Poisson Geometry and Normal Forms: A Guided Tour through Examples

Eva Miranda
UPC-Barcelona

From Poisson Geometry to Quantum Fields on Noncommutative Spaces, Würzburg Autumn School

Lecture 3

Symplectic Geometry	Poisson Geometry
ω	Π
$\iota_{X_{f}} \omega=-d f$	$X_{f}:=\Pi(d f, \cdot)$
one symplectic leaf	a symplectic foliation
Darboux theorem	Weinstein's splitting theorem
$\omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$	$\Pi=\sum_{i=1}^{k} \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{i}}+\sum_{k l} \phi_{k l}(z) \frac{\partial}{\partial z_{k}} \wedge \frac{\partial}{\partial z_{l}}$
$L_{X} \omega=0$	$L_{X} \Pi=0$
$H_{D R}^{1}(M)=\frac{\text { symplectic v.f }}{\text { Hamiltonian } . \mathrm{f}}$	$?=\frac{\text { Poisson v.f }}{\text { Hamiltonian v.f }}$
$H_{D R}^{k}(M)\left(\right.$ cochains $\left.\Omega^{k}(M)\right)$	$?:=H_{\Pi}^{k}(M)\left(\right.$ cochains $\left.\mathfrak{X}^{m}(M)\right)$

Plan for today

- Weinstein's splitting theorem and normal form theorems.

Figure: Alan Weinstein and Reeb foliation

- Poisson cohomology. Some computations.
- Compatible Poisson structures and commuting first integrals.

Schouten Bracket of vector fields in local coordinates

- Case of vector fields, $A=\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}$ and $A=\sum_{i} b_{i} \frac{\partial}{\partial x_{i}}$. Then

$$
[A, B]=\sum_{i} a_{i}\left(\sum_{j} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\right)-\sum_{i} b_{i}\left(\sum_{j} \frac{\partial a_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\right)
$$

- Re-denoting $\frac{\partial}{\partial x_{i}}$ as ζ_{i} ("odd coordinates ").

Then $A=\sum_{i} a_{i} \zeta_{i}$ and $B=\sum_{i} b_{i} \zeta_{i}$ and $\zeta_{i} \zeta_{j}=-\zeta_{j} \zeta_{i}$ Now we can reinterpret the bracket as,

$$
[A, B]=\sum_{i} \frac{\partial A}{\partial \zeta_{i}} \frac{\partial B}{\partial x_{i}}-\sum_{i} \frac{\partial B}{\partial \zeta_{i}} \frac{\partial A}{\partial x_{i}}
$$

Schouten Bracket of multivector fields in local coordinates

We reproduce the same scheme for the case of multivector fields.

$$
[A, B]=\sum_{i} \frac{\partial A}{\partial \zeta_{i}} \frac{\partial B}{\partial x_{i}}-(-1)^{(a-1)(b-1)} \sum_{i} \frac{\partial B}{\partial \zeta_{i}} \frac{\partial A}{\partial x_{i}}
$$

is a $(a+b-1)$-vector field.
where

$$
A=\sum_{i_{1}<\cdots<i_{a}} A_{i_{1}, \ldots, i_{a}} \frac{\partial}{\partial x_{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x_{i_{a}}}=\sum_{i_{1}<\cdots<i_{a}} A_{i_{1}, \ldots, i_{a}} \zeta_{i_{1}} \ldots \zeta_{i_{a}}
$$

and

$$
B=\sum_{i_{1}<\cdots<i_{b}} B_{i_{1}, \ldots, i_{b}} \frac{\partial}{\partial x_{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x_{i_{b}}}=\sum_{i_{1}<\cdots<i_{b}} B_{i_{1}, \ldots, i_{b}} \zeta_{i_{1}} \ldots \zeta_{i_{b}}
$$

with $\frac{\partial\left(\zeta_{i_{1}} \ldots \zeta_{i_{p}}\right)}{\partial \zeta_{i_{k}}}:=(-1)^{(p-k)} \eta_{i_{1}} \ldots \widehat{\eta}_{i_{k}} \eta_{i_{p-1}}$

Theorem (Schouten-Nijenhuis)

The bracket defined by this formula satisfies,
Graded anti-commutativity $[A, B]=-(-1)^{(a-1)(b-1)}[B, A]$.
Graded Leibniz rule

$$
[A, B \wedge C]=[A, B] \wedge C+(-1)^{(a-1) b} B \wedge[A, C]
$$

Graded Jacobi identity
$(-1)^{(a-1)(c-1)}[A,[B, C]]+(-1)^{(b-1)(a-1)}[B,[C, A]]+(-1)^{(c-1)(b-1)}[C,[A, B]]=0$

If X is a vector field then, $[X, B]=L_{X} B$.

Example 5: Cauchy-Riemann equations and Hamilton's equations

- Take a holomorphic function on $F: \mathbb{C}^{2} \longrightarrow \mathbb{C}$ decompose it as $F=G+i H$ with $G, H: \mathbb{R}^{4} \longrightarrow \mathbb{R}$.

Cauchy-Riemann equations for F in coordinates $z_{j}=x_{j}+i y_{j}$, $j=1,2$

$$
\frac{\partial G}{\partial x_{i}}=\frac{\partial H}{\partial y_{i}}, \quad \frac{\partial G}{\partial y_{i}}=-\frac{\partial H}{\partial x_{i}}
$$

- Reinterpret these equations as the equality

$$
\{G, \cdot\}_{0}=\{H, \cdot\}_{1} \quad\{H, \cdot\}_{0}=-\{G, \cdot\}_{1}
$$

with $\{\cdot, \cdot\}_{j}$ the Poisson brackets associated to the real and imaginary part of the symplectic form $\omega=d z_{1} \wedge d z_{2}\left(\omega=\omega_{0}+i \omega_{1}\right)$.

- Check $\{G, H\}_{0}=0$ and $\{H, G\}_{1}=0$ (integrable system).

