An Introduction to Generalized Probabilistic Theories

Peter Janotta

Julius-Maximilians-University Würzburg

2011-07-26
Table of contents

1 Motivation

2 Minimal physical requirements

3 Convex cones

4 Examples

5 Joint systems
Generalized Probabilistic Theories

Generalized Probabilistic Theories

- Framework to describe measurement statistics of general physical theories
- Generalization of the density matrix formalism in quantum theory

Motivation

- Why quantum theory? (search for new physical theories)
- Alternatives to quantum theory
Generalized Probabilistic Theories

Usual experimental setup

- Source processing
- State ω
- Measurement M with outcomes i
Generalized Probabilistic Theories

Usual experimental setup

Definition (State space)
The state space Ω is the set of all states ω allowed in the theory.
Generalized Probabilistic Theories

Usual experimental setup

<table>
<thead>
<tr>
<th>source</th>
<th>processing</th>
<th>measurement M with outcomes i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p₁, p₂, ..., pₘ</td>
</tr>
</tbody>
</table>

state ω

Definition (Effects)

Effects are maps \(e^M_i : \Omega \rightarrow [0, 1] \) that give probabilities of measurement outcome \(i \) when measuring state \(ω \):

\[
p(i|ω, M) = e^M_i(ω)
\]

The set of all effects is \(E \)
Probabilistic applications of preparation and measurement devices:

1) Convexity:

\[\forall \omega = \sum_i \lambda_i \omega_i, \lambda_i \geq 0, \sum_i \lambda_i = 1, \omega_i \in \Omega : \omega \in \Omega \]

\[\forall e = \sum_i e_i \omega_i, \lambda_i \geq 0, \sum_i \lambda_i = 1, e_i \in E : e \in E \]

\[\Rightarrow \Omega, E \text{ are convex sets} \]
Minimal physical requirements

- Probabilistic applications of preparation and measurement devices:
 1) Convexity:

\[
\forall \omega = \sum_{i} \lambda_i \omega_i, \lambda_i \geq 0, \sum_{i} \lambda_i = 1, \omega_i \in \Omega : \omega \in \Omega
\]

\[
\forall e = \sum_{i} e_i \omega_i, \lambda_i \geq 0, \sum_{i} \lambda_i = 1, e_i \in E : e \in E
\]

\[\Rightarrow \Omega, E \text{ are convex sets}\]

Definition (Pure states)

Pure states are given by extremal points in \(\Omega\)
Minimal physical requirements

- Probabilistic applications of preparation and measurement devices:
 2) Linearity (choice of devices should be independent of their measurement statistics):

\[
e(p\omega_1 + (1-p)\omega_2) = pe(\omega_1) + (1-p)e(\omega_2)
\]

\[
[p e_1 + (1-p) e_2](\omega) = p e_1(\omega) + (1-p) e_2(\omega)
\]

⇒ \(e, \omega\) are elements of linear spaces \(A, A^*\)
Minimal physical requirements

- Operationalism: Equivalence of objects leading to the same measurement statistics

\[e(\omega_1) = e(\omega_2) \forall e \in E \Rightarrow \omega_1 = \omega_2 \]
\[e_1(\omega) = e_2(\omega) \forall \omega \in \Omega \Rightarrow e_1 = e_2 \]
Minimal physical requirements

- Completeness: all linear mappings $e : \Omega \rightarrow [0, 1]$ included as valid measurement outcomes in a theory

 $\Rightarrow \exists$ unique effect $u : u(\omega) = 1 \quad \forall \omega \in \Omega$ called the unit measure
Minimal physical requirements

- Completeness: all linear mappings \(e : \Omega \to [0, 1] \) included as valid measurement outcomes in a theory

\[\Rightarrow \exists \text{ unique effect } u : u(\omega) = 1 \quad \forall \omega \in \Omega \text{ called the unit measure} \]

Definition (Measurement)

A measurement \(M \) is a set of effects \(\{e_i^M\} \) summing up to the unit measure \(u = \sum_i e_i^M : \)

\[\Rightarrow \sum_i p(i|\omega, M) = \sum_i e_i^M(\omega) = \left[\sum_i e_i^M \right](\omega) = u(\omega) = 1 \]
Positive Cones

- State space: vectors on a hyperplane $u(\omega) = 1$
- Unnormalized states form cone A_+
Positive Cones

- State space: vectors on a hyperplane $u(\omega) = 1$
- Unnormalized states form cone A_+
Positive Cones

- State space: vectors on a hyperplane \(u(\omega) = 1 \)
- Unnormalized states form cone \(A_+ \)
- Effects: Elements of dual cone \(A^*_+ \)
Examples

Classical Probability Theory

- Ω is a simplex spanned by $\dim A$ linear independent extremal points ω_i
- For each pure state ω_i exists an extremal effect e_i that identifies it uniquely: $e_i(\omega_j) = \delta_{ij}$

$$\omega_i = \begin{pmatrix} \cos\left(\frac{2\pi(i-1)}{4}\right) \\ \sin\left(\frac{2\pi(i-1)}{4}\right) \\ 1 \end{pmatrix}$$

$$e_i = \omega_i$$

$$u = (1, 1, 1)^T$$

- ω_i form basis for $A \Rightarrow$ unique decomposition of mixed states only for classical systems
Examples

Quantum theory

- \(A_+ = A_+^* \) is the cone of positive hermitian matrices \(\rho \geq 0, \rho^\dagger = \rho \)
- \(e(\rho) = \text{tr}[e.\rho], \quad u = 1 \)
\(\Rightarrow \Omega = \{\rho \in A_+ | u(\rho) = \text{tr}[\rho] = 1\} \)

Qubit: \(\Omega \) is given by 3-dim Bloch sphere
The Gbit

- Ω given by a square

- No uncertainty for pure states with respect to measurements $M_1 = \{e_1, e_3\}$ and $M_2 = \{e_2, e_4\}$
Joint Systems

Definition (Global State Assumption)

Joint system AB fully characterized by joint probabilities $\{p(e^A, e^B)\}$
Joint Systems

Definition (Global State Assumption)
Joint system AB fully characterized by joint probabilities $\{p(e^A, e^B)\}$

Definition (No-Signalling Principle)
Local operations do not change the measurement statistic in other parts of the system
Joint Systems

Definition (Global State Assumption)
Joint system AB fully characterized by joint probabilities $\{p(e^A, e^B)\}$

Definition (No-Signalling Principle)
Local operations do not change the measurement statistic in other parts of the system

Global State Assumption
No-Signalling Principle
\[\implies AB_+ \subseteq A \otimes B \]
Cone Of Joint Systems

- Cone AB_+ of joint system bounded:

$$A_+ \otimes_{\text{min}} B_+ \subseteq AB_+ \subseteq A_+ \otimes_{\text{max}} B_+$$
Cone AB_+ of joint system bounded:

$A_+ \otimes_{\min} B_+ \subseteq AB_+ \subseteq A_+ \otimes_{\max} B_+$

Minimal tensor product (separable):

$A_+ \otimes_{\min} B_+ = \text{ConvexSpan}\{\omega^A \otimes \omega^B\}$
Cone Of Joint Systems

- Cone AB_+ of joint system bounded:
 \[A_+ \otimes_{\min} B_+ \subseteq AB_+ \subseteq A_+ \otimes_{\max} B_+ \]

- Minimal tensor product (separable):
 \[A_+ \otimes_{\min} B_+ = \text{ConvexSpan}\{\omega^A \otimes \omega^B\} \]

- Maximal tensor product (separable + entangled):
 \[A_+ \otimes_{\max} B_+ = \{\omega^{AB} \in A \otimes B \mid \omega^{AB}(e^A \otimes e^B) \geq 0\} \]
 includes all joint states allowed by No-Signalling
Cone Of Joint Systems

- Cone AB_+ of joint system bounded:
 $A_+ \otimes_{\min} B_+ \subseteq AB_+ \subseteq A_+ \otimes_{\max} B_+$

- Minimal tensor product (separable):
 $A_+ \otimes_{\min} B_+ = \text{ConvexSpan}\{\omega^A \otimes \omega^B\}$

- Maximal tensor product (separable + entangled):
 $A_+ \otimes_{\max} B_+ = \{\omega^{AB} \in A \otimes B | \omega^{AB}(e^A \otimes e^B) \geq 0\}$
 includes all joint states allowed by No-Signalling

- Theorie defined by structure of A_+, u^A, B_+, u^B and $AB_+ ...$
Duality relations

For finite dimensional systems:

\[
(A_+ \otimes_{\text{max}} B_+) = (A_+^* \otimes_{\text{min}} B_+^*)^*
\]

\[
(A_+ \otimes_{\text{min}} B_+) = (A_+^* \otimes_{\text{max}} B_+^*)^*
\]

- All tensor products equal or there exists at least either states or effects that are entangled
- In QT: Balanced between entangled effects and states
Thank you for your attention!