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Complex dynamics

Complex dynamics of which functions ?
We consider a rational function f of degree d ≥ 2 in the Riemann sphere
C = C ∪ {∞}, where C is the complex plane.

We denote the iterates of f by

f 0(z) ≡ z ,

f 1 = f ,

and
f n = f ◦ f n−1,

for n ≥ 2.

From now on, unless otherwise stated, all rational functions are assumed
to have degree at least 2.
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Fixed points

Definition 1

If z0 ∈ C and f (z0) = z0, we say that z0 is a fixed point of f .

In early work on complex dynamics (ca. 1870 – 1918), classification of
fixed points and the behaviour of the iterates of a function in an
unspecified small neighbourhood of a fixed point were considered.

This generally required that the iterates f n(z) have a limit as n→∞.
This condition is too restrictive to be useful in more complicated
situations. Global considerations became possible when a more flexible
limit concept was introduced to the theory.
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Introduction of normal families into complex dynamics

In 1918, Pierre Fatou and Gaston Julia independently considered the
partition of C into two sets as follows.

Definition 2

We define the set of normality or the Fatou set F(f ) of f by

F(f ) = {z ∈ C : z has a neighborhood U such that

{(f n)|U : n ∈ Z+} is a normal family }

and the Julia set J (f ) of f by J (f ) = C \ F(f ).

Clearly F(f ) is open, but it may be empty. For example, F
[(

z−2
z

)2]
= ∅.

The set J (f ) is a closed subset of C, hence compact; J (f ) 6= ∅.
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Summary of conclusions of complex dynamics. Complete
invariance.

Theorem 3

The sets F(f ) and J (f ) are completely invariant under f , that is,

f (F(f )) ⊂ F(f ), f −1(F(f )) ⊂ F(f ),

f (J (f )) ⊂ J (f ), f −1(J (f )) ⊂ J (f ).

In fact, for rational f , equality holds in all of the above inclusions.
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Summary of conclusions of complex dynamics. Fatou and
Julia sets of iterates.

Theorem 4

For each positive integer p, we have

F(f p) = F(f ), J (f p) = J (f ).
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Summary of conclusions of complex dynamics.
Components of the Fatou set.

Theorem 5

Let U be a component of F(f ) and suppose that n ≥ 1. Then there is a
component Un of F(f ) such that f n(U) ⊂ Un. In fact, for rational f ,
equality holds: f n(U) = Un.
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Summary of conclusions of complex dynamics. Wandering,
periodic, preperiodic omponents of the Fatou set.

Let U be a component of F(f ). Set U0 = U and for n ≥ 1, set
Un = f n(U).

Definition 6

(i) If all Un are distinct, we call U a wandering domain for f .
Otherwise, there are minimal p ≥ 0 and n ≥ 1 such that Up = Up+n.
(ii) If p = 0, so that U = Un, we say that U is periodic with period n. If
also n = 1, we say that U is an invariant component for f .
(iii) If p ≥ 1, we say that U is preperiodic. Then U is not periodic, but U
is an inverse image of a periodic component of f under the iterate f p of f .
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Summary of conclusions of complex dynamics. No
wandering domains.

Theorem 7

Dennis Sullivan (1985)
A rational function of degree d ≥ 2 has no wandering domains.

This answered an old question of Fatou.
The proof uses deformations of rational functions of a given degree by
quasiconformal mappings, and is based on the fact that rational functions
of a given degree depend on only finitely many real parameters.
Transcendental entire functions can have wandering domains (I.N. Baker).

Aimo Hinkkanen (University of Illinois) Normal families in complex dynamics May 25, 2015 9 / 83



Summary of conclusions of complex dynamics.
Classification of components of the Fatou set.

Let U be a component of the Fatou set of a rational function f .

If U is preperiodic, then the image of U under some f m is periodic.

If U is periodic, of period p, then g = f p satisfies g(U) ⊂ U, so U is an
invariant component for g .

Since F(g) = F(f p) = F(f ), it suffices to classify the invariant
components of the Fatou set of a function.
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Summary of conclusions of complex dynamics. Attracting
and superattacting components.

Let V be an invariant component of a rational function g .

There may be α ∈ V such that g(α) = α and limn→∞ gn(z) = α, locally
uniformly for z ∈ V . Then α is unique (in V ).
Replacing g(z) by 1/g(1/z), if necessary, we may assume that α 6=∞.

Then the component V , and the fixed point α, are called attracting (for
g) if 0 < |g ′(α)| < 1, and superattracting if g ′(α) = 0.

An example with α = 0 would be g(z) = λz + z2 where 0 < |λ| < 1, or
g(z) = zk where k ≥ 2.
A cycle of distinct components U = U0,U1, . . . ,Up−1, where f p(U) = U,
and U is (super)attracting for f p, is called an attracting/superattracting
cycle (of domains).
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Summary of conclusions of complex dynamics. Parabolic
domains.

Let V be an invariant component of a rational function g .

There may be a fixed point α ∈ ∂V with g(α) = α and
limn→∞ gn(z) = α, locally uniformly for z ∈ V . Then α is unique (for V ).

In this case we must have, as it turns out, g ′(α) = 1, since g(V ) = V ,
and α and V are called parabolic.

If α = 0 and g(z) = z + azk+1 + O(zk+2) as z → 0 (a 6= 0, k ≥ 1), then
there are k petals with 0 on their boundary where the dynamics of g can
be carefully described, each petal being contained in its own component of
F(g).

An example with α = 0 would be g(z) = z + zm where m ≥ 2.

Parabolic cycles of domains are defined analogously.
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Summary of conclusions of complex dynamics. Rotation
domains.

Finally, V may be a rotation domain, either a simply connected Siegel
disk, or a doubly connected Herman ring with nondegenerate boundary
components.

Then there is a conformal mapping ϕ of V onto a domain W such that
the map F = ϕ ◦ g ◦ϕ−1 of W onto itself is of the form z 7→ e2πiβz where
β is an irrational number.

Here W is either the unit disk, in which case the Siegel disk V contains
the neutral (or indifferent) fixed point ϕ−1(0) of g , or W is an annulus
{z : 1 < |z | < R} centred at the origin, in which case V contains no fixed
point of any iterate of g .
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Summary of conclusions of complex dynamics. Rotation
domains.

An example of a Siegel disk with α = 0 would be g(z) = λz + z2 where
λ = e2πiβ for a suitable irrational β (almost every β would do).

An example of a function having a Herman ring (containing, incidentally,
the unit circle) is given by

g(z) = e2πiβz2

(
1 + az

z + a

)
for a suitable irrational β, and a suitable complex number a with, say,
0 < |a| < 1/7.

We must have deg g ≥ 3 for it to be possible for g to have a Herman ring.
Polynomials have no Herman rings, by the maximum principle.
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Number of periodic cycles.

In the late 1980s, M. Shishikura developed the technique of
quasiconformal surgery. This allowed him to prove the following result.

Theorem 8

Let f be a rational function of degree d ≥ 2. Then the total number of
periodic cycles of components of the Fatou set of f is at most 2d − 2.
The number of Herman ring cycles is at most d − 2.

The lengths of the cycles (the number of domains in each cycle) can be
arbitrarily large, even for quadratic polynomials.

The number of critical points of f is 2d − 2, counting multiplicities; hence
f has at most 2d − 2 distinct critical points.
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Summary of conclusions of complex dynamics. Critical
points.

Definition 9

If f is rational, then z0 ∈ C is a critical point of f if f is not locally
homeomorphic at z0. If z0 6=∞, this means that f ′(z0) = 0, or z0 is a
multiple pole of f .
A critical value of f is a value f (z0), where z0 is a critical point of f .
For a rational f , the singularities of the inverse function of f are the
critical values of f .
The singular set of f is the union of all the singularities of the inverse
functions of all the iterates of f .

Sometimes the singular set is called the postcritical set. One often deals
with the closure of the postcritical set.
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Summary of conclusions of complex dynamics. Critical
points.

Proposition 1

The singular set of f is given by

∞⋃
j=0

f j(CV (f )),

where CV (f ) is the set of all critical values of f .
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Summary of conclusions of complex dynamics.
Singularities determine dynamics.

Theorem 10

(i) A superattracting periodic point of f is in the singular set of f .

(ii) An attracting or parabolic periodic point α of f is a cluster point of
the singular set of f , with the indicated sequence of points in the singular
set being contained in the component of the Fatou set of f that contains
α (in the attracting case) or has α on its boundary (in the parabolic case).
(iii) If V is a Siegel disk or a Herman ring for any iterate of f , then every
point of ∂V is a cluster point of the singular set of f .

In fact, an attracting or parabolic invariant component of F(f ) contains a
critical point of f (so does a superattracting component, trivially). In case
of a cycle, one of the components in the cycle contains a critical point of f .
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Summary of conclusions of complex dynamics. Example.

We earlier stated that

F
[(z − 2

z

)2]
= ∅.

Clearly 0 and 2 are critical points of f , where f (z) = (z − 2)2/z2.
Since deg f = 2 = d , f has 2d − 2 = 2 critical points, thus no further
critical points.
The function f maps points as follows:

2 7→ 0 7→ ∞ 7→ 1 7→ 1.

This shows that f has no attracting or parabolic periodic points and no
rotation domains. Since neither 0 nor 2 is a periodic point of f , there are
no superattracting periodic points for f . Hence F(f ) = ∅.
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Summary of conclusions of complex dynamics. Branches of
inverse functions.

Theorem 11

Let f be rational of degree at least 2. Let G be a domain in C. Suppose
that G is a family of meromorphic functions in G such that each g ∈ G is
a branch of the inverse function of some iterate of f , well defined in G .
Then the family G is normal.

This theorem is very helpful in obtaining the previously mentioned results
indicating a connection between the singular set and the components of
the Fatou set of a function.
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Summary of conclusions of complex dynamics. Branches of
inverse functions.

Proof. We will see later that there are disjoint subsets A and B of C,
each containing at least three elements, and each consisting of a finite
number of cycles α, f (α), . . . , f p−1(α) where f p(α) = α for some p ≥ 1.
(The value of the multiplier (f p)′(α) is irrelevant.) The function f has
finitely many fixed points of order 1 and 2 but infinitely many fixed points,
counting all orders. Thus f has (at least) two disjoint cycles of fixed
points of exact order greater than or equal to 3. These cycles then form
the sets A and B.
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Summary of conclusions of complex dynamics. Branches of
inverse functions.

Proof, continued.
Next we note that each g ∈ G omits in G \ A all the values in A. For if
z ∈ G \ A and g(z) = a ∈ A, and if g is a branch of f −k , then

z = f k
(
g(z)

)
= f k(a) ∈ A ,

which is a contradiction. Note that any a ∈ A belongs to a fixed point
cycle that A contains completely; hence f n(a) ∈ A for all n ≥ 0. Since A
contains at least three points, it follows that G is a normal family in G \A.
Similarly, G is a normal family in G \ B. Since A and B are disjoint, we
have

(G \ A) ∪ (G \ B) = G ,

and so G is a normal family in G .
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Summary of conclusions of complex dynamics. The
exceptional set.

Definition 12

The backward orbit O−(z) of z ∈ C under a rational function f is the set

O−(z) = {w ∈ C : there is n ≥ 1 such that f n(w) = z}.

Definition 13

The exceptional set of a rational function f is the set

E(f ) = {z ∈ C : cardO−(z) <∞}.
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Summary of conclusions of complex dynamics. The
exceptional set.

Theorem 14

If f is rational of degree ≥ 2, then card E(f ) ≤ 2. Furthermore, if
E(f ) 6= ∅, then there is a Möbius transformation g such that
F = g ◦ f ◦ g−1 satisfies the following:
(i) If card E(f ) = 2, then F (z) = zn where n is an integer with |n| ≥ 2,
and E(F ) = {0,∞};
(ii) If card E(f ) = 1, then F is a polynomial and E(F ) = {∞}.
Thus E(f ) ⊂ F(f ), and E(f p) = E(f ) for all p ≥ 1.
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Summary of conclusions of complex dynamics. Inverse
images cluster to the Julia set.

Theorem 15

Suppose that z /∈ E(f ). Then the set J (f ) is contained in the set of limit
points of O−(z), that is, if w ∈ J (f ) then there are sequences nk and αk

such that nk →∞, f nk (αk) = z, αk 6= w and αk → w as k →∞.
In particular, if z ∈ J (f ), then J (f ) coincides with the set of limit points
of O−(z), and indeed then J (f ) is equal to the closure of O−(z).

Remark. If z /∈ J (f ), then the set O−(z) might have limit points
contained in F(f ). This is the case, for example, if z belongs to a Siegel
disk D but z is not the fixed point of f contained in D.
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Summary of conclusions of complex dynamics. The
expanding property.

Theorem 16

(The expanding property.)
If f is rational of degree ≥ 2, if α ∈ J (f ), and if U is a neighbourhood of
α, then for each compact subset K of C \ E(f ), there is a positive integer
N such that for all n ≥ N, we have

K ⊂ f n(U).

In particular, if E(f ) = ∅, we may choose K = C.
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Summary of conclusions of complex dynamics.
Consequences.

Theorem 17

Either J (f ) = C, or J (f ) is nowhere dense (that is, the interior of the
closed set J (f ) is empty).

Recall that a set is nowhere dense if, and only if, its closure has no interior
points.

Theorem 18

If α ∈ J (f ) and U is a neighbourhood of α, then the family{
f nk | U : k ≥ 1

}
is not normal for any subsequence nk of distinct positive integers.
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Summary of conclusions of complex dynamics. Density of
repelling periodic points.

Theorem 19

The repelling fixed points of all the iterates of f lie in J (f ), and form a
dense subset of J (f ).
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Summary of conclusions of complex dynamics. Parameter
spaces.

Quadratic polynomials and the Mandelbrot set.

Consider the iteration of a quadratic polynomial F (z) = αz2 + βz + γ
where α, β, γ ∈ C and α 6= 0.

There are complex numbers A,B with A 6= 0 such that with
g(z) = Az + B, we have

(g ◦ F ◦ g−1)(z) = z2 + c ≡ fc(z)

for some c ∈ C.

Since the behaviour of F and g ◦ F ◦ g−1 is substantially the same under
iteration (we have g ◦ F n ◦ g−1 = (g ◦ F ◦ g−1)n), it suffices to consider
functions of the form fc .
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Summary of conclusions of complex dynamics. Parameter
spaces.

The origin is the only finite critical point of fc = z2 + c .

The forward orbit of 0 under fc is given by the polynomials pn(c), where

p1(c) = c , pn+1(c) = pn(c)2 + c .

Thus the pn(c) are

c , c2 + c , (c2 + c)2 + c, . . .
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Summary of conclusions of complex dynamics. Parameter
spaces.

One can prove that the Julia set J (fc) is connected if, and only if, the
forward orbit of the critical point 0 is bounded.

One defines the Mandelbrot setM to be the set of those parameters
c ∈ C for which the set {pn(c) : n ≥ 1} is bounded.

We also have
M = {c ∈ C : |pn(c)| ≤ 2 ∀n ≥ 1}.

A. Douady and J.H. Hubbard proved in 1984 that M is connected.
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Summary of conclusions of complex dynamics. Parameter
spaces.

The maximal open set V where the family {pn : n ≥ 1} is normal has an
unbounded component U, where, in fact, pn(c)→∞.

We have
M = C \ U.

Also, M is the closure of the union of all the bounded components of V .

A hyperbolic component of the interior of M is a bounded component
W of V such that for all c ∈W , the function fc has a periodic cycle of
some period p (attracting, or, for exactly one c ∈W , superattracting).

Open conjecture. Every component of the interior of M is hyperbolic.
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Summary of conclusions of complex dynamics. Parameter
spaces.

Other parameter spaces may be considered, for other families of
polynomials or rational functions, or for transcendental entire functions
such as eλz or λez .
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Summary of conclusions of complex dynamics. Example.

A problem going back to Euler asked about the convergence of a sequence
that may be written as f n(0), where f (z) = eaz .
I.N. Baker and P.J. Rippon (1983) proved the following result.

Theorem 20

Suppose that a ∈ C, b = ea, w1 = b, and wn+1 = bwn ≡ eawn for n ≥ 1.
The sequence wn has a limit if a = te−t where t ∈ C, |t| < 1, or t is a
root of unity.
For almost all t with |t| = 1, the sequence wn diverges.

On the real axis, if −1 < t < 1, then a = te−t varies from −e to 1/e, and
b = ea varies from e−e to e1/e . Euler’s problem was to prove that wn

converges for these b, that is, for e−e < b < e1/e .
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Summary of conclusions of complex dynamics. Example.

If f is entire, then c ∈ C is an asymptotic value of f if there is a path γ
going to infinity such that f (z)→ c as z →∞ along γ.

An essential point is that for the function f (z) = eaz , the singularities of
f −1 are the critical values of f (none, since f ′ never vanishes) and the
asymptotic values, here 0 and ∞. Thus the only finite singularity of f −1 is
0, which is where we may start the iteration.

Here the extra structure provided by the Fatou–Julia theory of dynamics
can be used to solve a problem that originally (Euler) only referred to real
numbers.
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Summary of conclusions of complex dynamics, continued

This is the end of our summary of conclusions of complex dynamics.

We now proceed to consider complex dynamics in greater detail, also giving
a number of proofs, and keeping in mind the definitions already made.
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Classification of fixed points

If f (z0) = z0, we say that z0 is a fixed point of f .

If f (z0) = z0 6=∞ and z0 is a zero of order m ≥ 1 of f (z)− z , we say that
m is the multiplicity of z0 as a fixed point of f .

If z0 6=∞, we say that z0 is
(i) superattracting if f ′(z0) = 0,
(ii) attracting if 0 < |f ′(z0)| < 1,
(iii) parabolic if f ′(z0) = 1.
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(i) superattracting if f ′(z0) = 0,
(ii) attracting if 0 < |f ′(z0)| < 1,
(iii) parabolic if f ′(z0) = 1.
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Classification of fixed points

If f (z0) = z0 6=∞, we say that z0 is
(iv) neutral or indifferent if |f ′(z0)| = 1,
(v) rationally neutral or indifferent if f ′(z0) is a root of unity,
(vi) irrationally neutral or indifferent if |f ′(z0)| = 1, but f ′(z0) is not a
root of unity,
(vii) repelling if |f ′(z0)| > 1,
(viii) weakly repelling if either f ′(z0) = 1 or |f ′(z0)| > 1.
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Classification of fixed points

If z0 =∞, we determine the type of the fixed point by considering
1/f (1/z) at the origin.
The type of fixed point (as determined by the actual behaviour of the f n)
is preserved by any conformal conjugation, thus allowing us to consider
only the case z0 = 0.
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Classification of fixed points

For every non-neutral fixed point z0 of f , we can find a conformal map φ
with φ(z0) = 0 and φ′(z0) = 1, defined in a neighborhood of z0 such that

(φ ◦ f ◦ φ−1)(z) = f ′(z0)z

if 0 < |f ′(z0)| < 1 or |f ′(z0)| > 1, and

(φ ◦ f ◦ φ−1)(z) = zk

if
f (z0) = z0 + a(z − z0)k + · · · , a 6= 0, k ≥ 2.

If |f ′(z0)| < 1, it is easy to show that there is ρ > 0 such that
f (B(z0, ρ)) ⊂ B(z0, ρ) and hence f n(z)→ z0 as n→∞, uniformly for
z ∈ B(z0, ρ).
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Invariance properties of sets, defined.

Definition 21

We say that a set E ⊂ C is
(i) (forward) invariant under f if f (E ) ⊂ E ,
(ii) backward invariant under f if f −1(E ) ⊂ E ,
(iii) completely invariant if both (i) and (ii) hold.
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A property of normal families.

Theorem 22

Let F be a family of meromorphic functions on a domain D ⊂ C. Suppose
that 0 < a < b. Then F is a normal family if, and only if, each z0 ∈ D has
a neighbourhood U such that each f ∈ F satisfies |f (z)| > a for all z ∈ U,
or |f (z)| < b for all z ∈ U.

Proof. Let F be normal. Suppose z0 ∈ D. If z0 has no neighbourhood U
as required, then there are fn ∈ F and points zn,wn → z0 such that
|fn(zn)| ≤ a and |fn(wn)| ≥ b. By passing to a subsequence without
changing notation, we may assume that fn → f locally uniformly in D.
Then |f (z0)| = limn→∞ |fn(zn)| ≤ a, and |f (z0)| = limn→∞ |fn(wn)| ≥ b.
This is a contradiction since a < b. Hence, if F is normal, each z0 ∈ D
has a neighbourhood U with the required property.
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A property of normal families, continued.

Proof, continued. Suppose that each z0 ∈ D has a neighbourhood U
with the required property. Let fn ∈ F . By passing to a subsequence
without changing notation, we may assume that we have |fn| > a in U for
all n, or that we have |fn| < b in U for all n.
In the former case, the 1/fn are uniformly bounded in U, so that the
sequence fn has a locally uniformly convergent subsequence.
In the latter case, the functions fn are uniformly bounded in U, so that the
sequence fn has a locally uniformly convergent subsequence.
Hence F is normal at z0. Since this is true for each z0 ∈ D, it follows that
F is normal in D.
This completes the proof of this theorem.
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Complete invariance of the Fatou and Julia sets.

Theorem 23

Both F(f ) and J (f ) are completely invariant under f .

Proof. It suffices to prove the inclusions for F(f ). Suppose α ∈ F(f ),
and let U be a neighbourhood of α with U ⊂ F(f ) such that each f n

satisfies |f n(z)| < 2 or |f n(z)| > 1 throughout U.

To prove that f (F(f )) ⊂ F(f ), we need to show that f (α) ∈ F(f ). Since
f is an open mapping, it follows that f (U) is a neighbourhood of f (α).
We claim that the family of functions {f n | f (U) : n ≥ 1} is normal. Each
point z ∈ f (U) has a neighbourhood, namely f (U) itself, such that for
every n ≥ 1, we have |f n(z)| < 2 or |f n(z)| > 1 throughout f (U). Hence
the family {f n | f (U) : n ≥ 1} is normal. Thus f (α) ∈ F(f ) and so
f (F(f )) ⊂ F(f ).
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Complete invariance of the Fatou and Julia sets.

Proof, continued.
If f (β) = α and if U is as above, then β has a neighbourhood V such that
f (V ) ⊂ U. Clearly the family {f n | V : n ≥ 1} is normal. Hence
β ∈ F(f ), and so f −1(F(f )) ⊂ F(f ). This completes the proof.
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An inclusion relation for Fatou and Julia sets.

Proposition 2

We have F(f ) ⊂ F(f p), for every p ≥ 1, and therefore J (f ) ⊃ J (f p).

Proof. If z ∈ F(f ), then z has a neighbourhood U in which the family
{f n : n ≥ 1} is normal, so that the smaller family {f np : n ≥ 1} is also
normal in U. Hence z ∈ F(f p), and so F(f ) ⊂ F(f p).
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Julia sets are perfect.

Theorem 24

The Julia set J (f ) of a rational function f with deg(f ) ≥ 2 is perfect and
hence uncountable.
There are infinitely many distinct weakly repelling fixed points of all the
iterates f n of f .

Proof. First, we show J (f ) 6= ∅. We claim that any weakly repelling
periodic point is in J (f ). If g = f p for some p ≥ 1 and if g(α) = α and α
is weakly repelling, then g has the local power series expansion

g(z) = α + λ(z − α) + a(z − α)k + O((z − α)k+1),

where λ = 1 or |λ| > 1, and a 6= 0 and k ≥ 2, since deg f ≥ 2.
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Julia sets are perfect.

Proof, continued.
If |λ| > 1 then

gn(z) = α + λn(z − α) + O((z − α)k),

so that the functions gn do not form a normal family in any
neighbourhood of α.

If λ = 1 then

gn(z) = α + (z − α) + na(z − α)k + O((z − α)k+1),

so that the functions gn do not form a normal family in any
neighbourhood of α. Therefore α ∈ J (g) = J (f p) ⊂ J (f ).
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Proof, continued.
We may assume that f n(∞) 6=∞ for all n ≥ 1, for we can replace f by
M ◦ f ◦M−1 for some Möbius transformation M, if necessary, to achieve
this.
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Proof, continued.
Now, deg(g) = dp, where deg f = d , so g has dp + 1 ≥ 3 fixed points,
with due count of multiplicity. We claim that at least one fixed point of g
is weakly repelling, therefore in J (f ). Suppose that this is false. Then if
R > 0 is large enough, it follows from the residue theorem that

1

2πi

∫
|z|=R

dz

z − f p(z)
=

1

2πi

∫
|z|=R

dz

z − g(z)

=
∑

g(α)=α

1

1− g ′(α)
.
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Proof, continued.

1

2πi

∫
|z|=R

dz

z − f p(z)
=

∑
g(α)=α

1

1− g ′(α)
.

The integral on the left tends to 1 as R →∞. We assumed that no fixed
point of g is weakly repelling, so we must have λ = g ′(α) = a + ib 6= 1
and |λ| = a2 + b2 ≤ 1, for every fixed point α of g . Also each fixed point
α of g is a simple zero of g(z)− z since g ′(α) 6= 1. Taking the real part
of the sum on the right hand side, we get for each term the quantity

Re

[
1

1− λ

]
=

1− a

(1− a)2 + b2
≥ 1

2
.

Here 1− a 6= 0, for otherwise we get λ = 1.

Hence the real part of the sum satisfies

Re
∑

g(α)=α

1

1− g ′(α)
≥

∑
g(α)=α

1

2
≥ 3

2
.

This contradicts the previous result that the integral on the left hand side
tends to 1 as R →∞.
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Proof, continued.
Therefore there is at least one point α ∈ J (f ), where f p(α) = α for some
p ≥ 1, and furthermore (f p)′(α) = 1 or |(f p)′(α)| > 1.
The orbit of α satisfies O(α) ⊂ J (f ), where O(α) is defined by

O(α) = {w ∈ C : f n(w) = α,

or f n(α) = w , for some integer n ≥ 1}.

If card(O(α)) ≤ 2, one can check that for some Möbius map M, the
function M ◦ f ◦M−1 is a polynomial, or a map (M ◦ f ◦M−1)(z) = czn,
where c 6= 0, |n| ≥ 2. One can check separately that J (czn) is a circle,
which, indeed, is a perfect set. If M ◦ f ◦M−1 is a polynomial, the fixed
point α = M−1(∞) is superattracting, therefore in F(f ). This is a
contradiction. Hence, we may assume that card(J (f )) ≥ card(O(α)) ≥ 3.
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Proof, continued.
Now, to get the contradiction suppose that β ∈ J (f ) is an isolated point.
Let U be a neighborhood of β with U \ {β} ⊂ F(f ). Then each f n omits
each point of J (f ) in U \ {β}. There are at least three points in J (f ).
Hence each f n omits at least 3 points in U \ {β}. Thus the extended
Montel’s theorem applies so that {f n : n ≥ 1} is a normal family in U. In
other words, β ∈ F(f ). This contradicts the assumption that β ∈ J (f )
and shows that J (f ) is perfect.
The above argument can be adapted to show that there are infinitely
many distinct weakly repelling fixed points of all the iterates of f . We
omit the details.
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An extension of Montel’s theorem

In the previous proof, we used the following result.

Theorem 25

Let the family F ′ of meromorphic functions in the punctured disk
D ′ = {z : 0 < |z | < δ} have the property that each f ∈ F ′ omits in D ′

certain three fixed values in C. Then each f ∈ F ′ can be extended to be
meromorphic in D = {z : |z | < δ}, and the family F of these extended
functions is normal in D.

Aimo Hinkkanen (University of Illinois) Normal families in complex dynamics May 25, 2015 54 / 83



An extension of Montel’s theorem, proof

Proof. The Big Picard Theorem implies that each f ∈ F ′ can be extended
to be meromorphic in D. We may assume that the omitted values are
0, 1,∞. Also we know that F ′ is normal in D ′. Pick a sequence Fn from
F and assume that Fn is the extension of fn ∈ F ′. We may pass to a
subsequence several times without changing notation, to make certain
assumptions.

First, we assume that fn → f where f is meromorphic in D ′. Either f is
constant (possibly ∞) or f omits 0, 1,∞ in D ′ and is hence analytic.

Each Fn takes a finite value or the value ∞ at z = 0. We may assume
that Fn(0) is finite for all n, or that Fn(0) =∞ for all n.
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An extension of Montel’s theorem, proof

Case 1. f is analytic and each Fn(0) is finite.
On the circle S(0, δ/2), the maximum moduli of Fn are uniformly bounded
for large n (since Fn is uniformly close to f there). By the maximum
modulus principle, the Fn are uniformly bounded in the disk B(0, δ/2) so
that they form a normal family there.

Case 2. f is analytic and each Fn(0) =∞.
If f 6≡ 0 then f omits 0 in D ′ so that 1/f is analytic in D ′. Now we
proceed as in Case 1, considering 1/f and 1/Fn instead of f and Fn.

If f ≡ 0, consider 1/(1− f ) and 1/(1− Fn) instead of f and Fn and
proceed as in Case 1.
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An extension of Montel’s theorem, proof

Case 3. f ≡ ∞, and each Fn(0) is non-zero (possibly ∞).
Consider 1/f and 1/Fn instead of f and Fn and proceed as in Case 1.

Case 4. f ≡ ∞ and each Fn(0) = 0.
Consider 1/(1− f ) and 1/(1− Fn) instead of f and Fn and proceed as in
Case 1.
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A further extension of Montel’s theorem

Theorem 26

Let D be a domain in C and let F be a family of meromorphic functions
in D \ {α}, where α ∈ D. Suppose that there is a positive number δ
depending on F and D only and suppose that for each f ∈ F there are
distinct points a(f ), b(f ) and c(f ) in C which f omits in D \ {α}, such
that

δ ≤ min{q(a(f ), b(f )), q(b(f ), c(f )), q(c(f ), a(f ))}.

Then each f ∈ F can be extended to a meromorphic function Φ(f ) in D,
and the family {Φ(f ) : f ∈ F} is a normal family in D.

Here

q(z ,w) =
|z − w |√

(1 + |z |2)(1 + |w |2)

is the chordal distance of z ,w ∈ C.
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Julia’s definition of what became known as the Julia set

Theorem 27

If f is rational, then J (f ) is the smallest subset of C that is closed,
backward invariant under f , and contains at least 3 points.

Proof. Let E be a closed subset of C that is closed, backward invariant
under f , and contains at least 3 points. Then U = C \ E is open, and U is
forward invariant under f . Hence, in U, all the iterates f n of f omit all
points of E , and hence omit at least 3 points. Thus {f n|U : n ≥ 1} is
normal, so that U ⊂ F(f ). Thus E contains J (f ).

We know that J (f ) is closed, backward invariant under f , and contains at
least 3 points. Hence J (f ) is the smallest set with these properties.
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Components of the Fatou set map onto components.

Proposition 3

If U is a component of F(f ) then f (U) is equal to a component of F(f ).

Proof. In any case f (U) ⊂ V for some component V of F(f ), because f
is continuous on C. Suppose that V \ f (U) 6= ∅. Then we can find a point
a ∈ V ∩ ∂f (U). Let an be a sequence in f (U) that converges to a. Then
there is a sequence bn in U, such that f (bn) = an for all n. By passing to
a subsequence without changing notation, we may assume that bn → b,
for some b ∈ U, and

f (b) = f ( lim
n→∞

bn) = lim
n→∞

f (bn) = a.
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Components of the Fatou set map onto components.

Proof, continued.
We claim that b /∈ U. If b ∈ U, then a ∈ f (U). The function f is
non-constant and meromorphic so that f (U) is open, yet we found
a ∈ f (U) ∩ ∂f (U), which is impossible. Therefore, we must have
b ∈ ∂U ⊂ J (f ) so that a = f (b) ∈ J (f ). Since a was arbitrary, we get
∂f (U) ∩ V = ∅, while f (U) ⊂ V . This, coupled with the fact that both
f (U) and V are open, implies that f (U) = V .
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Inverse images cluster to the Julia set

Theorem 28

Suppose that z /∈ E(f ). Then the set J (f ) is contained in the set of limit
points of O−(z), that is, if w ∈ J (f ) then there are sequences nk and αk

such that nk →∞, f nk (αk) = z, αk 6= w and αk → w as k →∞.
In particular, if z ∈ J (f ), then J (f ) coincides with the set of limit points
of O−(z), and indeed then J (f ) is equal to the closure of O−(z).

Proof. Suppose that z ∈ C \ E(f ) so that O−(z) is an infinite set, and
that w ∈ J (f ). Let U be a neighbourhood of w . We need to show that
U \ {w} intersects O−(z). If not, then each f n omits all the values in
O−(z) in U \ {w} so that the family {f n|(U \ {w}) : n ≥ 1} is normal and
so U \ {w} ⊂ F(f ). Since J (f ) is a perfect set, this is impossible.
If z ∈ J (f ) then O−(z) ⊂ J (f ) since J (f ) is completely invariant under
f . Since J (f ) is closed, it follows that all the limit points of O−(z)
belong to J (f ), and further that O−(z) ⊂ J (f ). Thus J (f ) coincides
with the set of such limit points, as well as with the closure of O−(z).
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The expanding property.

Theorem 29

(The expanding property.)
If f is rational of degree ≥ 2, if α ∈ J (f ), and if U is a neighbourhood of
α, then for each compact subset K of C \ E(f ), there is a positive integer
N such that for all n ≥ N, we have

K ⊂ f n(U).

In particular, if E(f ) = ∅, we may choose K = C.
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The expanding property, proof.

We may assume that α 6=∞ and therefore that U ⊂ C.

If z ∈ K then by a previous Theorem, there is β ∈ U such that f n(β) = z
for some n ≥ 1. Thus

z ∈
∞⋃
n=1

f n(U)

and since z was arbitrary, we have

K ⊂
∞⋃
n=1

f n(U) .

Since K is compact, this gives

K ⊂
N⋃

n=1

f n(U)

for some N ≥ 1. However, the result that K ⊂ f n(U) for all large n, lies
deeper.
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The expanding property, proof, continued.

Since J (f ) is perfect, we can choose points αi ∈ J (f ) ∩ U for 1 ≤ i ≤ 3
and a positive number ρ so that the disks

∆i = {z : |z − αi | < 2ρ} for 1 ≤ i ≤ 3

have disjoint closures ∆i contained in U \ E(f ). We define

Di = {z : |z − αi | < ρ} for 1 ≤ i ≤ 3 .

Suppose that for each large n ≥ 1, we have

∆i \ f n(D1) 6= ∅ for 1 ≤ i ≤ 3 ,

that is, f n | D1 omits some value in each ∆i . Thus the family
{f n | D1 : n ≥ 1} is normal so that α1 ∈ F(f ), which is impossible. It
follows that for each n ≥ 1 in an infinite sequence, there is i with
1 ≤ i ≤ 3 such that

(∗) ∆i ⊂ f n(D1) .

Let us take some fixed values n and i in (*).
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The expanding property, proof, continued.

In the same way we obtain integers m, p, j and k with m ≥ 1, p ≥ 1,
1 ≤ j ≤ 3 and 1 ≤ k ≤ 3 such that

(∗∗) ∆j ⊂ f m(D2) and ∆k ⊂ f p(D3) .

We claim that there are integers q ≥ 1 and ` ∈ {1, 2, 3} such that

(∗ ∗ ∗) ∆` ⊂ f q(D`) .

A simple reasoning that considers all possibilities that can arise, proves
that (***) follows from (*) and (**). We shall give the full proof here for
the sake of completeness.

Aimo Hinkkanen (University of Illinois) Normal families in complex dynamics May 25, 2015 66 / 83



The expanding property, proof, continued.

In the same way we obtain integers m, p, j and k with m ≥ 1, p ≥ 1,
1 ≤ j ≤ 3 and 1 ≤ k ≤ 3 such that

(∗∗) ∆j ⊂ f m(D2) and ∆k ⊂ f p(D3) .

We claim that there are integers q ≥ 1 and ` ∈ {1, 2, 3} such that

(∗ ∗ ∗) ∆` ⊂ f q(D`) .

A simple reasoning that considers all possibilities that can arise, proves
that (***) follows from (*) and (**). We shall give the full proof here for
the sake of completeness.

Aimo Hinkkanen (University of Illinois) Normal families in complex dynamics May 25, 2015 66 / 83



The expanding property, proof, continued.

If i = 1 or j = 2 or k = 3, then (***) obviously holds. Otherwise, set
i1 = i , i2 = j , i3 = k, n1 = n, n2 = m and n3 = p. There may be distinct
integers M,N ∈ {1, 2, 3} such that

iM = N and iN = M .

Then
∆iM = ∆N ⊂ f nM (DM),

∆iN = ∆M ⊂ f nN (DN) .

Since DN ⊂ ∆N , we get

∆M ⊂ f nN (DN) ⊂ f nN (∆N) ⊂ f nN+nM (DM) ,

which gives (***).
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The expanding property, proof, continued.

If there are no M and N as above, then the integers i , j and k are distinct
and so (i , j , k) is equal to (2, 3, 1) or (3, 1, 2). In the former case, we have

∆2 ⊂ f n(D1),∆3 ⊂ f m(D2),∆1 ⊂ f p(D3)

so that, for example,

∆1 ⊂ f p(D3) ⊂ f p(∆3) ⊂ f p+m(D2)

⊂ f p+m(∆2) ⊂ f p+m+n(D1) .

In the latter case, we have

∆3 ⊂ f n(D1),∆1 ⊂ f m(D2),∆2 ⊂ f p(D3)

so that, for example,

∆1 ⊂ f m(D2) ⊂ f m(∆2) ⊂ f m+p(D3)

⊂ f m+p(∆3) ⊂ f m+p+n(D1) .

Thus it is always possible to satisfy (***).
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The expanding property, proof, continued.

Let us write ∆ for ∆` and D for D` in (***). Then we have

(+) ∆ ⊂ f q(D) ⊂ f q(∆)

since D ⊂ ∆.

Next we claim that ∆ intersects J (f q). If not, then ∆ is contained in a
component G of F(f q). Since F(f q) is completely invariant under f q, it
follows that f q(G ) is contained in a component G ′ of F(f q). By (+) we
get G ∩ G ′ 6= ∅ and so G ′ = G . Note that C \ G contains at least three
points since J (f q) does.
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The expanding property, proof, continued.

If a subsequence f qnk has a constant limit in G then

diam f qnk ( D )→ 0 as k →∞

since D ⊂ ∆ ⊂ G . This is impossible since

(++) ∆ ⊂ f qn(D) ⊂ f qn( D )

for all n ≥ 1. Thus all limit functions of convergent sequences f qnk are
nonconstant, and so there is a sequence mk tending to infinity such that
f qmk → Id on G as k →∞, the convergence being uniform on D. But
this contradicts (++) since ∆ is twice the size of D. It follows that
∆ ∩ J (f q) 6= ∅, as asserted.
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The expanding property, proof, continued.

Now we apply a previous theorem, on points of J (f ) being cluster points
of backward orbits, to f q instead of f and recall that E(f q) = E(f ). Since
∆ is a neighbourhood of some point in J (f q) by what was shown above,
we may proceed as in the remark made at the beginning of the proof and
deduce that

K ⊂
p⋃

n=1

f nq(∆)

for some p ≥ 1. By (***), we have

∆ ⊂ f q(∆) ⊂ f 2q(∆) ⊂ · · ·

and so

(+−) K ⊂ f nq(∆) for all n ≥ p .
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The expanding property, proof, continued.

Since ∆ ∩ E(f ) = ∅ by construction, we have f j(∆) ∩ E(f ) = ∅ for all
j ≥ 0. Thus we may apply the above reasoning to the compact subset
f j(∆) of C \ E(f ) instead of K for each j with 0 ≤ j ≤ q. We deduce that
there is a positive integer s such that

(−−)

q⋃
j=0

f j(∆) ⊂
q⋃

j=0

f j(∆) ⊂ f vq(∆)

for all v ≥ s.

Define N = 1 + q(p + s). Then any integer n ≥ N can be written as

n = tq + sq + u where t ≥ p and 1 ≤ u ≤ q .

Consequently, since t + 1 ≥ p, we have

K ⊂ f (t+1)q(∆) = f tq
{

f u
[
f q−u(∆)

]}
⊂ f tq

{
f u
[
f sq(∆)

]}
= f n(∆) ⊂ f n(U) .

by (–) with v = s. This proves the Expanding Property.
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Alternative ideas for the proof.

Suppose that we were to choose 5 rather than 3 domains ∆i and Di . Since
the functions f n do not form a normal family in Di , it follows from results
of Ahlfors related to the Ahlfors five-islands theorem, that some subdomain
of Di is mapped by some f n conformally onto some ∆j . This works for
each i , 1 ≤ i ≤ 5, with n ≥ 1 and j with 1 ≤ j ≤ 5 depending on i .

Going around chains as in the previous proof, we then find some i and
some q such that f q maps some subdomain of Di conformally onto ∆i .

After that, we could again proceed as in the preceding proof.

In fact, this type of an argument can be used to prove that repelling
periodic points are dense in J (f ).
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The Ahlfors theory of covering surfaces, simply explained.

The Euler characteristic. Let Di , for 1 ≤ i ≤ q, be Jordan domains with
disjoint closures in C. Set U = C \ ∪qi=1Di . The the Euler characteristic
χ(U) of U is 2− q.

Theorem 30

(The Riemann–Hurwitz formula)
Let X and Y be surfaces with finite Euler characteristics, and let
f : X → Y be a covering map of X onto Y of degree d ≥ 1 (so each point
in Y has d inverse image points in X , counting multiplicities). Let δ be
the sum of all branching indices of points of X under f . Then

χ(X ) + δ = dχ(Y ).

If a map is locally like zn, then its branching index at that point is n − 1.
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The Ahlfors theory of covering surfaces, simply explained.

If X = Y = C and f is rational of degree d in the Riemann–Hurwitz
formula, we obtain

2 + δ = 2d ,

so that δ = 2d − 2, as has been mentioned before.

Aimo Hinkkanen (University of Illinois) Normal families in complex dynamics May 25, 2015 75 / 83



The Ahlfors theory of covering surfaces, simply explained.

Suppose that X is the disk B(0, r) from which n Jordan domains have been
defined. Let Y be C \ ∪qi=1Di . Then χ(X ) = 1− n, χ(Y ) = 2− q, and so

1− n + δ = d(2− q),

so
n = (q − 2)d + 1 + δ ≥ (q − 2)d .
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The Ahlfors theory of covering surfaces, simply explained.

Let f be a non-constant meromorphic function in C. Consider f in a disk
B(0, r). Remove from B(0, r) the inverse image

q⋃
i=1

f −1(Di )

to get the set X .

It is possible that X is not connected, but to simplify this explanation, let
us assume that X is connected.
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The Ahlfors theory of covering surfaces, simply explained.

Recall that

X = B(0, r) \
q⋃

i=1

f −1(Di ), Y = C \
q⋃

i=1

Di .

Then f maps X into Y , but due to f (S(0, r)), this f : X → Y is not a
covering map, in general.

A lot of the work in the Ahlfors theory of covering surfaces amounts to
estimating the error term caused by f (S(0, r)) and showing that this error
term is small outside a small exceptional set of values of r .

In our simple explanation, we now ignore this error term and only discuss
what the main terms are.
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term is small outside a small exceptional set of values of r .

In our simple explanation, we now ignore this error term and only discuss
what the main terms are.
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The Ahlfors theory of covering surfaces, simply explained.

The average covering number of f in B(0, r) is

A(r) =
1

π

∫ r

0

∫ 2π

0

|f ′(te iθ)|2

(1 + |f (te iθ)|2)2
t dt dθ.

Now A(r) is usually not an integer, but let us pretend that f : X → Y is a
covering map of degree A(r).
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The Ahlfors theory of covering surfaces, simply explained.

Suppose that for 1 ≤ i ≤ q, there are ni distinct components of f −1(Di )
completely contained in B(0, r). Then

n =

q∑
i=1

ni .

We obtain
q∑

i=1

ni ≥ (q − 2)A(r).

This can now be developed in various ways.

Let ni is the total number of times that f covers Di in the union of these
components.
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The Ahlfors theory of covering surfaces, simply explained.

Recall that
q∑

i=1

ni ≥ (q − 2)A(r).

Suppose that in each component of f −1(Di ), f covers Di with multiplicity
at least µi . Then ni ≥ µini . Hence

2 ≥
q∑

i=1

(
1− ni

A(r)

)

≥
q∑

i=1

(
1− ni

ni

ni

A(r)

)

≥
q∑

i=1

(
1− 1

µi

ni

A(r)

)
.
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The Ahlfors theory of covering surfaces, simply explained.

Suppose that we know that each ni ≤ A(r), which would be true in our
simplified model. This gives

2 ≥
q∑

i=1

(
1− 1

µi

)
,

which is one of the key conclusions of the Ahlfors theory of covering
surfaces.
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