An Introduction to Generalized Probabilistic Theories

Peter Janotta

Julius-Maximilians-University Würzburg

2011-07-26

Table of contents

1 Motivation

2 Minimal physical requirements

3 Convex cones

4 Examples

5 Joint systems

Generalized Probabilistic Theories

- Framework to describe measurement statistics of general physical theories
- Generalization of the density matrix formalism in quantum theory

Motivation

- Why quantum theory? (search for new physical theories)
- Alternatives to quantum theory

Usual experimental setup

Usual experimental setup

Definition (State space)

The state space Ω is the set of all states ω allowed in the theory

Usual experimental setup

Definition (Effects)

Effects are maps $e_i^M : \Omega \to [0, 1]$ that give probabilities of measurement outcome *i* when measuring state ω :

$$p(i|\omega, M) = e_i^M(\omega)$$

The set of all effects is E

Probabilistic applications of preparation and measurement devices:
 1) Convexity:

$$\forall \omega = \sum_{i} \lambda_{i} \, \omega_{i}, \lambda_{i} \ge 0, \sum_{i} \lambda_{i} = 1, \omega_{i} \in \Omega : \omega \in \Omega$$
$$\forall e = \sum_{i} e_{i} \, \omega_{i}, \lambda_{i} \ge 0, \sum_{i} \lambda_{i} = 1, e_{i} \in E : e \in E$$

 $\Rightarrow \Omega, E$ are convex sets

Probabilistic applications of preparation and measurement devices:
 1) Convexity:

$$\forall \omega = \sum_{i} \lambda_{i} \, \omega_{i}, \lambda_{i} \ge 0, \sum_{i} \lambda_{i} = 1, \omega_{i} \in \Omega : \omega \in \Omega$$
$$\forall e = \sum_{i} e_{i} \, \omega_{i}, \lambda_{i} \ge 0, \sum_{i} \lambda_{i} = 1, e_{i} \in E : e \in E$$

 $\Rightarrow \Omega, E$ are convex sets

Definition (Pure states)

Pure states are given by extremal points in $\boldsymbol{\Omega}$

- Probabilistic applications of preparation and measurement devices:
 - 2) Linearity (choice of devices should be independent of their measurment statistics):

$$e (p \omega_1 + (1 - p) \omega_2) = p e(\omega_1) + (1 - p) e(\omega_2)$$
$$[p e_1 + (1 - p) e_2] (\omega) = p e_1(\omega) + (1 - p) e_2(\omega)$$

 $\Rightarrow e, \omega$ are elements of linear spaces A, A^*

Operationalism: Equivalence of objects leading to the same measurement statistics

$$e(\omega_1) = e(\omega_2) \forall e \in E \Rightarrow \omega_1 = \omega_2$$
$$e_1(\omega) = e_2(\omega) \forall \omega \in \Omega \Rightarrow e_1 = e_2$$

Completeness: all linear mappings $e:\Omega\to [0,1]$ included as valid measurement outcomes in a theory

 $\Rightarrow \exists \text{ unique effect } u: u(\omega) = 1 \quad \forall \omega \in \Omega \text{ called the unit measure}$

 \blacksquare Completeness: all linear mappings $e:\Omega\to [0,1]$ included as valid measurement outcomes in a theory

 $\Rightarrow \exists \text{ unique effect } u: u(\omega) = 1 \quad \forall \omega \in \Omega \text{ called the unit measure}$

Definition (Measurement)

A measurement M is a set of effects $\{e^M_i\}$ summing up to the unit measure $u=\sum_i e^M_i$:

$$\Rightarrow \sum_{i} p(i|\omega, M) = \sum_{i} e_{i}^{M}(\omega) = \left[\sum_{i} e_{i}^{M}\right](\omega) = u(\omega) = 1$$

Positive Cones

- State space: vectors on a hyperplane $u(\omega) = 1$
- Unnormalized states form cone A_+

Positive Cones

- State space: vectors on a hyperplane $u(\omega) = 1$
- Unnormalized states form cone A_+

 \in

Positive Cones

- \blacksquare State space: vectors on a hyperplane $u(\omega)=1$
- Unnormalized states form cone A_+
- Effects: Elements of dual cone A^*_+

Examples

Classical Probability Theory

- $\bullet~\Omega$ is a simplex spanned by dim^A linear independent extremal points ω_i
- For each pure state ω_i exists an extremal effect e_i that identifies it uniquely: e_i(ω_j) = δ_{ij}

• ω_i form basis for $A \Rightarrow$ unique decomposition of mixed states only for classical systems

Examples

Quantum theory

•
$$A_+ = A_+^*$$
 is the cone of positive hermitian matrices $\rho \ge 0, \rho^{\dagger} = \rho$
• $e(\rho) = \operatorname{tr}[e.\rho]$ $u = \mathbb{1}$
 $\Rightarrow \Omega = \{\rho \in A_+ | u(\rho) = \operatorname{tr}[\rho] = 1\}$

Qubit: Ω is given by 3-dim Bloch sphere

Examples

The Gbit

 \blacksquare Ω given by a square

• No uncertainty for pure states with respect to measurements $M_1 = \{e_1, e_3\}$ and $M_2 = \{e_2, e_4\}$

Joint Systems

Definition (Global State Assumption)

Joint system AB fully characterized by joint probabilities $\{p(e^A, e^B)\}$

Joint Systems

Definition (Global State Assumption)

Joint system AB fully characterized by joint probabilities $\{p(e^A, e^B)\}$

Definition (No-Signalling Principle)

Local operations do **not** change the measurement statistic in other parts of the system

Joint Systems

Definition (Global State Assumption)

Joint system AB fully characterized by joint probabilities $\{p(e^A, e^B)\}$

Definition (No-Signalling Principle)

Local operations do **not** change the measurement statistic in other parts of the system

Global State Assumption No-Signalling Principle

$$\implies AB_+ \subseteq A \otimes B$$

• Cone AB_+ of joint system bounded:

 $A_+ \otimes_{\min} B_+ \quad \subseteq \quad AB_+ \quad \subseteq \quad A_+ \otimes_{\max} B_+$

• Cone AB_+ of joint system bounded: $A_+ \otimes_{\min} B_+ \subseteq AB_+ \subseteq A_+ \otimes_{\max} B_+$

■ Minimal tensor product (separable):
 A₊ ⊗_{min} B₊ = ConvexSpan{ω^A ⊗ ω^B}

• Cone AB_+ of joint system bounded: $A_+ \otimes_{\min} B_+ \subseteq AB_+ \subseteq A_+ \otimes_{\max} B_+$

• Minimal tensor product (separable): $A_+ \otimes_{\min} B_+ = \operatorname{ConvexSpan} \{ \omega^A \otimes \omega^B \}$

■ Maximal tensor product (separable + entangled):
A₊ ⊗_{max} B₊ = {ω^{AB} ∈ A ⊗ B | ω^{AB}(e^A ⊗ e^B) ≥ 0}
includes all joint states allowed by No-Signalling

• Cone AB_+ of joint system bounded:

 $A_+ \otimes_{\min} B_+ \quad \subseteq \quad AB_+ \quad \subseteq \quad A_+ \otimes_{\max} B_+$

• Minimal tensor product (separable): $A_+ \otimes_{\min} B_+ = \operatorname{ConvexSpan} \{ \omega^A \otimes \omega^B \}$

• Maximal tensor product (separable + entangled): $A_+ \otimes_{\max} B_+ = \left\{ \omega^{AB} \in A \otimes B \middle| \omega^{AB}(e^A \otimes e^B) \ge 0 \right\}$ includes all joint states allowed by No-Signalling

 \blacksquare Theorie defined by structure of A_+, u^A , B_+, u^B and AB_+ \ldots

Duality relations

For finite dimensional systems:

$$(A_+ \otimes_{\max} B_+) = (A_+^* \otimes_{\min} B_+^*)^*$$
$$(A_+ \otimes_{\min} B_+) = (A_+^* \otimes_{\max} B_+^*)^*$$

- All tensor products equal or there exists at least either states or effects that are entangled
- In QT: Balanced between entangled effects and states

Thank you for your attention!