwise some rescaling is
necessary).

Theorem 3 If the edge-basis-function for the W-edge is

qWrecon(qSW, qW, qNW, x, y,S,N,W, q̄) (70)

then the other basis functions are

qSrecon(qSE, qS, qSW, x, y,E,W,S, q̄) = qWrecon(qSE, qS, qSW, y,−x,E,W,S, q̄) (71)

qNrecon(qNW, qN, qNE, x, y,W,E,N, q̄) = qWrecon(qNW, qN, qNE,−y, x,W,E,N, q̄) (72)

qErecon(qNE, qE, qSE, x, y,N,S,E, q̄) = qWrecon(qNE, qE, qSE,−x,−y,N,S,E, q̄) (73)

The edge-basis-function depends on qSW, qW, qNW, on whether the reconstruction of
the W-edge is parabolic or hat, and – this complicates things a little – on whether the
neighbouring edges (S and N) are reconstructed as hats or as parabolae. This is necessary
due to global continuity and because the corner values qSW, qNW are shared with the S- and
N-edges.

The final reconstruction is obtained through summation:
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Theorem 4 The following reconstruction qrecon interpolates all the point values along the
boundary of the cell and its average agrees with the given cell average:

qrecon(x, y) := qWrecon

(
qSW − Q̄

2
, qW − Q̄,

qNW − Q̄
2

, x, y,S,N,W,
q̄ − Q̄

4

)
(74)

+ qSrecon

(
qSE − Q̄

2
, qS − Q̄,

qSW − Q̄
2

, x, y,E,W,S,
q̄ − Q̄

4

)
+ qNrecon

(
qNW − Q̄

2
, qN − Q̄,

qNE − Q̄
2

, x, y,W,E,N,
q̄ − Q̄

4

)
+ qErecon

(
qNE − Q̄

2
, qE − Q̄,

qSE − Q̄
2

, x, y,N,S,E,
q̄ − Q̄

4

)
+ Q̄

where Q̄ := qSW+qW+qNW+qN+qNE+qE+qSE+qS
8

. Moreover, as all the point values tend to q̄,

qrecon(x, y)→ q̄ (75)

for all x, y.

Proof The pointwise interpolation property is clear because, for example,

qrecon

(
∆x

2
,
∆y

2

)
= qNrecon

(
qNW − Q̄

2
, qN − Q̄,

qNE − Q̄
2

,
∆x

2
,
∆y

2
,W,E,N,

q̄ − Q̄
4

)
(76)

+qErecon

(
qNE − Q̄

2
, qE − Q̄,

qSE − Q̄
2

,
∆x

2
,
∆y

2
,N,S,E,

q̄ − Q̄
4

)
+ Q̄

=
qNE − Q̄

2
+
qNE − Q̄

2
+ Q̄ = qNE (77)

The correctness of the average follows from

1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

qWrecon(x, y)dxdy = 4 ·
q̄ − Q̄

4
+ Q̄ = q̄ (78)

Finally, property (75) is trivial if q̄ = 0, because the reconstruction is linear in all the
point values and in the average, and thus qrecon(x, y) → 0 uniformly in this case. If the
point values tend to q̄ 6= 0, then so does Q̄→ q̄ and thus

qrecon(x, y)→ 0 + Q̄→ q̄ (79)

�

Remark 1 : One might think that it would be sufficient to define the reconstruction as

qWrecon

(
qSW

2
, qW,

qNW

2
, x, y, S,N,W,

q̄

4

)
+ qSrecon

(
qSE

2
, qS,

qSW

2
, x, y,E,W, S,

q̄

4

)
(80)

+qNrecon

(
qNW

2
, qN,

qNE

2
, x, y,W,E,N,

q̄

4

)
+ qErecon

(
qNE

2
, qE,

qSE

2
, x, y,N, S,E,

q̄

4

)
(81)

This function also has the interpolation properties in Theorem 4. However, in the limit
of all the point values converging to q̄, property (75) is not guaranteed. Linearity merely
implies that in the limit, qrecon will be proportional to q̄, but it can still have a non-trivial
dependence on x, y. The only case where one can be sure of obtaining a uniform constant
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is when q̄ = 0. Thus, one can first subtract a uniform constant k from all the discrete data,
for instance the average of all the point values, reconstruct, and add it back:

qWrecon

(
qSW

2
− k, qW − k,

qNW

2
− k, x, y,S,N,W,

q̄ − k
4

)
(82)

+ qSrecon

(
qSE

2
− k, qS − k,

qSW

2
− k, x, y,E,W, S,

q̄ − k
4

)
(83)

+qNrecon

(
qNW

2
− k, qN − k,

qNE

2
− k, x, y,W,E,N,

q̄ − k
4

)
(84)

+ qErecon

(
qNE

2
, qE,

qSE

2
, x, y,N, S,E,

q̄ − k
4

)
+ k (85)

Now, if all point values tend to q̄, k also tends to q̄, and all the reconstructions tend to
uniform 0. The choice of k = Q̄ is a simple one, but other ones are possible.

As mentioned in Section 3, instead of directly imposing the correct average over the
cell, the value qC of the reconstruction at the cell center is imposed. Later, given the cell
average, qC is found as the solution of a linear equation. This is a purely algorithmic detour
not affecting the results, but it makes it easier to combine all the different cases. Below,
these linear equatiosn linking q̄ and qC are given together with the reconstructions.

If the reconstruction happens on the unit square, then ∆x = ∆y = 1 should be used
in the formulas below. The sketches of the interpolation problem are encoded as follows:
denotes the central value qC, / denotes a value that is not on the W edge and thus
zero (gray if it is not used in the interpolation), / denotes one of the values qNW, qW,
qSW (gray if it is not used in the interpolation). Values marked with an arrow do not, in
principle, need to be included in the interpolation stencil, but are included here in order to
achieve continuity. The colored area denotes the support of the different functions that make
up the piecewise defined reconstruction. denotes an edge that is reconstructed linearly,
in other words, as part of the interpolation procedure, we impose that the restriction of the
reconstruction onto that edge is linear (the quadratic term vanishing).

In many cases, the reconstruction is (piecewise) biparabolic, i.e. of the form

(a0 + a1x+ a2x
2) + (a3 + a4x+ a5x

2)y + (a6 + a7x+ a8x
2)y2 (86)

In the following, biparabolic reconstructions are given by specifying the values of these 9
coefficients.

A.1.1 Parabolic reconstruction on W edge

If edges W, S and N are all reconstructed parabolically, then the W-edge-basis-function is
a biparabolic function. If either S or N (or both) are reconstructed as hat functions, the
reconstruction in the cell is defined piecewise: the left and the rights halves of the cell have
individual biparabolic reconstructions, which are joined in a continuous fashion.

Parabolic reconstruction on both neighbouring edges If both neighbouring edges (N
and S) are reconstructed parabolically, then the reconstruction inside the cell is the trivial
biparabolic reconstruction (see Figure 16):

qWrecon =

{
a0 = qC, a1 = −

qW

∆x
, a2 = −

2(2qC − qW)

∆x2
, a3 = 0, a4 = −

qNW − qSW
∆x∆y

, (87)

a5 =
2(qNW − qSW)

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = −

2(qNW + qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qNW + qSW − 2qW)

∆x2∆y2

}
qC =

1

16
(36q̄ − qNW − qSW − 4qW) (88)
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Figure 16 All edges are reconstructed parabolically, and the corresponding edge-basis-
function is a simple biparabolic interpolation. qNW = 1.6, qW = 1.35, qSW = 0.6.

Figure 17 Top: The case of both neighbouring edges reconstructed using hat functions,
while the primary edge is reconstructed parabolically. Bottom: The W edge is reconstructed
parabolically, while the two neighbouring reconstructions are hat functions. qNW = 1.6,
qW = 1.35, qSW = 0.6.



A semi-discrete Active Flux method for the Euler equations on Cartesian grids 31

Hat reconstruction on both neighbouring edges The interpolation problem is shown
in Figure 17.

qWrecon

∣∣∣
x<0

=

{
a0 = qC, a1 = −

qW

∆x
, a2 = −

2(2qC − qW)

∆x2
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2(qNW − qSW)

∆x∆y
,

(89)

a5 = 0, a6 = −
4qC

∆y2
, a7 = −

4(qNW + qSW − qW)

∆x∆y2
, a8 =

8(2qC − qW)

∆x2∆y2

}
qWrecon
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x≥0

=

{
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qW

∆x
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2(2qC − qW)

∆x2
, a3 = 0, a4 = 0, (90)

a5 = 0, a6 = −
4qC

∆y2
, a7 =

4qW

∆x∆y2
, a8 =

8(2qC − qW)

∆x2∆y2

}
qC =

1

32
(72q̄ − 3(qNW + qSW)− 8qW) (91)

Hat reconstruction on just one neighbouring edge If the N edge is reconstructed us-
ing a hat function, and both the W-edge and the S-edge parabolically, then one reconstructs
the cell as follows (Figure 18):

qWrecon

∣∣∣
x<0

=

{
a0 = qC, a1 = −

qW

∆x
, a2 = −

2(2qC − qW)

∆x2
, a3 = 0, a4 = −

2qNW − qSW
∆x∆y

,

(92)

a5 = −
2qSW

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = −

2(2qNW + qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qSW − 2qW)

∆x2∆y2

}
qWrecon
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x≥0

=

{
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qW

∆x
, a2 = −

2(2qC − qW)

∆x2
, a3 = 0, a4 =

qSW

∆x∆y
, (93)

a5 = −
2qSW

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = −

2(qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qSW − 2qW)

∆x2∆y2

}
qC =

1

32
(72q̄ − 3qNW − 2(qSW + 4qW)) (94)

If it is the S edge, then (Figure 19):

qWrecon
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qW

∆x
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∆x2
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(95)

a5 =
2qNW

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = −

2(qNW + 2qSW − 2qW)

∆x∆y2
,

a8 =
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}
qWrecon
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x≥0

=

{
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∆x
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∆x2
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qNW
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, (96)

a5 =
2qNW

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = −

2(qNW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qNW − 2qW)

∆x2∆y2

}
qC =

1

32
(72q̄ − 2qNW − 3qSW − 8qW) (97)
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Figure 18 Top: The case of the N edge reconstructed using hat functions, while the primary
edge and the S-edge is reconstructed parabolically. Bottom: The W and S edge is recon-
structed parabolically, while the N edge is reconstructed using a hat function. qNW = 1.6,
qW = 1.35, qSW = 0.6.

Proof of continuity It is obvious from the sketches of the interpolation problem in Figures
16–19 that the reconstructions interpolate the values on the cell interfaces. What remains
to be shown is that the piecewise defined reconstruction is continuous:

Theorem 5 The reconstructions from Section A.1.1 are continuous along the line x = 0
where the two pieces are joined.

Proof As is obvious from the sketches of the interpolation problems in Figures 17–19, the
three points along x = 0, i.e.

qrecon

(
0,
∆y

2

)
= 0 qrecon (0, 0) = qC qrecon

(
0,−

∆y

2

)
= 0 (98)

are part of the interpolation. Recall that the restriction of a biparabolic function onto the
straight line x = 0 is a parabola in y, and that the latter is uniquely defined by three points.
Therefore, all the values of the reconstruction along x = 0 agree for all the reconstructions
presented in Section A.1.1.

�

A.1.2 Hat reconstruction on W edge

If the W-edge is reconstructed as a hat function, then necessarily one needs to consider a
piecewise defined reconstruction with the pieces joined along y = 0. The reconstruction in
each piece only depends on whether the other adjacent edge is reconstructed parabolically
or as a hat function. One thus has less cases to consider.
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Figure 19 Top: The case of the S edge reconstructed using hat functions, while the primary
edge is reconstructed parabolically. Bottom: The W and N edge is reconstructed parabol-
ically, while the S edge is reconstructed using a hat function. qNW = 1.6, qW = 1.35,
qSW = 0.6.

Consider the top piece, i.e. the one defined on [−∆x
2
, ∆x

2
] × [0, ∆y

2
]. It is bordered by

the N-edge. If the N-edge is reconstructed as a hat function then one needs additionally to
define the reconstruction piecewise in the left and right halves (joined along x = 0), i.e. the
reconstruction is piecewise by quadrant. This is not necessary if the N-edge is reconstructed
parabolically.

Parabolic reconstruction on at least one neighbouring edge Here, the situation is
considered in which either the N-edge or the S-edge are reconstructed as parabolae. Then
it is possible to provide a biparabolic reconstruction of, respectively, the top or bottom half
of the cell.

These cases can occur individually or simultaneously. If both the N-edge and the S-edge
are reconstructed parabolically, then the entire reconstruction of the cell is given by the two
pieces given in (99)–(101). If, for example, the N-edge is reconstructed parabolically, and
the S-edge as a hat function, then the top piece of the reconstruction in the cell is to be
taken from (99), while the bottom piece used should be the one from (106)–(107).

See Figure 20 for the setup of the interpolation problem.
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Figure 20 Top: The case of the neighbouring edges reconstructed using parabolas, while the
primary edge is reconstructed using the hat function. Bottom: The W edge is reconstructed
as a hat function, the other edges are reconstructed parabolically. qNW = 1, qW = 1.5,
qSW = 0.

qWrecon

∣∣∣
y≥0

=

{
a0 = qC, a1 = −

qW

∆x
, a2 = −

2(2qC − qW)

∆x2
, a3 = 0, a4 = −

2(qNW − qW)

∆x∆y
,

(99)

a5 =
4(qNW − qW)

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = 0, a8 =

16qC

∆x2∆y2

}
1

∆x∆y

∫
y≥0

qrecon dxdy =
2qC

9
+
qNW + qW

24
(100)

qWrecon

∣∣∣
y<0

=

{
a0 = qC, a1 = −

qW

∆x
, a2 = −

2(2qC − qW)

∆x2
, a3 = 0, a4 =

2(qSW − qW)

∆x∆y
,

(101)

a5 = −
4(qSW − qW)

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = 0, a8 =

16qC

∆x2∆y2

}
1

∆x∆y

∫
y<0

qrecon dxdy =
2qC

9
+
qSW + qW

24
(102)

Hat reconstruction on at least one neighbouring edge In this case the reconstruction
is defined piecewise on each quadrant. The biparabolic reconstructions are obtained from
interpolation problems shown in Figure 21.
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Figure 21 Top: The case of (possibly) all three edges reconstructed using hat functions.
The reconstruction inside the cell is defined on four quadrants. Middle: The W edge is recon-
structed as a hat function, and also N (left) / S (right). Bottom: All edges are reconstructed
as hat functions.

If the N edge is reconstructed as a hat function, then the top half [−∆x
2
, ∆x

2
]× [0, ∆y

2
]

of the cell is to be reconstructed as
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1
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If the S edge is reconstructed as a hat function, then the reconstruction reads

qWrecon

∣∣∣
y<0,x<0
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{
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∆x
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qNW

∆x∆y
,

(107)

a5 =
2qNW

∆x2∆y
, a6 = −

4qC

∆y2
, a7 = −

2(qNW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qNW − 2qW)

∆x2∆y2

}
1

∆x∆y

∫
y<0

qrecon dxdy =
2qC

9
+

1

576
(qNW + 35qSW + 22qW) (108)

Proof of continuity

Theorem 6 The reconstructions in Section A.1.2 are continuous along x = 0 and along
y = 0.

Proof In complete analogy to the proof of Theorem 5 one observes from the sketches of the
interpolation problem in Figures 20–21 that the points along x = 0 and y = 0 are always
included. The three points along x = 0 and the three points along y = 0 each define a unique
parabola.

�

A.2 Plateau-limiting

Consider a situation in which (30) is true, while the reconstruction described above exceeds
m or M . In that case, the idea of a plateau reconstruction is to introduce a rectangle a
distance η∆x (or η∆y) away from the cell boundary, i.e.

[
∆x

(
−

1

2
+ η

)
,∆x

(
1

2
− η
)]
×
[
∆y

(
−

1

2
+ η

)
,∆y

(
1

2
− η
)]

with η ∈ (0, 1
2

) where the value of the reconstruction will be constant and equal to qp, a value
to be determined to ensure that the average of the reconstruction equals the given average
(see Figure 2 for an example). This rectangle will be referred to as plateau. The remaining
four trapezes will be the supports of functions that continuously join the reconstruction
along the edge to the plateau in the simplest possible way. Because reconstructions along
edges are either parabolas or hats, every trapezoidal region is either joining the plateau to
a parabola or to a hat function. η will be chosen in such a way that the maximum principle
is guaranteed. It is clear that, as (30) is true, this can always be done by choosing η small
enough.
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Figure 22 Sketch of the interpolation between the plateau and the boundary of the cell.

A.2.1 Interpolation in the trapezes

Consider for definiteness the northern trapeze. Define a point Aα :=
(
−∆x

2
+ α∆x, ∆y

2

)
∈

R2 parametrized by α ∈ [0, 1]. Define a point

Bα :=

(
∆x(−

1

2
+ η) + α∆x(1− 2η),∆y(

1

2
− η)

)
on the northern edge of the plateau. Observe that as α goes from 0 to 1, both points move
all the way from the left to the right on their respective edges. The straight line

gα :=

{
(x, y) :

x

∆x
= −

1

2
+ α−

(
y

∆y
−

1

2

)
(1− 2α)

}
(109)

connects them. Obviously, given x and y there is a unique

α =

x
∆x

+ y
∆y

2 y
∆y

=
x∆y + y∆x

2y∆x
(110)

The idea of the reconstruction is to associate to a point (x, y) the value given by a linear
interpolation between the value of the reconstruction at Aα and the (constant) value qp
at Bα. In particular this means that the diagonal edges of the reconstruction (connections
between the corners of the cell and the corners of the plateau) are reconstructed as straight
lines.

The four trapezes can be reconstructed individually, because continuity along the diag-
onal segments where they join is already guaranteed by the above procedure. For a given
trapeze, the choice of reconstruction thus merely depends on whether the adjacent edge is
reconstructed parabolically (see Section A.2.2) or as a hat function (see Section A.2.3).

A.2.2 Parabolic reconstruction along the edge

The parabolic reconstruction along the N-edge is given by

qNparabolic(x) = qN +
x

∆x
(qNE − qNW) + 2

x2

∆x2
(qNE + qNW − 2qN) x ∈

[
−
∆x

2
,
∆x

2

]
(111)
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The value of this parabolic reconstruction is sought at the location ξ of point Aα with α
given by (110):

ξ = ∆x

(
−

1

2
+

x
∆x

∆y + y

2y

)
= ∆x

x
∆x

2 y
∆y

(112)

Finally, the reconstruction at (x, y) is assigned the value

qNrecon(x, y) := qNparabolic(ξ) +

(
y −

∆y

2

)
qp − qNparabolic(ξ)

−∆yη
(113)

= qNparabolic(ξ)

(
1 +

y
∆y
− 1

2

η

)
−

y
∆y
− 1

2

η
qp (114)

with

qNparabolic(ξ) = qN +
x̂

2ŷ
(qNE − qNW) + 2

(
x̂

2ŷ

)2

(qNE + qNW − 2qN) (115)

and x̂ := x
∆x

and ŷ := y
∆y

. Observe that the reconstruction is not polynomial, but lies in

span

(
1, x̂, ŷ,

x̂

ŷ
,
x̂2

ŷ
,
x̂2

ŷ2

)
(116)

For reference we give the four reconstructions:

q
trapeze,W
recon (x, y) = qp

1 + 2x̂

2η
+ (−1 + 2η − 2x̂)

 qW
2η

−
(qNW − qSW)y

4ηx̂
+

(qNW + qSW − 2qW)ŷ2

4ηx̂2

 (117)

q
trapeze,E
recon (x, y) = qp

1 − 2x̂

2η
+ (−1 + 2η + 2x̂)

 qE
2η

+
(qNE − qSE)ŷ

4ηx̂
−

(2qE − qNE − qSE)ŷ2

4ηx̂2

 (118)

q
trapeze,N
recon (x, y) = qp

1 − 2ŷ

2η
+ (−1 + 2η + 2ŷ)

−
(2qN − qNE − qNW)x̂2

4ηŷ2
+

(qNE − qNW)x̂

4ηŷ
+
qN

2η

 (119)

q
trapeze,S
recon (x, y) = qp

1 + 2ŷ

2η
+ (1 − 2η + 2ŷ)

 (2qS − qSE − qSW)x̂2

4ηŷ2
+

(qSE − qSW)x̂

4ηŷ
−
qS

2η

 (120)

The integrals over the four regions are

1

∆x∆y

∫
trapeze,W

qrecon dxdy =
1

36
η
(

6(3− 4η)qP − (2η − 3)(4qW + qNW + qSW)
)

(121)

1

∆x∆y

∫
trapeze,E

qrecon dxdy =
1

36
η
(

6(3− 4η)qP − (2η − 3)(4qE + qNE + qSE)
)

(122)

1

∆x∆y

∫
trapeze,N

qrecon dxdy =
1

36
η
(

6(3− 4η)qP − (2η − 3)(4qN + qNE + qNW)
)

(123)

1

∆x∆y

∫
trapeze,S

qrecon dxdy =
1

36
η
(

6(3− 4η)qP − (2η − 3)(4qS + qSE + qSW)
)

(124)

and the integral over the plateau obviously

1

∆x∆y

∫
plateau

qrecon dxdy = (1− 2η)2qp (125)
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A.2.3 Hat-function reconstruction along the edge

If an edge is reconstructed using a hat-function, then the reconstruction of the trapeze
follows the algorithm outlined at the beginning of Section A.2, but is naturally defined in a
piecewise fashion. The reconstruction of the W-trapeze is

qtrapeze,Wrecon (x, y)
∣∣∣
y≥0

= qW −
∆x(qNW − qW)y

x∆y
+

(
∆x
2

+ x
)(

qP − qW +
∆x(qNW−qW)y

x∆y

)
∆xη

(126)

qtrapeze,Wrecon (x, y)
∣∣∣
y<0

= qW +
∆x(qSW − qW)y

x∆y
+

(
∆x
2

+ x
)

(qP − qW − ∆x(qSW−qW)y
x∆y

∆xη
(127)

1

∆x∆y

∫
trapeze,W

qrecon dxdy =
1

6
(3− 4η)ηqp +

1

24
η(2η − 3)(qNW + qSW + 2qW) (128)

The reconstructions of the other trapezes can be obtained by rotation as in Equations
(37)–(39).

A.2.4 Choice of the plateau value and the maximum principle

Theorem 7 There exists a choice of η such that the reconstruction is conservative and
m ≤ qrecon(x, y) ≤M for all x, y inside the cell.

Proof For any choice of qp ∈ (m,M), the reconstruction inside the cell fulfills m ≤ qrecon ≤
M , because the reconstructions inside the trapezes are interpolations along straight lines
between qp and a maximum-preserving reconstruction along the edge. For the same reason,
as η → 0, the average of the reconstruction over the cell approaches qp, because the re-
constructions inside the trapezes remain bounded and their contribution to the cell average
thus vanishes in the limit. Thus, for all ε > 0 sufficiently small one can find an η > 0 such
that 1

∆x∆y

∫
c qrecon(x, y) dxdy = qp + a with |a| < ε. Then, choosing qp := q̄ − a ensures

conservativity of the reconstruction. At the same time, as m < q̄ < M , one simply needs to
choose ε < min (M − q̄, q̄ −m) to ensure that m < qp < M .

�
For example, if all edges are reconstructed parabolically, then the average of the recon-

struction over the entire cell is

qp −
1

9
η(2η − 3)

(
4E − 6qp + 2V

)
!
= q̄ (129)

(where 4V := qNE + qNW + qSE + qSW, 4E := qE + qN + qS + qW) which gives the value of
qp:

qp =
9q̄ + η(2η − 3)(4E + 2V )

3(3− 6η + 4η2)
(130)

The polynomial in the denominator does not have real zeros.
What thus remains is the choice of η. The only bounds on η originate from the condition

m < qp < M (131)

The equation qp = µ ∈ {m,M} is quadratic in η – and this is true in general and not just
in this example. It is therefore easy to identify real, positive solutions and to take their
minimum. In practice, having established a minimum, η is chosen to be half of it. In case
no real, positive solutions are identified, η is not subject to any conditions and we choose
η = 1

4
.
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