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Symplectic Geometry

Poisson Geometry

W

II

Lx,w = —df

one symplectic leaf

a symplectic foliation

Darboux theorem

Weinstein’s splitting theorem

w=> 1 dx; Ndy;

II= Zz 1 890 81:1 + Zkl Qbkl( )8Zk A (‘%l

d
I = Ez 1 8:10 ax +2 s C Tsxkc’)zk Ay

Lxw=0

LxII=0

1 _ symplectic v.f
HDR(M) — Hamiltonian v.f

Poisson v.f

Hamiltonian v.f

H{%R(M) (cochains QF (M)

?:= HE(M) (cochains X™(M))

Arnold-Liouville theorem

Action-angle coordinates
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Plan for today

@ Poisson cohomology computation kit.

@ Integrable systems on Poisson manifolds (Topology).

@ Integrable systems on Poisson manifolds (Geometry and normal forms). The
case of b-Poisson manifolds.

@ Applications.
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Schouten Bracket of vector fields in local coordinates

o Case of vector fields,
A=3 aia%i and B=3", bi%. Then

0b; 0, da; 0

[A’B]:Za(z(?x Ox Z Z(?;r 0:10
7 J i ‘7 J

@ Re-denoting B%i as ¢; (“odd coordinates ).
Then A = Zl CLZ‘Q and B = Zl szz and CZCJ = _CjCi Now we can
reinterpret the bracket as,

0A 0B 0B 0A

A Bl = ob
[ 7 ] 8C@ aTz i ¢ Ox;
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Schouten Bracket of multivector fields in local coordinates

We reproduce the same scheme for the case of multivector fields.

0A 0B

is a (a + b — 1)-vector field.
where

0
A= > A gz N
11<<lg axil
and
0

B = Z Bil,...,ibﬁ ARER

11 <+ <1p n

(G --Cip) .

with o,
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Theorem (Schouten-Nijenhuis)
The bracket defined by this formula satisfies,

Graded anti-commutativity [A, B] = —(=1)(e=D®-1[B_A].
Graded Leibniz rule

[A,BAC]=[A,B]AC+ (-1)@ DB A[A,C]

Graded Jacobi identity

(~D)©@ D4, [B, Ol+(-1) VDB, [C, Al +(-1)" VY0, [4, B]] =

If X is a vector field then, [X, B] = Lx B.
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Poisson cohomology computation kit

@ Space of cochains X" (M).
Differential dp(A) := [I1, A].

Poisson cohomology

HE (M) = ker dpy : XF(M) — XF1(M)
Imdyy : XF=1(M) — Xk(M)

Computation is difficult. It can be infinite-dimensional. Tools:
Mayer-Vietoris, spectral sequences.

Particular cases: (M, TI) symplectic Hf; (M) = Hp,p(M).
(M, II) b-Poisson, Hf (M) = HY (M) @ Hp L (Z).
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Poisson cohomology computation kit

Hamiltonian vector fields X = —[II, f] (1-coboundary).
Poisson vector fields [II, X| = —LxII = 0 (1-cocycle).
Poisson structures [I1, I1] = 0 (2-cocycle).

Compatible Poisson structures [I1;, IT5] = 0 (2-cocycle).

Poisson vector fields

HL = .
™ Hamiltonian vector fields
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Example 5: Cauchy-Riemann equations and Hamilton's

equations

o Take a holomorphic function on F': C> — C decompose it as
F =G+ iH with G,H : R* — R.

Cauchy-Riemann equations for F' in coordinates z; = x; + iy,
j=1,2

oG _OH 9G _ oH
or;  Oy;' Oy Ox

@ Reinterpret these equations as the equality

{Gv '}0 - {Hv '}1 {Hv '}0 - _{G7 '}1

with {-,-}; the Poisson brackets associated to the real and imaginary
part of the symplectic form w = dz; A dzo (w = wg + iwy).
o Check {G,H}o =0 and {H,G}; = 0 (integrable system).
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Example 2: Determinants in R? (Exercise 12)

@ Dynamics: Given two functions H, K € C>°(R3). Consider the system of
differential equations:

(#,9,2) =dH ANdK (1)

H and K are constants of motion (the flow lies on H = cte. and K = cte.)

@ Geometry: Consider the brackets,

They are antisymmetric and satisfy Jacobi,

{f7{97h}}+{97{haf}}+{h7{fyg}}=0.

The flow of the vector field
{K, }n = det(dK,-,dH)
and {—H, -} is given by the differential equation (1) and
(H. K}y =0, {H K}x=0
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Example 4: Coupling two simple harmonic oscillators

The phase space is (T*(R?),w = dx1 A dyy + dxa A dys). H is the sum of
potential and kinetic energy,

1 1
H =31 +y3) + 5 (@] +a3)

H = h is a sphere S3. We have rotational symmetry on this sphere ~ the
angular momentum is a constant of motion, L = x1y> — x2y1,
X1 = (=2, 21, —Y2,91) and

Xp(H)={L,H}=0.
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Topology of integrable systems (Symplectic case)

An integrable system on a surface.

—

The invariant submanifolds are tori (Liouville tori)
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Lioville-Mineur-Arnold theorem (Symplectic manifolds)

The orbits of an integrable system in a neighbourhood of a compact orbit
are tori. In action-angle coordinates (p;. ;) the foliation is given by the
fibration {p; = ¢;} and the symplectic structure is Darboux

w=y " dp; \db;.
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The characters of the day

Joseph Liouville proved the existence of invariant manifolds.

o

Figure: Joseph Liouville, Henri Mineur, Duistermaat and Arnold

Henri Mineur gave a explicit formula for action coordinates: p; = f o where 7;
is one of the cycles of the Liouville torus and « is a Liouville 1- form for the

symplectic structure (w = dav).

We will follow the proof by Duistermaat and apply it to Poisson manifolds.
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What is an integrable system on a Poisson manifold?

Let (M,II) be a Poisson manifold of (maximal) rank 27 and of dimension
n. An s-tuplet of functions F = (fy,...,f5) on M is said to define a
Liouville integrable system on (M, II) if

Q fi,...,[fs are independent ( df; A--- Adfs #0).
@ fi,...,fs are pairwise in involution
Q@r+s=n
Viewed as a map, F : M — R? is called the moment map of (M, 1I).
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A Darboux-Carathéodory theorem in the Poisson context

Theorem (Laurent, M., Vanhaecke)

Let p1,...,pr ber functions in involution and whose Hamiltonian vector

fields are linearly independent at a point m € (M, 1I)
functions q1,...,qr, 21, ..., 2n—2r, Such that

© The n functions (p1,q1,.--,PryQrs 21, - - - Zn—2r) form a system of
coordinates on U, centered at m;

. There exist locally

© The Poisson structure 11 is given on U by

n—2r
0
= ZaAaquer:gu 827 A gm (1)
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Coffee time
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An action-angle theorem for Poisson manifolds

Case of regular orbits
We assume that:

@ The mapping F = (f1,..., fs) defines an integrable system on the
Poisson manifold (M, II) of dimension n and (maximal) rank 2r.

@ Suppose that m € M is a point such that it is regular for the
integrable system and the Poisson structure.

© Assume further than the integral manifold 7, of the foliation
X¢,... Xy, through m is compact (Liouville torus).
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An action-angle theorem for Poisson manifolds

Theorem (Laurent, M., Vanhaecke)
There exist R-valued smooth functions (p1,...,ps) and R/Z-valued

smooth functions (01, ...,6,), defined in a neighborhood of F,, such that
@ The functions (61,...,0,,p1,...,ps) define a diffeomorphism
U~T"x B%;
@ The Poisson structure can be written in terms of these coordinates as
"0 0
II = N —,
; Op;  00;
in particular the functions p,1,...,ps are locally Casimirs of 11;

© The leaves of the surjective submersion F = (f1,..., fs) are given by
the projection onto the second component T" x B?®, in particular, the
functions p1,...,ps depend only on the functions fi, ..., fs.

v
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The Poisson proof

@ Step 1: Topology of the foliation. The fibration in a neighbourhood
of a compact connected fiber is a trivial fibration by compact fibers.
The fibers are tori.
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The Poisson proof

@ Step 2: Hamiltonian action: We recover a T"-action tangent to the
leaves of the foliation. This implies a process of uniformization of
periods.

® : R"x(T"xB*) — T x B

) 2
((t1,- - t)ym) = B o0 (m). (2)
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The Poisson proof

@ Step 2: Hamiltonian action: We recover a T"-action tangent to the
leaves of the foliation. This implies a process of uniformization of

periods.
® : R"x(T'xB%) — T x B )
((t,.-st)ym) > @) o0 @ (m).

@ Step 3: We prove that this action is Poisson ( if Y is a complete
vector field of period 1 and P is a bivector field for which £3.P = 0,
then Ly P = 0).
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The Poisson proof

@ Step 2: Hamiltonian action: We recover a T"-action tangent to the
leaves of the foliation. This implies a process of uniformization of

periods.
® : R"x(T'xB%) — T x B )
((t,.-st)ym) > @) o0 @ (m).

@ Step 3: We prove that this action is Poisson ( if Y is a complete
vector field of period 1 and P is a bivector field for which £3.P = 0,
then Ly P = 0).

@ Step 4: Finally we use the Poisson Cohomology of the manifold and
to check that the action is Hamiltonian.
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The Poisson proof

Step 2: Hamiltonian action: We recover a T"-action tangent to the
leaves of the foliation. This implies a process of uniformization of
periods.
® : R"x(T"xB%) — T'xB*
(1) () (2)
((t1,... tp),m) Dy 00y (m).
Step 3: We prove that this action is Poisson ( if Y is a complete
vector field of period 1 and P is a bivector field for which £3.P = 0,
then Ly P = 0).
Step 4: Finally we use the Poisson Cohomology of the manifold and
to check that the action is Hamiltonian.
Step 5: To construct action-angle coordinates we use
Darboux-Carathéodory and the constructed Hamiltonian action of T™
to drag normal forms from a neighbourhood of a point to a
neighbourhood of a fiber.
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What is a non-commutative integrable system on a

Poisson manifold?

Definition
Let (M, II) be a Poisson manifold of dimension n. An s-uplet of functions
F =(f1,...,[fs) is said to be a non-commutative integrable system of

rank v on (M,1I) if
(1) fi,...,fs are independent;

(2) The functions f1,..., f, are in involution with the functions
Jio00 0 fsi
3) r+s=m;
(4) The Hamiltonian vector fields of the functions fi,..., f, are linearly

independent at some point of M.
Notice that 2r < RkII, as a consequence of (4).

Remark: The mapping F = (f1,..., fs) is a Poisson map on R® with R®

endowed with a non-vanishing Poisson structure.
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An action-angle theorem for non-commutative systems

Theorem (Laurent, M., Vanhaecke)

Suppose that F,, is a regular Liouville torus. Then there exist semilocally
R-valued smooth functions (p1,...,pr,21,...,2s—r) and R/Z-valued
smooth functions (61, ...,60,) such that,

@ The functions (01, ...,0,,p1,...,Dr,21,...,2s—r) define a
diffeomorphism U ~ T" x B?;

@ The Poisson structure can be written in terms of these coordinates as
0 0 0

/\ — + —o

Z 90; Z Dra(z 8zk "oz

k=1

© The leaves of the surjective submersion F = (f1,..., fs) are given by
the projection onto the second component T" x B?, in particular, the
functions p1,...,pr, 21, .., 2s—r depend on the functions f1, ..., fs
only.
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The restricted 3-body problem

@ Simplified version of the general 3-body problem. One of the bodies has
negligible mass.

@ The other two bodies move independently of it following Kepler's laws for
the 2-body problem.

Spacecraft

Figure: Circular 3-body problem
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Planar restricted 3-body problem!

@ The time-dependent self-potential of the small body is

U(g,t) = ‘ql::l" + ﬁ, with ¢; = ¢1(t) the position of the planet with

mass 1 — p at time ¢ and g2 = ¢2(t) the position of the one with mass p.

@ The Hamiltonian of the system is
H(q,p,t) =p*/2 = Ul(q,t), (g,p) € R* x R?, where p = is the
momentum of the planet.

@ Consider the canonical change (X,Y, Py, Py) — (r,a, P =y, P, =: G).

@ Introduce McGehee coordinates (z, a, y, G), where r = I% r e RT,
can be then extended to infinity (z = 0).

@ The symplectic structure becomes a singular object
w = —%dw/\dy—&—doz/\dG. forz >0

@ The integrable 2-body problem for x = 0 is integrable with respect to the
singular w.

'Thanks to Amadeu Delshams for this example.
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b-Poisson manifolds

Definition (b-integrable system)

A set of b-functions f1,..., f, on (M?>" w) such that
® fi,...,fn Poisson commute

o dfy A--- Adf, # 0 as a section of A"(°T*(M)) on a dense subset of
M and on a dense subset of Z
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An action-angle theorem for b-Poisson manifolds

Theorem (Kiesenhofer,M., Scott)

Let (M,II) be a b-Poisson manifold with critical hypersurface Z defined by
t=0. Let f1,..., fn—1, fn = log|t| be a b-integrable system on it. Then
in a neighbourhood of a Liouville torus ., there exist coordinates
(01,...,0pn,a1,...,ay) : U — T" x B"™ such that

n—1
0 0 0 0

where the coordinates a,...,a,—1 depend only on fi,..., fn_1 and c is
the modular period of the component of Z containing m.
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KAM

Perturbation theory KAM on manifolds with boundary and b-manifolds.
(see Anna's poster).

kicked rotor - phase space, k = 0.5

p (mod 2m)

Miranda (UPC) Poisson Geometry i October 2015 29 /29



