
PROBLEM SET
POISSON GEOMETRY AND NORMAL FORMS: A GUIDED TOUR

THROUGH EXAMPLES

EVA MIRANDA

(1) Prove that the bracket {f, g} = ω(Xf , Xg) for f, g ∈ C∞ defines a Poisson struc-
ture on a symplectic manifold (M2n, ω).

Hint: To check the Jacobi identity, expand dω(Xf , Xg, Xh).

(2) (Poisson surfaces) Let Π be a bivector field on a surface S.
(a) Prove that Π defines a Poisson structure on S.
(b) Consider the sphere S2 with Poisson structure Π = h ∂

∂h
∧ ∂
∂θ

with h the height
function on the sphere and θ the angular coordinate.

(i) Describe the symplectic foliation of Π.
(ii) Consider the equator on the sphere E = {h = 0}. Prove that E with

the zero Poisson structure is a Poisson submanifold of (S2,Π).
(iii) Check that the vector field ∂

∂θ
is a Poisson vector field but it is not a

Hamiltonian vector field (indeed it is a vector field transverse to the
symplectic foliation that you described above).

(c) Prove that the Poisson structure Π induces a Poisson structure Π on RP 2.
What is the symplectic foliation corresponding to Π?

(d) For any f ∈ C∞(R2), describe the symplectic foliation of the Poisson structure
Πf = f(x, y) ∂

∂x
∧ ∂

∂y
on R2.

(3) Consider T3 endowed with angular coordinates θ1, θ2, θ3, and consider the bivector
field

Π =

(
∂

∂θ1
+ α

∂

∂θ3

)
∧
(
∂

∂θ2
+ β

∂

∂θ3

)
.

Check that Π defines a Poisson structure and describe its symplectic foliation.

(4) (Poisson structure on g∗) Let g∗ the dual of a Lie algebra. For any pair of
functions f, g : g∗ −→ R we define the bracket at a point η ∈ g∗,

{f, g}(η) = 〈η, [dfη, dgη]〉

where dfη and dgη are naturally identified with elements of g and where [, ] denotes
the Lie algebra bracket on g.
(a) Check that this bracket is a Poisson bracket on g∗.

Hint: To check the Jacobi identity, it suffices to verify that it holds for a choice
of coordinate functions.
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(b) Prove that the symplectic foliation defined by this Poisson structure coincides
with the coadjoint orbits of g∗.

(c) Study the cases of sl(2,R) and so(3,R).

(5) Show that the space of Poisson vector fields and the space of Hamiltonian vector
fields are both Lie subalgebras of the space of all vector fields (with respect to
the standard Lie bracket of vector fields) on a Poisson manifold. Show that every
Hamiltonian vector field is a Poisson vector field, and give two examples of Poisson
manifolds for which the space of Hamiltonian vector fields is strictly smaller than
the space of Poisson vector fields.

Hint: For a vector field X and a multivector field Y , [X, Y ] = LX(Y )

(6) Let R4 endowed with coordinates x1, x2, y1, y2 and let f, g be smooth functions.
Consider the bivector field Π(f,g) = ∂

∂y1
∧ ∂

∂x1
+ f(y2)

∂
∂y2
∧ ∂

∂x2
+ g(y2)

∂
∂y1
∧ ∂

∂x2
.

(a) Check that [Π(f,g),Π(f,g)] = 0 for any functions f and g. Describe the sym-
plectic foliation.

(b) Prove that the Hamiltonian vector field of x1 is tangent to the family of
hyperplanes x2 = c.

(c) Prove that the distribution 〈Xx1 , Xx2〉 is involutive and, thus, it defines a
foliation. Check that the leaves of this foliation are submanifolds of the leaves
of the symplectic foliation described by Π(f,g).

Remark: Because {x1, x2} = 0, the functions x1 and x2 define an integrable
system. We will study integrable systems in lecture 4 and 5.

(7) Take a holomorphic function on C2, F : C2 −→ C decompose it as F = G + iH
with G,H : R4 −→ R.

Cauchy-Riemann equations for F in coordinates zj = xj + iyj, j = 1, 2 read as,

∂G

∂xi
=
∂H

∂yi
,

∂G

∂yi
= −∂H

∂xi

(a) Reinterpret these equations as the equality

{G, ·}0 = {H, ·}1 {H, ·}0 = −{G, ·}1

with {·, ·}j the Poisson brackets associated to the real and imaginary part of
the symplectic form ω = dz1 ∧ dz2 (ω = ω0 + iω1).

(b) Check that both Poisson structures are compatible.
(c) Check that {G,H}0 = 0 and {H,G}1 = 0.

(8) Let X1, . . . , X2k be a set of commuting vector fields on a manifold M .
(a) Check that the bivector field Π = X1∧X2 + . . . X2k−1∧X2k defines a Poisson

structure on M .
(b) Consider the vector fields on R3, X1 = x2

∂
∂x1
− x1 ∂

∂x2
and X2 = −x1x3 ∂

∂x1
−

x2x3
∂
∂x2

+ (x21 + x22)
∂
∂x3

, check that they define vector fields on
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S2 = {(x1, x2, x3), x21 +x22 +x23 = 1} apply the previous strategy to see that
Π = X1 ∧X2 is a Poisson structure. Describe the symplectic foliation.

(c) Describe the symplectic foliation associated to the induced Poisson structure
Π = X1 ∧ X2 on S3 where X1 = x2

∂
∂x1
− x1 ∂

∂x2
and X2 = x3

∂
∂x4
− x4 ∂

∂x3
are

vector fields on R4.
(d) Describe the symplectic foliation associated to the Poisson structure Π =

X1 ∧X2 +X3 ∧X4 induced on S7 where
X1 = x2

∂
∂x1
− x1

∂
∂x2

, X2 = x4
∂
∂x3
− x3

∂
∂x4

, X3 = x5
∂
∂x6
− x6

∂
∂x5

and X4 =

x7
∂
∂x8
− x8 ∂

∂x7

(9) Consider R2 with Poisson bracket {x, y} = x, and R4 with Poisson bivector ∂
∂q1
∧

∂
∂p1

+ ∂
∂q2
∧ ∂

∂p2
. Prove that the mapping F : R4 −→ R2 given by F (q1, p1, q2, p2) =

(q1, p1q1 + q2) is a surjective Poisson map.

(10) Consider T3 with angular coordinates θ1, θ2, θ3 and the Poisson structure

Π =

(
∂

∂θ1
+ α

∂

∂θ3

)
∧
(
∂

∂θ2
+ β

∂

∂θ3

)
(exercise 2 of the problem set).
(a) Check that the bivector field

Π0 =

(
∂

∂x1
+ α

∂

∂x3

)
∧
(

∂

∂x2
+ β

∂

∂x3

)
+

∂

∂x3
∧ ∂

∂x4

is of maximal rank and thus (Π0)
−1 defines a symplectic structure on R4.

(b) Check that the mapping F : R4 −→ T3 given by the projection onto the
first three coordinates, followed by the quotient to R3/Z3 ∼= T3 is a Poisson
submersion.

(11) Consider the Poisson structure Π = X1 ∧X2 on R4 with X1 = x2
∂
∂x1
− x1 ∂

∂x2
and

X2 = x3
∂
∂x4
− x4 ∂

∂x3
.

(a) Prove that the functions f1 = x21 + x22 and f2 = x23 + x24 are in involution and,
thus, their Hamiltonian vector fields define an integrable distribution. What
are the invariant submanifolds?

(b) Prove that Π induces a Poisson structure on S3. Do the functions f1 and f2
induce an integrable system on S3?

(12) Fix a smooth functionK ∈ C∞(R3) and consider the bracket {f, g}K = det(df, dg, dK)
for f, g ∈ C∞.
(a) Prove that {f, g}K defines a Poisson structure on R3.
(b) For H ∈ C∞, write the hamiltonian vector field XH in coordinates. Prove that

XH is also Hamiltonian for the Poisson structure, {f, g}H := det(df, dg, dH).
What is the corresponding Hamiltonian function?

(c) Prove that the bivector field associated to {, }K is a cocycle in the Poisson
cohomology associated to {, }H .
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(d) Show that {f, g}t = det(df, dg, d((1− t)K + tH)) defines a Poisson structure
for each t ∈ R.

(e) Prove that the function (1− t)K + tH is a casimir for {, }t.

(13) Consider the bivector field Π = x1
∂
∂x2
∧ ∂

∂x3
+ x2

∂
∂x3
∧ ∂

∂x1
+ x3

∂
∂x1
∧ ∂

∂x2
on R3.

(a) Prove that Π defines a Poisson structure.
(b) Observe that Π = Π0 + Π1 with Π0 = (−x2 ∂

∂x1
+ x1

∂
∂x2

) ∧ ∂
∂x3

and Π1 =

x3
∂
∂x1
∧ ∂

∂x2
. Check that [Π0,Π0] = [Π1,Π1] = [Π0,Π1] = 0 and thus any

bivector field on the path Π = (1− t)Π0 + tΠ1 defines a Poisson structure on
R3.

(c) Check that the vector field X = x3(x2
∂
∂x1
− x1 ∂

∂x2
) is Hamiltonian for both

Poisson structures Π0 and Π1. Check that the Hamiltonians f0 (Hamiltonian
of X with respect to Π0) and f1 (Hamiltonian of X with respect to Π1) define
an integrable system on R3 with respect to the Poisson structure Π.

(d) Prove in general that given any two poisson bivectors Π0 and Π1 satisfying
[Π0,Π1] = 0, the bivector field Π = Π0 + Π1 is a Poisson structure. Further,
if a vector field X is Hamiltonian with respect to both Π0 and Π1, this yields
two Poisson commuting functions.

(14) Let (M,Π) be a Poisson manifold and let {f1, . . . , f2k} be a set of pairwise Poisson
commuting functions (i.e., {fi, fj} = 0) that are functionally independent (i.e.,
df1 ∧ · · · ∧ df2k 6= 0 on a dense set).
(a) Check that the Hamiltonian vector fields Xfj are tangent to the level sets of

each fi.
(b) Prove that the distribution determined by 〈Xf1 , . . . Xf2k〉 is involutive, and

that each leaf of the corresponding foliation lies inside a single leaf of the
symplectic foliation defined by Π.

(c) Prove that the new bivector field Π = Xf1 ∧Xf2 + · · ·+Xf2k−1
∧Xf2k defines

a new Poisson structure on M .
(d) Prove that every 4n-dimensional symplectic manifold admits a Poisson struc-

ture with generic rank equal to 2n. (Hint: Use the fact that every symplectic
manifold admits an integrable system).
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