Poisson Geometry and Normal Forms: A Guided Tour through Examples

Eva Miranda
UPC-Barcelona

From Poisson Geometry to Quantum Fields on Noncommutative Spaces, Würzburg Autumn School

Lectures 1 and 2

Outline

(1) Siméon-Denis Poisson
(2) Jacobi, Lie and Lichnerowicz
(3) Motivating examples
(4) Contents

Poisson, 1809

MÉMOIRE

Sur la Variation des Constantes arbitraires dans les questions de Mécanique,
Lu à PInstitut le 16 Octobre 1809;
Par M. Poissiòn.

ANALYSE.

281
constante a ni fa constante b; dans dautres cas effe ne contiendra aucune constante arbitraire, et se réduira à une constante déterminée; mais, afin de rappeler l'origine de cette quantité, qui représente une certaine combinaison des différences partielles des valeurs de a et b, nous ferons usage de cette notation (b, a), pour la désigner; de manière que nous aurons généralement

$$
\begin{aligned}
\frac{d b}{d s} \cdot \frac{d a}{d \phi}-\frac{d a}{d s} \cdot \frac{d b}{d \phi}+\frac{d b}{d u} \cdot \frac{d a}{d \psi} & -\frac{d a}{d u} \cdot \frac{d b}{d \psi}
\end{aligned}+\frac{d b}{d \nu} \cdot \frac{d a}{d \vartheta}, ~-\frac{d a}{d v} \cdot \frac{d b}{d \vartheta}=(b, a) . ~ \$
$$

Figure: Poisson bracket

Jacobi, Lie and Lichnerowicz

Figure: Jacobi, Lie and Lichnerowicz

Example 1: Lie algebras of matrix groups

The operation on matrices $[A, B]=A B-B A$ is antisymmetric and satisfies $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0, \quad($ Jacobi).
Example: $S O(3, \mathbb{R})=\left\{A \in G L(3, \mathbb{R}), \quad A^{T} A=I d . \quad \operatorname{det}(A)=1\right\}$ and $\mathfrak{s o}(3, R):=T_{I d}(S O(3, \mathbb{R}))=\left\{A \in M(3, \mathbb{R}), \quad A^{T}+A=0 . \quad \operatorname{Tr}(A)=0\right\}$.
The brackets are determined on a basis

$$
e_{1}:=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad e_{2}:=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad e_{3}:=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

by $\left[e_{1}, e_{2}\right]=-e_{3}, \quad\left[e_{1}, e_{3}\right]=e_{2}, \quad\left[e_{2}, e_{3}\right]=-e_{1}$.
Define the (Poisson) bracket using the dual basis x_{1}, x_{2}, x_{3} in $\mathfrak{s o}(3, R)^{*}$

$$
\left\{x_{1}, x_{2}\right\}=-x_{3}, \quad\left\{x_{1}, x_{3}\right\}=x_{2}, \quad\left\{x_{2}, x_{3}\right\}=-x_{1}
$$

It satifies Jacobi $\left\{x_{i},\left\{x_{j}, x_{k}\right\}\right\}+\left\{x_{j},\left\{x_{k}, x_{i}\right\}\right\}+\left\{x_{k},\left\{x_{i}, x_{j}\right\}\right\}=0$

From Lie algebras to Poisson structures (Exercise 4)

Another way to write the Poisson bracket

$$
-x_{3} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}+x_{2} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{3}}-x_{1} \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}
$$

Using the properties of the Poisson bracket, $\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, x_{i}\right\}=0, i=1,2,3$ and the function $f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ is a constant of motion.

Each sphere is endowed with an area form (symplectic structure).

Example 2: Determinants in \mathbb{R}^{3} (Exercise 12)

- Dynamics: Given two functions $H, K \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}\right)$. Consider the system of differential equations:

$$
\begin{equation*}
(\dot{x}, \dot{y}, \dot{z})=d H \wedge d K \tag{1}
\end{equation*}
$$

H and K are constants of motion (the flow lies on $H=c t e$. and $K=c t e$.)

- Geometry: Consider the brackets,

$$
\{f, g\}_{H}:=\operatorname{det}(d f, d g, d H) \quad\{f, g\}_{K}:=\operatorname{det}(d f, d g, d K)
$$

They are antisymmetric and satisfy Jacobi, $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$.
The flow of the vector field

$$
\{K, \cdot\}_{H}:=\operatorname{det}(d K, \cdot, d H)
$$

and $\{-H, \cdot\}_{K}$ is given by the differential equation (1) and

$$
\{H, K\}_{H}=0, \quad\{H, K\}_{K}=0
$$

Example 3: Hamilton's equations

The equations of the movement of a particle can be written as Hamilton's equation using the change $p_{i}=\dot{q}_{i}$,

$$
\begin{aligned}
\dot{q} & =\frac{\partial H}{\partial p} \\
\dot{p} & =-\frac{\partial H}{\partial q}
\end{aligned}
$$

There is a geometrical structure behind this formula \rightsquigarrow symplectic form ω (closed non-degenerate 2-form).

Non-degeneracy \rightsquigarrow for every smooth function f, there exists a unique vector field X_{f} (Hamiltonian vector field),

$$
i_{X_{f}} \omega=-d f
$$

Example 4: Coupling two simple harmonic oscillators

The phase space is $\left(T^{*}\left(\mathbb{R}^{2}\right), \omega=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}\right) . H$ is the sum of potential and kinetic energy,

$$
H=\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)+\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

$H=h$ is a sphere S^{3}. We have rotational symmetry on this sphere \rightsquigarrow the angular momentum is a constant of motion, $L=x_{1} y_{2}-x_{2} y_{1}$,
$X_{L}=\left(-x_{2}, x_{1},-y_{2}, y_{1}\right)$ and

$$
X_{L}(H)=\{L, H\}=0 .
$$

Example 5: Cauchy-Riemann equations and Hamilton's equations

- Take a holomorphic function on $F: \mathbb{C}^{2} \longrightarrow \mathbb{C}$ decompose it as $F=G+i H$ with $G, H: \mathbb{R}^{4} \longrightarrow \mathbb{R}$.

Cauchy-Riemann equations for F in coordinates $z_{j}=x_{j}+i y_{j}$, $j=1,2$

$$
\frac{\partial G}{\partial x_{i}}=\frac{\partial H}{\partial y_{i}}, \quad \frac{\partial G}{\partial y_{i}}=-\frac{\partial H}{\partial x_{i}}
$$

- Reinterpret these equations as the equality

$$
\{G, \cdot\}_{0}=\{H, \cdot\}_{1}
$$

with $\{\cdot, \cdot\}_{j}$ the Poisson brackets associated to the real and imaginary part of the symplectic form $\omega=d z_{1} \wedge d z_{2}\left(\omega=\omega_{0}+i \omega_{1}\right)$.

- Check $\{G, H\}_{0}=0$ and $\{H, G\}_{1}=0$ (integrable system).

Plan for today

- Definition and examples.
- Weinstein's splitting theorem and symplectic foliation.

Figure: Alan Weinstein and Reeb foliation

- Normal form theorems.

Figure: Marius Crainic, Rui Loja Fernandes and Ionut Marcut

