An Introduction to Generalized Probabilistic Theories

Peter Janotta

Julius-Maximilians-University Würzburg

2011-07-26

Table of contents

1 Motivation

2 Minimal physical requirements

3 Convex cones

4 Examples

5 Joint systems

Generalized Probabilistic Theories

Generalized Probabilistic Theories

- Framework to describe measurement statistics of general physical theories
- Generalization of the density matrix formalism in quantum theory

Motivation
■ Why quantum theory? (search for new physical theories)

- Alternatives to quantum theory

Generalized Probabilistic Theories

Usual experimental setup

state ω
measurement M with outcomes i

Generalized Probabilistic Theories

Usual experimental setup

Definition (State space)

The state space Ω is the set of all states ω allowed in the theory

Generalized Probabilistic Theories

Usual experimental setup

Definition (Effects)

Effects are maps $e_{i}^{M}: \Omega \rightarrow[0,1]$ that give probabilities of measurement outcome i when measuring state ω :

$$
p(i \mid \omega, M)=e_{i}^{M}(\omega)
$$

The set of all effects is E

Minimal physical requirements

■ Probabilistic applications of preparation and measurement devices:

1) Convexity:

$$
\begin{aligned}
& \forall \omega=\sum_{i} \lambda_{i} \omega_{i}, \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1, \omega_{i} \in \Omega: \omega \in \Omega \\
& \forall e=\sum_{i} e_{i} \omega_{i}, \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1, e_{i} \in E: e \in E
\end{aligned}
$$

$\Rightarrow \Omega, E$ are convex sets

Minimal physical requirements

- Probabilistic applications of preparation and measurement devices:

1) Convexity:

$$
\begin{aligned}
& \forall \omega=\sum_{i} \lambda_{i} \omega_{i}, \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1, \omega_{i} \in \Omega: \omega \in \Omega \\
& \forall e=\sum_{i} e_{i} \omega_{i}, \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1, e_{i} \in E: e \in E
\end{aligned}
$$

$\Rightarrow \Omega, E$ are convex sets

Definition (Pure states)

Pure states are given by extremal points in Ω

Minimal physical requirements

- Probabilistic applications of preparation and measurement devices:

2) Linearity (choice of devices should be independent of their measurment statistics):

$$
\begin{aligned}
e\left(p \omega_{1}+(1-p) \omega_{2}\right) & =p e\left(\omega_{1}\right)+(1-p) e\left(\omega_{2}\right) \\
{\left[p e_{1}+(1-p) e_{2}\right](\omega) } & =p e_{1}(\omega)+(1-p) e_{2}(\omega)
\end{aligned}
$$

$\Rightarrow e, \omega$ are elements of linear spaces A, A^{*}

Minimal physical requirements

■ Operationalism: Equivalence of objects leading to the same measurement statistics

$$
\begin{aligned}
& e\left(\omega_{1}\right)=e\left(\omega_{2}\right) \forall e \in E \Rightarrow \omega_{1}=\omega_{2} \\
& e_{1}(\omega)=e_{2}(\omega) \forall \omega \in \Omega \Rightarrow e_{1}=e_{2}
\end{aligned}
$$

Minimal physical requirements

■ Completeness: all linear mappings $e: \Omega \rightarrow[0,1]$ included as valid measurement outcomes in a theory
$\Rightarrow \exists$ unique effect $u: u(\omega)=1 \quad \forall \omega \in \Omega$ called the unit measure

Minimal physical requirements

■ Completeness: all linear mappings $e: \Omega \rightarrow[0,1]$ included as valid measurement outcomes in a theory
$\Rightarrow \exists$ unique effect $u: u(\omega)=1 \quad \forall \omega \in \Omega$ called the unit measure

Definition (Measurement)

A measurement M is a set of effects $\left\{e_{i}^{M}\right\}$ summing up to the unit measure $u=\sum_{i} e_{i}^{M}$:

$$
\Rightarrow \sum_{i} p(i \mid \omega, M)=\sum_{i} e_{i}^{M}(\omega)=\left[\sum_{i} e_{i}^{M}\right](\omega)=u(\omega)=1
$$

Positive Cones

- State space: vectors on a hyperplane $u(\omega)=1$

■ Unnormalized states form cone A_{+}
ϵ

Positive Cones

- State space: vectors on a hyperplane $u(\omega)=1$

■ Unnormalized states form cone A_{+}

ϵ

Positive Cones

- State space: vectors on a hyperplane $u(\omega)=1$

■ Unnormalized states form cone A_{+}
■ Effects: Elements of dual cone A_{+}^{*}

Examples

Classical Probability Theory

■ Ω is a simplex spanned by dim^{A} linear independent extremal points ω_{i}
■ For each pure state ω_{i} exists an extremal effect e_{i} that identifies it uniquely: $e_{i}\left(\omega_{j}\right)=\delta_{i j}$
$\omega_{i}=\left(\begin{array}{c}\cos \left(\frac{2 \pi(i-1)}{}\right) \\ \sin \left(\frac{2 \pi(i-1)}{4}\right) \\ 1\end{array}\right)$
$e_{i}=\omega_{i}$
$u=(1,1,1)^{T}$

$\mathrm{n}=3$

■ ω_{i} form basis for $A \Rightarrow$ unique decomposition of mixed states only for classical systems

Examples

Quantum theory
■ $A_{+}=A_{+}^{*}$ is the cone of positive hermitian matrices $\rho \geq 0, \rho^{\dagger}=\rho$

- $e(\rho)=\operatorname{tr}[e . \rho] \quad u=\mathbb{1}$
$\Rightarrow \Omega=\left\{\rho \in A_{+} \mid u(\rho)=\operatorname{tr}[\rho]=1\right\}$
Qubit: Ω is given by 3-dim Bloch sphere

Examples

The Gbit
■ Ω given by a square

■ No uncertainty for pure states with respect to measurements $M_{1}=\left\{e_{1}, e_{3}\right\}$ and $M_{2}=\left\{e_{2}, e_{4}\right\}$

Joint Systems

Definition (Global State Assumption)
Joint system $A B$ fully characterized by joint probabilities $\left\{p\left(e^{A}, e^{B}\right)\right\}$

Joint Systems

Definition (Global State Assumption)

Joint system $A B$ fully characterized by joint probabilities $\left\{p\left(e^{A}, e^{B}\right)\right\}$

Definition (No-Signalling Principle)

Local operations do not change the measurement statistic in other parts of the system

Joint Systems

Definition (Global State Assumption)

Joint system $A B$ fully characterized by joint probabilities $\left\{p\left(e^{A}, e^{B}\right)\right\}$

Definition (No-Signalling Principle)

Local operations do not change the measurement statistic in other parts of the system

Global State Assumption
No-Signalling Principle

$$
\} \Longrightarrow A B_{+} \quad \subseteq \quad A \otimes B
$$

Cone Of Joint Systems

■ Cone $A B_{+}$of joint system bounded:

$$
A_{+} \otimes_{\min } B_{+} \subseteq A B_{+} \subseteq A_{+} \otimes_{\max } B_{+}
$$

Cone Of Joint Systems

■ Cone $A B_{+}$of joint system bounded:

$$
A_{+} \otimes_{\min } B_{+} \subseteq A B_{+} \subseteq A_{+} \otimes_{\max } B_{+}
$$

- Minimal tensor product (separable):

$$
A_{+} \otimes_{\min } B_{+}=\text {ConvexSpan }\left\{\omega^{A} \otimes \omega^{B}\right\}
$$

Cone Of Joint Systems

■ Cone $A B_{+}$of joint system bounded:
$A_{+} \otimes_{\min } B_{+} \subseteq A B_{+} \subseteq A_{+} \otimes_{\max } B_{+}$

■ Minimal tensor product (separable):

$$
A_{+} \otimes_{\min } B_{+}=\text {ConvexSpan }\left\{\omega^{A} \otimes \omega^{B}\right\}
$$

- Maximal tensor product (separable + entangled):

$$
A_{+} \otimes_{\max } B_{+}=\left\{\omega^{A B} \in A \otimes B \mid \omega^{A B}\left(e^{A} \otimes e^{B}\right) \geq 0\right\}
$$

includes all joint states allowed by No-Signalling

Cone Of Joint Systems

■ Cone $A B_{+}$of joint system bounded:
$A_{+} \otimes_{\min } B_{+} \subseteq A B_{+} \subseteq A_{+} \otimes_{\max } B_{+}$

■ Minimal tensor product (separable):
$A_{+} \otimes_{\min } B_{+}=$ConvexSpan $\left\{\omega^{A} \otimes \omega^{B}\right\}$

- Maximal tensor product (separable + entangled):
$A_{+} \otimes_{\max } B_{+}=\left\{\omega^{A B} \in A \otimes B \mid \omega^{A B}\left(e^{A} \otimes e^{B}\right) \geq 0\right\}$
includes all joint states allowed by No-Signalling
- Theorie defined by structure of $A_{+}, u^{A}, B_{+}, u^{B}$ and $A B_{+} \cdots$

Duality relations

For finite dimensional systems:

$$
\begin{aligned}
\left(A_{+} \otimes_{\max } B_{+}\right) & =\left(A_{+}^{*} \otimes_{\min } B_{+}^{*}\right)^{*} \\
\left(A_{+} \otimes_{\min } B_{+}\right) & =\left(A_{+}^{*} \otimes_{\max } B_{+}^{*}\right)^{*}
\end{aligned}
$$

■ All tensor products equal or there exists at least either states or effects that are entangled
■ In QT: Balanced between entangled effects and states

Thank you for your attention!

