Poisson Geometry and Normal Forms: A Guided Tour through Examples

Eva Miranda

UPC-Barcelona

From Poisson Geometry to Quantum Fields on Noncommutative Spaces, Würzburg Autumn School

Lectures 4 and 5
Poisson Geometry and Normal Forms: A Guided Tour through Examples

Eva Miranda

UPC-Barcelona

From Poisson Geometry to Quantum Fields on Noncommutative Spaces, Würzburg Autumn School

Lectures 4 and 5
<table>
<thead>
<tr>
<th>Symplectic Geometry</th>
<th>Poisson Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>Π</td>
</tr>
<tr>
<td>$\iota_{X_f}\omega = -df$</td>
<td>$X_f := \Pi(df, \cdot)$</td>
</tr>
<tr>
<td>one symplectic leaf</td>
<td>a symplectic foliation</td>
</tr>
<tr>
<td>Darboux theorem</td>
<td>Weinstein's splitting theorem</td>
</tr>
<tr>
<td>$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$</td>
<td>$\Pi = \sum_{i=1}^{k} \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_i} + \sum_{kl} \phi_{kl}(z) \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_l}$</td>
</tr>
<tr>
<td>$L_X \omega = 0$</td>
<td>$L_X \Pi = 0$</td>
</tr>
<tr>
<td>$H^1_{DR}(M) = \frac{\text{symplectic v.f}}{\text{Hamiltonian v.f}}$</td>
<td>$? = \frac{\text{Poisson v.f}}{\text{Hamiltonian v.f}}$</td>
</tr>
<tr>
<td>$H^k_{DR}(M)$ (cochains $\Omega^k(M))$</td>
<td>$?:= H^k_{\Pi}(M)$ (cochains $\mathfrak X^m(M))$</td>
</tr>
<tr>
<td>Arnold-Liouville theorem</td>
<td>Action-angle coordinates</td>
</tr>
</tbody>
</table>
Plan for today

- Poisson cohomology computation kit.

- Integrable systems on Poisson manifolds (Topology).

- Integrable systems on Poisson manifolds (Geometry and normal forms). The case of b-Poisson manifolds.

- Applications.
Case of vector fields,
\[A = \sum_i a_i \frac{\partial}{\partial x_i} \text{ and } B = \sum_i b_i \frac{\partial}{\partial x_i}. \]
Then
\[
[A, B] = \sum_i a_i \left(\sum_j \frac{\partial b_j}{\partial x_i} \frac{\partial}{\partial x_j} \right) - \sum_i b_i \left(\sum_j \frac{\partial a_j}{\partial x_i} \frac{\partial}{\partial x_j} \right)
\]

Re-denoting \(\frac{\partial}{\partial x_i} \) as \(\zeta_i \) ("odd coordinates ").
Then \(A = \sum_i a_i \zeta_i \) and \(B = \sum_i b_i \zeta_i \) and \(\zeta_i \zeta_j = -\zeta_j \zeta_i \) Now we can reinterpret the bracket as,
\[
[A, B] = \sum_i \frac{\partial A}{\partial \zeta_i} \frac{\partial B}{\partial x_i} - \sum_i \frac{\partial B}{\partial \zeta_i} \frac{\partial A}{\partial x_i}
\]
Schouten Bracket of multivector fields in local coordinates

We reproduce the same scheme for the case of multivector fields.

\[
[A, B] = \sum_i \frac{\partial A}{\partial \zeta_i} \frac{\partial B}{\partial x_i} - (-1)^{(a-1)(b-1)} \sum_i \frac{\partial B}{\partial \zeta_i} \frac{\partial A}{\partial x_i}
\]

is a \((a + b - 1)\)-vector field.

where

\[
A = \sum_{i_1 < \cdots < i_a} A_{i_1, \ldots, i_a} \frac{\partial}{\partial x_{i_1}} \wedge \cdots \wedge \frac{\partial}{\partial x_{i_a}} = \sum_{i_1 < \cdots < i_a} A_{i_1, \ldots, i_a} \zeta_{i_1} \cdots \zeta_{i_a}
\]

and

\[
B = \sum_{i_1 < \cdots < i_b} B_{i_1, \ldots, i_b} \frac{\partial}{\partial x_{i_1}} \wedge \cdots \wedge \frac{\partial}{\partial x_{i_b}} = \sum_{i_1 < \cdots < i_b} B_{i_1, \ldots, i_b} \zeta_{i_1} \cdots \zeta_{i_b}
\]

with

\[
\frac{\partial (\zeta_{i_1} \cdots \zeta_{i_p})}{\partial \zeta_{i_k}} := (-1)^{(p-k)} \eta_{i_1} \cdots \hat{\eta}_{i_k} \eta_{i_{p-1}}
\]
Theorem (Schouten-Nijenhuis)

The bracket defined by this formula satisfies,

Graded anti-commutativity \([A, B] = -(-1)^{(a-1)(b-1)} [B, A] \).

Graded Leibniz rule

\([A, B \wedge C] = [A, B] \wedge C + (-1)^{(a-1)b} B \wedge [A, C] \)

Graded Jacobi identity

\((-1)^{(a-1)(c-1)} [A, [B, C]] + (-1)^{(b-1)(a-1)} [B, [C, A]] + (-1)^{(c-1)(b-1)} [C, [A, B]] = 0 \)

If \(X\) is a vector field then, \([X, B] = L_X B \).
Space of cochains $\mathfrak{x}^m(M)$.

Differential $d_\Pi(A) := [\Pi, A]$.

Poisson cohomology

\[
H^k_\Pi(M) := \frac{\ker d_\Pi : \mathfrak{x}^k(M) \to \mathfrak{x}^{k+1}(M)}{\text{Im} d_\Pi : \mathfrak{x}^{k-1}(M) \to \mathfrak{x}^k(M)}
\]

Computation is difficult. It can be infinite-dimensional. Tools: Mayer-Vietoris, spectral sequences.

Particular cases: (M, Π) symplectic $H^k_\Pi(M) \cong H^k_{DR}(M)$.

(M, Π) b-Poisson, $H^k_\Pi(M) \cong H^k_{DR}(M) \oplus H^{k-1}_{DR}(Z)$.
Poisson cohomology computation kit

- Hamiltonian vector fields $X_f = -[\Pi, f]$ (1-coboundary).
- Poisson vector fields $[\Pi, X] = -L_X \Pi = 0$ (1-cocycle).
- Poisson structures $[\Pi, \Pi] = 0$ (2-cocycle).
- Compatible Poisson structures $[\Pi_1, \Pi_2] = 0$ (2-cocycle).

\[
H^1_\Pi = \frac{\text{Poisson vector fields}}{\text{Hamiltonian vector fields}}.
\]
Example 5: Cauchy-Riemann equations and Hamilton’s equations

- Take a holomorphic function on $F : \mathbb{C}^2 \to \mathbb{C}$ decompose it as $F = G + iH$ with $G, H : \mathbb{R}^4 \to \mathbb{R}$.

Cauchy-Riemann equations for F in coordinates $z_j = x_j + iy_j$, $j = 1, 2$

$$\frac{\partial G}{\partial x_i} = \frac{\partial H}{\partial y_i}, \quad \frac{\partial G}{\partial y_i} = -\frac{\partial H}{\partial x_i}$$

- Reinterpret these equations as the equality

$$\{G, \cdot\}_0 = \{H, \cdot\}_1 \quad \{H, \cdot\}_0 = -\{G, \cdot\}_1$$

with $\{\cdot, \cdot\}_j$ the Poisson brackets associated to the real and imaginary part of the symplectic form $\omega = dz_1 \wedge dz_2$ ($\omega = \omega_0 + i\omega_1$).

- Check $\{G, H\}_0 = 0$ and $\{H, G\}_1 = 0$ (integrable system).
Example 2: Determinants in \mathbb{R}^3 (Exercise 12)

- **Dynamics:** Given two functions $H, K \in C^\infty(\mathbb{R}^3)$. Consider the system of differential equations:
 \[
 (\dot{x}, \dot{y}, \dot{z}) = dH \wedge dK \quad (1)
 \]
 H and K are constants of motion (the flow lies on $H = \text{cte.}$ and $K = \text{cte.}$)

- **Geometry:** Consider the brackets,
 \[
 \{f, g\}_H := \det(df, dg, dH) \quad \{f, g\}_K := \det(df, dg, dK)
 \]
 They are antisymmetric and satisfy Jacobi,
 \[
 \{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0.
 \]
 The flow of the vector field
 \[
 \{K, \cdot\}_H := \det(dK, \cdot, dH)
 \]
 and $\{-H, \cdot\}_K$ is given by the differential equation (1) and
 \[
 \{H, K\}_H = 0, \quad \{H, K\}_K = 0
 \]
Example 4: Coupling two simple harmonic oscillators

The phase space is \((T^*(\mathbb{R}^2), \omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2)\). \(H\) is the sum of potential and kinetic energy,

\[
H = \frac{1}{2}(y_1^2 + y_2^2) + \frac{1}{2}(x_1^2 + x_2^2)
\]

\(H = h\) is a sphere \(S^3\). We have rotational symmetry on this sphere \(\rightsquigarrow\) the angular momentum is a constant of motion, \(L = x_1 y_2 - x_2 y_1\),

\[
X_L = (-x_2, x_1, -y_2, y_1)
\]

and

\[
X_L(H) = \{L, H\} = 0.
\]
An integrable system on a surface.

The invariant submanifolds are tori (Liouville tori)
The orbits of an integrable system in a neighbourhood of a compact orbit are tori. In action-angle coordinates \((p_i, \theta_i)\) the foliation is given by the fibration \(\{p_i = c_i\}\) and the symplectic structure is Darboux
\[
\omega = \sum_{i=1}^{n} dp_i \wedge d\theta_i.
\]
The characters of the day

Joseph Liouville proved the existence of invariant manifolds.

Figure: Joseph Liouville, Henri Mineur, Duistermaat and Arnold

Henri Mineur gave an explicit formula for action coordinates: $p_i = \int_{\gamma_i} \alpha$ where γ_i is one of the cycles of the Liouville torus and α is a Liouville 1-form for the symplectic structure ($\omega = d\alpha$).

We will follow the proof by Duistermaat and apply it to Poisson manifolds.
What is an integrable system on a Poisson manifold?

Let \((M, \Pi)\) be a Poisson manifold of (maximal) rank \(2r\) and of dimension \(n\). An \(s\)-tuple of functions \(F = (f_1, \ldots, f_s)\) on \(M\) is said to define a Liouville integrable system on \((M, \Pi)\) if

1. \(f_1, \ldots, f_s\) are independent (\(df_1 \wedge \cdots \wedge df_s \neq 0\)).
2. \(f_1, \ldots, f_s\) are pairwise in involution
3. \(r + s = n\)

Viewed as a map, \(F : M \to \mathbb{R}^s\) is called the moment map of \((M, \Pi)\).
Theorem (Laurent, M., Vanhaecke)

Let p_1, \ldots, p_r be r functions in involution and whose Hamiltonian vector fields are linearly independent at a point $m \in (M, \Pi)$. There exist locally functions $q_1, \ldots, q_r, z_1, \ldots, z_{n-2r}$, such that

1. The n functions $(p_1, q_1, \ldots, p_r, q_r, z_1, \ldots, z_{n-2r})$ form a system of coordinates on U, centered at m;

2. The Poisson structure Π is given on U by

$$\Pi = \sum_{i=1}^{r} \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial q_i} + \sum_{i,j=1}^{n-2r} g_{ij}(z) \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j},$$

(1)
Coffee time
An action-angle theorem for Poisson manifolds

Case of regular orbits

We assume that:

1. The mapping $\mathcal{F} = (f_1, \ldots, f_s)$ defines an integrable system on the Poisson manifold (M, Π) of dimension n and (maximal) rank $2r$.

2. Suppose that $m \in M$ is a point such that it is regular for the integrable system and the Poisson structure.

3. Assume further than the integral manifold \mathcal{F}_m of the foliation $X_{f_1}, \ldots X_{f_s}$ through m is compact (Liouville torus).
Theorem (Laurent, M., Vanhaecke)

There exist \mathbb{R}-valued smooth functions (p_1, \ldots, p_s) and \mathbb{R}/\mathbb{Z}-valued smooth functions $(\theta_1, \ldots, \theta_r)$, defined in a neighborhood of F_m such that

1. The functions $(\theta_1, \ldots, \theta_r, p_1, \ldots, p_s)$ define a diffeomorphism $U \simeq T^r \times B^s$;

2. The Poisson structure can be written in terms of these coordinates as

$$\Pi = \sum_{i=1}^{r} \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial \theta_i},$$

in particular the functions p_{r+1}, \ldots, p_s are locally Casimirs of Π;

3. The leaves of the surjective submersion $\mathcal{F} = (f_1, \ldots, f_s)$ are given by the projection onto the second component $T^r \times B^s$, in particular, the functions p_1, \ldots, p_s depend only on the functions f_1, \ldots, f_s.
Step 1: Topology of the foliation. The fibration in a neighbourhood of a compact connected fiber is a trivial fibration by compact fibers. The fibers are tori.
The Poisson proof

- **Step 2: Hamiltonian action:** We recover a \mathbb{T}^r-action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

 \[
 \Phi : \mathbb{R}^r \times (\mathbb{T}^r \times B^s) \rightarrow \mathbb{T}^r \times B^s \\
 ((t_1, \ldots, t_r), m) \mapsto \Phi^{(t_1)} \circ \cdots \circ \Phi^{(t_r)}(m). \tag{2}
 \]

- **Step 3:** We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $\mathcal{L}_Y^2 P = 0$, then $\mathcal{L}_Y P = 0$).

- **Step 4:** Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.

- **Step 5:** To construct action-angle coordinates we use Darboux-Carathéodory and the constructed Hamiltonian action of \mathbb{T}^n to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.
The Poisson proof

- **Step 2: Hamiltonian action:** We recover a \mathbb{T}^r-action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

 \[
 \Phi : \mathbb{R}^r \times (\mathbb{T}^r \times B^s) \to \mathbb{T}^r \times B^s
 \]

 \[
 ((t_1, \ldots, t_r), m) \mapsto \Phi_{t_1}^{(1)} \circ \cdots \circ \Phi_{t_r}^{(r)}(m).
 \] (2)

- **Step 3:** We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $\mathcal{L}_Y^2 P = 0$, then $\mathcal{L}_Y P = 0$).

- **Step 4:** Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.

- **Step 5:** To construct action-angle coordinates we use Darboux-Caratheodory and the constructed Hamiltonian action of \mathbb{T}^m to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.
The Poisson proof

- **Step 2: Hamiltonian action:** We recover a \mathbb{T}^r-action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

 \[\Phi : \mathbb{R}^r \times (\mathbb{T}^r \times B^s) \rightarrow \mathbb{T}^r \times B^s \]
 \[((t_1, \ldots, t_r), m) \mapsto \Phi^{(1)}_{t_1} \circ \cdots \circ \Phi^{(r)}_{t_r}(m). \]

- **Step 3:** We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $L^2_Y P = 0$, then $L_Y P = 0$).

- **Step 4:** Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.

- **Step 5:** To construct action-angle coordinates we use Darboux-Carathéodory and the constructed Hamiltonian action of \mathbb{T}^n to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.
Step 2: Hamiltonian action: We recover a \mathbb{T}^r-action tangent to the leaves of the foliation. This implies a process of uniformization of periods.

$$\Phi : \mathbb{R}^r \times (\mathbb{T}^r \times B^s) \rightarrow \mathbb{T}^r \times B^s$$

$$((t_1, \ldots, t_r), m) \mapsto \Phi^{(1)}_{t_1} \circ \cdots \circ \Phi^{(r)}_{t_r}(m).$$

Step 3: We prove that this action is Poisson (if Y is a complete vector field of period 1 and P is a bivector field for which $\mathcal{L}_Y^2 P = 0$, then $\mathcal{L}_Y P = 0$).

Step 4: Finally we use the Poisson Cohomology of the manifold and to check that the action is Hamiltonian.

Step 5: To construct action-angle coordinates we use Darboux-Carathéodory and the constructed Hamiltonian action of \mathbb{T}^n to drag normal forms from a neighbourhood of a point to a neighbourhood of a fiber.
Definition

Let (M, Π) be a Poisson manifold of dimension n. An s-uplet of functions $\mathcal{F} = (f_1, \ldots, f_s)$ is said to be a **non-commutative integrable system of rank r** on (M, Π) if

1. f_1, \ldots, f_s are independent;
2. The functions f_1, \ldots, f_r are in involution with the functions f_1, \ldots, f_s;
3. $r + s = n$;
4. The Hamiltonian vector fields of the functions f_1, \ldots, f_r are linearly independent at some point of M.

Notice that $2r \leq \mathrm{Rk} \Pi$, as a consequence of (4).

Remark: The mapping $\mathcal{F} = (f_1, \ldots, f_s)$ is a Poisson map on \mathbb{R}^s with \mathbb{R}^s endowed with a non-vanishing Poisson structure.
An action-angle theorem for non-commutative systems

Theorem (Laurent, M., Vanhaecke)

Suppose that \mathcal{F}_m is a regular Liouville torus. Then there exist semilocally \mathbb{R}-valued smooth functions $(p_1, \ldots, p_r, z_1, \ldots, z_{s-r})$ and \mathbb{R}/\mathbb{Z}-valued smooth functions $(\theta_1, \ldots, \theta_r)$ such that,

1. The functions $(\theta_1, \ldots, \theta_r, p_1, \ldots, p_r, z_1, \ldots, z_{s-r})$ define a diffeomorphism $U \simeq T^r \times B^s$;

2. The Poisson structure can be written in terms of these coordinates as

\[
\Pi = \sum_{i=1}^{r} \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial \theta_i} + \sum_{k,l=1}^{s-r} \phi_{k,l}(z) \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_l};
\]

3. The leaves of the surjective submersion $\mathcal{F} = (f_1, \ldots, f_s)$ are given by the projection onto the second component $T^r \times B^s$, in particular, the functions $p_1, \ldots, p_r, z_1, \ldots, z_{s-r}$ depend on the functions f_1, \ldots, f_s only.
The restricted 3-body problem

- Simplified version of the general 3-body problem. One of the bodies has negligible mass.
- The other two bodies move independently of it following Kepler’s laws for the 2-body problem.

Figure: Circular 3-body problem
Planar restricted 3-body problem

- The time-dependent self-potential of the small body is
 \[U(q, t) = \frac{1-\mu}{|q-q_1|} + \frac{\mu}{|q-q_2|}, \]
 with \(q_1 = q_1(t) \) the position of the planet with mass \(1 - \mu \) at time \(t \) and \(q_2 = q_2(t) \) the position of the one with mass \(\mu \).

- The Hamiltonian of the system is
 \[H(q, p, t) = \frac{p^2}{2} - U(q, t), \quad (q, p) \in \mathbb{R}^2 \times \mathbb{R}^2, \]
 where \(p = \dot{q} \) is the momentum of the planet.

- Consider the canonical change \((X, Y, P_X, P_Y) \mapsto (r, \alpha, P_r =: y, P_\alpha =: G)\).

- Introduce **McGehee coordinates** \((x, \alpha, y, G)\), where \(r = \frac{2}{x^2} \), \(x \in \mathbb{R}^+ \), can be then extended to infinity \((x = 0)\).

- The symplectic structure becomes a singular object
 \[\omega = -\frac{4}{x^3} dx \wedge dy + d\alpha \wedge dG. \] for \(x > 0 \)

- The integrable 2-body problem for \(\mu = 0 \) is integrable with respect to the singular \(\omega \).

\(^1\)Thanks to Amadeu Delshams for this example.
b-Poisson manifolds

Definition (\textit{\textbf{b-integrable system}})

A set of \textit{b}\text{-functions} f_1, \ldots, f_n on (M^{2n}, ω) such that

- f_1, \ldots, f_n Poisson commute
- $df_1 \wedge \cdots \wedge df_n \neq 0$ as a section of $\Lambda^n (bT^*(M))$ on a dense subset of M and on a dense subset of \mathbb{Z}
An action-angle theorem for b-Poisson manifolds

Theorem (Kiesenhofer, M., Scott)

Let (M, Π) be a b-Poisson manifold with critical hypersurface Z defined by $t = 0$. Let $f_1, \ldots, f_{n-1}, f_n = \log |t|$ be a b-integrable system on it. Then in a neighbourhood of a Liouville torus m there exist coordinates $(\theta_1, \ldots, \theta_n, a_1, \ldots, a_n): U \to T^n \times B^n$ such that

$$\Pi|_U = \sum_{i=1}^{n-1} \frac{\partial}{\partial a_i} \wedge \frac{\partial}{\partial \theta_i} + ct \frac{\partial}{\partial t} \wedge \frac{\partial}{\partial \theta_n},$$

where the coordinates a_1, \ldots, a_{n-1} depend only on f_1, \ldots, f_{n-1} and c is the modular period of the component of Z containing m.
Perturbation theory KAM on manifolds with boundary and b-manifolds. (see Anna’s poster).