Poisson Geometry and Normal Forms: A Guided Tour through Examples

Eva Miranda

UPC-Barcelona

From Poisson Geometry to Quantum Fields on Noncommutative Spaces, Würzburg Autumn School

Lectures 4 and 5

1 / 29

Poisson Geometry and Normal Forms: A Guided Tour through Examples

Eva Miranda

UPC-Barcelona

From Poisson Geometry to Quantum Fields on Noncommutative Spaces, Würzburg Autumn School

Lectures 4 and 5

Miranda (UPC) Poisson Geometry October 2015 2 / 29

Symplectic Geometry	Poisson Geometry
ω	П
$\iota_{X_f}\omega = -df$	$X_f := \Pi(df, \cdot)$
one symplectic leaf	a symplectic foliation
Darboux theorem	Weinstein's splitting theorem
$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$	$\Pi = \sum_{i=1}^{k} \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_i} + \sum_{kl} \phi_{kl}(z) \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_l}$
	$\Pi = \sum_{i=1}^{k} \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_i} + \sum_{rs} c_{rs}^k x_k \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_l}$
$L_X\omega=0$	$L_X\Pi = 0$
$H^1_{DR}(M) = \frac{\text{symplectic v.f}}{\text{Hamiltonian v.f}}$?= $\frac{\text{Poisson v.f}}{\text{Hamiltonian v.f}}$
$H^k_{DR}(M)$ (cochains $\Omega^k(M)$)	$\mathbf{R}:=H^k_\Pi(M)$ (cochains $\mathfrak{X}^m(M)$)
Arnold-Liouville theorem	Action-angle coordinates

Miranda (UPC) Poisson Geometry October 2015 3 / 2

Plan for today

Poisson cohomology computation kit.

Integrable systems on Poisson manifolds (Topology).

- Integrable systems on Poisson manifolds (Geometry and normal forms). The case of *b*-Poisson manifolds.
- Applications.

Schouten Bracket of vector fields in local coordinates

• Case of vector fields, $A = \sum_i a_i \frac{\partial}{\partial x_i}$ and $B = \sum_i b_i \frac{\partial}{\partial x_i}$. Then

$$[A, B] = \sum_{i} a_{i} \left(\sum_{j} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \right) - \sum_{i} b_{i} \left(\sum_{j} \frac{\partial a_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \right)$$

• Re-denoting $\frac{\partial}{\partial x_i}$ as ζ_i ("odd coordinates"). Then $A=\sum_i a_i\zeta_i$ and $B=\sum_i b_i\zeta_i$ and $\zeta_i\zeta_j=-\zeta_j\zeta_i$ Now we can reinterpret the bracket as,

$$[A, B] = \sum_{i} \frac{\partial A}{\partial \zeta_{i}} \frac{\partial B}{\partial x_{i}} - \sum_{i} \frac{\partial B}{\partial \zeta_{i}} \frac{\partial A}{\partial x_{i}}$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

5 / 29

Schouten Bracket of multivector fields in local coordinates

We reproduce the same scheme for the case of multivector fields.

$$[A, B] = \sum_{i} \frac{\partial A}{\partial \zeta_{i}} \frac{\partial B}{\partial x_{i}} - (-1)^{(a-1)(b-1)} \sum_{i} \frac{\partial B}{\partial \zeta_{i}} \frac{\partial A}{\partial x_{i}}$$

is a (a+b-1)-vector field. where

$$A = \sum_{i_1 < \dots < i_a} A_{i_1, \dots, i_a} \frac{\partial}{\partial x_{i_1}} \wedge \dots \wedge \frac{\partial}{\partial x_{i_a}} = \sum_{i_1 < \dots < i_a} A_{i_1, \dots, i_a} \zeta_{i_1} \dots \zeta_{i_a}$$

and

$$B = \sum_{i_1 < \dots < i_b} B_{i_1, \dots, i_b} \frac{\partial}{\partial x_{i_1}} \wedge \dots \wedge \frac{\partial}{\partial x_{i_b}} = \sum_{i_1 < \dots < i_b} B_{i_1, \dots, i_b} \zeta_{i_1} \dots \zeta_{i_b}$$

with
$$\frac{\partial (\zeta_{i_1}...\zeta_{i_p})}{\partial \zeta_{i_k}}:=(-1)^{(p-k)}\eta_{i_1}\dots\widehat{\eta}_{i_k}\eta_{i_{p-1}}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Theorem (Schouten-Nijenhuis)

The bracket defined by this formula satisfies,

Graded anti-commutativity
$$[A, B] = -(-1)^{(a-1)(b-1)}[B, A]$$
.

Graded Leibniz rule

$$[A, B \wedge C] = [A, B] \wedge C + (-1)^{(a-1)b} B \wedge [A, C]$$

Graded Jacobi identity

$$(-1)^{(a-1)(c-1)}[A, [B, C]] + (-1)^{(b-1)(a-1)}[B, [C, A]] + (-1)^{(c-1)(b-1)}[C, [A, B]] = 0$$

If X is a vector field then, $[X,B] = L_X B$.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Miranda (UPC) Poisson Geometry October 2015 7 / 29

Poisson cohomology computation kit

- Space of cochains $\mathfrak{X}^m(M)$.
- Differential $d_{\Pi}(A) := [\Pi, A]$.
- Poisson cohomology

$$H_{\Pi}^{k}(M) := \frac{\ker d_{\Pi} : \mathfrak{X}^{k}(M) \longrightarrow \mathfrak{X}^{k+1}(M)}{\operatorname{Im} d_{\Pi} : \mathfrak{X}^{k-1}(M) \longrightarrow \mathfrak{X}^{k}(M)}$$

- Computation is difficult. It can be infinite-dimensional. Tools: Mayer-Vietoris, spectral sequences.
- Particular cases: (M,Π) symplectic $H_{\Pi}^k(M) \cong H_{DR}^k(M)$.
- ullet (M,Π) $b ext{-Poisson},\ H^k_\Pi(M)\cong H^k_{DR}(M)\oplus H^{k-1}_{DR}(Z).$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

8 / 29

Poisson cohomology computation kit

- Hamiltonian vector fields $X_f = -[\Pi, f]$ (1-coboundary).
- Poisson vector fields $[\Pi, X] = -L_X \Pi = 0$ (1-cocycle).
- Poisson structures $[\Pi, \Pi] = 0$ (2-cocycle).
- Compatible Poisson structures $[\Pi_1, \Pi_2] = 0$ (2-cocycle).

•

$$H_{\Pi}^1 = \frac{\text{Poisson vector fields}}{\text{Hamiltonian vector fields}}.$$

9 / 29

Example 5: Cauchy-Riemann equations and Hamilton's equations

• Take a holomorphic function on $F: \mathbb{C}^2 \longrightarrow \mathbb{C}$ decompose it as F = G + iH with $G, H: \mathbb{R}^4 \longrightarrow \mathbb{R}$.

Cauchy-Riemann equations for F in coordinates $z_j=x_j+iy_j$, j=1,2

$$\frac{\partial G}{\partial x_i} = \frac{\partial H}{\partial y_i}, \quad \frac{\partial G}{\partial y_i} = -\frac{\partial H}{\partial x_i}$$

Reinterpret these equations as the equality

$$\{G,\cdot\}_0 = \{H,\cdot\}_1 \quad \{H,\cdot\}_0 = -\{G,\cdot\}_1$$

with $\{\cdot,\cdot\}_j$ the Poisson brackets associated to the real and imaginary part of the symplectic form $\omega=dz_1\wedge dz_2$ ($\omega=\omega_0+i\omega_1$).

• Check $\{G, H\}_0 = 0$ and $\{H, G\}_1 = 0$ (integrable system).

Example 2: Determinants in \mathbb{R}^3 (Exercise 12)

• Dynamics: Given two functions $H, K \in \mathcal{C}^{\infty}(\mathbb{R}^3)$. Consider the system of differential equations:

$$(\dot{x}, \dot{y}, \dot{z}) = dH \wedge dK \tag{1}$$

H and K are constants of motion (the flow lies on H=cte. and K=cte.)

• Geometry: Consider the brackets,

$$\{f,g\}_H := \det(df, dg, dH) \quad \{f,g\}_K := \det(df, dg, dK)$$

They are antisymmetric and satisfy Jacobi,

$$\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0.$$

The flow of the vector field

$$\{K,\cdot\}_H := \det(dK,\cdot,dH)$$

and $\{-H,\cdot\}_K$ is given by the differential equation (1) and

$${H, K}_H = 0, \quad {H, K}_K = 0$$

Example 4: Coupling two simple harmonic oscillators

The phase space is $(T^*(\mathbb{R}^2), \omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2)$. H is the sum of potential and kinetic energy,

$$H = \frac{1}{2}(y_1^2 + y_2^2) + \frac{1}{2}(x_1^2 + x_2^2)$$

H=h is a sphere S^3 . We have rotational symmetry on this sphere \leadsto the angular momentum is a constant of motion, $L=x_1y_2-x_2y_1$, $X_L=(-x_2,x_1,-y_2,y_1)$ and

$$X_L(H) = \{L, H\} = 0.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

12 / 29

Topology of integrable systems (Symplectic case)

An integrable system on a surface.

The invariant submanifolds are tori (Liouville tori)

Miranda (UPC) Poisson Geometry October 2015 13 / 29

Lioville-Mineur-Arnold theorem (Symplectic manifolds)

The orbits of an integrable system in a neighbourhood of a compact orbit are tori. In action-angle coordinates (p_i, θ_i) the foliation is given by the fibration $\{p_i = c_i\}$ and the symplectic structure is Darboux $\omega = \sum_{i=1}^n dp_i \wedge d\theta_i$.

Miranda (UPC) Poisson Geometry October 2015 14 / 29

The characters of the day

Joseph Liouville proved the existence of invariant manifolds.

Figure: Joseph Liouville, Henri Mineur, Duistermaat and Arnold

Henri Mineur gave a explicit formula for action coordinates: $p_i = \int_{\gamma_i} \alpha$ where γ_i is one of the cycles of the Liouville torus and α is a Liouville 1-form for the symplectic structure $(\omega = d\alpha)$.

We will follow the proof by Duistermaat and apply it to Poisson manifolds.

What is an integrable system on a Poisson manifold?

Let (M,Π) be a Poisson manifold of (maximal) rank 2r and of dimension n. An s-tuplet of functions $\mathbf{F}=(\mathbf{f_1},\ldots,\mathbf{f_s})$ on M is said to define a Liouville integrable system on (M,Π) if

- f_1, \ldots, f_s are independent ($df_1 \wedge \cdots \wedge df_s \neq 0$).
- 2 f_1, \ldots, f_s are pairwise in involution
- **3** r + s = n

Viewed as a map, $\mathbf{F}: \mathbf{M} \to \mathbf{R^s}$ is called the *moment map* of (M,Π) .

16 / 29

A Darboux-Carathéodory theorem in the Poisson context

Theorem (Laurent, M., Vanhaecke)

Let p_1,\ldots,p_r be r functions in involution and whose Hamiltonian vector fields are linearly independent at a point $m\in(M,\Pi)$. There exist locally functions $q_1,\ldots,q_r,z_1,\ldots,z_{n-2r}$, such that

- The n functions $(p_1, q_1, \ldots, p_r, q_r, z_1, \ldots, z_{n-2r})$ form a system of coordinates on U, centered at m;
- **2** The Poisson structure Π is given on U by

$$\Pi = \sum_{i=1}^{r} \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial q_i} + \sum_{i,j=1}^{n-2r} g_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}, \tag{1}$$

Miranda (UPC) Poisson Geometry October 2015 17 / 29

Coffee time

An action-angle theorem for Poisson manifolds

Case of regular orbits

We assume that:

- ① The mapping $\mathcal{F}=(f_1,\ldots,f_s)$ defines an integrable system on the Poisson manifold (M,Π) of dimension n and (maximal) rank 2r.
- ② Suppose that $m \in M$ is a point such that it is regular for the integrable system and the Poisson structure.
- **3** Assume further than the integral manifold \mathcal{F}_m of the foliation $X_{f_1}, \ldots X_{f_s}$ through m is compact (Liouville torus).

19 / 29

An action-angle theorem for Poisson manifolds

Theorem (Laurent, M., Vanhaecke)

There exist **R**-valued smooth functions (p_1, \ldots, p_s) and **R**/**Z**-valued smooth functions $(\theta_1, \ldots, \theta_r)$, defined in a neighborhood of \mathcal{F}_m such that

- The functions $(\theta_1, \dots, \theta_r, p_1, \dots, p_s)$ define a diffeomorphism $U \simeq \mathbf{T}^r \times B^s$;
- 2 The Poisson structure can be written in terms of these coordinates as

$$\Pi = \sum_{i=1}^{r} \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial \theta_i},$$

in particular the functions p_{r+1}, \ldots, p_s are locally Casimirs of Π ;

3 The leaves of the surjective submersion $\mathcal{F}=(f_1,\ldots,f_s)$ are given by the projection onto the second component $\mathbf{T}^r\times B^s$, in particular, the functions p_1,\ldots,p_s depend only on the functions f_1,\ldots,f_s .

Miranda (UPC) Poisson Geometry October 2015 20 / 29

• Step 1: Topology of the foliation. The fibration in a neighbourhood of a compact connected fiber is a trivial fibration by compact fibers. The fibers are tori.

Miranda (UPC) Poisson Geometry October 2015 21 / 29

 Step 2: Hamiltonian action: We recover a T^r-action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

$$\Phi : \mathbf{R}^r \times (\mathbf{T}^r \times B^s) \to \mathbf{T}^r \times B^s
((t_1, \dots, t_r), m) \mapsto \Phi_{t_1}^{(1)} \circ \dots \circ \Phi_{t_r}^{(r)}(m).$$
(2)

- Step 3: We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $\mathcal{L}_Y^2 P = 0$, then $\mathcal{L}_Y P = 0$).
- Step 4: Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.
- Step 5: To construct action-angle coordinates we use Darboux-Carathéodory and the constructed Hamiltonian action of Tⁿ to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.

• Step 2: Hamiltonian action: We recover a \mathbb{T}^r -action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

$$\Phi : \mathbf{R}^r \times (\mathbf{T}^r \times B^s) \to \mathbf{T}^r \times B^s
((t_1, \dots, t_r), m) \mapsto \Phi_{t_1}^{(1)} \circ \dots \circ \Phi_{t_r}^{(r)}(m).$$
(2)

- Step 3: We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $\mathcal{L}_Y^2 P = 0$, then $\mathcal{L}_Y P = 0$).
- Step 4: Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.
- Step 5: To construct action-angle coordinates we use Darboux-Carathéodory and the constructed Hamiltonian action of \mathbb{T}^n to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.

• Step 2: Hamiltonian action: We recover a \mathbb{T}^r -action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

$$\Phi : \mathbf{R}^r \times (\mathbf{T}^r \times B^s) \to \mathbf{T}^r \times B^s
((t_1, \dots, t_r), m) \mapsto \Phi_{t_1}^{(1)} \circ \dots \circ \Phi_{t_r}^{(r)}(m).$$
(2)

- Step 3: We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $\mathcal{L}_Y^2 P = 0$, then $\mathcal{L}_Y P = 0$).
- Step 4: Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.
- Step 5: To construct action-angle coordinates we use Darboux-Carathéodory and the constructed Hamiltonian action of \mathbb{T}^n to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.

• Step 2: Hamiltonian action: We recover a \mathbb{T}^r -action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

$$\Phi : \mathbf{R}^r \times (\mathbf{T}^r \times B^s) \to \mathbf{T}^r \times B^s
((t_1, \dots, t_r), m) \mapsto \Phi_{t_1}^{(1)} \circ \dots \circ \Phi_{t_r}^{(r)}(m).$$
(2)

- Step 3: We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $\mathcal{L}_Y^2 P = 0$, then $\mathcal{L}_Y P = 0$).
- Step 4: Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.
- Step 5: To construct action-angle coordinates we use Darboux-Carathéodory and the constructed Hamiltonian action of \mathbb{T}^n to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.

What is a non-commutative integrable system on a Poisson manifold?

Definition

Let (M,Π) be a Poisson manifold of dimension n. An s-uplet of functions $\mathcal{F}=(f_1,\ldots,f_s)$ is said to be a non-commutative integrable system of rank r on (M,Π) if

- (1) f_1, \ldots, f_s are independent;
- (2) The functions f_1, \ldots, f_r are in involution with the functions f_1, \ldots, f_s ;
- (3) r + s = n;
- (4) The Hamiltonian vector fields of the functions f_1, \ldots, f_r are linearly independent at some point of M.

Notice that $2r \leq Rk \Pi$, as a consequence of (4).

Remark: The mapping $\mathcal{F}=(f_1,\ldots,f_s)$ is a Poisson map on \mathbb{R}^s with \mathbb{R}^s endowed with a non-vanishing Poisson structure.

An action-angle theorem for non-commutative systems

Theorem (Laurent, M., Vanhaecke)

Suppose that \mathcal{F}_m is a regular Liouville torus. Then there exist semilocally \mathbf{R} -valued smooth functions $(p_1,\ldots,p_r,z_1,\ldots,z_{s-r})$ and \mathbf{R}/\mathbf{Z} -valued smooth functions $(\theta_1,\ldots,\theta_r)$ such that,

- The functions $(\theta_1, \ldots, \theta_r, p_1, \ldots, p_r, z_1, \ldots, z_{s-r})$ define a diffeomorphism $U \simeq \mathbf{T}^r \times B^s$;
- 2 The Poisson structure can be written in terms of these coordinates as

$$\Pi = \sum_{i=1}^r \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial \theta_i} + \sum_{k,l=1}^{s-r} \phi_{k,l}(z) \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_l};$$

3 The leaves of the surjective submersion $\mathcal{F}=(f_1,\ldots,f_s)$ are given by the projection onto the second component $\mathbf{T}^r\times B^s$, in particular, the functions $p_1,\ldots,p_r,z_1,\ldots,z_{s-r}$ depend on the functions f_1,\ldots,f_s only.

The restricted 3-body problem

- Simplified version of the general 3-body problem. One of the bodies has negligible mass.
- The other two bodies move independently of it following Kepler's laws for the 2-body problem.

Figure: Circular 3-body problem

Planar restricted 3-body problem¹

- The time-dependent self-potential of the small body is $U(q,t)=\frac{1-\mu}{|q-q_1|}+\frac{\mu}{|q-q_2|}$, with $q_1=q_1(t)$ the position of the planet with mass $1-\mu$ at time t and $q_2=q_2(t)$ the position of the one with mass μ .
- The Hamiltonian of the system is $H(q,p,t)=p^2/2-U(q,t), \quad (q,p)\in {\bf R}^2\times {\bf R}^2,$ where $p=\dot q$ is the momentum of the planet.
- Consider the canonical change $(X, Y, P_X, P_Y) \mapsto (r, \alpha, P_r =: y, P_\alpha =: G)$.
- Introduce McGehee coordinates (x, α, y, G) , where $r = \frac{2}{x^2}$, $x \in \mathbb{R}^+$, can be then extended to infinity (x = 0).
- The symplectic structure becomes a singular object $\omega = -\frac{4}{x^3} dx \wedge dy + d\alpha \wedge dG$. for x > 0
- The integrable 2-body problem for $\mu=0$ is integrable with respect to the singular ω .

¹Thanks to Amadeu Delshams for this example.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Miranda (UPC) Poisson Geometry October 2015 26 / 29

b-Poisson manifolds

Definition (b-integrable system)

A set of b-functions f_1, \ldots, f_n on (M^{2n}, ω) such that

- f_1, \ldots, f_n Poisson commute
- $df_1 \wedge \cdots \wedge df_n \neq 0$ as a section of $\Lambda^n({}^bT^*(M))$ on a dense subset of M and on a dense subset of Z

Miranda (UPC) Poisson Geometry October 2015 27 / 29

An action-angle theorem for b-Poisson manifolds

Theorem (Kiesenhofer, M., Scott)

Let (M,Π) be a b-Poisson manifold with critical hypersurface Z defined by t=0. Let $f_1,\ldots,f_{n-1},f_n=\log|t|$ be a b-integrable system on it. Then in a neighbourhood of a Liouville torus m there exist coordinates $(\theta_1,\ldots,\theta_n,a_1,\ldots,a_n):U\to \mathbf{T}^n\times B^n$ such that

$$\Pi|_{U} = \sum_{i=1}^{n-1} \frac{\partial}{\partial a_{i}} \wedge \frac{\partial}{\partial \theta_{i}} + ct \frac{\partial}{\partial t} \wedge \frac{\partial}{\partial \theta_{n}}, \tag{3}$$

where the coordinates a_1, \ldots, a_{n-1} depend only on f_1, \ldots, f_{n-1} and c is the modular period of the component of Z containing m.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Miranda (UPC) Poisson Geometry October 2015 28 / 29

KAM

Perturbation theory KAM on manifolds with boundary and b-manifolds. (see Anna's poster).

