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Symplectic Geometry Poisson Geometry
ω Π

ιXf
ω = −df Xf := Π(df, ·)

one symplectic leaf a symplectic foliation
Darboux theorem Weinstein’s splitting theorem
ω =

∑n
i=1 dxi ∧ dyi Π =

∑k
i=1

∂
∂xi
∧ ∂
∂xi

+
∑
kl φkl(z) ∂

∂zk
∧ ∂
∂zl

Π =
∑k
i=1

∂
∂xi
∧ ∂
∂xi

+
∑
rs c

k
rsxk

∂
∂zk
∧ ∂
∂zl

LXω = 0 LXΠ = 0
H1
DR(M) = symplectic v.f

Hamiltonian v.f ?= Poisson v.f
Hamiltonian v.f

Hk
DR(M) (cochains Ωk(M)) ?:= Hk

Π(M) (cochains Xm(M))
Arnold-Liouville theorem Action-angle coordinates
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Plan for today

Poisson cohomology computation kit.

Integrable systems on Poisson manifolds (Topology).

Integrable systems on Poisson manifolds (Geometry and normal forms). The
case of b-Poisson manifolds.
Applications.
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Schouten Bracket of vector fields in local coordinates

Case of vector fields,
A =

∑
i ai

∂
∂xi

and B =
∑
i bi

∂
∂xi

. Then

[A,B] =
∑
i

ai(
∑
j

∂bj
∂xi

∂

∂xj
)−

∑
i

bi(
∑
j

∂aj
∂xi

∂

∂xj
)

Re-denoting ∂
∂xi

as ζi (“odd coordinates ”).
Then A =

∑
i aiζi and B =

∑
i biζi and ζiζj = −ζjζi Now we can

reinterpret the bracket as,

[A,B] =
∑
i

∂A

∂ζi

∂B

∂xi
−

∑
i

∂B

∂ζi

∂A

∂xi
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Schouten Bracket of multivector fields in local coordinates
We reproduce the same scheme for the case of multivector fields.

[A,B] =
∑
i

∂A

∂ζi

∂B

∂xi
− (−1)(a−1)(b−1) ∑

i

∂B

∂ζi

∂A

∂xi

is a (a+ b− 1)-vector field.
where

A =
∑

i1<···<ia
Ai1,...,ia

∂

∂xi1
∧ · · · ∧ ∂

∂xia
=

∑
i1<···<ia

Ai1,...,iaζi1 . . . ζia

and

B =
∑

i1<···<ib
Bi1,...,ib

∂

∂xi1
∧ · · · ∧ ∂

∂xib
=

∑
i1<···<ib

Bi1,...,ibζi1 . . . ζib

with ∂(ζi1 ...ζip )
∂ζik

:= (−1)(p−k)ηi1 . . . η̂ikηip−1
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Theorem (Schouten-Nijenhuis)
The bracket defined by this formula satisfies,

Graded anti-commutativity [A,B] = −(−1)(a−1)(b−1)[B,A].

Graded Leibniz rule

[A,B ∧ C] = [A,B] ∧ C + (−1)(a−1)bB ∧ [A,C]

Graded Jacobi identity

(−1)(a−1)(c−1)[A, [B,C]]+(−1)(b−1)(a−1)[B, [C,A]]+(−1)(c−1)(b−1)[C, [A,B]] = 0

If X is a vector field then, [X,B] = LXB.
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Poisson cohomology computation kit

Space of cochains Xm(M).
Differential dΠ(A) := [Π, A].
Poisson cohomology

Hk
Π(M) := ker dΠ : Xk(M) −→ Xk+1(M)

ImdΠ : Xk−1(M) −→ Xk(M)

Computation is difficult. It can be infinite-dimensional. Tools:
Mayer-Vietoris, spectral sequences.
Particular cases: (M,Π) symplectic Hk

Π(M) ∼= Hk
DR(M).

(M,Π) b-Poisson, Hk
Π(M) ∼= Hk

DR(M)⊕Hk−1
DR (Z).
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Poisson cohomology computation kit

Hamiltonian vector fields Xf = −[Π, f ] (1-coboundary).
Poisson vector fields [Π, X] = −LXΠ = 0 (1-cocycle).
Poisson structures [Π,Π] = 0 (2-cocycle).
Compatible Poisson structures [Π1,Π2] = 0 (2-cocycle).

H1
Π = Poisson vector fields

Hamiltonian vector fields .
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Example 5: Cauchy-Riemann equations and Hamilton’s
equations

Take a holomorphic function on F : C2 −→ C decompose it as
F = G+ iH with G,H : R4 −→ R.

Cauchy-Riemann equations for F in coordinates zj = xj + iyj ,
j = 1, 2

∂G

∂xi
= ∂H

∂yi
,

∂G

∂yi
= −∂H

∂xi

Reinterpret these equations as the equality

{G, ·}0 = {H, ·}1 {H, ·}0 = −{G, ·}1

with {·, ·}j the Poisson brackets associated to the real and imaginary
part of the symplectic form ω = dz1 ∧ dz2 (ω = ω0 + iω1).
Check {G,H}0 = 0 and {H,G}1 = 0 (integrable system).
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Example 2: Determinants in R3 (Exercise 12)

Dynamics: Given two functions H,K ∈ C∞(R3). Consider the system of
differential equations:

(ẋ, ẏ, ż) = dH ∧ dK (1)

H and K are constants of motion (the flow lies on H = cte. and K = cte.)
Geometry: Consider the brackets,

{f, g}H := det(df, dg, dH) {f, g}K := det(df, dg, dK)

They are antisymmetric and satisfy Jacobi,
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.
The flow of the vector field

{K, ·}H := det(dK, ·, dH)
and {−H, ·}K is given by the differential equation (1) and

{H,K}H = 0, {H,K}K = 0
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Example 4: Coupling two simple harmonic oscillators

The phase space is (T ∗(R2), ω = dx1 ∧ dy1 + dx2 ∧ dy2). H is the sum of
potential and kinetic energy,

H = 1
2(y2

1 + y2
2) + 1

2(x2
1 + x2

2)

H = h is a sphere S3. We have rotational symmetry on this sphere  the
angular momentum is a constant of motion, L = x1y2 − x2y1,
XL = (−x2, x1,−y2, y1) and

XL(H) = {L,H} = 0.
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Topology of integrable systems (Symplectic case)

An integrable system on a surface.

µ = h

R

The invariant submanifolds are tori (Liouville tori)
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Lioville-Mineur-Arnold theorem (Symplectic manifolds)

The orbits of an integrable system in a neighbourhood of a compact orbit
are tori. In action-angle coordinates (pi, θi) the foliation is given by the
fibration {pi = ci} and the symplectic structure is Darboux
ω =

∑n
i=1 dpi ∧ dθi.
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The characters of the day

Joseph Liouville proved the existence of invariant manifolds.

Figure: Joseph Liouville, Henri Mineur, Duistermaat and Arnold

Henri Mineur gave a explicit formula for action coordinates: pi =
∫
γi
α where γi

is one of the cycles of the Liouville torus and α is a Liouville 1-form for the
symplectic structure (ω = dα).

We will follow the proof by Duistermaat and apply it to Poisson manifolds.
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What is an integrable system on a Poisson manifold?

Let (M,Π) be a Poisson manifold of (maximal) rank 2r and of dimension
n. An s-tuplet of functions F = (f1, . . . , fs) on M is said to define a
Liouville integrable system on (M,Π) if

1 f1, . . . , fs are independent ( df1 ∧ · · · ∧ dfs 6= 0).
2 f1, . . . , fs are pairwise in involution
3 r + s = n

Viewed as a map, F : M→ Rs is called the moment map of (M,Π).
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A Darboux-Carathéodory theorem in the Poisson context

Theorem (Laurent, M., Vanhaecke)
Let p1, . . . , pr be r functions in involution and whose Hamiltonian vector
fields are linearly independent at a point m ∈ (M,Π) . There exist locally
functions q1, . . . , qr, z1, . . . , zn−2r, such that

1 The n functions (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) form a system of
coordinates on U , centered at m;

2 The Poisson structure Π is given on U by

Π =
r∑
i=1

∂

∂pi
∧ ∂

∂qi
+
n−2r∑
i,j=1

gij(z)
∂

∂zi
∧ ∂

∂zj
, (1)
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Coffee time
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An action-angle theorem for Poisson manifolds

Case of regular orbits
We assume that:

1 The mapping F = (f1, . . . , fs) defines an integrable system on the
Poisson manifold (M,Π) of dimension n and (maximal) rank 2r.

2 Suppose that m ∈M is a point such that it is regular for the
integrable system and the Poisson structure.

3 Assume further than the integral manifold Fm of the foliation
Xf1 , . . . Xfs through m is compact (Liouville torus).
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An action-angle theorem for Poisson manifolds

Theorem (Laurent, M., Vanhaecke)
There exist R-valued smooth functions (p1, . . . , ps) and R/Z-valued
smooth functions (θ1, . . . , θr), defined in a neighborhood of Fm such that

1 The functions (θ1, . . . , θr, p1, . . . , ps) define a diffeomorphism
U ' Tr ×Bs;

2 The Poisson structure can be written in terms of these coordinates as

Π =
r∑
i=1

∂

∂pi
∧ ∂

∂θi
,

in particular the functions pr+1, . . . , ps are locally Casimirs of Π;
3 The leaves of the surjective submersion F = (f1, . . . , fs) are given by

the projection onto the second component Tr ×Bs, in particular, the
functions p1, . . . , ps depend only on the functions f1, . . . , fs.
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The Poisson proof

Step 1: Topology of the foliation. The fibration in a neighbourhood
of a compact connected fiber is a trivial fibration by compact fibers.
The fibers are tori.
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The Poisson proof

Step 2: Hamiltonian action: We recover a Tr-action tangent to the
leaves of the foliation. This implies a process of uniformization of
periods.

Φ : Rr × (Tr ×Bs) → Tr ×Bs

((t1, . . . , tr),m) 7→ Φ(1)
t1 ◦ · · · ◦ Φ(r)

tr (m).
(2)

Step 3: We prove that this action is Poisson ( if Y is a complete
vector field of period 1 and P is a bivector field for which L2

Y P = 0,
then LY P = 0).
Step 4: Finally we use the Poisson Cohomology of the manifold and
to check that the action is Hamiltonian.
Step 5: To construct action-angle coordinates we use
Darboux-Carathéodory and the constructed Hamiltonian action of Tn
to drag normal forms from a neighbourhood of a point to a
neighbourhood of a fiber.
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What is a non-commutative integrable system on a
Poisson manifold?

Definition
Let (M,Π) be a Poisson manifold of dimension n. An s-uplet of functions
F = (f1, . . . , fs) is said to be a non-commutative integrable system of
rank r on (M,Π) if
(1) f1, . . . , fs are independent;
(2) The functions f1, . . . , fr are in involution with the functions

f1, . . . , fs;
(3) r + s = n;
(4) The Hamiltonian vector fields of the functions f1, . . . , fr are linearly

independent at some point of M .
Notice that 2r ≤ Rk Π, as a consequence of (4).

Remark: The mapping F = (f1, . . . , fs) is a Poisson map on Rs with Rs
endowed with a non-vanishing Poisson structure.
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An action-angle theorem for non-commutative systems

Theorem (Laurent, M., Vanhaecke)
Suppose that Fm is a regular Liouville torus. Then there exist semilocally
R-valued smooth functions (p1, . . . , pr, z1, . . . , zs−r) and R/Z-valued
smooth functions (θ1, . . . , θr) such that,

1 The functions (θ1, . . . , θr, p1, . . . , pr, z1, . . . , zs−r) define a
diffeomorphism U ' Tr ×Bs;

2 The Poisson structure can be written in terms of these coordinates as

Π =
r∑
i=1

∂

∂pi
∧ ∂

∂θi
+

s−r∑
k,l=1

φk,l(z)
∂

∂zk
∧ ∂

∂zl
;

3 The leaves of the surjective submersion F = (f1, . . . , fs) are given by
the projection onto the second component Tr ×Bs, in particular, the
functions p1, . . . , pr, z1, . . . , zs−r depend on the functions f1, . . . , fs
only.

The functions θ1, . . . , θr are called angle coordinates, the functions
p1, . . . , pr are called action coordinates and the remaining coordinates
z1, . . . , zs−r are called transverse coordinates.
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The restricted 3-body problem

Simplified version of the general 3-body problem. One of the bodies has
negligible mass.
The other two bodies move independently of it following Kepler’s laws for
the 2-body problem.

Figure: Circular 3-body problem
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Planar restricted 3-body problem1

The time-dependent self-potential of the small body is
U(q, t) = 1−µ

|q−q1| + µ
|q−q2| , with q1 = q1(t) the position of the planet with

mass 1− µ at time t and q2 = q2(t) the position of the one with mass µ.

The Hamiltonian of the system is
H(q, p, t) = p2/2− U(q, t), (q, p) ∈ R2 ×R2, where p = q̇ is the
momentum of the planet.

Consider the canonical change (X,Y, PX , PY ) 7→ (r, α, Pr =: y, Pα =: G).

Introduce McGehee coordinates (x, α, y,G), where r = 2
x2 , x ∈ R+,

can be then extended to infinity (x = 0).

The symplectic structure becomes a singular object
ω = − 4

x3 dx ∧ dy + dα ∧ dG. for x > 0

The integrable 2-body problem for µ = 0 is integrable with respect to the
singular ω.

1Thanks to Amadeu Delshams for this example.
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b-Poisson manifolds

Definition (b-integrable system)
A set of b-functions f1, . . . , fn on (M2n, ω) such that

f1, . . . , fn Poisson commute
df1 ∧ · · · ∧ dfn 6= 0 as a section of Λn(bT ∗(M)) on a dense subset of
M and on a dense subset of Z
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An action-angle theorem for b-Poisson manifolds

Theorem (Kiesenhofer,M., Scott)
Let (M,Π) be a b-Poisson manifold with critical hypersurface Z defined by
t = 0. Let f1, . . . , fn−1, fn = log |t| be a b-integrable system on it. Then
in a neighbourhood of a Liouville torus m there exist coordinates
(θ1, . . . , θn, a1, . . . , an) : U → Tn ×Bn such that

Π|U =
n−1∑
i=1

∂

∂ai
∧ ∂

∂θi
+ ct

∂

∂t
∧ ∂

∂θn
, (3)

where the coordinates a1, . . . , an−1 depend only on f1, . . . , fn−1 and c is
the modular period of the component of Z containing m.
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KAM
Perturbation theory KAM on manifolds with boundary and b-manifolds.
(see Anna’s poster).
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